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Abstract

Unlike the organization of the chemical elements in a periodic table, no conclusive results are
published about the organization of the physical quantities. A physical quantity is a quantity
that is used in the description of physical processes. The physical processes are modeled through
mathematical expressions that use physical quantities expressed in different types: scalars, vectors,
multi-vectors, matrices and tensors. The scientific community adopted by convention the SI units
and listed the physical quantities. The mathematical structure of the SI physical quantities is
unknown. Here we show that classes of physical quantities, that are expressed according to the SI
convention, are mathematically classified by leader classes of the seven dimensional integer lattice.

1. Introduction

The choice of a system of units and the number of dimensions are open issues amongst physicists
and reviews are found here [1, 2, 3, 4, 5, 6, 7]. Unlike the organization of the chemical elements in a
periodic table, no conclusive results are published about the organization of the physical quantities.
The mathematical structure of the physical quantities is unknown. Physical quantities occur in
the scientific literature in the form of scalars, vectors, multi-vectors, matrices and tensors. Each
physical quantity is represented by a symbol or label. All the physical quantities are eventually
measured through their respective components and thus we restrict our study to the components
of physical quantities. In this research we adopt the convention of the International System of
Units (SI) for the units and dimensions of the physical quantities [8]. The SI base quantities
are length, mass, time, electric current, thermodynamic temperature, amount of substance and
luminous intensity [8]. A component of a physical quantity is a quantity that is used in the
description of physical processes. This paper is organized as follows. In section 2 we present the
mapping of a class of physical quantities to the seven dimensional integer lattice. Section 3 contains
a brief review of the mathematical objects needed to classify the physical quantities. In section
4 we present the method resulting in the classification of the SI physical quantities. Finally, we
summarize the results and conclude in section 5.

2. Fundamental axiom of physics

Physical concepts are the building blocks of any mathematical description of physical phenom-
ena.
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3. Abstract connectives

Decomposition theorem in the theory of abstract connectives (see Klein 1932). A “lattice” is a
domain of individuals in which two commutative and associative operations ∪ and ∩ are defined.
If a∪ b = b than a is called a part of b. Under the assumptions that the operation ∩ is distributive
with respect to ∪ that further, a unit element e exists for ∪ and that every element has only
finitely many parts, an element a of the lattice can be represented in at most one way in the form
a = p1∪p2∪. . .∪pn where the pi are primary elements over different prime elements. Here p is called
a prime element if it has no proper part other than e, and q is called a primary element over p if p is
the only prime element included in q. If in addition it is assumed that every non-primary element
a 6= e can be decomposed into two elements distinct from a, the existence of a representation in the
form a = p1 ∪ p2 ∪ . . . ∪ pn also follows for every element of the lattice.

4. A consistent physics system

In every system S of the kind just mentioned the proposition that S is consistent (more precisely,
the equivalent arithmetic propositions that we obtain by mapping the formulas one-to-one on natural
numbers) in unprovable.

5. An alphabet for physical concepts

Let A = {0, 1, . . . , i − 1, i, i + 1, . . . , s} be a totally ordered alphabet where i − 1 < i and
i < i+ 1 and i ∈ Z+ . To each physical concept denoted C(q) we assign a word w constructed from
the alphabet A . The words w have a length n and we write the characters in graded reverse lex
order [15]. We form a n-tuple f with the characters of the word w without changing the order of the
characters. This n-tuple consists of non-negative integers and is an element of the n-dimensional
integer lattice Zn , more specifically a lattice point of the positive orthant Zn

+ . Let ni be the number
of characters of type i of the alphabet A . Suppose that the characters occurring in the n-tuple f
are subjected to signed permutations and that we denote the set containing the generated lattice
points as [f ]. The cardinality of the set [f ] is given by the equation:

# ([f ]) = 2n−n0
n!

n0!n1!n2! . . . ns!
.

