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I3’H Isoflavone 3’-hydroxylase 

IFR Isoflavone reductase 
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IPP  Isopentenyl pyrophosphate 

JA Jasmonate 

JA–Ile JA–isoleucine 

JAM1  JA factor-stimulating MAPKK 1 

JAZ   Jasmonate ZIM-domain 

JMT Jasmonate O-methyltransferase 

LAP1 Legume anthocyanin production 1 

LAR Leucoanthocyanidin reductase 

LIP Lipase 

LiF Laser-induced fluorescence 

LOX Lipoxygenase 
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SCF
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SQE   Squalene epoxidase 
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Abstract 

Accumulation of secondary metabolites often occurs in plants imposed to biotic and 

abiotic stress signals. Perception of the stress signals triggers a signal transduction 

network that leads to the activation or de novo biosynthesis of transcription factors. 

Then transcription factors regulate the expression of the genes encoding enzymes that 

catalyze the biosynthesis of target secondary metabolites. Here, we focused on the 

identification of the regulators of secondary metabolite biosynthesis in the model 

legume Medicago truncatula. Considering the conserved role of JAs in the induction 

of secondary metabolite biosynthesis in plants, we exploited a gene list generated 

previously through a genome-wide transcript profiling of MeJA-elicited cell cultures 

of M. truncatula. In this PhD thesis, several of the potential regulators identified in 

the previous study were selected for further characterization. Through a reverse 

genetics approach two regulatory proteins were found with a putative role in 

secondary metabolite production in M. truncatula hairy roots. Overexpression of 

Mt148 encoding a CCR4-associate factor1 (Caf1) protein led to the downregulation of 

some secondary metabolism genes in M. truncatula hairy roots. Overexpression of 

Mt061 codifying for an R2R3-type MYB family transcription factor, demonstrated 

that it is a regulator of green leaf volatiles (GLV) biosynthesis. This MYB-

transcription factor can also modulate defense response processes in M.truncatula. 

Furthermore, we studied the putative role of small signaling peptides in the signaling 

transduction pathways towards the regulation secondary metabolism in M. truncatula. 

We found that Taximin, a small signaling peptide previously identified in Taxus 

baccata, as well as the M. truncatula taximin homologs can affect secondary 

metabolite biosynthesis in M. truncatula.  

  



 

 

 



1 
Transcriptional machineries in jasmonate-

elicited plant secondary metabolism 
 

Nathan De Geyter*, Azra Gholami*, Sofie Goormachtig and Alain Goossens 

 

 

 

 

 

 

 

 

 

 

 

 

Published in Trends in Plant Science (IF: 11.047) 
De Geyter, N.*, Gholami, A.*, Goormachtig, S., and Goossens, A. (2012). Transcriptional 

machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science 17, 

349-359. 

* These authors contributed equally to this work. (Parts 5, 6 and 7 were written by the 

candidate). 

  



Transcriptional machineries in jasmonate-elicited plant secondary metabolism 10 

 

 

 

Abstract 

Jasmonates (JAs) act as conserved elicitors of plant secondary metabolism. JA 

perception triggers an extensive transcriptional reprogramming leading to 

the concerted activation of entire metabolic pathways. This observation 

triggered numerous quests for ‘master’ regulators capable of enhancing the 

production of specific sets of valuable plant metabolites. Many transcription 

factors (TFs), often JA-activated themselves, with a role in the JA-modulated 

regulation of metabolism were discovered. At the same time, it became clear 

that metabolic reprogramming is subjected to complex control mechanisms 

integrated in robust cellular networks. Here, we will discuss the current 

knowledge on the effect of JA-modulated TFs in the elicitation of secondary 

metabolism in the model plant Arabidopsis and a range of medicinal plant 

species with structurally divergent secondary metabolites. We draw parallels 

with the regulation of secondary metabolism in fungi and consider the 

remaining challenges to map and exploit the transcriptional machineries that 

drive JA-mediated elicitation of plant secondary metabolism. 

1 JAs: ubiquitous and conserved elicitors of plant secondary metabolism 

JAs are oxylipin-derived phytohormones that regulate a wide variety of physiological 

plant processes ranging from growth and development to reproduction and defence. 

Originally, JAs were labelled as secondary metabolites present in the scent of jasmine 

flowers (Jasminum spp.). Now, it has become clear that they themselves act as 

elicitors of the production of secondary metabolites across the plant kingdom, from 

angiosperms to gymnosperms (Zhao et al., 2005; Wasternack, 2007; Browse, 2009; 

Pauwels et al., 2009). This suggests that the signalling machinery underlying JA-

mediated secondary metabolite elicitation may be conserved and that it was installed 

early in the higher plant lineage, which seems to be supported by the existence of a 

conserved module for JA perception and subsequent ‘primary’ signal transduction 

(Browse, 2009; Chini et al., 2009a; Memelink, 2009; Pauwels and Goossens, 2011). 

Nevertheless, there is a pronounced degree of species specificity with respect to the 

metabolic pathways that are elicited by JAs. This is reflected by the specific JA-

mediated compendium of bioactive metabolites of a wide structural variety and 

different biochemical origin that can be found in each plant species. Broadly, three 

major classes of plant secondary metabolites can be defined: the terpenoids, alkaloids 

and phenylpropanoids; however, more exist. JAs can induce the synthesis of 

molecules in all these classes (Zhao et al., 2005; Pauwels et al., 2009). In addition, 

JAs can modulate particular primary metabolic pathways to supply connected 

secondary metabolite pathways with the necessary substrates (Pauwels et al., 2009; 
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Spitzer-Rimon et al., 2010). Hence, downstream of a conserved elicitation 

mechanism, species-specific secondary metabolic pathways have evolved under JA 

control. 

Several genome-wide transcript profiling studies have demonstrated that JA treatment 

triggers an extensive transcriptional reprogramming of metabolism. The expression of 

genes encoding enzymes involved in one particular secondary metabolic pathway 

often displayed a marked concerted upregulation after JA elicitation, leading to the 

recognition of so-called ‘transcriptional regulons’ (Pauwels et al., 2009). This 

prompted many researchers worldwide to launch gene discovery projects to identify 

so-called ‘master switches’ of plant secondary metabolism: that is, proteins capable of 

activating expression of all or most of the genes encoding the enzymes involved in 

one particular metabolic pathway. This knowledge could ultimately be converted into 

powerful generic tools for plant metabolic engineering programmes. The 

identification, at the end of the past millennium, of TFs such as OCTADECANOID-

DERIVATIVE RESPONSIVE CATHARANTHUS AP2-DOMAIN 2 and 3 (ORCA2 

and ORCA3), driving terpenoid indole alkaloid (TIA) synthesis in Madagascar 

periwinkle (Catharanthus roseus) (reviewed in (Memelink et al., 2001)), or 

PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and C1/R, steering 

anthocyanin biosynthesis in Arabidopsis (Arabidopsis thaliana) and maize (Zea 

mays), respectively (reviewed in (Dubos et al., 2010; Petroni and Tonelli, 2011)), 

raised expectations tremendously. This review will list the endeavours of the quests 

conducted since then in a range of different plant species (Table 1) and will discuss 

the remaining challenges to map and exploit the transcriptional machineries that drive 

JA-mediated elicitation of secondary metabolism. We focus on the effect of JA-

modulated TFs and their role in JA-mediated secondary metabolism in the model 

plant Arabidopsis and a range of medicinal plant species with structurally divergent 

metabolites. Finally, we also speculate on possible analogy between the elicitation of 

secondary metabolism in plants and fungi. 
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Table 1. Overview of TFs recruited by JA signalling to steer secondary metabolite 

biosynthesis 

TF name Accession 
Number 

Plant species Secondary 
metabolite 

Reference 

AP2/ERF     

ORCA2 AJ238740 Catharanthus 
roseus 

Terpenoid 
indole alkaloids 

(Menke et al., 
1999) 

ORCA3 EU072424 C. roseus Terpenoid 
indole alkaloids 

(van der Fits and 
Memelink, 2000) 

ERF189 - Nicotiana tabacum Nicotine (Shoji et al., 2010) 

ERF221/ORC1 CQ808982 N. tabacum Nicotine (De Sutter et al., 
2005; Shoji et al., 
2010) 

ERF1 JN162091 Artemisia annua Artemisinin (Yu et al., 2012) 

ERF2 JN162092 A. annua Artemisinin (Osbourn, 2010) 

bHLH 

MYC2/At1g32640 NM_102998 Arabidopsis 
thaliana 

Indole 
glucosinolates 
and 
anthocyanins 

(Dombrecht et al., 
2007) 

MYC2 AF283507 C. roseus Terpenoid 
indole alkaloids 

(Zhang et al., 2011) 

MYC2a HM466974 N. tabacum Nicotine (Zhang et al., 2012) 

MYC2b HM466975 N. tabacum Nicotine (Zhang et al., 2012) 

NbbHLH1 GQ859152 Nicotiana 
benthamiana 

Nicotine (Todd et al., 2010) 

NbbHLH2 GQ859153 N. benthamiana Nicotine (Todd et al., 2010) 

GL3/At5g41315 NM_148067 A. thaliana Anthocyanins (Qi et al., 2011) 

EGL3/At1g63650 NM_105042 A. thaliana Anthocyanins (Qi et al., 2011) 

TT8/At4g09820 NM_117050 A. thaliana Anthocyanins (Qi et al., 2011) 

R2R3-MYB 

PAP1/At1g56650 NM_104541 A. thaliana Anthocyanins (Qi et al., 2011) 

MYB14 DQ399056 Pinus taeda Flavonoids and 
Isoprenoids 

(Hirai et al., 2007) 

MYB29/At5g07690 NM_120851 A. thaliana Aliphatic 
glucosinolates 

(Bedon et al., 2010) 

MYBJS1 AB236951 N. tabacum Phenylpropanoi
ds 

(Gális et al., 2006) 

MYB8 GU451752 N. attenuata Phenylpropanoi
ds 

(Onkokesung et al., 
2012) 

WRKY 

WRKY1 AY507929 Gossypium 
arboretum 

Gossypol (Xu et al., 2004) 

WRKY1 FJ390842 A. annua Artemisinin (Ma et al., 2009) 

WRKY1 HQ646368 C. roseus Terpenoid 
indole alkaloids 

(Suttipanta et al., 
2011) 

WRKY3 AY456271 N. attenuata Volatile 
terpenes  

(Skibbe et al., 
2008) 

WRKY6 AY456272 N. attenuata Volatile 
terpenes  

(Skibbe et al., 
2008) 

WRKY33/At2g3847
0 

NM_129404 A. thaliana Camalexin (Mao et al., 2011) 

NAC 

ANAC042/ 
At2g43000 

NM_129861 A. thaliana Camalexin (Saga et al., 2012) 

DOF 

OBP2/Dof1.1/At1g
07640 

NM_001035911 A. thaliana Indole 
glucosinolates 

(Skirycz et al., 
2006) 

DOF4;2/At4g21030 NM_118221 A. thaliana Flavonoids (Skirycz et al., 
2007) 
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HD-ZIP 

HAHB4 AF339748 H. annuus Green leaf 
volatiles 

(Manavella et al., 
2008) 

TFIIIA zinc finger 

ZCT1 AJ632082 C. roseus Terpenoid 
indole alkaloids 

(Pauw et al., 2004) 

ZCT2 AJ632083 C. roseus Terpenoid 
indole alkaloids 

(Pauw et al., 2004) 

ZCT3 AJ632084 C. roseus Terpenoid 
indole alkaloids 

(Pauw et al., 2004) 

2 Oxylipins: ancient signals of distress? 

JAs are oxylipins that originate from free radical oxidation of lipids (Wasternack, 

2007). Oxylipins have been suggested to be ancient signals of tissue damage that 

activate general stress response pathways (Mueller, 2004). This is indeed the case in 

plants, where JAs elicit production of secondary metabolites that serve a vital role in 

the interaction between a plant and its surrounding environment and are important 

players in the constitutive and/or inducible plant defences against a wide variety of 

attackers. Oxylipins have also been discovered in prokaryotes, mosses, fungi, algae, 

and invertebrate and vertebrate animals (Andreou et al., 2009). Eicosanoids for 

instance, which the human prostaglandins also belong to, are biologically important 

oxylipins that function as signalling molecules in eukaryotic microbes, and 

invertebrate and vertebrate animals. In insects, eicosanoids mediate cellular immunity 

to microbial and metazoan challenge, and act in the response to infection (Stanley, 

2005). Mammalian eicosanoids have crucial functions in the inflammatory process, 

both in allergic responses and in general reactions to infection (Das, 2011). In the 

model fungus Aspergillus nidulans, the ‘psi factor’, which represents a mixture of 

different oxylipins, is reported to regulate fungal reproduction and secondary 

metabolite synthesis. Fungi produce a wide variety of secondary metabolites that can 

either be beneficial (e.g. antibiotics) or detrimental (e.g. mycotoxins) to humans (Yu 

and Keller, 2005). A. nidulans mutants with defects in the psi factor biosynthesis 

genes (the ppo genes) have been shown to manifest a decreased expression of the 

mycotoxin biosynthesis genes and are unable to produce mycotoxins. This indicates 

that, as in plants, fungal oxylipins are capable of regulating secondary metabolite 

production at the transcriptional level. The ppo genes are widespread in saprophytic 

and pathogenic Asco- and Basidiomycetes (Tsitsigiannis and Keller, 2007), 

underscoring the evolutionary importance of oxylipins in this process. 

3 Core JA module? 

Despite the conserved importance of oxylipins in the elicitation of secondary 

metabolism, to our knowledge, no molecular overlaps have yet been encountered in 
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the plant and fungal oxylipin signalling machineries. Essential in the ‘core JA 

signalling module’ in plants (Figure 1) is the F-box protein CORONATINE 

INSENSITIVE 1 (COI1), which is part of a Skp/Cullin/F-box-type E3 ubiquitin ligase 

complex (SCF
COI1

), to which it provides substrate specificity. The targets of the 

SCF
COI1 

complex are the JA ZIM domain (JAZ) family of repressor proteins. JAZ and 

COI1 proteins directly interact in the presence of the bioactive JA-isoleucine (JA-Ile) 

conjugate to form a co-receptor complex. Although ubiquitination of the JAZ proteins 

by SCF
COI1 

remains to be proven, this interaction ultimately triggers the degradation 

of the JAZ proteins by the 26S proteasome (Browse, 2009; Chini et al., 2009a; 

Memelink, 2009; Pauwels et al., 2009). The JAZ proteins contain a highly conserved 

TIFY motif within the ZIM domain (Vanholme et al., 2007) that mediates homo- and 

heterodimeric interactions between different JAZ proteins (Chini et al., 2009b; Chung 

and Howe, 2009). The ZIM domain also functions to recruit transcriptional co-

repressors, such as TOPLESS (TPL), through the Novel Interactor of JAZ (NINJA) 

protein (Pauwels et al., 2010). The JAZ proteins are further characterized by a 

conserved C-terminal Jas domain, which is required for the interaction with both 

COI1 and a broad array of TFs (reviewed in (Pauwels and Goossens, 2011)). JA-

triggered JAZ degradation releases these TFs, which each modulate expression of 

specific sets of JA-responsive genes and thereby the production of specific sets of 

secondary metabolites (Figure 1). 

In Arabidopsis, the basic helix–loop–helix (bHLH) factor MYC2 is the best known 

target of the JAZ proteins (Figure 1 and Figure 2a). MYC2 has been shown to be both 

directly and indirectly involved in regulating secondary metabolite induction. It 

positively regulates TFs and biosynthetic enzymes of flavonoid biosynthesis but 

negatively controls tryptophan (Trp)-derived indole glucosinolate synthesis 

(Dombrecht et al., 2007). The C. roseus MYC2 homologue regulates the expression 

of the ORCA TFs by direct binding to the ‘on/off switch’ in the promoter of the 

ORCA3 gene, and thereby controlling expression of several TIA biosynthesis genes 

(Zhang et al., 2011) (see below, Figure 2b). In common tobacco (Nicotiana tabacum), 

MYC2a/b proteins upregulate the ORCA-related NIC2 locus 

APETALA2/ETHYLENE Response Factor (AP2/ERF) TFs that regulate nicotine 

biosynthesis (see below, Figure 2c). In parallel, they also directly bind the target 

promoters of several nicotine biosynthesis genes (Shoji and Hashimoto, 2011; Zhang 

et al., 2012). Accordingly, co-expression with the MYC2 TFs stimulated the 

functionality of at least one of these NIC2 locus AP2/ERFs, whereas co-expression 

with the JAZ proteins reduced it (De Boer et al., 2011). In the related species N. 
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benthamiana, the MYC2-homologues NbbHLH1 and NbbHLH2 also function as 

positive regulators in the JA-mediated activation of nicotine biosynthesis (Todd et al., 

2010). 

JAZ proteins also directly interact with other TFs with a well-established role in the 

synthesis of secondary metabolites, such as the bHLH TFs GLABRA3 (GL3), 

ENHANCER OF GL3 (EGL3) and TRANSPARENT TESTA8 (TT8), and the R2R3-

MYB TF PAP1 [28], which together compose transcriptional activator complexes that 

control anthocyanin biosynthesis and are conserved in the plant kingdom (reviewed in 

(Dubos et al., 2010; Petroni and Tonelli, 2011) (Figure 1 and Figure 2a). Analogous to 

the MYC-type bHLHs, the JAZ proteins repress the activity of these TFs and JAs 

elevate this repression in a COI1-dependent manner (Qi et al., 2011).  

These examples indicate that the highly conserved COI1-JAZ co-receptor complex is 

central in the JA-mediated metabolic reprogramming in a variety of plant species. As 

well as direct JAZ interactors, many more TFs with a proven role in JA-mediated 

elicitation of a specific metabolic pathway exist (Table 1). Insights into the molecular 

mechanisms that govern the link between the conserved module and the plethora of 

(species-specific) regulators are increasing, but the full picture on how the central 

module exerts control over evolutionary distant metabolic pathways, leading to 

natural products of a wide structural variety, is still lacking. 
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Figure 1. The jasmonate (JA) perception and early signalling modules that elicit secondary 

metabolism in plants. (a) In the absence of JA-isoleucine (JA-Ile), JA ZIM domain (JAZ) 

proteins interact with co-repressor complexes containing Novel Interactor of JAZ (NINJA) 

and/or TOPLESS. Through binding with transcription factors (TFs), such as MYC2, 

GLABRA3 (GL3) and PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1), the JAZ 

proteins block TF activity and repress JA-responsive gene expression and anthocyanin 

biosynthesis. (b) Upon stress or developmental cues (i.e. when JA-Ile levels rise), the 

bioactive hormone binds the CORONATINE INSENSITIVE 1 (COI1) receptor in the 

Skp/Cullin/F-box-type E3 ubiquitin ligase (SCF
COI1

) complex, thereby recruiting the JAZ 

proteins, targeting them for their degradation by the 26S proteasome, and ultimately leading to 

the release of the TFs that can modulate the expression of JA-responsive and anthocyanin 

synthesis genes. Abbreviation: TTG1, TRANSPARENT TESTA GLABRA 1. 
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Figure 2. Transcriptional networks that regulate secondary metabolism in model and 

medicinal plants. Jasmonate (JA)-modulated regulation of: (a) anthocyanin, camalexin and 

glucosinolate synthesis in Arabidopsis thaliana; (b) terpenoid indole alkaloid synthesis in 

Catharanthus roseus; (c) nicotine synthesis in Nicotiana tabacum; and (d) artemisinin 

synthesis in Artemisia annua. Solid and broken lines indicate proven and hypothetical (yet to 

be experimentally established) links, respectively, that can be either direct or indirect. Arrows 

indicate positive interactions; T-bars indicate negative interactions. Asterisks indicate that the 

identity (i.e. sequence) of the COI1, JAZ or MYC2 proteins from a given species has not yet 

been determined. Abbreviations: EGL3, ENHANCER OF GL3; JAM1, JA factor stimulating 

MAPKK 1; MEKK1, MAPK/ERK KINASE KINASE 1; ORCA2/3, OCTADECANOID-

DERIVATIVE RESPONSIVE CATHARANTHUS AP2-DOMAIN 2 and 3; TT8, 

TRANSPARENT TESTA 8. 

4 Importance of MYB factors in secondary metabolite biosynthesis 

MYB TFs are characterized by one or more copies of a highly conserved MYB DNA-

binding domain that consists of imperfect sequence repeats of about 52 amino acids 
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(aa) (Feller et al., 2011). The largest subfamily, the R2R3-MYBs, has members 

involved in the regulation of diverse metabolic pathways, including many phenolics, 

such as anthocyanins, proanthocyanidins, flavonols, lignins and volatile benzenoids, 

in a wide range of different plant species (Dubos et al., 2010; Spitzer-Rimon et al., 

2010; Feller et al., 2011; Petroni and Tonelli, 2011). Some of these R2R3-MYBs are 

JA-responsive, such as PAP1, which regulates the expression of anthocyanin 

biosynthesis genes, and thereby induces anthocyanin accumulation in Arabidopsis 

(Borevitz et al., 2000; Shan et al., 2009) (Figure 2a). It has been well established that 

R2R3 MYB proteins interact and exert a combinatorial regulation with bHLH TFs to 

activate phenolic biosynthesis. Within these protein complexes, the R2R3-MYBs 

confer the specificity for the downstream effects and these interactions seem to be 

conserved across the plant kingdom (Feller et al., 2011; Petroni and Tonelli, 2011). 

For instance, in Arabidopsis, the bHLH TFs TT8, GL3 and EGL3 can all interact with 

PAP1. JAs can affect the abundance and activity of these bHLH and MYB proteins, 

both at the transcriptional and post-translational level, through induced expression of 

the corresponding TF genes and interaction with the JAZ proteins, respectively (Maes 

et al., 2008; Qi et al., 2011) (Figure 1 and Figure 2a). The latter regulatory aspect 

raises another intriguing question. Earlier to the finding that JA treatment can induce 

the activity of the ‘PAP1 complex’ through the depletion of the inhibitory JAZ 

proteins (Qi et al., 2011), it was demonstrated that also the R1-MYB protein MYBL2 

is a strong negative regulator of anthocyanin biosynthesis (Dubos et al., 2008; Matsui 

et al., 2008). It remains to be determined whether MYBL2 expression is also regulated 

by JAs or whether this repressor protein is redundant to the JAZ, and acts 

concomitantly (e.g. in the same organs) and/or additively with the JAZ proteins to 

block PAP1 activity. A similar reflection can be made on the role of the R1 MYB 

proteins TRIPTYCHON (TRY), CAPRICE (CPC), ENHANCER OF TRY AND 

CPC1 (ETC1), and ETC2 that negatively regulate trichome formation, another JA-

modulated process that is dependent on the TT8, GL3 and EGL3 bHLH TFs, and the 

expression of which has already been demonstrated to be influenced by JA, either in a 

positive (CPC) or negative manner (TRY, ETC1, and ETC2) (Maes et al., 2008). 

In Arabidopsis, other R2R3 MYB TFs involved in phenolic synthesis have been 

described, such as MYB11, MYB12 and MYB111 for flavonols or MYB123 for 

proanthocyanidin biosynthesis (Baudry et al., 2004; Stracke et al., 2007; Dubos et al., 

2010). However, so far, a possible link with the JA response awaits further 

characterization. By contrast, in tobacco, the JA-inducible R2R3 MYB, MYBJS1, 

was shown to induce phenylpropanoid biosynthetic genes and the accumulation of 



Transcriptional machineries in jasmonate-elicited plant secondary metabolism 19 

 

 

 

phenylpropanoid-polyamine conjugates during stress (Gális et al., 2006). A related 

MYB, MYB8, was recently found to control inducible phenolamide levels in 

Nicotiana attenuata (Onkokesung et al., 2012). 

Besides phenolic compounds, MYB TFs control the biosynthesis of another important 

class of secondary metabolites in Arabidopsis, the glucosinolates (GLS). MYB34, 

MYB51 and MYB122 control the indole GLS pathway and MYB28, MYB29 and 

MYB76 regulate the aliphatic GLS pathway (Gigolashvili et al., 2007b; Gigolashvili 

et al., 2007a; Hirai et al., 2007; Gigolashvili et al., 2008; Dubos et al., 2010). At least 

one of them, MYB29, has been shown to play an accessory role in the JA-mediated 

elicitation of aliphatic GLS synthesis (Hirai et al., 2007) (Figure 2a). Finally, a JA-

responsive R2R3 MYB TF from the loblolly pine (Pinus taeda), MYB14, was 

identified as a putative regulator of a broad defence response implicating flavonoids 

and isoprenoids. Overexpression of pine MYB14 in transgenic white spruce (Picea 

glauca) has been shown to impact the terpenoid-, flavonoid-, and JA-related 

transcriptome and to stimulate terpene and anthocyanin accumulation (Bedon et al., 

2010). 

5 Importance of AP2/ERFs in JA-modulated alkaloid biosynthesis  

The AP2/ERF TFs are characterized by their AP2/ERF DNA-binding domain and 

several members of the ERF-subfamily have proven roles in JA-responsive gene 

expression (Memelink, 2009). The previously mentioned Madagascar periwinkle JA-

responsive ORCA TFs, in particular ORCA2 and ORCA3, are the most renown 

members of the subfamily and interact with the promoters of their target genes (e.g. 

strictosidine synthase, Str) via sequence-specific binding to the GCC-element, a 

hallmark of the ERF-subfamily (Memelink et al., 2001; Van Der Fits and Memelink, 

2001; Memelink, 2009; De Boer et al., 2011) (Figure 2b). As such, ORCA3 controls 

expression of multiple genes encoding enzymes involved in all branches of the TIA 

pathway, including the primary plastidial isopentenyl pyrophosphate pathway and the 

periwinkle-specific secondary TIA pathways. However, because not all TIA pathway 

genes are under ORCA3 control, ORCA3 overexpression was not sufficient to elicit 

TIA synthesis in transgenic C. roseus cells (van der Fits and Memelink, 2000). It 

remains to be determined whether the target genes of ORCA2 might be different from 

those of ORCA3 or whether they might act redundantly (Memelink et al., 2001). 

Transcript profiling of tobacco mutants with deficient nicotine biosynthesis (nic 

mutants) revealed at least seven ERF genes involved in nicotine biosynthesis, 

including ERF189 and ORC1/ERF221, which cluster together in the NIC2 locus and 
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are upregulated by JA elicitation (Figure 2c). These TFs specifically activate all 

known structural genes in the nicotine pathway and at least one TF, ERF189, can 

recognize a GCC-box element in the promoter of the gene encoding the enzyme that 

catalyses the first committed step in nicotine biosynthesis, putrescine N-

methyltransferase (PMT). Correspondingly, ERF189 overexpression increases 

nicotine biosynthesis gene expression in transgenic hairy roots (Shoji et al., 2010) 

(Figure 2c). ORC1 is a close homolog of C. roseus ORCA3 and its overexpression 

stimulated alkaloid biosynthesis in stably transformed tobacco plants and tree tobacco 

(Nicotiana glauca) root cultures (De Boer et al., 2011). Furthermore, the activity of 

both ORC1 and the MYC-type bHLH proteins can be post-translationally upregulated 

by a JA-modulated phosphorylation cascade, in which a specific mitogen-activated 

protein kinase kinase, JA factor stimulating MAPKK 1 (JAM1), is active (De Boer et 

al., 2011) (Figure 2c). 

It is likely that more AP2/ERF TFs involved in JA-elicited secondary metabolite 

production will be revealed. Recently, two JA-responsive ERF TFs were isolated 

from Artemisia annua, ERF1 and ERF2, which can bind and transactivate the 

promoters of the genes encoding amorpha-4,11-diene synthase (ADS) and a 

cytochrome P450 monooxygenase (CYP71AV1), which are both involved in the 

biosynthesis of the antimalarial sesquiterpene lactone artemisinin (Figure 2d). 

Transgenic A. annua plants overexpressing either TF showed elevated expression of 

both synthesis genes and an increased accumulation of artemisinin and precursors 

thereof (Yu et al., 2012). The finding that phylogenetically distant plant species have 

all recruited closely related TF genes to control expression of JA-inducible enzymes 

catalysing their respective specific metabolic pathways, further corroborates the 

hypothesis that the JA elicitor signalling machinery seems to be conserved and 

installed early in the higher plant lineage and evolved to control evolutionary distinct 

secondary metabolic pathways. This hypothesis awaits further confirmation while 

other (medicinal) plant species are being investigated. 

6 Other JA-responsive TFs that activate secondary metabolite 

biosynthesis  

Transcriptional regulators of two other TF families have been reported to be involved 

in transcriptional reprogramming of secondary metabolite pathways in a JA-inducible 

manner, but their exact position in the JA signalling cascades and/or their interaction 

with the JA core module remains unclear. 
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The WRKY TFs, characterized by their highly conserved 60-aa long WRKY domain, 

composed of the conserved heptapeptide sequence WRKYGQK, have been 

implicated in a diverse range of stress tolerance and development programmes 

(Rushton et al., 2010; Agarwal et al., 2011). Several WRKY TFs may regulate 

secondary metabolism biosynthesis in response to JA elicitation as suggested by their 

(fast) upregulation by JA treatment. Examples include: (i) cotton (Gossypium 

arboretum) WRKY1, which can transactivate the promoter of the (1)-δ-cadinene 

synthase (CAD1) gene, and so might participate in the regulation of sesquiterpene 

phytoalexin biosynthesis (Xu et al., 2004); (ii) A. annua WRKY1, which can 

transactivate the promoter of the ADS gene, and so might participate in the regulation 

of artemisinin synthesis (Ma et al., 2009) (Figure 2d); and (iii) Madagascar periwinkle 

WRKY1, which may participate in the regulation of TIA biosynthesis through an as 

yet undefined manner (Suttipanta et al., 2011) (Figure 2b). In all cases, the WRKY 

TFs were shown to bind the W-box in the promoters of the respective biosynthetic 

genes. Furthermore, JA-responsive WRKY factors may also regulate accumulation of 

lignin or other phenolics in rice (Oryza sativa), Medicago truncatula and tobacco 

(Wang et al., 2007; Naoumkina et al., 2008).  

Some WRKY genes may enable cross-talk between JA and other hormone or stress 

response signalling pathways, and thereby provide additional ways to modulate 

secondary metabolite synthesis. WRKY33, a pathogen-inducible TF, functions 

downstream of two pathogen-responsive mitogen-activated protein kinases, MPK3 

and MPK6, to change the expression of camalexin biosynthetic genes, and to drive 

production of camalexin, the major phytoalexin in Arabidopsis. The MPK3/MPK6 

phosphorylation cascade regulates both WRKY33 expression and WRKY33 activity 

(Mao et al., 2011). MPK6 is a downstream target of a MAPK kinase, MKK3, and the 

MKK3/MPK6 cascade can be activated in response to JA and regulate, among others, 

MYC2 expression (Takahashi et al., 2007) (Figure 2a). Silencing of two insect-

responsive (but not JA-responsive) WRKY genes from the native tobacco Nicotiana 

attenuata, WRKY3 and WRKY6, makes plants highly vulnerable to herbivores by 

impairing JA accumulation and synthesis of sesquiterpene volatiles such as cis-α-

bergamotene (Skibbe et al., 2008). 

Recently, induction of camalexin synthesis was also demonstrated to be positively 

controlled by ANAC042, a member of the NAM, ATAF1/2 and CUC2 (NAC) TFs. 

ANAC042-mediated control of camalexin synthesis likely occurs via transcriptional 

regulation of the genes encoding the cytochrome P450 proteins CYP71A12, 

CYP71A13, and CYP71B15/PAD3 in an unknown signalling pathway distinct from 
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the WRKY33 pathway. ANAC042 expression can be downregulated by JA treatment, 

enabling JA-modulated control of camalexin synthesis (Saga et al., 2012). 

To date, two members of the plant-specific DNA-binding with one finger (Dof) 

family of TFs have been characterized as JA-modulated regulators of secondary 

metabolism. The Dof TFs carry a highly conserved DNA-binding domain that is 

thought to include a single C2–C2 zinc finger (Yanagisawa, 2002, 2004). The JA-

inducible OBP2/DOF1.1 plays a positive role in mediating indole glucosinolate 

biosynthesis in Arabidopsis (Skirycz et al., 2006), whereas the JA-repressed DOF4;2 

influences Arabidopsis phenylpropanoid metabolism in an environmental and tissue-

specific manner (Skirycz et al., 2007). 

7 Positive and negative feedback loops boost the system but not at all 

cost 

A tight and coordinated control of hormone biosynthesis and signalling is required to 

fine-tune the broad effects that hormones have. In the case of JAs, and more 

specifically for JA-mediated induction of secondary metabolism, a strong and rapid 

induction is vital, particularly during defence responses. The JA signal needs to 

persist or even to intensify as long as the plant is under attack. As a consequence, the 

plants have evolved a positive feedback system with loops at various control points, 

termed the autoregulatory JA loop (Wasternack, 2007). First, a control point is 

situated at the genes encoding JA biosynthesis enzymes that are all JA-inducible and 

controlled by JA-responsive TFs, such as MYC2 and ORA47, allowing bioactive JA 

synthesis to be boosted (Wasternack, 2007; Pauwels et al., 2008; Pauwels et al., 

2009). Second, many genes encoding TFs involved in the primary JA response, such 

as MYC2, are themselves rapidly induced by the same signal and can modulate their 

own expression (Dombrecht et al., 2007; Pauwels et al., 2009). Third, other sets of 

regulators, such as the TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) TFs, and 

the auxin response factors ARF6 and ARF8, can positively influence JA biosynthesis 

in a developmental context (Nagpal et al., 2005; Schommer et al., 2008). The 

machineries involved in the autoregulatory JA loop have mainly been studied in 

Arabidopsis, but the phenomenon is conserved among plants (Wasternack, 2007; 

Pauwels et al., 2009). Correspondingly, a member of the sunflower (Helianthus 

annuus) homeodomain-leucine zipper (HD-ZIP) subfamily, HAHB4, was identified 

as a positive regulator of the synthesis of JAs and green leaf volatiles (GLVs), in the 

defence responses against (a)biotic stresses. HAHB4 upregulates the transcript levels 
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of several genes involved in JA and GLV biosynthesis and HAHB4 expression itself is 

stimulated by JAs (Manavella et al., 2008). 

In addition to positive loops, negative feedback is also needed to shut down plant 

defence and stress responses when they are not needed, to avoid energy being wasted. 

Multiple regulatory mechanisms have been developed to keep such energy-consuming 

responses silent during normal conditions. As a result, negative regulators are key 

components in the control of stress-related gene expression. ERF-associated 

amphiphilic repression (EAR) domain-containing proteins have been identified as 

characteristic elements of transcriptional repression of gene expression in plants 

(Kazan, 2006). Some EAR proteins have been shown to be active in metabolic 

pathways. In C. roseus, three members of the EAR-domain containing TF IIIA-type 

zinc finger protein family, ZCT1, ZCT2 and ZCT3, were reported to bind the 

promoters of the STR and Tryptophan decarboxylase (TDC) genes and thereby repress 

their expression, at least in transient promoter activity assays (Pauw et al., 2004) 

(Figure 2b). Acting early and conserved in the JA signalling pathway, the NINJA 

protein, as well as some of the JAZ proteins themselves (e.g. JAZ5 and JAZ8), 

contain an EAR motif, which interacts with TPL to repress the activity of JAZ-bound 

TFs (Kagale et al., 2010; Pauwels et al., 2010) (Arabidopsis Interactome Mapping 

Consortium, 2011). Upon JA perception, expression of JAZ, NINJA and ZCT genes is 

increased (notably, in the case of the JAZ genes by MYC2 itself) to produce negative 

feedback loops, which guarantee the instalment of balanced defence responses (Pauw 

et al., 2004; Chini et al., 2007; Pauwels and Goossens, 2008; Pauwels et al., 2009; 

Kagale et al., 2010; Pauwels et al., 2010; Figueroa and Browse, 2012). 

8 Concluding remarks and future prospects 

JAs have an evolutionarily conserved role in the reprogramming of plant secondary 

metabolism in response to various environmental or developmental stimuli. An 

important aspect herein is the concerted transcriptional activation of the genes 

encoding the enzymes that catalyse the secondary metabolic reactions. Often, JAs 

simultaneously induce all known biosynthetic genes from a particular pathway, as 

illustrated by the TIA, nicotine and artemisinin pathways in C. roseus, N. tabacum 

and A. annua, respectively (van der Fits and Memelink, 2000, 2001; Maes et al., 

2011). The discovery of arrays of TFs that are activated early during JA elicitation 

triggered the hope of finding master regulators that could be used to boost the 

production of specific sets of valuable natural products. Although overexpression of 

several discussed TFs could stimulate synthesis of some secondary metabolites, no 
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master switches have been found that can mimic the full JA spectrum, neither 

quantitatively nor qualitatively, or replace JAs in plant engineering programmes.  

The concerted transcriptional activation of whole pathways by JAs is not necessarily 

evoked by the action of a single TF. On the contrary, a combinatorial role for several 

TFs in the regulation of different enzymes or suites of enzymes seems currently more 

plausible to account for the control of biosynthetic pathways by JAs. These TFs can 

either belong to the same or different families and/or be subjected to different 

environmental or developmental cues. A classic example is the finding that ORCA3 

controls the expression of the genes encoding the TDC, STR, CytP450 reductase 

(CPR) and desacetoxyvindoline 4-hydroxylase (D4H) enzymes but not those 

corresponding to the geraniol 10-hydroxylase (G10H), strictosidine β-d-glucosidase 

(SGD) and acetyl-CoA:4-O-deacetylvindoline 4-O-acetyltransferase (DAT) enzymes 

involved in the C. roseus TIA pathway (van der Fits and Memelink, 2000; Memelink 

et al., 2001). TF(s) that regulate expression of the latter three genes still await 

discovery. Combinatorial action of TFs has already been demonstrated in the JA-

mediated elicitation of tobacco nicotine biosynthesis, which involves and requires the 

concerted action of AP2/ERF and bHLH factors (De Boer et al., 2011), and likely 

additional, but yet unknown, TFs that determine the cell and organ specificity of the 

nicotine synthesis pathway. 

Indeed, biosynthesis of secondary metabolites is spatially often very strictly regulated. 

For instance, nicotine and artemisinin biosynthesis occur exclusively in specific cell 

layers of tobacco roots and A. annua trichomes, respectively, even after JA elicitation. 

Usually, this correlates well with the expression patterns of the genes encoding the 

enzymes that catalyse for instance committed steps in the pathway, such as of PMT in 

nicotine and ADS in artemisinin synthesis, respectively (Shoji et al., 2000; Kim et al., 

2008). However, little is known on the role of the JA-modulated TFs in the 

determination of this tissue or organ specificity. On the contrary, none of the TFs 

known to be involved in the regulation of nicotine and artemisinin biosynthesis (Table 

1) are expressed exclusively in the roots or trichomes, respectively, and many of them 

seem to be ubiquitously expressed throughout the plants. Similarly, JA-mediated JAZ 

degradation and subsequent induction of TF expression occurs ubiquitously in the 

plant, suggesting that other, perhaps non JA-modulated TFs or other regulatory 

mechanisms are also at play. 

It is now clear that the regulation of plant secondary metabolism constitutes more than 

just an on/off-switch but rather that it is subjected to complex control mechanisms 

integrated in robust cellular networks. This then leads on to the question of how future 
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gene discovery programmes should be designed to enable an increase in the 

understanding of plant metabolism and the generation of new generic tools for plant 

metabolic engineering. The booming of functional genomics technologies that 

increase the resolution and coverage of genome, transcriptome, proteome, 

interactome, as well as metabolome analysis offers unprecedented ways of listing all 

the possible players involved in the regulation of plant metabolism. Ever more 

important will be the design of original screens that not only reveal the identity of as 

yet unknown regulators, but also detect as yet unknown regulatory mechanisms. A 

nice example of the latter was the recent finding that JAZ proteins not only directly 

interact with the MYC-type TFs, but also with the related bHLH proteins TT8, GL3 

and EGL3, and the R2R3 MYB protein PAP1 (Qi et al., 2011). As such, JAs exert 

post-translational control over anthocyanin accumulation, as JA-induced degradation 

of JAZ proteins abolishes the interactions between the JAZ and the bHLH and MYB 

factors, which in turn releases the latter to activate the downstream signal cascades 

that trigger anthocyanin accumulation. Past and ongoing screens suggest that JAZ can 

interact with a broad array of TFs that each control specific downstream processes 

(reviewed in (Pauwels and Goossens, 2011)). 

