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2,4-DPO  2,4-difluorophenyl-piperidin-4-yl-oxime 

2-APA   2-anilinophenylacetate 

2-(2-Cl)-APA  2-(2-chloro)-anilinophenylacetate 

AAS   Atomic absorption spectroscopy 

ANOVA  Analysis of variance 

AOP   Advanced oxidation process 

AOX   Adsorbable organic halogens 

APTES  3-aminopropyltriethoxysiloxane 

CAS   Conventional activated sludge 

CDW   Cell dry weight 

CFC   Chlorofluorocarbon 

DMSO   Dimethylsulfoxide 

DNAPL  Dense non-aqueous phase liquid 

EDC   1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EDTA   Ethylenediaminetetra-acetic acid 

EDX   Energy dispersive X-ray spectroscopy 

EN   Electronegativity 

EtOH   Ethanol 

EU   European Union 

FID   Flame ionization detector 

FWHM  Full width at half maximum 

GC   Gas chromatography 

GHG   Greenhouse gas 

HPLC   High performance liquid chromatography 

ICM   Iodinated contrast media 

ICP-OES  Inductively coupled plasma – optical emission spectroscopy 

LC   Liquid chromatography 
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LC50   Lethal concentration for 50 % of the test population 

LCD   Liquid crystal display 

LC-MSn  Liquid chromatography coupled to multiple mass spectrometry 

LOQ   Limit of quantification 

LSD   Least significant difference 

LTQ   Linear trap quadrupole 

MS   Mass spectrometry 

NHS   N-hydroxysuccinimide 

OD   Optical density 

PBDE   Polybromodifenylethers 

PCB   Polychlorinated bifenyl 

PCE   Perchloroethylene 

PEI   Polyethyleneimine 

PFC   Perfluorinated compound 

PGM    Platinum group metals 

PI   Propidium iodide 

REE   Rare earth element 

RI   Refractive index 

SG   SYBR Green I 

SPR   Surface plasmon resonance 

STEM   Scanning transmission electron microscopy 

TBAB   Tetrabutylammoniumbromide 

TEM   Transmission electron microscopy 

TCE   Trichloroethylene 

UV   Ultraviolet 

WWTP  Wastewater treatment plant 

XRD   X-ray diffraction 

µXRD   Micro X-ray diffraction 
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Chapter 1  

Introduction 1  

1 Palladium: a precious catalyst 

The chemical element palladium (Pd) was discovered in 1803 by the English chemist 

and physicist William Hyde Wollaston. It is a transition element with atomic number 46 

and an atomic mass of 106.42. Its common oxidation states are 0, +1, +2 and +4. 

Together with rhodium (Rh), ruthenium (Ru), osmium (Os), iridium (Ir) and platinum (Pt), 

it forms the platinum group elements (PGM). Together with gold (Au) and silver (Ag), the 

PGM are considered as ‘precious metals’. The worlds largest producers of Pd are Russia 

(44%) and South Africa (40%). Pd finds its applications in: 

• Electronics: Pd and Pd-Ag electrodes are used in multilayer ceramic capacitors; 

• Jewelry: Pd is used to make white gold alloys; 

• Dentistry: dental crowns are made of alloys containing Pd; 

• Catalysis: the most important application. 

Pd is used as a catalyst in both oxidative and reductive reactions. About half of the 

world’s Pd is used for three-way converters in vehicles. These catalytic beds oxidize 

hydrocarbons to CO2 and reduce nitrogenous compounds to N2. An important 

characteristic of Pd and probably the main reason for its popularity as a catalyst is the 

interaction with hydrogen (H). Pd can dissociatively adsorb H2, causing a homolytical 

dissociation into H-radicals, which are stored within the free spaces of the Pd crystal 

lattice. This characteristic has made heterogeneous Pd catalysts (the Pd catalyst is in a 

solid phase on a carrier material, whereas the reagents are in a dissolved or gaseous 

phase) as one of the most important catalysts for several reaction types such as 

hydrogenation, dehydrogenation, hydrodehalogenation. In addition, Pd is also used for 
                                                

Part of this chapter redrafted after: 

S. De Corte, T. Hennebel, B. De Gusseme, W. Verstraete, N. Boon. 2012. Bio-palladium: 

from metal recovery to catalytic applications. Microbial Biotechnology 5(1): 5-17 

Chapter redrafted after: 

S. De Corte, T. Hennebel, S. Verschuere, C. Cuvelier, W. Verstraete, N. Boon. 2011. 

S. De Corte, T. Hennebel, B. De Gusseme, W. Verstraete, N. Boon. 2012. Bio-palladium: 

from metal recovery to catalytic applications. Microbial Biotechnology 5(1): 5-17 
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the oxidation of alcohols and for C-C coupling reactions in organic chemistry, such as the 

in Suzuki-, Heck-, Negishi-coupling reactions. The latter authors won the Nobel Prize for 

Chemistry in 2010. For an overview of Pd-catalyzed reactions, see Tsuji (1995).  

More recently, the use of Pd for environmental purposes and water treatment has also 

been investigated, for example for the dehalogenation of chlorinated contaminants such 

as TCE, PCE, PBDEs and halogenated pharmaceuticals, the reduction of oxyanions 

such as nitrate and perchlorate and the N-N hydrogenolysis of azo dyes (for a review on 

Pd in water treatment, see Chaplin et al. (2012)). 

2 Palladium nanoparticles 

2.1 Nano vs. bulk 
These days, heterogeneous Pd catalysts are more and more used under the form of 

nanoparticles instead of bulk material. Nanomaterials are defined by the European 

Commission as materials between 1 and 100 nm in size in at least one dimension. The 

(re)activity of nanoparticles is bigger than bulk materials because of the increased 

specific surface area (i.e. the surface area per unit of volume). Moreover, nanoparticles 

can show completely different characteristics compared to their bulk counterparts, such 

as different optical (Huang et al., 1997), magnetic (Huang et al., 1999) and electronic 

characteristics (Lue et al., 1995). This is mainly due to: 

• Surface effects: nanoparticles contain proportionally more surface atoms than 

bulk atoms, resulting in a higher average binding energy per atom; 

• Quantum size effects: by altering the size of a particle, the energy gap between 

the valence and the conduction band can change, resulting in varying optical and 

electrical properties. 

An example of the difference between bulk and nanoparticles, which is very relevant for 

this work, is the fact that Au nanoparticles can show catalytic activity, whereas bulk Au is 

inert (see 7.2). 

2.2 Conventional production methods 
Conventional production methods of nanomaterials can be classified as either physical or 

chemical methods. Physical methods mainly include ‘top-down methods’: the size of bulk 

materials is decreased by means of mechanical crushing, pulverization or 

electrochemical destruction. This results in a powder with a relatively wide particle size 

distribution. Chemical production methods are mostly ‘bottom-up methods’: atoms are 
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formed by reduction of metal ions. These atoms aggregate together to form 

nanoparticles. Conventional reductants are H2, citrate, NaBH4 and LiAlH4. A suspension 

of nanoparticles requires addition of a stabilizer (e.g. poylvinylpyrrolidone) to avoid 

aggregation of the particles into micron-size aggregates. Also capping agents are often 

used, they prevent growth of the particles. For catalytic purposes, Pd nanoparticles are 

very often impregnated on a carrier material. This makes the nanocatalysts more easy to 

retain in the medium and prevents release into wastestreams and the environment. The 

most frequently applied carriers for Pd nanoparticles are Al2O3, SiO2 and activated 

carbon. It is clear that a lot of chemicals are involved in the chemical production process 

of Pd nanoparticles. These substances can be scarce, aggressive, toxic or expensive. In 

the last decades, a more sustainable production method for Pd nanoparticles, requiring 

less energy and chemicals, has extensively been explored. It exploits the bioreductive 

deposition of metals by bacteria. The product obtained by this method is further referred 

to as ‘bio-Pd’. 

3 Bioreductive deposition of Pd(II) as Pd(0) 
nanoparticles 

Different bacterial species are able to reduce Pd(II) to Pd(0) and each of them has 

specific properties that make them attractive for metal reduction (Table 1-1). The first 

reported species with Pd-reducing capacities was the sulphate-reducing bacterium 

Desulfovibrio desulfuricans (Lloyd et al., 1998). After incubation under anaerobic 

conditions, Pd(II) was added to the culture together with H2 or formate as electron donor. 

Subsequently, nanoscale deposits of Pd(0) at the cell surface were observed (‘bio-Pd’). 

When hydrogenases were inhibited with Cu, this reduction did not occur. This strongly 

indicated that a hydrogenase (possibly in combination with cytochrome c3) was 

responsible for the reduction of Pd(II) to Pd(0). A more detailed study on the involvement 

of hydrogenases in the reduction of Pd(II) by Desulfovibrio fructosivorans, a species with 

very well characterized periplasmic enzyme systems, was performed by Mikheenko et al. 

(2008). The role of different hydrogenases in the reduction process of Pd(II) was 

confirmed, since no depositions in the periplasmic space but only some Pd(0)-clusters in 

mutants lacking these enzymes were observed on the cytoplasmatic membrane. The 

authors suggested that the enzyme probably supplied the electrons for the reduction 

process and served as a nucleation site for particle growth. 
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Table 1-1: Overview of the different Pd-reducing species, their Gram staining, oxygen tolerance and 

properties attractive for metal reduction. 

Species or genus Gram 
staining 

Aerobe/anaerobe Attractive 
properties for Pd 

reduction 

Reference 

Desulfovibrio desulfuricans G - Anaerobe  Sulphate reducing, 
metal reducing 

Lloyd et al., 1998;    
Yong et al., 2002 

Desulfovibrio vulgaris G - Anaerobe  Sulphate reducing Baxter-Plant et al., 2003; 
Humphries et al., 2005 

Desulfovibrio fructosivorans G - Anaerobe  Sulphate reducing Mikheenko et al., 2008 

Shewanella oneidensis G - Facultative anaerobe Metal reducing De Windt et al., 2005 

Paracoccus denitrificans G - Facultative anaerobe Nitrate reducing Bunge et al., 2010 

Pseudomonas putida G - Aerobe  Bunge et al., 2010 

Cupriavidus necator G - Facultative aerobe Resistance to heavy 
metals 

Bunge et al., 2010 

Cupriavidus metallidurans G - Facultative aerobe Resistance to heavy 
metals 

Gauthier et al., 2010 

Rhodobacter sphaeroides G - Facultative aerobe Photosynthetic, metal 
resistant 

Redwood et al., 2008 

Bacillus sphaericus G + Aerobe  Creamer et al., 2007 

Plectonema boryanum G - Aerobe Cyanobacterium Lengke et al., 2007 

Calothrix G - Aerobe N-fixing 
Cyanobacterium 

Brayner et al., 2007 

Anabaena G - Aerobe N-fixing 
Cyanobacterium 

Brayner et al., 2007 

Clostridium pasterianum G + Anaerobe Metal reducing, H2 
producing through 

fermentation 

Chidambaram et al., 
2010 

Citrobacter braakii G - Facultative anaerobe H2 producing through 
fermentation 

Hennebel et al., 2011c 

Clostridium butyricum G + Anaerobe H2 producing through 
fermentation 

Hennebel et al., 2011c 

Bacteroides vulgatus G - Anaerobe Arsenic reducing, H2 
producing through 

fermentation 

Hennebel et al., 2011c 

Klebsiella pneumoniae G - Facultative anaerobe H2 producing through 
fermentation 

Hennebel et al., 2011c 

Escherichia coli G - Facultative anaerobe H2 producing through 
fermentation 

Deplanche et al., 2010; 
Hennebel et al., 2011c 

Enterococcus faecium G + Facultative anaerobe H2 producing through 
fermentation 

Hennebel et al., 2011c 
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Another bacterial species that has been extensively studied in this context is the iron 

reducing bacterium Shewanella oneidensis (Figure 1-1A). The bioreductive deposition of 

Pd(0) on the cell wall and in the periplasmic space of S. oneidensis has been described 

in presence of a series of electron donors (H2, formate, lactate, pyruvate, ethanol) with 

H2 and formate being the most efficient donors (De Windt et al., 2005). Interestingly, the 

presence of O2 did not significantly inhibit the reduction process. A similar reduction 

mechanism as for D. desulfuricans, based on the involvement of hydrogenases and 

cytochrome c3 was proposed. In addition, the authors suggested a role for the formate 

dehydrogenase enzyme in the reduction process. 

 

Figure 1-1: A: Nanoparticles of Pd(0) in and on the outer cell parts of Shewanella oneidensis. B: 

Nanoparticles of Pd(0) precipitated by the fermentative bacterium Citrobacter braakii. 

Bunge et al. (2010) stated that the bacterial reduction of Pd(II) is not restricted to bacteria 

that reduce metals in a dissimilatory way (D. desulfuricans and S. oneidensis), but that a 

broader spectrum of Gram-negative bacteria can sorb and subsequently reduce Pd(II). 

Pd(0) nanoparticles were formed both in the periplasm and on the cell surface of 

Paracoccus denitrificans, Pseudomonas putida and Cupriavidus necator after 14 hours 

incubation with formate. Pd(0) was also formed with autoclaved cells, where all 

hydrogenases had been inactivated and thus excluding the necessity of hydrogenase for 

the reduction process. 

Cyanobacteria are another interesting group of bacteria that are able to form Pd(0) 

nanoparticles out of Pd(II) (Brayner et al., 2007; Lengke et al., 2007). Deposits of Pd(0) 

were found in the medium, on the cell surface and intracellularly. Brayner et al. (2007) 

suggested the nitrogenase enzyme to be responsible for the reduction. 
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A new approach was to produce Pd(0) through fermentative bacteria (Chidambaram et 

al., 2010; Hennebel et al., 2011c). Several fermentative species produce H2 during 

fermentation processes and can subsequently reduce Pd(II) to Pd(0) (Table 1-1). These 

bacteria were cultivated under fermentative conditions in an anaerobic minimal medium 

in which glucose was supplied as a carbon source before Pd(II) was added. A picture of 

bio-Pd produced by the fermentative Citrobacter braakii is shown in Figure 1-1B. This 

fermentatively produced H2 (referred to as ‘biohydrogen’) can subsequently be used as a 

reductant for Pd(II) reduction. Addition of Pd(II) to a fermenting culture of C. 

pasteurianum resulted in the formation of NPs of Pd(0) on the cell wall and in the 

cytoplasm of the bacteria (Chidambaram et al., 2010). Moreover, this biohydrogen could 

further serve as hydrogen donor for the catalytic activity of the Pd(0). A reactive catalyst 

could thus be obtained in one step. Deplanche et al. (2010) attributed the reduction of 

Pd(II) by E. coli to three types of hydrogenases.  

D. desulfuricans and S. oneidensis are the most studied organisms in the context of the 

bioreductive synthesis of Pd(0) NPs. The NPs are formed at the outer surface of the 

bacterial cells (Lloyd et al., 1998; De Windt et al., 2005), which makes them available for 

applications as catalyst. This is in contrast with for example cyanobacteria. Moreover, the 

particles synthesized by D. desulfuricans and S. oneidensis are small and show a narrow 

size distribution (De Windt et al., 2006; Bennett et al., 2010) and the precipitation occurs 

within minutes, which is not really the case for the particles produced by the Gram 

negative species described by Bunge et al. (2010) and Sobjerg et al. (2009). Still, to 

increase the catalytic activity of bio-Pd, the size of the nanoparticles should be 

decreased to 1-10 nm. Application of fermentative bacteria can be promising due to in 

situ production of H2. However, the particles show poor cell adhesion and a large particle 

size distribution (Hennebel et al., 2011c). Due to the location on the outer parts of the 

cells, the narrow size distribution and the fast reduction, bio-Pd produced by D. 

desulfuricans and S. oneidensis have shown their applicability in catalysis. Nevertheless, 

it is possible that the conditions for deposition of Pd(0) by other strains can be optimized 

so that also other forms of bio-Pd become more interesting for applications as catalyst. 

4 Use of bio-Pd as a catalyst 

4.1 Bio-Pd catalyzed removal of environmental contaminants 
Bio-Pd was successfully applied to remove a wide range of environmental contaminants 

(Table 1-2).  The reactions that are described in this context are reduction of inorganic 

contaminants and dehalogenation of organic molecules. These contaminants result from 
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different industrial processes and from the use of pesticides, pharmaceuticals, solvents, 

…  

Table 1-2: Overview of the different environmental contaminants that were successfully degraded with 

a bio-Pd catalyst, together with the reaction mechanism and the Pd-reducing species used in the 

study 

Compound Type of 
reaction 

Polluted 
environmental 
compartment 

Pd reducing 
species 

Reference 

Cr(VI) Reduction Industrial 
wastewaters 

D. desulfuricans 
D. vulgaris 

E. coli 
C. pasteurianum 

Humphries et al., 2005; 
Mabbett et al., 2006 

 
Chidambaram et al., 2010 

ClO4
- Reduction Groundwater and 

drinking water 
S. oneidensis De Windt et al., 2006 

Polychlorobifenyls 
(PCBs) 

Dechlorination 
(1-10 Cl) 

Air, water, soil, 
sediments 

D. desulfuricans 
D. vulgaris 

 
S. oneidensis 

Baxter-Plant et al., 2003 
 
 

De Windt et al., 2005 
Chlorophenols Dechlorination 

(1 Cl) 
Industrial 

wastewaters, 
groundwater, soil, 

sediments 

D. desulfuricans 
D. vulgaris 

Baxter-Plant et al., 2003 

Lindane Dechlorination 
(6 Cl) 

Soil and 
groundwater 

S. oneidensis Mertens et al., 2007 

Trichloroethylene 
(TCE) 

Dechlorination 
(3 Cl) 

Groundwater S. oneidensis Hennebel et al., 2009b 

Polybrominated 
diphenyl ethers 

(PBDE) 

Debromination 
(1-10 Br) 

Indoor air and 
dust 

D. desulfuricans Harrad et al., 2007; 
Deplanche et al., 2009 

Iodinated Contrast 
Media (ICM) 

Deiodination 
(3 I) 

Wastewaters and 
surface waters 

S. oneidensis 
 

C. braakii 

Hennebel et al., 2010; 
Forrez et al., 2011b 

Hennebel et al., 2011c 
 

In all cases, a hydrogen donor (H2 or formate) was used as the reductive agent to charge 

the bio-Pd catalyst (Figure 1-2A). Noteworthy is that the particle size and the reactivity 

can be steered by altering the Pd/cell dry weight ratio (De Windt et al., 2006) and that the 

external addition of a hydrogen donor can be omitted when fermentatively cultivated 

species are used which produce biohydrogen (Figure 1-2B) (Chidambaram et al., 2010; 

Hennebel et al., 2011c). 

Bio-Pd catalysts showed a higher catalytic activity than black Pd powder for the 

dechlorination of PCBs (De Windt et al., 2005), however this is not a fair comparison 

since this Pd powder does not consist of nanoparticles. Hennebel et al. (2010) 

mentioned that a nano Pd/Al2O3 catalyst was a factor 2,5 to 30 more active than bio-Pd 

for the deiodination of diatrizoate. No big differences in terms of selectivity were 
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observed for bio-Pd and chemical Pd catalysts applied for the degradation of 

environmental contaminants. 

 

Figure 1-2: A: Two-step dehalogenation of halogenated substances with a bio-Pd catalyst and an 

external hydrogen donor. B: One-step dehalogenation of halogenated substances with a bio-Pd 

catalyst produced by fermentative species.  

4.2 Bio-Pd as a catalyst in synthetic organic chemistry 
Bio-Pd (precipitated by Desulfovibrio desulfuricans and Bacillus sphaericus) was applied 

as catalyst in the hydrogenation of organic molecules, e.g. the hydrogenation of itaconic 

acid (Creamer et al., 2007), 2-pentyne (Bennett et al., 2010) and a wide variety of other 

organic molecules (Deplanche et al., 2009). The reaction rates were dependent on the 

solvent in which the reaction was performed and extremely dependent on the molecule 

that is to be hydrogenated. Molecules with very high structural similarity showed large 

differences in hydrogenation efficiency. For example, 3,4-dihydroisoquinoline could be 

hydrogenated to 1,2,3,4-tetrahydroisoquinoline with a yield of 47 %, whereas 3,4-

dihydro-1-methlisoquinoline, differing from the previous product by only one methyl 

group, could not be hydrogenated at all. In general, when used in different solvents, bio-

Pd gave more consistent results in terms of selectivity compared to Pd/Al2O3 (Bennett et 

al., 2010), indicating that the bacterial carrier is less sensible to changes in reaction 

condtions than the Al2O3 carrier. This is probably due to the location of the particles in 

the outer layers of the cell matrix, where they have less contact with the reaction 
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medium, compared to the Al2O3 carrier, or to the different surface properties of the 

carriers. The applicability of bio-Pd catalysts for coupling reactions in synthetic organic 

chemistry was reported by Sobjerg et al. (2009). Two bacteria (Pseudomonas putida and 

Cupriavidus necator) were used to precipitate Pd(0). Both forms of bio-Pd could 

successfully catalyze the Suzuki-Miyaura coupling of an aryl halide with phenylboronic 

acid and the Mizoroki-Heck coupling of an aryl halide with n-butylacrylate. Gauthier et al 

(2010) apply bio-Pd recovered from a metal-containing leachate by 2 different 

Cupriavidus species for the Mizoroki-Heck coupling. 

5 Reactor set-ups using a bio-Pd catalyst: state of the 
art 

5.1 Bio-Pd for in situ groundwater remediation 
Chidambaram et al. (2010) showed that Pd(II) could be reduced by a biofilm of 

Clostridium pasteurianum grown on sand grains. Aquifer microcosms were developed for 

in situ remediation of groundwater contaminated with Cr(VI).  In one of these 

microcosms, Pd(II) was added and subsequently reduced to Pd(0). In this microcosm, 

Cr(VI) could be reduced to Cr(III), which was confirmed by µXANES. In a microcosm with 

viable cells without added Pd(II), no Cr(III) was detected. 

5.2 Use of bio-Pd in aqueous suspensions 
The attachment of the nanoscale Pd(0) catalysts to a microscale bacterial scaffold 

allowed separation of the catalysts from the reaction medium by relatively simple 

techniques like microfiltration in membrane reactors. Several membrane systems were 

used to keep the bio-Pd catalyst in the reaction medium and to prevent leaching of the 

catalyst in the effluent. The use of hollow fibre membranes for the retention of bio-Pd ( 

Figure 1-3A) was demonstrated for the removal of the groundwater contaminant lindane 

and the removal of iodinated contrast media (ICM) from wastewaters (Mertens et al., 

2007; Forrez et al., 2011b). Lindane was removed for 83 % using 100 mg Pd L-1 and the 

ICM iohexol, iomeprol, iopromide and diatrizoate were removed for more than 90 % 

using 141 mg Pd L-1. These hollow fibres allow a high membrane area per unit of volume 

but are very vulnerable to clogging. A more robust alternative are plate membranes ( 

Figure 1-3B). A plate membrane reactor filled with bio-Pd (produced by S. oneidensis) 

was developed by Hennebel et al. (2009b) for the removal of the chlorinated solvent TCE 

from groundwater. The highest removal rates (2340 ± 144 mg TCE day-1 g-1 Pd) were 
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obtained using H2 as electron donor and 100 mg Pd L-1. Almost no Pd leaching to the 

effluent took place (a maximum effluent concentration of 180 µg Pd L-1).  

5.3 Retention of bio-Pd by encapsulation and by coating on 
surfaces 

An alternative for the retention of bio-Pd by membranes is the encapsulation in polymeric 

matrices. Bio-Pd was encapsulated in several materials in order to prevent leaching of 

Pd in the effluent of the reactors and to facilitate separation and recycling of the catalyst. 

Hennebel et al. (2009c) incorporated bio-Pd, produced by S. oneidensis, in a series of 

encapsulation materials: polyurethane, polyacrylamide, alginate and silica. Encapsulation 

in alginate beads is illustrated in  

Figure 1-3C. The encapsulated bio-Pd had at least a six times lower dechlorination rate 

for TCE to ethane compared to a bio-Pd suspension. Polyurethane cubes were used in a 

fixed bed reactor. In a flow through system, the maximum TCE removal rate was 865 ± 

151 mg TCE g-1 Pd day-1. This removal rate is significantly lower compared to a bio-Pd 

suspension in a membrane reactor (Hennebel et al., 2009b). 

Polymeric membranes have also been used as encapsulation matrix for bio-Pd. 

Hennebel et al. (2010) made catalytically active membranes by incorporating bio-Pd 

(produced by S. oneidensis) in PVDF (polyvinylidene fluoride) and PSf (polysulfone) 

membranes. These membranes were prepared by the immersion-precipitation method. 

The deiodination rates of diatrizoate obtained with bio-Pd membranes were only slightly 

lower than the ones with a suspension of bio-Pd. The PVDF membranes containing bio-

Pd were used in a membrane contactor set-up. In this contactor, water spiked with 

diatrizoate was circulated on one side of the membrane and H2 was dosed in a controlled 

way at the other side of the membrane. A scheme of this setup is shown in  

Figure 1-3D. The aim of this set-up was to dose H2 in a more controlled way and directly 

to the catalyst with less limitations due to its limited water solubility. In this system 

diatrizoate was removed for 77 % after 48 hours at pH 10. 

Next to encapsulation in polymeric matrices, Hennebel et al. (2009c) coated bio-Pd on 

zeolites. This coated bio-Pd was 5 times less active for the dechlorination of TCE 

compared to a bio-Pd suspension. This coating on porous zeolites is illustrated in  

Figure 1-3E. Another coating surface is graphite (Hennebel et al., 2011a). This graphite 

can be further used as a cathode of a bio-electrochemical system. Also the anode of 
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microbial fuel cells (MFCs) can be coated with bio-Pd, for example coated on a teflon-

coated carbon paper (Ogi et al., 2011). The aim for the use of bio-Pd was to maximize 

the power output of the cell by lowering the activation energy for the anode half-reaction. 

The maximum power output of a bio-Pd containg cell was 90 % of the power of a cell 

containing a chemical Pd catalyst. 

Another study showed that a biofilm of Serratia, which was grown on polyurethane foam, 

could reduce Pd(II). The obtained Pd(0) was successfully used for reduction of Cr(VI). 

However, reactors containing this biofilm-Pd showed heterogeneities in reaction rates 

and dead spots (Beauregard et al., 2010).  
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Figure 1-3: Retention mechanisms of bio-Pd in reactor set-ups (not to scale). A: Retention by hollow 

fibre membranes. B: Retention by plate membranes. C: Encapsulation in alginate beads. D: 

Encapsulation in polymeric membranes. E: Coating on zeolites. 

6 Possible limitations of bio-Pd catalysts 

6.1 Lower activity compared to chemically produced Pd catalysts 
Bio-Pd catalysts show a higher activity compared to commercial bulk Pd powder (almost 

complete degradation of 1 mg L-1 PCB 21 after 50 minutes using 500 mg L-1 bio-Pd and 

H2, and only 65 % degradation using 500 mg L-1 commercial Pd powder  (De Windt et al., 

2005)). However, in order to make a fair comparison, the activity of bio-Pd nanocatalysts 

should be compared to chemically produced Pd nanoparticles. The catalytic activity of Pd 

nanoparticles on Al2O3 largely exceeded the activity of bio-Pd for the deiodination of 

diatrizoate (first order rate constants of 56.9 ± 5.9 L gPd
-1 h-1 for bio-Pd (Hennebel et al., 

2010) and a factor 50 higher for Pd/Al2O3 (Knitt et al., 2008)) and the dechlorination of 

TCE (1.38 ± 0.22 L gPd
-1 min-1 for bio-Pd (Hennebel et al., 2009b) vs. 12.2 L gPd

-1 min-1 

for Pd/Al2O3 (Nutt et al., 2005)). This could be due to the fact that the bio-Pd particles are 

partly embedded in the bacterial cell wall and in the periplasmic space and therefore 

have less catalytic surface available compared to Pd nanoparticles on more conventional 

carriers. 

6.2 Catalyst poisoning by sulfur 
Another limitation for the use of Pd catalysts might imply the poisoning of the catalyst. 

For example sulfides are known to have a strong affinity for the Pd metal and may block 

the active sites of the catalyst via formation of strong Pd–S bonds and layers of sulfide 

around the Pd clusters (Gravil et al., 1999; Alfonso et al., 2003). Poisoning by sulfide 

occurs already at very low sulfide concentrations: a 20 % activity decrease was observed 

for the reduction of nitrate at sulfide concentration of 1.42 mg S g-1 Pd, whereas a 

complete inhibition of the activity was observed at 13 mg S g-1 Pd (Chaplin et al., 2007). 

Since sulfide is a natural water constituent under reducing conditions produced by 

microbial sulfate reduction, sulfide induced catalyst deactivation is a crucial issue which 

hinders the full exploitation of the catalyst potential as a treatment technology for 

groundwater remediation (Angeles-Wedler et al., 2009). A possible approach to prevent 

sulfide poisoning is the oxidative removal of sulfide prior to any contact with the noble 

metal (Angeles-Wedler et al., 2008).  
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Another source of sulfur is the bacterial carrier itself. Bacteria typically contain on 

average between 0.30 and 0.56 fg S cell-1, but values up to 13 fg S cell-1 have been 

reported for growing E. coli cells, C/S ratios between 12 and 60 have been reported 

(Fagerbakke et al., 1996). Due to aggressive conditions or thermal decomposition, the 

bacterial carrier can be destroyed, sulfur can be released and poison the surface of the 

catalyst. Therefore, it is important that the bacterial carrier is kept intact and that release 

of sulfur is prevented. It is advisable that bacteria, which are grown for bio-Pd production 

are cultivated with as few sulfur as possible in the culture media. Nevertheless, sulfur is 

an indispensable constituent of some amino acids (cysteine, methionine) and will always 

be present in bacterial cells. For these reasons, sulfur-free sustainable carrier materials 

should also be considered as an alternative for bacterial cells. 

6.3 High temperature and pressure applications 
In advanced synthetic organic chemistry and petrochemistry, homogeneous and 

heterogeneous Pd catalysts are very frequently used for hydrogenation and 

dehydrogenation reactions. Heterogeneous catalysts allow an easy separation of the 

catalyst from the reaction medium. Due to the attachment of the nanoparticles to the 

bacterial cell wall structures, the use of bio-Pd could prevent the leaching of Pd in the 

synthesized product. Therefore, bio-Pd could be an interesting heterogeneous Pd 

catalyst. However, these reactions are often performed at elevated temperatures and 

pressures. Under these circumstances, the bacterial cells will disintegrate. By doing so, 

nanoparticles can be released from the carrier and can end up in the final product (see 

also 6.4). Also aggregation of nanoparticles into micron-size aggregates can occur. 

Moreover, sulfur can be released and will consequently poison the catalyst (see also 

6.3).  

6.4 Unknown stability 
In order to be a competitive alternative for conventional heterogenous Pd catalysts, the 

stability of bio-Pd needs to be studied. Three phenomena can occur when preserving 

bio-Pd for longer periods of time: (i) leaching of the nanoparticles from the biomass, (ii) 

leaching of Pd(II) from the metallic nanoparticle and (iii) poisoning of the catalyst.  

Leaching of Pd nanoparticles can be due to detachment from the cell wall or 

desintegration of the bacterial biomass. Degradation of the bacterial support will cause 

release of nanoparticles and thus needs to be avoided. The cell structures need to stay 

intact for longer periods of time by an appropriate preservation technique. Little is known 

about the fate of nanoparticles in the environment and potential adverse health effects, 
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but due to the precautionary principle, their release needs to be prevented. The leaching 

of ions is commonly reported for catalysts based on transition metals (Calvo et al., 2010). 

Leaching of Pd(II) depends mostly on the type of solvent and the pH of the reaction 

medium. In the case of chemical synthesis reactions, such as the Pd catalyzed Suzuki-

Miyaura coupling reactions, also the presence of additives (base, 

tetrabutylammoniumbromide (TBAB)) and substrates (aryl halides, phenyl boronic acid) 

play a crucial role.  

7 Bimetallic catalysts 

7.1 Pd in combination with promoting elements 
In order to increase reaction rates or to enable new reactions, there is a growing interest 

in the use of bimetallic catalysts. In the case of Pd, a whole range of elements has been 

used as promoting element. For example, the combination of chemically produced Pd 

and Fe is a very well documented bimetallic catalyst for reduction reactions (Zhang et al., 

1998; Crabb et al., 2001). However, in this case, Fe(0) is most often oxidized to Fe(II). 

This generates electrons, which can be used for the reduction of H+ to H2, which can 

then serve as a hydrogen donor for the Pd. Since one of the constituents of the bimetal is 

consumed during reaction, the definition of a ‘catalyst’ is not really fulfilled anymore. 

Most other doping elements are not consumed during the reaction. The exact role of the 

promoting element is often unclear: it can either improve the geometry of the catalyst or 

facilitate the transfer of electrons. These bimetallic catalysts can have different 

structures, such as alloy, core-shell or cluster-in-cluster structures (Figure 1-4). The 

choice for a certain structure is dependent on the reaction and the desired promoting 

effect (enabling new reaction pathways, increased reaction rate or increased selectivity). 

It can be varied by changing the production process of the bimetallic catalyst.  

 
Figure 1-4: Possible structures of bimetallic catalysts: alloy, core-shell or cluster-in-cluster (from: 

http://www.usask.ca) 
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A wide variety of elements have been described as promoting elements for Pd catalysts 

in both oxidative and reductive reactions, some recent examples are: Pt (Valdez et al., 

2013), In (Barbosa et al., 2013), Sn (Barbosa et al., 2013), Re (Liu et al., 2013), Ag (Lin 

et al., 2012), Ni (Sun et al., 2012), Cu (Obraztsova et al., 2012) and Ir (Morfin et al., 

2012). One of the most widely described elements as a doping agent for Pd catalysts is 

Au. 