The number of signed permutations in the n-dimensional integer lattice is given by the order of
the automorphisms Aut(Zn) and is equal to 2nn! . Assume that the lattice point f has a norm
N(f ) = m where m ∈ Z+ . The lattice points of the set [f ] have all the same norm m . We iknow
that the union of the sets with norm N(f ) is forming a lattice shell [16, 17, 14].

6. n-ary operations between physical concepts

6.1. Binary operations

We create a mathematical model M to describe physical phenomena and processes. We choose
n base concepts in this model. The mathematical model M is an alphabet of n symbols These
base concepts We our limited knowledge we cannot define a set of base concept in a pure axiomatic
wayLet us consider a alphabet A containing as elements Let A,B,C be physical concepts C = A ·B
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7. Mapping classes of physical quantities to a seven dimensional integer lattice

Let the set of physical quantities be Q. Consider the physical quantities a, b ∈ Q and assume the
following equivalence relation a is dimensionally equivalent with b with notation a ∼ b . As physical
quantities occur in the form of scalars, vectors, multi-vectors, matrices and tensors, we can without
loss of generality consider a component of a physical quantity and denote it as q . The set of all
equivalence classes in Q given the equivalence relation ∼ is the quotient set Q/∼ . We define the
surjective function C from Q to Q/∼ given by C(q) = [q]∼ . We represent the equivalence classes
as [q]∼ = {p ∈ Q : p ∼ q}. The set of base physical quantities is called B .

= {L,M, T, I,Θ, N, J} .
The set of base units is defined as U .

= {ui | u1
.
= [L] = m, u2

.
= [M ] = kg, u3

.
= [T ] = s, u4

.
=

[I] = A, u5
.
= [Θ] = K, u6

.
= [N ] = mol, u7

.
= [J ] = cd} . Each physical quantity has parameters

fi, called dimensional exponents that are integers. We write a physical quantity Q according to the
SI as a dimensional product:

Q = {r} ·
7∏

i=1

ufi
i ,

in u1, u2, . . . , u7 where the ui are the SI base units with ui ∈ U, the fis are dimensional exponents
with fi ∈ Z and where the physical quantity Q of the idealized physical system assumes a numerical
real value {r} ∈ R . The quotient set of Q by ∼ is denoted Q/ ∼ . Consider the set of integer
septuples Z7 .

= {(f1, . . . , f7) | fi ∈ Z} , that is a special case of the n-dimensional integer lattice [9].
We know that Z7,+ is an additive group and that from the algebra of the quantity calculus we
have that Q/ ∼, · is a multiplicative group. We define the group isomorphism h formally as h :
Q/ ∼→ Z7 | h ([Q ]∼)

.
= f = (f1 , . . . , f7 ) where fi ∈ Z . The dimensional exponents of the

units of a class of physical quantities, taken in the correct order, form the coordinates of a point
in Z7 . Each lattice point is the image of one and only one class of physical quantities and so
the mapping h is bijective from Q/∼ on Z7 . We are free to select seven basis lattice points
of Z7 and define e1 = h ([L]∼) = (1, 0, 0, 0, 0, 0, 0) , e2 = h ([M ]∼) = (0, 1, 0, 0, 0, 0, 0) , e3 =
h ([T ]∼) = (0, 0, 1, 0, 0, 0, 0) , e4 = h ([I ]∼) = (0, 0, 0, 1, 0, 0, 0) , e5 = h ([Θ ]∼) = (0, 0, 0, 0, 1, 0, 0) ,
e6 = h ([N ]∼) = (0, 0, 0, 0, 0, 1, 0) , e7 = h ([J ]∼) = (0, 0, 0, 0, 0, 0, 1) , with e i ∈ Z7 . These points
have the agreed BIPM symbol for the dimension [10]. We will adopt the Conway abbreviation [9]
for the components of lattice points and write for example e5