Screens for TFs that transactivate particular biosynthesis genes or for proteins that 

interact with, and thereby modulate the activity of, known activator TFs, are likely to 

keep delivering new (transcriptional) regulators of plant secondary metabolism. As a 

result, a more in-depth view on the JA signalling cascade might be obtained and 

factors might be found that specifically control one (or more) secondary metabolic 

pathway(s), and do not affect plant viability and growth when overexpressed in 

transgenic plants or plant cultures, an undesired but frequently occurring ‘side-effect’ 

for many of the known JA-responsive TFs. However, inspiration for future screens 

should also be sought beyond these boundaries, in the biological context of JA-

triggered secondary metabolite synthesis, for instance. Plants produce species-specific 

bioactive or protective compounds to face particular acute biotic or abiotic stresses or 

to ensure an appropriate fitness-cost response when they experience prolonged stress 

periods. These responses not only demand the action of JAs, but also that of many 

other hormones that crosstalk with the JAs, such as abscisic acid (ABA), ethylene or 

salicylic acid. Hence, screens for hormonal crosstalk points might reveal new 

checkpoints that control the reprogramming of plant metabolism, both quantitatively 

and/or qualitatively, as illustrated by a recent study on the interaction between JA and 

ABA (Lackman et al., 2011). 
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Similarly, we can also learn from evolution and signalling in other, non-plant 

organisms. As mentioned above, oxylipins also regulate fungal secondary metabolism 

(Yu and Keller, 2005; Tsitsigiannis and Keller, 2007) but the exact mechanisms by 

which this occurs remain to be determined. Hallmarks of fungal secondary 

metabolism are the gene clusters that contain cluster-specific TFs functioning to co-

activate the biosynthetic genes present in their respective cluster (Palmer and Keller, 

2010). These TFs can be (de)activated in response to a variety of environmental 

stimuli such as light, pH, nutrients and temperature via signal transduction cascades 

that involve other TFs with a broader action range. However, an important aspect in 

the control of fungal secondary metabolism is dependent on the ‘locality’, that is, on 

the chromosomal location of the gene cluster because of the action of a conserved 

global regulator complex, the velvet complex, which is involved in chromatin 

remodelling at the cluster loci (Palmer and Keller, 2010) (Figure 3a). Interestingly, 

examples of secondary metabolic gene clusters have now also been discovered in 

plants (Osbourn, 2010), and cell type-specific chromatin decondensation has been 

observed for the avenacin gene cluster in oat (Avena strigosa), which has provided 

new insights into the regulation of secondary metabolism in plants (Wegel et al., 

2009). Similar chromatin effects may represent the modus operandi of the JAZ 

proteins, which (in)directly recruit co-repressors such as the TPL proteins, which have 

been linked with histone deacetylases and demethylases (Long et al., 2006; Macrae 

and Long, 2011) (Figure 3b). Whether the order of events is “chromatin remodelling 

allowing TF activation or TF binding allowing chromatin remodelling” (Palmer and 

Keller, 2010), and whether this link between chromatin remodelling and TF activity is 

a conserved mechanism in oxylipin signalling to control secondary metabolism in 

eukaryotes, are questions that still need further investigation.  
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Figure 3. Oxylipin-responsive transcriptional networks that modulate secondary metabolism 

in plants and fungi. (a) An integrated model for oxylipin- and chromatin-mediated control of 

secondary metabolite gene clusters in fungi. Environmental stimuli cause production of fungal 

oxylipins (e.g. the psi factor) that trigger signal transduction cascades towards the production 

of secondary metabolites. These signals involve the velvet complex (containing the LaeA, 

VeA and VelB proteins), which activates gene transcription of secondary metabolite cluster 

genes (including the cluster-specific transcription factor AflR) by mediating chromatin 

remodelling and facilitating RNA polymerase II (Pol II) action. Conversely, the activity of 

histone deacetylases (HDAC) and H3K9 methyltransferases (ClrD) is associated with 

silencing of the gene cluster (Palmer and Keller, 2010). (b) A proposed mechanistic model for 

jasmonate (JA) ZIM domain (JAZ)-mediated transcriptional repression of the JA response in 

plants. The JAZ–NINJA-TPL complex represses the transcriptional activity of transcription 

factors, such as MYC2 (Pauwels et al., 2010). It is postulated that co-repressors such as TPL 

restrain gene expression by recruiting histone deacetylases (e.g. HDA19) and demethylases 

(e.g. Jumonji8) to remodel chromatin into a silent state, and/or inhibiting the activity of the 

RNA Pol II (Long et al., 2006; Macrae and Long, 2011), but the importance of the latter 

proteins for the regulation of plant secondary metabolism remains to be determined. It has also 

been postulated that JAZ proteins might directly interact with HDA proteins (Zhu et al., 2011) 

or use different repression mechanisms for different TF sets (Pauwels and Goossens, 2011), 

theories that require further investigation in the frame of the regulation of plant secondary 

metabolism. 
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Abstract 

The genus Medicago, a member of the legume (Fabaceae) family, comprises 87 

species flowering plants, including forage crop alfalfa (Medicago sativa) and the 

model legume M. truncatula. As legume, Medicago species can establish symbiotic 

interaction with nitrogen- fixing bacteria in root nodules. To facilitate this 

interaction and to deter pathogen and herbivore, Medicago species accumulate a 

variety of bioactive natural products. For human, these compounds possess 

promising pharmaceutical activities. Here we provide a detailed of flavonoids and 

triterpene saponin, as the two most important classes of natural products 

produced by Medicago species. For each class we review the accumulating 

compounds, their biosynthesis, regulation and the advances in their genetic 

engineering and metabolic profiling. Furthermore, the biological role of these 

small molecules in terms of plant fitness, symbiosis and defense and ultimately 

their impact on human health are discussed. 

1 Introduction 

Legumes constitute a highly diverse plant family that encompasses economically 

important crops and provides about one- third of humankind’s protein intake, fodder and 

forage for livestock, and raw materials for industries. They are unique among cultivated 

plants because of their ability to establish symbiotic interactions with the nitrogen-fixing 

bacteria, which leads to the formation of root nodules. In the nodules the bacteria 

differentiate into bacteroids and catalyze a symbiotic nitrogen fixation process referred to 

the reduction of atmospheric di-nitrogen into biologically useful ammonia (Jones et al., 

2007). In addition, legumes are rich sources of health promoting phytochemicals such as 

isoflavones and triterpene saponins (Dixon and Sumner, 2003; Zhu et al., 2005).  

The genus Medicago comprises 87 species of flowering plants belong to the legume 

family (Fabaceae) and  includes the widely cultivated crop species alfalfa (Medicago 

sativa) and the model legume barrel medic (M. truncatula) (Steele et al., 2010; Sanders et 

al., 2011; Small, 2011). Due to the presence of agriculturally and economically important 

species, such as alfalfa, the Medicago genus has been the subject of numerous studies 

(Small, 2011). Alfalfa is the fourth largest crop economically (after corn, soybean, and 

wheat respectively) in North America and the temperate world’s most forage crop (Small, 

2011). It is a valuble food for livestock and alfalfa sprouts are a very popular human food. 

There has been a great interest recently to use it as a potential source of protein for human 

food and protein-based pharmaceuticals. In addition, alfalfa is likely the world’s most 

environmentally friendly crop and has great potential to reduce negative ecological 
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aspects of agriculture. Beside alfalfa, other Medicago spp. are being used as medicine, 

human food, green manure, sources of industrial enzymes in biotechnology, model 

genomic species, and model systems for the study of nitrogen fixation (Young and 

Udvardi, 2009; Small, 2011).  

Alfalfa is an obligate outcrossing and tetraploid species which make genetic and genomic 

studies difficult. Therefore, Medicago truncatula was developed as a model legume (Choi 

et al., 2004; Zhou et al., 2011). M. truncatula is an annual, diploid and autogamous 

legume with a moderate genome size (500-550 Mbp) and it is a close relative of alfalfa. 

These properties collectively establish M. truncatula as a model plant for legume genetics 

and genomics studies. Furthermore, the availability of a wide range of genomic (Cannon 

et al., 2006; Young et al., 2011) and genetic resources (Tadege et al., 2009) for this 

species makes it an invaluable model for studying secondary metabolism of legumes at 

the molecular genetic level (Zhou et al., 2011).  

Improved functional genomic technologies such as transcriptomics, proteomics and 

metabolomics provide opportunities for an in-depth understanding of secondary 

metabolism in plants. In the model legume M. truncatula an integrated functional 

genomics approach were used to study natural product biosynthesis (Vorwerk et al., 2004; 

Achnine et al., 2005; Broeckling et al., 2005; Suzuki et al., 2005; Naoumkina et al., 

2008). Such an integrated functional genomics approaches led to the reconstruction of the 

metabolic map of the pathways of the first legume pathway database for M. truncatula 

“MedicCyc” (http://www.noble.org/MedicCyc/). MedicCyc was generated based on new 

genomic sequence data and more than 225000 M. truncatula expressed sequence tags 

(ESTs) (Urbanczyk-Wochniak and Sumner, 2007). It currently represents over 400 

pathways including the involved genes, enzymes and the resultant metabolites.   

Among the secondary metabolites produced by Medicago spp., triterpene saponins and 

phenylpropanoid-derived isoflavonoids are of high interest and have been explored more 

thoroughly than the others (Dixon and Sumner, 2003). Lignins are the other 

phenylpropanoid- derived compounds that are found in all higher plants, and an important 

factor affecting cell wall digestibility in forage legumes including alfalfa (Dixon and 

Sumner, 2003). 

In addition, the occurrence of alkaloids like stachydrine and trigonelline (Phillips et al., 

1995a), cyanogenic glycosides (cyanogens) and nonprotein amino acids (NPAAS) such 

as canavanine (Wink et al., 2010) have been also reported in Medicago species.  
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This review provides a comprehensive overview of flavonoids and triterpene saponin, as 

the two most important classes of natural products produced by the genus Medicago and 

their impact on plant survival and human health. Here, for each class, the biosynthesis, 

their regulation and the most recent advances in the genetic engineering are discussed. 

Furthermore, we also describe their effects on plant structure, growth and development, 

their role in plant defense and ultimately their impact on human health. 

2 Flavonoid 

Flavonoids comprise one of the largest groups of secondary metabolites found 

ubiquitously in plants. Their wide occurrence, complex diversity and various functions 

have made them attractive for chemical, genetic and biological studies. They play various 

important biochemical and physiological roles by affecting several developmental 

processes. Flavonoids are responsible for much of the red, blue, and purple pigmentation 

found in plants and flowers and different classes of these compounds and their conjugates 

are involved in the interactions of plant with the environment, both in biotic and abiotic 

stress conditions (Dixon and Paiva, 1995; Shirley, 1996). In addition, the evidences of 

their beneficial effects on human health are growing. Flavonoids are characterized by 

polyphenolic structure, i.e. the basic C6-C3-C6 structural skeleton consisting of a double 

ring attached by a single bond to a third one. C ring is the heterocyclic benzopyran ring 

fused to the aromatic A ring, and the B is attached to the phenyl ring (Fig. 1). Based on 

different alterations and further modifications of this common backbone, flavonoids have 

been classified into different subclasses. 

 

Figure 1. Flavonoid general structure. 

2.1 Flavonoids in Medicago species 

M. sativa and other Medicago species accumulate a variety of flavonoids. The main 

subclasses of flavonoids in Medicago comprise of chalcones, flavones, flavanones, 

isoflavones, flavonols, pterocarpan, aurones, anthocyanidin glycosides (anthocyanin) and 
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proanthocyanidins (PAs)(flavan-3-ol polymers) (Fig. 2). Table 1 presents the list of the 

flavonoid compounds have been reported in Medicago species, so far. 

  

   

 
  

   

Figure 2 The main subclasses of flavonoids found in Medicago spp. 

  



Natural product biosynthesis in Medicago species 40 

 

 
 

Table 1 Flavonoids and their glycoconjugates identified in different species of Medicago genus. 
Abbreviations of sugars and acyl groups: GlcA-glucuronic acid, Glc-glucose, Mal-malonic acid, 
Fer-ferrulic acid, Cou-Coumaric acid, GlcAPyr: glucuronopyranosyl  

No. Compound Source Tissue References 

Chalcones 

1 Isoliquiritigenin  M. truncatula  Cell cultures (Farag et al., 2007) 
2 Isoliquiritigenin M. sativa Leave (Deavours and 

Dixon, 2005) 
   Sprout (Hong et al., 2011) 

Flavanones 

3 Naringenin M. truncatula Hairy roots , 
suspension 
root cell 
cultures 

(Staszkow et al., 
2011) 

   Cell cultures (Frag et al., 2007 
4 Liquiritigenin M. truncatula Hairy roots , 

suspension 
root cell 
cultures 

Staszków, et al. 
2011) 

   Cell cultures (Frag et al., 2007 
  M. sativa Leave Deavours et al.,  

2005) 
   Sprout (Hong,2011) 
5 p-Hydroxybenzaldehyde Liquiritigenin Glc M. truncatula  Cell cultures (Farag et al., 2008) 

Flavones 

6 3’, 4’,7-Tihydroxyflavone7-Glc M. arabica  Whole plant (Saleh et al., 1982) 
7 3’, 4’,7-Tihydroxyflavone7-GlcA M. arabica  Whole plant (Saleh, 1982) 
8 3’, 4’,7-Trihydroxyflavone M. arabica  Whole plant (Saleh, 1982) 
9 3’,5-Dimethoxyluteolin Glc Mal  M. truncatula   (Farag et al., 2008) 
10 4’,7-Dihydroxyflavone M. truncatula   (Farag et al., 2008) 
  M. arabica  Whole plant (Saleh, 1982) 
  M. sativa Whole plant (Saleh, 1982) 
  M. polymorpha Whole plant (Saleh, 1982) 
  M. radiata  Whole plant (Saleh, 1982) 
  M. sativa Leave (Deavours et al.,  

2005) 
  M. truncatula  Cell cultures (Frag et al., 2007) 
11 4’,7-Dihydroxyflavone Glc  M. truncatula   (Farag et al., 2008) 
12 4’,7-Dihydroxyflavone7- GlcA M. arabica  Whole plant (Saleh, 1982) 
  M. polymorpha Whole plant (Saleh, 1982) 
  M. truncatula Roots (Staszków, et al. 

2011) 
13 4’,7-Dihydroxyflavone7-GlcGlc M. arabica  Whole plant (Saleh, 1982) 
  M. sativa Whole plant (Saleh, 1982) 
  M. polymorpha Whole plant (Saleh, 1982) 
14 5, 3’-Dimethoxyluteolin β -D-Glc  M. truncatula  Cell cultures (Frag et al., 2007) 
15 5, 3’-Dimethoxyluteolin β -D-Glc-Mal M. truncatula  Cell cultures (Frag et al., 2007) 
16 5,3’-Dimethoxyluteolin  M. truncatula  Cell cultures (Farag et al., 2007) 
17 6,8-Dihydroxyflavone-7-O-β-D-GlcA M. sativa Plant extract (Liang et al., 2011a) 
18 6-methoxy-8-hydroxy-flavone-7-O-β-D-GlcA M. sativa Plant extract (Liang, 2011) 
19 Apigenin M. sativa Leave (Deavours et al.,  

2005) 
  M. truncatula Root, seed (Pang et al., 2009) 
   Leave (Marczak et al., 

2010) 
 Apigenin 7-O-Glc M. truncatula flower (Pang, 2009) 
20 Apigenin 4‘-O- β -D-GlcAPyr M. sativa Aerial parts (Stochmal et al., 

2001a; Golawska et 
al., 2010), 
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(Golawska, et al. 
2010) 

21 Apigenin 4’-O-[2’-O-Fer-β-D-GlcAPyr(1→2)]-O-
β-D- GlcAPyr] 

M. sativa Aerial parts (Golawska, et al.  
2010) 

22 Apigenin 4'-O-[2'-O-E-Fer- O- β -GlcAPyr 
(1→2)- O- β -GlcAPyr]  

M. sativa var. 
Artal 

Plant extract (Stochmal et al., 
2001b) 

23 Apigenin 7- GlcA M. arabica  Whole plant (Saleh, 1982) 
24 Apigenin 7- O- β -D-GlcAPyr M. sativa Aerial parts (Stochmal et al., 

2001) 
25 Apigenin 7- O- β -GlcAPyr -4'-O-[2'-O-E-Fer- O- 

β -GlcAPyr (1→2)- O- β -GlcAPyr]  
M. sativa var. 
Artal 

Plant extract (Stochmal et al. c, 
2001) 

26 Apigenin 7-O-[ β -D-GlcAPyr(1→2)-O- β -D-
GlcAPyr]-4‘-O- β -D- GlcAPyr  

M. sativa Aerial parts (Stochmal et al., 
2001) 

27 Apigenin 7-O-[2’-O-Cou-GlcAPyr-(1→2)- O-
GlcAPyr] 

M. truncatula Leave (Jasinski et al., 
2009), Marczak, 
2010) 

28 Apigenin 7-O-[2’-O-Fer-GlcAPyr-(1→2)-O- 
GlcAPyr] 

M. truncatula Leave (Jasiński, et al., 
2009, Marczak, 
2010) 

29 Apigenin 7-O-[2′-O-sinapoyl-GlcAPyr-(1→2)-O-
GlcAPyr] 

M. truncatula  Leave (Marczak, 2010) 

30 Apigenin 7-O-[2-O-Fer- β -D-GlcAPyr(1→2)-O- β 
-D-GlcAPyr]-4‘-O- β -D-GlcAPyr 

M. sativa Aerial parts (Stochmal et al., 
2001, Golawska, et 
al. 2010) 

31 Apigenin 7-O-[2'-O-sinapoyl-β-D-GlcAPyr-
(1→2)-O-β-D-GlcAPyr],  

M. truncatula Aerial parts (Kowalska et al., 
2007) 

32 Apigenin 7-O-[β -D-GlcAPyr (1→2)- O- β -D-
GlcAPyr] 

M. sativa Aerial parts (Stochmal et al., 
2001) 

33 Apigenin 7-O-{2′-O-Fer-[GlcAPyr-(1→3)]-O-
GlcAPyr-(1→2)-O-GlcAPyr]  

M. truncatula  Leave (Marczak, 2010) 

34 Apigenin 7-O-{2-O-E-Fer-[ O- β -GlcAPyr 
(1→3)]- O- β -GlcAPyr (1→2)- O- β -GlcAPyr 

}Madmememsattti  

M. ivanivivaiva 
var. Artal 

Plant extract (Stochmal et al. 
2001) 

35 Apigenin 7-O-{2-O-Fer-[ β -D-GlcAPyr (1→3)]-
O- β-D-GlcAPyr (1→2)-O-β -D-GlcAPyr} 

M. sativa Aerial parts (Stochmal et al., 
2001) 

  M. truncatula Aerial parts (Kowalska, 2007) 
36 Apigenin 7-O-{2-O-p-Cou-[ β - GlcAPyr (1→3)]-

O- β-D-GlcAPyr (1→2)-O-β -D-GlcAPyr} 
M. sativa Aerial parts (Stochmal et al., 

2001) 
37 Apigenin 7-O-GlcAPyr-(1→2)-O- GlcAPyr M. truncatula Leave (Jasiński, et al., 

2009, Marczak, 
2010) 

38 Apigenin 7-O-GlcAPyr-(1→2)-O-GlcAPyr-
(1→2)-O-Glc  

M. truncatula  Leave (Marczak, 2010) 

39 Apigenin 7-O-GlcAPyr-(1→3)-O-GlcAPyr-
(1→2)-O- GlcAPyr 

M. truncatula  Leave (Marczak, 2010) 

40 Apigenin 7-O-β-D-GlcAPyr  M. sativa Aerial parts (Golawska, et al. 
2010) 

41 Apigenin 7-O-β-D-GlcAPyr-(1→3)-O-β-D-
GlcAPyr-(1→2)-O-β-D-GlcAPyr, 

M. truncatula Aerial parts (Kowalska, 2007) 

42 Apigenin 7-O-β-D-GlcAPyr-4’-O-[2’-O-Fer-O-β-
D-GlcAPyr(1→2)-O-β-D-GlcAPyr]  

M. sativa Aerial parts (Golawska, et al. 
2010) 

43 Apigenin 7-O-β-D-GlcAPyr-4’-O-[2’-O-p-Cou-O-
β-D-GlcAPyr(1→2)-O-β-D-GlcAPyr] 

M. sativa Aerial parts (Stochmal et al. 
2001, Golawska, et 
al. 2010) 

44 Chrysoeriol M. truncatula Hairy roots , 
suspension 
root cell 
cultures 

(Staszków, et al. 
2011) 

45 Chrysoeriol 7- GlcA M. arabica  Whole plant (Saleh, 1982) 
46 chrysoeriol 7- GlcA M. polymorpha  Whole plant (Saleh, 1982) 
  M. radiata Whole plant (Saleh, 1982) 
47 Chrysoeriol GlcA M. truncatula Roots (Staszków, et al. 

2011) 
48 Chrysoeriol 7- GlcAGlcA M. arabica  Whole plant (Saleh, 1982) 
  M. sativa Whole plant (Saleh, 1982) 
  M. polymorpha Whole plant (Saleh, 1982) 
49 Chrysoeriol 7- GlcAGlcAGlcA M. sativa  Whole plant (Saleh, 1982) 
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50 Chrysoeriol 7- O- β -D-GlcAPyr -4‘-O- β -D-
GlcAPyr  

M. sativa Aerial parts (Stochmal et al., 
2001) 

51 Chrysoeriol 7-O- GlcAPyr M. truncatula  Leave (Marczak, 2010) 
52 Chrysoeriol 7-O-[2‘-O-Fer O- β -D-GlcAPyr 

(1→2)- O- β -D-GlcAPyr] 
M. sativa Aerial parts (Stochmal et al., 

2001) 
53 Chrysoeriol 7-O-[2’-O-Cou-GlcAPyr- (1→2)-O-

GlcAPyr] 
M. truncatula Leave (Jasiński, et al., 

2009, Marczak, 
2010) 

54 Chrysoeriol 7-O-[2’-O-Fer-GlcAPyr-(1→2)- O-
GlcAPyr] 

M. truncatula Leave (Jasiński, et al., 
2009, Marczak, 
2010) 

55 Chrysoeriol 7-O-{2‘-O-Fer-[ O- β -D-GlcAPyr 
(1→3)]- O- β -D-GlcAPyr (1→2)- O- β -D-
GlcAPyr}  

M. sativa Aerial parts (Stochmal et al., 
2001) 

56 • Chrysoeriol 7-O-{2'-O-p-Cou-[β-D-
GlcAPyr-(1→3)]-O-β-D-GlcAPyr(1→2)-
O-β-D-GlcAPyr} 

M. truncatula Aerial parts (Kowalska, 2007) 

57 Chrysoeriol 7-O-GlcAPyr-(1→2)-O- GlcAPyr M. truncatula Leave (Jasiński, et al., 
2009, Marczak, 
2010) 

58 Chrysoeriol 7-O-GlcAPyr-(1→2)-O- GlcAPyr M. truncatula  Leave (Marczak, 2010) 
59 Chrysoeriol 7-O-β-D-GlcAPyr-(1→2)-O-β-D-

GlcAPyr 
M. truncatula Aerial parts (Kowalska, 2007) 

60 Iirosolidone or dimethoxyluteolin M. truncatula Hairy roots , 
suspension 
root cell 
cultures 

(Staszków, et al. 
2011) 

61 Luteolin M. sativa 
M. falcate 
M. polymorpha 
M. orbicularis 

seeds (Phillips et al., 
1995b; Prati et al., 
2007) 

62 Luteolin 7- GlcA M. arabica  Whole plant (Saleh, 1982) 
  M. sativa Whole plant (Saleh, 1982) 
  M. polymorpha Whole plant (Saleh, 1982) 
  M. radiata  Whole plant (Saleh, 1982) 
63 Luteolin 7- O- β -D-GlcAPyr M. sativa Aerial parts (Stochmal et al., 

2001) 
64 Luteolin 7-O- GlcAPyr  M. truncatula  Leave (Marczak, 2010) 
65 Luteolin 7-O-[2-O-Fer- β -D-GlcAPyr(1→2)-O- β 

-D-GlcAPyr]-4‘-O- β -D-GlcAPyr 
M. sativa Aerial parts (Stochmal et al., 

2001) 
66 Luteolin 7-O-GlcAPyr M. truncatula Leave (Jasiński, et al., 

2009) 
67 Luteolin Glc M. truncatula Roots, hairy 

roots 
(Staszków, et al. 
2011) 

   Flower (Pang, 2009) 
68 Luteolin GlcA M. truncatula Roots, hairy 

roots 
(Staszków, et al. 
2011) 

69 Luteolin GlcAGlcA M. truncatula Roots (Staszków, et al. 
2011) 

70 Luteolin-7-O-Glc M. sativa 
M. falcate 
M. polymorpha 
M. orbicularis 

seeds (Phillips et al, 1995) 

71 Mal 3’,5-Dimethoxyluteolin Glc M. truncatula  Cell cultures (Farag et al., 2008) 
72 Rutin M. truncatula Aerial parts (Kowalska, 2007) 
73 Tricetin 7- O- β -D-GlcAPyr -3’-O-methyl  M. sativa Aerial parts (Stochmal et al., 

2001) 
74 Tricin  M. truncatula  Cell cultures (Frag et al., 2007, 

2008) 
75 Tricin 7- GlcA M. sativa  Whole plant (Saleh, 1982) 
76 Tricin 7- GlcAGlcA M. sativa  Whole plant (Saleh, 1982) 
77 Tricin 7- GlcAGlcAGlcA M. sativa  Whole plant (Saleh, 1982) 
78 Tricin 7- O- β -D-GlcAPyr  M. sativa Aerial parts (Stochmal et al., 

2001) 
79 Tricin 7-O-[2‘-O- Fer-β -D-GlcAPyr (1→2)- O- β 

-D-GlcAPyr]  
M. sativa Aerial parts (Stochmal et al., 

2001) 
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80 Tricin 7-O-[2‘-O-p-Cou- β -D-GlcAPyr (1→2)- O- 
β -D-GlcAPyr]  

M. sativa Aerial parts (Stochmal et al., 

2001) 

81 Tricin 7-O-[2‘-O-sinapoyl-β -D-GlcAPyr (1→2)- 
O- β -D-GlcAPyr]  

M. sativa Aerial parts (Stochmal et al., 

2001) 

82 Tricin 7-O-[2’-O-Cou-GlcAPyr-(1→2)-O- 
GlcAPyr] 

M. truncatula Leave (Jasiński, et al., 
2009, Marczak, 
2010) 

83 Tricin 7-O-[2′-O-Fer-GlcAPyr-(1→2)-O-GlcAPyr] M. truncatula  Leave (Marczak, 2010) 
84 Tricin 7-O-[2'-O-Fer-β-D-GlcAPyr-(1→2)-O-β-D-

glucopyranoside] 
M. truncatula Aerial parts (Kowalska, 2007) 

85 Tricin 7-O-[β -D-GlcAPyr (1→2)- O- β -D-
GlcAPyr] 

M. sativa Aerial parts (Stochmal et al., 
2001) 

86 Tricin 7-O-{2‘-O-Fer-[β -D-GlcAPyr (1→3)]- O- 
β -D-GlcAPyr (1→2)- O- β -D-GlcAPyr }  

M. sativa Aerial parts (Stochmal et al., 
2001) 

87 Tricin 7-O-{2'-O-p-Cou-[β-D-GlcAPyr-(1→3)]-O-
β-D-GlcAPyr(1→2)-O-β-D-GlcAPyr 

M. truncatula Aerial parts (Kowalska, 2007 

88 Tricin 7-O-GlcAPyr-(1→2)-O- GlcAPyr M. truncatula Leave (Jasiński, et al., 
2009, Marczak, 
2010) 

89 Tricin 7-O-β-D-GlcAPyr-4'-O- GlcAPyr  M. truncatula Aerial parts (Kowalska, 2007) 
 Hyperoside M. sativa Seed (Prati, 2007) 

Isoflavones 

90 2’-Hydroxyformononetin M. truncatula  Cell cultures (Farag et al., 2007) 
91 2’-Hydroxyformononetin MalGlc M. truncatula Roots, hairy 

roots 
(Staszków, et al. 
2011) 

   Cell cultures (Frag et al., 2007, 
Farag et al., 2008) 

92 2’-Hydroxyformononetinb-D-Glc M. truncatula  Cell cultures (Frag et al., 2007, 
Farag et al., 2008) 

93 7,4'-dihydroxyflavoneononin M. sativa Roots (Coronado et al., 
1995) 

94 Afromosin, M. sativa Leave (Deavours et al.,  
2005) 

95 Afrormosin-7-O-Glc M. sativa Cell cultures (Kessmann et al., 
1990) 

96 Afrormosin-7-O-Glc-6"-O-mal M. sativa Cell cultures (Kessmann et al., 
1990) 

  M. truncatula Hairy roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

   Cell cultures (Farag et al., 2007, 
Farag et al., 2008) 

97 Afrormosin 7-O-β-D-Glc  M. truncatula  Cell cultures (Frag et al., 2007, 
Farag et al., 2008) 

98 Afrormosin 7-O-β-D-Glc-6”-O-Mal M. truncatula  Cell cultures (Frag et al., 2007) 
99 Afrormosin 7-O-β-D-Glc-Mal (isomer) M. truncatula  Cell cultures (Frag et al., 2007; 

Farag et al., 2008, 
100 Afrormosin Glc M. truncatula Roots, hairy 

roots , 
suspension root 
cell cultures 

Staszków, et al. 
2011 ) 

101 Afrormosin MalGlc M. truncatula Roots, hairy 
roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

102 Alfalone M. truncatula  Cell cultures (Farag et al., 2008) 
103 Biochanin A M. truncatula Hairy roots , 

suspension root 
cell cultures 

(Staszków, et al. 
2011) 

104  M. truncatula  Cell cultures (Farag et al., 2007) 
  M. sativa Leave (Deavours et al.,  

2005) 
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105 Biochanin A 7- O- β –GlcAPyr M. littoralis Aerial parts 
(Alessandra et al., 
2010) 

106 Biochanin A 7-O-β-D-Glc M. truncatula  Cell cultures (Frag et al., 2007) 
   Root (Pang 2009) 
107 Biochanin A 7-O-β-D-Glc-6”-O-Mal M. truncatula  Cell cultures (Frag et al., 2007) 
108 Biochanin A MalGlc M. truncatula Roots, hairy 

roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

109 Biochanin A MalGlcGlc M. truncatula Hairy roots (Staszków, et al. 
2011) 

110 Biochanin A β-D- Glc Glc M. truncatula  Cell cultures (Frag et al., 2007, 
2008) 

111 Biochanin A β-D- Glc Glc –Mal M. truncatula  Cell cultures (Frag et al., 2007, 
2008) 

112 Daidzein M. truncatula Hairy roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

113  M. sativa Leave (Deavours et al.,  
2005) 

114  M. truncatula  Cell cultures (Farag et al., 2007) 
115  M. arabica  Plant extract (Saleh, 1982) 
116 Daidzein 7-O-β-D-Glc (Daidzin) M. truncatula  Cell cultures (Frag et al., 2007) 
117 Daidzein 7-O-β-D-Glc-6”-O-Mal (Daidzin Mal) M. truncatula  Cell cultures (Frag et al., 2007) 
118 Daidzein CouGlcAGlcA M. truncatula Roots (Staszków, et al. 

2011) 

119 Daidzein FerGlcAGlcA M. truncatula Roots, hairy 
roots , 
suspension root 
cell cultures 

(Staszków, et al. 

2011) 

120 Daidzein GlcA M. truncatula Suspension root 
cell cultures 

(Staszków, et al. 
2011) 

121 Daidzein GlcAGlcA M. truncatula Roots (Staszków, et al. 
2011) 

122 Daidzein MalGlc M. truncatula Roots, hairy 
roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

123 Formononetin M. truncatula Hairy roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

   Cell cultures (Farag et al., 2007) 
   Root (Aloui, 2012) 
  M. sativa Leave (Deavours et al.,  

2005) 
124 Formononetin 7-O- β-(6’-O-MalGlc) 

(Malononin) 
M. truncatula  Root (Aloui et al., 2012) 

125 Formononetin 7-O-Glc M. truncatula Leave (Jasiński, et al., 
2009, Marczak, 
2010, Pang 2009) 

   Root (Pang 2009) 
126 Formononetin 7-O-Glc Malated  M. truncatula Leave (Jasiński, et al., 

2009, Marczak, 
2010) 

127 Formononetin- 7-O-P- β-D-glycoside (Ononin) M. sativa Roots (Coronado et al., 
1995) 

  M. truncatula  Cell cultures (Farag et al., 2007) 
   Roots, hairy 

roots 
(Staszków, et al. 
2011) 

128 Formononetin 7-O-β-D-Glc-6”-O-Mal  M. truncatula  Cell cultures (Frag et al., 2007) 
129 Formononetin MalGlc M. truncatula Roots, hairy 

roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 
 

130 Formononetin-7-O-P-β-D-Glc-6"-Mal methyl 
ester 

M. sativa Roots (Coronado et al., 
1995) 
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131 Genisitin M. truncatula  Cell cultures (Farag et al., 2007, 
Farag et al., 2008) 

   Hairy roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

132 Genistein, M. sativa Leave (Deavours et al.,  
2005) 

133 Genistein 7- O- β –GlcAPyr M. littoralis Aerial parts (Alessandra et al., 
2010) 

134 Genistein 7-O-β-D- Glc-6”-O-Mal M. truncatula  Cell cultures (Farag et al., 2007) 

135 Genistein 7-O-β-D-Glc (genistin) M. truncatula  Cell cultures (Farag et al., 2007) 

136 Genistein CouGlcAGlcA M. truncatula Roots (Staszków, et al. 
2011) 

137 Genistein FerGlcAGlcA M. truncatula Roots (Staszków, et al. 
2011) 

138 Genistein Glc Mal M. truncatula  Cell cultures (Farag et al., 2008) 
139 Genistein Glc Mal (isomer) M. truncatula  Cell cultures (Farag et al., 2008) 
   Hairy roots (Staszków, et al. 

2011) 
140 Genistein GlcA M. truncatula Roots (Staszków, et al. 

2011) 
   Flower (Pang et al., 2009) 
141 Genistein GlcAGlcA M. truncatula Roots (Staszków, et al. 

2011) 
142 Genistein β-D- Glc Glc  M. truncatula  Cell cultures (Farag et al., 2007) 

143 Genistein β-D- Glc Glc Mal M. truncatula  Cell cultures (Farag et al., 2007) 

144 Irilone M. truncatula  Cell cultures (Farag et al., 2007) 

145 Irilone 4”-O-β-D-Glc-6”-O-Mal M. truncatula  Cell cultures (Farag et al., 2007) 

146 Irisolidone  M. truncatula  Cell cultures (Farag et al., 2007) 

147 Irisolidone 7-O-β-D-Glc  M. truncatula  Cell cultures (Farag et al., 2007) 

148 Irisolidone 7-O-β-D-Glc-6”-O-Mal M. truncatula  Cell cultures (Farag et al., 2007) 

149 Irisolidone MalGlc M. truncatula Roots, hairy 
roots , 
suspension root 
cell cultures 

(Staszków, et al. 
2011) 

150 Pratensein M. sativa Seed (Prati, 2007) 
151 Isoflav-3-ene-Glc Mal M. truncatula   (Farag et al., 2008) 

Coumestan 

152 Coumestrol M. truncatula  Root (Aloui, 2012) 
153 Coumestrol  M. sativa Sprout (Hong et al., 2011) 
   Cotyledon (O'Neill, 1996) 

Flavonol 

154 Kaempferol M. truncatula Flower (Pang et al., 2009) 
155 Kaempferol 3- Glc M. polymorpha Plant extract (Saleh, 1982) 
156 Kaempferol 3,7- Glc Glc M. radiata  Plant extract (Saleh, 1982) 
157 Kaempferol 3-O-rutinoside M. truncatula Seed (Pang et al., 2009) 
158 laricitrin 3,5'- O- β -D-GlcAPyr M. littoralis Aerial parts (Alessandra et al., 

2010) 
159 Laricitrin 3,5‘-GlcGlc M. truncatula Aerial parts (Kowalska, 2007) 
160 Laricitrin 3,7,5‘-GlcGlcGlc M. truncatula Aerial parts (Kowalska, 2007) 
161 Laricitrin 3-O-g GlcAPyr--5′-O- GlcAPyr-l-7-O-

Glc 
M. truncatula  Leave (Marczak, 2010) 

162 Myricetin M. sativa leave (LeRoy et al., 2002) 
163 Quercetin M. sativa Seed (Prati, 2007) 

Pterocarpans 

164 Medicarpin M. truncatula  Root (Aloui, 2012) 
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   Cell cultures (Frag et al., 2007) 
   Suspension 

root cell 
cultures 

(Staszków, et al. 
2011) 

  M. sativa Cotyledone (O'Neill, 1996) 
165 Medicarpin-3-O-Glc-6"-O-mal M. sativa Cell cultures (Kessmann et al., 

1990) 
     
166 Medicarpin 3-O-β-D-Glc  M. truncatula  Cell cultures (Frag et al., 2007) 
     
167 Medicarpin 3-O-β-D-Glc-Mal M. truncatula  Cell cultures (Frag et al., 2007) 
   Root (Aloui, 2012) 
168   Roots, hairy 

roots , 
suspension 
root cell 
cultures 

(Staszków, et al. 
2011) 

Isoflavans 

169 Sativan M. sativa Leaves (INGHAM and 
MILLAR, 1973) 

   Cotyledon (O'Neill, 1996) 
170 Vestitol M. sativa Cotyledon (O'Neill, 1996) 
171 Vestitol β-D-Glc-Mal M. truncatula  Cell 

cultures 
(Frag et al., 2007) 

Aurone 

172 Hispidol 4’-O-β-D- Glc, M. truncatula  Cell 
cultures 

(Frag et al., 2007) 

173 Hispidol 4’-O-β-D- Glc-Mal M. truncatula  Cell 
cultures 

(Frag et al., 2007) 

174 Hispidol M. truncatula  Cell 
cultures 

(Farag et al., 2007) 

Anthocyanidin (glycosides) 

175 Cyanidin M. truncatula  Seed coat (Pang, et al., 2007) 
176 Cyanidin 3-O-glucoside M. truncatula Flower, 

seed 
(Pang, et al., 2009) 

177 Delphinidin M. truncatula  Seed coat (Pang, et al., 2007) 
178 Pelargonidin M. truncatula  Seed coat (Pang, et al., 2007) 
179 Pelargonidin-3-O-glucoside M. truncatula Root (Pang, et al., 2009) 

Flavan-3-ol 

180 Epicatechin M. truncatula  Seed coat, 
flower 

(Pang, et al., 2007, 
2009) 

181 Epicatechin 3’-O-glucoside M. truncatula Flower, 
seed 

(Pang, et al., 2007) 

182 Catechin M. truncatula  Seed coat (Pang, et al., 2007) 
183 Gallocatechin M. truncatula  Seed coat (Pang, et al., 2007) 
184 Epigallocatechin M. truncatula  Seed coat (Pang, et al., 2007) 
185 Afzelechin M. truncatula  Seed coat (Pang, et al., 2007) 
186 Epiafzelechin M. truncatula  Seed coat (Pang, et al., 2007) 

2.2 Flavonoid biosynthesis in M. truncatula  

The flavonoid biosynthesis pathway and the structural genes involved in the pathway are 

well characterized in plants. Here we first describe the early steps of flavonoid 

biosynthesis in legumes up to the biosynthesis of 5-hydroxy and 5-deoxy-flavonoids, the 

immediate precursors of isoflavonoids, flavones and dihydroflavonol. Then the flavonoid 
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pathway leading to the production of isoflavonoids, flavonols, flavones, aurones, 

anthocyanins and PAs have been described in separate sections with a short description of 

each class.  

2.2.1 Early steps of the flavonoid biosynthetic pathway 

The biosynthetic pathway leading to the production of flavonoids derived from 

phenylpropanoid pathway. It begins with the formation of 4-coumaroyl-CoA through 

three enzymatic conversions catalyzed by sequential activities of phenylalanine ammonia-

lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate: CoA ligase (4CL) on the 

one hand, and cytosolic formation of malonyl-CoA from acetyl-CoA by acetyl-CoA 

carboxylase (ACC), on the other hand. Then, one 4-coumaroyl-CoA and three molecules 

of malonyl-CoA serve as substrates for chalcone synthase (CHS) to run a series of 

sequential decarboxylation and condensation reactions leading to the formation of a 

polyketide intermediate. This intermediate undergoes cyclization and aromatization 

reactions to form the A-ring and the resultant chalcone (naringenin chalcone). In 

Medicago spp., CHS is encoded by 8-12 genes (Junghans et al., 1993; McKhann and 

Hirsch, 1994). Chalcone reductase (CHR) is found only in leguminous plants. It removes 

the hydroxyl group of the second malonyl-CoA during chalcone biosynthesis, which 

together with the CHS lead to the biosynthesis of 5-deoxyflavonoids (Ballance and 

Dixon, 1995). 

Then, two flavanones, naringenin and liquiritigenin which are precursors of 5-hydroxy- 

and 5-deoxy-flavonoids, respectively, are produced via enzymatic activity of chalcone 

isomerase (CHI). Two classes of CHIs have been described based on substrate specificity. 

Type I CHIs are found in both legumes and nonlegumes, and use naringenin chalcone to 

convert it into naringenin. Type II CHIs are legume-specific enzyme which can isomerize 

both naringenin chalcone and isoliquiritigenin to naringenin and liquiritigenin, 

respectively (Fig. 3) (Shimada et al., 2003; Ralston et al., 2005). Both CHIs type I and II 

involved in flavonoid biosynthetic pathway have been identified in Medicago (Davies and 

Schwinn, 2005).  

The resulting flavonoids, naringenin and liquiritigenin, then serve as the substrates of 

isoflavone synthase (IFS), flavone synthase (FNS) and flavanone 3-hydroxylase (F3H) to 

produce isoflavonoids, flavones and dihydroflavonol, respectively.  
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Figure  3. Early steps of the flavonoid biosynthetic pathway in M. truncatula. CHS and CHR co-act together to produce 5-deoxyflavonoids. PAL; phenylalanine 
ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-coumarate: CoA ligase; ACC, acetyl-CoA carboxylase; CHS, chalcone synthase; CHI, chalcone isomerase; CHR, 
chalcone reductase, PRX: peroxidase. 
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2.2.2 Isoflavonoid biosynthesis  

In isoflavonoids the B-ring is attached to the C-ring via the C-3 rather than the C-2 

position. The first committed step of the isoflavonoid biosynthesis begins with the 2-

hydroxylation and aryl migration, catalyzed by a cytochrome P450 (CYP450) enzyme, 2-

hydroxyisoflavanone synthase (2HIS, also known as isoflavone synthase, IFS). 

Subsequently, dehydration of the 2-hydroxyisoflavanone intermediates, 2,5,7,4’-

tetrahydroxyisoflavanone and 2,7,4’-trihydroxyisoflavanone, by 2-hydroxyisoflavanone 

dehydratase (2HID) forms the isoflavones, genistein or daidzein, respectively. The 4’-O-

methylation of genistein and daidzein catalyzed by hydroxyisoflavanone-4’-O-

methyltransferase (HI4’OMT) leads to the formation of biochanin A and formononetin, 

respectively, which are the most abundant isoflavonoid aglycones in M. truncatula roots 

(Zhang et al., 2009b) (Fig. 4). 