7.2 Pd/Au catalysts 
Bulk Au is considered to be inert as a catalyst. Au nanoparticles on the other hand 

exhibit catalytic activity, for example for the oxidation of CO, the nucleophilic addition to 

alkenes and the synthesis of H2O2 (for a review, see Hashmi et al., 2006) 

The Pd/Au catalyst is a very popular bimetallic combination for a whole range of 

purposes. Some examples are: the oxidative hydrogenation of tetralin (Murugadoss et 

al., 2012), the Ullmann coupling (Dhital et al., 2012), the oxidation of benzyl alcohol 

(Dhital et al., 2012) and the hydrogenation of aldehydes (Yang et al., 2012). Gao et al. 

(2012) attributed the promotional effect of Au to both geometric and electronic effects. 

The geometric effect was called the ensemble effect, and was caused by the presence of 

more isolated Pd clusters within the crystal due to the insertion of the Au entities. The 

electronic effect was called the ligand effect and consisted of a rearrangement of the 

electronic structure of Pd, causing a weaker attachment of reactants and products to the 

catalyst surface, increasing sorption and desorption rates and thus increasing reaction 

rates. 

In the hydrodehalogenation reactions, the Pd/Au catalyst is the only described Pd-based 

bimetallic combination (next to the Pd/Fe catalyst, which consumes Fe, and is not a true 

catalyst (Ghauch et al., 2010)). Bonarowska et al. (2001a) and (2001b) developed Pd/Au 

alloys on carbon and silica for the hydrodechlorination of CF2Cl2 at 180 °C. These 

catalysts could increase the selectivity towards CF2H2 to 95 %, compared to a selectivity 

of 40 % obtained by a monometallic Pd catalyst. Nutt et al. (2005) designed bimetallic 

catalysts with a core of Au and a shell of Pd. In a first phase, 20 nm Au-Pd core-shell 

nanocatalysts were developed which showed a hydrodechlorination rate of TCE of 943 L 

gPd
-1 min-1, an increase by a factor 10 compared to the monometallic Pd catalysts. With a 

slightly different preparation procedure using other reductants, new Pd/Au catalysts were 

designed in a next phase (Nutt et al., 2006). 4 nm particles consisting of an Au core 

covered with a Pd layer were designed and their activity was again evaluated for the 

hydrodechlorination of TCE. A maximum activity of 1950 L gPd
-1 min-1 was obtained at a 
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Pd surface coverage of 13%. Water with 15 mg L-1 TCE was successfully treated with a 

flow through column containing these particles in a polymeric resin (Wong et al., 2009). 

The additional investment cost for Au was largely compensated by the tremendous 

increase in catalytic activity. 

One of the aims of this work is to synthesize a biosupported Pd/Au catalyst and to 

compare its activity for the removal of halogenated micropollutants in wastewaters and in 

organic C-C coupling reactions with the activity of monometallic bio-Pd catalysts. 

8 Halogenated pollutants as target contaminants 

8.1 Occurrence and risks 
Due to the increasing welfare and life quality, and the continuous progress in synthetic 

chemistry, the consumption and production of chemicals such as drugs, personal care 

products, pesticides, solvents and flame retardants has drastically increased. Several of 

these compounds are halogenated, which means they contain a F, Cl, Br or I atom in 

their molecular structure. The presence of a carbon-halogen bond makes these 

molecules very stable, which is often desirable for their application. However, when 

entering the environment after use or consumption, the stability of the molecules can 

mean a potential hazard, since these molecules show a very low (bio)degradability.  

These compounds can be found in all environmental compartments. PCBs are most 

often found in sediments, after leakage from electrical equipment. Chlorinated solvents 

(TCE, PCE, …) form dense non-aqueous phase liquids (DNAPLs) in soils after spills or 

leakage from dry cleaning activities and are partly dissolved in groundwater. Brominated 

flame retardants are found in indoor air. Pharmaceuticals are excreted by humans and 

end up in domestic and hospital wastewaters. They are only very limitedly degraded and 

sorbed by conventional wastewater treatment plants and, after discharge of the effluent, 

they end up in surface waters, where they are found in concentrations of pg L-1 to µg L-1. 

Due to dilution effects and transport mechanisms of water and air (the so called 

‘grasshopper effect’), these substances are relatively easily transported over longer 

distances. 

Most of these pollutants can be toxic for living organisms. The toxic effects and the 

concentrations inducing these toxic effects are of course dependent on the compound. 

Moreover, substances like PCBs and dioxins can bioaccumulate in the food chain. In the 

case of pharmaceuticals, toxic effects on the aquatic life are in some cases already 

observed at concentrations at which the contaminants are present. Diclofenac is found in 
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the effluents of sewage treatment plants in concentrations up to 4 µg L-1 (Ternes, 1998). 

Toxic effects on the hepatic metabolism of the rainbow trout have been observed at 1 µg 

L-1 (Triebskorn et al., 2004). 

8.2 Conventional removal techniques 

8.2.1 Sorption on activated carbon 

Sorption on activated carbon is a very commonly applied technique in for example 

groundwater sanitation. Groundwater is pumped over a bed of activated carbon and the 

contaminants are sorbed from the liquid medium to the solid and porous activated 

carbon. After the carbon is saturated, a new bed is installed and the saturated bed is 

regenerated. The technique can also be applied in wastewater treatment. The main 

drawback is that the compound is not degraded at all, but only transferred from a liquid 

medium to a solid medium, where, in the end, it needs to be processed, for example by 

incineration.  

8.2.2 Advanced oxidation processes 

Advanced oxidation processes have in the last decade intensively been studied as a 

removal technique for micropollutants (for a review, see Ternes et al. (2003)). They 

consist of the combined application of ozone, H2O2 and UV light to degrade organic 

compounds. Although, a wide variety of contaminants can be degraded by AOPs, others, 

like the ICM diatrizoate are almost insensitive to AOPs (Ternes et al., 2003). Next to the 

high cost for implementation, two main drawbacks have been observed: 

• There is very little control over the by-products that are formed. Often, only small 

oxidations and hydroxylations take place, resulting in a whole range of 

compounds that might even be more toxic than the mother molecule; 

• Due to their stability, carbon-halogen bounds are in most cases not broken, 

resulting in degradation products that can also be persistent. 

8.2.3 Biodegradation 

Although halogenated compounds are very hard to degrade microbially, some strains, 

which are able to perform the dehalogenation have been isolated. For example, the 

strain Desulfitobacterium dichloroeliminans is able to dehalogenate 1,2-dichloroethane 

and dichloropropanes to dechlorinated products due to the presence of a stereoselective 

dehalogenase enzyme (De Wildeman et al., 2003). However, the process is slow, 

requiring months-years. Therefore, biodegradation can be a valuable option for 

groundwater sanitation, where time is often not really a limiting factor. For wastewater 
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treatment, flow rates are too high and residence times are too short to allow application 

of biodegradation. 

8.3 Opportunities for Bio-Pd and Bio-Pd/Au catalysts 
Pd-based catalysts offer the advantage that a real degradation takes place. This 

degradation can, depending on the concentration of the catalyst, the reagents and the 

availability of the hydrogen donor, take place within the timeframe of hours to minutes. 

Moreover, in presence of a hydrogen donor, hydrodehalogenation reactions can occur in 

a very controlled way, so the formed by-products are relatively easy to predict. Provided 

that the catalyst is sustainably produced, stable over time and the investment is feasible, 

Pd-catalyzed dehalogenation of halogenated environmental contaminants can definitely 

be an alternative for current abatement techniques. De Gusseme et al. (2011) 

demonstrated that the halogenated pharmaceutical micropollutant diatrizoate became 

much more biodegradable after a dehalogenation by a bio-Pd catalyst (1 mg L-1 

diatrizoate was not degraded by nitrifying biomass, whereas 1 mg L-1 of the deiodinated 

product was completely removed within 24 hours). 

The use of chemical Pd catalysts for dehalogenation of environmental contaminants has 

already been demonstrated in batch tests for the removal of PCBs (Korte et al., 1997) 

chlorophenols (Liu et al., 2001) and the deiodination of diatrizoate (Knitt et al., 2008). A 

pilot scale reactor with a catalytic bed of Pd was successfully implemented for removal of 

TCE from a contaminated groundwater in California (Davie et al., 2008). The superior 

activity of Pd/Au catalysts vs. Pd catalysts was shown for dehalogenation of CFCs 

(Bonarowska et al., 2001a) and TCE (Nutt et al., 2005). Bio-Pd was shown to 

dehalogenate a series of halogenated environmental contaminants (see 4.1 and Table 

1-2). It is the aim of this work to design a biosupported Pd/Au catalyst and to evaluate its 

activity for the dehalogenation of environmental contaminants, and compare the activity 

with monometallic bio-Pd. 
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Chapter 2  

Objectives and outline 

The aim of this work was to study some of the possible limitations of bio-Pd catalysts and 

to try to optimize the catalyst or to look for sustainable alternatives. The outline of this 

doctoral dissertation is schematized in Figure 2-1. 

 

Figure 2-1: Schematized outline of this doctoral dissertation. 

1 Optimization of bio-Pd 

In Part II, a bimetallic Pd/Au catalyst was developed in order to increase the reaction rate 

of the monometallic bio-Pd catalyst and to enable reactions that cannot be performed 

using the monometallic bio-Pd. The superior activity of the bimetallic catalyst was 

demonstrated for the dehalogenation of TCE and diclofenac and for the Suzuki C-C 
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coupling reaction. The catalyst was also optimized for the dehalogenation of diclofenac 

and tested in real environmental conditions.  

• In Chapter 3, the interaction between S. oneidensis and Au was studied, as a first 

step to develop a bimetallic bio-Pd/Au catalyst. The kinetics of both the Au-

biosorption and reduction process were studied in detail. The final product (‘bio-

Au’) was studied by transmission electron microscopy (TEM) 

• In Chapter 4, the biosupported bimetallic bio-Pd/Au was synthesized. Several 

strategies for its synthesis were evaluated and its superior catalytic activity was 

demonstrated for the dechlorination of diclofenac and TCE. The catalyst is 

studied by scanning TEM, EDX and µXRD. 

• In Chapter 5, the dechlorination of diclofenac by bio-Pd and bio-Pd/Au is studied 

in detail. The optimal Pd/Au ratio is determined for this reaction and the catalyst is 

tested for the removal of diclofenac, carbamazepine and diatrizoate at 

environmental concentrations from the effluent of a hospital wastewater treatment 

plant. 

• In Chapter 6, both the activity of the bio-Pd and bio-Pd/Au catalyst were 

evaluated for the Suzuki C-C coupling reaction of an aryl halide and a boronate. 

The reaction rates were also compared with a commercial Pd/C catalyst. The 

effect of different substituents on the reaction rate was tested. 

2 Limitations and innovations of bio-Pd 

In Part III, leaching of Pd was investigated as a possible limitation of bio-Pd. As an 

innovation, the synthesis of Pd nanocatalysts on silica materials functionalized with 

amine groups of chemical and biological origin was investigated. 

• In Chapter 7, the leaching of Pd from the carrier was studied. The leaching was 

followed as a function of time under different conditions of temperature, medium, 

pH and atmosphere. The speciation of the leachate was also determined, and the 

leaching from a Shewanella oneidensis and a Cupriavidus metallidurans carrier 

was compared. 

• In Chapter 8, an alternative for bacteria as carrier was investigated, in order to try 

to overcome the problem of catalyst poisoning by bacterial sulfur. Silica beads 

were coated with amine groups, both chemically (APTES and PEI) and with 

chitosan, a biomaterial containing free amine groups. The obtained catalysts were 

studied by TEM and the activity was evaluated for the reduction of p-nitrophenol. 
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Part IV (Chapter 9) is the general discussion of the work, discussing potential 

applications of bio-Pd and bio-Pd/Au in environmental technology, together with some 

other new possible applications and optimizations. Future perspectives for 

implementations of biosupported catalysts and the interactions between bacteria and 

precious metals are discussed. 
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Chapter 3  

Gold nanoparticle formation using 

Shewanella oneidensis: a fast 

biosorption and slow reduction 

process2 

Abstract 

The metal respiring bacterium Shewanella oneidensis has previously been used for 

reduction of Pd(II) into Pd(0) nanoparticles. This study investigated whether Shewanella 

oneidensis could also perform the reduction of Au(III) to Au(0). The kinetics of both the 

biosorption and reduction of Au(III) were studied. Biosorption of Au(III) was a fast and 

efficient process, and depended on the presence of an electron donor, the pH and the 

medium used. The reduction process however appeared to be a slow process, requiring 

the presence of an electron donor. As reduction also occurred in heat-killed cells, it is 

suggested that the reduction is non-enzymatic. At a concentration of 100 mg L-1 Au(III), 

the nanoparticles were mainly smaller than 10 nm and precipitated intracellularly. With 

H2 as the electron donor, it was shown that the location of the particles and the size 

could be steered by changing the concentration of Au(III). After a fast biosorption and 

slow reduction process, Au(0)-nanoparticles were formed inside the cells or on the cell 

wall of Shewanella oneidensis. In most cases, these particles had interesting properties, 

like a small size and a narrow size distribution, which can make them interesting for 

applications, for example in catalysis.  

                                                

Chapter redrafted after: 

S. De Corte, T. Hennebel, S. Verschuere, C. Cuvelier, W. Verstraete, N. Boon. 2011. 

Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow 

reduction process. Journal of Chemical Technology and Biotechnology 86(4): 547-553 
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1 Introduction 

Gold nanoparticles find more and more applications in electronics (e.g. as conductors in 

transistors (Wu et al., 2006), medical diagnostics (cancer detection (Huang et al., 2007)) 

and catalysis (oxidation of CO, water gas shift reaction, oxidation of alcohols (Hashmi et 

al., 2006)) because of their unique optical and physicochemical properties (Daniel et al., 

2004). Conventional production methods for these gold nanoparticles are based on the 

use of chemical reductants, stabilizers (which prevent agglomeration of particles) and 

capping agents (which prevent growth of particles). As an alternative to these chemical 

synthesis methods, the metal reducing capacities of bacteria can be exploited to produce 

metallic nanoparticles. Bacterial cells serve as reducing agent as well as carrier matrix 

for the nanoparticles. In this way the use of toxic and expensive chemicals is prevented, 

which makes these biological synthesis methods more attractive from an ecological point 

of view and fit to the concept of green chemistry. Moreover, these methods allow an easy 

recovery of waste streams into added value products (Hennebel et al., 2009a). 

Biosorption of metals by bacteria is a well-known process. Carboxylic groups in the cell 

wall of Bacillus subtilis were found to be the most important sorption sites for metals 

(Beveridge et al., 1980). Biosorption of Pd by Desulfovibrio sp. was optimal at a pH of 3, 

and decreased with increasing chloride concentrations (de Vargas et al., 2004). Different 

bacteria that were able to biosorb Au(III) have been described (Tsuruta, 2004). For 

Rhodobacter capsulatus (Feng et al., 2007) and Pseudomonas maltophilia (Tsuruta, 

2004), the biosorption phenomenon was improved by a factor 5 to 7 at a pH of 3 

compared to pH 7.  

Bacterial reduction of Au(III) to  Au(0)-nanoparticles by bacteria has mainly been 

described under anaerobic conditions. When Au(III) was added to a concentration of 800 

mg Au(III) g-1 cell dry weight, the sulfate reducing bacterium Desulfovibrio desulfuricans 

reduced Au(III) to Au(0) in the cytoplasm and in the extracellular matrix (Creamer et al., 

2006; Deplanche et al., 2008). Using H2 as an electron donor, 10 to 50 nm gold 

nanoparticles were found in the periplasm and on the outer cell surface of E. coli 

(Deplanche et al., 2008), Pyrobaculum islandicum and other hyperthermophilic Fe(III)-

reducers (Kashefi et al., 2001) and Shewanella algae (Konishi et al., 2006). With lactate 

as electron donor, Rhodobacter capsulatus was able to precipitate Au-nanoparticles 

intracellularly, as well as on the cell membrane and in the growth medium up to levels of 

270 mg Au g-1 cell culture (Feng et al., 2008). Under aerobic conditions, bacterial 

reduction of Au(III) to Au(0) is less common. However, bioreduction of HAuCl4 by 
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cyanobacteria has been reported (Lengke et al., 2006c; Brayner et al., 2007), as well as 

Au(III) bioreduction by Bacillus subtilis (Beveridge et al., 1980). Rhodopseudomonas 

capsulata was able to reduce HAuCl4 extracellularly, with larger sizes at lower pH values 

(10-20 nm at pH 7 and 50-400 nm at pH 4, He et al., 2007). In general, anaerobic metal-

reduction is more efficient and faster than aerobic metal-reduction (Deplanche et al., 

2008). However, aerobic metal reduction is also feasible, and can be preferred from a 

practical point of view. For example, the efficient bioreductive deposition of Pd(0)-

nanoparticles on the cell wall and in the periplasmic space of the metal respiring 

bacterium Shewanella oneidensis has been demonstrated under aerobic and anaerobic 

conditions. Pd(II) was even efficiently reduced when added up to 1000 mg L-1 (De Windt 

et al., 2005). The presence of O2 did not significantly inhibit bioreduction compared to 

anaerobic conditions, but the addition of an electron donor, with H2 and formate the most 

effective, was required for reduction.  

Since it was known that S. oneidensis can efficiently produce Pd(0)-nanoparticles (De 

Windt et al., 2005), the optimal conditions for this process were used as a start point to 

investigate the reduction of Au(III) into Au(0)-nanoparticles. The aim of this research was 

to investigate whether gold nanoparticles could be produced under anaerobic and 

aerobic conditions, using S. oneidensis, and which factors influenced their formation. The 

two main processes driving the nanoparticle formation, i.e. biosorption and reduction 

were assessed in terms of their kinetics. The metallic character, particle size and size 

distributions of the precipitates were determined. The synthesis of biosupported Au(0) 

particles are a first step in the formation of a bimetallic ‘bio-Pd/Au’ catalyst. 

2 Materials and methods 

2.1 Bacterial strains and growth conditions 
Shewanella oneidensis MR-1 was obtained from the BCCM/LMG Bacterium Collection 

(Gent, Belgium) under the number LMG 19005. The strain was grown aerobically in 

Luria-Bertani (LB) medium overnight at 28 °C. 

2.2 Batch experiments 
S. oneidensis cells were harvested from an overnight LB culture in sterile 50 mL 

centrifuge tubes (TPP, Switzerland) by centrifuging at 3000 g for 10 min and washed 

twice with 50 mL distilled water or M9 medium (Sambrook et al., 1989). The washed cells 

were resuspended in distilled water to a final optical density at 610 nm of 1, 

corresponding to 50 mg cell dry weight per L. 120 mL Serum bottles were filled with 50 
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mL cell suspension and capped with inert viton stoppers. Biosorption and reduction 

assays were performed, either without electron donor, either with formate or H2. When 

formate was used as electron donor, the cell suspension was supplemented with 50 mM 

formate. In the case of H2 as electron donor, the headspace was replaced with 100% H2 

gas after repeated cycles of overpressure with N2 and vacuum underpressure. Au(III) 

was then added as HAuCl4.3H2O (Sigma-Aldrich, Germany) to 100 mg L-1. When the pH 

was adjusted to 7 or 10, this was done with 0.1 M NaOH. The bottles were continuously 

stirred at 100 rpm. Gold concentrations in solution were determined after separation of 

the bacteria from the medium using a 0.22 µm PVDF Millipore filter. Subsequently, the 

gold concentration was measured using an AA-6300 atomic absorption spectroscope 

(Shimadzu, Kyoto, Japan). All experiments were performed in triplicate. 

2.3 Heat treatment 
Heat treatment of the bacterial cells was performed by autoclaving the cell suspensions 

twice. Autoclavation was done for 20 minutes at 120 °C and 1 bar overpressure. Metals, 

electron donors and other chemicals were added after cooling of the heat-treated cells to 

room temperature. 

2.4 Characterization methods 

2.4.1 X-ray diffraction analysis (XRD) 

X-ray diffraction analysis of the gold on the cells, dried at 30°C was performed with a 

Siemens Diffractometer D5000 with BraggBrentano optics (Siemens, Germany). X-rays 

were generated by a copper X-ray tube with power 1.6 kW (40 kV, 40 mA). 

Measurements were performed in between 30° and 90° 2-theta with step time of 1.6 s 

and step size of 0.02 degrees. 

2.4.2 UV-Vis spectroscopy 

UV-Vis analysis was performed with a Uvikon 932 spectrometer (Kontron Instruments, 

Switzerland). Wavelength scans were taken in a scan range of 400-700 nm. Data range 

was 1 nm, and scan speed was 200 nm min-1. 

2.4.3 Transmission electron microscopy (TEM) 

Samples of bacterial suspensions with Au were allowed to precipitate for 8 hours. 

Subsequently, the supernatant was removed and the bacteria were fixed in 0.1 M 

cacodylate buffer containing 4% paraformaldehyde and 5% glutaraldehyde. After 

postfixation in 1% osmium tetroxide, samples were dehydrated in a series of alcohol and 

embedded in Epon medium (Aurion, the Netherlands). Ultrathin sections of 60 nm were 
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contrasted with uranyl acetate and lead nitrate before examination or were examined 

without contrast by imaging with a Zeiss TEM900 transmission electron microscope (Carl 

Zeiss, Germany) at 50 kV. Particle size distributions were determined with ImageJ 1.43r 

freeware. Given the clear contrast between the particles and the background, a binary 

image could be created by visually adjusting the threshold value. Subsequently, based 

on the magnification, a table containing each particle and its surface area was obtained. 

Particle diameters were determined as if the particles were spheres. 

3 Results 

3.1 Effect of the addition of an electron donor on gold biosorption 
Cells of Shewanella oneidensis in distilled water were incubated with 100 mg L-1 Au(III). 

Biosorption, including both passive sorption and active uptake processes, of Au(III) from 

an aqueous solution was a quite fast process (Figure 3-1a). Biosorption rates after 30 

minutes of exposure and between 30 minutes and 48 hours of exposure to 100 mg L-1 

Au(III) are given in Table 3-1. When no electron donor was added, 76.4 ± 8.5 % of the 

Au(III) was taken up by or sorbed on the bacteria within 30 minutes. After this very fast 

initial biosorption, the process continued, but at a much slower rate. After 48 hours of 

exposure, 95.1 ± 0.5 % of the added gold was removed from the solution.  
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Figure 3-1: Biosorption kinetics of Au(III) by S. oneidensis: Au-concentration in solution as a function 

of exposure time. (a) Effect of heat-killing and addition of an electron donor on Au(III) biosorption: 

living cells without addition of an electron donor ( ); heat-killed cells without addition of an 

electron donor ( ); living cells with 50 mM formate as electron donor ( ); living cells 101,3 

kPa H2 as electron donor ( ). (b) Effect of medium and pH: pH 3 in H2O ( ); pH 7 in H2O (

); pH 10 in H2O ( ); pH 7 in M9 medium ( ); pH 7 with heat-killed cells in M9 

medium ( ) (n = 3). 
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In addition, both 101.3 kPa H2 and 50 mM formate were used as electron donors. When 

H2 was supplied as electron donor in the headspace of the flasks, enhanced biosorption 

was observed. Almost all gold was taken up by or sorbed on the bacteria after 24 hours. 

With formate, uptake kinetics showed a different pattern: initial uptake was slower but 

went on after 30 minutes at a higher rate than when no donor was added in the same 

medium and at the same pH. After 24 hours of exposure, no more gold was found in 

solution (detection limit: 0,5 mg Au L-1). When Au(III) was added to heat-killed cells, 

biosorption also took place, but to a lesser extent. After 48 hours, about 67.5 ± 1.5 % of 

the gold was removed from the solution containing the dead cells.  

3.2 Effect of medium and pH on gold biosorption 
The kinetics of the uptake of Au at different pH values was followed (Figure 3-1b and 

Table 3-1). When gold was added to a suspension of bacteria in distilled water as 

HAuCl4.3H2O to a final concentration of 100 mg L-1 Au, the pH dropped from 7 to about 

3. When the pH of a S. oneidensis suspension in water was raised to 7, a significant 

lower biosorption of Au was seen (75.1 ± 0.7 % biosorbed after 48 hours). This decrease 

in uptake was even clearer when the pH was increased to 10 (only 35.5 ± 1.3 % 

biosorbed after 48 hours).  

M9 medium contains a buffer (0.07 M phosphate) and was used to maintain a pH of 7 

(pH was measured at the beginning and at the end of the experiment). After addition of 

Au(III) as HAuCl4.3H2O to S. oneidensis in M9 medium, the pH of the medium remained 

stable at 7. In M9 medium, the uptake behavior was different from the suspensions in 

water. The biosorption was slower in the beginning of the experiment. However, at later 

time points, a faster biosorption rate was observed compared to the bacterial 

suspensions in distilled water. Moreover, from Figure 3-1a and b, it is clear that the 

difference in biosorption between heat-killed cells and living cells is larger in M9 medium 

than in distilled water. 
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Table 3-1: Biosorption rates after 30 minutes and between 30 minutes and 48 hours of exposure of living and heat-killed cells of S. oneidensis in different media 

to 100 mg L-1 Au(III), at different pH and with and without electron donor. 

Medium pH Electron donor Heat-killed Biosorption rate at 30 minutes 

(mg Au(III) g-1 cell dry weight h-1) 

Biosorption rate between 30 minutes 

and 48 hours 

 (mg Au(III) g-1 cell dry weight h-1) 

Water 3 - No 3056 ± 337 7.3 ± 0.2 

Water 3 - Yes 1922 ± 109 7.8 ± 0.6 

Water 3 50 mM formate No 2480 ± 295 31.1 ± 1.9 

Water 3 101,3 kPa H2 No 3044 ± 285 19.1 ± 0.1 

Water 7 - No 2210 ± 127 7.9 ± 0.3 

Water 10 - No 776 ± 105 6.6 ± 0.6 

M9 7 - No 1054 ± 39 24.2 ± 0.1 

M9 7 - Yes 245 ± 39 8.1 ± 0.9 
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3.3 Reduction of Au(III) to Au(0) in presence of an electron donor 
After biosorption of Au(III), the reduction of gold into nanoparticles was examined. Figure 

3-2 shows the XRD-spectra of the suspensions of S. oneidensis in distilled water when 

incubated with 100 mg L-1 Au(III) for 48 hours, without electron donor and with 101,3 kPa 

H2 and 50 mM formate respectively. These confirmed the presence of Au(0) when an 

electron donor was added. Typical diffraction peaks (at 2θ = 38.19°; 44.39°; 64.58°; 

77.55° and 81.72°) for Au(0) were observed.  No Au(0)-crystals were present when no 

electron donor was added (Figure 3-2).  

Figure 3-2: XRD analysis of S. oneidensis incubated with 100 mg L-1 Au(III). (a) with no electron donor 

added. (b) With 50 mM formate. (c) With 101,3 kPa H2. 

When an electron donor was supplied, the color of the suspension changed from pale 

yellow to purple. The moment of the color change was dependent on the electron donor. 

The purple color of the suspension was an indication of the formation of Au(0)-

nanoparticles (Ruscher et al., 2001). The formation of nanoparticles was monitored in 

function of time by using UV-Vis spectra of S. oneidensis in distilled water with 50 mM 

formate (Figure 3-3a) or 101,3 kPa H2 (Figure 3-3b) as electron donor. With formate as 

electron donor, the color of the solution changed to purple after 8 hours. This was 
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confirmed by the UV-Vis spectrum (Figure 3-3a), since a surface plasmon resonance 

(SPR) band around 540 nm was observed, which is characteristic for the presence of 

Au(0)-nanoparticles (Hanaoka et al., 1998). Because of the presence of the bacteria in 

the suspension, the SPR band was not always clearly visible. Using H2 as the electron 

donor (Figure 3-3b), this SPR-band appeared only after 24 hours. These spectra 

indicated that, in contrast to biosorption of Au(III) by S. oneidensis, reduction of Au(III) is 

a slow process. It needs to be mentioned that biomass-free controls with Au(III) and 50 

mM formate showed a slight color change from pale yellow to pale purple. With H2 

however, biomass-free experiments did not show any color change.  

Figure 3-3: UV-Vis spectra of S. oneidensis, challenged with 100 mg L-1 Au(III) in presence of an 

electron donor, recorded as a function of time. (a) With 50 mM formate as electron donor. (b) With 

101,3 kPa H2 as electron donor. 

3.4 Study of the precipitates by transmission electron microscopy 

(TEM)  
TEM-pictures and particle size distributions of living cells of S. oneidensis exposed to 

100 mg L-1 Au(III) for 48 hours with 101.3 kPa H2 or 50 mM formate as electron donor 

are shown in Figure 3-4a and b. From the pictures it is clear that most of the 

nanoparticles were precipitated intracellularly. Most of the particles had a diameter 

between 5 and 10 nm. With H2 and living cells, the mean diameter was 8.4 ± 8.7 nm and 
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the median diameter was 7.2 nm. The large standard deviation is caused by the 

presence of the fraction of larger particles (> 30 nm) precipitated on the cell wall 

(although they represent only 2 % of the total number of particles). With formate and 

living cells, the mean particle diameter was 6.4 ± 3.2 nm, the median diameter was 5.6 

nm. No extracellular precipitates were found. Figure 3-4c shows heat-killed cells of S. 

oneidensis exposed to 100 mg L-1 Au(III) in presence of H2. Also in this case, intracellular 

nanoparticles were found. These heat-killed cells with H2 as electron donor showed a 

mean particle diameter of 6.8 ± 3.8 nm and a median diameter of 5.9 nm.  
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Figure 3-4: TEM-pictures of cells of S. oneidensis exposed to 100 mg L-1 Au(III) and particle size 

distributions of the Au(0)-nanoparticles. (a) Living cells with 101,3 kPa H2 as electron donor (n = 1154 

particles). (b) Living cells with 50 mM formate as electron donor (n = 293 particles). (c) Heat-killed 

cells with 101,3 kPa H2 as electron donor (n = 621 particles). 
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With H2 as electron donor, two types of particles were observed (small intracellular 

particles and larger particles on the cell wall). It was investigated whether the location of 

particle deposition and the particle size could be steered by altering concentrations of 

Au(III). TEM-pictures and particle size distributions of living cells of S. oneidensis, 

exposed to 50 and 200 mg L-1 Au(III) and with H2 as electron donor are shown in Figure 

3-5. When the concentration of Au(III) was lowered from 100 to 50 mg L-1, only small 

intracellular particles (mean diameter 7.3 ± 3.6 nm) and no extracellular deposits were 

observed (Figure 3-5a). However, when the concentration of Au(III) was increased to 200 

mg L-1, mainly extracellular precipitates were observed and not all cells were covered 

with particles (Figure 3-5b). These precipitates consisted of both small (< 5 nm) and 

large particles (up to 100 nm and more). 

 

Figure 3-5: TEM-pictures of cells of S. oneidensis exposed to Au(III) with H2 as electron donor and 

particle size distributions of the Au(0)-nanoparticles. (a) Living cells exposed to 50 mg L-1 Au(III) (n = 

857 particles). (b) Living cells exposed to 200 mg L-1 Au(III) (n = 116 particles). 
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4 Discussion 

This chapter describes the production of Au(0)-nanoparticles by the metal respiring 

bacterium Shewanella oneidensis. The assembly of the metallic Au nanoparticles 

consisted of two distinctive processes: a fast biosorption process followed by a slow non-

enzymatic reduction process. Moreover, reduction was only possible when an external 

electron donor was present. TEM-pictures revealed mainly intracellular deposits of Au(0)-

nanoparticles smaller than 10 nm. 

Biosorption consisted of an initial step that occurred very fast (a matter of minutes), after 

which the process continued for hours at a very slow rate. Biosorption also took place 

with heat-killed cells of S. oneidensis, indicating that Au(III) had disappeared from the 

solution partly by non-enzymatic sorption processes. Adsorption of Au(III) by heat-killed 

cells has also been described for Pseudomonas malthophilia (Nakajima, 2003). 

However, when living cells were used, an enhanced Au-removal was seen, so metabolic 

processes could play a role in the removal of Au(III) from the solution by S. oneidensis. A 

possible reason for the improved biosorption in the presence of H2 could be the higher 

metabolic activity of the bacteria in presence of the electron donor. The slower initial 

biosorption that was observed when formate was used as electron donor could be due to 

the ionic strength that is increased by adding 50 mM Na-formate. Indeed, the added 

formate anion is probably able to compete for possible positively charged binding sites 

with the negatively charged gold-chloride and gold-hydroxide complexes. This effect has 

been described for other bacteria and other anionic metal complexes (de Vargas et al., 

2004; Niu et al., 2000). The faster Au(III) removal rate (factor 4) that was observed at 

later sample times, compared to the case where no electron donor was added, could be 

explained by the observation that reduction to Au(0) was already initiated after 8 hours. 

In this way the uptake equilibrium of Au(III) shifted continuously, creating a driving force 

for uptake of Au(III). The effect of pH can be explained by the surface charge of the 

bacteria. When added as HAuCl4, Au is present in water as anionic gold complexes. At a 

pH of 3, Au(OH)Cl3- and Au(OH)2Cl2- are the dominant Au-species, at pH 7, this will be 

mainly Au(OH)4
- (Nakajima, 2003). The cell surface of bacteria becomes more negatively 

charged with increasing pH (Fein et al., 2005), implicating increasing repulsion and 

decreasing biosorption of anionic gold complexes at pH 7 and pH 10 compared to pH 3. 