.
= h ([Θ ]∼) = (0, 0, 0, 0, 1, 0, 0) as

(04102) . One could object that some derived physical quantities (rms of a quantity, noise spectral
density, specific detectivity, thermal inertia, thermal effusivity, . . . ) are defined as the square
root of some product or quotient of other physical quantities. We define these derived physical
quantities as fractional physical quantities where the coordinates fi ∈ Q do not comply with the
above definition for a physical quantity. Each of these fractional physical quantities are, by a
proper exponentiation, transformed to a physical quantity having integer exponents for the base
units ui . In this paper we tacitly assume that when we refer to a physical quantity we mean a
component of the physical quantity. We know that the concept energy occurs in different forms
in physics and that we use dedicated words as: energy, potential energy, kinetic energy, work,
Lagrange function, Hamilton function, Hartree energy, ionization energy, electron affinity, electro-
negativity, dissociation energy. . . in our formulations of physical relations. The equivalence class
that we denote [E]∼ represents all these quantities.
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8. Mathematical preliminaries

These preliminaries are gathering objects from disparate mathematical fields as discrete mathe-
matics, group theory, lattice theory, combinatorics and algebraic geometry to enable the description
of the mathematical structure organizing the physical quantities. The mathematical objects are
defined in n-dimensional space and are then applied to the specific case of n = 7 .

8.1. The properties of the n-dimensional integer lattice

The properties of the n-dimensional integer lattice are described elsewhere in the literature [9].
We will recall briefly the properties that are useful for the purpose of structuring the physical
quantities. Every lattice point is expressed in a unique way as the linear combination f = f1e1 +
. . . + fnen where the coefficients fi are called the coordinates of f . The basis e1, . . . , e n, that
generates the integer lattice Zn is orthonormal. The automorphism group of Zn consists of all
signed permutation matrices acting on the integer lattice points, and has order 2nn! and is the

Weyl group of root system Bn [9, 11]. We call the expressions N(f )
.
= ‖f ‖1 =

n∑
i=1

n∑
k=1

aikfifk ,

‖f ‖2
.
=

√
n∑

i=1

n∑
k=1

aikfifk and ‖f ‖∞
.
= max{|f1|, . . . , |fn|} respectively the `1-norm, the `2-norm

and the infinity norm of f in Zn .

8.2. Infinity normed n-polytope of norm s

Consider a lattice point f 0 and points f , which have the property f 0 + f ∈ A ⇔ f 0 − f ∈ A
then we call A a centrally symmetric set. In the remainder of the paper we will assume that f 0 = o
is the origin of Zn . A n-dimensional integer lattice polytope Pn is the convex hull of a set of finitely
many points in Zn [12]. An infinity normed n-polytope P s

n of norm s is a subset of Zn with the
following property P s

n = {f ∈ Zn | ‖f ‖∞ = s} . We characterize the infinity normed n-polytope P s
n

by the parameters n and s, where n represents the dimension of the integer lattice and s represents
the value of the infinity norm.

8.3. Absolute leader classes of a lattice

The concept of leader class of a lattice is used in signal processing [13, 14]. A leader class is
the set of lattice points of Zn that are connected through a signed permutation. We note a leader
class of Zn as [(f1, . . . , fn)] , where (f1, . . . , fn) are the coordinates of the representative lattice
point. Each leader class forms a set of lattice points that are symmetric about the origin o . The
cardinality of a leader class is calculated using elementary combinatorics. Let A = {0, 1, 2, . . . , s}
be a totally ordered alphabet. The representative of a leader class is a word w constructed from
the alphabet A . The words w have a length n that corresponds to the dimension of Zn . Let ni be
the number of characters of type i of the alphabet A . Suppose that the characters are subjected
to a signed permutation, then the cardinality is given by the equation:

# (w) = 2n−n0
n!

n0!n1!n2! . . . ns!
.