Flavonoids are often accumulated as malonylated or acetylated glucoconjugates (Table1). 

Malonylated and acetylated isoflavonoids are considered as ‘storage forms’ that 

accumulate in the vacuoles, serving as a pool of biosynthetic precursors or inactive forms 

of phytoalexins (Dixon, 1999; Naoumkina et al., 2007). Several glycosyltransferases 

(UGTs) involved in isoflavonoid glycosylation have been characterized in Medicago sp. 

Of more than 100 UGTs characterized in M. truncatula, UGT71G1, UGT85H2, and 

UGT78G1 have been identified with potential activity on isoflavonoid aglycones 

(Achnine et al., 2005; He et al., 2006; Li et al., 2007; Modolo et al., 2009). UGT78G1 has 

a broad activity on formononetin, kaempferol and the anthocyanidins pelargonidin and 

cyanidin (Modolo et al., 2009). UGT71G1 was shown to be capable of glycosylation of 

flavonols, quercetin and isoflavonoid, genistein and saponin (Achnine et al., 2005; Shao 

et al., 2005). UGT85H2 is a multifunctional flavonoid glycosyltransferase with the ability 

to glycosylate several flavonoid-related compounds, such as isoflavones (biochanin A), 

flavonols (kaempferol), and chalcones (isoliquiritigenin) (Li et al., 2007).  

The malonyl residues substituted on the sugar moiety, protect isoflavonoids from 

enzymatic degradation of the glucoconjugates, change their lipophilicity and act as a 

molecular tag promoting efficient vacuolar uptake of the conjugates (Markham et al., 

2000). Three characterized malonyltransferase from M. truncatula named as MtMaT1, 2 

and 3, have shown that are capable to catalyze the malonylation of a range of isoflavone 

7-O-glucosides in vitro. Of which MtMaT1 and/or 2 function were suggested as malonyl 

CoA:isoflavone 7-O-malonyltransferases in vivo (Yu et al., 2008). 
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Figure 4. Flavanone and isoflavonoid biosynthesis in Medicago spp. CHI, chalcone isomerase; 
IFS, isoflavone synthase. 

2.2.3 Pterocarpan biosynthesis  

The isoflavones undergo a series of reactions leading to the production of pterocarpans 

such as medicarpin. The first step in the biosynthesis of pterocarpans from isoflavones is 

catalyzed by isoflavone 2’-hydroxylase (I2’H) and isoflavone 3’-hydroxylase (I3’H) that 

catalyze hydroxylation of C2’ and C3’ of B-ring, respectively. M. truncatula I2’H 

(CYP81E7) catalyzes the hydroxylation of formononetin at the C2’ position which 

provides the hydroxyl-group that is later used for the formation of the ether linkage 

present in the medicarpin structure (Liu et al., 2003). M. truncatula I3’H was shown to be 

able to catalyze the hydroxylation of both biochanin A and formononetin. However, 

pratensein, a naturally occurring product of the 3’-hydroxylation of biochanin A in 

chickpea (Cicer arietinum) has not been reported in M. truncatula (Liu et al., 2003). In 

the next step, the resulting 2’-hydroxy-formononetin is reduced to the corresponding 2’-

hydroxylated isoflavanone vestitone by the NADPH- dependent isoflavone reductase 

(IFR). The 2-step conversion of vestitone into medicarpin is catalyzed by vestitone 

reductase that reduces vestitone to 7, 2’-dihydroxy-4’-methoxy- isoflavanol (DMI), which 

is subsequently dehydrated by DMI dehydratase there by forming the ether linkage of the 

pterocarpan skeleton (Guo et al., 1994; Shao et al., 2007) (Fig. 5).  
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Figure 5. Pterocarpan biosynthesis. IFR, isoflavone reductase; VR, vestitone reductase; DMID, 
dihydroxy-4’-methoxy- isoflavanol dehydratase. 

2.2.4 Flavonols biosynthesis  

Flavonols are the most widespread of the flavonoids in higher plants. Flavonol synthase 

(FLS) catalyzes the key step in the biosynthesis of flavonols. This enzyme converts the 

dihydroflavonols, dihydrokaempferol, dihydroquercetin, and dihydromyricetin to the 

corresponding flavonols, kaempferol, quercetin, and myricetin, respectively (Fig. 6). FLS 

has been characterized in several plant species including A. thaliana (Pelletier et al., 

1997; Wisman et al., 1998), Citrus unshiu Marc. (Lukacin et al., 2003), parsley (Martens 

et al., 2003), soybean (Takahashi et al., 2007) and strawberry (Almeida et al., 2007). 

However, the FLS encoding gene in M. truncatula has not been characterized yet. 

The 3’-O-methylation of myricetin catalyzed by myricetin-O-methyltransferase leads to 

the formation of laricitrin (Fig.6). 

 

 

Figure 6. Flavonols biosynthesis. CHI: chalcone isomerase; F3H: Flavanone 3-hydroxylase; FLS, 
flavonol synthase. 

2.2.5 Flavones biosynthesis  

The biosynthesis of flavones from flavanone occurs via introducing a double bond 

between C2 and C3 that is catalyzed by the flavone synthase (FNS) enzyme (Fig. 7). Two 

different FNS (FNSI and FNSII) have been characterized. FNSI, a soluble 2-oxoglutarate-

dependent and Fe2+-dependent dioxygenase is mainly characterized in the members of 

Apiaceae family as well as monocotyledonous plants (Martens et al., 2001; Kim et al., 

2008). Whereas FNSII, a NADPH-dependent CYP450 monooxygenase widespread 
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among higher plants (Martens and Mithofer, 2005). All known FNS II proteins belong to 

the plant CYP450 subfamily CYP93B and two different mechanisms for their catalytic 

activity have been reported. FNS II from the legume licorice converts flavanone 

substrates to flavones via a 2-hydroxyflavanone intermediate, whereas FNS II from the 

nonlegume Gerbera hybrida, converted flavanones to flavones directly (Humphreys and 

Chapple, 2002; Choi et al., 2004). 

Two FNS II genes, MtFNSII-1 (CYP93B10) and MtFNSII-2 (CYP93B11) have been 

characterized in M. truncatula. Both MtFNSII-1 and MtFNSII-2 convert flavanones to 2-

hydroxyflavanones instead of flavones and have a distinct tissue-specific expression 

pattern. MtFNSII-1 is mostly expressed in roots and seeds where the major accumulated 

flavones are 7,4’-dihydroxyflavone and apigenin/luteolin, respectively, while MtFNSII-2 

is highly expressed in flowers and siliques (Zhang et al., 2007). 

 

Figure 7. Flavone biosynthesis in M. truncatula. CHI: chalcone isomerase; FNS II, flavone 
synthase II. 

2.2.6 Aurones biosynthesis 

Structurally, aurones are the isomers of flavones and widely distributed in fruits and 

flowers. They are responsible for yellow pigmentation in their sites of accumulation. 

Accumulation of the aurone hispidol and its glycoside derivative, hispidol-4’-O-glucoside 

was reported in yeast elicitor (YE)-induced cell cultures of M. truncatula (Fig. 3). Three 

peroxidases, MtPRX1, MtPRX2, and MtPRX3, which were induced parallel to 

accumulation of hispidol, were suggested to be involved in hispidol biosynthesis. 

MtPRX1 and MtPRX2 were shown to have aurone synthase activity in vitro (Farag et al., 

2009)  
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2.2.7 Anthocyanin biosynthesis  

Anthocyanins are the largest and most important group of water-soluble plant pigments in 

nature. The presence of a positive charge in the anthocyanin structure at acidic pH, called 

flavylium cation (2-phenylbenzopyrylium), makes anthocyanins different from other 

subgroups of flavonoids with the same C6–C3–C6 skeleton (Fig.8). Anthocyanidins are 

the aglycone form and are the chromophore responsible for the color variation. The 

number and position of hydroxy and methoxy groups on the anthocyanidin skeleton; the 

identity, number, and positions at which sugars are attached; and the extent of sugar 

acylation and the identity of the acylating agent are all responsible for the variation in 

anthocyanins (Prior and Wu, 2006). Color differences between anthocyanins are largely 

determined by the substitution pattern of the B-ring of the anthocyanidin, the pattern of 

glucosylation, the degree and nature of esterification of the sugars with aliphatic or 

aromatic acids as well as by the pH, temperature, type of solvent and the presence of co-

pigments (Mazza, 2007).  

Genes controlling the B-ring hydroxylation in early steps of flavonoid biosynthesis 

pathway of naringine, such as those encoding flavonoid 3′-hydroxylase (F3′H) and 

flavonoid 3′,5′-hydroxylase (F3′5′H) are key determinants for the structural fate of the 

resulting anthocyanins as well as 2,3-cis-flavan- 3-ol (Grotewold, 2006). 

The first dedicated step towards biosynthesis of anthocyanins, and PAs, is controlled by 

dihydroflavonol-4-reductase (DFR) that uses the same substrates as flavonol synthase. 

Dihydrokaempferol, dihydroquercetin, and dihydromyricetin which differ only in the 

hydroxylation pattern of their B-ring, are common substrates of DFR and are converted 

into leucopelargonidin, leucocyanidin and leucodelphinidin, respectively (Xie et al., 

2004a).  

In M. truncatula, two DFRs, MtDFR1 and MtDFR2, have been characterized which 

contain some differences in their amino acid sequences and their enzymatic properties 

like distinct substrate preferences. Overexpression of MtDFR1 induced changes in flower 

anthocyanin profiles in tobacco, while MtDFR2 overexpression didn’t induce such 

changes (Xie et al., 2004a). Based on the expression pattern of the two characterized 

MtDFRs, it has been proposed that both are involved in anthocyanin biosynthesis. 

However, MtDFR1 has a more dramatic role in anthocyanin (cyanidin glucoside) 

biosynthesis in the leave (Xie et al., 2004a). 

The next step in anthocyanin biosynthesis is steered by anthocyanidin synthase (ANS) 

that catalyzes the conversion of leucoanthocyanidins (leucocyanidin, leucopelargonidin, 
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leucodelphinidin) to the corresponding anthocyanidins (cyanidin, pelargonidin, and 

delphinidin, respectively) (Fig. 8) (Nakajima et al., 2001). In vitro assays characterized 

MtANS as a bifunctional enzyme involved in conversion of leucocyanidin to cyanidin in 

the anthocyanidin/PA biosynthesis, and dihydroquercetin to the flavonol quercetin in 

flavonol biosynthetic pathway (Pang et al., 2007). MtANS is mainly expressed in the seed 

coat of Medicago, but it is also expressed in other tissues to play its role in 

anthocyanin/PA biosynthesis. Also, down-regulation of MtANS resulted in reduced levels 

of anthocyanins in Medicago leaves and of soluble and insoluble PAs in seeds (Pang et 

al., 2007). 

Anthocyanidin glycosylation enhances their water-solubility and is critical for the 

transport and sequestration of these compounds in the vacuole. Anthocyanidin O-

glycosylation is catalyzed by family I glycosyltransferases (UGTs), that comprise a 

superfamily in the plant kingdom (Yonekura-Sakakibara and Hanada, 2011; Yonekura-

Sakakibara et al., 2012) and recognize the hydroxyl groups of a wide variety of flavonoid 

aglycones including anthocyanidins.  

As mentioned before, UGT78G1 has been shown to have a role in the conversion of 

anthocyanidins (cyanidin and pelargonidin) to their corresponding 3-O-glucosides. 

Although it had been shown that isoflavones were the preferred in vitro substrates, 

yielding the corresponding 7-O-glucosides (Modolo et al., 2007). Increased accumulation 

of anthocyanin in transgenic alfalfa overexpressing UGT78G1 as well as by 

retrotransposon insertion lines of M. truncatula signify its role in the glycosylation of 

anthocyanidins pigment. In addition, strong up-regulation of UGT78G1 by Legume 

Anthocyanin Production 1 (LAP1), a transcription factors (TF) involved in anthocyanin 

biosynthesis but not isoflavone biosynthesis (Peel et al., 2009) indicated its role on 

glycosylation of anthocyanidin. Moreover, UGT78G1 is expressed in anthocyanin 

accumulating sites (i.e. flowers, leaves, and buds) rather than in roots, which is the major 

site of accumulation of isoflavone in Medicago (Modolo et al., 2007).  
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Figure 8. Anthocyanin and PA biosynthesis pathway in M. truncatula. DFR, dihydroflavonol-4-
reductase; ANS, anthocyanidin synthase; LAR, leucoanthocyanidin reductase; ANR, 
anthocyanidin reductase. 

2.2.8 PAs biosynthesis   

PAs comprise mixtures of oligomers or polymers of flavan-3-ol units. Similar to all 

flavonoids, flavan-3-ols possess the typical C6-C3-C6 flavonoid skeletons (Fig. 8). Here 

also the hydroxylation pattern of the aromatic rings destines the structure of the resulting 

PAs. Hydroxylation on the A-ring determines stereochemistry at C-4. Stereochemistry of 

the building blocks have great importance in the biosynthesis of PA, since all chiral 

intermediates of PA biosynthesis pathway up to (+)-catechin possess the 2,3- trans 

stereochemistry. On the other hands, (-)-epicathecin with 2, 3-cis stereochemistry is 

arisen from their achiral anthocyanidin precursors providing another starter unit of PA 

(McKhann and Hirsch, 1994; Dixon et al., 2005).  

Structural diversity of PAs depends on the stereochemistry and hydroxylation pattern of 

the flavan-3-ol units, the position and stereochemistry of the interflavanyl linkage 

between the monomeric units, the extent of polymer, and the type of modifications like 

various methyl, acyl or glycosyl substituents of the monomeric units (McKhann and 

Hirsch, 1994; Dixon et al., 2005). According to the location and stereochemistry of the 

linkage between the monomer units of flavan-3-ol and the extent of their polymerization 

PAs fall into three groups of A, B and C (McKhann and Hirsch, 1994; Dixon, 2005). 

PAs share the same upstream biosynthetic pathway as anthocyanins and flavonols. In M. 

truncatula the structural genes encoding ANS, leucoanthocyanidin reductase (LAR), 

anthocyanidin reductase (ANR), and epicatechin 3’-O-glucosyltransferase (UGT72L1) all 
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involved in PAs biosynthesis have been characterized (Xie et al., 2003; Pang et al., 2007; 

Pang et al., 2008). 

LAR is a member of the plant reductase-epimerase-dehydrogenase (RED) supergene 

family and closely related to IFR (Tanner et al., 2003). It uses the same substrates as 

ANS, flavan-3,4- diols (leucocyanidin, leucopelargonidin, leucodelphinidin) to convert 

them to their corresponding PA “starter units” 2,3-trans-flavan-3-ols (catechin, afzelechin 

and gallocatechin, respectively) in a NADPH-dependent manner. This first committed 

step in PA biosynthesis diverges from the pathway common with anthocyanins (Xie et al., 

2003). In M. truncatula, the MtLAR gene is expressed in flowers, pods, and seed coats 

(Pang et al., 2007). 

ANR catalyzes the conversion of the anthocyanidin resulting from ANS activity, 

cyanidin, pelargonidin, delphinidin, into 2,3-cis-flavan-3-ol, (-)-epicatechin (-)-

epiafzelechin and (-)-epigallocatechin, respectively. ANR enzyme is encoded by the 

BANYULS (BAN) gene, identified through characterization of the banyuls locus in 

Arabidopsis (Devic et al., 1999). Later, the BAN gene and the ANR enzyme were 

described in detail in M. truncatula and A. thaliana (Xie et al., 2003; Xie et al., 2004b). In 

M. truncatula a single ANR enzyme encoded by a single MtBAN gene is responsible for 

the formation of epicatechin, epigallocatechin or epiafzelechin (Xie et al., 2003).  

Similar to LAR, ANR also belongs to the isoflavone reductase-like (IFR-like) group of 

the plant RED super family. Although, the only difference between the two PA starter 

units, 2,3-cis-2R,3R-(-)- epicatechin and 2,3-trans-2R,3S-(+)-catechin, is the cis- or 

trans- stereochemical configuration, they are synthesized from two distinct biosynthetic 

pathways (Fig. 8) (Dixon et al., 2005).  

Since PAs are typically sequestered in vacuoles in malonylated and glycosylated form, 

glycosylation has been proposed to be critical for the transport and storage of these 

compounds at their final destinations in the vacuole. UGT72L1, is a Medicago 

glycosyltransferase responsible for glycosilation of the PA precursor (-)-epicatechin 

leading to epicatechin 3′-O-glucoside. It was shown that expression pattern of UGT72L1 

in developing seeds is correlated with the presence of epicatechin glucoside and 

accumulation of PAs (Pang et al., 2008).  

Three malonyltransferases, MaT4, MaT5 and MaT6 that are localized into the cytoplasm, 

endoplasmic reticulum (ER), and cytoplasm and ER respectively, are likely important for 

anthocyanin/flavonoid malonylation and their transport facilitation. 
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2.3 Regulation of the flavonoids biosynthesis 

(Iso)flavonoids are known to play a significant role in responses against several 

environmental factors, including both biotic (such as pathogen attack and wounding) and 

abiotic stresses (such as UV-light, salt stress and nutrient deficiencies) (Dixon and Paiva, 

1995; Shirley, 1996; Deavours and Dixon, 2005; Young and Udvardi, 2009; Zhou et al., 

2011). In Medicago species, such as M. sativa and M. truncatula, isoflavonoid 

phytoalexins and related compounds accumulate in response to yeast or fungal elicitors 

(Shimada et al., 2003; Broeckling et al., 2005; Suzuki et al., 2005; Naoumkina et al., 

2007; Farag et al., 2008; Naoumkina et al., 2008). Fungal pathogen infections are capable 

of massively changing the expression of phenylpropanoid biosynthesis genes. The fungus 

Phymatotrichopsis omnivore, responsible of destructive root rot disease in many dicot 

species including alfalfa, can induce phenylpropanoid biosynthesis genes in alfalfa during 

infection (Marek et al., 2009). In M. truncatula, increased levels of medicarpin 

precursors, formononetin 7-O-glucoside and malonylated formononetin 7-O-glucoside, 

were observed when infected with the fungal pathogen Phoma medicaginis (Jasinski et 

al., 2009). Accordingly, establishment of mycorrhizal fungus Glomus versiforme 

symbiosis in M. truncatula and M. sativa caused a transient increase in medicarpin levels 

(Harrison and Dixon, 1994).  

Several studies have shown that in M. truncatula cell cultures the biosynthesis of the 

genes involved in the early steps of phenylpropanoid/isoflavonoid biosynthesis are 

induced by YE elicitation, while they are not induced by methyl jasmonate (MeJA) 

elicitation. However, the downstream pathway genes specific for medicarpin formation 

were induced by both elicitors (Naoumkina et al., 2007).  

YE mimics pathogen attack mechanisms in the plant cell, while MeJA induces wound 

signaling cascades. This is consistent with the results obtained from phytoalexin 

accumulation during fungal infection and likely reflects different transcriptional 

regulatory systems orchestrating metabolic fluxes through specific secondary metabolites 

(Broeckling et al., 2005; Suzuki et al., 2005; Naoumkina et al., 2007; Farag et al., 2008; 

Naoumkina et al., 2008). Two different strategies have been proposed for the induction of 

medicarpin in response to pathogen (YE) and wound signals (MeJA) in M. truncatula. In 

non-stress condition, glycosylated and malonylated formononetin are sequestrated in the 

vacuoles. When MeJA or wound stresses are applied, formononetin glucoside are 

converted to free formononetin isoflavonoids and transferred to the cytosol. 

Concomitantly, the downstream enzymes are induced by MeJA and formononetin is 
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converted to medicarpin. Elicitation with YE on the other hand leads to the elevation of 

medicarpin levels via de novo biosynthesis (Naoumkina et al., 2007) 

In M. truncatula four YE-induced WRKY genes (W100577, W100630, W108715, and 

W109669) have been characterized that are correlated with the genes involved in the 

central phenylpropanoid pathway and in the downstream steps of medicarpin 

biosynthesis. Ectopic expression of these WRKY TFs in tobacco (Nicotiana tabacum) 

also led to higher levels of flavonoids and other phenolic compounds (Naoumkina et al., 

2008). 

Most studies on the regulation of the flavonoid biosynthesis in various plant species have 

been conducted on anthocyanin and PA biosynthesis transcriptional regulation. This 

transcriptional regulation is accomplished via ternary complexes composed of the 

combinatorial interaction of three families of TFs R2R3-MYB domain, basic helix–loop–

helix (bHLH) domain and conserved WD40 repeat (MBW) (Hichri et al., 2011). 

Up to now, the only characterized regulator orchestrating the biosynthesis of 

anthocyanins in M. truncatula is LAP1 gene (Peel et al., 2009). Overexpression of LAP1 

in M. truncatula and its closely related species including alfalfa and white clover 

(Trifolium repens) led to the accumulation of anthocyanin pigments. Constitutive 

expression of LAP1 resulted in the up-regulation of a large number of genes associated 

with anthocyanin biosynthesis including the glucosyltransferase UGT78G1 (Peel et al., 

2009). 

Two major components of the regulatory complex related to PA biosynthesis have been 

found in M. truncatula, so far: M. truncatula WD40-1 (MtWD40-1), a single-copy WDR 

TF (Pang et al, 2009) and M. truncatula proanthocyanidin regulator (MtPAR), an R2R3–

MYB-type TF (Verdier et al., 2012). 

MtWD40-1, is a single WD40-repeat TF orthologous to Arabidopsis TTG1 and has been 

implicated as a positive regulator of PA biosynthesis in M. truncatula seeds (Pang et al., 

2008). 

MtPAR plays a positive regulatory role on the genes involved in PA pathway (Verdier et 

al., 2012). The gene encodes a R2R3 MYB TF and is only expressed in the seed coat, 

where PAs are accumulated. In addition, expression of MtPAR in M. sativa was shown to 

cause the accumulation of PAs in shoots. Gene expression analyses of Medicago par 

mutants suggested that MtPAR acts upstream of MtWD40-1 and regulates its expression 

probably via direct interaction with WD40-1 (Verdier et al., 2012).  
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2.4 Flavonoid localization 

Vacuole sequestration of flavonoid seems to be necessary for the majority of flavonoids 

such as isoflavonoids, anthocyanins and PAs to store them under certain physiological 

conditions. Once synthesized, anthocyanin pigments accumulate inside the vacuole where 

the vacuolar acidic environment and co-pigments determine anthocyanin-mediated floral 

pigment (Verweij et al., 2008). It is also believed that the PA subunits are polymerized 

and subsequently converted to brown oxidation products in the vacuoles. Isoflavonoids 

such as formononetin were also found to be sequestrated in the vacuoles in glycosylated 

and malonylated forms and they converted to free formononetin in response to certain 

stress and then move to the cytosol for conversion to medicarpin (Naoumkina et al., 

2007).  

Metabolons are multi-enzymes complex consist of specific interaction between several 

soluble enzymes involved in a secondary metabolite biosynthetic pathway. The enzymes 

centered around a membrane either by membrane-bound structural proteins that serve as 

nucleation sites or by membrane-anchored proteins such as CYP450s that directly 

catalyze one or more of the sequential channeled reactions performed by the metabolons. 

In flavonoid biosynthetic pathway the all CYP450 enzyme including C4H, F3’H, 

F3’,5’H, IFS and 2HID are membrane-spanning proteins and thought to provide 

nucleation sites or platforms for self-assembling of soluble subunits on ER (Jorgensen et 

al., 2005). The ER multi-enzyme complex can facilitate the transport of flavonoid 

products through membrane trafficking, however, the general mechanisms of transport 

are still poorly understood (Zhao and Dixon, 2010). 

The vesicle trafficking-mediated transport and membrane transporter-mediated transport 

have been generally proposed as two major mechanisms for flavonoid transportation 

(Grotewold and Davies, 2008; Zhao and Dixon, 2010). 

Anthocyanins are accumulated first in vesicle-like structures, named anthocyanoplasts or 

in the anthocyanic vacuolar inclusions (AVIs) which are membrane-less proteinaceous 

matrices (Markham et al., 2000; Conn et al., 2003). Then, anthocyanoplasts and AVIs are 

covered by prevacuolar compartments (PVCs), an endocytic multi-vesicle compartment 

involved in ER-Golgi-vacuole vesicle trafficking and import into the central vacuole. 

PVCs contain Soluble N-ethylmaleimide-sensitive factor Attachment protein Receptors 

(SNAREs), which play an essential role in vesicle-mediated transport events (Hong, 

2005). Specific interaction between v-SNAREs on the surface of transport vesicles 

(PVCs) and t-SNAREs on target compartment (Hong, 2005) governs general fusion 
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processes of vesicle-mediated transport (Zhao and Dixon, 2010). Besides, a direct Trans-

Golgi network (TGN)- independent trafficking pathway from the ER to PVC exists in 

trafficking that enables the transport of anthocyanins through interaction of protein 

storage vacuoles (PSVs) and the anthocyanin-containing vesicle-like structures (Zhao and 

Dixon, 2010).  

Two major mechanisms have been suggested for the membrane transporter-mediated 

transport of anthocyanins: primary transport mediated by multidrug resistance-associated 

protein (MRP)-type ABC [(the ATP binding cassette (ABC)] transporters (Goodman et 

al., 2004; Verrier et al., 2008) and proton gradient -dependent secondary transport that is 

mainly driven by V-ATPase and vacuolar H+-pyrophosphatase (Zhao and Dixon, 2010). 

The vacuole-localized multidrug and toxic extrusion (MATE) transporters have been 

identified as the secondary transporter involved in flavonoid/H+ exchange (Yazaki, 2005). 

Generally, the MATE superfamily is composed of 9 to 12 membrane- spanning domains 

(Schwacke et al., 2003) that use electrochemical gradients of protons or sodium ion 

gradients across membranes as a force to drive waste or toxic compounds out of the 

cytoplasm. In plants MATE transporters are responsible for the detoxification of 

xenobiotics and the transportation of a wide range of metabolites, including cations, 

organic acids and secondary metabolites. 

In M. truncatula two MATE- type transporters known as MATE1 and MATE2 had been 

identified as H+-gradient-dependent transporters of PAs and anthocyanin/ flavonol, 

respectively (Yu et al., 2008; Zhao et al., 2011). MATE1 was shown to transport 

epicatechin 3’-O-glucoside and its expression is confined to the seed coat of M. 

truncatula. MATE1 is an ortholog of Arabidopsis TT12 and could complement the seed 

PA deficiency phenotype of the tt12 mutation in Arabidopsis (Yu et al., 2008). MATE2 

has 12 putative transmembrane domains in the same pattern as other known MATE 

transporters. MATE2 is expressed primarily in leaves and flowers and is involved in 

vacuolar sequestration of anthocyanins and other flavonoids in flowers and leaves. It has 

higher transport capacity for anthocyanins than for other flavonoid glycosides and in spite 

of its high similarity to MATE1, the PA transporter, it cannot effectively transport PAs 

precursors (Zhao et al., 2011). 

The anthocyanins mostly accumulate as acylated forms in vacuole (Zhang et al., 2006) 

and it was reported that MATE2 specially transports glycosylated and malonyl-

glycosylated flavonoid compounds that are ubiquitously found in M. truncatula and 

generated by the malonyltransferases (Zhao et al., 2011). It seems that malonylation 
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increases both the MATE2 affinity and transport efficiency of glycosylated flavonoid 

compounds (Zhao et al., 2011). Co-regulation of MATE2 with UGT78G1 and MaT4 by 

LAP1 in M. truncatula (Modolo et al., 2007; Peel et al., 2009) can demonstrate the role of 

MATE2 in transport of malonylated anthocyanin to vacuoles (Zhao et al., 2011). 

In both vesicle trafficking and transporter-mediated systems, a glutathione S-transferase 

(GST) is involved in flavonoid transport. Although the full mechanism of action of GSTs 

in anthocyanin transport has not been shown yet, it has been suggested that it can bind to 

PAs, anthocyanins or flavonols to form a GST-anthocyanin or GST-flavonol complex 

protecting them from oxidation and/or guiding them to the central vacuole (Zhao and 

Dixon, 2010; Gomez et al., 2011).  

2.5 Engineering of flavonoids biosynthesis in Medicago 

Due to various functions in plants, animals and in human health, modifying the plant’s 

ability, both quantitatively and qualitatively, to biosynthesize these bioactive natural 

compounds via metabolic engineering approaches is very important. In addition the 

putative role of isoflavonoids as pharmaceutical and health promoting compounds, has 

led to a great deal of interest to introduce them in non-legume plants such as Arabidopsis, 

tobacco, corn and tomato as well as an improvement of the nutritional value of soybean, a 

main source of isoflavonoids as dietary supplement, by modifying the total level of 

isoflavonoids in seeds. In addition, the critical role of isoflavonoids as signaling 

compound in legume-rhizobia interactions rises attention to introduce them in other 

economical important crops such as rice to develop nitrogen fixing root nodules (Ladha 

and Reddy, 2003; Sreevidya et al., 2006). Above all, flavonoids act as phytoalexins 

involved in plant defense and boosting the production of phytoalexins in legumes can 

increases their resistance to pathogens and ultimately lead to low-pesticide/fungicide 

farming (Deavours and Dixon, 2005). 

Basic strategies that can be applied for genetic modulation of flavonoid pathways in 

plants are: (I) increasing endogenous flavonoid levels using up-regulation of structural or 

regulatory genes; (II) overexpression of heterologous structural and regulatory genes that 

are not present in the gene pool of the target plant (to open the pathway to new 

metabolites); and (III) blocking of specific steps in the flavonoid biosynthetic pathway by 

RNA interference strategies to switch the metabolic flux towards desired end products 

(Martens et al., 2003; Dixon, 2005). 
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Influence of the overexpression of several of the maize flavonoid regulatory genes, 

MYC/bHLH (B-Peru, Sn, Lc) and MYB (C1), on accumulation of anthocyanins in 

heterologous plants were investigated (de Majnik et al., 2000; Bovy et al., 2002; Robbins 

et al., 2003). However, the expression of B-Peru gene (a bHLH) and the MYB type C1 

(colourless1) failed to induce anthocyanins in alfalfa and the transgenic alfalfa 

populations expressing the Lc (leaf color) gene showed a slight induction of anthocyanin 

production when the plants were exposed to the abiotic stress (Ray et al., 2003).  

The Arabidopsis Production of Anthocyanin Pigment 1 (PAP1) TF is a general regulator 

of the anthocyanin biosynthetic pathway, and its ectopic over-expression activates the 

anthocyanin biosynthetic pathway in Arabidopsis and Nicotiana tabacum (Borevitz et al., 

2000; Tohge et al., 2005). However, PAP1 was not able to induce anthocyanin 

biosynthesis in M. truncatula or in M. sativa. Unlike PAP1, the Medicago LAP1 induced 

anthocyanin production in transgenic M. sativa, M. truncatula, or Trifolium repens when 

ectopically expressed. Hence, LAP1 could be used as a general regulator for anthocyanin 

engineering in legumes (Peel et al., 2009). 

MYB TFs play a central role in the PA biosynthetic pathway. Ectopic expression of 

AtTT2 (encoding an R2R3 MYB TF involved in the regulation of PA biosynthesis) in M. 

trunculata hairy roots caused a massive accumulation of PAs as a result of the activation 

of the genes involved in the biosynthesis, transport and oligomerization of PAs (Pang et 

al., 2008). Recently it was shown that ectopic expression of MtPAR in M. truncatula hairy 

roots increased the expression of the genes involved in PA/anthocyanin biosynthesis, such 

as CHS, F3H, ANS, and ANR, which consequently led to a massive accumulation of PAs 

(Verdier et al., 2012). Overexpression of MtPAR in alfalfa also resulted in the 

accumulation of PAs in the shoots (Verdier et al., 2012). Some efforts to engineer PAs 

were done using more than one TF or a combination of TFs and biosynthetic genes to 

increase PA yields in transgenic plants. Co-expression of PAP1 and MtBAN in tobacco 

resulted in a significant decrease in the anthocyanin levels, and higher content of the PA 

precursors (Xie et al., 2006).  

The attempts toward induction of isoflavonoid production are mostly focused on the 

overexpression of the gene encoding the key enzyme of the isoflavonoid biosynthesis, 

IFS, in transgenic plants. The expression of M. truncatula IFS1 in M. sativa resulted in 

the accumulation of genistein glycosides in the transgenic plants (Deavours and Dixon, 

2005; Shih et al., 2006; Sreevidya et al., 2006; Dhaubhadel, 2010).  
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2.6 Flavonoid biological function in Medicago  

Flavonoids are very widespread in nature and are one of the best characterized and largest 

groups of natural plant products. Since they were already present in the most early plant 

lineages and evolved together with the migration of plants out of the sea to conquer the 

land, they have adopted many different crucial functions in plants. This holds also true for 

Medicago species, of which the most important functions of flavonoids in plants are 

highlighted below.  

2.6.1 Role in plant 

2.6.1.1 Nutrient acquisition 

Flavonoids can affect the nutrient acquisition of a plant through soil chemical changes, 

either via direct or indirect contributions to the availability of nitrogen (N), phosphorous 

(P) and iron (Fe) (Cesco et al., 2010) and vice versa. N, P and Fe supply in the soil each 

affect flavonoid biosynthesis (Hassan and Mathesius, 2012; Zamboni et al., 2012). The 

indirect involvement of flavonoids in enhancing the uptake of two of the most important 

macronutrients, N and P, by stimulating plant-microbe symbiosis will be discussed in 

another section (see 2.6.1.4. Plant-microbe interactions). Here, we will only discuss the 

direct biological function of these phenolic compounds to nutrient acquisition. Flavonoids 

are likely exuded from roots through an active mechanism, often in response to elicitors, 

but can also be released passively from decomposing root cap and border cells (Hassan 

and Mathesius, 2012). The active process may involve plasma membrane-localized ATP-

binding cassette transporters (Dixon and Pasinetti, 2010). Since flavonoids can act as 

metal chelators, they have a putative function for chemical mobilization of scarcely 

soluble soil-P forms. Possible mechanisms include (I) exchanging chelation at the 

cationic P-binding sites, (II) occupation of P-binding sites and (III) iron-phosphate 

splitting by Fe reduction due to reducing properties of flavonoids (Cesco et al., 2010). For 

example, an isoflavonoid identified in root exudates of M. sativa was able to dissolve 

ferric phosphate, thus making both phosphate and iron available to the plant (Masaoka et 

al., 1993). In all higher plants, except Gramineae, phenolic compounds are reported to be 

the main components of root exudates in response to Fe-deficiency (Cesco et al., 2010). 

Flavonoids, including the isoflavone genistein and the flavonols quercetin and 

kaempferol, can alter iron availability by reducing Fe(III) to Fe(II) and by chelating iron 

otherwise unavailable in iron oxides and/or poorly soluble iron minerals (Cesco et al., 

2010). Even though the reduction of copper (Cu) and its complexation by flavonoids has 
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clearly been demonstrated and chemically characterized, the contribution of this 

phenomenon to Cu availability and plant uptake has not yet been evaluated (Cesco et al., 

2010). Although, the role of flavonoids in plant-soil interactions and nutrient acquisition 

has already been widely established since a long time, a lot of open questions and points 

to be addressed still remain. For example, detailed information on the dynamic 

composition, the concentrations, the microbial modifications and persistence of flavonoid 

profiles released in the rhizosphere, is often lacking or contradicting (Cesco et al., 2012).  

2.6.1.2 Plant pigmentation 

Flavonoids and especially their colored class, anthocyanins, contribute to a lot of 

biological functions within plants, of which the most obvious one is in reproduction as 

attractants for pollinators via flower pigmentation and for the dispersal of seeds via 

brightly colored fruits. On the contrary, pollination actually serves as a rapid trigger for 

flavonoid biosynthesis (Dong et al., 1998). Structural studies on pelargonidin, cyanidin 

and delphinidin, the major anthocyanidins in M. truncatula, revealed that an increase in 

hydroxyl groups confers a color shift towards the longer wavelength end of the spectrum 

i.e. more blue: pelargonidin tends to yield orange to intense red, cyanidin yields red to 

magenta and delphinidin yields blue to violet (Tanaka et al., 2010). Other modifications 

giving rise to their structural diversity also influence their color. Methylation of the 3’ or 

5’-hydroxyl group or glycosylation of anthocyanins causes a shift towards a slightly 

redder color, while aromatic acylation does the opposite and increases their stability 

(Tanaka et al., 2008). Even though anthocyanins are the most substantial ones, other 

flavonoid classes also influence flower color. Aurones and chalcones provide yellow 

color (absorption of blue wavelengths) and some flavonols, flavones, flavan-3-ols and 

isoflavones are pale yellow (Di Meo et al., 2012). However, most of the latter are 

colorless to the human eye, but can be detected by bees and other insects, which see much 

farther in the ultraviolet (UV) range than humans. As such they are often responsible for 

the formation of symmetrical patterns of stripes, spots or circles called nectar guides 

(Sasaki and Takahashi, 2002). In addition, stacking of anthocyanins with co-pigments 

such as flavones and flavonols results in a bathochromic shift towards a more intense and 

blue color. Only recently, using quantum chemical calculations to provide a detailed 

molecular orbital picture researchers have tried to obtain a complete spectroscopic 

understanding of anthocyanin - flavonol copigmentation (Tanaka et al., 2010; Di Meo et 

al., 2012). The production of many colors is dependent on the ability of flavonoids to 
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form complexes with metal ions, e.g. Fe (III) or Al (III) (Tanaka et al., 2010). pH is 

another important factor influencing anthocyanin color. Acidic vacuolar pH gives a 

redder color, while a neutral vacuolar pH tends to yield a bluer one. In addition, 

anthocyanidins are unstable at neutral pH and must be stabilized by glycosylation and 

acylation, both processes influencing their color (Tanaka et al., 2010).   

2.6.1.3 Photoprotective function 

2.6.1.3.1 Photoprotective screen versus anti-oxidant function 

Most flavonoids and more specifically several flavonols play an important role in 

protecting the plant against oxidative damage associated with exposure to highly 

energetic, short wavelength solar light. Even under normal conditions the photosynthetic 

electron transport system in plants is a major source of active oxygen species. In theory, 

flavonols could accomplish this role via their two important characteristics, i.e. ultraviolet 

(UV) screen and antioxidant properties. It was long believed that this photoprotection was 

primarily due to the UV screening properties of certain flavonoids and their predominant 

localization in epidermal cell layers (Treutter, 2006). In addition, enhanced accumulation 

of many flavonoid classes, e.g. chalcones, flavonols and isoflavones, can be observed 

after UV treatment. Over-expression of IFS from M. truncatula in M. sativa resulted in an 

additional accumulation of the isoflavones formononetin and daidzein after UV-B 

treatment (Deavours and Dixon, 2005). However, because of some recently obtained 

insights this view is slowly changing. The spectrum of UV radiation reaching the Earth’s 

atmosphere can be divided according to the different wavelengths into low energy UV-A 

(320-400 nm), higher energy UV-B (280-320 nm) and high energy UV-C (254-280 nm). 

Because UV-C light cannot penetrate the Earth’s protective ozone layer, UV-B light 

poses the highest threat and causes the most damage to plant tissues and cellular 

processes. UV-B-responsive flavonols, like quercetin, display the greatest antioxidant 

potential, but not the greatest UV-B attenuating capacity (Pollastri and Tattini, 2011). 

UV-B responsive flavonols generally have the maximum molar extinction coefficients 

(εmax) in the wave bands higher than 335 nm, as compared to e.g. hydroxycinnamic acid 

derivatives with εmax in the 280-320 nm wave bands. Therefore, they are not as efficient 

as other flavonoids to absorb wavelengths in the 280-320 nm spectral region and hence do 

not equip the leaf with the most effective shield against UV-B irradiance (Agati and 

Tattini, 2010). The ability of flavonoids to act as antioxidants depends on their molecular 

structure and the position of hydroxyl groups. Structural studies determined the main 
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features required for efficient radical scavenging: (I) an ortho-dihydroxy (catechol) 

structure in the 3’,4’-position of the B-ring for electron delocalization, (II) an unsaturated 

2,3 double-bond in conjugation with a 4-oxo function in the C-ring that provides electron 

delocalization from the B-ring for flavonoids lacking a catechol group, and (III) hydroxyl 

groups at positions 3 and 5 to provide hydrogen bonding to the oxo group (Cesco et al., 

2010; Bodewes et al., 2011; Prochazkova et al., 2011). For example, quercetin, having the 

greatest antioxidant potential, is a flavonol that fulfils all the above mentioned criteria. 

Additionally, an OH-group in the 3-position on the C-ring of the flavonoid skeleton is a 

key structural feature responsible for the ability of flavonols to chelate transition metal 

ions, therefore inhibiting the generation of free radicals and reducing reactive oxygen 

species (ROS) once formed (Pollastri and Tattini, 2011). Glycosylation of this OH-group 

has strongly suppressive effects on the antioxidant activity (Prochazkova et al., 2011). In 

addition, these flavonols also accumulate in the mesophyll, not only in the epidermal cell 

layers as was originally reported to be the only site of flavonoid accumulation. Moreover, 

this accumulation could be seen in leaves exposed to full sunlight, in the presence or 

absence of UV irradiance (Agati and Tattini, 2010). This finding leads to the interesting 

hypothesis that excess light-induced oxidative damage may regulate the biosynthesis of 

flavonoids, irrespective of the proportion of solar wavelengths reaching and penetrating 

the leave. Nevertheless, the widely accepted antioxidant function of flavonoids in plants 

is still a matter of great debate. In established in vitro antioxidant tests the antioxidant 

capacities of flavonoids are several-fold higher than those of ascorbate (vitamin C) or α-

tocopherol (vitamin E), two well known in planta antioxidants (Hernandez et al., 2009). 