Initial sorption in M9 medium (1054 ± 39 mg Au(III) g-1 cell dry weight h-1) happened at a 

slower rate than in distilled water (3056 ± 337 mg Au(III) g-1 cell dry weight h-1). This can 

be explained by the pH value of 7 on one hand and the higher ionic strength on the other 
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hand. The higher uptake rate observed at later sample points might be caused by a 

better survival or higher metabolic activity of the bacteria in the M9 medium than in 

distilled water. In general, it can be concluded that S. oneidensis has a high affinity for 

biosorption of Au(III). In previous studies with other bacterial species, significantly lower 

sorption rates up to 70 mg Au(III) g-1 cell dry weight h-1 have been reported (Nakajima, 

2003; Feng et al., 2008). This high affinity for Au(III) makes S. oneidensis an attractive 

species for production of Au(0)-nanoparticles. 

In contrast with the fast process of biosorption, reduction of Au(III) to Au(0)-nanoparticles 

appeared to be a slow process (under aerobic circumstances with formate as well as 

under anaerobic circumstances with H2). The moment the color change started was 

dependent on the type of electron donor used. Using formate as the electron donor, the 

process started after 8 hours of incubation, with H2, it took 24 hours. Moreover, XRD 

analysis showed that an electron donor was indispensable for reduction. This was in 

correspondence with previous studies describing reduction of Au(III) by E. coli and 

Desulfovibrio desulfuricans (Deplanche et al., 2008), Fe(III)-reducing bacteria (Kashefi et 

al., 2001) and Shewanella algae (Konishi et al., 2006). In this study however, reduction 

took also place with heat-killed cells. Heating will cause denaturing of enzymes. 

Therefore, it is suggested that reduction of Au(III) is a pure chemical and not an 

enzymatic process, which is thermodynamically feasible (standard reduction potentials 

for H+ to H2 and AuCl4- to Au(0) at pH 7 are – 400 mV and 990 mV respectively). A 

similar non-enzymatic mechanism has been described for production of Ag(0)-

nanoparticles on the cell wall of Lactobacillus sp (Sintubin et al., 2009). 

TEM-images showed the presence of Au(0)-nanoparticles, mainly in the cytoplasm of the 

cells at a concentration of 100 mg L-1 Au (III). Most of the particles had a size between 5 

and 10 nm. Only with H2 as electron donor, deposits of larger nanoparticles (30-100 nm) 

on a few cell walls were observed. Even though biomass-free controls with formate 

showed the presence of Au(0)-nanoparticles in the medium, no metal precipitates were 

seen in the medium when bacterial cells were present with formate, all particles were 

found inside the cells. Also in heat-killed cells, intracellular Au(0)-nanoparticles were 

observed. Although rather unusual for bacteria, intracellular Au(0)-nanoparticles have 

also been observed in cyanobacteria after exposure to AuCl4- (Lengke et al., 

2006c,Lengke et al., 2006b) and in sulfate reducing bacteria after exposure to 

Au(S2O3)2
3- (Lengke et al., 2006a). For cyanobacteria, it was shown that an intermediate 

Au(I)-sulfide complex is involved in the reduction of Au(III)-chloride to intracellular 

metallic Au(0) (Lengke et al., 2006c). Sources of sulfur in bacteria are amino acids 
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(cysteine and methionine) and glutathione (Reith et al., 2007, Baruwati et al., 2009). 

Sporosarcina ureae immobilized Au (without precipitation of metallic Au) after exposure 

to an Au-L-asparagine-complex, the immobilized gold was associated with the low-

molecular weight intracellular protein fraction (Southam et al., 2000). In the case of S. 

oneidensis, it could be that Au(III) is reduced to an Au(I)-S complex, which is then further 

reduced to Au(0) by H2 or formate. Biomass-free controls of Au(III) with H2 did not show 

a color change. A possible mechanism can be that Au(III) must first be bound to or 

complexed by a bacterial cell component, probably a S-containing molecule, before H2 

can act as a reductant to form metallic Au(0)-nanoparticles. This cytoplasmatic Au-

precipitation by S. oneidensis differs from the Au-precipitation in the periplasmic space of 

S. algae (Konishi et al., 2006). Au-reduction by S. algae is believed to be catalyzed by a 

periplasmic hydrogenase enzyme. This specific hydrogenase is probably not present in 

the periplasm of S. oneidensis. Different Au-precipitation mechanisms have also been 

described for different species of the genus Pyrobaculum (Kashefi et al., 2001).  

The site of particle deposition could be steered by changing the concentration of Au(III). 

With H2 as electron donor, both intracellular and extracellular particles were seen at a 

concentration of 100 mg L-1 Au(III). When this concentration was lowered to 50 mg L-1, 

only small intracellular particles were observed. In contrast, at a concentration of 200 mg 

L-1, mainly extracellular particles with a diameter up to 100 nm were observed. These 

different precipitation sites could be caused by the toxicity of Au, which might affect cell 

wall permeability and explain intracellular or extracellular deposition. However, these 

observations are in contrast to what has been observed for S. oneidensis and Ag (Wang 

et al., 2010a). When S. oneidensis was exposed to 100 µM Ag(I), Ag(0) particles were 

precipitated intracellularly and the bacteria died. When this concentration was lowered to 

10 µM, bacteria survived and were able to keep the Ag(0) out of the cell, and precipitated 

it on the cell wall (Wang et al., 2010a). So in the case of Ag, intracellular precipitation 

was seen at higher concentrations and extracellular precipitation at lower concentrations. 

5 Conclusions 

The observations for reduction of Au by S. oneidensis are distinct from those for Pd. 

Reduction of Pd(II) by S. oneidensis was a fast process (within 15 minutes) and Pd(0)-

nanoparticles were precipitated on the cell wall and in the periplasmic space (De Windt 

et al., 2005). The latter may be due to the fact that Pd is less toxic for the bacteria (De 

Windt et al., 2006). Heat-killed cells in presence of an electron donor showed biosorption 

of Pd(II), but no reduction to Pd(0) (De Windt et al., 2005). Our study showed that Au(III) 
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is efficiently sorbed and taken up by S. oneidensis. Reduction to Au(0) however is a slow 

process, which is probably non-enzymatic, after Au(III) has been bound to or complexed 

by bacterial cell components. Au(0)-nanoparticles were mainly deposited intracellularly at 

the Au-concentrations used in this study. Their small size (< 10 nm), high specific 

surface area and uniform size distribution, combined with the fact that particle size and 

deposition site can be changed by altering the initial gold concentration, can make these 

bio-supported gold nanoparticles interesting for applications, for example as catalysts in 

chemical oxidation reactions. Since both Au and Pd can be precipitated as zerovalent 

nanoparticles by S. oneidensis, the synthesis of a bimetallic bio-Pd/Au catalyst is 

believed to be possible and is investigated in Chapter 4. 
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Chapter 4  

Biosupported bimetallic Pd-Au 

nanocatalysts for dechlorination of 

environmental contamintants3 

Abstract 

Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to 

catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze 

the degradation of other recalcitrant compounds.  This chapter investigates the synthesis 

of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts 

were tested for the dechlorination of diclofenac and trichlorethylene. When aqueous Pd(II) 

and Au(III) ions were both added to concentrations of 50 mg L-1 and reduced 

simultaneously by Shewanella oneidensis in the presence of H2, the resulting cell-

associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78 % of the 

initially added diclofenac after 24 hours; whereas no dehalogenation was observed using 

monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved 

dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based XRD, 

STEM and EDX indicated that the simultaneous reduction of Pd and Au supported on cells 

of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This 

chapter demonstrates that the catalytic activity and functionality of possibly 

environmentally more benign bio-supported Pd-catalysts can be improved by 

coprecipitation with Au. 

 

                                                

Chapter redrafted after: 

S. De Corte, T. Hennebel, J.P. Fitts, T. Sabbe, V. Bliznuk, S. Verschuere, D. van der Lelie, 

W. Verstraete, N. Boon. 2011. Bio-supported bimetallic Pd-Au nanocatalysts for 

dechlorination of halogenated contaminants. Environmental Science & Technology 45(19): 

8506-8513  



Biosupported Pd/Au nanocatalysts   

   46 

1 Introduction 

Pd catalysts have been extensively studied for their potential use as catalysts for 

hydrodehalogenation in organic synthesis and pollutant degradation (Chapter 1). Pd 

catalysts doped with other metals to create a bimetallic catalyst have shown enhanced 

activity, which has been attributed to changes in geometric and electronic properties (Coq 

et al., 2001). For example, an alloyed Pd/Au catalyst produced by coprecipitation was 

shown to promote the oxidation of CO (Venezia et al., 2003). A Pd/Au on carbon catalyst, 

which was produced by reducing Pd and Au sequentially, was able to catalyze the 

dechlorination of CCl2F2, with enhanced selectivity for CH2F2 (Bonarowska et al., 2001a). 

A bimetallic core-shell structure, consisting of an Au-core with a Pd-shell was shown to 

increase the activity of Pd nanoparticles for the hydrodechlorination of TCE by a factor 10 

(Nutt et al., 2005). After optimization of the particle size (4 nm) and degree of Pd coverage 

(highest activity with 12.7 wt. % Pd) of the Au-nanoparticles, an increase in activity by a 

factor 34 was observed (Nutt et al., 2006).  All of these catalysts were produced using 

chemical synthesis methods that require the use of expensive substances, such as 

stabilizers (e.g. polyvinylpyrrolidone) and carrier materials (e.g. Al2O3, activated carbon). 

It has been shown that Pd nanoparticles can be produced by the metal respiring bacterium 

Shewanella oneidensis in presence of a hydrogen donor. In this context, nanoparticles of 

Pd supported on the cell wall and periplasmic structures of the bacteria are referred to as 

bio-Pd (De Windt et al., 2005). Since the bacteria mediate the reduction process and act 

as a support for the resulting nanoparticles, fewer chemicals are involved in the production 

process, which makes the process safer and less expensive. Therefore, these biological 

synthesis methods can be a valuable alternative for chemical methods (Hennebel et al., 

2009a). Bio-supported Pd nanoparticles have been shown to catalyze the dehalogenation 

of a number of important environmental contaminants (Chapter 1), while the degradation 

of other chlorinated compounds such as 1,2-dichloroethane are not catalyzed by current 

formulations of Pd catalysts (McNab et al., 2000). 

Combining bio-supported Pd nanoparticles with other elements to multimetallic structures 

could be an option to improve the catalytic activity. Recently, the synthesis of a Pd-on-

biomagnetite catalyst was reported (Coker et al., 2010). More specifically, magnetite 

crystals were produced extracellularly by Geobacter sulfurreducens by reduction of Fe(III)-

oxyhydroxide. After synthesis of the biomagnetite, Pd(II) was added and reduced 

chemically on the surface of the biomagnetite crystals. However, biological synthesis of 

bimetallic structures by simultaneous addition and coprecipitation of 2 metallic elements 
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has, to our knowledge, not yet been described. Since S. oneidensis can both precipitate 

Pd and Au (De Windt et al., 2005; Chapter 3), we examined if this strain was able to 

synthesize a bio-supported Pd-Au catalyst. 

The aim of this chapter was to synthesize unique bimetallic nano-structures by varying the 

concentration and sequence of Pd(II) and Au(III) ion additions to viable cultures of S. 

oneidensis. After reduction of the metal ions, the obtained structures were characterized 

by synchrotron-based X-ray diffraction and electron microscopy. The activities of the 

different bimetallic catalysts were tested for the dechlorination of diclofenac, a recalcitrant 

pharmaceutical surface water pollutant, and TCE, a groundwater pollutant. As a 

benchmark, the degradation rates were compared to monometallic bio-supported Pd and 

Au catalysts. 

2 Materials and methods 

2.1 Catalyst preparation 

2.1.1 Bacterial strains and growth conditions 

S. oneidensis MR-1 was obtained from the BCCM/LMG Bacterium Collection (Gent, 

Belgium) under the number LMG 19005. The strain was grown aerobically in Luria-Bertani 

(LB) medium overnight at 28°C. S. oneidensis cells were harvested from an overnight LB 

culture in sterile 50 mL centrifuge tubes (TPP, Switzerland) by centrifuging at 3000 g for 

10 min and washed twice with 50 mL distilled water or M9 medium (Sambrook et al., 

1989). The cells were resuspended in distilled water to a final optical density at 610 nm of 

1, corresponding to 50 mg cell dry weight per L. 120 mL serum bottles were filled with 50 

mL cell suspensions. 

2.1.2 Metal addition 

Monometallic bio-Pd and bio-Au: Bio-Pd (50 mg Pd L-1) was prepared according to De 

Windt et al. (2005) and bio-Au (50 mg Au L-1) was prepared according to Chapter 3. 

Bio-Pd  + Bio-Au: 50 mL of a bio-Pd and bio-Au suspension were centrifuged at 3000 g 

for 10 minutes. The pellets were resuspended in 25 mL of distilled water and mixed to a 

final volume of 50 mL. 

Bio-Au-Pd: Bio-Au was first prepared according to Chapter 3. After reduction of Au, 

Na2PdCl4 was added to 50 mg Pd(II) L-1. Then, the headspace was replaced with H2 gas 

after repeated cycles of overpressure with N2 and vacuum. The resulting suspension was 

incubated overnight at 28 °C to obtain reduction of Pd. 
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Bio-Pd-Au: Bio-Pd was prepared as described above. After reduction of Pd, HAuCl4.3H2O 

was added to the suspension to a concentration of 50 mg Au (III) L-1 and the headspace 

was again replaced with 100% H2 gas after repeated cycles of overpressure with N2 and 

vacuum. The resulting suspension was incubated during 48 hours at 28 °C to obtain 

reduction of Au. 

Bio-Au/Pd: HAuCl4.3H2O and Na2PdCl4 were added simultaneously to a cell suspension 

in distilled water to a final concentration of 50 mg L-1 of both Au(III) and Pd(II). 

Subsequently, the headspace was replaced with 100% H2 gas after repeated cycles of 

overpressure with N2 and vacuum. The cells were incubated for 48 hours at 28 °C to 

obtain reduction of Pd and Au. 

In all cases, the cells were incubated in deionized water under non-growth conditions and 

continuously mixed by a shaker at 100 rpm. Catalyst formulations with Pd were incubated 

for 14 hours and formulations with Au were incubated for 48 hours in order to ensure 

maximum metal reduction. The preparations of the catalysts together with the precipitation 

efficiencies are summarized in Table 1. In all cases, the metals were added to a biomass 

concentration of 50 mg L-1. The metals were in all cases added to a cell suspension with 

pH 7, after addition of the Au, pH dropped to 3 due to the acid Au-solution. Catalyst 

preparation was finished 24 hours before starting the experiments. Storage before the 

experiment was done at 4°C. 

2.2 Catalytic removal in liquid microcosms 
The pH of the 50 mL suspensions in the 120 mL serum bottles containing the Pd and/or 

Au catalysts was brought to 7 with a 0.1 M NaOH solution. The headspace was refilled 

with 1 bar H2 after repeated cycles of overpressure with N2 and vacuum.  

Diclofenac (Sigma-Aldrich, Germany) was added to a final concentration of 20 mg L-1.  

TCE (Sigma-Aldrich, Germany) was added to a final concentration of 100 mg L-1. During 

the experiments, the serum bottles were placed on a shaker with a rotation speed of 100 

rpm at room temperature. In the case of diclofenac dechlorination, aqueous samples were 

withdrawn with a syringe, the bacteria and the catalysts were separated from the reaction 

medium by filtration over a 0.22 µm Millipore filter. TCE concentration was monitored by 

taking 1 mL gaseous samples from the headspace of the bottle. Metal-free controls were 

performed using equal amounts of biomass and pollutant in order to exclude bacterial 

adsorption and degradation. All experiments were performed in triplicate. Statistical 

analysis on the data of the experiments was performed using the SPSS 16 software. 
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2.3 Characterization methods 

2.3.1 Benchtop XRD 

Bench source X-ray diffraction analysis of the Au and Pd associated with the cells after 

drying at 30°C was performed with a Siemens Diffractometer D5000 with BraggBrentano 

optics (Siemens, Germany). X-rays were generated by a copper X-ray tube with power 1.6 

kW (40 kV, 40 mA). Measurements were performed between 25° and 90° 2-theta with step 

time of 1.6 s and step size of 0.02 degrees. 

2.3.2 Synchrotron based XRD 

X-ray diffractograms were collected at beamline X27A at the National Synchrotron Light 

Source which is located at Brookhaven National Lab (Upton, NY, USA). The incident 

beam energy was fixed at 17479 eV using a Si(111) monochromator and the energy was 

calibrated using the first inflection point of the X-ray absorption spectrum of a zirconium 

metal foil. Each diffraction pattern was collected for 60 seconds on a CCD detector 

(Bruker). The diffraction images were background subtracted prior to integrating intensity 

to produce diffractograms of intensity versus diffraction angle (2θ) (FIT2D V12.012). 

Subsamples of the bio-catalysts were collected as wet pastes following centrifugation of 

batch cultures.  Samples were kept in polypropylene bags throughout the measurement to 

preserve full hydration.  The detector size and distance to the sample limited the data 

range so that only the 111 diffraction peaks of the crystalline metal and bimetallic phases 

present could be observed. Evidence of oxides of palladium and other salts was not 

observed in any of the samples. The peaks within the diffractograms were fit using a 

baseline function and the minimum number of Gaussian functions. 

2.3.3 Transmission electron microscopy 

Samples of bacterial suspensions with Au were allowed to precipitate for 8 hours. 

Subsequently, the supernatant was removed and the bacteria were fixed in 0.1 M 

cacodylate buffer containing 4 % paraformaldehyde and 5 % glutaraldehyde. After 

postfixation in 1 % osmium tetroxide, samples were dehydrated in a series of alcohol and 

embedded in Epon medium (Aurion, the Netherlands). Ultrathin sections of 60 nm were 

contrasted with uranyl acetate and lead nitrate before examination or were examined 

without contrast by imaging with a Zeiss TEM900 transmission electron microscope (Carl 

Zeiss, Germany) at 50 kV. Particle size distributions were determined with ImageJ 1.43r 

freeware. Given the clear contrast between the particles and the background, a binary 

image could be created by visually adjusting the threshold value. Subsequently, based on 
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the magnification, a table containing each particle and its surface area was obtained. 

Particle diameters were determined as if the particles were spheres. 

Another type of TEM specimens was prepared using whole-mount approach i.e. lacey 

carbon film on nickel support grid was immersed to diluted bacterial suspension followed 

by drying on air. Scanning TEM (STEM) mode combined with energy dispersive X-ray 

spectroscopy (EDX) were applied to study the catalyst particles distribution, morphology 

and local elemental distribution using a JEM-2200FS/Cs-corrected FEG instrument at 200 

kV and probe diameter 1.0 nm. 

2.4 Analytical methods 

2.4.1 AAS 

The bacteria with the nanoparticles were separated from the liquid medium by 

centrifugation for 10 minutes at 7000 g. The concentrations of Pd and Au in the 

supernatant were determined using an AA-6300 atomic absorption spectroscope 

(Shimadzu, Japan). These experiments were performed in triplicate. The detection limit for 

both Pd and Au was 0.1 mg L-1. 

2.4.2 HPLC 

Diclofenac was analyzed on a high performance liquid chromatograph (HPLC) consisting 

of an ASI-100 autosampler, a P580 pump and a STH 585 column oven (Dionex, USA) on 

an Alltech Genesis C18 column (150 mm x 4.6 mm x 4 µm).  Elution was performed 

isocratically at 25 °C and at a flow rate of 1 mL min-1 with 80 % solvent A (100 % 

methanol) and 20 % solvent B (0.1 % formic acid). Detection was performed with a UV-Vis 

detector at 203 nm. The limit of quantification (LOQ) of diclofenac was 0.1 mg L-1. 

2.4.3 GC-FID 

TCE was analyzed by GC (CP-3800, Varian, USA) with a flame ionization detector (FID). 

The GC conditions were: injection temperature = 50 °C; detector temperature = 250 °C; 

initial column temperature = 35 °C (hold 2 min), increase to 75 °C at a rate of 5 °C min-1; 

column pressure = 153 kPa (hold 2 min), increase to 176.5 kPa at a rate of 3 kPa min-1. 

The column used was a Factor FourTM low bleed capillary column (VF-624 ms, 30 m x 

0.25 mm inner diameter, film thickness = 0.25 µm, Varian, USA). The limit of quantification 

(LOQ) of TCE was 0.1 mg L-1. 
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3 Results 

3.1 Sequential and simultaneous precipitation of Pd and Au 
A total of 6 types of bio-supported Pd and/or Au catalysts (bio-Pd, bio-Au and 4 

combinations of Pd and Au) were synthesized using the metal respiring bacterium S. 

oneidenis and H2 gas as the electron donor. In the case of bio-Pd and bio-Au, Pd and Au 

were added to achieve a total concentration of 50 mg Pd or Au L-1. In the case of 

formulations that combine Pd and Au, Pd and Au were each added to 50 mg L-1 resulting 

in a total metal concentration of 100 mg L-1. The difference between the four bimetallic 

combinations of Pd and Au was the different order of adding and reducing Pd and Au. In 

all cases, more than 90 % of the added Pd and/or Au was associated with the biomass 

(Table 1). The color change of the solutions to red (for Au(0)) or black (for Pd(0)) indicated 

the metallic character of Pd and Au in the suspensions. The reduction of Pd(II) and Au(III) 

ions to the metallic zerovalent state was confirmed with X-ray diffraction, which also 

showed that measurable quantities of oxides and/or hydroxides did not form in any of the 

biogenic formulations (Figure 4-1). 
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Table 4-1: Summary of the different catalyst preparations: concentrations of added Pd and Au, precipitation efficiencies and preparation method. 

Catalyst 
Pd-

concentration 
(mg L-1) 

Au-
concentration 

(mg L-1) 
Preparation 

Precipitation 
efficiency of 

Pd (%) 

Precipitation 
efficiency of 

Au (%) 

Bio-Pd 50 0 See De Windt et al. (2005) 94.8 ± 0.2 n.a. 

Bio-Au 0 50 See Chapter 3 n.a. 98.5 ± 0.3 

Bio-Au + Bio-Pd 50 50 Mixture of bio-Pd and bio-Au 94.8 ± 0.2 98.5 ± 0.3 

Bio-Pd-Au 50 50 Bio-Pd first prepared, Au(III) 
added and reduced afterwards 

90.6 ± 1.8 96.1 ± 2.0 

Bio-Au-Pd 50 50 Bio-Au first prepared, Pd(II) 
added and reduced afterwards 

> 99.8 99.4 ± 0.5 

Bio-Pd/Au 

 

50 50 Pd(II) and Au(III) added 
simultaneously to the cells and 

then reduced 

> 99.8 > 99.8 

 

Heat-killed biomass 
with Pd/Au 

50 50 Pd(II) and Au(III) added 
simultaneously to heat-killed 

cells, and then reduced 

> 99.8 > 99.8 
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Figure 4-1: Bench source XRD spectra of bio-Pd + bio-Au, bio-Pd-Au, bio-Au-Pd and bio-Pd/Au 

3.2 Removal of diclofenac 
The different catalysts were subsequently tested for the removal of diclofenac, with H2 as 

hydrogen donor at neutral pH. Metal-free controls did not show any removal of diclofenac 

(data not shown). Pd and Au were in all cases added to achieve a total concentration of 50 

mg Pd and/or Au L-1. The concentration of diclofenac was followed as a function of time 

(Figure 4-2). The monometallic catalysts bio-Pd and bio-Au did not show any catalytic 

activity for the removal of diclofenac at neutral pH. Also a mixture of the individually 

produced bio-Pd and bio-Au (referred to as bio-Pd + bio-Au) was ineffective. The catalyst 

prepared by first reducing Pd(II) to Pd(0) on the cell surface followed by the addition and 

reduction of Au(III) to Au(0) (referred to as bio-Pd-Au), did not show any activity for the 

studied reaction either. The preparations where Au was added and reduced prior to the 

addition and reduction of Pd (referred to as bio-Au-Pd) and the one with Pd and Au added 

and reduced simultaneously (referred to as bio-Pd/Au) showed significant catalytic activity. 

Using the bio-Au-Pd catalyst, a diclofenac removal of 36.5 ± 1.8 % after 24 hours was 

observed (corresponding to a specific removal rate of 0.146 mg diclofenac mg-1 Pd d-1). A 

first order removal rate could be fitted to the curve (R2 = 0.979), this gave a decay 

constant of 0.018 ± 0.001 h-1. The bio-Pd/Au preparation catalyzed the removal of 77.8 ± 

2.0 % of diclofenac after 24 hours and the curve showed clear first order kinetics (R2 = 
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0.975) with a decay constant of 0.078 ± 0.009 h-1 (corresponding to a specific removal rate 

of 0.311 mg diclofenac mg-1 Pd d-1). The Pd- and metal-normalized decay values are 

shown in Table 4-2. The analysis of the degradation products is described in Chapter 5. 

pH values after reaction showed a maximum decrease of 0.3 pH units. 

Figure 4-2: Degradation of diclofenac as a function of time using the different bio-supported catalyst 

formulations and H2 as hydrogen donor at pH 7 (C0 = 20 mg L-1 and n = 3). 

Pd(II) and Au(III) were also added to heat-killed cells of S. oneidensis, exposed to an 

overpressure of H2 and subsequently tested for the removal of diclofenac. Also in this 

case, the metals were precipitated for more than 99.8 % (Table 1). This catalyst 

formulation also showed a first order removal of diclofenac (R2 = 0.975) with a decay 

constant of 0.660 ± 0.006 L.h-1.gPd
-1.  

3.3 Removal of TCE 
All six catalyst formulations using living cells were also tested for degradation of TCE with 

H2 as the hydrogen donor at neutral pH (pH 7). The concentration of TCE was followed as 

a function of time (Figure 4-3). No removal was observed in metal-free controls (data not 

shown). TCE was not degraded using the bio-Au catalyst, but bio-Pd was able to catalyze 

the removal of TCE. TCE degradation was also observed for bio-Pd-Au, bio-Au-Pd and 

bio-Pd/Au. A first order removal rate could be fitted to these curves. The decay constants 

(k-values) for the different catalysts are listed in Table 4-2, together with the metal-

normalized decay constants. One-way ANOVA and an LSD post-hoc test showed that bio-

Pd/Au showed a significantly faster TCE removal rate relative to the other catalysts, a 
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factor three more rapid than monometallic bio-Pd. The removal rate of bio-Au-Pd was 

significantly slower than bio-Pd/Au but significantly faster than the other catalysts. No 

significant differences in removal rate were found between bio-Pd, bio-Pd + bio-Au and 

bio-Pd-Au. In all cases, TCE was dechlorinated and hydrogenated with ethane as the only 

detectable end product. In the case of bio-Pd/Au, with almost complete removal after 40 

minutes, 83 ± 8 % of the initially added TCE could be recovered as ethane. 

Figure 4-3: Degradation of TCE as a function of time using the different bio-supported catalyst 

formulations and H2 as hydrogen donor at pH 7 (C0 = 100 mg L-1 and n = 3). 
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Table 4-2: First order decay values (k) and metal-normalized decay values (kmetal) for the dechlorination 

of diclofenac and TCE of the different bio-supported catalysts (n = 3). 

Contaminant Catalyst kPd 

(L.h-1.gPd
-1) 

kmetal 

(L.h-1.gmetal
-1) 

Diclofenac Bio-Au-Pd 0.36 ± 0.03 0.18 ± 0.02 

 Bio-Pd/Au 1.55 ± 0.18 0.78 ± 0.09 

TCE Bio-Pd 24.12 ± 3.24 24.12 ± 3.24 

 Bio-Pd + Bio-Au 15.72 ± 1.20 7.86 ± 0.60 

 Bio-Pd-Au 22.92 ± 1.08 11.46 ± 0.54 

 Bio-Au-Pd 36.60 ± 2.40 18.30 ± 1.20 

 Bio-Pd/Au 77.64 ± 9.00 38.82 ± 4.50 

3.4 Characterization 

3.4.1 µXRD 

The two most active catalysts (bio-Pd/Au and bio-Au-Pd) were studied in more detail by 

benchtop XRD, and synchrotron-based µXRD. The benchtop XRD revealed only the 

presence of metallic Pd and Au, where no peaks of Pd- or Au-oxides or hydroxides could 

be detected in any of the samples (Figure 4-1). The synchrotron-based µXRD 

diffractograms shown in Figure 4-4 revealed significant differences among the different 

catalyst formulations in the region of the 111 Bragg peak. The 111 Bragg peaks of bio-Pd 

and bio-Au were located at 2θ values of 17.36° and 17.52°, respectively. These 2θ values 

were converted into d-spacing using Bragg’s law in order to more directly compare the 

distance between 111 planes of atoms and identify unique crystalline domains within the 

different catalysts. For bio-Pd and bio-Au, these d-spacings were 2.349 and 2.329 Å, 

respectively. The diffraction pattern of bio-Pd/Au consisted of two distinct peaks with the 

main peak at 17.92° and the less intense peak at 17.47°. The corresponding d-spacings 

were 2.277 and 2.335 Å, respectively. The smaller d-spacing of the main peak indicated a 

significant contraction of the lattice relative to bio-Pd and bio-Au, and thus suggests the 

formation of structurally unique crystalline domains in bio-Pd/Au. The bio-Au-Pd 

preparation also showed two distinct peaks, however, the main peak located at 17.45° 

was consistent with monometallic bio-Pd and bio-Au. The minor peak at 18.11° 
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corresponded to a d-spacing of 2.253 Å, indicating the presence of a minor crystalline 

phase with a similar lattice contraction to the dominant phase observed in bio-Pd/Au. 

Figure 4-4: µXRD diffractogram of the 111 peak of bio-Pd, bio-Au, bio-Au-Pd and bioPd/Au. 

3.4.2 TEM and STEM 

The morphology, aggregation and particle diameter of the bio-Au-Pd and bio-Pd/Au 

catalyst were characterized using TEM and STEM. A thin section of bio-Au-Pd together 

with the particle size distribution is shown in Figure 4-5a and c. Small nanoparticles (1-10 

nm) could be found both intracellularly and on outer cell parts. The largest particles (up to 

50 nm) were located on the outer parts of the cells. The thin sections of bio-Pd/Au (Figure 

4-5b) showed that most of the particles can be found in the outer parts of the bacterial 

cells. The particles can be small (< 5 nm), but also larger aggregates (up to 100 nm) were 

observed. From the particle size distributions, it is clear that bio-Pd/Au consisted of larger 

particles than bio-Au-Pd . The average diameters were 11.04 ± 13.65 nm and 6.88 ± 5.16 

nm for bio-Pd/Au and bio-Au-Pd respectively. These aggregates of the most active 

catalyst preparation (bio-Pd/Au) were further studied by STEM. An EDX spectrum taken at 

one point within the aggregate, shown in Figure 4-6a, provided evidence for the presence 

of both Pd and Au within the same zone of the aggregate (Figure 4-6b). A scan for the 

presence of Pd and Au was performed along the horizontal line shown in Figure 4-6c. The 

relative amounts of Au and Pd are shown by the curves in the lower part of Figure 4-6c. 

These curves show that within one aggregate no zones with pure Pd or pure Au were 
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present, but that they were always detected together. Figure 4-6d shows the resulting 

EDX spectrum of the line scan from Figure 4-6c and confirms the presence of Au and Pd 

within the same aggregate. 

 

Figure 4-5: TEM bright filed images of (a) Thin section of S. oneidensis cells loaded with particles of 

Pd(0) and Au(0) when Au and Pd were added sequentially (bio-Au-Pd). (b) Thin section of S. oneidensis 

cells loaded with particles of Pd(0) and Au(0) when Au and Pd were added simultaneously (bio-Pd/Au). 

(c) Particle size distribution of the thin section of bio-Au-Pd. (d) Particle size distribution of the thin 

section of bio-Pd/Au. 
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Figure 4-6: STEM bright field images (a) and (c) of a whole–mount bio-Pd/Au aggregate specimen on 

the cell surface of S. oneidensis. (b) EDX spectrum taken from the indicated point ‘013’ on (a). (c) EDX 

elemental line-scan across a bio-Pd/Au aggregate on the cell surface of S. oneidensis and (d) integral 

line-scan EDX spectrum. 

4 Discussion 

This study showed that a monometallic Au catalyst supported on the cells of S. oneidensis  

(bio-Au), synthesized according to Chapter 3, was ineffective for the removal of diclofenac 

and TCE. The bio-supported Pd catalyst (bio-Pd), making use of the same species as De 

Windt et al. (2005), could catalyze the dechlorination of TCE at a concentration of 50 mg 

Pd L-1, with H2 as hydrogen donor and at neutral pH, whereas this was not possible for 

diclofenac. This is noteworthy since bio-Pd had shown its effectiveness as a catalyst in the 

dehalogenation of other contaminants (De Windt et al., 2005; Hennebel et al., 2010).  In 

contrast, the catalyst which was obtained when 50 mg Au(III) L-1 and 50 mg Pd(II) L-1 were 
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added simultaneously to the bacteria (bio-Pd/Au) in the presence of H2 as electron donor, 

successfully catalyzed the removal of diclofenac. Using the bio-supported catalyst with Au 

added and reduced prior to the addition and reduction of Pd (bio-Au-Pd), dechlorination of 

diclofenac was observed to a limited extent. A possible explanation for this limited removal 

relative to the bio-Pd/Au formulation could be the lesser amount of the structurally unique 

alloyed bimetallic Pd/Au phase observed in the bio-Pd-Au formulation with µXRD. Other 

sequences of metal addition to S. oneidensis were ineffective for the removal of 

diclofenac. Also in the case of TCE, bio-Pd/Au was the most effective formulation, 

followed by bio-Au-Pd. The percentage of ethane produced from TCE was similar to the 

recovery observed previously (Hennebel et al., 2009b). These results indicate that doping 

of a bio-Pd catalyst with Au, which is inactive as a monometallic catalyst, can improve bio-

Pd catalytic activity. 