The number of integer lattice points in each leader class is equal to the cardinality of w . The
representative lattice point, called in signal processing an absolute leader, has only coordinates that
are non-negative integers. The coordinates are arranged in graded reverse lex order [15]. The union
of leader classes with norm N(f ) is forming a lattice shell [16, 17, 14].
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8.4. Monomials

A monomial [15] m in u1, u2, . . . , un is a product of the form:

m =

n∏
i=1

ufi
i ,

where all the exponents fi ∈ Z+ and ui ∈ U . The total degree of this monomial is the sum
f1 + . . .+ fn . The number of classes of monomials with infinity norm ‖f ‖∞ ≤ s in Zn is the result
from the application of “Lemma 4” [18]. The n-dimensional integer lattice Zn is partitioned in(
n + s− 1

s

)
equivalence classes. Let the dimension n = 7 then we generate the (Table 1) where

the first column lists the infinity norm s, the second column shows the sum of the lattice points in
the respective leader classes, while the third column gives the cumulated number of lattice points.
The fourth and fifth columns have a similar meaning but are expressing the number of leader classes
and their cumulated number for each 7-polytope P s

7 .

Table 1: Properties of the 7-polytopes P s
7 in Z7 for s ≤ 10 .

‖f ‖∞ = s
∑

[# ([a])] cumul{
∑

[# ([a])]} #
(
P s
7 \ P s−1

7

)
#(P s

7 )

0 1 1 1 1
1 2186 2187 7 8
2 75938 78125 28 36
3 745418 823543 84 120
4 3959426 4782969 210 330
5 14704202 19487171 462 792
6 43261346 62748517 924 1716
7 108110858 170859375 1716 3432
8 239479298 410338673 3003 6435
9 483533066 893871739 5005 11440
10 907216802 1801088541 8008 19448

9. Method for the classification of the physical quantities

The absolute leader classes that are based on the signed permutations of the coordinates of the
lattice point of the seven dimensional integer lattice Z7 are partitioning Z7 in equivalence classes.
The inverse map of h realizes then the organization of the classes of physical quantities in U.
The signed permutation matrices, transforming the representative lattice point of the leader class
in lattice points belonging to the absolute leader class, are elements of the automorphism group
Aut(Z7) and the order of this group is 645120. We find that the infinity norm `∞-norm organizes
the absolute leader classes in nested centrally symmetric 7-polytopes P s

7 where `∞ = s .

9.1. Enumeration of the absolute leader classes of physical quantities for s ≤ 3

The enumeration table (Table A.2) of the 7-polytope P 3
7 is exhaustive and consists of six columns.

The first column contains the values of the infinity norm ‖f ‖∞ . The second column lists the
absolute leader classes. The third column contains the total degree of the monomial associated
with the absolute leader class. The fourth column gives the `1-norm of the absolute leader class.
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The fifth column gives the cardinality of the absolute leader class. The sixth column gives an
example of a typical class of physical quantities that is mapped in the absolute leader class. The
label unknown is indicating that the author has no information about a class of a physical quantity
that is mapped in the respective absolute leader class. The ordering of the classes in (Table A.2) is
based on increasing norm N(f ) that is the primary characteristic of the n-sphere shells.

9.2. Enumeration of the known absolute leader classes of physical quantities for s ≥ 4

The common physical quantities (Table A.3) that have ‖f ‖∞ ≥ 4 are enumerated but is not
exhaustive. The table A.3 is based on the list of physical quantities known to the author. Table A.3
contains 4 columns. The first column contains the values ‖f ‖∞ of the infinity norm defining the
7-polytope P s

7 . The second column lists the absolute leader class. The third column identifies the
class of physical quantity by its integer lattice point in Z7 . The fourth column represents the name
of a common physical quantity.