However, an in vivo antioxidant can only be truly functional if the end-products of the 

oxidation process are harmless for the plant cell. Since many different flavonoid oxidative 

intermediates have been identified, it is difficult to determine the end-products of a 

specific flavonoid (Hernandez et al., 2009). Furthermore, many oxidation processes 

generate flavonoid radicals, which are highly reactive and subject to further oxidation, 

yielding, among others products, the more stable flavonoid quinones. These are still 

reactive but can be stabilized by conjugation with nucleophiles, such as glutathione, 

cysteine or nucleic acids, thus being responsible for their prooxidant activities 

(Prochazkova et al., 2011). It should be taken into account that once flavonoids are stored 

in the vacuole, they are separated from the main sources of ROS, decreasing their 

functional relevance as in planta antioxidants (Hernandez et al., 2009). In conclusion, 

experimental evidences suggest that the general antioxidant role of flavonoids in plants is 
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actually only limited to a few individual flavonoids under specific experimental and 

developmental conditions and that several flavonoids even might have prooxidant 

activities and cause DNA damage, which puts a toll on their other beneficial functions 

(Hernandez et al., 2009; Prochazkova et al., 2011).   

2.6.1.3.2 Energy escape-valve 

Aside from the already mentioned roles of flavonoids as UV screens and scavengers of 

ROS in protecting the plant cells against oxidative damage associated with excess light, 

they might also have a third role as energy escape valves. Most abiotic stresses, which 

also induce flavonoid biosynthesis, create an imbalance between the amount of energy 

that is received and the photosynthetic capacity to process it (Hernandez and Van 

Breusegem, 2010). This excess light can produce ROS and by-products that can 

potentially cause photo-oxidative damage and inhibit photosynthesis (Li et al., 2009). It 

was already proposed that phenylpropanoid metabolism might provide an additional layer 

of photoprotection due to its ability to consume photochemical reducing power and act as 

an alternative carbon sink under excess light conditions (Grace and Logan, 2000). More 

specifically, flavonoids might act as energy escape outlets by dissipating such excess 

energy. The biosynthesis of flavonoids serves as a more efficient excess energy 

combustion system compared to the synthesis of other phenylpropanoids, because it 

consumes more energy (as reduction equivalents and ATP) and photoassimilates without 

sequestering any N or P. According to the carbon-nutrient balance hypothesis 

photosynthate is used primarily for the production of carbon-based metabolites such as 

phenolics when the carbon-to-nutrient ratio is high (Grace and Logan, 2000). As such, in 

contrast to other molecules with high carbon-to-nutrient ratios such as starch or sucrose, 

flavonoids have additional anti-stress activities and thus serve multifunctional roles in 

general and especially excess light-induced stress responses (Hernandez and Van 

Breusegem, 2010). 

2.6.1.4 Plant-microbe interactions 

Flavonoids have an important role as signalling molecules in beneficial plant-microbe 

interactions, of which the two most significant ones are the process of nodulation and the 

process of arbuscular mycorrhization (AM). Nodule formation is a complex process 

resulted from symbiotic relation between plant and nitrogen fixing rhizobia, in which the 

bacteria fix atmospheric nitrogen for the plant in exchange for organic sugars. Symbiosis 

mainly involves two main groups of molecules: the plant produces Nodulin (nod) gene-
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inducing flavonoids and in response the bacteria secrete mitogenic lipo-chito-

oligosaccharide nod factors (NFs) (Cooper, 2007; Jones et al., 2007). These NFs trigger 

early plant responses involved in root infection and nodule formation (Cesco et al., 2010). 

Even though around ten thousand of flavonoids have been identified so far, only about 30 

nod gene-inducing flavonoids have been isolated from nine legume genera and one of the 

first discovered to possess nod gene inducing activities was luteolin, isolated from M. 

sativa (Peters et al., 1986; Cooper, 2007; Cesco et al., 2010). Flavones were shown to be 

the most potent inducers of nod genes in Sinorhizobium meliloti, which colonizes M. 

truncatula (Wasson et al., 2006). In addition, mixtures can be more effective than single 

compounds and some molecules act as inducers for certain rhizobia and as anti-inducers 

for others (Cooper, 2007; Hassan and Mathesius, 2012). Aside from their nod gene-

inducing activity most of these flavonoids also act as chemo-attractants, thereby 

concentrating compatible rhizobia at the root surface (Cooper, 2007). In a study with 

transgenic M. truncatula roots with different flavonoid profiles flavonoid-deficient roots 

exhibited a near complete loss of nodulation, whereas flavone-depleted roots had reduced 

nodulation and isoflavone-deficient roots nodulated normally (Zhang et al., 2009a). It was 

previously shown that some isoflavonoids from M. sativa, such as medicarpin and 

coumestrol, even repress NF production (Zuanazzi et al., 1998). Whereas, formononetin  

and its glycoside ononin isolated from M. sativa were able to counteract the 

autoregulation of nodulation (Catford et al., 2006). The difference in nodulation between 

flavonoid- and flavone-depleted roots could be attributed to the role of flavonols, in 

particular kaempferol (Zhang et al., 2009a). Nonetheless, with the exception of certain 

photosynthetic Bradyrhizobia, rhizobial symbiosis is strictly dependent on the production 

of bacterial NFs that is induced by flavonoids (Giraud et al., 2007). Flavonoids are 

detected by rhizobia through an assortment of NodD proteins, which belong to the LysR 

family of transcriptional regulators. The flavonoids interact with the constitutively 

expressed nodD gene products to form a protein-phenolic (NodD-flavonoid) complex, 

which binds to highly conserved DNA motifs, called nod boxes, located in the promoters 

of inducible nod operons of nod genes. Secretion of appropriate flavonoids by the plant 

and the ability of the rhizobia to perceive and transduce this signal to NF biosynthesis are 

the earliest steps that determine host-specificity (Subramanian et al., 2007; Hassan and 

Mathesius, 2012). Flavonoids have also been shown to regulate a number of other 

rhizobial genes important for nodulation, such as those for exopolysaccharide production 

and type III secretion systems (Hassan and Mathesius, 2012). Aside from this essential 
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role, in some legumes that form indeterminate nodules, such as M. truncatula, flavonoids 

cause an inhibition in auxin transport causing local auxin accumulation, which precedes 

the initiation of cell division and is thus needed for correct nodule primordium 

development. Moreover, these plant molecules act as endogenous Nod signal inducers 

inside the plant roots, which is believed to be responsible for an additional level of host 

specificity. Experiments in M. truncatula indicated that both flavones and flavonols play 

distinct roles during nodulation, the former as internal inducers of rhizobial nod genes and 

the latter as auxin transport regulators (Subramanian et al., 2007; Zhang et al., 2009a). 

The other important form of plant-microbe symbiosis is the process of arbuscular 

mycorrhization (AM), occurred between almost all land plants and fungi of the phylum 

Glomeromycota. The fungal partner extends the underground root system of the host, 

thereby greatly enhancing the uptake of water and nutrients, such as phosphate and 

nitrogen. In return, the plant invests up to 20 % of its fixed carbon into the fungus 

(Parniske, 2008). Some flavonoids compounds exuded from host plant stimulate 

processes promoting AM, e.g. spore germination, hyphal growth, hyphal branching in the 

soil, root colonization and infection (Hassan and Mathesius, 2012). In studies with M. 

sativa, roots began to accumulate flavonoids prior to colonization by Glomus 

intraradices, indicating elicitation by an AM fungi-derived signal. Moreover, in contrast 

to non-colonized roots, flavonoid profiles changed over the time-course of colonization in 

M. sativa and M. truncatula colonized with Glomus mosseae and Glomus versiforme, 

respectively (Shaw et al., 2006). However, contradicting effects have been reported based 

on the type of flavonoid molecule, the nutrient status, the developmental stage, the degree 

of colonization and the target organism under study (Cesco et al., 2012). Hyperoside 

obtained from M. sativa seeds, could stimulate spore germination in Glomus etunicatum 

and Glomus macrocarpum, while other flavones were only active in the Glomus 

etunicatum, and formononetin  inhibited spore germination in both (Tsai and Phillips, 

1991). Ononin can counteract autoregulation of AM in M. sativa, while formononetin  is 

not able to suppress autoregulation (Catford et al., 2006). Interestingly, in contrast to 

nodulation some isoflavonoids have also been shown to promote AM. For example, 

coumestrol has been identified as an active stimulator of hyphal growth in M. truncatula 

and a mutant hyperaccumulating the compound was found to be hyperinfected by its 

mycorrhizal symbiont (Morandi et al., 2009). Additionally, there are some evidences that 

flavonoids have been implicated in the same effects on ectomycorrhizal fungi (Cesco et 

al., 2012).   



Natural product biosynthesis in Medicago species 70 

 

 
 

However, some contradicting reports about the flavonoid-mediated regulation of 

beneficial plant-microbe interactions indicate the process appears to be highly complex 

and requires more detailed investigations.  

2.6.1.5 Defense 

Not all plant microbe-interactions are beneficial and flavonoids are also known to play an 

important role in the defense against plant pathogens. In general, a distinction has been 

made between compounds that are produced de novo upon pathogen challenge, the 

phytoalexins, and those that are already preformed and stored as a baseline defense, the 

phytoanticipins. Flavonoids are used by the plant as both and protect against a wide range 

of pathogens, ranging from bacteria and fungi to insects and nematodes (Treutter, 2006). 

Simple isoflavone compounds, such as daidzein, glycitein and formononetin glycosides 

behave as phytoanticipins, because they accumulate constitutively and the corresponding 

aglycones restrict the growth of microbial pathogens (Shaw et al., 2006). Global gene 

expression profiling has shown an elevation in flavonoid biosynthesis when M. truncatula 

plants were challenged by Phymatotrichopsis omnivore (Uppalapati et al., 2009). 

Isoflavonoids represent a major class of phytoalexins in legume plant species. 

Furthermore pterocarpans, such as medicarpin and maackiain, have antimicrobial 

properties and are produced either constitutively or after induction by pathogens or 

endogenous elicitors (Shaw et al., 2006). For example, medicarpin from M. sativa 

protects the plant from the pathogenic fungus Rhizoctonia solani (Naoumkina et al., 

2010a). DNA microarray analysis revealed that (iso)flavonoid pathway in M. truncatula 

cell cultures can be induced by MeJA and YE, mimicking wounding and  pathogen 

attack, respectively (Naoumkina et al., 2007). Moreover, inoculation of transgenic alfalfa 

overexpressing isoflavone O-methyltransferase with Phoma medicaginis resulted in a 

more rapid and increased production of medicarpin, which decreased disease symptoms 

(He and Dixon, 2000). Over-expression IFS from M. truncatula in alfalfa confirmed these 

results, with an additional accumulation of the isoflavones formononetin and daidzein 

after P. medicaginis infection (Deavours and Dixon, 2005). In addition, alfalfa seedlings 

challenged with the fungal pathogen Colletotrichum trifolii exhibited a defense response 

that was accompanied with increased expression of flavonoid biosynthesis genes and 

accumulation of medicarpin and sativan (Saunders and O'Neill, 2004). The same was 

observed from microarray analysis when M. truncatula infected with Erysiphe pisi, the 

causative agent of powdery mildew. Seven of the eleven enzymes required for medicarpin 



Natural product biosynthesis in Medicago species 71 

 

 
 

biosynthesis were strongly upregulated and associated with the hypersensitive response 

(HR) a defense response that leads to localized cell death after certain avirulence gene 

products from the pathogen are recognized by plants carrying the corresponding 

resistance (R) genes (Foster-Hartnett et al., 2007). On top, the flavanone naringenin was 

shown to interfere with the quorum sensing– controlled production of virulence factors 

from Pseudomonas aeruginosa PAO1 (Vandeputte et al., 2011). Flavonols, such as 

quercetin, also have strong antimicrobial properties (Naoumkina et al., 2010a). In 

addition, flavonoids are known to be highly effective against some insects and nematodes. 

Several insects are sensitive to flavonoids and are deterred in feeding tests, because they 

can behave as antifeedants, digestibility reducers and toxins (Treutter, 2006). For 

instance, the phytoalexin medicarpin inhibited the motility of Pratylenchus penetrans in 

alfalfa (Baldridge et al., 1998) and accumulation of isoflavonoids in response to infection 

with the stem nematode Ditylenchus dipsaci correlated with resistance and was even 

induced systemically (Edwards et al., 1995).   

2.6.1.6 Allelopathy 

Aside from their well-known role in plant defense and in interacting with other organisms 

flavonoids also play an important role as allelochemicals in plant-plant interactions 

(Cesco et al., 2012). Only a few detailed studies have been performed on the direct 

inhibitory effects of flavonoid exudates on the growth and development of neighboring 

plants in leguminous species (Bido et al., 2010). However, because of the limited number 

of studies their direct role or mode of action is still not unequivocally known. 

Allelopathic interactions are not always caused by direct toxicity of the allelochemicals 

themselves, but can also be induced by biotic or abiotic structural modifications caused 

by flavonoids in the rhizosphere, because they induce redox reactions in soils and 

selectively influence the growth of soil microorganisms. This in turn influences the 

hormonal balance, enzymatic activity, availability of phytonutrients and competition 

between neighboring plants. As a result of this dynamic and ever-changing interaction, 

the structure, the chemistry and the microbial composition of the soil are altered 

significantly by the release of these plant phenolics (Bhattacharya et al., 2010; Cesco et 

al., 2012). For example, flavonoids can represent an important carbon source to those 

microorganisms in possession of appropriate enzymes to degrade them. Shaw et al. (Shaw 

et al., 2006) summarized some of these studies that have quantified and characterized 

aerobic flavonoid biodegradation for a number of bacterial species, both beneficial as 
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pathogenic including Rhizobia, Pseudomonas, Agrobacterium, etc. Biodegradation of 

flavonoids is one mechanism by which ‘non-target’ bacteria may cope with the toxic 

concentrations of flavonoids; however, many others have evolved an inducible resistance 

mechanism. For instance, Agrobacterium tumefaciens also possess an isoflavonoid-

inducible isoflavonoid efflux pump which contributes significantly to its colonization of 

alfalfa roots (Palumbo et al., 1998). Since both strategies give an ecological advantage in 

microbial rhizosphere competiveness, the exudation of flavonoids in the rhizosphere puts 

a selective pressure on soil microbiota and thus contributes in shaping the rhizosphere 

ecosystem. Another well-known phenomenon illustrating this is called replant disease, 

also known as autotoxicity or soil sickness. It is an example of intraspecific allelopathy, 

whereby the plant produces allelochemicals when it starts decaying in the soil and these 

allelochemicals are detrimental to the establishment of new seedlings of the same species. 

The observed damping-off of M. sativa seedlings by the fungal pathogens Pythium spp. 

and Rhizoctonia solani has been attributed to autotoxicity of undecomposed M. sativa 

plant residues (Bonanomi et al., 2011).  

Although not that many studies have been actually performed on allelopathy in Medicago 

spp., all above given examples will likely also hold true for the Medicago family of 

leguminous plants. 

2.6.1.7 Developmental regulators 

As it turns out, antioxidant flavonoids, aside from their important role in ROS 

homeostasis, are also key developmental regulators. They are the most effective inhibitors 

of basipetal auxin transport (Agati and Tattini, 2010), as already mentioned in a previous 

section to also be important for correct nodule development (Zhang et al., 2009a). RNAi 

mediated silencing of flavonoid biosynthesis in M. truncatula hairy roots led to increased 

auxin transport, indicating that flavonoids also act as auxin transport inhibitors in this 

species (Wasson et al., 2006; Subramanian et al., 2007). However, although they 

modulate auxin transport and interact with auxin transporters, they are not specific 

regulators. Otherwise they would not have so many potential modes of action and targets 

in interfering with auxin transport, such as auxin transporters, kinases and trafficking 

machinery (Peer et al., 2011). For example, it has been shown that flavonols are able to 

bind to and thereby inhibit the activity of ABC subfamily B (ABCB) transporter proteins, 

which are necessary for directional auxin transport. However, it has also been shown that 

they disrupt the proper folding of ABCBs and inhibit ATPase activity via interference 
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with phosphorylation or allosteric binding (Peer et al., 2011). In particular, ABCBs are 

involved in naphthalene-1-acetic acid (NAA) transport and it has recently been shown 

that flavonols affect the export of NAA, but not of the native auxin, indole-3-acetic acid 

(IAA) (Kuhn et al., 2011). Additionally, flavonoids are also versatile modulators of the 

distribution of another class of auxin efflux transporters, i.e. the auxin efflux facilitating 

PIN proteins (Kuhn et al., 2011; Peer et al., 2011). On the other hand, high sunlight 

induces the synthesis of both auxin and quercetin derivatives and increases the activity of 

phenol-oxidizing peroxidases (Pollastri and Tattini, 2011). Quercetin displays a great 

capacity for fine regulating auxin gradients as well as local auxin concentrations, which 

represent the actual determinants for different morphological responses (Pollastri and 

Tattini, 2011). As a result, some have suggested that the high-light induced biosynthesis 

of antioxidant flavonoids may have a role in regulating whole-plant and individual organ 

architecture (Agati and Tattini, 2010). This makes flavonols good candidates to affect the 

‘flight response’ of sessile plants, i.e. the stress-induced redistribution of growth (Pollastri 

and Tattini, 2011). 

2.6.2 Flavonoid pharmacological properties  

Besides the important biological functions of flavonoids in plants, they are significant 

components of the human diet and exert wide range of pharmacological properties 

(Cazarolli et al., 2008). This is already been known for a long time, since in many 

cultures plant-derived infusions, poultices, balms and spices containing flavonoids as 

active constituents have been used in traditional medicine for centuries. They use 

conventionally for prevention and treatment of various infectious and toxin-mediated 

diseases, such as sores, infected wounds, acne, respiratory infections, gastrointestinal 

disease and urinary tract infections (Cushnie and Lamb, 2011). Since flavonoids are key 

nutraceuticals of the human diet and also since they have been implicated in the 

prevention of a wide range of physiological disorders and diseases, numerous studies are 

conducting on flavonoids and their impact on human and animal health. Flavonoids have 

been reported as anti-inflammatory, antibacterial, antiviral, antiallergic (Cook and 

Samman, 1996; Cushnie and Lamb, 2005), cytotoxic antitumor, anti-hepatotoxic and anti-

ulcer agents. Flavonoids have shown that are effective in neurodegenerative diseases, 

exert vasodilator action and it seems that they provide protection against cardiovascular 

mortality (Chebil et al., 2006; Chang et al., 2010; Tsuchiya, 2010). They are known to 

inhibit lipid-peroxidation, platelet aggregation, capillary permeability and fragility, cyclo-
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oxygenase and enzyme activities. In addition, flavonoids are potent antioxidants and have 

free radical scavenging abilities (Cook and Samman, 1996; Middleton et al., 2000; Chebil 

et al., 2006). They are also reported to inhibit enzymes such as aldose reductase and 

xanthine oxidase (Cazarolli et al., 2008; Rashidi and Nazemiyeh, 2010).  

This potential resides in a number of biological properties, including their antioxidant 

abilities, their interactions with intracellular signaling pathways, regulation of cell 

survival/apoptotic genes and mitochondrial function (Pan et al., 2010; Spencer et al., 

2012). 

Among Medicago species, M. sativa is important as forage and also as an industrial 

source of leaf protein concentrate used in animal diets. In addition, alfalfa sprouts are 

often consumed as vegetable salad. Therefore, many studies on the biological activity of 

the Medicago natural products, especially on their effect on animals, have been carried 

out on the metabolites obtained from this species. The extracts from alfalfa sprouts, 

leaves, and roots have been reported to reduce cholesterol levels in animal and human 

studies (Lee et al., 2005; Tava and Avato, 2006). In addition, alfalfa sprouts or leaves has 

been traditionally used for treating of arthritis, kidney problems, and boils (reviewed in 

(Hong et al., 2009a). The ethyl acetate extract of alfalfa sprouts have been shown to 

ameliorates the autoimmune-prone disease of lupus in mice, probably by attenuating 

cytokine and inflammatory responses and also can alleviate acute inflammatory hazards 

(Hong et al., 2009a; Hong et al., 2009b). Although many flavonoid compounds with 

putative pharmacological properties reported from other plant species, such as quercetin 

and luteolin etc., are found in Medicago species, to the best of our knowledge there are 

limited reports about pharmacological properties of flavonoids from Medicago species. 

Bickoff et al. (Bickoff et al., 1964) showed that tricin obtained from M. sativa caused 

smooth muscle relaxation on intestinal strips of guinea pig. However, it showed slight 

activity as an antioxidant. The most well-known pharmacological property of flavonoids 

derived from Medicago species is related to their isoflavonoid profile that exert 

phytoesterogenic activities, as described below.  

2.6.2.1 Phytoestrogenic 

Isoflavonoids are a unique subgroup of flavonoids found predominantly in the species of 

the Leguminosae family. They possess a chemical structure that is similar to the hormone 

estrogen (Fig. 9), and are able to interact with estrogen receptor. Thereby isoflavonoids 

are often referred to as phytoestrogens (McCue and Shetty, 2004). Soybean (Glycine max) 
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is the legume plant species containing isoflavonoids via which humans have been 

traditionally exposed to the most. Therefore, numerous epidemiological and experimental 

studies are available that imply a preventive effect of soy and its associated isoflavones 

against chronic diseases such as osteoporosis, menopausal disorders and breast- and 

prostate cancer (Franke et al., 2009). Diet supplementation with soybean phytoestrogens 

has been reported to reduce hot flashes and other symptoms of post-menopausal women 

(McCue and Shetty, 2004). The major isoflavones found in soybean are daidzein and 

genistein that are also produced by M. truncatula and M. sativa (Urbanczyk-Wochniak 

and Sumner, 2007; Cazarolli et al., 2008; Bora and Sharma, 2011). The major 

phytoestrogenic isoflavone from alfalfa sprouts, another common food for humans, is 

coumestrol. However, in a recent study researchers identified other phytoestrogenic 

flavonoids in alfalfa, such as (iso)liquiritigenin that was able to transactivate the estrogen 

receptors α and β (Hong et al., 2011). Since estrogen normally affects calcium 

metabolism positively, common disorders associated with menopause are bone thinning, 

bristle-bone disease and osteoporosis. These can be counteracted by hormone (estrogen) 

replacement therapy, but unfortunately this also increases the risk for estrogen-linked 

cancers. It has been reported that genistein and daidzein are selective estrogen receptor 

modulators that can act against bone loss without the negative side-effects associated with 

estrogen treatment (McCue and Shetty, 2004). 

 

  

Figure 9. Chemical structures of the most common phytoestrogen found in Medicago spp. 
compared with estrogen found in animal. 
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2.7 Detection methods  

Many different techniques can be used to identify and/or quantify flavonoids and a 

current overview of the commonly used and new emerging separation and identification 

techniqueshas recently been reviewed (Valls et al., 2009; Qiao et al., 2011). These 

techniques range from simple methods to the use of sophisticated instrumentation such as 

mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy and laser-

induced fluorescence (LiF) detection, each having unique advantages and disadvantages 

(Lei et al., 2011). For example, NMR is considered as the Holy Grail in structural 

elucidation and is highly selective and non-destructive, but suffers from a relatively lower 

sensitivity. In contrast, LiF is one of the most sensitive techniques, but cannot be used for 

structural identification because it lacks chemical selectivity. MS offers a good 

combination of both sensitivity and selectivity, making it one of the prime methods of 

choice (Lei et al., 2011). Coupling chromatography to MS offers an extra level of 

information to flavonoid elucidation and is ideal for the analysis of complex plant tissue 

samples. Advances in sample extraction, chromatographic separation, detection and 

structural analysis of flavonoids have dramatically influenced the evolution of flavonoid 

discovery and improved flavonoid research in general (Qiao et al., 2011). High-

performance liquid chromatography (HPLC) coupled to UV detection (HPLC-UV) and to 

MS (HPLC-UV-MS) systems are well recognized methods to profile flavonoid 

conjugates in plant tissue extracts. As such, various classes of flavones, flavonol and 

isoflavone glycoconjugates and aglycones have been identified in Medicago spp. 

However, these methods are insufficient to distinguish isomeric and isobaric compounds, 

which require tandem mass spectrometry with collision induced dissociation (CID 

MS/MS) for functional characterization. In one study, they used an integrated approach 

utilizing HPLC-UV coupled to electrospray ionization (ESI)-MS and gas chromatography 

(GC)-MS to elucidate the flavonoid profiles from M. truncatula root and cell cultures. A 

quadrupole time-of-flight (QToF) MS device was used for all structural identifications, 

but where the stereochemistry of sugar conjugates was uncertain, they used enzymatic 

hydrolysis followed by GC-MS to assign a correct sugar stereochemical configuration 

(Farag et al., 2007). The same lab also used reverse phase high-performance liquid 

chromatography coupled to UV photodiode array detection and electrospray ionization 

ion-trap mass spectrometry (HPLC-PDA-ESI-ITMS) to analyze the intra- and 

extracellular phenylpropanoid and isoflavonoid metabolome of M. truncatula cell cultures 

in response to YE or MeJA (Farag et al., 2008). More recently, this technique was 
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validated in the same M. truncatula plant system to identify the biosynthetic mechanism 

for the aurone hispidol (Farag et al., 2009). In a study to discover the changes of 

flavonoid accumulation in M. truncatula leaves infected with P. medicaginis, in which 

they also used a HPLC-UV-MS system (Jasinski et al., 2009). In a comparable study, 

both a low resolution ion trap (IT) and a high resolution tandem QToF LC-UV-MS 

system was used to evaluate the fragmentation pathways of M. truncatula flavonoids after 

CID experiments. They concluded that although some decent fragmentations of minor 

compounds could be obtained using the low resolution IT, it does not always allow proper 

identification of all molecules in the sample. For that reason and because of the presence 

of equal nominal masses of some different substituents, a high resolution instrument 

could only be used to correctly analyze these derivatives (Marczak et al., 2010). In 

addition, they used the same high resolution methodology to compare the flavonoid 

profiles from M. truncatula seedling roots, hairy roots and suspension root cell cultures 

(Staszkow et al., 2011). In another study, they metabolically profiled mycorrhizal roots of 

M. truncatula, in which the polar metabolites were analyzed by GC-TOF-MS, the 

nonpolar by LC-MS and the cell-wall bound components by reverse phase HPLC coupled 

to a photodiode array detector (DAD). As mass analyzer they used the very sensitive 

fourier transformation ion cyclotron resonance (FT-ICR) MS device (Schliemann et al., 

2008). In a study a new stop-and-go two-dimensional chromatography was used for the 

preparative separation of flavonoids from M. sativa, combining counter-current 

chromatography and liquid chromatography (2D CCC x LC). Moreover, they identified 

two new flavonoids coupling this technique to ESI-MS, ESI-TOF-MS and 1D and 2D 

NMR (Liang et al., 2011b).  

3 Saponins  

Saponins are a structurally diverse class of amphipathic glycosides with a lipophilic 

steroid, steroidal alkaloid, or triterpenoid aglycone backbone or sapogenin that is 

covalently linked to one (monodesmosidic) or more (di- or tridesmosidic) hydrophilic 

sugar chains via a glycosidic bond. The name saponin is derived from the Latin word for 

soap, sapo, and points to an important physicochemical property of the compounds, their 

ability to form a colloidal solution in water that forms stable foam when shaken. This 

makes them useful as emulsifiers and foaming agents in the food and beverage industries. 

Saponins also possess various pharmacological properties, making them commonly used 

in phytotherapy and cosmetics (Osbourn et al., 2011; Pollier et al., 2011a). 
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The saponins that are present in the various Medicago species all have pentacyclic 

oleanane-type sapogenins that are characterized by the presence of a C-12–C-13 double 

bond, and an oxygen atom at the 3β-position (Fig.10A) (Tava et al., 2011). The 

sapogenins are derived from β-amyrin through various oxidative modifications, and based 

on the oxidation pattern; two distinct types of aglycones can be distinguished in 

Medicago. A first class consists of sapogenol aglycones that are oxidized at the C-28 

position, which is frequently accompanied with oxidation at the C-23 position. Aglycones 

of this class in Medicago are oleanolic acid, hederagenin, bayogenin, medicagenic acid, 

and zanhic acid (Fig. 10B). A second class of sapogenins, called soyasapogenols, possess 

a hydroxy group at the C-24 position, which excludes oxidation at the C-28 position 

(Tava et al., 2011). In Medicago, sapogenins of this class include the soyasapogenols A, 

B and E (Fig. 10C). The type of aglycone is correlated with the biological properties of 

the saponins. For instance, the haemolytic activity of the saponins in M. truncatula is due 

to the presence of sapogenins that are oxidized at the C-28 position while the non- 

haemolytic soyasapogenols are hydroxylated at their C-24 position (Carelli et al., 2011).  
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Figure 10. The triterpene aglycones saponins found in Medicago species; A) β-amyrin: basic 
structure of  triterpene saponin found in Medicago sp. B) sapogenols C) soyasapogenols. 

3.1 Saponin biosynthesis in M. truncatula 

As secondary metabolites, the triterpene saponins present in Medicago share a common 

biogenic origin with the primary sterol metabolism. 2,3-oxidosqualene, the last common 

precursor molecule between the sterol metabolism and the secondary triterpenoid 

metabolism, is synthesized in the cytosol from isopentenyl pyrophosphate (IPP) derived 
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from the mevalonate (MVA) pathway (Chappell, 2002; Xu et al., 2004; Phillips et al., 

2006). In M. truncatula, five isoforms of the key MVA pathway enzyme 3-hydroxy-3-

methylglutaryl-CoA reductase (HMGR) have been characterized (Kevei et al., 2007), for 

the remaining steps of the MVA pathway, candidate genes were identified via a 

functional genomics approach (Naoumkina et al., 2010b). 

The end-product of the mevalonate pathway, IPP, is isomerised by IPP isomerase (IPPI) 

to yield the allylic isomer dimethylallyl pyrophosphate (DMAPP) (Croteau et al., 2000). 

Subsequently, the prenyl transferase farnesyl pyrophosphate synthase (FPS) catalyzes the 

sequential condensation reactions of DMAPP with two units of IPP to form farnesyl 

pyrophosphate (FPP) (McGarvey and Croteau, 1995). Neither IPPI nor FPS have been 

functionally characterized in M. truncatula, but candidate genes can be found in the 

genome (Naoumkina et al., 2010b). In the next step of the biosynthetic pathway leading 

to 2,3-oxidosqualene, two molecules of FPP are coupled head-to-head to form squalene. 

This reaction is catalyzed by squalene synthase (SQS), of which the single copy that can 

be found in the M. truncatula genome has been characterized (Suzuki et al., 2002). 

Finally, squalene is oxidized by squalene epoxidase (SQE) to 2,3-oxidosqualene. In M. 

truncatula, at least three SQE genes are present (Naoumkina et al., 2010b), 2 of which 

have been characterized (Suzuki et al., 2002). 

The cyclization of 2,3-oxidosqualene forms the branch-point between the primary sterol 

and the secondary triterpene saponin metabolism. Cycloartenol (Fig. 11), the tetracyclic 

plant sterol precursor, is synthesized through cyclization of 2,3-oxidosqualene by 

cycloartenol synthase (CAS) (Corey et al., 1993), the ancestral enzyme of all plant 

oxidosqualene cyclases (OSCs) involved in the secondary metabolism (Phillips et al., 

2006). For the biosynthesis of triterpene saponins in Medicago, 2,3-oxidosqualene is 

cyclized to the pentacyclic oleanane-type triterpene backbone β-amyrin by the OSC β-

amyrin synthase (BAS) (Fig. 11) (Suzuki et al., 2002; Iturbe-Ormaetxe et al., 2003). Next 

to the characterized M. truncatula BAS gene, several other OSCs can be identified in the 

M. truncatula genome. Among these are genes that cluster with OSCs that catalyze the 

formation of other types of triterpene backbones, such as lupeol, of which derivatives 

have not been detected yet in M. truncatula (Naoumkina et al., 2010b). 

After the synthesis of β-amyrin, the competitive action of two enzymes causes another 

branching of the saponin biosynthetic pathway. The CYP450 enzyme CYP716A12 

catalyzes the carboxylation of β-amyrin at the C-28 position, which seems to exclude 

hydroxylation of β-amyrin at the C-24 position catalyzed by the CYP450 enzyme 
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CYP93E2, or vice versa (Fig. 11) (Carelli et al., 2011; Fukushima et al., 2011; Tava et al., 

2011). Carboxylation of β-amyrin at the C-28 position leads to oleanolic acid, which is 

further modified by CYP72A61v2 to yield haemolytic saponins. In another branch 

CYP72A68v2 catalyzes the C-22 hydroxylation of 24-hydroxy- β-amyrin leading to the 

production of the non-haemolytic soyasapogenol glycosides (Tava et al., 2011; 

Fukushima et al., 2013).  

Next to oxidative modifications at the C-24 and C-28 positions, several other positions of 

the β-amyrin backbone are oxidatively modified in Medicago. The specific enzymes 

catalyzing these reactions have not been reported yet, but most likely they are also 

CYP450s. 

After oxidation of the β-amyrin backbone, the resulting sapogenins are glycosylated at 

different positions. In Medicago, glycosylation occurs mainly at the C-3 hydroxy and the 

C-28 carboxy groups of the aglycone. Rarely, additional glycosylation is observed at the 

C-23 position (Tava and Avato, 2006). In M. truncatula, several glucosyltransferases that 

catalyze the transfer of glucosyl residues have been identified. In a first study, UGT71G1 

and UGT73K1 were found to transfer glucosyl residues to different sapogenins in vitro, 

however, the specific position to which the glucosyl residues were transferred to were not 

determined (Achnine et al., 2005). Also, UGT71G1 recognizes isoflavones and the 

flavonol quercetin as substrates, and glucosylates these compounds with higher 

efficiencies than triterpenes (Achnine et al., 2005), suggesting UGT71G1 might not 

correspond to a saponin-specific biosynthetic enzyme. Later, another glucosyltransferase, 

UGT73F3, was found to catalyze the glucosylation of sapogenins at the C-28 carboxy 

group in vitro, an effect confirmed in vivo by genetic loss-of-function studies (Naoumkina 

et al., 2010b). Next to glucose, several other sugars, including glucuronic acid, galactose, 

rhamnose, arabinose and xylose are found to be part of the sugar chains of Medicago 

saponins (Tava and Avato, 2006). To date, however, no enzymes catalyzing the transfer 

of these sugars residues to the aglycones have been discovered in Medicago. 

Other types of modifications occurring on the Medicago saponins include binding of 

malonyl and methyl functionalities on the sugar residues, and in M. sativa, the occurrence 

of soyasaponin VI, containing a C-22 maltol functionality has been reported (Massiot et 

al., 1992; Tava and Avato, 2006). No specific enzymes for these modifications have been 

reported yet. 
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Figure 11. Proposed sapogenin biosynthetic pathway in M. truncatula.  



Natural product biosynthesis in Medicago species 83 

 

 
 

3.2 Determination of Medicago saponins 

The saponins present in Medicago occur in complex mixtures of structurally related high-

molecular weight compounds, and individual saponins are often present in low 

concentrations in planta (Huhman and Sumner, 2002; Oleszek and Bialy, 2006; Pollier et 

al., 2011b). This significantly complicates the detection and quantification of saponins, 

and hinders purification of individual compounds, which is necessary for structure 

elucidation and biological activity testing. In addition, saponins lack chromophores that 

allow for detection in UV, limiting the choice of detection methods that can be employed 

for analytical purposes (Oleszek, 2002; Oleszek and Bialy, 2006).  

The screening of crude extracts using hyphenated techniques such as LC-MS provides 

information on the composition of the saponin mixture present in the investigated plant 

material. In a pioneering study, a large number of saponins in root extracts of M. sativa 

and M. truncatula were separated with HPLC, and 15 and 27 saponins of M. sativa and 

M. truncatula, respectively, were tentatively identified based on fragmentation data under 

negative ionization (Huhman and Sumner, 2002). More recently, by coupling HPLC to 

the highly accurate Fourier transform ion cyclotron resonance mass spectrometry; reliable 

prediction of the molecular formula of the detected saponins was possible. This has led, in 

combination with the fragmentation spectra under negative ionization, to the tentative 

identification of 79 saponins in M. truncatula hairy roots (Pollier et al., 2011b), and 

further underscores the complexity of the saponin mixture present in Medicago. 

This qualitative profiling of the saponin mixture, however, does not provide conclusive 

evidence for the absolute chemical structures of the saponins present in Medicago, which 

can only be obtained by subjecting purified compounds to a combination of analytical 

methods, including MS and NMR (Tava and Avato, 2006). For instance, the purification 

of saponins from the aerial parts of M. truncatula has led to the chemical characterization 

of 15 individual compounds (Kapusta et al., 2005b). A detailed overview of the different 

saponin structures reported in various Medicago species can be found elsewhere (Tava 

and Avato, 2006). So far, however, the purification of compounds has only led to the 

identification of the dominant compounds in the saponin mixture; the purification of low 

abundant compounds remains a challenge. 

The purified and characterized compounds can be used as standards to generate response 

curves that can be used for the absolute quantification of saponins with HPLC/MS. In the 

first study in Medicago, differential accumulation of saponins in the various organs of 

M. truncatula was reported, with higher levels of medicagenic acid conjugates present in 
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leaves and seeds, and higher levels of soyasapogenol conjugates present in the roots. This 

suggests a tissue-specific biosynthesis and biological role for the saponins in planta 

(Huhman et al., 2005). In a similar approach, saponins in the aerial parts of three different 

M. truncatula cultivars were quantified, showing very similar saponin mixtures in the 

three cultivars, with medicagenic acid, zanhic acid and soyasapogenol glycosides being 

the dominant compounds. The observed total saponin concentration in M. truncatula is 

very similar to the observed total saponin concentration in M. sativa, however, 

M. truncatula has a higher concentration of zanhic acid glycosides, and a lower 

concentration of soyasapogenol glycosides as compared to M. sativa (Kapusta et al., 

2005a). The high levels of zanhic acid glycosides (> 40% of the total saponin content) 

observed in the latter study are in disagreement with the first study, which reports zanhic 

acid glycosides to be only 0.6% of the total saponin content. This difference is attributed 

to the lack of appropriate standards in the first study, in which no zanhic acid glycosides 

were available as standards for absolute quantification (Huhman et al., 2005; Kapusta et 

al., 2005a). 

Next to HPLC/MS, GC/MS is used for the quantification of Medicago saponins. 

However, being high-molecular weight compounds, saponins are not volatile, and hence, 

the GC/MS analysis is performed on hydrolyzed saponins, and thus only provides 

information on the present aglycones. Furthermore, hydrolysis is often not complete or 

can lead to artefacts which influence the final result (Tava et al., 1993; Oleszek, 2002; 

Carelli et al., 2011). 

3.3 Biological roles of Medicago saponins 

Saponins are widely distributed through plant kingdom and display several biological 

properties. Studies on the structure-activity relationships of saponins show that nature of 

the aglycone, the functional groups on the aglycone backbone and identity and number of 

the sugars reflect on their physicochemical and biological properties (Liu and Henkel, 

2002; Güçlü-Üstündağ and Mazza, 2007). Due to their amphipathic nature, saponins are 

surface active compounds possessing detergent, wetting, emulsifying, and foaming 

properties (Güçlü-Üstündağ and Mazza, 2007). In aqueous solutions saponins form 

micelles above a critical concentration called critical micelle concentration (cmc). 

Therefore, they can be used in cosmetic, pharmaceutical or food formulations to increase 

solubility, bioavailability, bioactivity and extraction yields (Güçlü-Üstündağ and Mazza, 

2007). Various pharmacological and biological effects reported for saponins have been 
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attributed to their ability to interact with sterols, particularly those that are related to 

membrane properties like haemolytic and hypocholesterolemic activities (Kortner et al., 

2012). Haemolytic saponins are capable to rupture erythrocytes, causing an increase in 

membrane permeability and a loss of hemoglobin; consequently saponins can also be 

toxic to monogastric animals, act as anti-palatability factors, or negatively impact forage 

digestibility in ruminants (Sen et al., 1998; Tava and Avato, 2006). 

3.3.1 Saponins roles in plants 

Saponins are likely involved in plant defense mechanisms against potential plant 

pathogens and can be classified in a large group of protective molecules, namely 

phytoprotectants. They can be either produced upon a pathogen attack or stress as 

phytoalexins (Augustin et al., 2011) or produced during normal growth and development 

as phytoanticipins (Papadopoulou et al., 1999; Lambert et al., 2011). They are known to 

possess a wide range of biological activities in plants including antimicrobial, antiviral, 

molluscicidal, nematocidal, insecticidal, antiparasitic and allelopathic activities (Sparg et 

al., 2004; Tava and Avato, 2006; Augustin et al., 2011; D'Addabbo et al., 2011). 

Antimicrobial, nematocidal, insecticidal and allelopathic activities were described for 

saponins obtained from different species of Medicago. 

3.3.1.1 Antimicrobial activity 

Several bioassay reports have indicated the role of saponins isolated from Medicago 

species in plant defense mechanisms against phytopathogenic fungi and bacteria 

(Saniewska et al., 2006; Tava and Avato, 2006). For instance, antifungal efficacy of 

saponins from Medicago on the model fungus Trichoderma viride revealed that growth of 

T. viride was inhibited by Medicago saponins (Tava and Avato, 2006). Accordingly, 

incorporation of alfalfa plant material in soil inoculated with Phytophthora capsici 

reduced Phytophthora blight of capsicum in pots and field trials (Demirci and Dolar, 

2006). Therefore, the antifungal activity of alfalfa saponins can cause to reduce the 

presence of phytopathogenic fungi in the amended soil. It seems that medicagenic acid is 

the major aglycone contributing to the antifungal activity (Gestetner et al., 1971; Levy et 

al., 1989). 