Since it was shown that the catalyst preparation with Pd and Au added simultaneously to 

heat-killed cells was able to catalyze the dechlorination of diclofenac (but at a slower rate 

than bio-Pd/Au), it is clear that the formation of a highly active bimetallic structure was not 

purely enzymatic, but also at least partly occurred via the well established chemical 

reduction pathway with molecular H2. However, when using living cells, Pd(II) and Au(III) 

reduction occur faster than with dead biomass. It appears that both the simultaneous 

addition and the physiological state of the cells are among the most important factors to 

obtain a highly active bimetallic catalyst 

A combined chemical and biological reduction mechanism was also proposed for bio-Au 

(Chapter 3) and bio-Pd produced by fermentative species (Hennebel et al., 2011c). In the 

case of bio-Pd formation by E. coli, heat-killed cells showed partial reduction of Pd(II), 

implying a partly chemical mechanism (Deplanche et al., 2010). In the latter cases in 

which chemical reduction was involved, larger irregular Pd aggregates were observed, 

which was in contrast to the smaller mono-dispersed particles resulting from enzymatic 

bacterial activity.  

Chemically produced bimetallic particles have already shown their applicability for 

dechlorination of diclofenac. Ghauch et al. (2010) investigated the ability of several metals 

to promote the catalytic activity of Fe particles for the dechlorination of diclofenac under 

oxic and anoxic conditions. In both cases, Pd was the most effective promoting metal and 

showed a significantly faster dechlorination than the monometallic Fe catalyst. Although 

rates are difficult to compare due to the different experimental conditions, the Pd-Fe 

catalysts showed rates of about a factor 10 higher than the ones presented in this study. 
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Removal percentages of 80 % were achieved after 20 minutes reaction time, after which 

degradation stopped. The mode of action of this Pd-Fe catalyst is based on the oxidation 

of Fe(0) to Fe(II). Dechlorination of diclofenac by a Pd/Au catalyst was not yet reported. 

The application of Pd/Au bimetallic catalysts for dechlorination of TCE has been described 

extensively (Nutt et al., 2005; Nutt et al., 2006; Wong et al., 2009). However, these studies 

make use of particles consisting of an Au core with a Pd shell. After optimization of Au-

particle size and Pd-surface coverage, particles catalyzed the dechlorination of TCE with 

rate constants which are up to a factor 200 higher than for bio-Pd/Au as presented in this 

study (Nutt et al., 2006). For bio-supported catalysts, attachment to the bacterial biomass 

might imply a loss of catalyst activity. Moreover, it is possible that the core-shell structure 

is much more active for the studied reactions than the alloyed bimetallic structures 

obtained in this study. This study demonstrated that a catalyst with similar activity could 

not be obtained by first precipitating Au(0) on the cell walls, followed by the precipitation of 

Pd(0). Similar differences between bio-supported and chemically produced Pd 

nanocatalysts were also valid for diatrizoate removal with bio-Pd and Pd/Al2O3 (Knitt et al., 

2008; Hennebel et al., 2010).  

The two most active catalysts, bio-Au-Pd and bio-Pd/Au, were characterized more 

thoroughly by µXRD and TEM. The bio-Pd/Au catalyst showed a clear shift of the 111 

peak to the right compared to the monometallic bio-Pd and bio-Au catalysts, implying a 

smaller d-spacing and thus a contraction of the crystal lattice. This change in lattice 

structure can be indicative for the formation of a unique bimetallic structure of Pd and Au. 

A lattice contraction of bimetallic crystals compared to monometallic particles has been 

demonstrated for crystals of Pt/Cu (Stassi et al., 2006) and Pd/Co (Suo et al., 2007). The 

improved activity of bio-Pd/Au compared to the other catalyst formulations might be 

explained by this contraction. This implies that activity of biologically formed catalysts can 

be steered by selecting different metals, adjusting metal ratios and changing the moment 

and sequence of metal addition to the bacteria. The spectrum of the bio-Au-Pd catalyst 

showed a main peak situated at a diffraction angle similar to the one of bio-Pd and bio-Au. 

A smaller peak, situated at 18.107°, probably indicating a contraction of the lattice, but to a 

lesser extent, was also present. The reason for this lattice contraction might be that some 

Au(III), which was added prior to Pd(II), was adsorbed on the bacterial cells without being 

reduced. This is probable since Au(III) is adsorbed very fast by S. oneidensis (76.1 ± 7.1 

% was sorbed within 30 minutes), but reduced very slowly (reduction started after 24 

hours) (Chapter 3).The unreduced Au(III) can be co-reduced with Pd(II) (similar as for bio-

Pd/Au). This fits with the difference that was observed in catalytic activity: bio-Pd/Au 
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showed a higher activity than bio-Au-Pd. The latter was more active than the monometallic 

bio-Pd. Since these spectra do not provide information on the spatial positioning of Pd and 

Au within the crystals, a microscopic study by STEM coupled with EDX was performed. 

TEM images of the most catalytically active form (bio-Pd/Au) revealed that aggregates of 

nanoparticles were precipitated mainly on the outer parts of the cells, similar to bio-Pd (De 

Windt et al., 2005). Nanoparticles are mainly used for their very high specific surface area. 

In this case however, surface area is not the main activity determining parameter, since 

bio-Pd/Au contained larger particles than bio-Au-Pd but showed higher removal rates. 

Degradation rates can be normalized to the specific surface area. In the case of diclofenac 

removal this results in a normalized first order decay value of 0.144 nm3.nm-2.h-1 for bio-

Pd/Au and 0.041 nm3.nm-2.h-1 for bio-Au-Pd , with the specific surface areas calculated 

based on the average diameter and supposing the particles are spherical. In the case of 

TCE, these normalized decay constants are 7.20 nm3.nm-2.h-1 for bio-Pd/Au and 4.17 

nm3.nm-2.h-1 for bio-Au-Pd. 

The promotional effect of Au on Pd catalysis is most likely due to a beneficial geometric 

effect of Au on the positioning of Pd within the crystal. The presence of Au causes a 

contraction of the lattice resulting in a structure which can enable the contact between the 

two reacting substances (in this case diclofenac or TCE and hydrogen). This phenomenon 

has been reported for other Pd/Au-catalyzed reactions before: Chen et al. (2005) reported 

that the introduction of Au(0) to a monometallic Pd(0) crystal resulted in the optimal 

intermolecular distance for the acetoxylation of ethylene to vinylacetate. The increased 

activity of Pd/Au catalysts relative to monometallic Pd catalysts has also been attributed to 

electronic effects, where the authors proposed that Au withdraws electron density from Pd, 

and thereby, increases the interaction potential of Pd with the reactants (Knecht et al., 

2008). However, other techniques are needed to confirm beneficial electronic effects of 

the addition of Au(0) in the current study. Gao et al. (2012) mentioned both geometric 

effects (more isolated reactive Pd sites due to the insertion of Au in the crystal) and 

electronic effects (electronic rearrangements, facilitating sorption and desorption of 

reagents and products). 

5 Conclusions 

This study showed that the catalytic activity of a biologically produced Pd nanocatalyst, 

which had already proved its applicability in wide range of environmental applications, can 

be extended by alloying with Au(0). An aspect of optimization will be the determination the 

optimal Pd/Au ratio, preferably with a minimal amount of Au, since Au is more expensive 
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than Pd and will thus mainly determine the cost of the synthesis. The optimal ratio of 

Pd/Au will likely depend on the pollutant that needs to be dehalogenated. Also other 

metals that can promote the catalytic activity of Pd should be investigated in this context. 

Further research for diclofenac and TCE dehalogenation should aim at minimizing reaction 

times, which can be done by altering reaction parameters such as pH and by changing the 

concentration of the catalyst. A disproportional increase of catalytic activity with increasing 

catalyst concentration had been observed in previous studies using a bio-Pd catalyst 

(Hennebel et al., 2009b). Catalysis by bio-Pd/Au opens perspectives for degradation of 

extremely recalcitrant pollutants such as fluorinated compounds. Although major advances 

in the catalytic activity of biogenic catalysts will be required in order to be competitive with 

chemically engineered bimetallic nanoparticles, this work does provide insights into 

potential bio-inspired modifications to abiotic bimetallic catalysts. 
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Chapter 5  

Doping of biogenic Pd catalysts with 

Au enables dechlorination of 

diclofenac at environmental 

conditions4 

Abstract 

Bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation 

reactions. However, some halogenated compounds are not efficiently degraded using a 

bio-Pd catalyst. The activity of bio-Pd can be improved by doping with Au(0) (‘bio-

Pd/Au’). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model 

pharmaceutical compound diclofenac from an aqueous medium in batch experiments at 

neutral pH and with H2 as the hydrogen donor. Dehalogenation was for both catalysts the 

only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was 

observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-

content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity. 

The removal of 6.40 µg L-1 diclofenac from a wastewater treatment plant effluent using 

bio-Pd was not possible even after prolonged reaction time. However, by using the most 

active bio-Pd/Au catalyst, 44% of the initially present diclofenac could be removed after 

24 hours. This chapter shows that doping of bio-Pd nanoparticles with Au(0) can be a 

promising approach for the reductive treatment of wastewaters containing halogenated 

contaminants. 

                                                

Chapter redrafted after: 

S. De Corte, T. Sabbe, T. Hennebel, L. Vanhaecke, B. De Gusseme, W. Verstraete, N. 

Boon. 2012. Doping of biogenic Pd catalysts with Au enables dechlorination at 

environmental conditions. Water Research 46(8): 2718-2726 



Bio-Pd/Au for dechlorination of diclofenac at environmental conditions      

   66 

1 Introduction 

The increasing use of pharmaceuticals combined with the fact that they are easily 

excreted with urine has resulted in their ubiquitous prevalence as trace pollutants in 

wastewaters. Their low concentrations (µg L-1) and their complex molecular structure 

often result in a very limited removal by conventional wastewater treatment systems 

(Ternes, 1998). Even at these low concentration levels, these compounds can exhibit 

toxicity to aquatic organisms (Jones et al., 2001; Crane et al., 2006). A significant fraction 

of pharmaceuticals contains one or more halogen atoms in their molecular structure. An 

example is the anti-inflammatory drug diclofenac (2-[(2,6-

dichlorophenyl)amino]phenylacetate), the model compound used in this study 

(Schwaiger et al., 2004; Triebskorn et al., 2004). Because of its low biodegradability 

(Joss et al., 2006), diclofenac has been detected in surface and drinking waters at µg 

and ng L-1 levels, respectively (Ternes, 1998; Heberer, 2002). During the past decade, 

mostly advanced oxidation processes (AOPs), such as ozonation have been applied to 

degrade these compounds in an oxidative way. Although these techniques are able to 

efficiently remove pharmaceuticals from wastewaters (Huber et al., 2005), they can result 

in a wide variety of mutagenic and toxic transformation products and byproducts 

(Guzzella et al., 2002; Schmidt et al., 2008). Moreover, some compounds such as the 

iodinated contrast medium diatrizoate are insensitive to ozonation (Ternes et al., 2003). 

None of these techniques are able to cleave the carbon-halogen bound, and they can 

thus not solve the problem of wastewaters containing halogenated compounds. Other 

techniques such as sorption on activated carbon or retention by membranes may 

alternatively be applied to avoid the presence of halogenated compounds in effluents, 

but they do not break the carbon-halogen bound either and thus do not solve the toxicity 

issue of the concentrated residual fraction. Dechlorination could be obtained by using 

organochlorine respiring bacteria, but this is a very slow process (De Wildeman et al., 

2003). Also gamma irradiation has been described as a dechlorinating treatment (Zona 

et al., 1999). However, its application in wastewater treatment is very unlikely.  

A possibly more effective treatment for halogenated substances at relatively mild 

conditions, with good selectivity and yields, is reductive hydrodehalogenation catalyzed 

by Pd in the presence of a hydrogen donor (e.g. H2). The deiodination of the iodinated 

contrast media diatrizoate and iopromide by a chemically produced Pd/Al2O3 catalyst or 

biogenic Pd nanoparticles has been reported before (Knitt et al., 2008; Hennebel et al., 

2010; Forrez et al., 2011a). The biogenic Pd nanoparticles (also called bio-Pd) are 
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produced on the cell wall of Shewanella oneidensis and have already demonstrated their 

applicability for the dehalogenation of a variety of environmental contaminants, such as 

polychlorobifenyls (De Windt et al., 2005), lindane (Mertens et al., 2007) and 

trichloroethylene (Hennebel et al., 2009b). Since the bacterial cells act both as the 

reducing agent and as the carrier material of the nanoparticles, the use of possibly toxic, 

expensive or scarce chemicals as reducing agent, stabilizer or carrier is prevented. The 

bacterial matrix also allows a better contact between the pollutant and the metal catalyst. 

Moreover, bacteria can be applied to recover metals from waste streams and produce an 

added value product in one step (Hennebel et al., 2009a). The main factors determining 

the feasibility of large scale production and application of biogenic metal nanocatalysts 

will most probably be the costs for the growth of the bacteria and the price of the noble 

metal salts. 

In Chapter 4 it was shown that diclofenac reduction catalyzed by 50 mg bio-Pd L-1 and 

with externally added H2 was not possible at neutral pH. However, it was demonstrated 

that a bimetallic catalyst, obtained by coprecipitation of Pd and Au by Shewanella 

oneidensis (bio-Pd/Au), was able to catalyze the removal of diclofenac at neutral pH with 

externally added H2. When Pd and Au were added and precipitated sequentially, there 

was no or very poor activity for this reaction. The previous chapter focused on the 

synthesis and characterization of the bimetallic bio-Pd/Au catalyst. In contrast, the goal 

of this chapter was to apply the bimetallic coprecipitated bio-Pd/Au for the dechlorination 

of the micropollutant diclofenac. The specific aims were: (i) to investigate the optimal 

conditions in terms of pH for the removal of diclofenac by bio-Pd and bio-Pd/Au, (ii) to 

identify the transformation products, (iii) to investigate the effect of different Pd and Au 

levels of the bio-Pd/Au catalyst and (iv) to study the removal of diclofenac in a real 

wastewater treatment plant effluent at environmental concentrations. 

2 Materials and methods 

2.1 Catalyst preparation 
Bio-Pd (50 mg Pd L-1) was produced as described by De Windt et al. (2005) and bio-

Pd/Au was produced as described in Chapter 4. Metal precipitation efficiencies are also 

reported in Chapter 4. Catalyst preparation was finished 24 hours before starting the 

experiments. Storage before the experiment was done at 4°C. 

2.2 Catalytic removal in liquid microcosms 
Assays for the catalytic removal of diclofenac were performed as described in Chapter 4.  
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2.3 Hospital wastewater treatment plant effluent 
The hospital wastewater treatment plant (WWTP) studied in this research is exclusively 

treating hospital wastewater. The first treatment step is the mechanical removal of solids 

by means of a grid screen (φ: 40 mm). Subsequently, the wastewater is treated by a 

conventional activated sludge system (CAS) in 2 aeration tanks. Eventually, the aerated 

water is treated in a secondary clarifier, allowing the CAS flocks to settle and return 

(partially) to the aeration tanks. The final effluent is discharged to a nearby surface water. 

The composition of the wastewater is given in Table 5-1. The hospital WWTP effluent 

used in the experiments was sampled at 2 pm on April 20th, 2011. 

Table 5-1: Characteristics of the hospital WWTP effluent used in this study. 

Parameter Mean value 

(± standard deviation) 

(mg L-1) 

pH 7.43 

Chemical oxygen demand (COD) 105.61 

Total suspended solids (TSS) (2.29 ±  0.02) * 103 

Volatile suspended solids (VSS) (0.30 ± 0.01) * 103 

Kjeldahl-N 9.83 

NH4
+-N 0.64 ± 0.11 

NO2
--N 0.00 ± 0.00 

NO3
--N 28.85 ± 0.02 

PO4
3--P 1.11 ± 0.02 

SO4
2--S 30.50 ± 0.04 

 

2.4 Analytical methods 
Diclofenac and its metabolites were monitored and identified using liquid 

chromatography coupled to multiple mass spectrometry (LC-MSn). Chromatography was 
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carried out on a Thermo Finnigan Surveyor LC system (San Jose, CA, USA) comprising 

of a quaternary pump and an autosampler, equipped with a Nucleodur C18 ISIS column 

(250 mm x 4.0 mm x 5 µm) obtained from Macherey-Nagel (Bethlehem, PA, USA). 

Elution was performed at a flow rate of 300 µL/min using a mobile phase of 50% A (0.01 

% formic acid) and 50% B (methanol) for 2 minutes, increasing to 100% B in 20 minutes, 

holding for 10 minutes. before allowing the column to re-equilibrate for 8 minutes. 

Analytes were detected with an LTQ ion trap mass spectrometer (Thermo Finnigan, San 

Jose, CA, USA) in the MS2 or MS3 positive ion mode using an Atmospheric Pressure 

Chemical Ionisation interface. A vaporizer temperature of 400°C, a capillary temperature 

of 270°C, a sheath gas flow of 40 units and an auxiliary gas flow of 5 units were used. 

Alternating scans were used to isolate [M+H]+ ions at mass 278 for diclofenac, 244 for 2-

(2-chloroanilino)phenylacetate and 210 for 2-anilinophenylacetate. The precursor 

isolation width was set to 2 Da, the activation Q to 0.25 and the collision energy to 25 %.  

For the detection of diclofenac, diatrizoate and carbamazapine in the hospital WWTP 

effluent, LC-MS/MS was performed using the same HPLC system and software as 

described above, equipped with a Nucleodur C18 Pyramid column (100 mm x 2.1 mm, 

1.8 µm, Machery-Nagel, PA, USA). The column temperature was set at 35 °C. Analytes 

were eluted at a flow rate of 0.3 mL min-1 using a gradient starting from  98 % A (0.08 % 

formic acid) and 2 % B (0.08 % formic acid in acetonitrile) for 0.8 min, increasing to 65 % 

B in 0.5 min, keeping at 65 % B for 0.7 min, increasing to 100 % B in 1 min and keeping 

at 100 % B for another 2 min, before returning to the initial conditions during 1.9 min. The 

injection volume was 10 µL. The MS parameters were: a vaporizer temperature of 30 °C, 

a capillary temperature of 270 °C, a sheath gas flow of 25 units, an ion sweep gas flow of 

2 units and an auxiliary gas flow of 5 units. The spray voltage polarity was 3500 V. Argon 

pressure in the collision cell (Q2) was set at 1.5 mTorr and the mass resolution at the 

first (Q1) and third (Q3) quadrupole were set at 0.7 Da at full width at half maximum 

(FWHM).  

3 Results and discussion 

3.1 Diclofenac removal catalyzed by bio-Pd and bio-Pd/Au 
Bio-Pd was ineffective to remove diclofenac at neutral or alkaline pH. However at pH 5 

and 6, a clear first order removal of diclofenac was observed (Figure 5-1A). The removal 

was improved at lower pH (the first order decay constant at pH 5 (0.129 ± 0.020 h-1) is a 

factor 5 higher than the one at pH 6 (0.027 ± 0.020 h-1)). At pH values below the pKa of 

4.0, no diclofenac could be detected anymore due to the precipitation of the protonated 
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form of diclofenac (Llinas et al., 2007). A control experiment using biomass of 

Shewanella oneidensis without Pd at pH 5 and a control with bio-Pd but without H2 at pH 

5 did not show any removal (data not shown). A pH-dependent removal using bio-Pd 

was also observed before for the iodinated contrast medium diatrizoate (Hennebel et al., 

2010). However, in the case of diatrizoate, no pH values were reported at which no 

removal took place. A possible reason for this improved activity at lower pH is the fact 

that diclofenac becomes more protonated at lower pH (pKa = 4.0). Hence, there is less 

repulsion by the negatively charged bacterial cells, which are the carriers of the Pd-

nanoparticles. 
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Figure 5-1: A:  Removal of diclofenac as a function of time using a bio-Pd catalyst (50 mg Pd L-1) with 

H2 as hydrogen donor at pH 5, 6, 7 and 8 (C0 = 20 mg diclofenac L-1). B: Removal of diclofenac as a 

function time using a bio-Pd/Au catalyst (50 mg Pd L-1 and 50 mg Au L-1) with H2 as hydrogen donor at 

pH 5, 6, 7 and 8 (C0 = 20 mg diclofenac L-1). 
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Table 5-2: First order decay constants (k-values) of the removal of 20 mg diclofenac L-1 using 

monometallic bio-Pd (50 mg Pd L-1) and bimetallic bio-Pd/Au (50 mg Pd L-1 and 50 mg Au L-1) 

catalysts with H2 as hydrogen donor at variable pH. 

Pd-

concentration 

(mg L-1) 

Au-

concentration 

(mg L-1) 

pH 
k                       

(h-1) 

50 0 5 0.129 ± 0.020 

50 0 6 0.027 ± 0.004 

50 0 7 - 

50 0 8 - 

50 50 5 1.544 ± 0.257 

50 50 6 0.264 ± 0.021 

50 50 7 0.078 ± 0.009 

50 50 8 0.047 ± 0.005 

  (- : no removal observed) 

In contrast to bio-Pd, the coprecipitated bimetallic bio-Pd/Au allowed removal of 

diclofenac at neutral and alkaline pH (Figure 5-1B). In addition, a similar trend as for the 

monometallic bio-Pd, namely an improved removal at lower pH, was observed. These 

removal curves all showed first order kinetics, the rate constants are listed in Table 5-2. 

The decay constant at pH 5 was a factor 30 higher than the one at pH 8. At a fixed pH, 

bio-Pd/Au showed for all pH values from 5 to 8 an improved removal compared to bio-

Pd. After reaction, pH remained more or less constant, a maximum decrease of 0.3 pH 

units was observed in experiments at neutral pH. Doping of Pd catalysts with Au(0) has 

already been described extensively (Bonarowska et al., 2001a; Nutt et al., 2005; Nutt et 

al., 2006). These bimetallic catalysts can have several structures, such as alloys 

(Bonarowska et al., 2001a) or core-shell structures (Nutt et al., 2005; Nutt et al., 2006). 

However, the exact catalytic mechanisms of these bimetallic systems remain unrevealed. 

In the previous chapter, we showed that bimetallic alloys of Pd and Au could be 

produced by the metal respiring bacterium Shewanella oneidensis. Simultaneous 

addition of Au(III) and Pd(II) to the bacterial cells was required in presence of an electron 
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donor (e.g. H2). The catalyst obtained by coprecipitation of Pd and Au had an improved 

catalytic activity for the degradation of the halogenated water pollutants diclofenac and 

trichlorethylene (TCE) compared to the monometallic bio-Pd. Bio-Au itself was inactive 

as catalyst. The catalyst obtained by sequential precipitation of Au and Pd did not show a 

significant improvement of the activity compared to bio-Pd. In contrast to other 

formulations, the coprecipitated bio-Pd/Au showed a unique bimetallic alloy structure, as 

was demonstrated by synchrotron-based techniques and (scanning) transmission 

electron microscopy. The present study furthermore showed that bio-Pd/Au can be a 

powerful catalyst for dehalogenation of wastewater pollutants, since it can dechlorinate 

diclofenac at relevant pH values at which wastewater treatment systems are mostly 

operated.  Since these techniques are proposed as effluent polishing technologies, it is 

advisable that pH values are not varied anymore at this stage of the treatment, making 

bio-Pd/Au an attractive catalyst for this purpose. The use of chemically produced 

bimetallic catalysts for removal of diclofenac has been reported before by Ghauch et al. 

(2010). These authors plated the surface of Fe(0) particles with other elements (Pd, Ni, 

Cu, Ir, Co and Sn). Both under oxic and anoxic conditions, the Pd/Fe catalyst was the 

most effective combination. This Pd/Fe catalyst was the only combination that showed 

higher removal rates than the ones presented in this study. Under oxic conditions, 

oxidative (e.g. hydroxylated) reaction products were found; under anoxic conditions, 

reductive (e.g. dechlorinated) transformation products were detected. However, in that 

case, Fe(0) was not a true ‘catalyst’, since it was used during the reaction. Indeed, Fe(0) 

was oxidized to Fe(II), which generated the hydrogen donor H2 required for catalysis. A 

periodic renewal of fresh Fe(0) to provide H2 to the Pd catalyst will thus be required for 

these Pd/Fe catalysts, in contrast to (bio)-Pd/Au catalysts. 

3.2 Transformation products and mass balance 
The transformation products after catalytic removal of diclofenac using bio-Pd and bio-

Pd/Au in presence of H2 were determined by means of LC-MS/MS. Figure 5-2A and 5-2B 

show the chromatograms of the diclofenac removal at pH 5 using H2 and bio-Pd/Au and 

bio-Pd after 4 hours reaction time. Three peaks could be identified. Figure 5-2C, D and E 

show the mass spectra of the peaks with retention time 24.9, 24.4 and 22.4 minutes 

respectively. The molecular mass of diclofenac is 296. The mass corresponding to the 

product which eluted at 24.9 minutes was 278 (Figure 5-2C). This mass difference has 

been reported in literature and is due to the loss of a H2O fragment during ionization of 

the molecule (Galmier et al., 2005). The difference in mass between the main peaks 

shown in Figure 5-2C and D is 34, corresponding to the replacement of a chlorine atom 
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by a hydrogen atom. The same observation is valid for Figure 5-2D and E. These results 

show that diclofenac is subjected to a sequential hydrodechlorination. These were the 

only products that could be identified in all cases where removal took place. The final 

transformation product was identified as 2-anilinophenylacetate (further referred to as 2-

APA). The intermediate with one Cl in the molecule is 2-(2-chloroanilino)phenylacetate 

(further referred to as 2-(2-Cl)-APA). 
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Figure 5-2: LC-MS/MS data of catalytically treated samples after 4 hours treatment at pH 5. (A) LC 

chromatogram of full MS of sample treated with bio-Pd; (B) LC chromatogram of full MS of sample 

treated with bio-Pd/Au; (C) MS2 of peak 1 (diclofenac); (D) MS2 of peak 2 (2-(2-

chloroanilino)phenylacetate); (E) MS2 of peak 3 (2-anilinophenylacetate). 
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The kinetics of the formation of the final dechlorinated product 2-APA are given in Figure 

5-3. Due to a lack of available reference standards, 2-(2-Cl)-APA could not be quantified. 

This figure shows that almost all the initially added diclofenac could be recovered as 2-

APA after 24 hours reaction time using a bio-Pd catalyst. Using a bio-Pd/Au catalyst, all 

the initially added diclofenac could be recovered as 2-APA after 8 hours reaction time. It 

is clear that both the removal of diclofenac and the formation of 2-APA occur at a faster 

rate when using a bimetallic bio-Pd/Au catalyst compared to the monometallic bio-Pd at 

a fixed pH (e.g. at pH 5). The diclofenac molecule apparently undergoes a sequential 

dechlorination. No other reaction products could be detected, so any further reductive 

reaction (e.g. reduction of the carboxylgroup to an aldehyde) can be excluded. This is in 

accordance with previous studies using bio-Pd catalysts for removal of halogenated 

pollutants.  

Figure 5-3: Removal kinetics of diclofenac and formation kinetics of 2-anilinophenylacetate (2-APA) 

using a bio-Pd/Au catalyst (50 mg Pd L-1 and 50 mg Au L-1) at pH 5 and with H2 as hydrogen donor. 

Experiments with nitrifying biomass already demonstrated that the dechlorinated 2-APA 

(88.8 % removal after 10 days) is more biodegradable than diclofenac itself (23.3 % 

removal after 10 days) (De Gusseme et al., 2012). Oxidative and cometabolic biological 

processes, for example by nitrifying cultures, have already shown to be a valuable option 

to further degrade (oxidize) the product obtained after reductive dehalogenation (De 

Gusseme et al., 2009).  
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3.3.  Catalysis by bimetallic bio-Pd/Au: influence of Pd and Au content 

In order to examine the influence of the Pd/Au ratio during precipitation, the 

concentration of Pd or Au during the synthesis of the catalyst was varied, while the 

concentration of the other metal was kept constant. The evolution of the first order decay 

constant for the removal of diclofenac at pH 7 with H2 is shown as a function of Pd or Au 

concentration in Figure 5-4. The normalized values of these constants to the Pd-

concentration (kPd) and the total metal concentrations (kmetal) are shown in Table 5-3. 

These results show that an increase in Pd-content resulted in an increase of the removal 

rate. Also the Pd-normalized decay constants increased with increasing Pd concentration 

(kPd at 100 mg Pd L-1 is a factor 2 higher than kPd at 50 mg Pd L-1, which is slightly higher 

than kPd at 10 mg Pd L-1). This disproportional increase in catalytic activity was also 

observed for the deiodination of diatrizoate by monometallic bio-Pd produced by 

Shewanella oneidensis (Hennebel et al., 2010) and Citrobacter braakii (Hennebel et al., 

2011c). This is in contrast with the observations of Nutt et al. (2006), who demonstrated 

that there was an optimal Pd surface coverage for their Pd-Au bimetallic core-shell 

particles, used for the dechlorination of trichloroethylene. Beyond this optimal ratio, a 

further increase of the amount of Pd led to a decrease in catalytic activity.  

Figure 5-4: Evolution of the first order decay constant (k-value) for the removal of diclofenac at pH 7 

using a bio-Pd/Au catalyst as a function of the Au and Pd concentration used for synthesis of the 

catalyst. The concentration of the other metal was kept constant at 50 mg L-1 (C0 = 20 mg diclofenac 

L-1). 
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Table 5-3: Pd-normalized (kPd-values) and metal-normalized decay constants (kmetal-values) for the 

removal of diclofenac using bio-Pd/Au catalyst with varying Pd-concentration at pH 7 and with H2 as 

hydrogen donor. The Au-concentration for the synthesis of the catalyst was kept constant at 50 mg L-1. 

Decay constants were normalized to the Pd concentration used. 

Pd-concentration 

(mg L-1) 

Au-concentration 

(mg L-1) 

kPd  

(L g-1 Pd h-1) 

kmetal  

(L g-1 metal h-1) 

10 50 1.35 ± 0.17 0.23 ± 0.03 

50 50 1.55 ± 0.18 0.78 ± 0.09 

100 50 3.16 ± 0.42 2.11 ± 0.27 

50 0,5 3.79 ± 0.02  3.75  ± 0.02 

50 1 10.30 ± 0.40 10.20  ± 0.40 

50 5 8.62 ± 0.38 7.83 ± 0.34 

50 10 5.76 ± 0.11 4.80 ± 0.09 

50 25 1.40 ± 0.06 0.93 ± 0.04 

50 100 1.94 ± 0.24 0.65 ± 0.08 

 

Similar as for Pd, the concentration of Au in the different catalysts was varied. In contrast 

to the observations for a varying Pd-concentration, there was no increasing reaction rate 

with increasing Au-concentration, but the reaction rate as a function of the Au-

concentration showed a clear optimum. The optimal Pd/Au ratio for diclofenac removal at 

pH 7 was around 50/1 (expressed as mass units). There was a significant drop in activity 

between Au concentrations of 1 and 25 mg L-1. Between 25 and 100 mg Au L-1, no 

significant changes in the removal rate were observed. The main objective of varying the 

Au-concentration during synthesis was to minimize the amount of Au needed, since this 

is the main cost-determining factor for the synthesis of the catalyst. It is possible that 

doping of Pd(0) with a small amount of Au(0) improves the transfer of electrons, and 

hence, the catalytic activity. This effect then partly disappears when too much Au(0) is 

added, as was also shown for Pd/Au catalysts for the synthesis of H2O2 (Hutchings et al., 

2010). Doping with 2 mass % of Au(0) will bring about a price increase of the order of 4 
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percent (based on Pd and Au prices of € 19 000 kg-1 € 39 000 kg-1 respectively). But this 

should be largely compensated by the gain in catalytic activity.  

3.3 Diclofenac removal from a hospital WWTP effluent 
In order to test the catalytic activity in an environmental matrix with relevant pollutant 

concentrations, a dechlorination assay was performed using the effluent from a hospital 

WWTP. When bio-Pd and bio-Pd/Au (50/1) were used for the treatment of hospital 

WWTP effluent, similar trends as in batch tests with spiked distilled water were observed. 

The presence of four pharmaceutical compounds was monitored as a function of time 

(Figure 6). Sulfamethoxazole was present at a concentration of 2.21 µg L-1 and could not 

be removed with bio-Pd (50 mg Pd L-1) and bio-Pd/Au (50 mg Pd L-1/1 mg Au L-1) (results 

not shown). A concentration of 97.83 µg L-1 diatrizoate was present and was removed for 

100 % within 1 hour using bio-Pd and within 30 minutes using bio-Pd/Au. 

Carbamazepine could be detected at a level of 1.02 µg L-1 and was removed for 20.5 ± 

0.1 % after 24 hours using bio-Pd. Using bio-Pd/Au, it could be removed for 100 % after 

4 hours. Diclofenac was found to be present at a concentration of 6.40 µg L-1. The pH of 

this effluent was 7.4. The treatment with bio-Pd was ineffective for removal of diclofenac. 

Using bio-Pd/Au, 43.8 ± 5.5 % of the initially present diclofenac could be removed. An 

increasing concentration of 2-APA as a function of time was detected (data not shown). 

However, compared to the test with bio-Pd/Au and spiked distilled water, the removal 

from WWTP effluent was rather limited.  