10. Summary and conclusion

Mathematical expressions in physics use physical quantities expressed in different types: scalars,
vectors, multi-vectors, matrices and tensors. The scientific community adopted by convention the
SI units and listed the physical quantities. The version 8 of the SI has known issues and the choice of
a system of units and the number of dimensions remain open issues amongst physicists. Unlike the
organization of the chemical elements in a periodic table, no conclusive results are published about
the organization of the physical quantities. The mathematical structure of the physical quantities
is unknown. Here we show that classes of physical quantities, that are expressed according to
the SI convention, are mathematically structured in geometrical entities, known as absolute leader
classes. We mapped the classes of physical quantities on a seven dimensional integer lattice. We find
that signed permutation matrices are connecting the integer lattice points and thus partition the
integer lattice in absolute leader classes that are known from information theory. The leader classes
are themselves grouped, using the infinity norm, in nested centrally symmetric 7-polytopes. The
results show that the fundamental structure organizing the physical quantities is based on absolute
leader classes and that the enumeration of the presently common physical quantities indicates that
only a small number of absolute leader classes have been explored. The described method based
on leader classes is easily modified if the number of dimensions of physical quantities is increased
or decreased. We expect to find new physical quantities and relationships between the classes of
physical quantities. These predicted relationships should gave all physicists a framework in their
search for new laws and relations between physical quantities.
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Table A.2: Absolute leader classes [f ] of polytope P 3
7 .

‖f ‖∞ [f ] deg N(f ) # ([f ]) common physical quantities

0 [07] 0 0 1 plane angle, redshift . . .
1 [106] 1 1 14 length, mass, time, current . . .
1 [1205] 2 2 84 speed, electric charge . . .
1 [1304] 3 3 280 linear momentum, fluidity . . .
1 [1403] 4 4 560 unknown
2 [206] 2 4 14 area, space-time curvature . . .
1 [1502] 5 5 672 unknown
2 [2105] 3 5 168 acceleration, surface density . . .
1 [160] 6 6 448 unknown
2 [21204] 4 6 840 force, energy density . . .
1 [17] 7 7 128 unknown
2 [21303] 5 7 2240 magnetic vector potential
2 [2205] 4 8 84 gravitational potential . . .
2 [21402] 6 8 3360 unknown
2 [22104] 5 9 840 energy, torque, work . . .
2 [2150] 7 9 2688 unknown
3 [306] 3 9 14 volume . . .
2 [221203] 6 10 3360 magnetic constant, entropy . . .
2 [216] 8 10 896 unknown
3 [3105] 4 10 168 radiance, mass density, jerk . . .
2 [221302] 7 11 6720 unknown
3 [31204] 5 11 840 electric charge density . . .
2 [2304] 6 12 280 unknown
2 [22140] 8 12 6720 unknown
3 [31303] 6 12 2240 electric field, thermal conductivity . . .
2 [23103] 7 13 2240 inductance . . .
2 [2215] 9 13 2688 unknown
3 [3205] 5 13 168 absorbed dose rate . . .
3 [31402] 7 13 3360 unknown
2 [231202] 8 14 6720 unknown
3 [32104] 6 14 1680 power, radiant flux . . .
3 [3150] 8 14 2688 unknown
2 [23130] 9 15 8960 unknown
3 [321203] 7 15 6720 electric potential, luminous efficacy . . .
3 [316] 9 15 896 unknown
2 [2403] 8 16 560 unknown
2 [2314] 10 16 4480 unknown
3 [321302] 8 16 13440 unknown
2 [24102] 9 17 3360 unknown
3 [32204] 7 17 840 unknown
3 [32140] 9 17 13440 unknown

. . . . . . . . . . . . . . . . . .
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‖f ‖∞ [f ] deg N(f ) # ([f ]) common physical quantities