3.3.1.2 Nematicidal activity 

The study of nematicidal activity of different concentrations of saponins from M. 

arborea, M. arabica and M. sativa against the plant-parasitic nematode Xiphinema index 
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has showed that all possess nematicidal activity (Argentieri et al., 2008; D’Addabbo et 

al., 2009; D'Addabbo et al., 2011). The nematicidal activity of saponins allows using 

Medicago species dry material as soil amendments to control phytoparasitic nematods. 

For instance, applying dry material from top and root of M. sativa and/or M. arborea as 

soil amendments was shown to suppress root and soil population density of the root- knot 

nematode Meloidogyne incognita and the cyst nematode Globodera rostochiensis in 

potting mixes (D’Addabbo et al., 2009).  

The exact mechanism of nematotoxic activity of saponin is not yet fully understood. 

However, based on biological effects of saponins, it is ascribed to their specific 

interaction with cell membranes which lead to changes in cell permeability (Tava and 

Avato, 2006). Furthermore, it has been demonstrated that saponins are able to interact 

with proteins (Potter et al., 1993). Nematode possesses a protective cuticle which is 

critical structure for its viability. This structure is primarily composed of collagen 

proteins assembled into higher order complexes (Page and Winter, 2003). Therefore, it is 

supposed that saponins may interact with cuticle collagen proteins which results in the 

observed nematotoxic effects.  

3.3.1.3 Insecticidal activities 

Saponins are also involved in plant protection against insect attack and their levels 

increase in leaves of damaged plants. Saponins from M. sativa, M. arabica, M. hybrida 

and M. murex showed insecticidal properties against several classes of insects and pests 

(reviewed in (Tava and Avato, 2006). Three alfalfa saponins (zanhic acid tridesmoside, 3-

GlcA,28-AraRhaXyl medicagenic acid glycoside, and 3-GlcA,28-AraRha medicagenic 

acid glycoside) were found to inhibit A. pisum feeding (Goławska, 2007). Similarly, 3-

GlcA-28-AraRhaxyl-medicagenate isolated from the seed flour of M. truncatula seeds 

was reported to be highly toxic for the rice weevil Sitophilus oryzae (Da Silva et al., 

2012). It is speculated that saponins causes higher mortality levels, lower food intake, 

weight reduction, disturbances in development and decreased reproduction in pest insects. 

The mechanism underlying their insecticidal activity is, however, still largely unknown, 

but it is proposed that saponins act via multiple mechanisms. The main hypotheses are 

that saponins could either make the food less attractive to eat (repellent/deterrent activity) 

or they cause digestive problems by slowing down the passage of food through the insect 

gut, reducing food digestibility by inhibiting the secretion of digestive enzymes 

(proteases) or by formation of hardly digestible saponin- protein complexes (Potter et al., 
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1993). Collectively, these can lead to an obstruction of alimentary canal that would limit 

or inhibit food uptake. Another possible mechanism can be due to the interaction of 

saponin with sterol which blocked sterol uptake. Insects are not able to synthesize sterol 

(Bellés et al., 2005). But, they take steroids from foods and used them for the synthesis of 

steroids like cholesterol and the insect molting hormone 20-hydroxyecdysone (20E) 

(Bellés et al., 2005). It is suggested that saponins can block sterol uptake by formation of 

insoluble complexes with sterols and make all cholesterol in the food unusable for the 

insects. Moreover, when larvae feed on a saponin-rich food, saponins may form a 

complex with cholesterol in their body, and thus disturbs the biosynthesis of ecdysteroids. 

Finally, the insecticidal effect of saponins can be due to their membrane-permeabilising 

ability. They can interact with membrane which permeabilize the small intestine mucosal 

cells of insects, leading to a marked reduction in their ability to transport nutrients 

(Francis et al., 2002). 

3.3.2 Pharmacological activity 

Beside their role in plant defense, the valuable pharmacological properties of saponin 

draw many attentions. Saponins exert a wide range of pharmacological activities 

including antiinflammatory, vasoprotective, hypocholesterolemic, immunomodulatory, 

hypoglycaemic, antifungal, antiparasitic and many others (Sparg et al., 2004; Sahu et al., 

2008). Recent studies have reported anti-cholesterolemic, antimicrobial, antifungal, anti-

cancer and cytotoxic properties of saponins in Medicago spp. (Houghton et al., 2006; 

Tava and Avato, 2006; Tava and Pecetti, 2012). Some of the most important are 

highlighted below. 

3.3.2.1 Antimicrobial activity 

Antimicrobial activity of saponins from M. sativa, M. arabica and M. arborea was 

explored against the most medically important yeasts (Candida albicans, C. tropicalis, 

Saccharomyces cerevisiae, Cryptococcus laurentii and Blastomyces capitatus) and Gram-

positive and Gram-negative bacteria (Avato et al., 2006). The results showed that S. 

cerevisiae was the most susceptible and showed high growth inhibition when treated with 

the sapogenin mixtures from the different species of Medicago (Avato et al., 2006). 

Saponins from Medicago species did not show activity (MICs > 500 µg/mL) against 

Gram-negative bacteria, while they have a broader spectrum of efficacy against Gram-

positive bacteria. The largest inhibitory effect observed for the sapogenin mixtures 

obtained from the acid hydrolysis of M. arabica (tops and roots) saponins. The observed 
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antimicrobial properties of M. sativa and M. arborea were related to the content of 

medicagenic acid, while hederagenin seems to contribute to the bioactivity of M. arabica 

total sapogenins (Avato et al., 2006). Moreover, antimicrobial activity of saponins 

obtained from roots and aerial parts of four Medicago species, Medicago sativa, M. 

murex, M. arabica and M. hybrida have been shown to have inhibitory effects on the 

growth the dermatophytic fungi such as Microsporum gypseum, Trichophyton 

interdigitale and T. tonsurans (Houghton et al., 2006).  

3.3.2.2 Cytotoxic activity 

Triterpene saponins are also known for their cytotoxic activities. For instance, saponins 

from M. sativa leaves caused to growth inhibition in vitro against human leukemic cell 

line K562 (Tava and Odoardi, 1996). Several compositions of sapogenin moieties isolated 

from 12 annual Medicag species were shown to have cytotoxic activity against the brine 

shrimp Artemia salina (Tava and Pecetti, 2012). The cytotoxic activity of the species was 

ascribed to different content of mono- and bidesmoside triterpene saponins, as 

monodesmoside saponins are more biologically active than the bidesmoside (Tava and 

Pecetti, 2012). Moreover, hederagenin and bayogenin glycosides were identified as the 

main saponin compound in the species with the highest cytotoxic activity such as M. 

arabica and M. rigidula with the LD50 value of 10.1 and 4.6 µg/ml, respectively. 

Whereas, the species with low cytotoxic activity (with the LD50 value comprised 

between 114.5 and 181.3 µg/ml) including, M. aculeate, M. littoralis and M. doliata 

accumulate mainly medicagenic acid, zanhic acid and soyasapogenols B (Tava and 

Pecetti, 2012). 

3.3.2.3 Hypocholesterolemic activity 

Triterpene saponins have a specific affinity for cholesterol (Bangham and Horne, 1962), 

they can form a complex with intestinal bile salts and cholesterol (Messina, 1999), thus 

decreasing intestinal cholesterol absorption. Moreover, membranolytic action of saponins 

can increase intestinal cell turnover rate and loss of cell membrane cholesterol from shed 

cells (Kortner et al., 2012). In Medicago species, hypocholestrolemic activity of saponins 

has been reported from alfalfa saponins, in which rats fed with alfalfa saponins at levels 

of 1% in the diet for up to 26 weeks had a significant decrease in the levels of their serum 

cholesterol and triglycerides (reviewed in (Tava and Avato, 2006). Similarly, in the non- 

human primate, Macaca fascicularis, M. sativa saponins derived from stem and leaves 

have been shown to decrease plasma cholesterol concentrations without changing the 
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level of HDL –cholesterol and, therefore, reduce the total cholesterol/HDL- cholesterol 

ratio. Saponins also decreased intestinal absorption of cholesterol, increased fecal 

excretion of endogenous and exogenous neutral steroids and bile acids, and decreased the 

percentage distribution of fecal deoxycholic and lithocholic acids (reviewed in (Tava and 

Avato, 2006)). Hypocholesterolemic activity of alfalfa root saponins has also been 

reported in monkeys receiving a high-cholesterol diet (Reviewed in (Bora and Sharma, 

2011)). Furthermore, in vitro studies indicated that saponins from M. sativa roots and 

aerial parts are capable to increase lipolytic activity of pancreatic enzymes while they do 

not influence on the proteolytic and amylolytic activities (reviewed in (Tava and Avato, 

2006)). 

4 Concluding remarks 

The presence of a wide range of natural products in the genus indicates that Medicago 

species have potential to be used as a platform for the development of novel bioactive 

compounds. Exploration of the elements involved in several aspects of secondary 

metabolite production in the plant provides the basis for developing such a platform. The 

current information available on the biology, genomics, biochemistry and metabolic 

engineering of Medicago species shows that considerable progress has been made in the 

past decade, although a lot of questions remain still unsolved.  

Nowadays, with the aid of functional and structural genomics, in association with 

metabolomics, exploring of plant natural product biosynthesis pathway is more 

straightforward. In addition, advances in genomics area have a huge influence on 

exploring the transcriptional regulators involved in regulation of natural product 

biosynthetic enzymes. Despite some reports of identification of regulatory factors 

controlling metabolite biosynthesis genes in Medicago species, regulatory mechanism for 

the production of these natural compounds are still largely unknown. Identification of the 

mechanisms controlling the production of bioactive natural product in the genus can 

secure a stable, reliable and large scale production of these compounds whether it is 

through manipulating the wildtype species or serving the biosynthesis machinery for 

production in heterologous expression systems.  

Furthermore, taking into account the beneficial effects of secondary metabolites from 

Medicago species in agriculture industry and their potential roles in animal and human 

health, Medicago species seems to hold great potential for in depth investigation for 
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various biological activities. Therefore, it is necessary to exploit its maximum potential in 

the field of medicinal and pharmaceutical sciences for novel and fruitful application. 
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Plants produce a wide variety of secondary metabolites with highly complex 

structures. Secondary metabolites fulfill a major role in plant defense against 

pathogens and herbivores and many of them are used as food, pharmaceutical 

compounds, dye, flavor, fragrances and so forth. Therefore, their biosynthetic 

pathways have been extensively studied and, accordingly, genetic engineering 

strategies have been developed to improve their production. Production of secondary 

metabolites is regulated by different families of regulatory proteins, some of which 

are elicited by extra- and intracellular signaling molecules. Overexpression of 

regulatory genes that coordinately control several genes of a biosynthetic pathway 

may offer a potentially powerful means to increase the production of secondary 

metabolites. Nowadays, the availability of several genetic and molecular approaches 

provides an opportunity to reveal fascinating insights into the complex regulatory 

cascades that govern secondary metabolite production.  

The overall aim of this study is to better understand the molecular events underlying 

secondary metabolite production and to identify and characterize potential regulators 

involved in secondary metabolite biosynthesis in the barrel medic (Medicago 

truncatula). M. truncatula is a model system for legume functional genomics (Choi et 

al., 2004; Zhou et al., 2011). Legumes such as M. truncatula produces an array of 

bioactive natural products and the most important of those are the triterpene saponins 

and isoflavonoids (Dixon and Sumner, 2003). M. truncatula has a diverse profile of 

triterpene saponins (Huhman and Sumner, 2002), with the potential to use as starting 

materials for industrial and pharmacological applications. Although, due to the 

diverse biological activities and beneficial properties, the number of studies on the 

biosynthesis of saponins has been increasing, our molecular knowledge about their 

biosynthetic pathway is still linear and insufficient, and virtually inexistent when 

concerning its regulation. Instead, the enzymes involved in biosynthesis of the 

isoflavonoids, the second important group of legume natural products, are well 

characterized (Dixon and Paiva, 1995; Dixon, 1999). Nonetheless, the molecular 

events underlying the regulatory network(s) steering isoflavonoid biosynthesis 

pathway remain mostly unknown as well.  

M. truncatula cell suspension cultures exhibit different transcriptional and metabolic 

responses to elicitors of plant secondary metabolism, such as yeast elicitor (YE) and 
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methyl jasmonate (MeJA) (Suzuki et al., 2005; Naoumkina et al., 2008). Targeted 

metabolic profiling showed that MeJA elicits the production of triterpene saponins in 

cell M. truncatula cultures (Achnine et al., 2005; Suzuki et al., 2005; Naoumkina et 

al., 2008), whereas the accumulation of isoflavonoids compounds is mostly induced 

by YE elicitation (Naoumkina et al., 2008). It has been proposed that these differences 

are orchestrated by rapid induction of different sets/combinations of transcription 

factors activated by YE and MeJA in M. truncatula cell cultures (Suzuki et al., 2005; 

Naoumkina et al., 2008). 

To date, only a few regulators of secondary metabolism from legumes have been 

identified. In YE-elicited cell cultures of M. truncatula four WRKY genes (W100577, 

W100630, W 108715, and W109669) have been characterized with a regulatory roles 

in the biosynthesis of phenolics (Naoumkina et al., 2008). However, to the best of our 

knowledge, no MeJA-modulated transcriptional regulator of triterpene saponin 

biosynthesis in M. truncatula has been identified so far.  

Functional genomics approaches are powerful tools to facilitate the understanding of 

secondary metabolism in plants. For example, cDNA-AFLP-based transcript profiling 

in combination with targeted metabolite analysis has been applied for the discovery of 

genes involved in secondary metabolism in tobacco (Nicotiana tabacum) cells 

(Goossens et al., 2003). In the PhD study of Jacob Pollier, which founded the basis for 

this study, a genome wide transcript profiling cDNA-AFLP analysis on MeJA elicited 

cell M. truncatula cultures showed that several regulatory proteins with a potential 

function in the jasmonate (JA) signaling machinery such as a MYC-like transcription 

factor, JAZ repressor proteins, RING E3 ligases, F box proteins as well as several 

other tags corresponding to genes potentially involved in regulation of gene 

expression are upregulated in response to MeJA, prior or concomitant with genes 

encoding the known triterpene saponin synthesis enzymes.  

In this thesis, we extend this study by a functional screening and characterization of 

several of these MeJA-modulated genes encoding proteins with potential regulatory 

functions in secondary metabolism.  

As MeJA mediated induction of the biosynthesis of several classes of secondary 

metabolites is conserved over multiple plant species (De Geyter et al., 2012), the 
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related regulators may have a conserved role across the plant kingdom as well. 

Therefore, identification of the regulatory elements controlling the production of 

bioactive natural products from a model legume such as M. truncatula may provide 

novel tools to facilitate specific and efficient engineering of the production of 

valuable plant secondary metabolites in general. 
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Abstract 

Plants are excellent manufacturers of secondary metabolites that have served 

as sources of pharmaceuticals and industrial materials. An in-depth 

understanding of the metabolite biosynthetic pathways is necessary for the 

improvement of the yield of secondary metabolites. Plant metabolites are 

produced through complex processes often including multiple enzymatic steps, 

branched pathways and regulation by a number of functionally redundant 

transcription factors (TFs). TFs are well-known as master regulators of 

various plant functions and many of them are characterized as the key 

regulators of metabolic pathways. Here, we have studied a number of TFs and 

other potential regulatory proteins that may act as jasmonate-modulated 

master switches towards the biosynthesis of secondary metabolites. To identify 

putative regulators of secondary metabolism in M. truncatula a reverse-

genetics screen was performed, starting from a genome-wide cDNA-AFLP 

transcript profiling analysis of MeJA elicited cell cultures of M. truncatula. In 

this study, we focused on the potential role(s) of the Mt148 gene by assessing 

the effect of gain-of- function on secondary metabolite production in M. 

truncatula hairy roots. Mt148 encodes a CCR4-associate factor1 (Caf1) protein 

presumably involved in mRNA metabolism and post- transcriptional gene 

regulation. We found that overexpression of Mt148 caused downregulation of 

some secondary metabolism genes in M. truncatula hairy roots by a yet 

unknown molecular mechanism.  

1 Introduction 

Plants are excellent manufacturers of secondary metabolites that have served as 

sources of pharmaceuticals, food additives, flavors, and other industrial materials. 

Furthermore, secondary metabolism plays an important role in the survival of the 

plant in its environment and can be a defense response against biotic and abiotic 

stresses. Through stress response processes, a large number of metabolic genes 

undergo transcriptional regulation associated with dramatic changes in their 

expression level. Transcriptional control requires specific signals to be transduced to 

the cell nucleus where the specific sets of the target genes are regulated. The 

transcription regulation network is a subset of a larger genetic regulatory network, 

which in addition to transcriptional regulation includes translational regulation, RNA 

editing, and so forth.  

Messenger RNA (mRNA) degradation is also an essential process that allows rapid 

changes in gene expression profile of a cell, especially in response to stress signals. In 

both mammalian and yeast cells, the initial and rate-limiting step of the mRNA 
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turnover is degradation of the poly (A) tail at the 3′ end of the mRNA (deadenylation) 

by a variety of deadenylases. The deadenylated mRNA can trigger the removal of the 

cap at the 5′ end of the mRNA by the decapping enzyme, Dcp1 and Dcp2, and 

subsequently, the Xrn1 exoribonuclease hydrolyses the RNA body from its 5′ end. 

Alternatively, deadenylated mRNAs can be degraded in a 3′ to 5′ direction by the 

cytoplasmic exosome complex (Chiba and Green, 2009)  

“The carbon catabolite repressor protein 4 (Ccr4) - Negative on TATA (Not) 

complex” is a global regulatory complex conserved from yeast to human (Collart and 

Panasenko, 2012; Miller and Reese, 2012). In Saccharomyces cerevisiae, the Ccr4-

Not complex comprises a core complex of 9 subunits: Ccr4, Ccr4 associated factor1 

(Caf1), Not1 to Not5, Caf130 and Caf40. Not1 is the scaffold of the complex. Ccr4 

and Caf1 bind to the N-terminal region of Not1, and the association of Ccr4 is 

critically dependent upon Caf1. Not2 binds to the most C-terminal portion of Not1. 

Not4 and Not5 bind to the same region of Not1, just N-terminally to Not2. Not3 is 

also thought to bind to the C-terminal portion of Not1 (Collart, 2003) (Fig. 1). The 

complex affects gene expression at two levels, in the nucleus and the cytoplasm. In 

the nucleus, it regulates the basal transcription machinery, nuclear receptor-mediated 

transcription and histone modifications via transcription initiation and ubiquitination 

activities provided by the C-terminal elements of the complex (Fig. 1). In the 

cytoplasm, the complex is entangled with mRNA turnover through its two associated 

deadenylases, Ccr4 and Caf1. As such, the Ccr4–Not complex is involved in 

regulation of several aspects of mRNA metabolism including initiation, elongation, 

deadenylation and subsequent degradation. 
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Figure 1. Scheme of the Ccr4–Not complex. Different subunits of the Ccr4–Not complex are 

grouped in color codes according to their function: subunits of the complex responsible for 

deadenylation activity (Ccr4 and Caf1) are indicated in pink and that for ubiquitination 

activity (Not4) in blue. The other subunits of the complex are indicated in green. 

Caf1 and Ccr4 are directly involved in mRNA deadenylation. Ccr4 contains an 

exonuclease domain, belongs to the endonuclease–exonuclease–phophatase (EEP) 

superfamily and has a 3′ exoribonuclease activity with a preference for poly (A) 

substrates (Chen et al., 2002). Caf1 proteins belong to the DEDDh subgroup of the 

DEDD family of nucleases (Zuo and Deutscher, 2001). Caf1 links Ccr4 to the core of 

the Ccr4–Not complex (Tucker et al., 2002). It is also associated with Dhh1 which is a 

putative RNA helicase and a component of the mRNA decapping complex (Collart 

and Panasenko, 2012). Although the yeast Caf1 shows deadenylase activity in vitro, 

its deadenylase activity in vivo remains obscure so far. 

Whereas Ccr4-Caf1 has been extensively investigated in non-plant species (including 

yeast and human) (Tucker et al., 2001; Chen et al., 2002; Temme et al., 2004; 

Bianchin et al., 2005; Morris et al., 2005; Yamashita et al., 2005), only a limited 

number of studies have been conducted on the Ccr4-Caf1 complex in plants. In 

Arabidopsis, two hormone and stress inducible CAFs, AtCAF1a and AtCAF1b, 

exhibited deadenylase activity in vitro and could partially complement the growth 

defect of the yeast caf1 deletion strain (Liang et al., 2009). These observations as well 

as their roles in pathogen resistance and stress-tolerance responses suggested a role as 

regulators of stress-responsive genes (Liang et al., 2009). Furthermore, 

overexpression of CaCAF1, a CAF1 homolog from pepper (Capsicum annuum) led to 

growth enhancement and resistance to the oomycete pathogen, Phytophthora 

infestans, in tomato. Conversely, silencing of the CaCAF1 gene resulted in a 
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significant growth retardation and plants were more susceptible to pathogens 

(Sarowar et al., 2007). 

In this study, from a genome-wide study of candidate regulatory genes that are 

inducible by MeJA prior to, or simultaneous with secondary metabolite biosynthesis 

genes in MeJA- elicited M. truncatula cell cultures, a set of 11 MeJA- induced genes 

encoding for potential regulatory factors were chosen for functional characterization. 

Among these MeJA-induced tags, we identified Mt148 gene encoding a putative Caf1 

protein. Overexpression of Mt148 in transgenic M. truncatula hairy roots led to 

transcriptional repression of some secondary metabolite biosynthesis genes. Further 

experimental analyses were undertaken but we could not clarify the molecular 

mechanism behind this effect. 

2 Results  

2.1 Selection of genes potentially involved in transcriptional regulation of M. 

truncatula secondary metabolism 

It has been previously shown that exposure of M. truncatula cell cultures to MeJA led 

to the increased accumulation of various triterpene saponin compounds orchestrated 

via a complex signaling network in which regulatory elements are essential 

components (Broeckling et al., 2005; Naoumkina et al., 2010). Previous to this study, 

a cDNA-AFLP transcript profiling was performed on MeJA-elicited cell cultures of 

M. truncatula (Pollier, 2011). Here, a set of 11 genes encoding regulatory proteins 

and proteins of unknown function potentially involved in the regulation of secondary 

metabolite biosynthesis in M. truncatula were selected based on their induction in 

response to MeJA prior to or simultaneous with the secondary metabolite biosynthesis 

genes (Fig. 2). An overview of the selected genes is given in Table 1. 
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Figure 2. Transcriptome of MeJA-elicited M. truncatula cells. A. General view on the 

average linkage hierarchical clustering of M. truncatula gene tags. B. Tags corresponding to 

genes reported to be involved in secondary metabolite biosynthesis, or with high sequence 

similarity to such genes. C. Tags corresponding to genes encoding putative regulatory proteins 

with a potential role in regulation of secondary metabolism or JA signaling cascade. 

Treatments and time points (h) are indicated at the top. Blue and yellow boxes reflect 

transcriptional activation and repression by methyl jasmonate (MeJA) relative to the average 

expression level, respectively. Gray boxes correspond to missing time points. The figure is 

adapted from Pollier (2011).  

Table 1. List of M. truncatula genes selected through cDNA-AFLP transcript profiling of 

MeJA-elicited cell cultures and their responses to MeJA elicitation checked by qPCR analysis. 

HR: hairy root cultures; CS: cell suspension cultures, MI: MeJA- inducible; MR: MeJA 

repressed; NE: No effect of MeJA; NT: Not tested. 

cDNA-AFLP 
tag 

(putative) annotation Response to 
MeJA elicitation 

HR CS 

Mt002 Putative calmodulin-binding protein MI NT 
Mt012 RNA-metabolising metallo-beta-lactamase MR NE 
Mt061 MYB transcription factor  NE MI 
Mt097 Hypothetical protein MI MI 
Mt141 Hypothetical protein NE NE 
Mt148 Putative Ccr4-associated factor MI NT 
Mt185 Putative calmodulin-binding protein MI NT 
Mt200 Hypothetical protein NE MI 
Mt265 Putative WD-40 repeat protein NE NE 
Mt274 Hypothetical protein MI NT 
Mt313 Putative Ccr4-associated factor MI NT 
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2.2 Expression levels of regulatory genes were increased in MeJA-elicited M. 

truncatula hairy roots prior/ concomitant to the onset of secondary 

metabolite 

To confirm the MeJA responsiveness of the selected regulatory genes, a MeJA 

elicitation experiment with an extensive time course was set up on hairy root cultures. 

A transcript profiling was then performed on the elicited cultures by means of qRT-

PCR analysis. Following MeJA treatment of root, 6 genes out of the 11 selected genes 

showed rapid induction following MeJA elicitation (Fig. 3A; the black graphs), while 

only one (Mt012, encoding RNA-metabolising metallo-beta-lactamase) was repressed 

(Fig. 3A, the white graph). Next, the steady-state levels of the genes that did not alter 

in MeJA-elicited hairy roots (Fig. 3A, the gray graphs) were checked in MeJA-

elicited cell cultures. The results revealed that following MeJA elicitation, the steady 

state levels of Mt061 and Mt200 were rapidly increased in the elicited cell suspension 

cultures (Fig. 3B). Two genes (Mt141 and Mt265 encoding a hypothetical protein and 

putative WD-40 repeat protein, respectively) did not respond to MeJA elicitation 

neither in hairy roots nor in suspension cell cultures of M. truncatula (Fig. 3A, B). A 

summary is given in Table 1. 

Based on this analysis, from these MeJA-inducible putative regulatory genes, the 

genes encoding a MYB (Mt061) transcription factor, a putative calmodulin-binding 

(Mt185) protein, a putative Ccr4-associated factor (Mt148) and three hypothetical 

proteins (Mt097, Mt200 and Mt274) were selected for further analysis. All six selected 

genes had maximal transcriptional upregulation within 30 min to 2 h after elicitation, 

which was prior or simultaneous to the onset of the genes involved in triterpene 

saponin biosynthesis pathway (Pollier, 2011) (Fig. 3A & B). For all selected genes, a 

full-matching expressed sequence tag (EST) was encountered in the DFCI Medicago 

Gene Index (http://compbio.dfci.harvard.edu/cgibin/tgi/gimain.pl?gudb=medicago).  

 

 

 

 

 

 

 

  



Ccr4-associated factor1 (Caf1) is a component of a large regulatory complex potentially involved in Medicago 

truncatula secondary metabolism 
116 

 

 

 

                 

    

      

    

   

   

 

Figure 3A. Transcript analysis of M. truncatula putative regulatory genes in MeJA-elicited 

hairy root cultures. Treatments and time-points are indicated at the bottom of the graphs. 

Black: MeJA-induced, white: MeJA-repressed; gray: no effect of MeJA. Y-axis represents 

relative expression ratio as compared to the control (CTRL) treatment at time 0. Error bars 

represent the standard error of the mean (SEM) of three technical repeats. 

A 
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Figure 3B. Transcript analysis of M. truncatula putative regulatory genes in MeJA- elicited 

cell suspension cultures. Treatments and time-points are indicated at the bottom of the graphs. 

Black: MeJA-induced, gray: no effect of MeJA. Y-axis represents relative expression ratio as 

compared to the control (CTRL) treatment at time 0. Error bars represent SEM of three 

technical repeats. 

2.3 Overexpression of the Mt148 gene resulted in a repression of the secondary 

metabolite biosynthetic genes  

To functionally characterize the candidate regulatory genes, a reverse genetics screen 

was launched, in which gain- and loss-of-function of the candidate genes was pursued 

by constitutive CaMV 35S-mediated overexpression of the full-length open reading 

frame (FL- ORF) or of a hairpin RNA-mediated interference (hpRNAi) construct, 

respectively, in M. truncatula hairy roots. Overexpression and knock-down of the 

transgene in hairy roots were confirmed via qRT-PCR analyses. Three control lines 

and three independent transgenic lines for each construct were selected (Fig. 4). Since 

most selected genes showed low expression levels in M. truncatula hairy roots, the 

RNAi lines were generated only for Mt148 and Mt185. However, the Mt148 knock-
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down lines were not stable and in subsequent subcultures they showed the same 

expression levels as the control lines. Results for all 6 genes, except Mt061 are shown 

in this chapter. The characterization of Mt061 is discussed in chapter 5. 

 

 

 

 

Figure 4. qRT-PCR analysis of the transgenic hairy roots harboring overexpression or 

hpRNAi constructs. Numbers in the Y-axis represent relative expression ratio as compared to 

the control line 1. Error bars represent SEM of three technical repeats. 

Subsequently, to assess the potential role of the candidate genes in the regulation of 

secondary metabolite biosynthesis, the steady state levels of the genes encoding the 

enzymes catalyzing saponin and (iso)flavonoid biosynthesis, the two major secondary 

metabolite groups in legumes (Dixon and Sumner, 2003), were measured in 

transgenic hairy roots (Fig. 5). For none of the transgenic lines, except the Mt148
OE

 

lines, any remarkable effect was observed. These lines were therefore not considered 

for further characterization.  

Transcript profiling of the Mt148
OE

 hairy roots revealed that overexpression of the 

Mt148 gene led to a slight transcriptional downregulation of several saponin and 

isoflavonoid biosynthesis genes including those encoding phenylalanine ammonia-

lyase (PAL) and isoflavone synthase (IFS), catalysts in the isoflavonoid pathway, and 

beta-amyrin synthase (BAS), squalene synthase (SQS), squalene epoxide (SQE2), and 

UGT73K1 involved in triterpene saponin biosynthesis (Fig. 5).  
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Figure 5. Transcript profiling of transgenic M. truncatula hairy roots. CTRL, control lines; 

OE,
 
overexpression lines, KD, knockdown lines. Numbers in the Y-axis represent relative 

expression ratio as compared to the control line 1. Data and error bars represent means ±SEM 

of three technical repeats. 
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2.4 Mt148 encodes a Ccr4 associated factor1 (CAF1) proteins 

Mt148 (MTR_4g006800) is annotated as the Ccr4 associated factor1 (CAF1) gene. It 

encodes a putative Caf1 protein with 277 amino acids and a calculated mass of 31.653 

kDa and a predicted pI of 4.77. BLAST searches revealed that there are seven 

additional putative CAF1 sequences have been identified in the Medicago genome, so 

far (Fig. 6). Phylogenetic analysis of Mt148 with M. truncatula, Arabidopsis and 

Saccharomyces cerevisiae CAF1 (Pop2p) homologs shows that the closest homologs 

of Mt148 are MTR_3g106180, At2G32070 and At1G80780 with 82%, 80% and 80% 

amino acid similarities, respectively (Fig. 6).  

 

Figure 6. Phylogenetic analysis of Mt148 and related Arabidopsis, Saccharomyces cerevisiae 

(Pop2p) and M. truncatula homologs. Neighbor-joining tree showing the evolutionary 

relationships between Mt148 and its closest homologs. The percentage of replicate trees that 

clustered together in the bootstrap test is shown next to the branches. Gene names or protein 

accession numbers are given. 

The results obtained from transcriptional analysis pointed towards an overall 

repression of metabolic biosynthesis in the Mt148
OE

 lines. Therefore, we investigated 

the role of the Mt148 in the regulation of secondary metabolite biosynthesis more 

thoroughly. SQS and SQE are involved in biosynthesis of oxidosqualene as a 
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precursor common to the biosynthesis of both steroids and triterpenoids (Abe et al., 

1993). Since both SQS and SQE2 transcript levels are decreased in Mt148
OE

 lines, we 

also measured the transcript levels of the putative M. truncatula sterol biosynthesis 

genes that are homologs of the genes encoding sterol biosynthesis enzymes in 

Arabidopsis, including cycloartenol synthase (CAS), sterol methyltransferase1 

(C24MT), sterol methyltransferase2 (CVP1), obtusifoliol 14α-demethylase 

(CYP51G1), sterol C- 14 reductase (FACKEL), sterol C-8,7 isomerase (HYDRA1), 

and CYP710A15 (Carland et al., 2002; Schrick et al., 2004; Morikawa et al., 2006). 

Among these, only CVP1 and CYP710A15 were slightly decreased (Fig. 7), 

suggesting Mt148 might have a broader effect than on secondary metabolism only. 

 
  

  

 

 

  

Figure 7. qRT-PCR analysis of sterol biosynthetic genes in Mt148
OE 

hairy roots. CTRL, 

control lines; Mt148OE, Mt148
 
overexpression lines. Numbers in the Y-axis represent relative 

expression ratio as compared to the control line1. Data and error bars represent means ±SEM 

of three technical repeats. 

2.5 Mt148 is not involved in RNA degradation 

The Caf1 protein, in association with the Ccr4 protein is presumably involved in 

cytoplasmic mRNA deadenylation, which subsequently leads to mRNA degradation. 

Considering the downregulation of several primary and secondary metabolite 

biosynthesis genes in Mt148
OE

 hairy roots (Fig. 5 and 7), we explored whether Mt148 
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is involved in mRNA degradation of the corresponding transcripts. Therefore, we 

performed an RNA degradation assay in which changes in the transcription levels of 

BAS and Mt148 transcripts were measured over a time course following application of 

plant RNA synthesis inhibitors. RNA degradation rate can depend on the inhibitor of 

RNA synthesis used (Holtorf et al., 1999). Therefore, two separate experiments were 

launched using two different RNA inhibitors, cordycepin and actinomycin D (Figs. 8 

and 9).Cordycepin, also known as 3′-deoxyadenosine, is a known polyadenylation 

inhibitor whereas actinomycin D is an inhibitor of DNA-directed RNA synthesis. To 

confirm that transcription was efficiently inhibited, we tested the ability of cordycepin 

and actinomycin D to prevent induction of transcription upon addition of MeJA, 

known to result in an increase in transcriptional level of BAS and Mt148. Samples 

were harvested in four time points. The rate of possible RNA degradation was scored 

via qRT-PCR. The results showed that pretreatment of hairy root cultures with 

cordycepin prevented rapid induction of BAS and Mt148 observed after addition of 

MeJA in both MT148
OE

 and control lines indicating efficient inhibition of 

transcription by cordycepin (Fig. 8A and B). MeJA caused a rapid induction in 

transcript levels of the BAS gene in both control and Mt148
OE

 lines followed by a 

rapid decline in the BAS transcript levels in Mt148
OE

 lines whereas in control lines its 

transcript levels were steadily increased, However, when the experiment was executed 

with actinomycin D the trend did not repeat (Fig. 9A) indicating that despite some 

variation no marked changes has been observed in transcript level of the genes in 

Mt148
OE

 lines as compared to control lines. 

Effective transcription inhibition by actinomycin D was also confirmed by the 

prevented induction in transcriptional level of Mt148 in control lines observed after 

addition of MeJA (Fig. 9B). However, the same result was not observed on BAS 

transcription level that might indicate that actinomycin D is not effective on the BAS 

gene (Fig. 9A). Consistence with the experiment with cordycepin, no consistent and 

remarkable differences were observed in transcription levels of the gene in Mt148
OE

 

and control lines (Fig. 9) . Therefore, according to these results it seems unlikely that 

Mt148 affects degradation of e.g. BAS transcripts.   
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Figure 8. qRT-PCR analysis of (A) BAS and (B) Mt148 transcripts in M. truncatula Mt148
OE

 

and control (CTRL) hairy roots treated with cordycepin and/or MeJA. Expression level at 

different time points is represented as a ratio relative to the CTRL-1 at time 0, which is set to 

1. Error bars represent SEM of three technical repeats. 
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Figure 9. qRT-PCR analysis of (a) BAS and (b) Mt148 transcripts in M. truncatula Mt148
OE

 

and control (CTRL) hairy roots treated with actinomycin D and/or MeJA. Expression level at 

different time points is represented as a ratio relative to the CTRL-1 at time 0, which is set to 

1. Error bars represent SEM of three technical repeats. 
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2.6 Mt148 gene induces growth defect in yeast 

Yeast caf1 mutants are sensitive to high temperature and caffeine (Liang et al., 2009). 

To examine the functional properties of Mt148, the full length gene was first 

heterologously expressed in the yeast caf1 mutant strain KY803-c1 and its wild type 

background KY803. The complementation was scored by determining the ability of 

the transformed strain to grow on caffeine containing medium. The results showed 

that the pAG426GPD-Mt148 construct was unable to restore the growth defect of the 

caf1 mutant. Surprisingly, it even caused a growth defect in the KY803 wild type 

strain (Fig. 10A). KY803 is a strain with GCN4 deficiency and GCN4 is a general 

transcriptional activator of amino acid biosynthetic genes (Wolfner et al., 1975). To 

exclude that this would interfere with Mt148 activity, we re-launched the experiment 

with the BY4741 strain and its respective ∆caf1 mutant that possess functional GCN4. 

Identical results were obtained with these strains as well (Fig. 10B). Hence, the results 

indicate that Mt148 is not a functional homologue of yeast CAF1. However, it is not 

clear why Mt148 interferes with yeast growth. Perhaps it might affect functioning of 

other elements of the endogenous yeast CCR4-NOT complex.  

A B 

  
          SD-U               SD-U+ Caffeine           SD-U               SD-U+ Caffeine 

Figure 10. Effects of heterologous expression of the M. truncatula Mt148 gene on the growth 

of, (A) the yeast caf1 mutant, KY803-c1, and its respective wild type strain, KY803; (B) 

Y07123 caf1 mutant and its corresponding wild type, BY4741. All strains harbored 

pAG426GPD;Mt148 or empty pAG426GPD vector (as control) and were grown on SD-U 

plates with and without 5 mM caffeine at 28 °C. In each panel, from the top to bottom, 10-fold 

fewer cells were plated in each row. CAF1, KY803 or BY4741; caf1:caf1 mutant, KY803-

c1or Y07123.  

2.7 Mt148 overexpression does not influence metabolite accumulation  

Considering the co-regulation of the Mt148 and saponin biosynthesis genes in MeJA-

elicited cell cultures of M. truncatula (Pollier, 2011), metabolite profiling was 

performed by liquid chromatography electrospray ionization Fourier transform ion 

cyclotron resonance mass spectrometry (LC-ESI-FT- ICRMS) to verify the effect of 

Mt148 overexpression on the metabolite profile of transgenic hairy roots (Fig. 11A). 

Comparative analysis of the extracts of Mt148
OE

 and control hairy roots yielded a 

total of 5,506 m/z peaks, containing 65 peaks which were significantly changed (p≤ 
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10E-05). However, subsequent Principal Component Analysis (PCA) revealed that 

the variation was mostly due to experimental variation rather than differences 

between the two lines. Hence, Mt148 overexpression did not seem to affect the 

metabolism of M. truncatula hairy roots (Fig. 11A).  

We also profiled the metabolic response of the Mt148
OE

 lines to MeJA elicitation. 

Comparative data analysis of the LC-ESI-FT- ICRMS spectra from MeJA-elicited 

roots with that of non-elicited roots revealed a total of 10,617 m/z peaks, of which 

2,129 m/z peaks discrete between elicited and non-elicited lines were observed, and 

2,305 peaks were significantly changed (p≤ 10E-05) (Fig. 11B). However, statistical 

analysis of data did not reveal marked general differences in MeJA response in terms 

of metabolite accumulation between Mt148
OE

 and control hairy root lines (Fig. 11B). 

Exogenous MeJA induced higher accumulation of known triterpene saponins, 

including soyasaponin I and Rha-Gal-GlcA-soyasapogenol E (2.39 fold, p value 4.4E-

14 and 3.08 fold, p value 1.55E-12 higher induction, respectively) in both MT148
OE

 

and control lines (Fig. 11C). Collectively, these results showed that the MeJA 

responses leading to the high accumulation of triterpene saponins in hairy roots are 

not affected by Mt148 overexpression.  
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Figure 11. Saponin profiling of Mt148
OE

 and control hairy roots. (A) Comparison of the 

chromatogram of a control line (green) and a Mt148
OE

 line (red). No significant differences 

have been observed. (B) Detail of the full MS scan of a MeJA-treated line (red) and a mock 

(ETOH)-treated hairy root (green). The peak at tR 21.67 and 23.84 represent Soyasaponin I 

and Rha-Gal-GlcA-Soyasapogenol E, respectively. The number indicated on each peak shows 

the retention time of the corresponding compound (C) Average Total Ion Current (TIC) of the 

main masses corresponding to Soyasaponin I (left) and Rha-Gal-GlcA-Soyasapogenol E 

(right). Error bars indicate SEM of five technical repeats. 

3 Discussion 

Biosynthesis of plant secondary metabolites is regulated through highly complex 

regulatory networks, mediating either an increase or a decrease in the accumulation of 
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secondary metabolites. Therefore, manipulation of the components of these regulatory 

networks can provide a great opportunity to get insights into the signal transduction 

toward secondary metabolite production in plants. From a previous study (Pollier, 

2011), we identified several regulatory genes potentially involved in the regulation of 

secondary metabolite biosynthesis in the model legume M. truncatula. The function 

of the selected genes was assessed by a gain- and loss-of function approach in 

transgenic hairy root cultures. Phenotypic characterization of transgenic hairy roots 

pinpointed two potential regulatory genes involved in the regulation of secondary 

metabolism, Mt148 (this chapter) and Mt061 (see chapter 5).  

Mt148 encodes for a Ccr4-associated factor1 (Caf1) protein that is a component of a 

large regulatory complex involved in several aspects of gene regulation. Diverse 

studies have addressed a role of the Ccr4–Not complex subunits in the regulation of 

gene expression in S. cerevisiae and other eukaryotes. Many cellular functions have 

been assigned to the Ccr4–Not complex including regulation of transcription 

initiation, mRNA degradation, protein ubiquitination and RNA Polymerase II-

dependent transcript elongation (Tucker et al., 2001; Denis and Chen, 2003; 

Panasenko et al., 2006; Kruk et al., 2011; Collart and Panasenko, 2012). Ccr4 and 

Caf1 have been well recognized as regulatory elements of this complex and are 

involved in post-transcriptional mRNA deadenylation. In this study, transcript 

profiling of Mt148 overexpressing hairy roots showed that the overexpression of 

Mt148 resulted in the transcriptional repression of some genes involved in primary 

and secondary metabolite biosynthesis pathways (Figs. 5 and 7). Based on these 

results we speculated that Mt148 may be involved in the transcriptional repression of 

plant secondary metabolite biosynthesis genes via an mRNA deadenylation process. 