Figure 5-5: Removal of diclofenac (C0 = 6.40 µg L-1), diatrizoate (C0 = 97.83 µg L-1) and 

carbamazepine (C0 = 1.02 µg L-1) from hospital wastewater treatment plant effluent using bio-Pd (50 

mg Pd L-1) and bio-Pd/Au (50 mg Pd L-1/1 mg Au L-1; mass/mass ratio) with H2 as hydrogen donor.      
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Possible reasons for this limited removal are the low concentration of diclofenac and the 

presence of other compounds in the effluent, which might poison the surface of the 

catalyst. Especially the presence of iodocompounds can decrease the activity of Pd-

based catalysts, since they compete with chlorinated compounds for the catalytically 

active sites (Mackenzie et al., 2006). Diatrizoate is an iodinated contrast medium, which 

was present in this effluent sample at a concentration of 97.8 µg L-1 and thus a possible 

competitor for the catalytic sites. The higher affinity of bio-Pd for iodocompounds 

compared to chlorinated compounds has been observed before (De Gusseme et al., 

2011). In order to be a valuable technique for effluent treatment, these reaction rates 

need to be increased (for example by other doping elements, optimal nanoparticle size, 

pretreatment of the effluent, …). Also the high concentrations of sulfate in the water (30.5 

mg SO4
2--S L-1) can possibly inhibit the activity of the catalyst, since they can be reduced 

to sulfides, which are known poisoning agents for Pd catalysts (Angeles-Wedler et al., 

2009) 

4 Conclusions 

This study demonstrated the applicability of bio-Pd/Au, of which the unique bimetallic 

structure had already been demonstrated previously, for the treatment of halogenated 

micropollutants in the effluents of WWTPs.  More specifically, it was shown that 

diclofenac could be removed from water using a bio-supported bimetallic coprecipitated 

Pd/Au catalyst at neutral pH. Dechlorination was in all cases where removal was 

observed the only observed reaction mechanism. The bio-Pd/Au catalyzed 

dehalogenation can thus be a powerful tool to decrease the load of halogenated 

micropollutants in wastewaters. The removal rate of diclofenac with bio-Pd/Au increased 

disproportionally with increasing Pd concentration. Varying the Au-concentration at 

constant Pd-concentration resulted in optimal catalytic activity at a mass ratio for Pd/Au 

of 50/1.  Bio-Pd/Au was, in contrast to bio-Pd, capable of treating a diclofenac containing 

WWTP effluent. Dechlorination of halogenated micropollutants using Pd or Pd/Au 

nanocatalysts can be a valuable alternative to current abatement techniques, which have 

little control over the by-products that are formed and are not able to cleave the carbon-

halogen bound. The remaining structure after dechlorination is more biodegradable than 

diclofenac. 
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Chapter 6  

Biodeposited bimetallic Pd/Au 

nanoparticles as novel Suzuki 

catalysts5 

Abstract 

The use of two nanoparticulate palladium based catalysts in the Suzuki reaction was 

demonstrated. One monometallic (Pd) and one bimetallic (Pd/Au) catalyst were prepared 

by the environmentally benign method of bioreductive precipitation by S. oneidensis. 

Both catalysts successfully mediated the Suzuki coupling of an arylhalide with a 

boronate. However, the Au doped catalyst was shown to deliver more reproducible 

results with a broader reaction scope. Especially with electron donating substituents and 

with different arylhalides, the bimetallic catalyst showed higher conversions. The 

obtained reaction rates were not yet competitive with a commercial Pd/C catalyst. 
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1 Introduction 

Palladium (Pd) is able to catalyze a wide variety of chemical reactions and therefore it is 

one of the most widely used metal catalysts (Tsuji, 1995). It can be applied both in 

homogeneous and heterogeneous phases. Heterogeneous catalysts, however, allow a 

more easy separation from the reaction medium. Due to a higher available catalytic 

surface, heterogeneous catalysts are more and more used in the form of nanoparticles. 

However, these small-sized products require more complex production methods, which 

often imply the use of toxic and expensive chemicals. Therefore, environmentally benign 

production methods of Pd nanocatalysts are very desirable. A possible option is to 

exploit the metal-reducing capacities of micro-organisms such as Shewanella oneidensis 

(Hennebel et al., 2009a). It has been shown to be able to precipitate Pd (De Windt et al., 

2005) and Au (Chapter 3) in nanoparticulate form on its cell wall structures. The catalytic 

properties of this biologically precipitated Pd by S. oneidensis (‘bio-Pd’) have already 

been repeatedly demonstrated (Chapter 1). Furthermore, it was shown in Chapter 4 that 

co-precipitation of Pd(0) with Au(0) by S. oneidensis (bio-Pd/Au) created unique 

bimetallic structures which display a considerable contraction of the crystal lattice when 

compared to the monometallic catalysts. These bimetallic nanoparticles showed a greatly 

improved catalytic activity in dehalogenation reactions compared to the monometallic 

bio-Pd catalyst. 

Dehalogenations of environmental contaminants catalyzed by biologically synthesized 

Pd catalysts are the best studied reactions for this type of biogenic catalysts. However, 

more recently, the application of these biogenic metal nanocatalysts in synthetic organic 

chemistry, e.g. in carbon-carbon coupling reactions, has become the subject of several 

studies (Sobjerg et al., 2009; Gauthier et al., 2010). The aim of this study was to test the 

applicability of bio-Pd produced by S. oneidensis in the Suzuki coupling reaction and 

more importantly, to see if bio-Pd/Au showed an advantage in terms of reactivity and/or 

selectivity for these coupling reactions compared to monometallic bio-Pd. 

In this study, two catalyst types were used: bio-Pd, and an Au doped bio-Pd, obtained by 

co-precipitation of Pd and Au, denoted bio-Pd/Au. Chapter 4 showed that doping of bio-

Pd with 2 wt. % Au showed the highest activity for the dechlorination of diclofenac and 

was therefore chosen as the reference bimetallic catalyst in this study.  



  Chapter 6 

       85 

2 Materials and methods 

2.1 Catalyst preparation 
Bio-Pd (50 mg Pd L-1) was produced as described by De Windt et al. (2005), bio-Au (50 

mg Au L-1) was produced as described in Chapter 3 and bio-Pd/Au (50/1 mass ratio) was 

produced as described in Chapter 5. Catalyst preparation was finished 24 hours before 

starting the experiments. Storage before the experiment was done at 4°C. 

2.2 Suzuki cross-coupling reactions 
Suzuki cross-coupling reactions were performed as follows: the prepared catalyst 

solution (50 mL) containing 0.0235 mmol palladium (bio-Pd or Pd/C (10 % Pd, Sigma-

Aldrich, Germany)), 0.0235 mmol Pd and 0.25 µmol Au (bio-Pd/Au), or 0.0127 mmol Au 

(bio-Au) was centrifuged at 4100g and the cells were resuspended in approximately 25 

ml of a 2/1 mixture EtOH/water. The flask was equipped with an air condenser and 

placed under inert atmosphere (N2). 1.1 mmol of boronic acid, 3 mmol of K2CO3 and 1 

mmol of aryl halide were added and the resulting solution was heated to 70°C and stirred 

for a period of 24h. Reaction mixtures were analysed by means of HPLC, conversions 

were determined by means of integration of UV signals at 235 nm. UV integrations were 

corrected for the respective response factors, determined from the commercially 

available compounds (Sigma-Aldrich, Germany and Acros, Belgium). All standard curves 

contained 4 concentration measurements ranging from 0 to 100 mg L-1 and displayed a 

correlation coefficient above 0.99. Product identities were shown by their retention time 

on HPLC and by their ESI-MS ionisation pattern after GC analysis. 

3 Results and Discussion 

3.1 Coupling of iodobenzene and phenylboronic acid 
In order to determine the reactivity profile of both catalysts, iodobenzene and 

phenylboronic acid were used as model substrates. The reactions were run at 70°C in a 

2/1 mixture of EtOH/H2O, using three equivalents of K2CO3 as a base and 2.35 molar 

percentage of palladium. As a reference, Pd/C and a biodeposited gold catalyst, denoted 

bio-Au were used. 1.27 molar percentage of gold was used for reaction run with the bio-

Au catalyst. 

As can be seen from Figure 6-1, both catalysts mediated the Suzuki coupling to 

completion within 24 hours under the chosen conditions. The reaction rate however was 

increased considerably by gold doping. This effect could be caused by structural 
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modifications of the Pd surface, since pure Au nanoparticles do not catalyze the Suzuki 

coupling. Furthermore, as reactions were repeated, it became clear that the 

reproducibility of results obtained with the Pd catalyst was rather poor. Despite intensive 

efforts to standardize the production process of the catalyst, one batch would give good 

results, while the next would give no conversion at all. This was possibly due to the 

poisoning of the catalyst surface by bacterial sulfur. Results obtained with the Pd/Au 

catalyst were highly reproducible and similar conversion percentages were observed with 

every single batch of catalyst produced. It has indeed been shown that the presence of 

Au salts during palladium reduction not only improves the metal conversion yield due to 

geometric and electronic effects (as discussed in Chapter 5), but can possibly also 

sequester sulfur containing compounds from the Pd surfaces, inhibiting the formation of 

Pd4S. Gold doping in this way acts as a detoxification agent (Menegazzo et al., 2008). 

 

Figure 6-1: Comparison of the conversion rate of the model substrates using Pd/C, bio-Pd, bio-Pd/Au 

and bio-Au as a catalyst 

3.2 Screening of different substrates 
These improvements in catalyst efficiency were reflected in the results obtained from the 

screening of different substrates (Table 6-1). Reactions using the palladium/gold alloyed 

catalyst continued to completion, whereas some substrates were not completely 

converted within the 24 hours time frame by the pure palladium catalyst.  
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Regarding the reaction of substituted aryliodides with phenylboronic acid (entries 1 to 7), 

it could be clearly seen that the bio-Pd catalyst struggled early on when electron 

donating substituents were present (entries 4 and 5). The Pd/Au catalyst had a broader 

scope, however, strong electron donating groups were not tolerated by either one 

(entries 2 and 3). As for the boronic acids, both catalysts tolerated electron donating and 

electron withdrawing substituents. Only the very electron poor fluorophenylboronic acid 

(entry 11) showed a lower conversion when using the non-doped bio-Pd catalyst. When 

using very electron rich boronates, however, (entries 8 and 14) homo-coupling of the 

boronate could be observed with the bio-Pd/Au catalyst, causing a significant drop in the 

reaction yield. This type of conversion was not observed with the Pd catalyst, and as 

such, bio-Pd may be the better choice in these cases. As can be seen from entries 12 to 

15, ortho substitution was well tolerated on both the arylic iodide and the boronic acids, 

for both catalysts. Only the ortho iodoaniline showed poor reactivity. This was due to the 

strong electron donating capacity, rather than to steric or ligating effects (compare 

entries 2 and 12) (Patil et al., 2009). 
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!
            Conversion (%)a 

Entry R1 R2 Bio-Pdb Bio-

Pd/Auc 

1 H H 98 100 

2 NH2 H 1 5 

3 OMe H 3 7 

4 Ph H 0 88 

5 Me H 4 100 

6 COCH3 H 87 95 

7 CN H 100 100 

8 H OMe 93 77d 

9 H Me 90 94d 

10 H CN 98 100 

11 H F 58 100 

12 o-NH2 H 0 6 

13 o-F H 100 100 

14 H o-NH2 98 36d 

15 H o-F 94 100 

aDetermined by HPLC bAverage of two successful trials (see discussion on 

reproducibility) cAverage of two trials dConversion was complete, but product yield is 

lowered by the formation of homo-coupling side products 

Table 6-1: Scope study of the Suzuki coupling of different aryliodides and arylboronic acids using 

both bio-Pd and bio-Pd/Au as a palladium source 
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3.3 Coupling of phenylboronic acid and arylic halides 
When moving on to more challenging arylic halides (Figure 6-2), the usual reactivity 

profile of I>Br>>Cl was observed. The most important observed difference was the 

significant conversion of bromobenzene by bio-Pd/Au, which was not the case for bio-Pd. 

In case of iodobenzene and chlorbenzene, much smaller differences were observed. 

This substantial difference in reactivity shows that not only reproducibility is higher, but 

the catalyst activity is improved by Au doping. Due to the bimetallic structure the 

oxidative insertion, the rate determining step, may be facilitated giving the catalyst a 

broader scope. 

Figure 6-2: Comparison of conversion rates of different phenyl halides (X=I, Br, Cl) using the bio-Pd 

and bio-Pd/Au catalyst 

4 Conclusions 

In conclusion, two types of biogenic nanocatalysts containing respectively Pd and Pd/Au, 

produced by the environmentally benign process of bioreductive precipitation were 

described, using Shewanella oneidensis as the carrier bacterium. Their use as catalysts 

for the Suzuki reaction was evaluated, showing the benefits of bimetallic catalysts. Both 

reproducibility and reaction scope were significantly improved by the introduction of 2 wt. 

% gold within the palladium nanoparticle. Biosupported catalysts can have several 
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advantages over chemically produced catalysts. They can for example be prepared more 

sustainably. The bacterial cells serve both as reducing and as stabilizing agent for the 

nanoparticles, implicating a lower need of chemicals during the production process of the 

nanoparticles. Moreover, the bacterial cell is a support material with an extremely high 

specific surface area, which is relatively simple to produce. The bacterial carrier can also 

have a high affinity for the reacting substances and thus allowing a better contact 

between the reagents and the catalyst. Nevertheless, the long term stability of 

biosupported nanocatalysts needs to be further investigated. Especially the leaching of 

nanoparticles to the reaction medium and to the environment needs to be prevented 

since the adverse effects of nanoparticles are still of great uncertainty (see Chapter 7). 

Furthermore, it needs to be mentioned that the highest reaction rates using Pd/Au 

catalysts have been obtained using bimetallic core-shell structures, consisting of an Au 

core with a Pd shell (Nutt et al., 2006). It has so far not yet been possible to design a 

similar core-shell structure on a bacterial cell wall (Chapter 4, Hosseinkhani et al., 2012). 

However, it is likely that the production process of biosupported bimetallic Pd/Au 

catalysts can be further optimized, which will make these catalysts more competitive with 

chemically produced catalysts. 
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Chapter 7  

Influence of physicochemical 

parameters on stability and 

performance of bio-Pd catalysts6 

Abstract 

Bio-Pd catalysts use bacteria as a producer and carrier of Pd nanoparticles. Leaching of 

Pd from the carrier results in an economical loss and an environmental risk. In this study 

we therefore investigate the influence of different parameters on the leaching process: 

temperature (4 - 21 °C), medium (H2O or mineral medium), pH (1 – 12), atmosphere (air, 

O2, N2, H2) and bacterial carrier. We show leaching is important for biosupported Pd: 18 

% of the Pd was released at 21°C in water after 100 days. Leaching was minimal at 

lower temperatures, low pH and in an isotonic medium. Up to 5 times more leaching was 

observed under anaerobic (H2 or N2 atmosphere) than under aerobic conditions (O2 or 

air atmosphere). The producer/carrier Cupriavidus metallidurans leached up to 5 % 

zerovalent Pd compared with 20% for Shewanella oneidensis. No loss of catalytic activity 

due to leaching was observed when the leachate remained in the reaction medium. This 

chapter shows for the first time that release of Pd nanoparticles from the bacterial carrier 

of bio-Pd can be significant (up to 18% when stored at room temperature in distilled 

water) particularly under anaerobic conditions, at high temperature or high pH.  
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1 Introduction 

The long-term stability of the catalyst is an important condition of Pd nanoparticles in 

order for them to be applicable at a large scale. A catalyst is, by definition, not consumed 

during a chemical reaction and can therefore theoretically be considered as a one-time 

investment cost. In reality, catalysts lose their activity as a function of time. This inhibition 

can be due to fouling of the catalyst, for example by sulfides (Angeles-Wedler et al., 

2009), dissolved organic matter (Chaplin et al., 2006), or harsh reaction conditions 

resulting in disintegration of the carrier materials (Keane, 2011). Another possibility is the 

leaching of Pd, which can, in the case of bio-Pd, occur through three mechanisms: (i) 

oxidation of metallic Pd to dissolved ionic Pd, (ii) detachment of the nanoparticle from the 

bacterial carrier and (iii) disintegration of the bacterial carrier with subsequent release of 

Pd. Pd can end up in the final product or in the treated effluent as a consequence of 

leaching. The loss of catalyst becomes an important cost as the catalyst needs to be 

periodically renewed; the price of Pd has increased from € 6000 ton-1 in 2009 to € 20 000 

ton-1 in 2012 due to the limited availability. This strongly encourages the careful use of Pd 

to keep losses to a minimum. Moreover, strict legislation exists for heavy metal 

contamination in organic chemicals and environmental areas such as soil, groundwater 

and surface water (for example a maximum of 0.5 to 15 mg L-1, depending on the 

industrial sector) total metal concentration for wastewater discharged to surface water is 

imposed in Flanders, Belgium (Vlarem-II, 1995). Several cases of accumulation of heavy 

metals in soils and groundwater have been reported, resulting in an increased risk of 

bioaccumulation in the food chain with short and long term impacts (for recent reviews, 

see Peralta-Videa et al. (2009) and Singh et al. (2011)). By extension, with the increased 

use of nanoparticles there is a growing concern about their presence in the environment 

(Chatterjee, 2008). Certain nanoparticles are easily taken up in tissues of living 

organisms both actively and passively, possibly resulting in bioaccumulation. Perhaps 

the greatest concern is the contamination of drinking water or agricultural products 

whereby nanoparticles will enter the human food chain. Few studies have been 

conducted on the toxicity of Pd nanoparticles: Hildebrand et al. (2010) showed only a 

minor effect of the exposure of Pd/magnetite nanoparticles on human cell lines, whereas 

Speranza et al. (2010) demonstrated that the toxicity of Pd nanoparticles (LC50: 1.0 ± 0.3 

mg L-1) on kiwifruit pollen was exceeded by the toxicity of PdCl2 (LC50: 8.0 ± 3.2 mg L-1). 

Since the leaching of Pd in aqueous medium is investigated in this study, especially the 

toxicity towards aquatic organisms is important. No data were found on the aquatic 

ecotoxicity of Pd(0) nanoparticles and bulk Pd(0) was found. As a precautionary 
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principle, the release of Pd nanoparticles into the environment and food chain must be 

avoided. The LC50 values (after 96 hours) of Pd(II) (as PdCl2) to the freshwater worm 

Tubifex tubifex and the freshwater fish Oryzias latipes are 0.09 and 4.2 mg Pd L-1 

respectively (WHO, 2002).  

Bio-Pd is mostly applied at room temperature and at neutral pH, particularly for 

applications in environmental technology. It was demonstrated that the catalytic activity 

can be largely influenced by varying the pH (Hennebel et al., 2010), with valid 

applications under aerobic and anaerobic conditions. Recently, the production of bio-Pd 

has moved beyond S. oneidensis to other species such as the metal resistant strain 

Cupriavidus metallidurans (Gauthier et al., 2010; Yong et al., 2010). The storage of bio-

Pd is carried out both at room temperature or in a cooled environment at 4°C. The 

influence of these different parameters - temperature, pH, an-/aerobic, carrier - on the 

stability of bio-Pd and the effect of long term storage on the performance of the catalyst 

have so far not been investigated. 

This study aimed at quantifying the leaching of Pd from biosupported Pd nanoparticles 

as a function of time under different conditions of temperature, medium, pH and 

atmosphere, with different carrier organisms. The speciation of Pd was also studied to 

determine which type of leaching was dominant. Finally, the evolution of the catalytic 

activity of bio-Pd as a function of storage time was evaluated for the dechlorination of 

TCE. 

2 Materials and methods 

2.1 Preparation of bio-Pd 
Bio-Pd (50 mg Pd L-1) was produced as described by De Windt et al. (2005). Unless 

indicated differently, bio-Pd was prepared in M9 medium, and finally washed and 

resuspended in distilled water. 

2.2 Leaching of Pd from bio-Pd 
Batches of bio-Pd were stored at the indicated temperature at pH 7 with an air 

headspace, unless indicated otherwise. For pH variation experiments, pH was adjusted 

using 0.1 M HCl or 0.1 M NaOH solutions. For headspace variation experiments, the 

bottles were flushed for 20 minutes with N2, H2 or O2 and finally the headspace was filled 

with 1 bar overpressure of the respective gas.  
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Periodically, samples of the different bio-Pd suspensions (10 mL) were centrifuged (7 

min., 8041 g) to separate bacteria in the pellet, from the supernatant, which, based on 

Stokes’ law for sedimentation, contained nanoparticles with diameter smaller than 100 

nm. All analyses performed on supernatants refer to centrifugations at 8041 g. Finally, 

Pd in the supernatant was determined using an AA-6300 atomic absorption 

spectrophotometer (Shimadzu, Kyoto, Japan). 

2.3 Flow cytometry 
S. oneidensis cells were grown as described above and samples were incubated at 

different pH values for 24 hours. Two fluorescent dyes, SYBR® Green I (SG) and 

Propidium Iodide (PI), were used as a live/dead staining (Wang et al., 2010b). The 

staining solution was prepared as follows: PI (20 mM in dimethyl sulphoxide (DMSO), 

from the LIVE/DEAD BacLight Kit, Invitrogen) was diluted 50 times and SYBR® Green I 

(10 000 times concentrate in DMSO, Invitrogen) was diluted 100 times in 0.22 µm-filtered 

DMSO. The incubated samples were centrifuged at 4100 g for 7 min. and resuspended 

in 0.22 µm filtered bottled mineral water in order to eliminate the pH effect on the staining 

solutions (Wang et al., 2010b). Samples were subsequently stained with 10 µL mL-1 

staining solution and 10 µL mL-1 EDTA (pH 8, 500 mM) for outer membrane 

permeabilization. Prior to flow cytometric analysis, the stained samples were incubated 

for 5 min. in the dark at 37°C. Flow cytometry was performed using a CyAn™ ADP LX 

flow cytometer as described by Boon et al. (2006). 

2.4 Speciation analysis 
Pd(II) was analyzed according to the method of Ishida (1969). Chromazurol S (1 mM, 

Sigma-Aldrich, Belgium) was dissolved in distilled water. A buffer solution was prepared 

by mixing an equal amount of 1 M hexamethylenetetramine and 1 M perchloric acid.  

Samples were collected from the supernatants (5 mL) and 0.3 mL of the buffer solution 

and 1.2 mL of the chromazurol solution were added and further diluted with distilled 

water to a total volume of 10 mL. After 1 hour reaction time, absorbance was measured 

at 596 nm using a Biochrom WPA Lightwave II Spectrophotometer. A linear calibration 

curve was obtained by dissolving 1 to 7 mg Pd(II) L-1 (as Na2PdCl4, Sigma-Aldrich, 

Belgium) in distilled water. 

2.5 Transmission electron microscopy 
 A sample of the supernatant (10 µL) of a batch of bio-Pd stored in water at 21°C was 

dried on a Formvar/Carbon coated nickel TEM grid (Polysciences Inc., Germany). 
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Images were generated with a Zeiss TEM900 transmission electron microscope (Carl 

Zeiss, Germany). 

2.6 Dehalogenation of trichloroethylene (TCE) 
Serum bottles (120 mL), previously flushed with N2 (0.6 bar) and vacuum repeatedly, 

were filled with 50 mL bio-Pd suspension. 1 bar of H2 was then injected into the 

headspace of the bottles. Finally, the suspensions were spiked with TCE from a stock 

solution of 20 g L-1 in methanol to a final concentration of 100 mg L-1. Periodically, 1 mL 

samples were withdrawn from the headspace using a needle and syringe and analyzed 

by GC-FID. 

GC conditions were as follows: injection temperature = 200 °C; detector temperature = 

50 °C; initial column temperature = 35 °C (held 2 minutes), increase to 75 °C at a rate of 

5 °C min-1; column pressure = 153 kPa (held 2 minutes), increase to 176.5 kPa at a rate 

of 3 kPa min-1. The column used was a Factor Four low bleed capillary column (VF-624 

ms, 30 m x 0.25 mm inner diameter, film thickness = 0.25 µm, Varian, Belgium). The 

detection limit was 0.1 mg TCE.L-1. 

3 Results and discussion 

3.1 Effect of temperature on leaching 
Three batches of bio-Pd (50 mg Pd L-1) were produced with S. oneidensis, washed and 

resuspended in distilled water then stored at 4°C, where leaching was measured weekly. 

The leaching of bio-Pd can be clearly observed in Figure 7-1. Initial leaching was rather 

low and constant (< 1 mg L-1). After 42 days, a linear increase in the leaching was 

observed. After 15 weeks, 18 % of the reduced Pd was found as in the supernatant 

following centrifugation. It can thus be concluded that leaching must be an important 

effect in the application of biosupported nanocatalysts. 

Three other batches of bio-Pd in distilled water were stored at 21°C. These batches 

showed a higher leaching (although not always significantly higher) and a higher 

variability of Pd concentration in the supernatant than the batches at 4 °C at all time 

points (Figure 7-1). It is generally known that bacterial cells are more easily lyzed at 21 

°C than at 4 °C. The activity of the bacterial community present in the water may also 

cause a disintegration of the bacterial nanoparticle carrier and therefore release the 

nanoparticles, probably bound to cell wall fragments. Most applications involving Pd 

catalysts in organic chemistry are performed at elevated temperatures and would most 
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likely result in high leaching of a bio-Pd catalyst. The results of our work indicate that the 

use of bio-Pd for this type of application is not recommended. 

Figure 7-1: Pd concentration in the supernatant after centrifugation (8041 g for 7 minutes) of bio-Pd 

(50 mg Pd L-1) on S. oneidensis stored at 4 °C in distilled water, at 21 °C in distilled water and at 4°C 

in M9 medium (n = 3). 

3.2 Effect of medium on leaching  
Three batches were stored at 4°C in mineral M9 medium. Initially, Pd leaching from the 

bacteria was similar to the leaching in distilled water (Figure 7-1). However, from day 77 

onwards, leaching was significantly lower than the batches in distilled water, which 

showed a slower rate of leaching from day 42 onwards. A possible explanation for this 

decreased leaching is low osmotic stress for bacteria in M9 medium, whereas distilled 

water is a hypotonic medium for the cells causing lysis of the cells. Moreover, the 

presence of bivalent cations such as Ca2+ and Mg2+ increases the stability of proteins, 

leading to a higher structural stability of the bacterial cells and subsequently a lower 

release of Pd (Ugwu et al., 2004). 

3.3 Speciation of the leachate 
Pd(II) was measured spectrophotometrically in the different supernatants using 

chromazurol S, however Pd(II) could not be detected in any of the samples. All Pd 

leached from the bacterial carrier as zerovalent Pd(0) nanoparticles and no reoxidation to 
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Pd(II) occurred under the circumstances tested. This is in contrast to the previously 

observed leaching of ionic Ag+ from biogenic Ag(0) nanoparticles on the cell surface of 

Lactobacillus fermentum (Sintubin et al., 2011). Organic cell fragments are likely to be 

associated with these free nanoparticles and therefore may be consumed by other 

(micro)organisms. In this way, the risk of Pd accumulation in the ecosystem and food 

chain could be increased. The protein fraction associated with these nanoparticles could 

be determined by the method of Lenz et al. (2011) for biogenic Se nanoparticles. Using 

gel electrophoresis and LC-MS, they found that peptides with reactive thiol groups, 

hydrogenases and oxidoreductases were associated with Se nanoparticles produced by 

Sulfurospirillum barnesii.  

A TEM picture of the supernatant of a batch stored at 21°C in water is shown in Figure 

7-2. Free nanoparticles up to 100 nm can clearly be observed. It should be possible to 

keep all the catalyst in the reaction medium by means of nanofiltration membranes. 

However, in practice cheaper techniques will be preferred and Pd nanoparticles will end 

up in synthesized products or treated effluents. Thorough toxicity studies are required to 

determine the exact effects of leached zerovalent Pd nanoparticles.  

Figure 7-2: TEM image of the supernatant of a batch of bio-Pd  (50 mg Pd L-1) on S. oneidensis stored 

at 21°C in distilled water at pH 7 after centrifugation (8041 g for 7 minutes). 

3.4 Effect of pH on leaching 
Bio-Pd in water or M9 medium presented neutral pH. After preparation at neutral pH, 

distilled water was adjusted at different pH (1, 3, 5, 10, 12) after production at neutral pH 

and stored at 21 °C to maximize leaching. Leaching from bio-Pd was followed as a 

function of time (Figure 7-3). Very high initial leaching was observed at an alkaline pH 
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(up to 14 % after 1 week), which has been reported before by De Gusseme et al. (2011), 

who used bio-Pd at the cathode of a microbial electrolysis cell for the deiodination of the 

contrast medium diatrizoate. After the high initial leaching at elevated pH, no further 

increase in released Pd was observed from day 21 onwards. A high initial leaching of Pd 

from bio-Pd followed by a long period of lower leaching was observed when bio-Pd was 

applied in a membrane bioreactor for the removal of the groundwater contaminant 

trichloroethylene, which was operated at neutral pH (Hennebel et al., 2009b). This high 

initial leaching could be due to the loss of a fraction of Pd nanoparticles that are weakly 

adsorbed to bacteria, while the rest of the particles were firmly attached. 

Figure 7-3: Pd concentration in the supernatant after centrifugation (8041 g for 7 minutes) of bio-Pd 

(50 mg Pd L-1) on S. oneidensis stored at 21 °C in distilled water at pH 1,3,5,7,10 and 12. 

The initial leaching in batches at acidic pH was lower by comparison and stayed low (up 

to 2 mg L-1 or 4 % of the initially added Pd), with the exception the batch at pH 3, where 

an increase of 1.5 to 5 mg L-1 of leached Pd was observed between day 35 and 49, 

which further increased to 8 mg L-1 after 100 days. The pH of the most acidic and 

alkaline batches (pH 1 and 12) remained more or less constant after 15 weeks, whereas 

the pH of the other batches had evolved to more neutral pH (between 6 and 8), possibly 

due to the unbuffered medium. Different phenomena such as bacterial survival, enzyme 

activity and excretion of cytoplasmatic products could play a role here. Recently, it has 

been shown that carboxyl and amine groups are crucial adsorption sites for Pd on 
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bacterial cells (Rotaru et al., 2012). Variations in pH change protonation equilibria of 

these functional groups may result in the release of Pd. 

In order to determine the cell wall and membrane integrity at these different pH values, 

cells were stained by SYBR Green I and PI and green and red fluorescence was 

measured by flow cytometry. Green fluorescence was plotted against red fluorescence 

(Figure 7-4). At pH 1, pH 3 and pH 5 (Figure 7-4A, B and C respectively), both PI and SG 

entered most cells, which is an indication for cells with (heavily) damaged and permeable 

membranes. However, this did not affect leaching of Pd. At pH 7 and 10 (Figure 7-4D 

and E), cells permeable for only SG or both SG and PI can be found. This is a common 

situation when cells have both intact and damaged membranes, indicating living and 

damaged bacteria. At pH 12 (Figure 7-4F), neither PI nor SG could enter the cells, an 

unusual situation for bacterial cells that indicates a significant change in membrane 

structure and a possible cause for the increased leaching at alkaline pH. 

 

Figure 7-4: Flow cytometry graphs showing the effect of incubation at different pH on the membrane 

integrity. Incubation at: (A) pH 1, (B) pH 3, (C) pH 5, (D) pH 7, (E) pH 10, (F) pH 12. Bacteria were 

stained with SYBR Green I and propidium iodide and green fluorescence intensity (x-axis) was plotted 

against red fluorescence intensity (y-axis).  

In practice, bio-Pd is therefore preferably used at a low pH to avoid the need for a 

recovery step of released Pd from treated effluents or synthesized products. pH was 
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shown to be critical in the degradation of pollutants when using bio-Pd catalysts. These 

pH effects could partly be explained by the pKa of the contaminant (e.g. diatrizoate 

(Hennebel et al., 2010) or diclofenac (Chapter 5)). If bio-Pd is to be applied as an effluent 

polishing technique for wastewater treatment plants, the pH of the water, which is to be 

treated, will be more or less neutral. However, if the wastestreams containing 

contaminants are treated with bio-Pd before any other treatment, the pH can be acidic or 

alkaline. In the context of wastewater treatment, acidic streams are preferred to alkaline 

and neutral streams.  

3.5 Effect of atmosphere on leaching 
The leaching of Pd from bacteria was followed as a function of time for three types of 

atmospheres (N2, H2 and O2) (Figure 7-5). The highest leaching was observed with H2 

and N2 in the headspace of the bottles: 52 % (in case of H2) and 49 % (in case of N2) of 

the initially added Pd was leached after 105 days. Most of the Pd had already leached 

after 28 days. In contrast, the leaching under pressurized (1 bar) O2 did not differ 

drastically from the leaching in air at atmospheric pressure. 

Figure 7-5: Pd concentration in the supernatant after centrifugation (8041 g for 7 minutes) of bio-Pd 

(50 mg Pd L-1) on S. oneidensis stored at 21°C in distilled water under an atmosphere of 1 bar of pure 

O2, N2 or H2. The values of bio-Pd on S. oneidensis stored under atmospheric conditions are shown 

as a reference. 

Wu et al. (2010) described only a minor inhibition of the growth of S. oneidensis after 

exposure to an overpressure of 35 bar N2 for 17 hours. The atmosphere dependency of 
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the leaching of Pd from the cells is most likely due to the composition of the gas rather 

than the overpressure, as these gases interact differently with the bacterial cells. The 

effect of storage of the cells on membrane integrity under different atmospheres was also 

investigated using flow cytometry but no significant differences were observed (data not 

shown). Gases can diffuse through the bacterial cell wall and cause changes to the cell 

structure or permeability of the cell wall, or interact with the metabolism of the cell. In 

particular H2, a known electron donor and reductant for Pd (Lloyd et al., 1998; De Windt 

et al., 2005), could diffuse easily in the cells. However, little is known about the specific 

effects of these gasses on S. oneidensis cells.  Anaerobic conservation of bio-Pd with an 

overpressure of N2 or H2 is not advised since high leaching occurs. For atmospheres of 

O2 and N2, the final pH (6.5 and 7.2 respectively) did not differ drastically from the initial 

neutral pH after 105 days. However, in the case of H2, pH of the bio-Pd suspension 

increased to 9.6, which could partly explain the increased leaching. 