2 [24120] 10 18 6720 unknown
3 [3205] 6 18 84 unknown
3 [322103] 8 18 6720 electrical resistance, impedance . . .
3 [3215] 10 18 5376 unknown
2 [2413] 11 19 4480 unknown
3 [32104] 7 19 840 unknown
3 [3221202] 9 19 20160 unknown
2 [2502] 10 20 672 unknown
3 [321203] 8 20 3360 specific resistance . . .
3 [322130] 10 20 26880 unknown
2 [2510] 11 21 2688 unknown
3 [32303] 9 21 2240 unknown
3 [321302] 9 21 6720 unknown
3 [32214] 11 21 13440 unknown
2 [2512] 12 22 2688 unknown
3 [32204] 8 22 840 unknown
3 [323102] 10 22 13440 unknown
3 [32140] 10 22 6720 unknown
3 [322103] 9 23 6720 electrical resistivity . . .
3 [323120] 11 23 26880 unknown
3 [3215] 11 23 2688 unknown
2 [260] 12 24 448 unknown
3 [3221202] 10 24 20160 unknown
3 [32313] 12 24 17920 unknown
2 [261] 13 25 896 unknown
3 [32402] 11 25 3360 unknown
3 [322130] 11 25 26880 unknown
3 [322203] 10 26 3360 unknown
3 [32410] 12 26 13440 unknown
3 [32214] 12 26 13440 unknown
3 [3304] 9 27 280 unknown
3 [3222102] 11 27 20160 unknown
3 [32412] 13 27 13440 unknown
2 [27] 14 28 128 unknown
3 [33103] 10 28 2240 unknown
3 [3222120] 12 28 40320 unknown
3 [331202] 11 29 6720 unknown
3 [3250] 13 29 2688 unknown
3 [322213] 13 29 26880 unknown
3 [322302] 12 30 6720 unknown
3 [33130] 12 30 8960 unknown
3 [3251] 14 30 5376 unknown
3 [33203] 11 31 2240 unknown

. . . . . . . . . . . . . . . . . .
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‖f ‖∞ [f ] deg N(f ) # ([f ]) common physical quantities

3 [322310] 13 31 26880 unknown
3 [3314] 13 31 4480 unknown
3 [332102] 12 32 13440 unknown
3 [322312] 14 32 26880 unknown
3 [332120] 13 33 26880 unknown
3 [326] 15 33 896 unknown
3 [32240] 14 34 6720 unknown
3 [33213] 14 34 17920 unknown
3 [332202] 13 35 6720 unknown
3 [32241] 15 35 13440 unknown
3 [3403] 12 36 560 unknown
3 [332210] 14 36 26880 unknown
3 [34102] 13 37 3360 unknown
3 [332212] 15 37 26880 unknown
3 [34120] 14 38 6720 unknown
3 [3225] 16 38 2688 unknown
3 [33230] 15 39 8960 unknown
3 [3413] 15 39 4480 unknown
3 [34202] 14 40 3360 unknown
3 [33231] 16 40 17920 unknown
3 [34210] 15 41 13440 unknown
3 [34212] 16 42 13440 unknown
3 [3324] 17 43 4480 unknown
3 [34220] 16 44 6720 unknown
3 [3502] 15 45 672 unknown
3 [34221] 17 45 13440 unknown
3 [3510] 16 46 2688 unknown
3 [3512] 17 47 2688 unknown
3 [3423] 18 48 4480 unknown
3 [3520] 17 49 2688 unknown
3 [3521] 18 50 5376 unknown
3 [3522] 19 53 2688 unknown
3 [360] 18 54 448 unknown
3 [361] 19 55 896 unknown
3 [362] 20 58 896 unknown
3 [37] 21 63 128 unknown

Table A.3: Common physical quantities outside P 3
7 .

‖f ‖∞ [f ] f physical quantity

4 [406] (4,0,0,0,0,0,0) second moment of area
4 [4105] (1,0,-4,0,0,0,0) jounce

. . . . . . . . . . . .
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‖f ‖∞ [f ] f physical quantity

4 [42104] (0,-1,4,2,0,0,0) electric polarizability
4 [43104] (0,1,-3,0,-4,0,0) Stefan-Boltzmann constant
4 [43104] (4,1,-3,0,0,0,0) first radiation constant
4 [431203] (3,1,-4,-1,0,0,0) electrical mobility
4 [422103] (-2,-1,4,2,0,0,0) electric capacitance
4 [432103] (-3,-1,4,2,0,0,0) electric constant
4 [432103] (-3,-1,4,2,0,0,0) permittivity
6 [62303] (-2,-2,6,2,0,0,0) second hyper-susceptibility
7 [732103] (-1,-2,7,3,0,0,0) first hyper-polarizability
10 [(10)43203] (-2,-3,10,4,0,0,0) second hyper-polarizability
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