However, after applying RNA synthesis inhibitors, cordycepin and actinomycin D, no 

significant differences were observed in the stability of BAS and Mt148 transcripts 

between Mt148
OE

 and control lines (Figs. 8 and 9). Hence, the results obtained from 

the RNA degradation assay did not support this hypothesis. Although previous studies 

have shown that both Ccr4 and Caf1 show deadenylase activity in vitro, the 

deadenylase activity of Caf1 in vivo is still matter of debate (Tucker et al., 2001; 

Tucker et al., 2002). The advantage of having two deadenylases in the Ccr4-Not 

complex is not clear, and it seems that there are species specific differences in the 

relative contribution of these two subunits to the deadenylation process. In yeast, it is 

suggested that Caf1 is probably involved in other processes including maintaining the 
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integrity of the complex or recruiting Ccr4-Not to mRNAs by binding sequence 

specific RNA binding proteins rather than to have deadenylase activity (Collart, 2003; 

Goldstrohm et al., 2006; Goldstrohm et al., 2007). Here also, it seems unlikely that the 

Caf1 protein encoded by Mt148 possess deadenylase activity.  

Unlike yeast that contains only one Ccr4-Caf1, the CAF1 family spreads out widely in 

angiosperm genomes. For example, there are four CAF1s in grape (Vitis vinifera), 

twelve in sorghum (Sorghum bicolor), sixteen in rice (Oryza sativa), nineteen in 

poplar (Populus trichocarpa), eleven in Arabidopsis and eight in M. truncatula. 

Among the eleven closely related sequences characterized in Arabidopsis (Walley et 

al., 2010), only two hormone and stress inducible CAF1s, i.e. AtCAF1a and AtCAF1b 

could partially complement the growth defect of the yeast caf1 deletion strain (Liang 

et al., 2009). Therefore, the diversity in the Ccr4 and Caf1 functions can rise from the 

presence of different versions of Ccr4 and Caf1 in higher eukaryotes that perform 

specialized functions. This is further supported by the results obtained from the yeast 

complementation assay, which revealed that Mt148 could not complement the 

phenotypic defect of the yeast caf1 mutant. On the contrary, it induced a growth 

defect in intact (wild type) yeast under normal growth conditions (Fig. 10), that 

indicates that Mt148 encodes a Caf1 protein which functionally differs from yeast 

Caf1.  

Finally, metabolite profiling of Mt148
OE

 hairy roots did not reveal any differences in 

accumulation of metabolites between Mt148
OE

 lines and control lines (Fig. 11), 

neither in MeJA-elicited nor in non-elicited hairy roots. Altogether the results from 

this study do not support a clear role for Mt148 in the regulation of secondary 

metabolism in M. truncatula hairy roots yet. 

4 Material and methods 

4.1 Generation of DNA constructs 

To obtain FL-ORFs for cloning of the selected M. truncatula genes, the cDNA-AFLP 

tag sequences were used for BLASTn searches against the Medicago truncatula Gene 

Index database (http://compbio.dfci.harvard.edu/tgi/). The FL-ORF consensus 

sequences were PCR-amplified and by Gateway
TM

 recombination cloned into the 

entry vector pDONR221. To obtain entry clones with stop codons, Gateway primers 

were designed according to Underwood (Underwood et al., 2006). All entry 

constructs were sequence-verified. For the overexpression experiments, Gateway 
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recombination was carried out with the pK7WG2D binary vector (Karimi et al., 

2002), and the resulting clones transformed into the Agrobacterium rhizogenes strain 

LBA 9402/12 for generation of hairy roots. For hpRNAi, the cDNA-AFLP fragments 

were PCR-amplified and by Gateway
TM

 recombination cloned into the binary vector 

pK7GWIWG2D(II) (Karimi et al., 2002). The resulting expression clones were 

transformed into A. rhizogenes. For the yeast complementation assays, the 

pAG426GPD vector (Alberti et al., 2007) was used as the destination vector for the 

Mt148 gene.  

4.2 Generation and cultivation of Agrobacterium rhizogenes-mediated 

transgenic hairy roots 

Protocol for A. rhizogenes-mediated transformation of M. truncatula (ecotype 

Jemalong J5) hairy roots was adapted from Boisson-Dernier et al. (Boisson-Dernier et 

al., 2001), with modifications. After 5 minutes treatment with H2SO4, seeds were 

sterilized with 12% sodium hypochlorite for 2 minutes and rinsed in sterile water. 

Subsequently, seeds were treated with 1 µM 6- benzylaminopurine for 3 h and then 

allowed to germinate on wet, sterile Whatman paper at room temperature in the dark. 

After 2 days of germination, the seedlings were wounded by cutting approximately 2 

mm from the root tip of the radicle. The wounded seedlings were infected with A. 

rhizogenes harboring binary vectors grown on solid YEB medium. Incubated seedling 

were placed on slanted agar plates containing Murashige and Skoog (MS) medium 

(pH 5.8) supplemented with vitamins (Duchefa). The plates were sealed with 

micropore tape, placed vertically, and cocultivation was allowed for 10 days under a 

16 h/8 h light/dark regime at 22°C. After 10 days, the plants were transferred to new 

plates, containing 100 mg/L cefotaxime to prevent Agrobacterium growth and 

incubated under identical conditions. Ten days later, plants were screened for 

transgenic hairy roots characterizing by GFP fluorescent. Transgenic hairy roots were 

excised from the plants and transferred to liquid MS medium (pH 5.8) supplemented 

with vitamins, 1% sucrose (w/v), and 100 mg/L cefotaxime. The hairy roots were 

grown for 7 days in the dark at 24°C and shaking at 300 rpm. Subsequently, the roots 

were transferred to Petri dishes containing solid MS medium (pH 5.8) supplemented 

with 1% sucrose (w/v) and 100 mg/L cefotaxime, grown in the dark at 24°C, and 

subcultured every 3 weeks. After 3 weeks, young hairy root tissue was subcultured to 

solid medium without antibiotics. For maintenance, the newly grown Agrobacterium-
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free hairy root cultures were subcultured every 3 weeks onto fresh plates. Hairy roots 

for metabolic profiling were grown for 21 days in liquid MS medium (pH 5.8) 

supplemented with vitamins and 1% (w/v) sucrose. 

4.3 Transcript profiling 

For quantitative Real Time PCR (qRT-PCR), total RNA were isolated with the 

RNeasy mini kit (Qiagen) according to manufacturer instruction. Quality control and 

quantification were performed with a Nanodrop spectrometer (Isogen, Hackensack, 

NJ). cDNA were prepared using SuperScript
TM

 II Reverse Transcriptase (Invitrogen). 

Primers were designed with Beacon Designer version 4.0 (Premier Biosoft 

International, Palo Alto, CA, USA). QRT-PCR was quantified on a Lightcycler 480 

(Roche) and SYBR Green was used for detection. All reactions were done in a 5 µl 

volume in triplicate in a 384-multiwell plates allow determination of mean of standard 

error of Ct. Data were normalized against 40S ribosomal protein S8 (40S) (TC160725, 

MGI) and translation elongation factor 1α (ELF1α) (TC148782, MGI). Reactions 

were done in triplicate and qBase was used for the relative quantification with 

multiple reference genes (Hellemans et al., 2007). 

4.4 Metabolite extractions 

For metabolite profiling, five biological repeats of three independent transgenic lines 

per transgene construct of M. truncatula hairy roots were harvested and washed with 

purified water under vacuum filtration. The roots were immediately frozen and 

ground in liquid nitrogen. One milliliter MeOH, was added to 400 mg of the ground 

material and incubated at room temperature for 10 min. Samples were then 

centrifuged for 10 min at 20800xg. Under vacuum, 500 µL of the supernatant was 

evaporated to dryness. The residue was dissolved in 600 µL of H2O/cyclohexane (2:1, 

v/v), centrifuged (10 min at 20,800xg), and 200 µL of the aqueous phase was taken 

for analysis. 

4.5 LC ESI FT-ICR MS 

For reversed-phase LC, an Acquity UPLC BEH C18 column (150 x 2.1 mm, 1.7 µm; 

Waters, Milford, MA) was serially coupled to an Acquity UPLC BEH C18 column 

(100 x 2.1 mm, 1.7 µm) and mounted on an ultra-high-performance LC system 

consisting of a Accela pump (Thermo Electron Corporation, Waltham, MA, USA) 

and Accela autosampler (Thermo Electron Corporation). The Accela LC system was 
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hyphenated to a LTQ FT Ultra (Thermo Electron Corporation) via an electrospray 

ionization source. The following gradient was run using water:MeCN (99:1, v:v) 

acidified with 0.1% (v:v) HOAc (solvent A) and MeCN:water (99:1, v:v) acidified 

with 0.1% (v:v) HOAc (solvent B): time 0 min, 5% B; 30 min, 55% B; 35 min, 100% 

B. The loop size, flow, and column temperature were 25 µL, 300 µL/min and 80°C, 

respectively. Full loop injection was applied. Negative ionization was obtained with 

the following parameter values: capillary temperature 150°C, sheath gas 25 (arbitrary 

units), aux. gas 3 (arbitrary units), and spray voltage 4.5 kV. Full FT-MS spectra 

between m/z 120– 1400 were recorded at a resolution of 100,000. For identification, 

full MS spectra were interchanged with a dependent MS
2
 scan event in which the 

most abundant ion in the previous full MS scan was fragmented, and two dependent 

MS
3
 scan events in which the two most abundant daughter ions were fragmented. The 

collision energy was set at 35%. Elucidation of the MS
n
 spectra was according to 

Pollier et al (Pollier et al., 2011) for the saponins and Morreel et al. (Morreel et al., 

2006) for the flavonoids. The resulting chromatograms were integrated and aligned 

with the XCMS package (Smith et al., 2006) in R version 2.6.1. with the following 

parameter values: xcmsSet(fwhm=8, max=300, snthresh=5, mzdiff=0.5), group 

(bw=8, max=300), rector (method=loess, family=symmetric). A second grouping was 

done with the same parameter values. Due to in- source fragmentation, multiple m/z 

peaks for each compound were often observed. The number of compounds was 

estimated with “peak groups” consisting of m/z peaks with the same retention time 

(window, x s) that were correlated (Pearson; threshold, 0.85) across all control 

samples: reproduced from (Pollier, 2011). 

4.6 Phylogenetic analysis 

Protein sequences were aligned with ClustalW and the phylogenetic tree was 

produced using MEGA 5.0.1 software (Tamura et al., 2011), by the Neighbor-Joining 

method, and bootstrapping was done with 10,000 replicates. The evolutionary 

distances were computed with the Poisson correction method, and all positions 

containing gaps and missing data were eliminated from the data set (complete deletion 

option). 
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4.7 Measurement of RNA Degradation 

The RNA degradation assay was performed with three biological repeats of two and 

three independent transgenic hairy roots in cordycepin and actinomycin D inhibition 

experiments, respectively. Mt148
OE 

and control hairy roots were cultured in MS liquid 

medium and 21 days after subculturing into fresh medium, cordycepin (Sigma) (150 

µg/mL, dissolved in DMSO) or actinomycin D (Sigma) (100 µg/mL, dissolved in 

DMSO) or an equivalent amount of DMSO as control was added to the media. After 

thirty minutes, MeJA (50 µM, Dissolved in DMSO) or an equivalent amount of 

DMSO was added. Samples were taken 0, 0.5, 1, 3, and 6 h after addition of 

cordycepin or actinomycin D and analyzed by qRT-PCR to check RNA degradation 

rates. Experiments with actinomycin D were conducted in a darkroom. 

4.8 Yeast complementation  

Yeast strains KY803 (MATa leu2-PET56 trp1-∆1 ura3-52 gal2 gcn4-∆1), KY803-c1 

(MATa leu2-PET56 trp1-∆1 ura3-52 gal2 gcn4-∆1 caf1::LEU2), BY4741 (BY4741; 

Mat a; his3D1; leu2D0; met15D0; ura3D0) and Y07123 (BY4741; Mat a; his3D1; 

leu2D0; met15D0; ura3D0; YNR052c::kanMX4) were transformed with 

pAG426GPD-Mt148. Precultures were grown for 18-20h in 30°C at 250 rpm in 5 ml 

synthetic defined (SD) medium lacking URA (SD-U) or YPD medium. Then the 

cultures were grown on SD-U plates supplemented with or without 5 mM caffeine at 

28°C.  
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Abstract: 

Plants produce green leaf volatiles (GLVs), consisting of six-carbon (C6) 

aldehydes, alcohols and their esters, as a defense response to insect or 

pathogen damage. GLV formation is thought to be regulated at the step of 

lipid hydrolysis, which provides free fatty acids to the pathway. Although the 

pathways for GLV biosynthesis have been characterized, how their production 

and emission are regulated is mostly unknown. By genome-wide cDNA-AFLP 

transcript profiling of MeJA elicited cell cultures, we identified Mt061, which 

encodes an R2R3-type MYB family transcription factor, as a candidate 

regulator of GLV biosynthesis in Medicago truncatula. In contrast to control 

lines, Mt061 overexpressing hairy roots produce and emit GLV compounds. 

Enhanced transcript levels of several defense genes such as trypsin protease 

inhibitor (TPI) and phenolic biosynthesis genes were detected in Mt061-

overexpressing hairy roots. In addition, higher levels of phytoalexin 

compounds were detected in transgenic lines as compared to control lines, 

suggesting that Mt061 coordinates the regulation of direct and indirect 

defense response processes. 

1 Introduction 

Plants emit a wide array of volatile organic compounds such as jasmonates (JAs), 

green leaf volatiles (GLVs) and isoprenoids in response to various biotic and abiotic 

stresses (Dudareva et al., 2006). The volatiles released from leaves upon herbivore 

attack help plants to hinder herbivores or attract their predators (Arimura et al., 2011). 

Moreover, volatiles act as signal molecules in plants to induce genes associated with 

the defense response (Bate and Rothstein, 1998; Kishimoto et al., 2005). 

Plant volatiles (PVs) are low-molecular-weight compounds (below 300 Da) that 

mostly emanate from three major biosynthetic pathways: the terpenoid pathway, the 

benzenoid pathway, and fatty acid metabolism (Dudareva et al., 2006). However, 

small quantities of amino acid- derived volatiles can also be present in the blends 

emitted from flowers and fruits. Various forms of enzymatic modifications such as 

hydroxylation, acetylation, and methylation increase the volatility of these compounds 

and cause a remarkable diversity of the released volatiles (Dudareva et al., 2006).  

The largest class of PVs is composed of terpenoids derived from the universal C5 

precursor isopentenyl diphosphate (IPP) and its allylic isomer, dimethylallyl 

diphosphate (DMAPP). Terpenoids are synthesized via two independent pathways in 

separate compartments of the plant cell. In the cytosol, IPP biosynthesis initiates with 

the condensation of three molecules of acetyl-CoA through the cytoplasmic 
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mevalonic acid (MVA) pathway (Newman and Chappell, 1999). In plastids, IPP is 

generated from pyruvate and glyceraldehyde 3- phosphate via the 2-C-methyl-D-

erythritol 4-phosphate (MEP) pathway (Rodriguez-Concepcion and Boronat, 2002).  

Phenylpropanoids and benzenoids are derived from L-phenylalanine and are the 

second largest class of PVs. The first step of benzenoid biosynthesis is catalyzed by 

L-phenylalanine ammonia-lyase that converts L-phenylalanine into trans-cinnamic 

acid. The next steps are shared with the lignin and lignan biosynthetic pathway up to 

the formation of phenylpropenol (monolignol) which results in the biosynthesis of an 

array of hydroxycinnamic acids, aldehydes and alcohols derived from trans-cinnamic 

acid through a series of hydroxylation and methylation reactions (Verdonk et al., 

2003; Schuurink et al., 2006). Shortening of the three-carbon side chain of 

hydroxycinnamates to one carbon also leads to aromatic building blocks such as 

benzoic acid and benzaldehyde (Boatright et al., 2004). In addition, phenylalanine is 

reduced at the C9 position to phenylacetaldehyde and phenylethylalcohol that are also 

benzenoid volatiles (Boatright et al., 2004). 

The third group of PVs consists of fatty acid- derived volatiles such as trans-2-

hexenal, cis-3-hexenol and methyl jasmonate (MeJA) that are commonly named the 

oxylipins. Biosynthesis of oxylipins is triggered by cell membrane disruption that 

leads to the release of the C18 unsaturated fatty acids α-linolenic acid and linoleic 

acid from the chloroplast membrane by the enzymatic activity of lipases. Then, 

subsequent actions of the enzymes lipoxygenase (LOX), hydroperoxide lyase (HPL) 

and/or allene oxide synthase (AOS) convert linoleic acid or linolenic acid into short 

chain volatiles with aldehyde and ketone moieties, that often serve as precursors of 

oxylipins (Dudareva et al., 2006) 

LOXs are divided into two major classes: 9-LOXs and 13-LOXs, introducing an 

oxygen group at the C-9 or C-13 position to produce 9-hydroperoxy linolenic acid 

(9HPOT) and 13-hydroperoxy linolenic acid (13HPOT), respectively (Liavonchanka 

and Feussner, 2006). The resulting HPOT derivatives can be further metabolized by 

either AOS or HPL, which represent two branches in the lipoxygenase pathway. AOS 

converts 13HPOT to an unstable allene oxide intermediate, 12,13-epoxy 

octadecatrienoic acid. Then, a cascade of subsequent enzymatic reactions leads to the 

formation of jasmonic acid (JA) which in turn can be converted into the volatile ester, 

MeJA, by jasmonate O-methyltransferase (JMT) (Seo et al., 2001; Song et al., 2005). 

In another branch, HPL catalyzes the first committed step toward GLV biosynthesis. 
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This includes the oxidative cleavage of 9HPOT and 13HPOT by 9HPL and 13HPL, 

respectively which results in the formation of a short chain C6-compound ((Z)-3-

hexenal) and a C12- compound (12-oxo-(Z)-9-dodecenoic acid), commonly referred 

to as GLVs. Moreover, 9HPOT can be cleaved by the 9/13HPL enzyme that can act 

on both 13- and 9-hydroperoxides with almost the same efficiency to form C9-

aldehydes and C9-oxo acids (Matsui, 2006). (Z)-3-hexenal is the first C6-GLV 

compound formed after tissue damage (Matsui et al., 2000a) and is then converted to 

other GLVs like (E)-2-hexenal (leaf aldehyde), (Z)-3-hexenol (leaf alcohol) and (Z)-3-

hexenyl acetate (leaf ester) (Shiojiri et al., 2006). Figure 1 shows an overview of the 

GLV and MeJA biosynthetic pathways.  

  

Figure 1. The biosynthetic pathways of GLVs and MeJA from C18 fatty acids compounds. 

LIP, lipase; LOX, lipoxygenase; 13-HPL,13-hydroperoxide lyase; ADH, alcohol 

dehydrogenase; AAC, alcohol acyl-transferase; AOS, allene oxide synthase; AOC, allene 

oxide cyclase; JMT, jasmonate O-methyltransferase. 

Despite significant progress in the characterization of the genes and enzymes involved 

in the biosynthesis of plant volatiles and the approaches for manipulating the volatile 

spectrum in plants (Xie et al., 2004; Shao et al., 2007; Arimura et al., 2011), very little 

is known about the regulation of the plant volatiles at the molecular level. HAHB4, a 
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member of the sunflower (Helianthus annuus) homeodomain-leucine zipper (HD- 

ZIP) subfamily, was identified as a positive regulator of the synthesis of JAs and 

GLVs. HAHB4 upregulates the transcript levels of several genes involved in JA and 

GLV biosynthesis and HAHB4 expression itself is stimulated by JAs (Manavella et 

al., 2008). Recently, a JAZ protein, named NaJAZh has been characterized in native 

tobacco (Nicotiana attenuata) and shown to be involved in the regulation of GLV 

biosynthesis (Oh et al., 2012). 

In this study, we show that overexpression of the Mt061 gene, encoding a MYB 

transcription factor (TF), in M. truncatula hairy roots results in the production and 

emission of GLVs. Furthermore, the accumulation of higher levels of phytoalexin 

compounds as well as upregulation of several phenolic biosynthesis and defense 

genes in Mt061-overexpressing hairy roots suggests that Mt061 participates in the 

regulation of defense response processes in M. truncatula. 

2 Results 

2.1 Identification of Mt061 as a MeJA-responsive regulatory gene  

Based on the data obtained from the genome-wide cDNA-AFLP analysis of MeJA-

elicited M. truncatula cells (Pollier, 2011), some genes with a putative regulatory role 

in secondary metabolite biosynthesis genes were selected for further analysis. Then, 

using cDNA obtained from the MeJA-elicited M. truncatula cells and hairy root 

cultures (see chapter 4), the transcript levels of the candidate genes were compared 

with those of control lines. The genes with elevated transcript levels between 30 min 

to 2 h after elicitation, which is prior or concomitant to the onset of the secondary 

metabolite biosynthesis genes, were selected (see chapter 4). Based on this rationale, 

Mt061 was also selected (see chapter 4). Mt061 encodes a protein with two 

SANT/MYB DNA-binding domains indicative of MYB-like TFs and has high 

similarity to proteins of the R2R3-type MYB family (Stracke et al., 2001). The 

transcript levels of Mt061 were shown to increase between 30 min to 2 h after 

elicitation in MeJA-elicited cell cultures (Fig. 2A), while they did not respond to 

MeJA elicitation in hairy roots (Fig 2B). Subsequently, a reverse genetics approach 

was applied to interrogate the function of this potentially regulatory gene. Gain- of- 

function was pursued via expression of the Mt061 full-length open reading frame (FL- 

ORF) under a constitutive CaMV35S promoter in M. truncatula hairy roots.  
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A B 

  

Figure 2. Expression analyses of Mt061 in MeJA-treated M. truncatula (A) cell cultures and 

(B) hairy roots, using qRT-PCR. Treatments and time-points are indicated at the bottom of the 

graphs. Y-axis represent relative expression ratio as compared to the mock-treated line at time 

0. Error bars represent SEM of three technical repeats. 

When transgenic hairy roots were established and grown on the plates, the Mt061-

overexpressing hairy roots (Mt061
OE

) produced and emitted a penetrating scent of 

plant volatiles, perceivable by the human nose. Therefore we decided to explore the 

role(s) of this putative regulator in plant defense response and secondary metabolism 

more thoroughly.  

2.2 Overexpression of Mt061 in M. truncatula hairy roots is associated 

with GLV emission 

Mt061
OE

 lines were used for volatile analysis by GC-MS. The GC chromatogram of 

Mt061
OE

 showed the presence of a new peak at 27.480 min (Fig. 3A) with electron 

ionization (EI) pattern corresponding to hexanal (Fig. 3C). This peak was absent from 

the control lines (Fig. 3B).  

Hexanal and other six-carbon (C6-) volatiles, including the aldehydes trans- 2-

hexenal and cis-3-hexenal, as well as their corresponding alcohols or esters, are well-

known GLV compounds that are released as the earliest volatiles from damaged or 

wounded plant tissue. Therefore, we decided to explore GLV metabolism in Mt061
OE

 

lines more thoroughly. 
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Figure 3. GC chromatograms corresponding to, (A) volatile extraction from the Mt061
OE

 line, 

(B) volatile extraction from control lines, (C) hexanal standard. Chromatograms are showing 

hexanal at 27.48 min. The X- and Y-axis of the GC chromatograms correspond to time in 

minutes and total ion current, respectively. Right panels show the mass spectra extracted from 

the indicated (*) peaks. The X- and Y-axis of the mass spectra correspond to mass-to-charge 

ratio (m/z) values and the signal intensity (abundance) for each of the detected fragments, 

respectively. 

2.3 Mt061 is coregulated with some genes of the lipoxygenase pathway 

To verify the effect of Mt061 overexpression on expression of GLV biosynthesis 

genes, we performed transcript profiling on Mt061
OE

 hairy roots with qRT-PCR. First, 

using data obtained from genome-wide cDNA-AFLP transcript profiling on MeJA-

elicited cell cultures (Pollier, 2011), some major genes involved in biosynthesis of 

oxylipins which were shown to be coregulated with Mt061 gene were chosen, 

including Lipase (LIP; Mt201: TC177401), two LOXs (LOX1; Mt079: TC181880 and 

LOX2; TC178353), 13HPL (HPL1; TC173537), 9/13HPL (HPL2; Mt173: TC173832) 

and AOS (TC174824) (Fig. 4).  
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Figure 4. Average linkage hierarchical clustering of M. truncatula gene tags corresponding to 

the genes involved in oxylipins biosynthesis. Tags are identified by cDNA-AFLP analysis on 

MeJA-elicited M. truncatula cells (Pollier, 2011). Treatments and time points (h) are indicated 

at the top. Blue and yellow boxes reflect transcriptional activation and repression by methyl 

jasmonate (MeJA) relative to the average expression level, respectively.  

This analysis revealed that LIP, and LOX2 were upregulated in the Mt061
OE

 lines 

(Fig. 5), whereas the transcript levels of HPLs and AOS were not affected in Mt061
OE 

lines (Fig. 5). 

  

  

   
Figure 5. Expression analysis of GLV biosynthesis genes in Mt061

OE
 lines. CTRL, control 

lines; OE, Mt061
OE

 lines. LIP, lipase; LOX, lipoxygenase; HPL, hydroperoxide lyase; AOS, 

allene oxide synthase. Y-axis corresponds to relative expression ratio as compared to the 

control line 2. Error bars represent SEM of three technical repeats. 
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2.4 Mt061 is not significantly induced under stress conditions in M. 

truncatula hairy roots  

To further characterize the Mt061 gene, we wanted to assess whether it might be 

associated with biotic and abiotic stress responses. Therefore, the quantitative changes 

in transcription of Mt061 and GLV biosynthesis genes (LIP, LOX2, HPL1 and HPL2) 

were assessed in M. truncatula hairy roots treated with NaCl (200mM) (Fig. 6) and 

MeJA (100 µM) (Fig. 7) over a 48 h time- course. This analysis showed that although 

some variations between mock treated and NaCl treated samples, neither Mt061 nor 

GLV biosynthesis genes were significantly induced by NaCl treatment. The only 

significant change was observed in transcription level of HPL2 which was 

significantly upregulated (p≤0.05) after 24 hours (Fig. 6).  

Mt061 

 

LIP  LOX2 

  

HPL1 HPL2 

  

Figure 6. Expression patterns of Mt061 and GLV biosynthesis genes in M. truncatula hairy 

roots treated with NaCl. LIP, lipase; LOX2, lipoxygenase 2; HPL1 and 2, hydroperoxide 

lyase1 and 2. Expression level at different time points is represented as a ratio relative to the 

mock-treated line 1 (CTRL-1) at time 1h, which is set to 1. Data and error bars represent 

Mean± SEM of three biological repeats. Asterisk indicates a significant difference on paired 

samples t-test with p≤0.05. 
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In contrast, MeJA elicitation resulted in the significant changes in the expression 

levels of LIP, LOX and HPL2 genes with the p value of ≤0.05; ≤0.001 and ≤0.01 

respectively. Whereas HPL1 was not affected and Mt061 was not induced with MeJA 

either, which is consistent with the results obtained in the earlier experiment (Fig. 

2B). 

Mt061 

 

LIP  LOX2 

  

HPL1 HPL2 

  

Figure 7. Expression patterns of Mt061 and GLV biosynthesis genes in the presence of MeJA 

in M. truncatula hairy roots. LIP, lipase; LOX2, lipoxygenase 2; HPL1 and 2, hydroperoxide 

lyase1 and 2. Expression level at different time points is represented as a ratio relative to the 

mock-treated line 1 (CTRL-1) at time 1h, which is set to 1. Data and error bars represent 

Mean± SEM of three biological repeats. Asterisks indicate significant differences on paired 

samples t-test: * p≤0.05; ** p≤0.01; ***p≤0.001. 

2.5 Isoflavonoid and pterocarpan accumulation are modulated by Mt061 

overexpression 

Since Mt061 and secondary metabolite biosynthesis genes were co-regulated in MeJA 

elicited cell cultures (Pollier, 2011), we explored the effect of Mt061 overexpression 

on secondary metabolite profiles of M. truncatula hairy roots. Five biological repeats 

of three independent Mt061
OE

 lines were profiled with LC- ESI-FT-ICRMS and 
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compared with that of control lines. Comparative analyses of the root extracts of 

Mt061
OE

 and control lines yielded a total of 1045 m/z peaks corresponding to 90 

differentially present peaks. Among the differentially present peaks, the peaks 

corresponding to some major known isoflavonoid compounds including malonyl-

Hex-afrormosin, malonyl-Hex-formononetin and malonyl-Hex-biochanin A, as well 

as pterocarpan medicarpin 3-O-glucoside-6'-malonate were detected in higher 

abundance in Mt061
OE

 lines as compared to control lines (Fig. 8). Therefore, the 

results show that Mt061 modulates isoflavonoid and pterocarpan accumulation in 

transgenic roots.  
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Figure 8. Metabolite profiling of Mt061
OE

 hairy roots. (A) Detail of the full MS scan of a 

control line (green) and a Mt061
OE

 line (red). The number indicated on each peak shows the 

retention time of the corresponding compound (B) Average Total Ion Current (TIC) of the 

main masses corresponding to medicarpin 3-O-glucoside-6'-Malonate(top, left), Malonyl-Hex-

afrormosin (below, left), Malonyl-Hex-formononetin (top, right) and Malonyl-Hex-biochanin 

A (below, right). Error bars represent SEM of the five technical repeats. 

 

Medicarpin 3-O-glucoside-6'-Malonate 

Malonyl-Hex-Formononetin 

Malonyl-Hex-Afrormosin 
Malonyl-Hex-Biochanin A 
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2.6 RNA-Seq analysis  

To gain a genome-wide view into the regulatory effect of Mt061 we compared global 

gene expression between Mt061
OE

 and control lines using RNA sequencing transcript 

profiling (RNA-Seq analysis). 

The transcript abundances were measured in fragments per kilobase of exon per 

million fragments mapped (FPKM) values of the different genes that are present on 

the genome. Gene annotations were retrieved using NCBI.  

From the expressed genes in the list, we selected the genes with ≥5 fold induction (96 

genes) and ≥ 10 fold reduction (43 genes), respectively (Table 1&2). In Table 1 and 2 

we present the genes with increased and decreased transcript levels in Mt061
OE

 

compared to control lines, respectively. The genes with enhanced transcript levels 

were grouped based on the putative function of the annotated genes. Since the genes 

with decreased transcript levels showed little functional annotations, we sorted them 

based on their fold of induction (Table 2). Thirty seven genes out of 96 genes with the 

highest fold of induction are related to direct or indirect defense responses, that can be 

categorized into three major groups: genes involved in volatile biosynthesis, 

entangled with phenolic biosynthesis and genes involved in direct defense response 

(Table 1).  

1. Several genes potentially linked with GLV biosynthesis were upregulated in 

Mt061
OE

 lines. These genes can be further divided into two subgroups. 

Subgroup “A” consists of the genes that are directly involved in oxylipin 

production i.e. biosynthetic genes such as several LOXs, JMT, and those that 

are involved in fatty acid metabolism, including long chain fatty acid-CoA 

ligase and fatty acid hydroxylase WAX2. Subgroup “B” is composed of those 

that are involved in plastid formation, where the (precursors of) volatiles are 

produced. This subgroup includes the genes with putative roles in plastid 

formation like a GATA TF (Chiang et al., 2012), RNA polymerase sigma 

factor rpoD (Troxler et al., 1994; Kanamaru and Tanaka, 2004), a 

pentatricopeptide repeat-containing protein (Kotera et al., 2005; Schmitz-

Linneweber et al., 2006), and a Dof zinc finger protein. A thylakoid lumenal 

protein which is involved in chloroplast thylakoid formation, where 13HPL is 

specifically localized (Feussner and Wasternack, 2002), is also upregulated in 

Mt061
OE

 lines. In addition, some plastid-specific primary metabolism 
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including cysteine desulfurase and two pyruvate decarboxylase genes are 

upregulated in Mt061
OE

 lines (Table 1). 

2 Phenolics biosynthesis genes: This group is composed of monolignol 

biosynthesis genes such as 4-coumarate-CoA ligase and caffeic acid O- 

methyltransferase, and genes involved in the flavonoid biosynthesis pathway 

including two genes encoding dihydroflavonol 4-reductase (Table 1). 

3 Genes involved in defense responses, including several trypsin protease 

inhibitor, cysteine protease inhibitor, pathogenesis-related protein 1a (PR1a), 

callose synthase and cysteine-rich receptor-like protein kinase. Some other 

resistance genes such as NBS resistance protein genes and metal tolerance 

protein genes were also over-expressed in Mt061
OE

 lines (Table 1).  

Several genes with unknown function were up and down-regulated (25 and 26 genes, 

respectively). Transcript levels of some key enzymes involved in primary metabolism 

were also changed (Table 1 and 2). 
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Table 1 Genes significantly induced in the Mt061
OE

 hairy roots
 
sorted according to their putative annotation (n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation control  
mean±SD  

Mt061
OE

 
mean±SD 

Fold of 
induction 

GLV biosynthesis genes 

   

Subgroup A 

MTR_3g079450 Lipoxygenase 0.88±0.2 13.06±4.50 14.9 

MTR_4g018820 Jasmonate O-methyltransferase 31.3±14.5 363.9±184.6 11.6 

MTR_7g109830 Long-chain-fatty-acid-CoA Ligase 1.09±0.48 9.15±2.321 8.41 

MTR_7g090100 Fatty acid hydroxylase WAX2 0.66±0.43 4.35±1.404 6.6 

MTR_8g083170 Long-chain-fatty-acid CoA ligase 0.53±0.26 3.18±0.69 5.95 

MTR_8g018650 Lipoxygenase 22.2±18.5 105.1±35.83 4.74 

Subgroup B 

MTR_5g012110 Thylakoid lumenal protein  0.11±0.17 1.77±0.36 15.8 

MTR_4g072990 Pentatricopeptide repeat-containing protein 3±0.83 45.38±12.64 15.1 

MTR_5g041400 Dof zinc finger protein 0.52±0.3 4.98±2.586 9.65 

MTR_3g090900 RNA polymerase sigma factor rpoD 0.7±0.3 6.38±2.135 9.08 

MTR_7g112330 GATA TF 4.72±1.58 40.1±12.07 8.5 

MTR_7g102450 Cytokinin-O-glucosyltransferase 4.74±1.07 35.8±10.9 7.54 

MTR_1g014320 NADP-dependent glyceraldehyde-3-
phosphate dehydrogenase 

58.2±20.5 373.4±98.48 6.41 

MTR_5g046610 Pyruvate decarboxylase  31.2±6.36 196.7±39 6.3 

MTR_8g093560 Cysteine desulfurase 40.3±21.7 249.5±63.5 6.19 

MTR_5g046620 Pyruvate decarboxylase 4.38±3.18 23.34±4.95 5.33 

Phenolic biosynthesis genes 

MTR_7g074870 Dihydroflavonol 4-reductase 0.04±0.06 1.24±0.76 32.6 

MTR_5g027480 4-coumarate-CoA ligase 0.15±0.23 4.50±2.36 29.8 
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MTR_7g012070 Caffeate O-methyltransferase-1 1.15±0.79 13.3±4.54 11.5 

MTR_7g074730 Dihydroflavonol-4-reductase 0.29±0.3 1.95±1.24 6.76 

MTR_1g050220 Caffeic acid O-methyltransferase 0.51±0.19 2.60±0.38 5.1 

Other genes involved in defense 

MTR_3g014870 Alpha-amylase/subtilisin inhibitor  0 1.01±0.77 - 

MTR_3g027200 Cc-nbs resistance protein 0.05±0.07 1.21±0.50 26.3 

MTR_6g078140 Trypsin proteinase inhibitor 3.65±1.72 43.0±18.4 11.8 

MTR_6g078120 Trypsin proteinase inhibitor 3.13±1.84 35.4±16.4 11.3 

MTR_5g012600 Pectinesterase 2.34±0.86 19.6±5.10 8.39 

MTR_6g059650 Trypsin proteinase inhibitor 52.2±17.1 394.8±40.7 7.57 

MTR_7g077180 Trypsin proteinase inhibitor 22.3±4.1 160.1±57.7 7.18 

MTR_1g021610 Cysteine-rich receptor-like protein kinase 0.25±0.2 1.46±0.33 5.73 

MTR_4g100990 Aspartic proteinase nepenthesin-2 4.59±2.36 26.23±8.17 5.72 

MTR_2g012370 Pathogenesis-related protein 1a  1.64±0.56 9.34±2.28 5.69 

MTR_1g101710 Callose synthase 0.22±0.18 1.26±0.29 5.63 

MTR_3g084780 Cysteine proteinase inhibitor 12.8±5.43 66.59±37.8 5.19 

MTR_5g084080 Nodule-specific glycine-rich protein 0.21±0.32 7.02± 2.77 33.7 

Signal transduction genes 

MTR_5g075160 Epidermal patterning factor-like protein 0 3.47±1.07 - 

MTR_5g034580 Rho GTPase 0.05±0.08 2.89±1.65 56.3 

MTR_2g015920 Cysteine proteinase  0.07±0.11 0.74±0.5 10.9 

MTR_4g006220 UBX domain-containing protein 0.22±0.35 10.11±3.88 45.1 

MTR_5g092750 RING finger family protein 0.31±0.48 3.02±1.78 9.7 

MTR_4g037130 Zinc finger SWIM domain-containing protein  0.75±0.62 5.01±1.23 6.71 

MTR_7g117350 RING-H2 finger protein ATL1E  0.63± 0.19 3.49± 1.39 5.58 

Gene expression and DNA repair 

MTR_5g036330 Structural maintenance of chromosomes 
protein 

0.63±0.17 3.49±1.24 16.4 

MTR_7g114050 Histone H2A 0.18±0.1 1.43±0.75 7.75 
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MTR_5g011780 CPD photolyase 0.28±0.22 2.14±0.32 5.33 

Transcription factor 

MTR_3g031070 GL1-like protein 0.14±0.22 1.31±0.60 9.22 

MTR_4g101970 B3 domain-containing protein 1.77±1.1 10.9±1.64 6.15 

MTR_5g018260 PIF-like protein 0.25±0.2 1.48±0.56 5.99 

MTR_7g075870 MADS-box TF 2.4±0.7 12.58±6.9 5.25 

Auxin responsive protein 

MTR_1g063950 Auxin-induced protein 6B 1.54±1.23 13.51±4.93 8.78 

MTR_5g021820 Auxin-induced protein 6B 5.06±2.7 29.19±10.18 5.76 

MTR_3g084230 Auxin-induced protein-like protein  0.91±1.41 4.84±1.63 5.32 

Other metabolism genes 

MTR_4g021210 Ribulose bisphosphate 
carboxylase/oxygenase activase 

1.12±0.81 20.68±5.19 27.7 

MTR_5g007460 Cytochrome P450 0.24±0.1 2.47±1.64 10.4 

MTR_8g104080 Cytochrome P450  6.95±3.28 63.3±22.57 9.1 

MTR_8g104100 Cytochrome P450  7.27±2.99 62.6±19.35 8.62 

MTR_5g076200 2-succinylbenzoate-CoA ligase  0.19±0.29 1.50±0.122 8 

MTR_7g044920 Albumin 0.24±0.37 8.22±1.32 7.2 

MTR_5g012390 L-lactate dehydrogenase 3.07±1.98 20.5±3.15 6.71 

MTR_5g027530 Phosphoribulokinase 1.33±0.7 8.22±2.13 6.17 

MTR_2g019630 Phospho-N-acetylmuramoyl-pentapeptide-
transferase 

9.53±1.97 56.11±15.04 5.89 

MTR_1g043220 Inorganic phosphate transporter 1-1  0.53±0.75 3.15± 2.64 5.93 

Genes with no annotation, no known function   

MTR_4g133580 Hypothetical protein 0 8.00±3.56 - 

MTR_8g070620 Hypothetical protein 0 15.33±2.12 - 

MTR_4g121590 Hypothetical protein 0.06±0.09 1.39±1.11 23.3 

MTR_2g103460 Hypothetical protein (Glyoxalase/Bleomycin 0.89±1.38 19.28±7.99 21.7 
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resistance protein/Dioxygenase) 
MTR_1g095730 Hypothetical protein 3.96±2.97 48.01±28.01 12.1 

MTR_1g019890 Hypothetical protein 0.22±0.3 2.21±1.48 10.1 

MTR_4g114080 Hypothetical protein (Glyoxalase/Bleomycin 
resistance protein/Dioxygenase) 

1.82±0.63 14.14±4.67 7.78 

MTR_4g064360 Hypothetical protein 5.49±6.27 42.18±18.79 7.69 

MTR_4g092780 Hypothetical protein (Galactose mutarotase) 1.32±1.05 9.79±0.68 7.42 

MTR_5g089580 Hypothetical protein 1.62±0.65 11.58±1.62 7.15 

MTR_7g108130 Hypothetical protein 3.17±0.26 22.06±4.35 6.97 

MTR_7g082750 Hypothetical protein 0.6±0.9 4.13±0.67 6.92 

MTR_3g091930 Hypothetical protein 0.93±0.73 6.35±1.12 6.82 

MTR_5g058800 Hypothetical protein 0.58±0.39 3.86±2.73 6.63 

MTR_2g100600 Hypothetical protein 1.64±0.39 10.41±8.29 6.35 

MTR_4g083140 Hypothetical protein 6.69±5.21 38.62±12.86 5.77 

MTR_5g094990 Hypothetical protein 0.18±0.14 1.04±0.83 5.76 

MTR_8g021170 Hypothetical protein 0.48±0.74 2.68±0.58 5.65 

MTR_5g006200 Hypothetical protein 2.81±4.3 15.19±9.49 5.41 

MTR_8g061120 Hypothetical protein 1.67±1.16 8.88±4.65 5.33 

MTR_8g005880 Hypothetical protein 10.9±3.55 57.78±28.28 5.28 

MTR_2g063870 Hypothetical protein 10.9±3.55 57.78±28.28 5.28 

MTR_2g029150 Hypothetical protein 0.39±0.4 2.04±1.001 5.17 

MTR_8g106680 Hypothetical protein (NT-C2) 1.43±0.58 7.38±0.9 5.16 

MTR_8g042200 Hypothetical protein 1.32±2.04 6.67±2.76 5.06 

Transport and membrane trafficking 

MTR_4g006650 Aquaporin 1.87±0.07 30.4±11.7 16.2 

MTR_4g133040 Importin alpha-1b subunit 0.11±0.09 1.25±0.51 10.9 

MTR_8g009560 PRA1 family protein B1 0.54±0.38 5.02±2.026 9.23 

MTR_3g111020 Multidrug and toxin extrusion protein 0.17±0.27 1.43±0.775 8.34 

MTR_5g006070 Hexose transporter 108±33.7 563.2±53.4 5.19 

MTR_5g071860 Potassium transporter 2.03±0.53 11.06±1.54 5.44 
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Table 2 Genes significantly repressed in the Mt061
OE

 hairy roots
 
sorted according to fold of reduction (n=3). 