Most batch tests investigating the degradation of environmental contaminants have been 

performed under anaerobic conditions with a H2 atmosphere (1 bar) (Hennebel et al., 

2009b; Hennebel et al., 2010; Chapter 5). From this study, it is clear that leaching was 

very high under these circumstances. In order to minimize leaching, large scale 

applications with bio-Pd under anaerobic conditions with overpressure of N2 or H2 should 

preferably be avoided. This could be problematic since H2 was shown to be the most 

efficient hydrogen donor for hydrodechlorination reactions (De Windt et al., 2005; 

Hennebel et al., 2009b). From this point of view, other hydrogen donors that can be 

applied under aerobic conditions, such as formate or lactate, may be preferred (De Windt 

et al., 2005). 

3.6 Effect of bacterial species on leaching 
In the next phase, the influence of the carrier organism on the stability of bio-Pd was 

investigated. In order to avoid changing the growth conditions, Cupriavidus metallidurans 

was selected as an appropriate alternative to S. oneidensis, given that bio-Pd can be 

produced with the same protocol for both bacteria. C. metallidurans is a bacterial species 

known for its metal resistance, for example against Se, U (Avoscan et al., 2007) Ag 

(Ledrich et al., 2005) and Cu (Sendra et al., 2006). Recently, C. metallidurans has also 

been applied in the bioproduction of Pd nanocatalysts (Gauthier et al., 2010; Yong et al., 

2010). Leaching of Pd from the carrier was followed as function of time in distilled water 

at pH 7 (Figure 7-6). A maximum leaching of 2 mg Pd L-1 (4 % of the initially added Pd) 

was observed after 49 days, significantly less than with S. oneidensis (5.59 mg L-1; 11.18 

% after 49 days). From an ecological point of view, C. metallidurans can be preferred 
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over S. oneidensis as producer and carrier of Pd nanoparticles. However, the carrier can 

have a significant effect on the catalytic activity of the biocatalyst. For example, Pd on S. 

oneidensis can catalyze the dehalogenation of TCE within 30 minutes (see 3.6 and 

Hennebel et al. (2009b)), whereas no removal of TCE was observed when using C. 

metallidurans. In contrast, Pd on C. metallidurans was able to catalyze the deiodination 

of diatrizoate (first order decay value of 8.9 ± 1.5 h-1 L g-1 Pd) but at a slower rate than 

Pd on S. oneidensis (first order decay value of 15.9 ± 1.8 h-1 L g-1 Pd (Hennebel et al., 

2010)). It is thus important to consider both stability and catalytic activity in order to 

determine the choice of bacterial species. 

Figure 7-6: Pd concentration in the supernatant after centrifugation (8041 g for 7 minutes) of bio-Pd 

(50 mg Pd L-1) on C. metallidurans stored at 21 °C in distilled water at pH 7. The values of bio-Pd on 

S. oneidensis stored at 21°C in distilled water are shown as a reference. 

3.7 Effect of leaching on catalytic activity 
The effect of leaching on catalytic activity was tested as follows: batches of bio-Pd in 

distilled water and M9 medium at 4 °C and in water at 21 °C were used as catalysts for 

the dehalogenation of TCE (Figure 7-7A, B and C respectively), similar to Hennebel et al. 

(2009b). Dehalogenation assays were performed immediately after catalyst synthesis 

and after 15 weeks of conservation under the specified conditions. In all cases ethane 

was the final degradation product. As a result of long term storage of bio-Pd it can be 

observed from degradation kinetics that leaching did not have a profound effect on the 
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catalytic activity, given that the leached Pd remained in the reaction medium. Although a 

portion of the Pd nanoparticles was not attached to cells, this did not result in an increase 

of the catalytic activity. Cell disruptions could result in attachment of debris on the 

catalyst surface and thereby decrease catalytic activity, but this appears not to be the 

case either. Therefore, bio-Pd can be taken from a larger batch, stored for a longer 

period of time and used for a batch experiment without the loss of catalytic activity. 

However, the leaching does have its implications for applications in continuous systems, 

since part of the catalyst will be lost in the effluent. 
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Figure 7-7: TCE degradation (C0 = 100 mg L-1) using bio-Pd on S. oneidensis (50 mg Pd L-1) just after 

production of the batch (t = 0 days) and after 105 days of storage of the batch at 4 °C in distilled water 

(A), at 4 °C in M9 medium (B) and at 21 °C in distilled water (C). 
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These observations are somewhat in contrast to studies where a high catalytic activity at 

high pH has been reported, which could be attributed to increased leaching at this pH 

(Hennebel et al., 2010). It is possible that the leachates caused by long term storage and 

the leachates caused by increased pH differ significantly and have different effects on 

the catalytic activity and should be investigated further. It is very likely that when Pd is 

lost in the treated effluent of a reactor, the catalytic activity of the reactor suspension will 

decrease, since for bio-Pd catalysts disproportional decreases of reaction rates with 

decreasing Pd concentrations have been reported (Hennebel et al., 2010; Hennebel et 

al., 2011c). 

4 Conclusions 

This study demonstrated that leaching of Pd nanoparticles is an important phenomenon 

when working with biosupported Pd nanoparticles. Leaching appears to be mainly 

determined by temperature, pH and medium: the lowest leaching was observed in 

batches stored at low temperature, low pH and in a mineral medium. Leaching was very 

high (up to 25% after 35 days) at alkaline pH. Also anaerobic storage is to be avoided as 

significantly higher leaching was observed in anaerobic conditions than under 

atmospheric conditions. All Pd was found to be leached as zerovalent Pd nanoparticles 

and no oxidation to Pd(II) occurred. C. metallidurans is determined to be a more 

appropriate organism for production of biosupported Pd nanoparticles than S. oneidensis 

in order to avoid leaching, however the choice of the carrier will be application 

dependent, as it significantly influences catalytic activity. Leaching caused by long term 

storage does not affect the catalytic activity if the leached particles remain in the reaction 

medium. Further research should compare leaching of Pd nanoparticles from different 

support materials and under different conditions and study how the leached Pd behaves 

in synthesized products and environmental compartments. Furthermore, the (microbial) 

recovery of the leached Pd should be the subject of future research.  

The results of this study clearly show the importance of Pd leaching from biosupported 

Pd nanocatalysts and present the conditions in which the leaching can be minimized. An 

opportunity possibly exists for leached Pd to be recovered on the bacterial cells, for 

example by working at low Pd : cell dry weight ratios and adding or maintaining live bio-

Pd compatible bacteria. 
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Chapter 8  

Comparison of bacterial cells and 

amine functionalized abiotic 

surfaces as support for Pd 

nanoparticle synthesis7 

Abstract 

An increasing demand for Pd nanocatalysts has motivated the search for sustainable 

production methods. An innovative approach uses bacterial cells as support material for 

synthesizing Pd nanoparticles. Nevertheless, drawbacks of microbially supported Pd 

catalysts are the low activity compared to conventional Pd nanocatalysts, the limited 

stability of the catalysts and the possible poisoning of the catalyst surface by sulfur from 

bacterial proteins. In this study, we explored the possibility of replacing bacteria with 

amine-functionalized materials, and compared different functionalizations. Pd 

nanoparticles formed on the support materials were visualized by TEM, and their activity 

was evaluated for the reduction of p-nitrophenol. Surfaces functionalized with 3-

aminopropyltriethoxysilane and chitosan are interesting alternatives to bacteria, as the 

catalytic activity of Pd particles formed on these surfaces was higher than for bio-Pd on 

S. oneidensis cells. Increasing the concentration of S. oneidensis cells beyond a certain 

threshold lead to deactivation of the Pd catalyst. This was not observed for the sulfur-free 

carriers, implying that such amine-rich materials can provide an excellent support for 

environmentally friendly synthesis of surface-immobilized Pd nanoparticles. 

                                                

Chapter redrafted after: 

S. De Corte, S. Bechstein, A.R. Lokanathan, J. Kjems, N. Boon, R.L. Meyer. 2013. 

Comparison of bacteria and amine functionalized abiotic surfaces as support for Pd 

nanoparticle synthesis. Colloids and Surfaces B: biointerfaces 102: 898-904. 
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1 Introduction 

Microbially supported synthesis of Pd nanoparticles is considered a sustainable 

alternative to conventional methods, as the bacterial support material is renewable and 

does not require many processing steps, in contrast to other support materials like Al2O3 

and activated carbon (Hennebel et al., 2009a). Fewer chemicals are involved in the 

production processes as the bacteria also act as a stabilizing agent, and addition of 

stabilizers (to avoid coalescence of particles) and capping agents (to avoid growth of the 

particles) is therefore redundant (Ingham et al., 2011). Moreover, bacteria have a high 

specific surface area and can be applied for recovery of several precious metals from 

scrap leachate waste streams (Yong et al., 2010). The use of bacteria to recover and 

regenerate active catalysts from waste provides a closed cycle for heavy metals, as the 

bio-catalysts can be recycled again after use. The particle size can have great influence 

on the properties Pd catalyst, the particle size of bio-Pd can to some degree be 

controlled by manipulating the ratio of Pd to biomass during bio-Pd production (De Windt 

et al., 2006; Sobjerg et al., 2011). Smaller particles are generally believed to be more 

reactive due to their surface area. However, the optimum particle size of the Pd catalyst 

is dependent on the application. For example, perchlorate is reduced much faster by 15 

nm particles compared to 50 nm particles, whereas the opposite is the case for 

dechlorination of polychlorobifenyls (De Windt et al., 2006).   

Bio-Pd catalysts have successfully been applied in several reactions (Chapter 1). The 

reduction rate of p-nitrophenol using NaBH4 as hydrogen donor was used by 

Hosseinkhani et al. (2012) to assess the catalytic activity of monometallic bio-Pd and 

bimetallic bio-Pd/Au supported on cells of Cupriavidus metallidurans. The bimetallic bio-

Pd/Au catalyst showed about twice as much activity as the monometallic bio-Pd catalyst 

(Hosseinkhani et al., 2012). Due to the easy spectrophotometric detection of this 

reaction, we chose to use p-nitrophenol reduction as a model reaction to compare the 

properties our Pd catalysts in this study.   

Bio-Pd catalysts do have some drawbacks. For some applications, they have lower 

catalytic activity than commercially available Pd nanocatalysts (Sobjerg et al., 2009; 

Hennebel et al., 2010). They show significant leaching of Pd from the bacterial carrier 

over time (Chapter 7). Moreover, they risk irreversible poisoning by sulfur from bacterial 

proteins. This is particularly problematic at high cell dry weight (CDW) to Pd ratios, which 

are required to obtain the smallest and most monodisperse nanoparticles (Bunge et al., 

2010; Sobjerg et al., 2011). A recent study established that active enzymes are not 
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required to facilitate the synthesis of Pd nanoparticles on the cell surface of bacteria 

(Rotaru et al., 2012). Instead, the coordination of Pd(II) with amine groups seemed 

critical for the reductive synthesis of the particles. Motivated by this observation, we 

explored the possibility of using abiotic materials functionalized with amine groups and 

amine-rich biomaterials as support material for Pd nanoparticles. The aim of the study 

was to identify a method for amine-functionalization, which can be applied to a support 

material of choice, and which facilitates the synthesis of stable, catalytically active Pd 

nanoparticles without the risk of sulfur poisoning. 

To enable direct comparison with bacterial cells, we used spherical silica beads of 1 µm 

diameter as the abiotic support material. The beads were easily suspended, and the 

immobilised Pd catalyst could thus be handled in suspension or separated from 

suspension by centrifugation. Three different strategies were chosen for amine-

functionalization of the beads: (1) 3-aminopropyltriethoxysiloxane (APTES), resulting in a 

functionalization of the silica surface with primary amines; (2) polyethylenimine (PEI), 

resulting in a secondary amine-functionalized surface and (3) chitosan, a sulfur free 

biopolymer containing free amine groups. Chitosan had already been described as a 

stabilizer for metal nanoparticles (Le Bras et al., 2011; Vasseur et al., 2011). However 

the idea of coating a support material with chitosan for synthesis of immobilised Pd 

nanoparticles is to our knowledge new. Pd nanoparticle formation on the different 

support materials was visualized by TEM, and the catalytic properties of the particles 

were evaluated by measuring the reduction rate of p-nitrophenol to p-aminophenol.  

2 Materials and methods 

2.1 Preparation of the carriers 

2.1.1 Bacterial cells 

Shewanella oneidensis MR-1 (LMG 19005) was obtained from the BCCM/LMG 

Bacterium Collection (Gent, Belgium). The strain was grown aerobically in Luria-Bertani 

(LB) medium overnight at 28 °C. S. oneidensis cells were harvested in sterile 50 mL 

centrifuge tubes (TPP, Switzerland) by centrifuging at 3000 g for 10 min and washed 

twice with 50 mL M9 medium (Sambrook et al., 1989). The washed cells were 

resuspended in distilled water to a final optical density at 600 nm (OD600) of 1, 

corresponding to 50 mg L-1 cell dry weight and a cell surface area of 1.29 x 1010 µm2 

mL-1.  
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2.1.2 Silica beads 

Silica beads (1 µm diameter, 50 mg mL-1, Kisker Biotech, Denmark) were first diluted to 

obtain 1.29 x 1010 µm2 surface area mL-1 The beads were first cleaned by applying a 

Piranha treatment: beads were added to a mixture of miliQ water, 25 % NH4OH and 35 

% H2O2 in a volume ratio of 4:1:1, and incubated for 5 minutes at 70-80 °C. The beads 

were then separated from the solution by centrifuging at 5000 g for 1 min and washed 

twice in miliQ water and twice in acetone before further functionalization. Unmodified 

beads were cleaned by Piranha treatment and finally resuspended in water.  

Functionalization with APTES was achieved by resuspending beads in 10 vol. % 3-

aminopropyltriethoxysilane (APTES, Sigma-Aldrich, Germany) solution in acetone and 

incubated for 15 hours. Finally, the beads were sonicated for 1 hour and washed 3 times 

in miliQ water. 

Functionalization with PEI was obtained by resuspending the cleaned beads in 10 vol. % 

3-(triethoxysilyl)propylsuccinic anhydride (ABCR GmbH, Germany) solution in acetone 

and incubated for 15 hours, in order to obtain a coating with free carboxyl groups. The 

beads were then washed twice in miliQ water and resuspended in a solution containing 

0.1 mg mL-1 N-hydroxysuccinimide (NHS, Sigma-Aldrich, Germany) and 1 mg mL-1 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, Sigma-Aldrich, Germany) and 

incubated for 30 minutes. Finally, the beads were washed twice with miliQ water and 

resuspended in a 3 vol. % of polyethyleneimine (PEI, Sigma-Aldrich, Germany) solution 

in miliQ water and incubated for 15 hours to facilitate covalent coupling to the carboxyl 

groups on the silica surface. Finally the beads were sonicated for 1 hour and washed 3 

times with miliQ water. 

The third form of functionalization was obtained with chitosan using Chitofarm chitosan M 

(Cognis, Germany), which is 100 % deacetylated and has a broad molecular weight of 

300-2000 kDa. Cleaned silica beads were resuspended in 2.5 mL MiliQ water and 1.5 

mL of the chitosan solution (15 mg mL-1 in 200 mM NaAc/HAc- buffer pH 3.5) was slowly 

added dropwise. After complete chitosan addition, the glass beads were mixed by 

vortexing and incubated for one hour at room temperature under slight shaking of 100 

rpm. Glass beads were separated from the coating solution by centrifugation at 5000 g 

for 10 min and washed three times with MiliQ water.  

To provide the same surface area of support material as bacterial cell suspensions, the 

silica beads were resuspended in MiliQ water to obtain a final concentration of particles 
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corresponding to a surface area of 1.29 x 1010 µm2 mL-1. The functionalized beads were 

stored in water at 4°C until use. 

The zeta potential of chitosan coated glass beads was determined to confirm the 

presence of surface functionalization, as the positive charge of amine groups was 

expected to have profound effects on the glass particles negative surface charge. 

Samples (0.5 mL) of functionalized and unmodified glass beads suspended in MiliQ 

water were analyzed by dynamic light scattering (backscatter 173°) on a Zetasizer Nano 

ZS (Malvern, UK) in a clear disposable zeta cell. Three measurements were carried out 

using default settings (automatic duration, voltage and attenuation selection, temperature 

25 °C, model Smoluchowski). The equilibration time was set to 0 seconds. As 

measurement standards, polystyrene latex (absorption: 0.01, RI: 1590) and dispersant 

water (25 °C, viscosity: 0.8872 cP, RI: 1.330, dielectric constant: 78.5) were chosen. 

2.2 Preparation of the catalysts 
Bio-Pd was prepared according to De Windt et al. (2005). Briefly, sodium formate was 

added to 50 mM to a cell suspension in M9 medium of OD600 = 1, corresponding to a 

surface area of 1.29 x 1010 µm2 mL-1 (Rotaru et al., 2012). Pd(II) was added from a 15 g 

L-1 stock solution of Na2PdCl4 (Sigma Aldrich, Germany) to a final concentration of either 

1 mg Pd(II) L-1, 5 mg Pd(II) L-1, or 50 mg Pd(II) L-1. The final amount of Pd per cm2 

surface area of support material was thus 0.0078; 0.039 or 0.39 µg Pd cm-2, respectively. 

The suspensions were incubated overnight at 28 °C to obtain reduction of Pd on the 

surface of the cells. Prior studies confirmed that Pd(II) was reduced completely to Pd(0) 

under these conditions by measuring the remaining Pd(II) in the supernatant of the 

suspension after removing cells by centrifugation (De Windt et al., 2005; Sobjerg et al., 

2009). The bio-Pd was finally washed twice with 50 mL distilled water. 

Pd nanoparticle formation on functionalized beads was performed by preparing 5 mL 

solutions of beads with a surface of 1.29 x 1010 µm2 mL-1 in Exetainers, and then adding 

Pd(II) from a 1 g L-1 stock solution of Na2PdCl4 (Sigma Aldrich, Germany) to obtain a final 

Pd concentration of 1; 5 or 50 mg L-1. The final Pd content per cm2 support material was 

thus the same as for samples with bacteria. The resulting solution was subsequently 

flushed with N2 for 4 minutes and finally flushed with the H2 for 4 minutes to achieve 

reduction to Pd(0) (This is a redox reaction with oxidation of H2 and reduction of Pd(II) to 

Pd(0), with a conversion of 100 %).  
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2.3 Transmission electron microscopy 
The morphology of the Pd nanoparticles on the functionalized silica beads and bacterial 

cells was evaluated using a Philips CM20 TEM equipped with a LaB6 filament operating 

at 200 kV and a Gatan CCD camera (Gatan Inc., CA, USA). Samples containing 

bacterial cells were prepared for TEM by fixation in 2.5 % glutaraldehyde for 10 minutes 

followed by separation of cells by centrifugation (10 minutes, 5000 g) and washing three 

times in MilliQ water. Finally the cells were resuspended in MilliQ water. Ten µL of 

bacterial or silica beads suspensions were placed on Formvar-coated copper grids and 

air-dried before imaging. 

2.4 Reduction of p-nitrophenol 
Catalytic activity of bio-Pd and Pd on functionalized silica beads was evaluated by the 

reduction of p-nitrophenol to p-aminophenol (Hosseinkhani et al., 2012). The reactions 

were performed in tubes containing identical concentrations of catalyst (0.5 mg L-1 Pd). 

As the suspensions of cell and silica beads contained either 50, 5 or 1 mg L-1 Pd, 

different volumes had to be added to the p-nitrophenol assay to obtain the same amount 

of Pd catalyst.  From the suspensions containing 50 mg Pd L-1, 0.1 mL was transferred to 

a 12 mL Exetainer, and MiliQ water and p-nitrophenol was then added to obtain a 

volume of 10 mL with a final concentration of 230 µM p-nitrophenol (pH = 13, pH 

adjusted with 5 M NaOH) and 0.5 mg L-1 Pd. From the suspensions containing 5 mg Pd 

L-1, 1 mL was transferred to the Exetainer before addition of MiliQ water and p-

nitrophenol.  The suspensions containing 1 mg Pd L-1 had to be concentrated 5 times in 

order to avoid too much dilution of p-nitrophenol.  Beads or cells were therefore pelleted 

by centrifugation (5000 g, 10 minutes) and resuspended in 1/5 of the original volume 

before transferring 1 mL to Exetainers as described above. Pd could potentially be lost 

during the centrifugation step, and Pd was therefore measured in the supernatant of 

these samples, using inductively coupled plasma – optical emission spectroscopy (ICP-

OES, Spectro Arcos, Germany) at a wavelength of 340.458 nm. Detection limit for Pd 

was 0.04 µg L-1.  

Exetainers with Pd catalyst and p-nitrophenol were finally flushed with N2 for 4 minutes 

and transferred to a second Exetainer containing 100 mg NaBH4 powder under N2 

atmosphere (ICN Biomedicals, CA, USA). The reaction started immediately when the 

powder was dissolved. Mixing of the catalyst during the reaction occurred by the 

formation of gas bubbles after dissolution of NaBH4. The reaction was run at room 

temperature, and the Exetainer was placed directly in a spectrophotometer (GE 



  Chapter 8 

        115 

Healthcare, Sweden) where the OD400 was recorded every 20 seconds. All analyses 

were performed on triplicate samples. 

3 Results and discussion 

3.1 Pd reduction on bacteria and silica beads 
Pd(II) was added to 50 mg L-1 to S. oneidensis cells and to the silica beads 

functionalized with APTES, PEI and chitosan. Subsequently the reduction was 

performed. Pd was reduced in all samples and could be observed visually by a change in 

color from amber to a clear solution with a black precipitate (data not shown). 

Nanoparticles were formed on the surface of S. oneidensis cells and the three different 

functionalized silica beads (Figure 8-1). Formation of Pd nanoparticles on S. oneidensis 

appeared similar to previous observations (De Windt et al., 2005). The size of the 

particles ranged from 20 nm to 100 nm, and all particles were associated with cells 

(Figure 8-1b-c).  
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Figure 8-1: Optical (left column) and TEM (center and right column) images of Shewanella oneidensis 

cells (a-b-c) and functionalized silica beads (d to o) after Pd reduction. All samples had a start 

concentration of 50 mg L-1 Pd, i.e. 0.39 µg Pd per cm2 support material. (a-b-c): bio-Pd on Shewanella 

oneidensis; (d-e-f): APTES functionalized beads; (g-h-i): PEI functionalized beads; (j-k-l): chitosan 

functionalized beads; (m-n-o): unfunctionalized beads. 
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Successful functionalization of the beads was confirmed by measuring a significant 

change in zeta potential following the functionalization procedure. A significant change in 

the zeta potential was observed for all beads (p < 0.05). The unmodified beads had a 

negative surface charge, whereas beads with APTES were neutral, chitosan slightly 

positive, and PEI even more positive (Table 1).  

Table 8-1: Zeta potentials of the functionalized and unmodified silica beads (n = 3). 

Applied coating Zeta potential     (mV) 

Unmodified silica beads - 69.19 ± 5.97 

APTES 0.04 ± 1.00 

PEI 42.23 ± 1.21 

Chitosan 26.25 ± 8.01 

 

After Pd(II) reduction, APTES-functionalized beads were covered with 5-20 nm sized Pd 

nanoparticles, of which many formed aggregates of 30-100 nm (Figure 8-1f). The beads 

aggregated strongly, which might be explained by the lack of electrostatic repulsion due 

to their neutral surface charge. Furthermore, Pd has a strong tendency to aggregate in 

aqueous solution, and the presence of Pd particles on the surface could also contribute 

to aggregation of the beads.  

PEI-functionalized beads were also covered with Pd nanoparticles, but TEM images 

revealed that most Pd particles were not associated with the beads (Figure 8-1h and i). 

These "free" Pd particles did not aggregate and had an average size of 9.9 ± 3.0 nm. Pd 

nanoparticles must be capped with a stabilizing agent to prevent aggregation, and we 

hypothesized that PEI was partly desorbed from the beads and stabilized the Pd 

nanoparticles, enabling them to remain in suspension as single particles.   

Pd nanoparticles on chitosan-functionalized beads were present as discrete particles of 

approximately 10 nm in diameter and as larger aggregates up to 100 nm (Figure 8-1j-l). 

In contrast to the PEI-functionalized beads, all particles appeared to be associated with 

the beads. The beads tended to aggregate, although not as strongly as observed for 

APTES-functionalized beads, and aggregates were easily broken by stirring or shaking 

the suspension (data not shown).  
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In contrast to the modified beads, no Pd particles were observed on the surface of 

unmodified silica beads, and Pd was seen as large (hundreds of µm) aggregates (Figure 

8-1m-o). Similar aggregates were observed in samples without any support material 

(data not shown). The absence of Pd particles on the unmodified beads confirms the 

importance of amine groups in surface-supported synthesis of Pd nanoparticles, as was 

demonstrated by Rotaru et al. (2012) for bacteria.  

3.2 Catalysis of p-nitrophenol reduction 
The catalytic properties of Pd on silica beads and bacterial cells were subsequently 

evaluated by using it as catalyst for the reduction of p-nitrophenol to p-aminophenol. All 

reactions were performed with a Pd concentration of 0.5 mg L-1 to ensure appropriate 

comparison of samples prepared from different initial Pd concentrations (50, 5 and 1 mg 

L-1). Thus, the only differences between samples were the type of support material, and 

the ratio between Pd and the area of support material. 

The concentration of p-nitrophenol monitored during the reduction assay showed a 

slightly s-shaped curve, indicating that the reduction rate was low in the beginning, then 

increased, and finally decreased again as the substrate was depleted (Figure 8-2). Rates 

of p-nitrophenol reduction were calculated from the steepest part of the curve, using at 

least five successive data points (Figure 8-3).  

Figure 8-2: Reduction of p-nitrophenol catalyzed by Pd nanoparticles immobilised on S. oneidensis 

cells. The concentration of p-nitrophenol is shown as a function of time, using Pd catalysts prepared at 

three different ratios of Pd to surface area of the bacterial cells: 0.39,  0.039, and 0.078 µg Pd cm-2 (n 

= 3). 
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Figure 8-3: Reduction rates of p-nitrophenol at a Pd concentration of 0.5 mg L-1 using bio-Pd and 

chitosan, APTES and PEI functionalized silica beads containing Pd. All catalysts were tested at 3 

different Pd contents per cm2 of support surface: 0.39; 0.039 and 0.0078 µg Pd cm-2 (n = 3). 

Lowering the Pd to surface area ratio from 0.39 to 0.039 µg cm-2 lead to a significant 

increase in the rate of p-nitrophenol reduction catalyzed by bio-Pd (Figure 8-2 and Figure 

8-3). This effect may be caused by a difference in Pd particle size. We did not determine 

the particle size distribution, but several studies have demonstrated that synthesis of bio-

Pd at lower Pd to cell dry weight ratios leads to smaller Pd particles (De Windt et al., 

2006; Bunge et al., 2010). Further decreasing the Pd to surface area ratio 5 fold (to 

0.0078 µg cm-2) resulted in complete absence of catalytic activity of the bio-Pd (Figure 

8-2 and Figure 8-3). The complete deactivation of the Pd catalyst was probably caused 

by sulfur poisoning, which was previously observed at similar Pd to surface area ratios of 

bio-Pd supported on Cupriavidus metallidurans and Staphylococcus sciuri cells (Bunge 

et al., 2010). Catalytic assays with Pd to surface area ratios of 0.0078 µg cm-2 were 

prepared slightly differently from the other samples, because the catalyst had to be 

concentrated by centrifugation before transfer to the p-nitrophenol solution. If some Pd 

nanoparticles were not immobilized on the support material, they could remain in the 

supernatant and therefore could be lost during the centrifugation step. To account for the 

possible loss of catalyst during sample preparation, we measured the concentration of 

Pd in the supernatant, which was to be discarded. For bio-Pd, 15% of the initially added 

Pd was lost during centrifugation (data not shown). This loss could not account for the 
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complete absence of catalytic activity of the bio-Pd, and sulfur poisoning was the most 

likely cause for inactivation of the catalyst.  

To evade the risk of sulfur poisoning, we explored sulfur-free amine-rich materials as 

alternatives to bacteria in Pd nanoparticle synthesis. At any given ratio of Pd to surface 

area, the Pd particles on modified silica beads were superior to bio-Pd as catalysts. This 

difference could be caused by differences in particle size, aggregation of Pd particles, or 

by differences in the accessibility of the catalyst. Theoretically, the location of bio-Pd 

nanoparticles in the periplasmic space of bacterial cells (De Windt et al., 2005) could 

make them less available for p-nitrophenol. However, this hypothesis has not been 

tested. 

Pd nanoparticles synthesized with PEI functionalized beads as support material had the 

best catalytic properties. No significant difference was observed between samples 

containing 0.39 and 0.039 µg Pd cm-2, but the p-nitrophenol reduction rate was lower in 

samples prepared with 0.0078 µg Pd cm-2 (although the difference to samples prepared 

with 0.039 µg Pd cm-2 was not significant (p > 0.05)). The lower reduction rate is 

probably due to the observed loss of 37% of the Pd during preparation of the 0.0078 µg 

Pd cm-2 sample for the catalytic assay (data not shown). This substantial loss of Pd in 

the centrifugation step was not surprising, as TEM images had revealed the presence of 

a large amount of Pd nanoparticles not immobilised to the beads. Although PEI-

functionalized beads provided the most active Pd catalyst, the lack of sufficient 

immobilization does pose important challenges for handling and recycling of the catalyst. 

Catalysis of p-nitrophenol reduction with Pd particles synthesized on APTES-

functionalized beads showed a highly increased activity, when lowering the Pd to surface 

area ratio tenfold from 0.39 and 0.039 µg Pd cm-2 during nanoparticle synthesis (Figure 

8-3). Pd particles prepared with 0.39 µg Pd cm-2 aggregated strongly (Figure 8-1e and f), 

whereas this was not the case for particles prepared with 0.039 and 0.0078 µg Pd cm-2 

(Figure 8-4a and 8-4b). Aggregation of Pd particles strongly affects its surface area, and 

the lower degree of aggregation can thus explain the improvement in catalytic activity 

when lowering the Pd to surface area ratio tenfold to 0.039 µg Pd cm-2. However, a 

further fivefold decrease to 0.0078 µg Pd cm-2 did not further improve the properties of 

the catalyst. On the contrary, the activity nearly halved. This was surprising, as we 

detected no loss of the Pd catalyst during preparation of these samples, and the lower 

rate of p-nitrophenol reduction must therefore reflect the functional properties of the 

catalyst.  
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Figure 8-4: APTES functionalized beads with a Pd content of 0.039 µg cm-2 (a) and 0.078 µg cm-2 (b). 

Pd particles synthesized with chitosan-functionalized beads showed a similar trend to 

those functionalized with APTES, although the catalyst prepared at 0.39 µg Pd cm-2 was 

much more active on chitosan-functionalized beads. For the other samples, the catalytic 

activity decreased when lowering the Pd to surface area ratio to 0.0078 µg Pd cm-2 of 

APTES-functionalized beads. Whereas plausible explanations for this observed 

observation could be offered for bio-Pd and PEI-functionalized beads (sulfur cycling and 

Pd loss during centrifugation), we saw no obvious explanation for the lower catalytic 

activity of these samples prepared with APTES or chitosan-functionalized beads. It is 

possible that mass transfer limitation plays a role in samples containing the highest 

concentration of beads, although sedimentation of the beads was not apparent from 

visual inspection during the reaction. It would require further investigation to fully address 

the cause of this observation. 

Despite the lower catalytic activity of samples prepared with 0.0078 µg Pd cm-2 support 

material, it should be noted that the even the lowest reduction rates obtained with Pd 

catalysts prepared with PEI or chitosan functionalized beads were higher than the 

highest rate obtained with bio-Pd catalysts. Especially seen from the recycling 

perspective, Pd particles synthesized with chitosan-functionalized beads appeared to be 

the most of attractive catalyst. The superior catalytic properties of immobilized Pd 

particles synthesized with chitosan functionalized beads is interesting, as chitosan is a 

readily available biomaterial obtained by enzymatic deacetylation of chitin – the second 

most abundant biopolymer in nature. It is a renewable material and can thus considered 

as a relatively sustainable support material for Pd nanoparticles and is relatively cheap (€ 
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10 – 100 kg-1 (Einbu, 2007)). However, additional costs for purification and for the 

coating process should be taken into account. Chitosan is already used in a wide array of 

biotechnological applications, for example as slow release fertilizer (Wu et al., 2008), as 

food preservative (Friedman et al., 2010), as coagulant in wastewater treatment (Fabris 

et al., 2010) or as drug delivery agent (Hein et al., 2008). We believe it could be an 

interesting candidate as support material for recovery and regeneration of active Pd 

catalysts. We only tested the catalytic properties towards one reaction in the present 

study, and the catalytic activity should be tested for other reactions, such as organic 

synthesis reactions (Sobjerg et al., 2009) and degradation of halogenated pollutants 

(Hennebel et al., 2009b; Hennebel et al., 2010). The activity should also be compared 

with Pd nanoparticles on other conventional support materials (e.g. Al2O3, activated 

carbon). 

We used silica beads to provide a support material that was similar in size and shape to 

bacterial cells, so that experimental conditions were as comparable as possible. 

However, other materials, such as a mesoporous silica matrix (Keane, 2011) or 

microfibrous or milled silica glass (Pina-Zapardiel et al., 2011) could easily substitute the 

beads. Polymers or other materials should also be explored. An important property of 

support materials, which we did not investigate thoroughly, is the potential leaching of 

immobilized Pd, which would lead to loss of catalyst during recycling. From analysis of 

Pd in the supernatant after centrifuging the particles, we conclude that within this short 

time frame, a substantial amount of Pd was lost from bio-Pd and PEI functionalized silica 

beads, but not from APTES and chitosan functionalized beads. Hence, APTES and 

chitosan not only possessed the best catalytic properties, but also look promising with 

regard to recyclability of the catalyst. However further research is required on the stability 

of these catalysts. It should be investigated whether phenomena as leaching, sintering 

and aggregation of the catalysts occur and how they could be prevented. 