Gene_id Annotation 

FPKM- normalized expression counts 

Control 
mean±SD 

Mt061
OE

 
mean±SD 

Fold of 
induction 

MTR_2g045100 Germin-like protein 3.57±3.73 0 0  

MTR_1g061980 Hypothetical protein 2.15±1.12 0 0  

MTR_1g100870 Hypothetical protein 7.43±6.33 0 0 

MTR_2g019360 Hypothetical protein 4.21±0.79 0 0 

MTR_3g051620 Hypothetical protein 74.11±55.3 0 0 

MTR_3g116570 Hypothetical protein 67.89±23.5 0 0 

MTR_8g021280 Hypothetical protein 110.21±44.1 0 0 

MTR_8g041260 Hypothetical protein (transposase) 11.86±9.18 0.03±0.028 0.002 

MTR_2g008290 GRF zinc finger containing protein  16.62±11.9 0.31±0.47 0.018 

MTR_1g045790 Hypothetical protein 11.56±4.31 0.30±0.24 0.026 

MTR_4g010310 Hypothetical protein  39.07±23.52 1.44±1.58 0.037 

MTR_1g016370 PIF-like protein 7.29±4.29 0.29±0.34 0.04 

MTR_6g079020 Disease resistance-like protein 14.81±6.44 0.62±0.14 0.042 

MTR_6g079000 Disease resistance-like protein 11.69±4.55 0.60±0.18 0.051 

MTR_5g072920 Cytochrome P450 71B37 11.50±1.23 0.64±0.50 0.056 

MTR_1g043330 Hypothetical protein  4.75±3.49 0.27±0.42 0.057 

MTR_7g086390 Hypothetical protein  6.37±1.54 0.38±0.59 0.060 

MTR_4g064640 Hypothetical protein  8.24±4.61 0.50±0.78 0.061 

MTR_3g025470 Hypothetical protein  8.08±3.18 0.49±0.76 0.061 

MTR_3g055630 Hypothetical protein 18.21±2.6 1.26±1.23 0.069 

MTR_4g014860 NBS-containing resistance-like protein 17.98±2.9 1.26±1.23 0.069 

MTR_4g058550 Hypothetical protein 17.08±3.9 1.24±1.21 0.073 

MTR_8g036660 Aluminum activated citrate transporter 51.29±15.3 3.76±1.17 0.073 

MTR_5g045710 Alcohol dehydrogenase class-3  9.35±4.19 0.69±0.42 0.074 

MTR_5g074580 O-methyltransferase 4.66±1.70 0.35±0.32 0.075 

MTR_6g059830 Hypothetical protein 4.47±1.04 0.33±0.41 0.075 

MTR_3g032630 Hypothetical protein 1002.91±588.8 78.10±21.9 0.078 

MTR_8g039620 Hypothetical protein (ankyrin repeat) 37.21±7.45 2.94±2.81 0.079 
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MTR_6g078990 Hypothetical protein (Cdt1_m & Cdt1_c) 9.07±4.51 0.74±0.64 0.081 

MTR_6g044390 Aquaporin MIP family 8.19±3.40 0.67±0.54 0.082 

MTR_7g006150 Hypothetical protein  2.72±1.58 0.23±0.19 0.084 

MTR_1g006990 Subtilisin-like serine protease 73.34±17.8 6.32±7.95 0.086 

MTR_4g090180 Hypothetical protein  36.31±26.2 3.14±1.014 0.086 

MTR_7g086400 Hypothetical protein  18.51±6.56 1.61±2.49 0.087 

MTR_5g073960 Leucine zipper protein  5.17±2.247 0.45±0.26 0.088 

MTR_6g088140 Lanosterol synthase 12.38±6.52 1.10±0.15 0.089 

MTR_2g033580 Desiccation-related protein PCC13-62  5.08±2.54 0.46±0.14 0.091 

MTR_3g047450 Hypothetical protein  151.51±89.05 13.84±6.67 0.091 

MTR_6g031240 GDSL esterase/lipase 2.55±1.28 0.24±0.19 0.092 

MTR_3g025640 Hypothetical protein 6.46±0.27 0.62±0.56 0.096 

MTR_6g012160 Quinone oxidoreductase-like protein 2.29±1.15 0.22±0.21 0.097 

MTR_7g104460 Hypothetical protein (phosphatidylethanolamine-
Binding Protein) 

29.68±15.65 2.93±0.91 0.098 

MTR_4g113590 Hypothetical protein  12.11±4.87 1.20±1.86 0.099 
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3 Discussion 

3.1 Mt061 stimulates GLV biosynthesis in M. truncatula hairy roots 

GLVs including hexanol, cis-3-hexenol and their corresponding aldehydes are a 

valuable flavor class and widely used in food industry. Large scale production of 

these compounds is still a big challenge for producers and therefore, applying 

biotechnological approaches to improve the biosynthesis of these compounds could be 

beneficial.   

In a healthy, undamaged plant small quantities of GLVs are emitted, while, large 

quantities can be released by plants immediately after wounding or herbivore attack 

(Turlings et al., 1995; D'Auria et al., 2007). Signaling pathways involved in plant 

defense responses against herbivores are complex and specific. It is known that 

certain TFs orchestrate anti-herbivore defense responses, but only a few have thus far 

been characterized. At present, we have very limited knowledge of the molecular 

factors regulating the expression of GLV biosynthesis genes (Manavella et al., 2008; 

Oh et al., 2012). 

In this study, a cDNA-AFLP-based transcriptome analysis of a time series covering 

the early response of M. truncatula cells to MeJA elicitation led to the discovery of a 

MYB TF, Mt061, the overexpression of which in M. truncatula hairy roots resulted in 

the production and emission of GLV compounds such as hexanal (Fig. 3). Therefore, 

we considered it as a possible regulator of the genes encoding the enzymes catalyzing 

GLV biosynthesis. However, the results showed that only few GLV biosynthesis 

genes, one lipase and one LOX (Fig. 4) and only the jasmonate O-methyltransferase 

from the JA synthesis pathway were upregulated in Mt061
OE

 hairy roots (Table 1) 

which does not permit us to detail the direct relationship between 

Mt061overexpression and GLV biosynthesis gene regulation. For instance expression 

of the two HPLs (HPL1 and HPL2) that have been reported from M. truncatula so far 

and corresponding to GLV-specific branches of the oxylipins pathway was not 

affected. 

3.2 Mt061 induces genes involved in direct defense responses and in 

phenolic biosynthesis pathway  

The RNA-Seq data analysis also revealed that several phenolic biosynthesis genes 

were upregulated in Mt061
OE

 lines (Table 1). Moreover, we found accumulation of 

higher levels of phytoalexins and pterocarpan in Mt061
OE

 lines as compared to control 
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lines (Fig. 7). There are several reports from induction of phenolic biosynthesis genes 

and the accumulation of phytoalexin compounds in plants after applying GLV 

compounds such as trans-2-hexenal (Bate and Rothstein, 1998; Arimura et al., 2001; 

Kishimoto et al., 2005). Recently, it was reported that GLV compounds can prime JA 

responses in plants leading to the induction of higher anthocyanin accumulation in 

treated plants (Hirao et al., 2012). Therefore, it is plausible that phenolic gene 

induction and phytoalexin accumulation are consequences of GLV production in the 

transgenic hairy roots. Conversely however, previous studies have shown that when 

M. truncatula cell cultures were elicited with YE, flavonoid biosynthesis genes were 

mostly upregulated, while with MeJA elicitation the genes involved in biosynthesis of 

triterpene saponins were induced (Broeckling et al., 2005; Naoumkina et al., 2008). In 

silico expression analysis with the MtGEA tool showed that Mt061 is also upregulated 

with YE elicitation. These results might support direct role of Mt061 in flavonoid 

biosynthesis, which needs further investigation. 

Furthermore, we observed that several genes involved in defense responses such as 

four TPI, cysteine protease inhibitor and PR1a were induced in Mt061
OE

 lines (Table 

1). In plants, protease inhibitors are produced as a defense mechanism in response to 

herbivore attack, to inhibit proteolysis and negatively affect the digestibility of 

ingested plant material in insect guts (Zavala et al., 2004; Hartl et al., 2010). 

Analogous results were reported for HAHB4, a member of the sunflower (Helianthus 

annuus) HD- ZIP subfamily that was previously characterized as a positive regulator 

of the synthesis of JAs and GLVs. HAHB4 upregulates the transcript levels of several 

genes involved in JA and GLV biosynthesis as well as TPI and pathogen- related 

genes (Manavella et al., 2008). Collectively, these data suggest that apart from 

regulating the volatile emissions that are known to function as an indirect defense 

against herbivores in plants, Mt061 might also regulate the accumulation of direct 

defense compounds such as TPIs and phytoalexins. Whether the induction of 

phytoalexin biosynthesis is the consequences of GLV production or, conversely, 

directly mediated by Mt061, as a multifunctional TFs involved in cross- talks between 

several biochemical pathways, remains to be determined.  

3.3 Mt061 affects genes involved in plastid formation and/or functions 

Formation of plant volatiles can follow similar developmental patterns as other plant 

organs. For instance, volatiles are increasingly produced during the early stages of 
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organ development when leaves are young and not fully expanded, fruits are not yet 

mature, or when flowers are ready for pollination. Subsequently, their production can 

remain constant or decrease over the organs’ life span (Bouwmeester et al., 1998; 

Dudareva and Pichersky, 2000; Gershenzon et al., 2000). Plastids are the organelles in 

which the precursors of GLVs are biosynthesized before being transferred to the 

cytosol for further modifications (Pichersky et al., 2006). Accordingly, it was shown 

that 9/13-HPL (HPL2 in this study), an isoform which is specifically involved in GLV 

biosynthesis, is localized in chloroplast thylakoids and in the outer membrane of the 

chloroplast envelope (Feussner and Wasternack, 2002). In this study we showed that 

several genes involved in plastid development including the thylakoid lumenal protein 

which is involved in chloroplast thylakoid formation were upregulated in Mt061
OE

 

lines (Table 1). This suggests that Mt061 might be involved in the development of 

plastids in M. truncatula.  

Overall this indicates that Mt061, a MYB TF, might govern a suite of defense 

responses in M. truncatula leading to the production of defense-related metabolites, 

GLVs and phytoalexins. Nonetheless, much work is still required to fully understand 

the complex regulatory network by and within which this TF operates.  

4 Materials and methods 

4.1 Generation of DNA constructs 

To obtain the FL-ORF construct specify to Mt061, the cDNA-AFLP tag sequence was 

used for BLASTn searches against the Medicago truncatula Gene Index database 

(http://compbio.dfci.harvard.edu/tgi/). PCR fragments corresponding to the FL-ORF 

of Mt061 were amplified and cloned into entry vector pDONR221 by Gateway
TM

 

recombination. To obtain an entry clones with stop codons, Gateway primers were 

designed according to Underwood (Underwood et al., 2006). The entry constructs 

were sequence-verified. For the overexpression experiment, Gateway recombination 

was carried out with the pK7WG2D binary vector (Karimi et al., 2002). The resulting 

clones were transformed into the Agrobacterium rhizogenes strain LBA 9402/12 for 

generation of hairy roots.  

4.2 Generation and cultivation of transgenic M. truncatula hairy roots 

Protocol was adapted from Boisson-Dernier et al (Boisson-Dernier et al., 2001) with 

some modifications as described in chapter 4 page 130-1. 
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4.3 M. truncatula hairy root culture maintenance and elicitation 

For elicitation, the hairy roots were cultured in MS liquid medium and three weeks 

after subculturing into fresh medium, hairy roots were treated with 100 µM MeJA 

(dissolved in EtOH) or an equivalent amount of EtOH as a control. Samples were 

harvested and frozen in liquid nitrogen. For transcript profiling, samples were taken 0, 

0.5, 1, 2, 4, 8, 12, and 24 h after elicitor or mock treatments, and 48 h after treatments 

for metabolite profiling. For NaCl treatment, hairy roots were subcultured in MS 

liquid medium and three weeks later, transferred to fresh medium containing 200mM 

NaCl (dissolved in water) or to medium without NaCl as a control.  

4.4 Transcript profiling 

For quantitative Real Time PCR (qRT-PCR), RNA from were isolated with the 

RNeasy mini kit (Qiagen) according to manufacturer instruction. Quality control and 

quantification were performed with a Nanodrop spectrometer (Isogen, Hackensack, 

NJ). cDNA were prepared using SuperscriptTM II Reverse Transcriptase (Invitrogen). 

Primers were designed with Beacon Designer version 4.0 (Premier Biosoft 

International, Palo Alto, CA, USA). qRT-PCR was carried out as described in chapter 

4 page 131. 

For the statistical analysis of the data “paired samples t-test” was performed and the 

statistical analyses were performed using SPSS v.21.0 (IBM Corp., Armonk, NY, 

USA). 

4.5 Metabolite extractions 

For metabolite profiling by LC ESI-FT-MS, M. truncatula hairy roots were harvested 

in five biological repeats of three independent transgenic lines per transgene construct 

and rinsed with purified H2O under vacuum filtration. Metabolites were extracted as 

described in chapter 4 page 131. 

For GC-MS analysis, hairy roots grown on the plates were transferred to the GC vials 

and crushed using sterile tweezers. The vials were immediately capped with air tight 

caps. Sample vials were heated at 50°C for 10min. 200µl of He (solvent phase) was 

injected into the vial and allowed to equilibrate for 30s. 200µl of the gas mixture 

(head-space) was subjected to GC-MS. 
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4.6 GC-MS analysis 

For characterization of volatile compounds produced and emitted by Mt061
OE

, the 

volatile blends from Mt061
OE

 lines were subjected to GC-MS (GC model 6890, MS 

model 5973, Agilent). A 200 µl of gas mixture (head-space) was injected (split mode) 

to CP-Select 624 (ChromPac, Chromp99927) 6% Cyanopropylphenyl column and 

operated at a constant helium flow of 0.8 ml/min. The injector temperature was set to 

45°C and the oven temperature was held at 40°C for 1 min post injection, ramped to 

180°C at 2.5°C/min, ramped to 200°C at 15°C/min, held at 200°C for 1 min, and 

finally cooled down to 40°C at 50°C/min at the end of the run. For each sample the 

GC total run time was 80 min. The MS transfer line was set to 220°C, the MS ion 

source to 230°C and the quadruple to 180°C, throughout. For identification of 

metabolites a full mass spectra was generated by scanning the m/z range of 35-350 

with a solvent delay of 2 min.  

4.7 LC ESI FT-ICR MS 

The LC ESI FT-ICR MS analysis was performed as described in chapter 4, pages 132. 

4.8 RNA-Seq  

Total RNA from three independent Mt061
OE

 and control lines was extracted with the 

RNeasy mini kit (Qiagen) and cDNA prepared with SuperScript
TM

 II Reverse 

Transcriptase (Invitrogen). RNA samples were sent to “Genomics core” (KUL, 

Leuven, Belgium) for mRNA purification, cDNA library construction and Illumina 

HiSeq 2000-based RNA sequencing with Solexa technology. 

Read mapping on the Medicago genome (MT3.5; (Young et al., 2011)) with TopHat 

version 2.0.3 (Trapnell et al., 2009) and counting of the uniquely mapped reads and 

calculation of the FPKM values with Cufflinks version 1.3.0 (Trapnell et al., 2010) 

were performed using default parameters as described (Pollier et al., 2013). 
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Abstract 

Plants are an enormously rich source of peptides that can function as 

signaling molecules governing several aspects of plant growth and 

development. Several signaling peptides have been identified to control 

secondary metabolism in plants. Recently, Taximin, a plant specific peptide has 

been identified in Taxus baccata that seems to be a conserved regulator of 

plant metabolism. In this study, we explored the effects of ectopically 

expressed Taximin on secondary metabolism in M. truncatula hairy root 

cultures. The results indicated that Taximin can modulate saponin production 

in M. truncatula hairy roots. In addition, we describe the cloning, 

characterization and functional analysis of the Taximin homologs in the 

model legume M. truncatula. Five close homologs of the Taximin gene were 

identified in M. truncatula. Gain- or loss function studies suggested that MtTAX 

genes might be involved in the control of (secondary) metabolism in M. 

truncatula.  

1 Introduction 

The inducible defense mechanisms in plants are activated upon perception of extra- or 

intracellular signals by receptors on the surface of the plasma membrane or 

endomembrane or in the nucleus. Subsequently, a signal transduction network is 

orchestrated leading to the activation or de novo biosynthesis of transcription factors 

which regulate the expression of the genes involved in the defense mechanisms such 

as biosynthesis of plant secondary metabolites. Several defense regulators, including 

jasmonic acid (JA), salicylic acid (SA) and ethylene trigger the induction of the 

defense mechanisms in plants (Odjakova and Hadjiivanova, 2001; Zhao et al., 2005). 

It has become evident that many secretory and nonsecretory small peptides also 

function as signaling molecules in plants. Small peptides are protein molecules with a 

molecular mass of up to 10 kDa that can be involved in various aspects of plant 

growth regulation, including callus growth, meristem organization, root growth, leaf-

shape regulation, nodule development, organ abscission, self-incompatibility and 

defense responses (Matsubayashi and Sakagami, 2006; Butenko et al., 2009; Marshall 

et al., 2011). Furthermore, some plant peptides are involved in the regulation of 

secondary metabolism in plants. For example, systemin induces volatile organic 

compounds in tomato and phytosulfokine (PSK-α) was shown to stimulate production 

and accumulation of tropane alkaloids in hairy root cultures of Atropa belladonna 

(Sasaki and Takahashi, 2002) and taxol in Taxus canadensis cell cultures when added 
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simultaneously with Methyl jasmonate (MeJA) (Kim et al., 2006). Therefore, they can 

be used as an elicitor to enhance the production of metabolites in plant species.  

Recently, Taximin, a 73 amino acid peptide, was identified through genome-wide 

transcript profiling of MeJA-elicited cell cultures of Taxus baccata. Taximin was 

shown to be capable of activating secondary metabolism genes in tobacco and causing 

an increase in nicotine production in tobacco hairy roots (Onrubia Ibáñez, 2012). 

Taximin constitutes of a 27 amino-acid signaling peptide and a 46 amino-acid mature 

peptide containing 6 cysteine residues. Therefore, it has a common feature of the Cys-

rich proteins including small size (less than 160 amino acid residues), a conserved N-

terminal signal peptide and a C-terminal mature peptide with conserved cysteine 

residues (Marshall et al., 2011). Considering the small size and lack of homology to 

known domains, Taximin has been suggested as a Cys-rich pathogenesis-related 

peptide involved in MeJA- inducible defense systems in plants (Onrubia Ibáñez, 

2012). Taximin is a plant specific peptide and seems to be conserved across the plant 

kingdom. The mature peptide part of Taximin presents high homology to predicted 

proteins from several plant species including Vitis vinifera, Arabidopsis, Poplus 

trichocarpa, Ricinus communis and Glycine max (Onrubia Ibáñez, 2012). 

In this study, the impact(s) of ectopic expression of Taximin on secondary metabolism 

in M. truncatula have been explored. Higher levels of saponin glycosides were 

detected in Taximin overexpressing transgenic lines as compared to control lines. In 

addition, we identified five close homologs of the Taximin gene in M. truncatula and 

assessed their role(s) in secondary metabolism by gain-or loss-of-function analyses. 

The results suggest that Taximin and MtTAX genes can modulate secondary 

metabolite biosynthesis in M. truncatula. However, their exact mechanism of action is 

not determined yet. 

2 Results  

2.1 Identification of Medicago Taximin-like sequences and phylogenetic 

analysis 

T. baccata sequence for the Taximin protein were retrieved from the previous study 

(Onrubia Ibáñez, 2012) and used for mining plant genome sequences using the 

BLASTP program. Two similar sequences for Arabidopsis (At2g20562 and 

At2g311090) and three in Glycine max (soybean) (ACU17275, ACU14314 and 

ACU14776) were identified but no hit was obtained from the M. truncatula genome. 
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Then we used the hits from soybean to BLAST against the M. truncatula Database in 

the DFCI Medicago Gene Index 

(http://compbio.dfci.harvard.edu/cgibin/tgi/gimain.pl?gudb=medicago) for the 

available EST contigs with the highest similarity. Five unique ESTs for the Taximin 

homolog genes could be identified, including NP7260335, TC194512, TC199023, 

TC188869, TC195445, and named MtTAX1 to MtTAX5, respectively.  

Phylogenetic analysis with the amino acid sequences of Taximin-like protein in M. 

truncatula showed two subclades (Fig. 1A). The first subclade contains three of the 

characterized MtTAX genes including TC199023 (MtTAX3), TC188869 (MtTAX4) 

and TC195445 (MtTAX5) together with two genes from soybean and one homologous 

gene from Arabidopsis thaliana (Fig. 1A).  

The second subclade contains the two other MtTAX genes, NP7260335 (MtTAX1) and 

TC194512 (MtTAX2), together with one homologous gene from soybean and 

Arabidopsis each and Taximin from T. baccata (TB595).  

The amino acid identity of Taximin with its closest M. truncatula homologs, 

NP7260335 (MtTAX1) and TC194512 (MtTAX2) is 79.7% and 82.1%, respectively. 

Taximin shares 70.1%, 70.1% and 70.0% amino acid similarity with TC199023 

(MtTAX3), TC188869 (MtTAX4) and TC195445 (MtTAX5), respectively (Fig. 1B). 

Similar to Taximin, the MtTAX peptides from M. truncatula have a small size (80 

amino acids or less), a C-terminal mature peptide with the conserved six cysteine 

residues and an N-terminal signal peptide, altogether representing the common 

structural feature of Cys-rich proteins. 
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Figure 1. A) Phylogenetic analysis of Taximin and the identified peptides with the highest 

similarity. B) Alignment of the amino acid sequences of Taximin and its homologs from 

Arabidopsis, Glycine max, Picea abies and M. truncatula. The red arrow shows the cleave site 

of the signaling peptide.  

A comparative in silico analysis of the expression of MtTAX genes using the MtGEA 

tool (http://mtgea.noble.org) revealed that except for MtTAX3 all identified MtTAX 

genes are inducible by MeJA in M. truncatula cell suspensions (Fig. 2 A, B). In 

addition, it was shown that MtTAX3 and MtTAX4 are repressed by yeast elicitor (YE) 

elicitation, while the other MtTAX genes are induced by YE elicitation (Fig. 2A & B). 
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Figure 2. Screenshot of the in silico expression analysis of M. truncatula TAX genes 

belonging to A) the first subclade of phylogenetic tree MtTAX3 (red), MtTAX4 (black), 

MtTAX5 (blue); and B) the second subclade; MtTAX1 (red); MtTAX2 (blue) obtained with the 

MtGEA tool. 

2.2 Gain- and loss-of-function of the MtTAX genes is associated with prominent 

phenotypic changes in M. truncatula hairy roots 

For functional characterization of the MtTAX genes, a reverse genetics screen was 

launched. Gain- and loss-of-function of the candidate genes was carried out by 

overexpression of the full-length open reading frame (FL- ORF) or of a hairpin RNA-

mediated interference (hpRNAi) construct, respectively, under constitutive CaMV35S 

promoter in M. truncatula hairy roots. Moreover, we generated double, triple and 

quintuple hpRNAi constructs in which the paralogs of each phylogenetic subclade (in 
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double and triple knockdown) or all five identified MtTAX genes (quintuple 

knockdown) were targeted. In addition, the overexpression construct harboring T. 

baccata Taximin was generated as well (Table 1). The overexpression and 

downregulation of the MtTAX genes in the transgenic hairy roots was confirmed via 

qRT-PCR analyses and three independent transgenic lines were selected for each 

construct (Fig. 3A). No knockdown line was obtained for MtTAX3, MtTAX4 and 

MtTAX5, neither after transformation with single hpRNAi constructs, nor after 

transformation with triple knockdown construct. QRT-PCR analysis of the 

MtTAX1
KD

,
 
2

KD
 and MtTAXQ

KD
 hairy roots showed that from all five MtTAX genes 

only the transcript levels of MtTAX2 were consistently and slightly decreased (Fig. 3 

B & C). 

Table 1. List of the constructs designed for the reverse genetics screen of Taximin like genes 

in M. truncatula 

Construct ID  Constructs 

Taximin (TB595)  pK7WG2D-TB595 

Control  pK7WG2-Venus 

MtTAX1 OE  pK7WG2D-NP7260335 

MtTAX2 OE  pK7WG2D-TC194512 

MtTAX3 OE  pK7WG2D-TC199023 

MtTAX4 OE  pK7WG2D-TC188869 

MtTAX5 OE  pK7WG2D-TC195445 

MtTAX1 KD  pK7GWIWG2D-NP7260335 

MtTAX2 KD  pK7GWIWG2D-TC194512 

MtTAX3 KD  pK7GWIWG2D-TC199023 

MtTAX4 KD  pK7GWIWG2D- TC188869 

MtTAX5 KD  pK7GWIWG2D-TC195445 

MtTAX1KD, 2KD   Double: pK7GWIWD2D-TC194512-NP7260335 

MtTAX-3,-4,-5KD   Triple: pK7GWIWD2D-TC199023- TC188869- 

TC195445 

MtTAX1-5KD (MtTAX.QKD)  Quintuple:pK7GWIWD2D-TC194512-

NP7260335-TC199023- TC195445- TC188869 
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Figure 3A. Expression analyses of the Taximin and MtTAX genes in their corresponding 

transgenic hairy root lines. CTRL, control lines; OE,
 
overexpression lines, KD, knockdown 

lines. Y-axis represents relative expression ratio as compared to the control line 1 (CTRL-1). 

Error bars represent standard error of mean (SEM) of three technical repeats. 

B 

 

  

Figure 3B. Expression analyses of the MtTAX genes in M. truncatula hairy roots transformed 

with the double knockdown construct (MtTAX1
KD

,
 

2
KD

). CTRL, control lines; KD, 

knockdown lines. Y-axis represents relative expression ratio as compared to the control line 1 

(CTRL-1). Error bars represent SEM of three technical repeats.  
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Figure 3C. Expression analyses of the MtTAX genes in M. truncatula hairy roots transformed 

with the quintuple knockdown construct (MtTAXQ
KD

). CTRL, control lines; KD, knockdown 

lines. Y-axis represents relative expression ratio as compared to the control line 1 (CTRL-1). 

Error bars represent SEM of three technical repeats.  

Overexpression of the MtTAX4 gene in transgenic hairy roots caused the production 

of thick, slowly grown and fragile roots that possess no root hairs. The other 

overexpression constructs developed roots with no obvious phenotype when 

compared with the control lines. The hairy roots transformed with MtTAX1 and 

MtTAX2 hpRNAi constructs as well as double knockdown (MtTAX1
KD

,2
KD

) and 

quintuple knockdown (MtTAXQ
KD

) constructs produced dissociated and very short 

roots growing in clumps (Fig. 4). The transgenic lines transformed with the triple 

hpRNAi construct (MtTAX-3,-4,-5
KD

) produced roots with severe growth defect, 

thick, fragile, and with no root hairs. 

Based on the observed phenotypes and the results obtained from the expression 

analysis of the MtTAX genes; MtTAX2
KD

, MtTAXQ
KD

, MtTAX1
OE

, MtTAX2
OE

, 

MtTAX4
OE 

and Taximin overexpressing lines were selected for more investigations. 
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Figure 4. Phenotypic features of the MtTAX transgenic lines. Roots of A) control, B) 

MtTAX1
KD

, C) MtTAX2
KD

 D) double knockdown [MtTAX1
KD

,
 
2

KD
] E) quintuple knockdown 

[MtTAXQ
KD

] F) triple knockdown [MtTAX3
 KD

,4
 KD

,5
KD

] and G) MtTAX4
OE

 H) Taximin 
OE

 

lines grown on solid medium. KD: knockdown lines, OE: overexpression lines. 
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2.3 Ectopic expression of Taximin in M. truncatula hairy roots enhanced 

accumulation of glycosylated triterpene saponins 

Considering the induction of alkaloid biosynthesis in tobacco plants that ectopically 

express Taximin (Onrubia Ibáñez, 2012), we assessed whether M. truncatula 

secondary metabolism was also affected by the ectopic expression of Taximin. We 

also checked the impact of Medicago MtTAX genes on the secondary metabolite 

production in transgenic roots. We performed metabolite profiling using LC-ESI-FT-

ICRMS on Taximin expressing roots, MtTAX2
OE

 and MtTAX2
KD

 transgenic hairy 

roots and compared their metabolite accumulation with that of the control roots. 

Neither MtTAX2
OE

 nor MtTAX2
KD

 lines showed any significant differences in their 

metabolite profiles compared to control lines. In contrast, comparative analysis of the 

root extracts of Taximin-expressing and control hairy root yielded a total of 7320 m/z 

peaks, containing 195 peaks which were significantly changed (p<10
-5

) (Fig. 5A). 

Among the differentially present peaks, the peaks corresponding to triglycosylated 

saponins were more represented among the up-regulated peaks. These findings 

suggest that ectopic expression of Taximin in M. truncatula hairy root cultures can 

stimulate the triterpene biosynthetic pathway in M. truncatula. Some compounds with 

the higher accumulation level in Taximin
OE

 lines than control lines are listed in Table 

2. Because of relatively high variability between samples however, this assay will be 

repeated in near future to confirm these preliminary observations.  

Table 2. Identified triterpene saponins with increased accumulation level in Taximin
OE

 hairy 

roots of M. truncatula compared to control lines. 

Compounds  Fold of changes 

Hex-Hex-HexA-Aglycone A 3.61 

Hex-Hex-HexA-Hederagenin 3.39 

Hex-Hex-HexA-Soyasapogenol E 4.40 

Malonyl-Hex-Hex-HexA-Hederagenin 2.53 

Malonyl-Hex-Hex-HexA-Aglycone A 2.45 

Malonyl-Hex-HexA-Bayogenin 3.99 

3-Glc-28-Glc-Medicagenic acid 3.51 
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Figure 5 Metabolite profiling of Taximin-overexpressing hairy roots. (A) Detail of the full 

MS scan of a control line (black) and a Taximin-overexpressing line (red). CTRL, control 

lines; OE,
 
overexpression lines. The number indicated on each peak shows the retention time 

of the corresponding compound. The peak at tR 17.48 and 17.80 represent Hex-Hex-HexA-

Aglycone A and Hex-Hex-HexA-Hederagenin, respectively. (B) Average Total Ion Current 

(TIC) of the main masses corresponding to Hex-Hex-HexA-Aglycone A and Hex-Hex-HexA-

Hederagenin. Error bars represent SEM of five technical repeats. 

2.4 Altered expression of MtTAX genes affects the expression of biosynthesis 

genes involved in saponin and flavonoid biosynthesis pathways 

Since the expression of the Taximin gene from T. baccata can activate secondary 

metabolite biosynthesis genes from T. baccata (yew), Nicotiana tabacum or 

Catharanthus roseus (Onrubia Ibáñez, 2012), we also explored whether loss- or gain-
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of- function of the MtTAX genes can alter the expression of secondary metabolite 

biosynthesis genes in M. truncatula. Therefore, the transcript levels of the genes 

involved in saponin and (iso)flavonoid biosynthesis were measured in transgenic 

hairy roots expressing Taximin, MtTAX1
OE

, MtTAX2
OE

, MtTAX4
OE

, MtTAX2
KD

 and 

MtTAXQ
KD

 lines. QRT-PCR analysis revealed that despite some fluctuations, 

expression of none of the (iso)flavonoid biosynthesis genes, nor of the saponin 

biosynthesis genes, was markedly changed in the lines ectopically expressed Taximin 

(Fig. 6) or MtTAX genes (Fig. 7). 
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Figure 6. QRT-PCR analysis of biosynthesis genes involved in secondary metabolite in 

Taximin-expressing hairy roots. CTRL, control lines; OE,
 

overexpression lines. Y-axis 

represents relative expression ratio relative to the CTRL-1 which is set to 1. Error bars 

represent SEM of three technical repeats. 
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Figure 7. QRT-PCR analysis of biosynthesis genes involved in secondary metabolite in 

MtTAX1
OE

, MtTAX2
OE

 and MtTAX4
OE

 lines. CTRL, control lines; OE,
 
overexpression lines. 

Y-axis represents relative expression ratio relative to the CTRL-1 which is set to 1. Error bars 

represent SEM of three technical repeats. 
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Conversely, the results obtained from the knockdown lines, MtTAX2
KD

 and 

MtTAXQ
KD

 showed that the steady-state levels of the genes involved in triterpene 

saponin biosynthesis were decreased (Figs. 8A and 9A). In MtTAX2
KD

 lines, the 

steady-state levels of the genes downstream of squalene synthase (SQS) in the 

pathway toward biosynthesis of triterpene saponin including, SQS, squalene epoxide 

isoform 2 (SQE2) and triterpene saponin biosynthesis genes including β-amyrin 

synthase and two saponin-specific glycosyltransferases, UGT73F3 (Naoumkina et al., 

2010) and UGT73K1 (Achnine et al., 2005) were markedly decreased (Fig. 8A). 

Similarly, the expression of almost all of the known triterpene saponin biosynthetic 

genes was strongly downregulated in the MtTAXQ
KD

 lines. BAS and UGT73K1 

transcript levels were reduced 3- to 8-fold and the expression of the CYP93E2 gene, 

which is the M. truncatula gene encoding the β-amyrin 24-hydroxylase (Fukushima et 

al., 2011), was reduced up to 50-fold (Fig. 9A). In addition, the steady-state levels of 

HMGR1 were slightly decreased, the transcript levels of SQE1 were slightly increased 

and the SQS and SQE2 expression levels did not change in the MtTAXQ
KD

 lines (Fig. 

9A). 

The steady state levels of cycloartenol cyclase (CAS) transcripts corresponding to the 

key enzyme in sterol biosynthesis which shares the same biosynthetic pathway with 

triterpene saponins up to the cyclization of squalene epoxide, remains unchanged in 

both MtTAX2
KD

 and MtTAXQ
KD

 lines (Figs. 8A and 9A).  

Among the genes involved in flavonoid biosynthesis the steady state level of chalcone 

synthase (CHS) transcripts was slightly decreased in both knockdown lines (Figs. 8B 

and 9B). Whereas the expression of UGT78G1 (Modolo et al., 2009), UGT72L1 

(Pang et al., 2008) and UGT85H2 (Li et al., 2007) that are involved in flavonoid 

glycosylation did not change in either knockdown lines (Figs. 8B and 9B). 

Taken together, overexpression of MtTAX genes did not alter saponin gene expression 

whereas silencing of MtTAX genes had a negative effect on saponin gene expression. 

Surprisingly, this does not correlate with the metabolomics data in which only a 

positive effect of Taximin overexpression on saponin accumulation was observed.  
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Figure 8. QRT-PCR analysis of biosynthesis genes involved in A) the triterpene pathway 

toward biosynthesis of triterpene saponins and sterols; B) the flavonoid biosynthesis pathway 

in MtTAX2 knockdown (MtTAX2
KD

) M. truncatula hairy roots. Y-axis represents relative 

expression ratio relative to the CTRL-1 which is set to 1. Error bars represent SEM of three 

technical repeats. 

A 

 

 
B 

 



Functional characterization of small signalling peptides that potentially steer secondary metabolite biosynthesis in 

Medicago truncatula 
182 

 

 

 

A 

 
B 

 
Figure 9. QRT-PCR analysis of biosynthesis genes involved in A) the triterpene pathway 

toward biosynthesis of triterpene saponins and sterols; B) the flavonoid biosynthesis pathway 

in quintuple knockdown (MtTAXQ
KD

) M. truncatula hairy roots. Y-axis represents relative 

expression ratio relative to the CTRL-1 which is set to 1. Error bars represent SEM of three 

technical repeats. 
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2.5 RNA-Seq analysis 

To obtain a genome-wide overview on the genes modulated in the transgenic MtTAX 

lines, we performed RNA sequencing transcript profiling (RNA-Seq analysis) on 

MtTAX1
OE

, the closest homolog of Taximin in the phylogenetic tree, and MtTAXQ
KD

 

lines. The transcript abundances were measured in fragments per kilobase of exon per 

million fragments mapped (FPKM) values of the different genes that are present on 

the genome. Gene annotations were retrieved using NCBI.  

We found MtTAX1, MtTAX3 and MtTAX5 in the RNA-Seq data list, but MtTAX2 and 

MtTAX4 were not present on the M. truncatula reference genome and thereby, we 

were not able to detect them in the RNA-Seq list. As shown in Table 3, MtTAX1 is 

highly upregulated in MtTAX1
OE

 lines and is downregulated about 2-fold in 

MtTAXQ
KD

, while MtTAX5 level did not change in any lines and MtTAX3 transcript 

levels were about 5-fold higher in MtTAXQ
KD

 lines than in the control lines (Table 

3). Surprisingly, these results are not in agreement with the results obtained from 

qRT-PCR analysis of the MTTAXQ
KD

 line, which showed that the steady-state of 

MtTAX2 transcript levels were slightly decreased while the transcript levels of other 

MtTAX genes remain unchanged (Fig. 3B). It should be noted that the M. truncatula, 

genome annotation is currently being reassessed by the Medicago genome 

consortium. When an updated curated genome will be available; we will reanalyze 

our RNA-Seq data. Meanwhile, we continue the analysis and interpretation with the 

available version, which may include errors on generated artifact in our 

interpretations. 

From the expressed genes in the list, we selected the genes with ≥5 fold induction (36 

in MtTAXQ
KD

 and 2 MtTAX1
OE

 lines) and reduction (16 and 3 in MtTAXQ
KD

 and 

MtTAX1
OE

 lines, respectively) in their transcript levels (Tables 4, 5 and 6).  