It is tempting to conclude that bacteria are not interesting as support for Pd 

nanoparticles. Nevertheless, we believe that bacteria do have value as support material, 

particularly in applications where living cells produce reductants (e.g. H2) for continuous 

regeneration of the Pd catalyst (Hennebel et al., 2011c), or contribute to a conversion 

process occurring in several steps, where some steps are catalysed enzymatically by the 

bacteria, and others are catalyzed by the Pd nanoparticles (Foulkes et al., 2011).  
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4 Conclusions 

This study demonstrated that amine-functionalized abiotic materials can be used as 

support for synthesis of immobilized Pd nanoparticles by reduction from Pd(II) under mild 

conditions, similarly to what was previously demonstrated for bacterial cells. APTES and 

chitosan functionalized surfaces were particularly promising, as the catalytic properties of 

Pd nanoparticles on these surfaces had superior catalytic activity compared to Pd 

nanoparticles on S. oneidensis cells. Furthermore, insignificant amounts of Pd were lost 

from the surface of these materials during centrifugation of the sample, indicating a high 

degree of recyclability due to the firm immobilization of Pd nanoparticles on the surface 

of the support material. 

Our results confirm that these amine rich materials coated on silica can be attractive 

alternatives for bacteria in recovery and regeneration of catalytically active Pd. 

Nevertheless, the use of bacteria for generation of immobilized catalytically active Pd 

nanoparticles can have an added value in applications where the catalytic properties of 

living cells and the Pd catalyst are combined. An example of this concept (glycerol 

conversion) is further discussed in Chapter 9. 
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Chapter 9  

General discussion 

1 Main outcomes of this work 

In this work, some limitations of biosupported Pd nanocatalysts, synthesized on the cell 

wall of the metal respiring bacterial strain Shewanella oneidensis, were put forward and 

some strategies to overcome these shortcomings were proposed. A first important 

limitation is the lower catalytic activity compared to conventional heterogenous Pd 

nanocatalysts (such as Pd/C or Pd/Al2O3). In Part II of this work, a bimetallic 

biosupported bimetallic Pd/Au nanocatalyst was developed. As a first step in this 

development, the precipitation of Au(0) nanoparticles by S. oneidensis was studied in 

detail in Chapter 1. The reduction of Au(0) was the result of a biosorption combined with 

a reduction process with very different kinetics. Biosorption was found to be a fast 

process (within the first minutes of addition of Au(III) to the bacteria), which was 

influenced by the physiological state of the bacteria (faster sorption with living bacteria), 

pH (faster sorption at acidic pH), the composition of the medium (faster sorption in water 

than in mineral medium) and the presence of an electron donor (faster sorption with H2 

than with formate). The reduction process was only initiated after 24 hours and required 

the presence of an electron donor. At a level of 50 mg Au L-1, small nanoparticles were 

precipitated mainly intracellular, whereas at 200 mg Au L-1, larger precipitates were 

formed, located on the cell wall. At 100 mg Au L-1, both phenomena were observed. In 

Chapter 4, a bimetallic Pd/Au catalyst was synthesized. Different strategies of addition of 

the metals to the bacteria were tested for the synthesis of this catalyst. The catalytic 

activity of the different catalyst types was tested for the removal of diclofenac and TCE. 

Bio-Au was for both compounds inactive as catalyst. It was shown that only the catalyst 

obtained by simultaneous coprecipitation of Pd and Au showed a substantial 

improvement of the catalytic activity compared to the monometallic bio-Pd catalyst. 

Diclofenac could not be removed by a monometallic bio-Pd catalyst at neutral pH, 

whereas the bimetallic bio-Pd/Au catalyst could perform this removal. The removal rate 

of TCE by bio-Pd was increased by a factor 7 using bio-Pd/Au. The unique bimetallic 

nature was demonstrated by synchrotron µXRD, which showed a contraction of the 

lattice of the bimetallic coprecipitated bio-Pd/Au catalyst compared to the monometallic 
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bio-Pd catalyst. STEM and EDX images of the bimetallic catalyst showed the presence 

of aggregates with alloyed Pd and Au. In Chapter 5, the catalytic removal of diclofenac 

by bio-Pd and bio-Pd/Au was studied in detail. Diclofenac could only be removed by a 

monometallic bio-Pd catalyst at acidic pH (5-6), whereas the bio-Pd/Au catalyst could 

perform the removal at all pH values between 5 and 8 (with a better removal at acidic 

pH). The dechlorinated intermediates were the only degradation products that were 

present. A maximum dechlorination rate was observed at a Pd/Au mass ratio of 50/1, 

which demonstrated that only a small amount of Au is needed as a doping agent for Pd 

catalysts. The monometallic bio-Pd catalyst and the 50/1 bimetallic bio-Pd/Au catalyst 

were subsequently tested as catalyst for the Suzuki C-C cross coupling reaction in 

synthetic organic chemistry. The bimetallic catalyst showed better reaction kinetics, more 

reproducible results and a broader reaction scope than the monometallic bio-Pd catalyst. 

Nevertheless, the reaction rates were not yet competitive with a conventional Pd/C 

catalyst. 

Part III focused on 2 other possible limitations of bio-Pd catalysts. In Chapter 7, the 

leaching of Pd from the bacterial carrier was followed as a function of the storage time 

under different physicochemical conditions. Leaching was found to be an important 

process, possibly leading to economical losses and environmental risks. Leaching rates 

increased at increasing temperature, at alkaline pH and under anaerobic conditions. All 

Pd leached as Pd(0) nanoparticles, no significant reoxidation to Pd(II) occurred. Given 

that the leached Pd remained in the reaction medium, no loss of catalytic activity was 

observed for the removal of TCE. In Chapter 8, sulfur-free alternatives for bacteria were 

investigated in order to prevent catalyst poisoning by biogenic sulfur. Therefore, silica 

beads with a comparable surface like bacterial cells were functionalized with amine 

groups, which are important anchoring sites for sorption and reduction of Pd(II). This 

functionalization was done chemically by PEI and APTES and also by the biomaterial 

chitosan, a very abundant and relatively inexpensive biopolymer. It was shown that Pd 

nanoparticles were strongly attached to chitosan and APTES-coated beads. All 

functionalized beads with Pd particles showed higher catalytic activities than bacteria-

supported Pd-catalysts. Moreover, complete inhibition was observed at high carrier/Pd 

ratios with bacteria, which was not observed with the Pd on the functionalized beads. 

Especially chitosan was found to be an interesting carrier material for Pd catalysts, due 

to the stability of the obtained catalyst and the high reaction rates combined with the 

abundance, price and sustainability of the biopolymer. 
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2 Biosupported bimetallic catalysts 

2.1 Pd/Au catalysts 
The Pd/Au catalyst is one of the most widely applied bimetallic catalysts, since the 

insertion of Au(0) can cause a tremendous increase in both activity and selectivity of 

monometallic Pd catalysts. Several hypotheses of the promotional effect of Au have 

been proposed. The most important ones are: 

• Geometric effects: 

o A contraction of the crystal lattice allows the reagents to be in a more 

optimal configuration resulting in increased reaction rates (Chapter 4, 

Chen et al., 2005); 

o The insertion of Au in the Pd crystal results in the presence of more 

isolated Pd clusters in the crystal and thus more available catalytic surface 

area (Knecht et al., 2008; Gao et al., 2012); 

• Electronic effects: a rearrangement of the electronic structure takes place due to 

the withdrawal of electrons by Au (Gao et al., 2012); 

• Protective effects: Au acts as a detoxification agent and prevents the Pd catalyst 

from poisoning by sulfides (Menegazzo et al., 2008). 

 

Only the hypothesis of the lattice contraction could be demonstrated during this work. 

However, other hypotheses cannot be excluded. The type of promotional effect will most 

probably also be very dependent on the type of bimetallic structure that is formed. During 

this work, alloy structures were synthesized (Chapter 4). It is possible that the increase in 

activity would be even more significant if Au-Pd core-shell structures could be formed, 

similar to the ones formed by Nutt et al. (2005). These catalysts showed an increase in 

the activity for TCE removal by a factor 10 and a factor 200 after optimization, whereas 

the bimetallic catalysts of this work only showed an activity increase by a factor 3. The 

synthesis of core-shell Au-Pd catalysts supported on bacterial cell walls has so far not 

been described. Only alloy and similar structures could be synthesized (Chapter 4; 

Hosseinkhani et al., 2012). The synthesis of core-shell nanoparticles by and on bacterial 

cells can be an important challenge for future research within this domain. 

2.2 Other doping elements 
Pd has been used in combination with several other doping elements, which are listed in 

Chapter 1. Pt and Ni can exhibit catalytic properties themselves and are thus potentially 
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interesting as doping elements. However, they are probably not easy to reduce on a 

bacterial cell wall. 

The reduction potential of Ni(II) to Ni(0) is -230 mV, which is thermodynamically very 

unfavorable. To perform this reduction, strong reducing agents are required, which will 

probably damage the bacterial cell wall. So the production of a biosupported zerovalent 

Pd/Ni catalyst is unlikely. 

Pt is mostly abundant as Pt(IV) (as PtCl62-) which first needs to be reduced to PtCl42- 

(reduction potential +680 mV), and can then subsequently be reduced to Pt(0) (reduction 

potential +730 mV). These redox potentials are thermodynamically more favorable than 

for Ni, but less favorable than the reduction of AuCl4- to Au(0) (+990 mV). The reduction 

of Pt(IV) to Pt(0) has been described previously (Riddin et al., 2009) and could be 

attributed to the activity of two distinct hydrogenase enzymes. Pt(IV) was removed for 

85% after 8 hours and 60% of the initially added Pt could be recovered as Pt(0). It will 

need to be evaluated to what extent the doping with Pt could increase the activity of bio-

Pd catalysts. Moreover, the doping with Au is interesting since a maximum activity was 

already observed at a minimal doping of only 2 wt. % (Chapter 5). Since Au and Pt have 

similar prices (39 000 and 40 500 € kg-1 respectively), maximum activity with a Pt doping 

is preferably obtained at similar percentages. 

The Pd/Ag catalyst has also been described (Lin et al., 2012), although less than the 

Pd/Au catalyst. The reduction of Ag+ to Ag(0) by and on bacteria has extensively been 

reported (e.g. Sintubin et al., 2009), even for S. oneidensis (Wang et al., 2010a). The 

synthesis of a Pd/Ag catalyst on the cell wall of S. oneidensis seems feasible. 

Another interesting option could be a Pd/magnetite catalyst, since it would allow an easy 

separation of the catalyst from the reaction medium, by means of magnets. Recently, the 

synthesis of a Pd-on-magnetite catalyst on Geobacter sulfurreducens was described 

(Coker et al., 2010). Magnetite (Fe3O4) was first synthesized microbially from Fe(III), 

Pd(II) was reduced to Pd(0) afterwards. This Pd-on-biomagnetite catalyst showed 

improved reaction rates for the Heck coupling reaction. Moreover, Fe is extremely cheap 

compared to Au. However, the bacterial synthesis of magnetite seems more delicate 

(since it is only feasible in a rather narrow redox potential range) than the synthesis of 

Au(0). 
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2.3 Economical aspects 
The price for the growth of 1 kg biomass dry matter of S. oneidensis is estimated at € 

1000 (Hennebel et al., 2011b). At a current Pd price of € 19 500 kg-1, the cost of 1 kg bio-

Pd (with a Pd/cell dry weight ratio of 1/1) catalyst is roughly estimated € 20 500 kg-1 

actual Pd mass. Taking into account a current Au price of € 39 000 kg-1, the price for the 

synthesis of 1 kg bio-Pd catalyst doped with 2% Au, which showed the highest activity 

for the dechlorination of diclofenac (Chapter 5), can be estimated about € 21 280 kg-1 

actual Pd mass, meaning an increase of the price of bio-Pd with 3,8%. For most of the 

applications, this increase in investment cost will be largely compensated by the increase 

in catalytic activity, which implies less capital investments due to smaller reactor 

volumes, higher production rates and lower H2 consumption. 

3 Technological perspectives for bio-Pd and bio-
Pd/Au 

3.1 Treatment of AOX containing wastestreams 
Halogenated contaminants are commonly found in both industrial and domestic 

wastewaters. Although they partially adsorb to the activated sludge, migration through 

wastewater treatment plants (WWTP) cannot be avoided due to poor biodegradability. 

Surface waters and other aqueous ecosystems containing varying concentrations of 

organohalogens do not form exceptions anymore (Ternes, 1999; Ternes et al., 2000). 

Legislation in the near future will urge plant operators to implement removal techniques 

for these substances. The European Commission included a list of substances in the 

European Water Framework Directive, which form a risk for the aquatic environment to 

such extent that their decrease is a priority. Halogenated substances are most likely to 

be evaluated under the grouping parameter of ‘Adsorbable organic halogens’ or AOX by 

the member states. For the moment, no threshold values have been determined for AOX 

by the European Commission, only guide values in the order of 10-100 µg L-1. A lot of 

industries will very likely be affected by normation of AOX emissions, e.g. producers and 

processers of pesticides, pharmaceuticals, solvents, polymers and cleaning agents. Also 

hospitals have significant emissions of AOX in their effluents. The currently most applied 

technique for AOX abatement is sorption on activated carbon. However, this carbon 

needs to be further treated, once it is saturated, for example by incineration, since the 

carbon-halogen bound is not broken by sorption. Moreover, advanced oxidation 

processes (AOPs) do not offer an alternative as the AOX content after treatment remains 

equal and toxic byproducts are formed (Ternes et al., 2003). There could be 
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opportunities for bio-Pd and bio-Pd/Au as powerful tools for AOX abatement since it was 

shown that several micropollutants and pesticides could be dehalogenated using these 

catalysts (Chapter 1 and Chapter 5). Therefore, catalytic post treatment of WWTP 

effluents can be suggested. Alternatively, treatment of streams containing high 

concentrations AOX can be collected separately and treated catalytically before further 

treatment. Examples could be the collection of urine from hospitals or liquid batches 

coming from pesticide or medicine production. An important constraint for application of 

the biosupported catalysts is that the technology will need to deal with high flow rates 

and low residence times at which the wastewater treatment systems are operated. In 

Chapter 5, diatrizoate was removed from a hospital WWTP effluent within 60 minutes, 

whereas diclofenac and carbamazepine were only removed partly within 24 hours. 

Typical hydraulic residence times in wastewater treatment are in the order of a few 

hours. In order to avoid too large reactors, removal rates of bio-Pd and bio-Pd/Au should 

be substantially increased. Increased reaction rates could be obtained with increased 

catalyst concentrations, which will increase the investment costs. Further research is 

definitely needed to develop highly reactive sustainably produced (bimetallic) catalyst 

formulations for the reductive and controlled removal of AOX by hydrodehalogenation. 

3.2 Economical aspects 
The investment for the synthesis of a bio-Pd/Au catalyst is estimated € 21 280 kg-1 actual 

Pd mass. At a concentration of 50 mg Pd L-1, this means an investment cost of € 1064 

m-3 reactor volume. Since the catalyst is not consumed during the reaction, this can 

theoretically be considered as a capital investment cost. However, poisoning by sulfur 

compounds can occur and leaching of Pd from the carrier is an important phenomenon 

(Chapter 7), causing significant losses of Pd in the effluent and implying a periodical 

renewal of the catalyst. The bio-Pd(Au) catalyst is rather to be considered as an 

operational cost than as a capital investment cost. 

Leaching of Pd could probably be decreased by encapsulation of the catalyst. These 

costs for encapsulation in for example alginate beads were estimated € 300 for 1 m3 

reactor volume containing 100 mg L-1 Pd (Hennebel et al., 2009c). Moreover, it needs to 

be taken into account that reaction rates significantly decrease due to encapsulation (a 

factor 7 for the dechlorination of TCE (Hennebel et al., 2009c)). 

Another important cost which needs to be taken into account is the cost for H2, which is 

about € 4 m-3 H2 gas. The amount of H2 needed is very dependent on the wastewater 

that is to be treated. One could determine the amount of H2 that is stoichiometrically 
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needed and then add an excess of 10 times that amount. Moreover, the use of pure H2 

also implies severe safety constraints. Alternative hydrogen donors such as formate, 

lactate or ethanol could be used (De Windt et al., 2005), but these show generally a 

lower activity (Hennebel et al., 2009b; Hennebel et al., 2010). 

4 Treatment of other types of contaminants by bio-Pd 
and bio-Pd/Au 

4.1 Fluorinated contaminants 
Due to the major difference in electronegativity (EN) between F and C (4.0 vs. 2.5), the 

C-F bond, is considered as the strongest chemical bond in organic chemistry. The EN 

difference gives the bond a dipole moment and a partial ionic character. This bond is 

extremely difficult to cleave, causing organofluorine compounds to be extremely stable. 

This stability allows a wide range of applications. However, after use, this stability 

becomes a major drawback, since it causes very high persistence of these compounds 

in the environment. 

4.1.1 Fluorinated pharmaceuticals 

Since 1990, the use of the C-F bond in pharmaceuticals has raised enormously, 

especially on aromatic or heterocyclic structures. Ten of the 30 best sold 

pharmaceuticals worldwide contain one or more fluorine atoms in their structure 

(O'hagan, 2010). During production of these compounds, wastestreams containing these 

pharmaceuticals or production intermediates are generated. These need to be treated. 

Often, fluorinated compounds are poorly removed and end up in effluents, which are 

discharged in surface waters. Moreover, just like other pharmaceutical compounds, 

these fluorinated drugs are excreted after use, enter wastewaters, are poorly removed by 

conventional treatment plants and can end up in effluents. 

In contrast to other C-halogen bonds, the C-F bond shows certain insensitivity to 

dehalogenation by metal catalysts. However, some studies demonstrating defluorination 

by Pd-catalysts have been reported. Cellier et al. (2003) described a degradation of 

fluorbenzene of 51% after 24 hours using 5 mol % Pd/C, with hydrazine as the hydrogen 

donor. 

Preliminary degradation experiments were performed with 2,4-difluorophenyl-piperidin-4-

yl-oxime (2,4-DPO), an intermediate of the synthesis of risperidon (structures see Figure 
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9-1). Risperidon is the active compound of Risperdal, an anti-psychotic drug produced by 

Janssen Pharmaceutica. 

 

Figure 9-1: Chemical structures of 1,4-DPO (a) and risperidone (b). 

Twenty mg L-1 2,4-DPO could only be removed for 15 % using 50 mg L-1 bio-Pd and H2 

as hydrogen donor. A complete removal was observed using 50 mg L-1 Pd/Al2O3. Using a 

bio-Pd/Au catalyst (50 mg Pd L-1 and 1 mg 1 L-1), 66 % removal of 2,4-DPO was 

observed after 24 hours reaction time (Figure 9-2). This demonstrated again the superior 

catalytic activity of the Au-doped bio-Pd catalyst compared to the monometallic bio-Pd 

catalyst. Again, the catalyst with the 50/1 Pd/Au mass ratio showed the highest activity. 

Both for the chemical Pd/Al2O3 catalyst and the bio-Pd/Au catalyst, reaction rates were 

decreased at acidic pH and increased at alkaline pH.  

Figure 9-2: Removal of 2,4-DPO using bio-Pd (50 mg Pd L-1), bio-Pd/Au (50 mg Pd L-1, 1 mg Au L-1), 

Pd/Al2O3 (50 mg Pd L-1) 
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The final reaction product was identified as 4-benzylpiperidine (Figure 9-3). Using the 

chemical Pd catalyst, 56 % of the initially added 2,4-DPO could be recovered as 4-

benzylpiperidine, whereas this was only 15 % for the bio-Pd/Au catalyst. The fluoride ion 

measurements showed a different trend: 54 % of the initially present F could be 

converted to F- for the bio-Pd/Au catalyst, whereas this was only 34 % for the chemical 

Pd catalyst. 

 

Figure 9-3: Proposed degradation pathway for 2,4-DPO to 4-benzylpiperidine using Pd and Pd/Au 

catalysts. 

These promising results of batch experiments should be upscaled to a reactor 

technology. Both the polishing of effluents and the treatment of more concentrated 

streams should be investigated in this context. 

4.1.2 Perfluorinated compounds 

Perfluorinated compounds (PFCs) consist of an apolar hydrophobic chain of 4 to 14 C-

atoms, completely saturated with F-atoms, and a polar hydrophilic head consisting of an 

acid or sulfonate group. Since they have both hydrophobic and hydrophilic properties, 

they can interact with different phases and show surface-active characteristics. They are 

used as surfactants in coatings, paints and fire-resistant foams. They are also used as 

mother molecules for the synthesis of Teflon. These compounds are highly persistent 

and toxic and these substances are gradually being banned (Renner, 2006). These 

compounds are found as micropollutants in all environmental contaminants (including 

groundwater, surface water and drinking water) and also in food, since they tend to 

bioaccumulate. The most widely applied PFCs are perfluoroctanoic acid (PFOA) and 

perfluoroctanesulfonic acid (PFOS) (Figure 9-4). These compounds are highly resistant 

against biodegradation (Liou et al., 2010), therefore, catalytic defluorination by Pd-based 

catalysts is worth investigating.  
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4.2 Air contaminants 

4.2.1 Volatile halogenated compounds 

Several halogenated compounds are used in households daily. Some of these 

compounds can be volatile and release toxic vapors to indoor air, resulting in a 

decreased indoor air quality. These vapors can be toxic and contribute to the so-called 

‘sick-building syndrome’. Examples of such compounds are chloroform, used in 

bleaching agents, para-dichlorobenzene, used in moth balls and deodorants and 

brominated flame retardants (polybrominated difenyl ethers, PBDEs, Figure 9-5), used in 

furniture, textile and electronics. The debromination of PBDEs dissolved in water by bio-

Pd on D. desulfuricans has been demonstrated before (Harrad et al., 2007). Their 

removal from indoor air has not yet been demonstrated. 

 

Figure 9-5: Chemical structure of brominated flame retardants (PBDEs). 

In order to remove these compounds from indoor air by dehalogenation, a filter 

apparatus should be developed, which actively pumps the contaminated air over a 

catalytic bed or surface containing a bio-Pd based catalyst. An important challenge in 

this context will be the delivery of the hydrogen donor to the catalyst, since the use of H2 

will, due to safety reasons, probably not be feasible for indoor applications, other 

hydrogen donors should be used. However, these are generally dissolved in water 

(formate, lactate, ethanol). It should also be investigated whether these compounds can 

get in contact with the catalyst in a gaseous phase or whether they will need to be 

dissolved in a liquid first, which might cause important mass transfer limitations. 

Figure 9-4: Chemical structures of PFOA (a) and PFOS (b). 
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4.2.2 N2O 

N2O or laughing gas is an important air contaminant since it is a severe greenhouse gas 

(GHG) and contributes significantly to global warming. It has a 310 times larger GHG 

potential than CO2. Its presence in the atmosphere originates from several processes in 

the nitrogen cycle, mainly incomplete nitrification and denitrification (Lassey et al., 2007). 

The removal of N2O by Pd (McCalman et al., 2012) and also Pd/Au catalysts (Wei et al., 

2007) has been demonstrated.  

However, a catalytic technology for the removal of N2O will be extremely difficult to 

implement since emissions of N2O are very diffuse. A more concentrated source could 

be the off-gasses of nitrification and denitrification tanks of wastewater treatment plants. 

5 Alternative sustainable carriers for Pd 
nanocatalysts 

5.1 Chitosan 
In Chapter 8, amine-coated silica beads were shown to be valuable options as 

alternatives for bacteria as carriers for Pd nanoparticles. The importance of amine 

groups for the sorption of Pd to the bacterial surface has been demonstrated before 

(Rotaru et al., 2012). These free amine groups could be obtained from chemical coating 

materials such as APTES or PEI or from the biopolymer chitosan. The chemical coating 

with APTES was shown to be successful and could deliver highly active Pd 

nanocatalysts. However, the coating process is relatively complex, involves several toxic 

molecules and cannot really be considered sustainable. The coating with chitosan 

(Figure 9-6) seems a more sustainable alternative, since the coating involves less 

chemicals and chitosan is very abundant and relatively cheap (see Chapter 8). 

Moreover, the obtained Pd-on-chitosan catalysts were shown to be very active 

(especially compared to the bacteria-supported bio-Pd catalysts) and did not show any 

significant leaching of Pd on the short term (within 2-3 weeks). 

Figure 9-6: Chemical structure of chitosan. 
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It was shown that chitosan could be successfully coated on silica beads (Chapter 8). It 

should also be investigated what other materials could be successfully coated with 

chitosan. By coating materials with chitosan, different filter materials or surfaces with 

catalytic activity could be designed. The encapsulation of Pd-on-chitosan is possibly also 

easier than the encapsulation of bacteria-supported bio-Pd (Hennebel et al., 2009c). 

Also the formation of bimetallic Pd/Au on chitosan needs to be investigated. 

5.2 Alginate 
Bacteria can grow as free planktonic cells in a growth medium, but also as specific 

structures such as biofilms and granules. Within these structures, cells are grouped in a 

matrix of complex biopolymers, also known as extracellular polymeric substances (EPS), 

which acts as a glue between the different cells in the matrix. A polymer that is often 

present in these structures is alginate and its derivatives (Figure 9-7). Alginate can 

possibly be a good carrier for Pd nanoparticles, since it contains free carboxyl groups. 

The importance of carboxyl groups as anchoring sites for metal biosorption has been 

demonstrated before (Beveridge et al., 1980). The biosorptive capacities of alginate for 

metals have also been demonstrated in previous studies (Gotoh et al., 2004; Park et al., 

2004). 

The growth of bacteria in granules can possibly be advantageous for a better sorption of 

Pd. In presence of an electron donor, Pd nanoparticles can be formed. The deposition 

sites of the Pd nanoparticles (inside the granule or on the surface) should be studied first 

by microscopic techniques. The growth in granules offers also the advantage that the 

biomass (+ metals) can be easily separated from the reaction medium by sedimentation, 

so no expensive membranes or encapsulation techniques would be necessary. 

The use of biofilms with free carboxyl groups as Pd carriers, could allow the 

development of different catalytic surfaces or catalytic filter beds in which biofilms with 

Pd are grown on carrier materials. 

Figure 9-7: Chemical structure of alginate. 
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6 Added value for bacteria as carriers of Pd 
nanoparticles 

Upon consideration of the different possible limitations of bacteria as carriers for Pd 

nanoparticles, one could come to the conclusion that bacteria do not have a future as 

carrier materials for Pd nanoparticles. Nevertheless, one should find an application 

where bacteria show a clear added value as carriers of the nanoparticles. An added 

value could be created when bacterial cells remain alive, for example at low metal 

concentrations (depending on the toxicity of the metal), so they are able to perform 

metabolic conversions. By doing so, compounds that cannot be converted metabolically 

can first be transformed by a catalytic reduction or oxidation first and subsequently be 

metabolized by the bacteria; or vice versa. This concept could be applied in both 

synthesis and degradation processes. In degradation processes, the goal should be to 

obtain a complete degradation of contaminants to CO2 and H2O or at least to completely 

harmless degradation products. The final objective of combining metabolic and catalytic 

processes for synthesis purposes should be to obtain products with a higher added value 

than the products obtained with separate processes. 

An example is the conversion of glycerol. Glycerol, a biorefinery side product, can 

fermentatively be converted to added value products such as 1,3-propanediol through a 

complex metabolic pathway by engineered E. coli strains. Some conversion steps 

generate energy, others require energy in the form of reducing equivalents of NADH. 

When insufficient NADH is supplied, the pathway is stopped at a certain intermediate. 

Extra reducing equivalents could be delivered by a bio-Pd catalyst loaded with hydrogen. 

Glycerol could also be converted catalytically by oxidation or reduction first, followed by a 

metabolic conversion. These processes can take place sequentially in separate cells 

(Figure 9-8a). However, a final goal should be to combine the metabolic and catalytic 

conversion in one and the same cell (Figure 9-8b). 
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Figure 9-8: (a) Sequential catalytic and metabolic conversion of glycerol, (b) Combined metabolic and 

catalytic conversion of glycerol by one cell. 

7 Biosorption as a metal recovery process 

In this work, catalysts were always synthesized starting from a synthetic metal salt. 

However, the processes metal biosorption and reduction could also be applied to recover 

metals from wastestreams. 

7.1 Critical material recovery 
The possible insufficient supply of raw materials (metals and minerals) can possibly 

hamper the economic development of Europe. In contrast to other continents, Europe is 

very poor in primary resources and is dependent of import from other continents, where 

political climates are often instable, causing extremely high resource prices. The 

geopolitical dependency of primary resources is one of the most important challenges for 

future generations. 
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Therefore, the European Union defined a list of 14 critical raw materials in the landmark 

report ‘Critical raw materials for the European Union (2010)’. The criticality of a material 

based on both the economical importance and the supply risk (Figure 9-9). 

Figure 9-9: Critical materials for the European Union based on their economic importance and supply 

risk (from the report Critical Raw Materials for the European Union (2010)) 

Two groups of these 14 materials have a very high supply risk: rare earth elements 

(REEs) and platinum group metals (PGMs). Especially for PGMs, the instability of their 

supply is reflected in the price volatility. In the last 5 years, prices of Pd varied from less 

than € 5000 kg-1 in 2008 to more than € 23000 kg-1 in 2011 (Figure 9-10). 



General discussion        

     142 

Figure 9-10: Evolution of the Pd price (in US dollar per ounce) between 2008 and 2013 (from 

www.palladiumprice.org). 

A resource efficient economy is a necessary condition to assure technological progress 

for future generations. This resource efficiency can take place through: 

• A sustainable trade and investment policy; 

• Increased sustainable primary mining in Europe, including deep-sea mining; 

• Substution of critical metals by less critical metals; 

• Increased use of secondary raw materials, ‘material recovery’ (Jones et al., 

2011): 

o Direct recycling of pre-consumer manufacturing scrap/residues; 

o Urban mining of post-consumer end-of-life products; 

o Landfill mining of historic and urban wastestreams. 

Metal recovery can be important from an economic point of view, since recovered 

products can serve as resources and valuable materials, which were previously 

considered as wastes, can be reused. Moreover, it can also have an ecological value, 

since it prevents metals from entering in the environment and ecosystems, where they 

can exhibit toxic effects. 

7.2 Bacteria for metal recovery 
Several bacterial processes are potentially interesting for metal recovery. Metal recovery 

from solid wastestreams can occur through the process of so-called ‘bioleaching’. This 

process is based on the action of iron and sulfur oxidizing bacteria. It is a slow release 

process and is industrially applied in South Africa and Chile, mainly for recovery of Fe 
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and Cu from ores. It is worth investigating whether the principles of bioleaching could 

also apply for metal containing solid wastestreams such as printed circuit boards, lamp 

phosphors and phosphogypsum. 

More closely related to this work is the recovery of metals from aqueous wastestreams 

by sorption on bacterial cells and biopolymers. Several industries generate aqueous 

wastestreams containing critical metals. Examples are wastewaters from metal recycling 

companies and washing liquids from liquid crystal display (LCD) screens and printed 

circuit boards. Hospitals also use critical metals, such as Pt in cancerostatic compounds 

and the REE Gd in radiographic contrast media. Conventional recovery processes make 

use of hydrometallurgical, pyrometallurgical and/or electrometallurgical techniques. 

These techniques can be very efficient, but require sometimes a significant input of 

chemicals and energy. When these metals are present at low concentrations, this can 

mean a too high energy input per amount of metal recovered. Biosorption processes can 

be a sustainable alternative for metal recovery from dilute aqueous wastestreams (µg – 

mg L-1) in cases where other techniques are not feasible anymore. 

Biosorption should serve as an upconcentration technique. The resulting product will be 

sludge loaded with relatively high concentrations of critical metals, which can be 

processed further by hydro-, pyro- or electrometallurgical techniques. Another possibility 

is that metal nanoparticles are produced by reduction or oxidation of the metal salts on 

the cell walls. 

Bacteria are suitable sorbents for metals due to their very high specific surface area 

(> 100 m2/g), and the presence of different functional groups, of which carboxyl groups 

(Beveridge et al., 1980) and amine groups (Rotaru et al., 2012) are probably the most 

important ones. Moreover, bacteria can grow in structures where they produce sorptive 

biopolymers such as alginates, providing extra functional groups as sites for metal 

sorption. Granules of bacteria are easy to separate from the reaction medium, which 

makes them interesting for reactor design, for example in sequential batch reactors 

(Figure 9-11). Also other biopolymers such as chitosan should be tested as biosorbents. 
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Figure 9-11: Sequential batch reactor for the recovery of critical metals from aqueous wastestreams. 

Biosorption processes can be intensified physically, for example by centrifugal 

contacting. In a centrifugal contactor (for a review: see Vedantam et al. (2006)), the 

contact between the bacteria and the metal containing wastestream can be optimized in 

order to minimize contact times and increase the recovery rates. Another potentially 

interesting technique to intensify biosorption is ultrasound. The use of ultrasound can 

stimulate microbial growth, but can also stimulate the erosion of solid substrates or 

suspended particles in water (Sukla et al., 1995; Swamy et al., 2005) (ideas after prof. 

Tom Van Gerven). 

An important challenge for the application of biosorption in metal recovery processes will 

be the sometimes very aggressive characters of these streams. Wastewaters from 

metallurgical processes often contain high concentrations (up to several g L-1) of salts 

and can be extremely acid (pH 1 and lower). The compatibility of the different bacterial 

strains and cultures with these sometimes harsh conditions should be investigated first. 

Hospital wastewaters show the disadvantage that these metals are present in very low 

concentrations (µg L-1 and lower), but the composition of the wastewater is probably 

more compatible with bacteria. 
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8 Take home messages 

During the last decades, bacteria have extensively been investigated as producers and 

carriers of Pd nanoparticles (‘bio-Pd’). In this work some limitations of bio-Pd catalysts 

were discussed and some possible alternatives were proposed. A first limitation is the 

limited catalytic activity compared to Pd nanoparticles on conventional supports such as 

Pd/C or Pd/Al2O3. It was shown that doping the bio-Pd catalyst with Au could increase 

the catalytic activity. Coprecipitation of Pd and Au was required in order to obtain a 

highly active biosupported bimetallic Pd/Au catalyst. A small doping with a few wt. % of 

Au can be sufficient to increase the catalytic activity significantly. The increased activity 

of the bio-Pd/Au catalyst was demonstrated for the dechlorination of TCE and diclofenac 

and for the Suzuki C-C cross coupling. 

A second limitation is the leaching of Pd from the bacterial carrier. It was shown that 

leaching can be significant and can occur within a few weeks of storage of the catalyst. 

To minimize leaching, high temperatures, alkaline pH and anaerobic conditions should 

be avoided.  

In order to avoid poisoning by bacterial sulfur, Pd catalysts can be supported on other 

biopolymers such as chitosan. The obtained catalysts showed a higher catalytic activity 

than bio-Pd catalysts and did not show leaching on short term. 

Bacteria can have an added value as support, for example when living bacteria covered 

with metal nanocatalytsts can combine metabolic and catalytic processes. The 

biosorption of metals by bacteria and biopolymers can potentially be interesting as a 

metal recovery technique. Especially aqueous wastestreams with low concentrations of 

critical elements seem interesting for the application of biosorption.
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Abstract 

Palladium (Pd) has been applied as a catalyst for a wide variety of chemical reactions. 

Nowadays, Pd catalysts are more and more used under the form of nanoparticles, which 

have a higher specific surface area (surface area per unit of volume) compared to bulk 

Pd. The increasing demand for Pd nanocatalysts has stimulated the research for more 

bio-based production methods. In the last decades, the use of bacterial cells as 

producers and carriers of nanoparticles has been extensively investigated (‘bio-Pd’). 

Although the applicability of bio-Pd catalysts has been demonstrated for the degradation 

of environmental contaminants (mainly halogenated contaminants in soils, sediments, 

groundwater and wastewater) and in synthetic organic chemistry, bio-Pd catalysts show 

some possible drawbacks and limitations. It was demonstrated that their catalytic activity 

is lower than the activity of Pd nanoparticles on conventional supports such as Al2O3 or 

activated carbon. The stability of the catalysts has not been thoroughly studied and the 

catalysts are potentially inhibited by sulfides, which can be of bacterial origin. 

It was demonstrated previously that the activity of Pd catalysts can be increased by 

doping with Au. In a first part of this work, a bio-Pd/Au catalyst was synthesized on the 

cell wall of Shewanella oneidensis. Therefore, the interaction of S. oneidensis with Au 

was investigated first (Chapter 3). It was found that Au(III) sorbed rapidly on the bacterial 

cells (within minutes). This biosorption process was improved at lower pH and in 

presence of an electron donor. The reduction process of Au(III) to Au(0) took 8 to 24 

hours to initiate and could only take place in presence of an electron donor. The particle 

size and the deposition site of the Au(0) particles were dependent on the initial Au(III) 

concentration (small intracellular particles at lower concentrations, bigger particles on the 

cell wall at higher concentrations). The reduction process of Au on S. oneidensis was 

believed to be mainly abiotic.  

In Chapter 4, several strategies were investigated to synthesize a bimetallic bio-Pd/Au 

catalyst with increased catalytic activity. Only the catalyst obtained by coprecipitation of 

Pd and Au on the cell walls of S. oneidensis could significantly increase reaction rates for 

the dechlorination of diclofenac, a pharmaceutical micropollutant in wastewaters, and 

trichlorethylene, a common groundwater contaminant. The unique bimetallic alloy 

structure of the catalyst, with a contracted lattice compared to the monometallic 

catalysts, could be demonstrated by synchrotron-based µXRD and electron microscopy 
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techniques. Several hypotheses can be put forward to explain this effect, mainly 

geometric (better contact between reagents and more isolated active Pd sites) and 

electronic effects (electronic rearrangements within the crystal lattice causing better 

transfer of electrons). Also the protective effect of Au against poisoning by sulfur 

compounds has been hypothesized. The doping of bio-Pd with Au could be promising. 

However, several other challenges can be seen in this domain. For example the 

synthesis of Au-Pd core-shell structures, which were shown to have an extremely high 

catalytic activity. 

The dechlorination of diclofenac by bio-Pd and bio-Pd/Au was studied more in detail in 

Chapter 5. Diclofenac could be dechlorinated using a bio-Pd catalyst but only at low pH, 

whereas a bio-Pd/Au catalyst could perform the dechlorination in a broader pH range. A 

maximum reaction rate was obtained at Pd/Au weight ratio of 50/1 (increase with a factor 

7 compared to the Pd/Au 50/50 catalyst). So only a small doping with 2 wt. % Au was 

sufficient to significantly increase the activity of the bio-Pd catalyst. Whereas the 50/1 

bio-Pd/Au catalyst could completely remove 20 mg L-1 diclofenac from synthetic water in 

24 hours, 6.40 µg L-1 could only be removed from the effluent of a hospital wastewater 

treatment plant for 43 % after 24 hours. This decreased activity was probably due to the 

presence of sulfur, organic matter and other halogenated compounds. The 

dehalogenation of halogenated wastewater contaminants over (bio-)Pd and Pd/Au 

catalysts is promising, since future legislation will evaluate the presence of these 

compounds (grouped under the parameter adsorbable organic halogens (AOX)) in 

effluents. However, in wastewater treatment, flow rates are usually high and hydraulic 

residence times are low. In order to be a competitive technique for effluent polishing of 

wastewater treatment plants, the reaction rates obtained in this work should be 

significantly increased.  

The difference in catalytic activity between the monometallic bio-Pd and bimetallic bio-

Pd/Au catalyst was also tested for synthetic reactions. The bio-Pd/Au catalyst also 

showed a higher activity than bio-Pd for the Suzuki C-C cross coupling of an aryliodide 

with a boronate and showed a higher reproducibility than bio-Pd (Chapter 6). 

Nevertheless, these rates were not yet competitive with a conventional Pd/C catalyst. 

The higher conversion rates were especially observed with electron donating 

substituents. Bio-Pd/Au also showed a broader reaction scope than the monometallic 

bio-Pd when comparing different arylhalides. 
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In the second part of this work, limitations and innovations of bio-Pd were discussed. In 

Chapter 7, the stability of bio-Pd catalysts was studied as a function of time. A significant 

leaching of zerovalent Pd particles from the carrier took place: up to 18 % of the initially 

added Pd had leached from the carrier after 100 days of storage in water at 21 °C. This 

leaching decreased when storage was at lower temperature and in a mineral medium. 

Moreover, an increased leaching was observed at alkaline pH and under anaerobic 

conditions. Less leaching took place with Cupriavidus metallidurans as carrier than with 

S. oneidensis, however, bio-Pd on S. oneidensis showed a higher catalytic activity. 

When the leached Pd was kept in the reaction medium, no decrease of catalytic activity 

could be observed. Nevertheless, the leaching of Pd from the bacterial carrier can be 

seen as an important drawback of bio-Pd catalysts, since it can cause economical losses 

and environmental risks. Another important limitation of bio-Pd catalysts is the poisoning 

of the catalyst surface with sulfides from bacterial origin, as demonstrated by other 

studies previously. In Chapter 8, a possible alternative for bacteria as carrier for Pd 

nanoparticles was developed. Silica particles with a comparable surface area as bacteria 

were functionalized with amine groups, which were shown to be important functional 

groups for sorption of Pd(II) and anchoring sites for Pd nanoparticles. This 

functionalization was performed chemically (APTES provided a functionalization with 

primary amines, PEI provided a functionalization with secondary amines) and with the 

biopolymer chitosan. Beads with APTES and chitosan could firmly attach Pd 

nanoparticles on their surface. These Pd catalysts all showed a higher catalytic activity 

for the reduction of p-nitrophenol to p-aminophenol. At low Pd/support material ratios, 

complete inhibition of catalytic activity could be observed for bacteria supported bio-Pd 

catalysts. This was not observed with Pd on coated beads. Moreover, these beads did 

not show significant leaching on short term. Especially chitosan appears to be an 

interesting alternative support material, since it is a very abundant biopolymer and is 

relatively cheap. The coating of other surfaces with chitosan and other biopolymers as 

carriers of Pd nanoparticles should be investigated. 

Some further challenges for the above described catalysts in environmental technology 

can be put forward. The catalytic activity of the different biosupported Pd and Pd/Au 

catalysts should be tested for degradation of other types of recalcitrant environmental 

contaminants, such as fluorinated pharmaceuticals and highly persistent perfluorinated 

surfactants. Also the reductive catalytic treatment of air contaminants should be 

investigated. 
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Bacteria can be an interesting support for Pd nanoparticles, but they should have an 

added value. This could for example be obtained when bacteria are kept alive after the 

reduction of the metals, so they can perform metabolic conversions. By doing so, 

metabolic and catalytic conversions can be obtained within one cell. Better degradations 

of environmental contaminants can thus be obtained and products with higher value 

could be synthesized. Another important application of the interaction between bacteria 

and metals is the recovery of critical metals from wastestreams. Especially in Europe, the 

supply of raw materials, such as Pd, is highly threatened due to the limited presence of 

ores and geopolitical reasons. Recovery of critical metals can be important both from an 

economical and environmental perspective. Aqueous wastestreams containing low 

concentrations (µg – mg L-1) of critical metals seem the most interesting streams to treat 

biometallurgically, since metals can be concentrated by biosorption on bacterial cells or 

granules. The interaction between bacterial cells and Pd should be considered not only 

for the synthesis of catalysts but in the broader perspective of resource recovery from 

streams, which were previously considered as wastes. 
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Samenvatting 

Palladium (Pd) wordt gebruikt als katalysator voor een hele reeks chemische reacties. 

Dezer dagen worden Pd katalysatoren meer en meer gebruikt als nanopartikels, deze 

hebben immers een groter specifiek oppervlak (oppervlakte per volume-eenheid) dan 

bulk Pd. De groeiende vraag naar Pd nanokatalysatoren heeft het onderzoek naar 

duurzame productiemethoden gestimuleerd. In de laatste decennia is het gebruik van 

bacteriële cellen als producenten en dragermateriaal voor Pd (‘bio-Pd’) uitgebreid 

onderzocht. Verschillende bacteriële stammen zijn beschreven als producenten van bio-

Pd nanopartikels. Hoewel de toepasbaarheid van bio-Pd katalysatoren voor de afbraak 

van milieucontaminanten (vooral gehalogeneerde contaminanten in bodems, 

sedimenten, grond- en afvalwater) en in organische synthese uitgebreid werd 

aangetoond en een aantal reactoren op laboschaal en pilootschaal werden ontwikkeld, 

tonen bio-Pd katalysatoren enkele mogelijke nadelen en beperkingen. Er werd 

aangetoond dat hun activiteit lager is dan the activiteit van Pd nanopartikels op 

conventionele dragermaterialen als Al2O3 en actieve kool. The stabiliteit van de 

katalysatoren werd nog niet grondig onderzocht en de katalysatoren worden mogelijk 

geïnhibeerd door sulfides, die van bacteriële oorsprong kunnen zijn. 

Er werd in eerder onderzoek reeds aangetoond dat de activiteit van Pd katalysatoren 

verhoogd kan worden door dopering met Au. In een eerste deel van dit werk werd een 

bimetallische bio-Pd/Au katalysator gesynthetiseerd op de celwand van Shewanella 

oneidensis. Daartoe werd eerst de interactie van S. oneidensis met Au onderzocht 

(Hoofdstuk 3). Er werd vastgesteld dat Au(III) snel werd gesorbeerd op de bacteriële 

cellen (binnen een tijdsspanne van minuten). Dit biosorptieproces verliep sneller bij 

lagere pH en in aanwezigheid van een elektrondonor. De reductie van Au(III) tot Au(0) 

begon pas na 8 tot 24 uur en kon enkel plaatsvinden in aanwezigheid van een 

elektrondonor. Deeltjesgrootte en de plaats van precipitatie van de Au(0) partikels waren 

afhankelijk van de initiële Au(III) concentratie (kleine intracellulaire partikels bij lagere 

concentraties, grotere partikels op de celwand bij hogere concentraties). Het 

reductieproces van Au op S. oneidensis verliep wellicht hoofdzakelijk abiotisch. 

In Hoofdstuk 4 werden verschillende strategieën onderzocht om een bimetallische bio-

Pd/Au katalysator te synthetiseren met verhoogde katalytische activiteit. Enkel de 

katalysator die bekomen werd door coprecipitatie van Pd en Au op de celwand van S. 
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oneidensis kon een significante verhoging bewerkstelligen van de reactiesnelheid voor 

de dehalogenatie van diclofenac, een toxische farmaceutische micropolluent in 

afvalwaters, en trichloroethyleen, een vaak voorkomende grondwater contaminant. De 

unieke legeringsstructuur van de katalysator, met een contractie van het kristalrooster 

vergeleken met de monometallische katalysatoren, kon aangetoond worden met 

synchrotron-gebaseerde µXRD en elektron-microscopische technieken. Verschillende 

hypothesen kunnen vooropgesteld worden om dit effect te verklaren, vooral 

geometrische (beter contact tussen reagentia en meer geïsoleerde actieve Pd sites) en 

elektronische effecten (verandering van de elektronenstructuur met betere 

elektronentransfer). Ook het beschermende effect van Au tegen vergiftiging van de 

katalysator door zwavelcomponenten is als hypothese naar voor geschoven. Het 

doperen van bio-Pd met Au is veelbelovend. Echter, verschillende andere uitdagingen 

kunnen in dit domein vooropgesteld worden, bijvoorbeeld de synthese van Au-Pd kern-

schil structuren, waarvan de extreme hoge katalytische activiteit reeds aangetoond werd. 

De dechlorinatie van diclofenac door bio-Pd en bio-Pd/Au werd meer in detail bestudeerd 

in Hoofdstuk 5. Diclofenac kon enkel bij een lage pH door een bio-Pd katalysator 

gedechlorineerd worden, terwijl bio-Pd/Au de dechlorinatie in een breder pH bereik kon 

bewerkstelligen. Een maximale reactiesnelheid werd bekomen bij een Pd/Au 

gewichtsverhouding van 50/1 (stijging met een factor 7 vergelijken met de Pd/Au 

verhouding van 50/50). Dus slechts een beperkte dopering met 2 gewichtsprocent Au 

was voldoende om te resulteren in een significante verhoging van de activiteit van de 

bio-Pd katalysator. Terwijl de 50/1 bio-Pd/Au katalysator 20 mg L-1 diclofenac volledig 

kon verwijderen in 24 uur, kon dezelfde katalysator 6.40 µg L-1 diclofenac slechts voor 43 

% verwijderen uit het effluent van de waterzuiveringsinstallatie van een ziekenhuis. Deze 

verlaagde activiteit was wellicht te wijten aan de aanwezigheid van zwavel, organisch 

materiaal en concurrerende componenten. De dehalogenatie van gehalogeneerde 

afvalwatercontaminanten over (bio-)Pd en Pd/Au katalysatoren is veelbelovend, zeker 

als toekomstige wetgeving de aanwezigheid van deze stoffen (gegroepeerd onder de 

parameter AOX) in effluenten zal beperken. Daarbij dient wel vermeld te worden dat in 

afvalwaterzuivering de debieten hoog zijn en de hydraulische verblijftijden laag (typisch 

in de grootteorde van een paar uren). Om een competitieve effluentzuiveringstechniek te 

worden zullen de reactiesnelheden die in dit werk bekomen werden nog significant 

verhoogd moeten worden. 
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De bio-Pd/Au katalysator toonde ook een hogere activiteit dan bio-Pd voor de Suzuki C-

C cross koppelingsreactie van een aryljodide met een boronaat en vertoonde daarbij ook 

een hogere reproduceerbaarheid dan bio-Pd (Hoofdstuk 6). Desalniettemin waren deze 

reactiesnelheden nog niet competitief met een conventionele Pd/C katalysator. De 

betere omzettingen werden vooral gezien bij elektrongevende substituenten. Bio-Pd/Au 

vertoonde ook een breder reactiespectrum dan de monometllische bio-Pd katalysator bij 

vergelijking van verschillende arylhalides. 

In het tweede deel van dit werk werden andere beperkingen en innovaties van bio-Pd 

bestudeerd. In Hoofdstuk 7 werd de stabiliteit van bio-Pd katalysatoren bestudeerd in 

functie van de bewaringstijd. Een significante uitloging van nulwaardige Pd partikels van 

de bacteriële carrier vond plaats: tot 18% van het initieel toegevoegde Pd was uitgeloogd 

van de carrier na 100 dagen bewaring bij 21°C. Deze uitloging kon verlaagd worden door 

te bewaren bij lagere temperatuur en in een mineraal medium. Een verhoogde uitloging 

werd vastgesteld bij alkalische pH en onder anaerobe omstandigheden. Minder uitloging 

vond plaats met Cupriavidus metallidurans als drager dan met S. oneidensis, maar bio-

Pd op S. oneidensis vertoonde een hogere katalytische activiteit. Als al het uitgeloogde 

Pd in het reactiemedium werd gehouden, werd geen daling van de katalytische activiteit 

waargenomen. Desalniettemin kan de uitloging van Pd van de bacteriële carrier als 

belangrijk nadeel van bio-Pd katalysatoren beschouwd worden, want dit kan leiden tot 

economische verliezen en risico’s voor het milieu. Een andere belangrijke beperking van 

bio-Pd katalysatoren is de vergiftiging van het katalysatoroppervlak met sulfiden van 

bacteriële oorsprong, zoals aangetoond door vroegere studies. In Hoofdstuk 8 werd een 

mogelijk alternatief voor bacteriën als dragermateriaal voor Pd nanopartikels ontwikkeld. 

Silica partikels met een gelijkaardig oppervlak als bacteriën werden gefunctionaliseerd 

met amine groepen, die belangrijke functionele groepen voor Pd(II) bleken te zijn en 

aanhechtingsplaatsen voor Pd nanopartikels. Deze functionalisatie werd zowel chemisch 

(APTES zorgde voor functionalisatie met primaire amines, PEI met secundaire amines) 

als met het biopolymeer chitosan uitgevoerd. Partikels met APTES en chitosan konden 

Pd nanopartikels stevig op hun oppervlak binden. Deze Pd katalysatoren vertoonden 

allen een hogere katalytische activiteit dan Pd op bacteriën voor de reductie van p-

nitrofenol tot p-aminofenol. Bij lage Pd/dragermateriaal ratio’s  kon complete inhibitie van 

de katalytische activiteit vastgesteld worden voor bio-Pd katalysatoren op bacteriën. 

Deze inhibitie vond niet plaats bij  Pd op de gecoate silica partikels. Bovendien werd op 

korte termijn geen uitloging van Pd vastgesteld. Vooral chitosan lijkt een interessant 

alternatief dragermateriaal aangezien het een veel voorkomend en goedkoop 
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biopolymeer is. Het coaten van andere oppervlakken met chitosan en andere 

biopolymeren als dragermaterialen voor Pd nanopartikels kan verder worden onderzocht. 

Er kan gedacht worden over enkele nieuwe uitdagingen voor de hierboven beschreven 

katalysatoren in de milieutechnologie. De katalytische activiteit van de verschillende Pd 

en Pd/Au katalysatoren op biomaterialen kan getest worden voor de afbraak van andere 

types recalcitrante milieucontaminanten zoals gefluoreerde farmaceutica en sterk 

persistente geperfluoreerde surfactanten. Ook de reductieve katalytische behandeling 

van luchtcontaminanten zou onderzocht kunnen worden. 

Bacteriën kunnen een interessant dragermateriaal zijn voor Pd nanopartikels, maar dan 

moeten ze wel een toegevoegde waarde bieden. Deze toegevoegde waarde zou kunnen 

verkregen worden als de bacteriën in leven blijven na de reductie van de metalen zodat 

ze metabolische omzettingen kunnen uitvoeren. Op die manier kunnen metabolische en 

katalytische omzettingen door één en dezelfde cel bekomen worden. Zo kan een 

verdergaande afbraak van milieucontaminanten bekomen worden en kunnen 

hoogwaardige producten gesynthetiseerd worden. Een andere belangrijke toepassing 

van de interactie tussen bacteriën en metalen is de terugwinning van metalen uit 

afvalstromen. Vooral in Europa is de toevoer van grondstoffen zoals Pd sterk bedreigd 

door de beperkte beschikbaarheid van de ertsen en omwille van geopolitieke redenen. 

Terugwinning van metalen is belangrijk zowel vanuit een economisch als een ecologisch 

standpunt. Waterige afvalstromen die lage concentraties (µg – mg L-1) kritische metalen 

bevatten, lijken de interessantste stromen om biometallurgisch te behandelen omdat de 

metalen kunnen geconcentreerd worden door biosorptie op bacteriële cellen of granules. 

De interactie tussen bacteriële cellen en Pd dient dus niet enkel beschouwd te worden 

voor de synthese van katalysatoren, maar in het bredere perspectief van de terugwinning 

van metalen uit stromen, die voorheen als afval werden beschouwd. 
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Het schrijven van dit doctoraat was een lange kettingreactie, soms energie vereisend, 

soms explosief, soms leidend tot grote entropie. Gelukkig bleek het een aflopende 

reactie te zijn. De reactiesnelheid kon echter enkel bereikt worden doordat enkele 

personen als katalysator optraden. Hen wil ik dan ook uitdrukkelijk bedanken. 

Eerst en vooral wil ik de juryleden bedanken. Especially jury members coming for abroad 

are kindly acknowledged for their efforts. Prof. Van der Meeren, Prof. Meyer, Prof. Gadd, 

Prof. Van Gerven, Prof. Stevens, Prof. Du Laing en Prof. Verliefde, dank voor het 
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wetenschappers, maar daarnaast ook grote persoonlijkheden. Prof. Verstraete, uw 

onuitputtelijke enthousiasme en drang naar vooruitgang werkten steeds inspirerend. 

Daar waar ik in het begin nog met een klein hartje uw bureau binnenkwam, keek ik 

naarmate de tijd en het onderzoek meer vorderden, steeds meer uit naar uw 

legendarische uitspraken en ideeën. Tot mijn spijt moet ik u melden dat ik nog steeds 

geen biologisch zerovalent ijzer heb gemaakt en geen bio-Pd op kippen heb gesproeid. 

Ik wil u vooral bedanken voor het vertrouwen dat u steeds in mij hebt gehad en voor de 

deuren op de arbeidsmarkt die dankzij u zijn opengegaan. Nico, hoewel de bergen werk 

op je bureau dikwijls niet te overzien waren, slaagde je er toch steeds in om tijd te 

maken voor je studenten. Je was bereikbaar op de meest onmogelijke momenten en liet 

me de vrijheid om met mijn onderzoek de richting uit te gaan die ik zelf wou. Het feit dat 

ik je mocht vervangen op heel wat projectvergaderingen toonden je vertrouwen in mij 

aan. Ik ben zeker dat LabMET in goede handen is en hoop op een verdere vruchtbare 

samenwerking in de toekomst. Korneel, je komst veranderde heel wat op het labo. Je 

duidelijke resultaat- en praktijkgerichtheid hebben me steeds bevallen. Hoewel er nog 

wat werk aan is, denk ik dat we in de oefeningenlessen en cursus milieutechnologie 

mooi werk hebben verricht. Tom VdW, hoewel we niet veel dienden samen te werken, 

wist ik steeds je rust en vakkennis te appreciëren. Tom H (Tomaske), als één iemand 

ervoor gezorgd heeft dat ik succesvol de eindstreep heb bereikt, ben jij het wel. Grote 

leermeester, vat vol ideeën; optimisme en ambitie te koop, en zo kan ik nog wel enkele 

superlatieven bovenhalen. Ik denk dat we steeds een complementair duo vormden en 

dat dit de succesformule voor de vele publicaties was. Ik ben er dan ook zeker van dat je 

nog een schitterende carrière tegemoet gaat. Naast de wetenschap deelden we ook 
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eenzelfde passie voor sport en humor, wat de band alleen maar sterker maakte. Het 

wordt ondertussen wel tijd dat je de 5 penaltynemers van Mexico 86 begint te kennen. 

Tomaske, bedankt voor alles, je bent een grote meneer! Rikke, my time in Denmark was 

limited but I think we did a great job. Thanks for giving me the opportunities to use the 

iNano facilities, for making time for fruitful scientific discussions and for the many 

corrections to our paper. 

Essentieel voor dit werk waren ook de thesisstudenten, met wie de band steeds hecht 

was en die een hand in ongeveer al mijn publicaties hebben. Tom S (den Bicky), harde 

werker en snelle schrijver, het feit dat je naam op 3 publicaties blinkt is een indicator van 

de kwaliteit die je afleverde. Je had misschien recht op een beter resultaat, maar die 

Solvay prijs heb je dubbel en dik verdiend. Tom R (Raskie), je slaagde erin de moeilijke 

fluorcomponenten op een doordachte manier aan te pakken en zette één van de beste 

thesisverdedigingen neer die ik ooit zag. Jeroen (Woefie), legendarisch boerenkotfiguur 

met ongekend optimisme, bewoner van het paviljoen die gelukkig ook zijn middagen bij 

de GC wou slijten. Tom T, om verschillende redenen had ik weinig tijd om je te 

begeleiden, maar je slaagde erin om in moeilijke omstandigheden toch een stevige 

thesis neer te zetten. 

Werken met bacteriën, nanomaterialen en micropolluenten vereist het gebruik van 

geavanceerde analysetechnieken die op LabMET niet steeds voorhanden waren. 

Stephanie en prof. Cuvelier, dank voor de vele mooie TEM-foto’s die onmisbaar waren 

voor dit werk en verrassend snel konden aangeleverd worden. Lynn en Julie, dankzij 

knap analystisch werk slaagden jullie erin steeds de producten te vinden waar ik naar op 

zoek was. En Lynn, ik hoop bij een bezoek aan je nieuw huis niet van je trap te vallen. 

Jeff, the XANES and EXAFS spectra revealed great and unique information on our 

bimetallic structures, thanks for your time to analyze the spectra and proofreading the 

papers. Prof. Kim Verbeken and Vitaliy, although bacteria are not an easy matrix to work, 

the STEM analysis showed great added value to the work with the bimetallics. Thomas 

en prof. Stevens, dank voor de vlotte samenwerking in de organische chemie. iNano 

people Arcot, Vidu, Jacques and Stefanie, thanks for your help with the XPS, chitosan 

and TEM. 

Een belangrijke katalysator om dit werk te volbrengen was ongetwijfeld de schitterende 

sfeer op de Rotonde, probably the best office in the world. Legendarische trips naar 

Barcelona en Kopenhagen, ontelbare lachsalvo’s, aprilgrappen, quizoverwinningen,... 

een bureau waar naast hopen publicaties ook geschiedenis werd/wordt geschreven. 
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Enkele figuren verdienen hier toch een speciale vermelding. Joachim (Sloover), als het 

vroeger om de punten ging moest ik niet onderdoen, maar ondertussen heb je me in het 

onderzoek toch serieus overtroffen. De primitieve klanken die je uitstootte waren steeds 

een bron van humor en relativering tijdens de werkuren. Je was mijn klankbord in 

mindere dagen en deelde de nuchtere kijk op LabMET, het onderzoek en alles wat 

daarrond hing. Het samen afleggen van dit parcours heeft me onderweg zeker vooruit 

geholpen en het feit dat sommigen ons bleven door elkaar halen, begon ik zowaar als 

een compliment te zien. Een revanche voor je overwinning in de Thuis-quiz komt er 

zeker nog! Willem (Muynckske/Guillermo/bompa), een man zoals ik er maar één 

tegenkom in mijn leven. We ontdekten een gemeenschappelijke passie voor het Spaans, 

de politiek, quizzen en de betere hits, wat leidde tot verhitte discussies maar ook talrijke 

hoogtepunten aan diverse prijzentafels en op de dansvloer. Je verschijning op de bureau 

gebeurde nooit onopgemerkt. Een klein kind van 32 met een groot hart! (en helaas ook 

flosjke in de nek). Sam (Nevelmans/Samir), eigenzinnige vogel bij wie ik steeds (toch 

zeker één) luisterend oor vond. Ons tripje naar Kreta werd om verschillende redenen 

legendarisch. Steeds in the mood voor een dolle frats, een streekbiertje en een wist-je-

datje over Thuis. Van het rechte (bio-)pad geraakt, maar ongetwijfeld op weg naar een 

schitterend doctoraat. Bart (Barry/den Beire), flandrien in hart en nieren met ongezien 

oog voor orde en structuur, die mij als voorzitter van de nanocluster een zware erfenis 

naliet. Fijnproever met zeer vlotte wetenschappelijke pen en sterke lever. Loïs (Yeti) en 

Peter (Pé/hele grote meneer) droegen steeds hun steentje bij tot de onvergetelijke 

atmosfeer der begindagen. Het blijft een wonder dat Haydee als enige vrouw kon 

standhouden in deze testosteronjungle. Ook in de jongere generatie zit heel wat 

potentieel. Met Synthia (de Maeshond), (dé) Joeri, Stephen (Stifmeister), Sylvia, Emilie, 

Kun en zoveel meer nieuwe collega’s lijkt de legende nog niet dood. Ook andere 

LabMET collega’s (Jo, Jan, Pieter, Karen, Siegfried, David, Gio en zoveel meer) wil ik 

bedanken voor de collegiale sfeer in de labo’s en de vrijdagavonden in de Koepuur. Ook 

het ATP wens ik te bedanken voor het harde werk achter de schermen, in het bijzonder 

Tim, mijn persoonlijke graficus. Het secretariaat is het kloppend hart van LabMET, Kris 

en Regine, bedankt voor de hulp bij de papierwinkel die onlosmakelijk met een doctoraat 

verbonden is.  

Ook Trevi (Stefaan, Jeroen, Jan, Benjamin en collega’s van team water) wil ik bedanken 

voor de kans die ik kreeg om een leerrijke stage te doen en ervaring op te doen op de 

werkvloer. Ik weet dat ik het jullie door mijn vertrek niet gemakkelijk heb gemaakt, maar 

ook voor mij was het een verscheurende keuze.  
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Ook in de vrije tijd stonden een hoop vrienden klaar om de doctoraatsperikelen te 

vergeten. Migi en Tim L, bedankt om 3 jaar lief en leed te delen, voor de maandagavond-

TV-avonden, de loopjes, de kilo’s Nutella, de gezamenlijke dineetjes, de betere hits, 

droge humor en zoveel meer. Tim D, de uren slappelach die we, reeds van in de 

studententijd, samen hadden zijn niet meer te tellen. Ik ben er zeker van dat ons als dj-

duo nog een grote toekomst tegemoet gaan. Ook andere vrienden uit Torhout en 

omstreken (de collegevrienden, pingpongers, houtlanders en anderen) worden bedankt 

voor de avonden in De Hoorn en zoveel meer lokaal amusement. Dankzij Bizon ging een 

nieuwe wereld open. De verschillende kampteams waar ik deel van uitmaakte, vooral het 

Rodeo 2012 team, maar zeker ook de A+ bende (in het bijzonder Kenjy, Ruslan en Mike, 

maar ook Vanessa, Tyscha, Kimberly, Gianni, Oerelie, bedankt om niet teveel op 

Lorenzo zijn muil te slaan) zorgden voor onvergetelijke momenten. Met de bende van 

milieu (Jeffrey, Wally, Kowdie en Sloover) kwam de sfeer van de studentenjaren nog 

regelmatig terug. Ook met de vrienden van Menen werd ondertussen reeds menig 

legendarisch avontuur beleefd. Ondanks het feit dat ik nog steeds geen deuk in een 

pakje boter kan trappen kon ik dankzij Bruno, Karel, Maarten, Ray en de andere 

minivoetbalvrienden toch een titel op mijn naam schrijven. My time in Denmark was not 

only very productive, but also very pleasant thanks to a whole bunch of international 

friends (Chris, Ugo, Paolo, Maria, Laura, Lena, Laura, Claus, Matthias, Jay, Paola, 

Marton and many more). 

Ma en pa, bedankt voor het warme nest waarin we mochten opgroeien en de kansen die 

we steeds kregen. Ik weet dat ik het liefst zo weinig mogelijk over mijn werk praatte, 

terwijl jullie interesse echt wel oprecht was, maar hopelijk zijn jullie ondertussen toch iets 

wijzer geworden. Ook oma, opa, Lis, de rest van de familie en schoonfamilie, bedankt! 

Het begin van mijn doctoraat ging ook samen met een nog belangrijker project, namelijk 

het vinden van de vrouw van mijn leven. Lore, het begon misschien wat aarzelend, maar 

ondertussen zijn we hebben we bijna 4 prachtige jaren samen achter de rug. Je moest 

mijn wisselende stemmingen vanwege het werk meer dan eens verdragen. Ik wil je 

danken voor je eindeloze geduld, je optimisme en je grenzeloze liefde. De woorden in 

Las Vegas klonken toen misschien wat melig, maar ze waren meer dan gemeend. Ik ben 

er zeker van dat aan de prachtige tijden die we samen beleefd hebben, nog een 

fenomenaal jarenlang vervolg zal worden gebreid. Ik kijk er enorm naar uit om samen de 

toekomst tegemoet te gaan. Ik zie je graag! 

         Simon, september 2013 
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