Tables 4 and 5 represent the genes with 5-fold induction and reduction in MtTAXQ
KD

 

lines, respectively. The genes were grouped based on their putative annotation.  
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Table 3. Transcript levels of MtTAX genes in MtTAX1
OE

 and MtTAXQ
KD

 hairy root cultures (n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation 
Control 
mean ± SD 

MtTAX1
OE

 
mean ± SD 

MtTAXQ
KD

 
mean ± SD 

Fold of 
induction in 
MtTAX1

OE
  

Fold of 
induction in 
MtTAXQ

KD
 

MTR_4g078840 MtTAX1: NP260335 12.49±10.3 966.7±196.9 6.900±4.25 77.38 0.552 

MTR_4g079680 MtTAX3: TC199023 19.71±3.89 15.98±1.77 91.92±4.01 0.812 4.664 

MTR_2g015540 MtTAX5: TC195445 97.55± 4.69 121.2±32.06 134.2±13.98 1.242 1.376 

 

Table 4. Genes significantly induced in the MtTAXQ
KD 

hairy root cultures
 
(n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation 
Control  
mean ± SD 

MtTAXQ
KD 

mean ± SD 
Fold of 
induction 

Gene with a putative role in cell wall biosynthesis 

MTR_4g122640 Peroxidase 4.22±0.66 25.02±10.13 5.93 
MTR_2g044880 Pectinesterase 0.46±0.155 3.28±1.36 7.21 
MTR_2g038860 Xyloglucan endotransglucosylase/hydrolase 1.15±1.238 10.91±1.46 9.58 
MTR_7g087960 Alpha-L-arabinofuranosidase 0.22±0.25 2.85±1.47 12.72 
MTR_7g087880 Alpha-L-arabinofuranosidase 1.00±1.55 15.56±2.80 15.54 
MTR_7g087890 Alpha-L-arabinofuranosidase 0.58±0.72 10.09±2.80 17.34 

Genes involved in stress response 

MTR_8g074330 Endochitinase 33.46±12.17 190±48.17 5.67 
MTR_1g007030 Serine protease-like protein 0.25±0.306 6.60±4.86 26.4 
MTR_8g079400 Cc-nbs-lrr resistance protein 5.77±1.3 37.18±15.56 6.44 
MTR_7g070220 Dehydration responsive element binding protein 0.22±0.17 3.41±0.702 15.5 
MTR_5g010250 Glutamate-cysteine ligase (oxidative stress) 0.303±0.3 2.62±2.34 8.66 
MTR_4g081380 Thioredoxin-like protein (oxidative stress) 78.27±57.2 421±35.22 5.38 
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Signal Transduction 

MTR_3g084390 Two-component response regulator ARR12 0 2.64±0.414 - 
MTR_4g092570 Leucine-rich repeat receptor-like protein kinase 0.62±0.513 5.57±2.559 8.97 

Primary metabolism genes 

MTR_7g090140 Protein WAX2 0.41±0.309 2.10±0.852 5.15 
MTR_5g090070 Alanine glyoxylate aminotransferase 44.60±26.25 240±55.64 5.39 
MTR_2g045280 Cytidine deaminase 241±149 1540±395 6.37 
MTR_3g036100 Cytokinin dehydrogenase 0.54±0.432 3.51±1.622 6.45 
MTR_3g102370 L-asparaginase 2.18±0.65 15.76±2.42 7.23 
MTR_4g118350 Pyruvate orthophosphate dikinase 0.63±0.41 8.60±7.219 13.7 

Genes with no known function 

MTR_4g062160 Hypothetical protein 1.04±0.86 9.33±1.84 8.98 
MTR_7g072260 Hypothetical protein 0.67±0.63 4.91±2.33 7.30 
MTR_1g098470 Hypothetical protein 3.99±0.28 23.73±10.6 5.95 
MTR_8g092240 Hypothetical protein 0.96±0.79 5.09±1.60 5.32 
MTR_8g094560 Hypothetical protein 0 14.05±7.03 - 
MTR_8g037760 Hypothetical protein 0 10.61±8.28 - 
MTR_4g014400 Hypothetical protein 0 6.41±1.01 - 
MTR_4g119460 Hypothetical protein 0 3.24±2.55 - 
MTR_3g052400 Hypothetical protein 0 3.12±1.66 - 
MTR_2g007860 Hypothetical protein 0 1.86±0.29 - 
MTR_3g014420 Hypothetical protein 0 1.88±1.77 - 
MTR_7g086040 MtN20 protein 0 3.16±1.30 - 

Transporters 

MTR_2g005130 Peptide transporter PTR1 1.54±0.538 9.78±0.54 6.38 
MTR_2g026160 Inositol transporter 0.40±0.315 3.98±1.054 9.95 

Others 
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MTR_5g063970 Zinc finger MYM-type protein 0.107±0.092 1.98±1.27 18.42 

Table 5. Genes significantly reduced in the MtTAXQ
KD

 hairy root cultures
 
(n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation Control  
mean ± SD 

MtTAXQ
KD  

mean ± SD 
Fold of induction 

Gene with a putative role in cell wall biosynthesis 

MTR_4g091010 AM3 (cell wall macromolecule catabolic process) 40.1±11.7 6.99±0.09 
 

0.174 

MTR_3g064510 Expansin 1.35±1.31 0 0 
MTR_7g023730 Polygalacturonase inhibitor protein 0.508±0.26 0.05±0.07 0.091 
MTR_2g008226 UDP-glucosyltransferase 6.41±0.20 0.83±0.03 0.129 
MTR_2g008225 Glucosyltransferase 6.35±2.48 1.07±0.47 0.168 

Secondary metabolite biosynthesis genes 

MTR_4g031800 UGT73K1 101±16.3 21.97±0.16 0.218 
MTR_4g005190 Beta-amyrin synthase 32.12±4.4 7.21±1.64 0.224 
MTR_4g022290 Anthranilate N-benzoyltransferase 8.06±1.59 2.01±0.47 0.248 
MTR_7g084300 Chalcone synthase 5.52±4.50 0.36±0.16 0.066 

Genes with no known function 

MTR_3g016250 Hypothetical protein 2.53±0.62 0 0 
MTR_7g074750 Hypothetical protein 1.70±1.64 0.073±0.11 0.043 
MTR_4g039740 Hypothetical protein 7.32±2.86 0.67±0.54 0.091 
MTR_6g010810 Hypothetical protein 1.81±0.74 0.22±0.08 0.121 
MTR_4g059670 Hypothetical protein 64.12±11.9 11.36±2.82 0.177 

Others 

MTR_6g013200 Lamin-like protein 1.43±0.57 0.13±0.19 0.089 
MTR_1g087230 Multidrug resistance protein ABC transporter 

family protein 
2.90±0.68 0.50±0.39 0.171 
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Table 6. Genes significantly altered in the MtTAX1
OE

 hairy root cultures sorted according to fold of induction (n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation 
Control  
mean ± SD 

MtTAX1OE  
mean ± SD 

Fold of induction 

MTR_4g078840 MtTAX1: NP260335 12.49±11.55 966±197 77.38 

Up-regulated genes 

MTR_3g117160 Defensin  0 1.67±0.37 - 
MTR_4g059760 Hypothetical protein 0 4.22±1.46 - 

Down-regulated genes 

MTR_5g061610 Hypothetical protein 10.11±7.41 0 0 
MTR_4g108470 ATP synthase subunit a chloroplastic 2.08±2.3 0 0 

MTR_4g018820 Jasmonate O-methyltransferase 31.32±16.23 3.41±0.85 0.11 
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The results obtained from RNA-Seq analysis revealed that several proteins involved 

in cell wall function, defense and stress response and some genes encoding proteins 

with a putative role in signal transduction were upregulated in MtTAXQ
KD

 lines 

(Table 4). Among the downregulated genes in MtTAXQ
KD 

lines, we found known 

genes encoding some key enzymes of secondary metabolite pathways. These include 

the genes involved in flavonoid biosynthesis (chalcone synthase and anthranilate N-

benzoyltransferase) and saponin biosynthesis (Beta-amyrin synthase and UGT73K1) 

(Table 5), which is in accordance with the results obtained from qRT-PCR analysis 

(Fig. 9). Expression of several UGTs was decreased in MtTAXQ
KD

 (Table 7), among 

which the saponin specific UGT, UGT73K1 (Achnine et al., 2005). Therefore, we 

specifically looked for other hitherto known UGTs that are functionally characterized 

as the UGTs involved in glycosylation of flavonoid and saponin compounds in M. 

truncatula. The data showed that transcript levels of the saponin specific UGTs 

including UGT73F3, UGT73K1 and UGT71G1 were decreased; whereas the 

transcript levels of flavonoid-specific UGTs including UGT85H2, UGT78G1 and 

UGT72L1 did not change in MtTAXQ
KD

 lines (Table 7). These results confirmed the 

results obtained from qRT-PCR analysis of MtTAXQ
KD

 and MtTAX2
KD

 hairy root 

cultures (Figs. 8 and 9).  

Table 6 shows the genes with the altered transcript levels in MtTAX1
OE

 lines. We 

found only five genes with a more than 5-fold alteration in transcript levels in 

MtTAX1
OE

 lines (2 upregulated and 3 downregulated genes). Defensin and jasmonate 

O-methyltransferase (JMT) were among the genes with altered transcript levels in 

MtTAX1
OE

 lines. The former is a member of a large gene family encoding putative 

Cys-rich defense protein (Hanks et al., 2005) and the latter is involved in MeJA 

biosynthesis.  

Next, we looked for genes that were altered in opposite directions in MtTAX1
OE

 and 

MtTAXQ
KD

. Twenty four genes were oppositely altered (Table 8). Again, some 

known genes encoding key enzymes of secondary metabolite pathways were 

presented in this list. These include chalcone synthase, flavanone 3-hydroxylase 

involved in flavonoid biosynthetic pathway, anthranilate N-benzoyltransferase gene 

encoding the enzyme catalyzing the first committed reaction of phytoalexin 

biosynthesis, and phytoene synthase that catalyzes the first committed step toward 

carotenoid biosynthesis (Table 8).  
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Table 7. The UGTs mentioned in this study (n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation 
Control  
mean ± SD 

MtTAX1
OE

 
mean ± SD 

MtTAXQ
KD

 
mean ± SD 

Fold of 
induction 
in 
MtTAX1

OE
  

Fold of 
induction in 
MtTAXQ

KD 

UGTs involved in saponin glycosylation 

MTR_5g070090 UGT71G1 19.74±5.48 16.86±4.62 11.39±1.5 0.85 0.58 

MTR_4g031800 UGT73K1 100±16.3 67.60±5.06 21.97±0.16 0.67 0.22 

MTR_2g035020 UGT73F3 40.70±5.45 41.37±3.51 14.55±1.17 1.02 0.36 

UGTs involved in flavonoid glycosylation 

MTR_6g014290 UGT85H2 0.25±0.17 0.201±0.15 0.10±0.09 0.80 0.39 

MTR_4g128670 UGT78G1 22.81±4.76 22.78±3.91 25.36±4.92 0.99 1.11 

MTR_8g009070 UGT72L1 27.39±1.85 27.00±2.16 32.62±3.89 0.95 1.19 

Other UGTs with altered transcript levels 

MTR_2g008226 UDP-glucosyltransferase 6.41±0.20 7.91±1.87 0.83±0.03 1.23 0.13 

MTR_2g008225 Glucosyltransferase 6.35±2.48 14.97±7.53 1.07±0.47 2.36 0.17 

MTR_7g102450 Cytokinin-O-glucosyltransferase 0.84±0.23 0.24±0.082 2.36±0.26 2.91 0.29 

MTR_5g035580 N-hydroxythioamide S-beta-
glucosyltransferase  

1.350±1.01 5.44±2.21 0.33±0.10 4.03 0.24 
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Table 8. Genes with transcript levels altered in opposite directions in MtTAX1
OE

 and MtTAXQ
KD 

hairy roots (n=3). 

  FPKM- normalized expression counts 

Gene_id Annotation 
Control 
mean ± SD 

MtTAX1
OE

 
mean ± SD 

MtTAXQ
KD

 
mean ± SD 

MtTAX1
OE

 
fold of 
induction 

MTTAXQ
KD 

fold of 
induction 

MTR_4g078840 MtTAX1:NP260335 12.49±10.3 966.7±196.9 6.90±4.25 77.38 0.55 

Gene with a putative role in cell wall biosynthesis 

MTR_2g089140 Xyloglucan 
endotransglucosylase/hydrolase  

172±0.59 82.24±0.072 366±1.41 0.478 2.13 

Genes involved in secondary metabolism  

MTR_7g084300 Chalcone synthase 5.52±4.50 18.558±16.5 0.37±0.17 3.36 0.07 

MTR_4g022290 Anthranilate N- benzoyltransferase  8.08±1.58 17.23±5.82 2.01±0.48 2.13 0.25 

MTR_5g076620 Phytoene synthase 8.98±0.70 24.97±10.04 3.22±0.85 2.78 0.36 

MTR_8g075830 Flavanone 3-hydroxylase 2.50±0.53 5.74±1.60 1.27±0.22 2.30 0.51 

Transcription factors 

MTR_5g014520 BHLH transcription factor 2.90±0.21 7.21±1.19 0.61±0.10 2.49 0.21 

MTR_1g106430 BTB/POZ domain-containing protein 46.10±8.05 128±35.2 24.19±2.52 2.77 0.53 

Genes involved in primary metabolism 

MTR_8g031850 Carbonyl reductase 9.73±5.42 30.20±10.92 1.26±0.94 3.10 0.13 

MTR_4g017200 Pyruvate decarboxylase isozyme 30.40±3.66 164±58.4 10.79±2.23 5.41 0.36 

Genes with no known function 

MTR_6g006210 Hypothetical protein 2.45±1.07 6.54±0.47 0.42±0.65 2.67 0.17 

MTR_8g071920 Hypothetical protein 13.58±2.4 31.95±14.27 3.60±0.94 2.35 0.27 
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MTR_1g090630 Hypothetical protein 4.39±1.82 14.39±6.47 2.18±0.54 3.28 0.50 

MTR_7g073390 Hypothetical protein 1.67±1.2 0.40±0.20 3.80±1.02 0.24 2.29 

MTR_7g073410 Hypothetical protein 1.67±1.2 0.40±0.20 3.80±1.026 0.24 2.29 

Transporters 

MTR_1g084720 ABC transporter family protein 44.1±14.8 119 ±53.41 23.46±1.33 2.70 0.53 

MTR_3g099700 Ripening regulated protein DDTFR18 
(antiporter activity) 

1.61±0.28 0.41±0.071 3.30±1.41 0.26 2.05 

Glycosyltransferases 

MTR_5g035580 N-hydroxythioamide S-beta-
glucosyltransferase  

1.35±1.01 5.44±2.21 0.33±0.10 4.03 0.24 

MTR_7g102450 Cytokinin-O-glucosyltransferase 0.84±0.23 0.24±0.08 2.36±0.26 2.91 0.30 

Others 

MTR_3g108710 Cryptochrome DASH (Photolyase) 2.34±1.12 6.17±1.51 0.30±0.12 2.64 0.127 

MTR_5g074680 O-methyltransferase 0.84±0.23 0.24±0.082 2.36±0.26 2.38 0.13 

MTR_5g033520 Alliin lyase 0.25±0.05 0 1.10±0.51 0.29 2.81 

MTR_5g020250 2-hydroxy-6-oxononadienedioate 
hydrolase  

4.74±1.07 13.81±6.31 1.389±0.21 0 4.481 
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3 Discussion 

Taximin was previously reported as a MeJA-inducible small peptide encoding gene in 

T. baccata cell cultures. Taximin modulates the expression of genes involved in 

secondary metabolism and consequently secondary metabolite production (Onrubia 

Ibáñez, 2012). In this study, we explored the effect of ectopically expressed Taximin 

on the secondary metabolism of M. truncatula hairy roots. In addition, we describe 

the cloning and characterization of Taximin homologs, the MtTAX genes, from M. 

truncatula and investigated their role in the regulation of M. truncatula metabolism. 

Five Taximin homolog genes were identified in M. truncatula and named as MtTAX1 

to MtTAX5. According to the phylogenetic study these genes fell into two subclades, 

the first subclade constitutes of MtTAX-3, -4, -5, whereas MtTAX1 and -2 fell in the 

second subclade, to which also Taximin belongs. Gain- or loss function studies in 

hairy roots showed that downregulation of the MtTAX genes and overexpression of 

MtTAX4 was often associated with growth defect. Overexpression of the other MtTAX 

genes or Taximin did not affect general growth and morphology of M. truncatula 

hairy roots. 

RNA-Seq analysis indicated that several genes involved in cell wall modification 

were up- and down-regulated in the MtTAXQ
KD

 plants (Table 4 and 5), which may be 

related with the mutant phenotype. In addition, several defense- and stress-related 

genes were coordinately induced in MtTAXQ
KD

 hairy root cultures (Table 4).  

The plant cell wall is a complex structure composed of polysaccharides, phenolic 

compounds, and proteins. The wall proteins are involved in at least three categories of 

cell wall functions. The cell wall modifying proteins contribute to modification of 

matrix polysaccharides (Darley et al., 2001). Structural proteins involved in wall 

architecture (Cassab, 1998), and defense proteins help in responses to biotic and 

abiotic stresses (Baluška et al., 2003; Qin et al., 2003).  

Cell wall modifying proteins include various endoglycanases that may cleave the 

backbone of matrix polysaccharides; glycosidases that may remove side chains, and 

therefore allowing greater interactions between polysaccharide backbones; 

glycosyltransferases that may cut polysaccharides and ligate them together, esterases 

that remove methyl groups from pectins and cleave ester linkages between 

polysaccharide chains, and peroxidases that may form or break phenolic linkages in 

the wall (Cosgrove, 2001; Jamet et al., 2006). All these enzymes cause wall-loosening 
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required for plant cell expansion. Transcription analysis of MtTAXQ
KD

 hairy roots 

showed that the steady-state levels of the gene transcripts corresponding to the 

saponin-specific UGTs, UGT73K1, UGT73F3 and UGT71G1 were decreased in 

MtTAXQ
KD 

lines, whereas the flavonoid specific UGTs including UGT85H2, 

UGT78G1 and UGT72L1 did not alter in these knockdown lines (Figs. 8 and 9, Table 

7).  

Saponins are able to form a complex with sterols and change membrane permeability. 

since monodesmosides saponins have generally a stronger membrane activity than 

bidesmosides (Tava and Avato, 2006), it is possible that sugar side chains on the 

aglycone structures have a role on the effects of saponin on cell membranes. Taking 

into account the structural resemblance of membrane sterols, it can be speculated that 

triterpene saponins can interfere with membrane-related processes within cells 

(Osbourn et al., 2011). For instance, it is reported that accumulation of incompletely 

glycosylated triterpene saponin in oat mutants results in disruption of membrane 

trafficking that is associated with growth and developmental defects in plant (Mylona 

et al., 2008). Therefore, it is possible that accumulation of less glycosylated saponin in 

MtTAX knockdown lines, due to downregulation of saponin specific 

glycosyltransferases, interferes with cell membrane trafficking and probably cause 

defects in the cell wall biogenesis and integrity. Changes in cell wall integrity can act 

as a signal for the activation of defense and stress responses (Vorwerk et al., 2004). 

However, further metabolite and microscopic evidences are needed to explore these 

relationships and better establish whether it is truly causal. 

Higher alkaloid production in tobacco hairy roots expressing the Taximin gene was 

reported previously (Onrubia Ibáñez, 2012). Here we provide preliminary data that 

Taximin-expressing M. truncatula hairy roots may accumulate higher levels of 

glycosylated saponins than control hairy roots (Fig. 5). These results suggest that 

Taximin may modulate accumulation of saponin glycosides in M. truncatula hairy 

roots. However no changes have been observed on the steady state levels of the 

saponin biosynthesis gene transcript and therefore, the mechanism of this potential 

regulatory role is still unclear. 

Conversely, qRT-PCR analysis of the cDNA obtained from MtTAX2
KD

 and 

MtTAXQ
KD

 lines showed decreases in the steady state levels of the transcripts 

corresponding to genes involved in saponin biosynthesis (Figs. 8A and 9A). In 

addition, RNA-Seq analysis of the MtTAX1
OE

 and MtTAXQ
KD

 lines showed that the 
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transcript levels of several genes involved in different secondary metabolite 

biosynthesis pathways including triterpene saponin, flavonoid, phytoalexin and 

carotenoid biosynthesis pathways were increased in MtTAX1
OE

 and decreased in 

MtTAXQ
KD

 hairy roots. However, metabolite profiling of MtTAX2
OE

 and 

MtTAX2
KD

 lines revealed no changes in their metabolite levels. Therefore, although 

the results indicated that Taximin and its MtTAX homologs may have a role in 

modulating secondary metabolism in M. truncatula, the possible mechanism(s) of 

such regulatory functions are still unknown. It was previously suggested that Taximin 

is a pathogenesis-related Cys-rich peptide. Members of CRP can be either produced 

constitutively as a first line defense in cell surface of nutrient-rich organs like flowers 

and seeds, or induced by several defense or stress-signaling pathways such as the 

jasmonate/ethylene signaling pathway (Silverstein et al., 2007). Here, in silico 

analysis revealed that MtTAX1 and MtTAX2 are induced in MeJA elicited cell cultures 

of M. truncatula. Collectively, based on these results and according to the high 

structural similarity of MtTAX peptides with Taximin (Fig. 1), it is tempting to 

speculate that Medicago TAX genes encode Cys-rich peptides involved in plant 

defense systems as well. However, further analyses are clearly needed to allow 

determining how the MtTAX genes connect with plant secondary metabolism. 

4 Material and methods 

4.1 Generation of DNA constructs 

The FL-ORF sequences of MtTAX genes were derived from the Medicago truncatula 

Gene Index database (http://compbio.dfci.harvard.edu/tgi/), PCR-amplified and 

cloned into the entry vector pDONR221 by Gateway
TM

 recombination. To obtain 

entry clones with stop codons, Gateway primers were designed according to 

Underwood et al. (Underwood et al., 2006). All entry constructs were sequence-

verified. For the overexpression experiments, Gateway recombination was carried out 

with the pK7WG2D binary vector (Karimi et al., 2002). For hpRNAi, specific 

fragments of the MtTAX genes were PCR-amplified and by Gateway
TM

 recombination 

cloned into the binary vector pK7GWIWG2D(II) (Karimi et al., 2002). To generate 

double, triple and quintuple hpRNAi constructs we used fusion PCR. For the double 

knockdown construct containing MtTAX1RNAi and MtTAX2RNAi, two parallel 

PCR amplifications were performed on pDONR221- MtTAX1RNAi and pDONR221- 

MtTAX2RNAi constructs using the primer pairs TAX025 + TAX027 and TAX020 + 
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TAX026 (Table 9), respectively. The gel purified PCR fragments were then used as a 

template to generate a fused fragment using the primer pair TAX020+TAX025 (Table 

9). Accordingly, to create triple knockdown constructs containing MtTAX3RNAi, 

MtTAX4RNAi and MtTAX5RNAi, three parallel PCR amplifications were carried 

out on pDONR221- MtTAX3RNAi, pDONR221- MtTAX4RNAi and pDONR221- 

MtTAX5RNAi using the primer pairs TAX016 + TAX028, TAX031 + TAX023 and 

TAX029 + TAX030 (Table 9), respectively. Further, a PCR fusion amplification was 

performed on gel purified PCR fragments using the primer pairs TAX016 + TAX023 

(Table 9). The quintuple knockdown construct was generated using the gel purified 

double and triple knockdown constructs via two PCR amplification reactions. First 

two parallel PCR amplifications were performed on double and triple knockdown 

constructs using the primer pairs TAX020 + TAX032 and TAX033 + TAX023 (Table 

9), respectively. Then, the PCR amplification was performed on the gel purified first 

PCR product using the primer pairs TAX020 + TAX023 (Table 9). The fused PCR 

fragments were then cloned into the binary vector pK7GWIWG2D(II) by Gateway
TM

 

recombination (Karimi et al., 2002). The resulting clones were transformed into the A. 

rhizogenes strain LBA 9402/12 for generation of hairy roots. 
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Table 9. Primers used in this study. 

Name Sequence Description 

Generation of overexpression constructs 

TAX001 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTGCAATTCAGAAGGTGAATGC Fw: AttB1- MtTAX3 
TAX002 GGGGACCACTTTGTACAAGAAAGCTGGGTATCAGCAGGGGATCTTAGAGGTG Rv: AttB2- MtTAX3 
TAX003 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTGTTGCTGTTGTGGTGAAG Fw: AttB1- MtTAX5 
TAX004 GGGGACCACTTTGTACAAGAAAGCTGGGTACTAACATGGAATCTTGGATGTG Rv: AttB2- MtTAX5 
TAX005 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCAGATGATGAAGGTTGTG Fw: AttB1- MtTAX2 
TAX006 GGGGACCACTTTGTACAAGAAAGCTGGGTACTAACAAGGAATTTGTCGAG Rv: AttB2- MtTAX2 
TAX007 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTGTAATTCAAATGGTGATTGC Fw: AttB1- MtTAX4 
TAX008 GGGGACCACTTTGTACAAGAAAGCTGGGTATCAACATGGAATCTTAGAGG Rv: AttB2- MtTAX4 
TAX009 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCAAGTGACCAAGACTTTTG Fw: AttB1- MtTAX1 
TAX010 GGGGACCACTTTGTACAAGAAAGCTGGGTACTAACAAGGAATTTTGTTAAC Rv: AttB2- MtTAX1 

Generation of RNAi constructs 

TAX016 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAGATCCCCTGCTGAAGATAG Fw:AttB1- MtTAX3 
TAX017 GGGGACCACTTTGTACAAGAAAGCTGGGTAGTAATAAACAAATTAATTCAC Rv:AttB2- MtTAX3 
TAX018 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAGGTTATGGAGTGGTTCAC Fw:AttB1- MtTAX5 
TAX019 GGGGACCACTTTGTACAAGAAAGCTGGGTACTAATAGTTTAAACTAATGC Rv:AttB2- MtTAX5 
TAX020 GGGGACAAGTTTGTACAAAAAAGCAGGCTTACTCGACAAATTCCTTGTTAG Fw:AttB1- MtTAX2 
TAX021 GGGGACCACTTTGTACAAGAAAGCTGGGTAGAAAGAATCAAATATTCACC Rv:AttB2- MtTAX2 
TAX022 GGGGACAAGTTTGTACAAAAAAGCAGGCTTAAGATTCCATGTTGATGTTAG Fw:AttB1- MtTAX4 
TAX023 GGGGACCACTTTGTACAAGAAAGCTGGGTAGTTCTCATAAACAATATCAG Rv:AttB2- MtTAX4 
TAX024 GGGGACAAGTTTGTACAAAAAAGCAGGCTTATGTTTGATAAAGCTTCCAG Fw:AttB1- MtTAX1 
TAX025 GGGGACCACTTTGTACAAGAAAGCTGGGTAGTTTCAATTGAGAAATTCCC Rv:AttB2- MtTAX1 

Generation of fused RNAi constructs 

TAX026 CTGGAAGCTTTATCAAACAGAAAGAATCAAATATTCACC Rv for Double KD  
TAX027 GGTGAATATTTGATTCTTTCTGTTTGATAAAGCTTCCAG Fw for Double KD  
TAX028 GTGAACCACTCCATAACCTGTAATAAACAAATTAATTC Rv1 for Triple KD  
TAX029 GAATTAATTTGTTTATTACAGGTTATGGAGTGGTTCAC Fw1 for Triple KD  
TAX030 CTAACATCAACATGGAATCTCTAATAGTTTAAACTAATGC Rv2 for triple KD  
TAX031 GCATTAGTTTAAACTATTAGAGATTCCATGTTGATGTTAG Fw2 for triple KD  
TAX032 CTATCTTCAGCAGGGGATCTGTTTCAATTGAGAAATTCCC Rv for quintuple KD 
TAX033 GGGAATTTCTCAATTGAAACAGATCCCCTGCTGAAGATAG Fw for quintuple KD  

4.2 Generation and cultivation of transgenic M. truncatula hairy roots 

Protocol for A. rhizogenes-mediated transformation of M. truncatula (ecotype 

Jemalong J5) hairy roots was adapted from Boisson-Dernier et al. (Boisson-Dernier et 

al., 2001) with modifications and performed as described in chapter 4 page 130-1. 

4.3 Transcript profiling 

For quantitative Real Time PCR (qRT-PCR), RNA from were isolated with the 

RNeasy mini kit (Qiagen) according to manufacturer instruction. Quality control and 

quantification were performed with a Nanodrop spectrometer (Isogen, Hackensack, 

NJ). cDNA were prepared using SuperscriptTM II Reverse Transcriptase (Invitrogen). 

Primers were designed with Beacon Designer version 4.0 (Premier Biosoft 

International, Palo Alto, CA, USA). qRT-PCR was carried out as described in chapter 

4 page 131. 
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4.4 Metabolite extractions 

M. truncatula hairy roots were harvested in five biological repeats of three 

independent transgenic lines per transgene construct and washed with purified water 

under vacuum filtration. Metabolite extraction was performed as described in chapter 

4, page 131. 

4.5 LC ESI FT-ICR MS 

For reversed-phase LC, an Acquity UPLC BEH C18 column (150 x 2.1 mm, 1.7 µm; 

Waters, Milford, MA) was mounted on an ultra-high-performance LC system 

consisting of a Accela pump (Thermo Electron Corporation, Waltham, MA, USA) 

and Accela autosampler (Thermo Electron Corporation). The Accela LC system was 

hyphenated to a LTQ FT Ultra (Thermo Electron Corporation) via an electrospray 

ionization source. The following gradient was run using water:MeCN (99:1, v:v) 

acidified with 0.1% (v:v) HOAc (solvent A) and MeCN:water (99:1, v:v) acidified 

with 0.1% (v:v) HOAc (solvent B): time 0 min, 5% B; 30 min, 55% B; 35 min, 100% 

B. The loop size, flow, and column temperature were 25 µL, 300 µL/min and 80°C, 

respectively. Full loop injection was applied. Negative ionization was obtained with 

the following parameter values: capillary temperature 150°C, sheath gas 25 (arbitrary 

units), aux. gas 3 (arbitrary units), and spray voltage 4.5 kV. Full FT-MS spectra 

between m/z 120– 1400 were recorded at a resolution of 100,000. For identification, 

full MS spectra were interchanged with a dependent MS
2
 scan event in which the 

most abundant ion in the previous full MS scan was fragmented, and two dependent 

MS
3
 scan events in which the two most abundant daughter ions were fragmented. The 

collision energy was set at 35%. Elucidation of the MS
n
 spectra was according to 

Pollier et al (Pollier et al., 2011) for the saponins and Morreel et al. (Morreel et al., 

2006; Morreel et al., 2010) for the flavonoids and (neo-)lignans. The resulting 

chromatograms were integrated and aligned with the XCMS package (Smith et al., 

2006) in R version 2.6.1. with the following parameter values: xcmsSet (fwhm=8, 

max=300, snthresh=5, mzdiff=0.5), group(bw=8, max=300), rector (method=loess, 

family=symmetric). A second grouping was done with the same parameter values. 

Due to in- source fragmentation, multiple m/z peaks for each compound were often 

observed. The number of compounds was estimated with “peak groups” consisting of 

m/z peaks with the same retention time (window, x s) that were correlated (Pearson; 

threshold, 0.85) across all control samples. 
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4.6 Phylogenetic analysis 

Protein sequences were aligned with ClustalW and the phylogenetic tree was 

generated with the MEGA 5.0.1 software (Tamura et al., 2011), by the Neighbor-

Joining method. Bootstrapping was performed with 10,000 replicates and the 

evolutionary distances were computed using the Poisson correction method. All 

positions containing gaps and missing data were eliminated from the data set 

(complete deletion option). 

4.7 RNA-Seq  

Total RNA from three independent MtTAX1
OE

, MtTAXQ
KD

 and control lines was 

extracted with the RNeasy mini kit (Qiagen) and cDNA prepared with SuperScriptTM 

II Reverse Transcriptase (Invitrogen). RNA samples were sent to “Genomics core” 

(KU, Leuven, Belgium) for mRNA purification, cDNA library construction and 

Illumina Hiseq 2000-based RNA sequencing with Solexa technology. 

Read mapping on the Medicago genome (MT3.5; (Young et al., 2011)) with TopHat 

version 2.0.3 (Trapnell et al., 2009) and counting of the uniquely mapped reads and 

calculation of the FPKM values with Cufflinks version 1.3.0 (Trapnell et al., 2010) 

were performed using default parameters as described (Pollier et al., 2013).  
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Plant metabolites are produced through complex processes including multiple enzymatic 

steps, branched pathways and regulation by a number of functionally redundant 

transcription factors (TFs). Engineering secondary metabolite pathways depends upon 

exhaustive knowledge of the whole biosynthetic pathway and a detailed insight into the 

regulatory networks controlling the biosynthesis process.  

Generally, two types of regulatory networks are involved in differential gene expression: 

transcription regulatory networks and post-transcription regulatory networks. 

Transcription regulatory networks contain two types of nodes: regulatory TFs and their 

target DNA sequences. Such networks are composed of protein–DNA interactions 

between TFs and their target genes. Protein-DNA interactions can be identified via two 

complementary strategies: TF-centered and gene-centered approaches. In the former 

approach the DNA sequences that interact with a TF or set of TFs of interest are 

identified, whereas the later comprises the methods that lead to the identification of the 

TFs that interact with a regulatory DNA sequence or set of DNA sequences of interest 

(e.g. gene promoters) (Walhout, 2006). 

Today, TFs are well-known as regulators of various plant functions and many of them are 

characterized as key regulators of metabolic pathways (De Geyter et al., 2012) and 

therefore their manipulation would be an effective approach for controlling of plant 

metabolite biosynthesis, both quantitatively and qualitatively. 

The major goal of this study was to identify regulators of the biosynthesis of saponins and 

isoflavonoids, the two major secondary metabolite classes in Medicago truncatula. Plant 

saponins are subject of many metabolic engineering efforts to enhance their production in 

cultured cells and corresponding plants. Currently our knowledge on saponin biogenetic 

pathways is still linear and insufficient. On the contrary, isoflavonoid biosynthesis is 

fairly well characterized. Nonetheless there is still an incomplete view on the regulation 

of this class of metabolites as well. Studies for identification of genes involved in 

secondary metabolism in M. truncatula using the techniques of genome-wide profiling 

have been initiated in the last few years (Suzuki et al., 2002; Broeckling et al., 2005; 

Naoumkina et al., 2008; Farag et al., 2009; Naoumkina et al., 2010).  

Our research was launched based on comprehensive combined transcript and metabolite 

profiling studies of MeJA- elicited M. truncatula cell cultures that establish a substantial 

collection of M. truncatula genes potentially involved in secondary metabolism (Pollier, 

2011). We used a reverse genetics approach and a combination of transcript analysis and 

metabolite profiling for further characterization of the selected genes (chapter 4). Out of 6 



Conclusion and perspectives 203 

 

 

 

selected MeJA-responsive genes with the putative regulatory role, the only regulatory 

gene with some effects on secondary metabolite biosynthesis genes was Mt148 that 

caused lower expression levels of some triterpene saponin and (iso) flavonoid genes in 

hairy roots overexpressing this regulatory gene. However, stable overexpression of Mt148 

did not lead to any changes in metabolite profiles of hairy roots.  

It is possible that coordinated expression of a combination of other regulatory genes is 

necessary for manipulation of secondary metabolite biosynthesis, especially when taking 

into account that the Mt148 protein is a member of the large Ccr4-Not regulatory 

complex involved in several aspect of gene expression regulation (Collart and Panasenko, 

2012). Hence, studies on protein-protein interactions could be a way to get more insight 

into the regulatory function of this gene. Indeed, tandem affinity purification platform is 

being established in M. truncatula hairy roots and used to map complex involved in JA-

signaling, including Mt148 (PhD project of Nathan De Geyter). 

In chapter 5, another early MeJA upregulated M. truncatula gene, a MYB TF Mt061, was 

chosen for further characterization. Overexpression of this TF in hairy roots could be 

associated with the production and emission of green leaf volatile (GLV) compounds and 

higher accumulation of isoflavonoids and pterocarpans. To identify differential gene 

expression of Mt061
OE

 lines, and to get an insight into the regulatory mechanism of 

Mt061, we performed RNA-Seq transcript profiling on the transgenic lines. 

RNA-Seq is the first sequencing-based method that allows the entire transcriptome to be 

surveyed in a very high-throughput and quantitative manner (Wang et al., 2009). With 

RNA- Seq technique it is possible to quantify differentially expressed genes and identify 

novel transcribed regions and alternative splice events with high levels of accuracy and 

specificity (Wang et al., 2009). The RNA- Seq approach was shown to have relatively 

little variation between technical replicates (Marioni et al., 2008). During the data 

analysis, the transcriptome sequencing reads are usually mapped to the reference genome 

sequences or transcriptome databases if they are available. However, during our analysis 

it appeared that the M. truncatula genome is not still fully sequenced, though has been 

recently claimed that it is sequenced up to 94 % (Young et al., 2011). Hence, we mapped 

the RNA-Seq data from short reads onto the M. truncatula reference genome (chapters 5 

and 6) (Young et al., 2011). Unexpectedly, the results obtained from the RNA-Seq 

revealed that several genes are still missing in reference genome and that annotation 

needs to be improved. For example, HPL2, a key enzyme in production of GLV 
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compounds, many known saponin biosynthesis genes or two MtTAX genes (MtTAX2 and 

MtTAX5) are not present on the reference genome yet.  

De novo transcriptome assembly is an alternative method that has been developed to 

produce a genome-scale transcription map for those species without genomic reference 

sequence (Chen et al., 2011). Therefore, to investigate the genes that are missing from the 

M. truncatula reference genomes due to the incompleteness of reference sequences, de 

novo assembly is a suitable approach.  

In addition, in further attempts to map the regulatory network of Mt061, determination of 

the binding ligands via protein-protein and protein-DNA interactions would be the most 

logical next step. The steady state level of Mt061 was not affected by MeJA elicitation of 

M. truncatula hairy roots and the overexpression of Mt061 led to the upregulation of 

several GLV and MeJA biosynthesis genes. Therefore, exploring the transcriptional and 

metabolite changes upon MeJA elicitation of transgenic lines might be helpful to gain a 

better understanding of its incorporation in stress signaling network. 

In chapter 6, we showed that heterologous expression of the Taximin gene from Taxus 

baccata in hairy root of M. truncatula led to enhanced accumulation of saponin 

glycosides. Taximin is a new Cys-rich peptide identified through cDNA-AFLP studies of 

MeJA elicited cell cultures of T. baccata. It was previously shown that this peptide is 

activated by MeJA and can modulate alkaloid and taxol biosynthesis in tobacco and 

Taxus baccata, respectively (Onrubia Ibáñez, 2012). However, qRT-PCR analysis did not 

show any changes in the expression levels of saponin biosynthesis genes in the M. 

truncatula hairy roots expressing this gene, hence more comprehensive genome-wide 

analysis and protein-protein interaction might be needed to unravel the mechanism of 

action of this peptide. Furthermore neither overexpression nor downregulation of Taximin 

homolog genes in M. truncatula (MtTAX) had any effect on the metabolite profiles of M. 

truncatula hairy roots, whereas downregulation of some MtTAX genes led to decreased 

expression of some saponin biosynthesis genes. Besides, RNA-Seq analysis showed that 

several biosynthesis genes involved in other secondary metabolite biosynthesis pathways 

were downregulated in MtTAX knockdown lines. Therefore, it is proposed that the 

peptides from this class might have a role in signaling pathways leading to the 

accumulation of secondary metabolism. 

Although further studies about the activity of the M. truncatula taximin homologs (the 

MtTAX) on the enzymes involved in the secondary metabolism are needed, the results 

obtained in this study suggested that MtTAX genes are likely involved in the regulation of 
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the production of triterpene saponin biosynthesis pathway. It could thus be interesting to 

check the interaction of the MtTAX peptides with the genes involved in downstream steps 

of the triterpene saponin biosynthesis pathway. In addition, preliminary RNA-Seq data 

indicate that investigation of their role in other metabolic pathways such as the carotenoid 

and phenylpropanoid biosynthesis pathways is also worthwhile. 

Looking back to the initial goal of this project, identifying regulators of secondary 

metabolite biosynthesis in the model legume Medicago truncatula, no regulatory 

elements controlling saponin biosynthesis have been identified through this study.  

The gene-centered protein–DNA interaction mapping methods, such as high-throughput 

yeast one-hybrid (Y1H) assays may facilitate the identification of regulatory elements 

that can bind to cis-regulatory sequence and promoters of saponin biosynthesis genes. 

In conclusion, in this study we have showed that the integration of metabolomics and 

transcriptomics can provide a powerful approach to better understand gene-to-metabolite 

networks for identifying the function of unknown genes and for the further 

characterization of key regulatory elements and metabolites involved in plant adaptation 

to environmental signals. However, the results of this study have revealed that transcript 

and metabolite interaction is often quite complex. Intermediate steps between 

transcription and metabolite production such as post-translational modification, regulation 

or modulation of the expression of the biosynthetic and regulatory genes by metabolite 

levels may be responsible for the non-linear and complex transcriptome-metabolome 

relationship. In light of the modern functional genomics technologies which are becoming 

more and more available, more progress on dissecting of a signal transduction pathways, 

transcriptional regulatory networks, and transcript to metabolite events can be envisaged. 
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Summary 

Plant secondary metabolites are an extremely huge group of natural compounds 

involved in plant responses to biotic and abiotic stress signals. From a human point of 

view, many of these bioactive compounds have wonderful pharmaceutical, industrial 

and agricultural applications. The induction of secondary metabolism by several 

biotic and abiotic stresses is often mediated by regulatory signaling molecules, such 

as jasmonate (JA), ethylene, salicylic acid, and their derivatives. JAs are the most 

important molecules for induction of secondary metabolism and have been found to 

have a conserved role in induction of the biosynthesis of a variety of secondary 

metabolites. Several studies revealed that JA orchestrates comprehensive 

transcriptional reprogramming leading to the shifts in metabolic fluxes. Transcription 

factors (TFs) are characterized as the key components of signaling pathways toward 

the onset of secondary metabolites biosynthesis. Many TFs were characterized as 

jasmonate-modulated regulators involved in the regulation of the biosynthesis of 

secondary metabolites (chapter 2). 

In this thesis we explored putative regulatory genes potentially involved in the 

biosynthesis of secondary metabolites in the model legume, barrel medic (Medicago 

truncatula). Medicago species produce a variety of bioactive natural products that 

possess promising pharmaceutical and agricultural benefits (chapter 3).  

To identify putative regulators of secondary metabolism in M. truncatula a reverse- 

genetics screen was performed on genes identified from a genome-wide cDNA-AFLP 

transcript profiling on MeJA elicited cell cultures of M. truncatula previously. Two 

regulatory proteins were identified by assessing the effect of gain-of- function on 

secondary metabolite biosynthesis in M. truncatula hairy roots (chapters 4 and 5). 

Mt148 encodes a CCR4-associate factor1 (Caf1) protein presumably involved in 

mRNA metabolism and post- transcriptional gene regulation. Overexpression of 

Mt148 led to the downregulation of some secondary metabolite genes in M. 

truncatula hairy roots via a mechanism that is still unknown (chapter 4). We also 

identified Mt061, which encodes an R2R3-type MYB family transcription factor, as a 

candidate regulator of green leaf volatile (GLV) biosynthesis in Medicago truncatula. 

Overexpression of Mt061 in M. truncatula hairy roots caused the production and 
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emission of GLV compounds. In addition, the enhanced transcript levels of several 

defense genes and phenolic biosynthesis genes and higher levels of phytoalexin 

compounds detected in Mt061-overexpressing lines suggest that Mt061 might be 

involved in the overall regulation of defense response processes in the plant (chapter 

5). 

Among other components involved the signaling pathways, several signaling peptides 

have been identified to control secondary metabolism in plants. During this thesis we 

also explored the effects of ectopic expression of a small signaling peptide, Taximin, 

from T. baccata on secondary metabolism in M. truncatula hairy roots (chapter 6). 

The results showed that Taximin can modulate saponin production in M. truncatula 

hairy roots. Furthermore cloning, characterization and functional analysis of the 

homologs of the Taximin gene from M. truncatula, the MtTAX genes of which we 

identified, suggested that they may have a general role in the regulation of secondary 

metabolite biosynthesis in M. truncatula.  
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