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Quantity calculus defines the rules that apply to SI physical quantities used in physics and engineering. This research aims
at the development of a mathematical method for discovering the mathematical form of the relations between physical
quantities. Laws of physics are unique relations obeying unknown mathematical selection rules. Here, we show that
each SI physical quantity, that is represented by a lattice point in a seven dimensional integer lattice, has a unique 7D-
hypersphere. The lattice points incident on the 7D-hypersphere are forming rectangles containing the origin o, the lattice
point z representing the selected physical quantity and the lattice point representations x, y of a pair of distinguishable
physical quantities [x], [y] where z = x+ y . The resulting rectangles are the geometric representations of the realizable
binary form equations for the selected physical quantity [z] . The isoperimeter distribution of the resulting rectangles
shows the exceptional occurrence of unique rectangles that can be associated with unique relations between physical
quantities. We find unknown integer sequences representing the number of unique rectangles and the number of non-
degenerated rectangles formed by 4 lattice points o, x, y, z in Z7 as function of the infinity norm ∥z∥∞ = s . The ratio
of the number of unique rectangles to the number of rectangles is decreasing for increasing infinity norm ∥z∥∞ = s .
We apply the ``hypersphere method´´ on the physical quantitiesE,H ,D,B to validate the mathematical method and find
the integral forms of Maxwell's equations. A second method is developed for n-ary form equations based on the Gödel
encoding of a leader class of a physical quantity. The canonical factorization of the Gödel number in n distinct factors
generates the n-ary form equations of a physical quantity. © Anita publications, All rights reserved.

1. Introduction

The SI [1] is usedworldwide defining the semantics and syntax in the domains of science and technology. An alge-
braic structure for quantity calculuswas proposed by R. Fleischmann [2], who also introduced the concept of ``Verknüp-
fungsgleichung´´ that we translate as form equation.

This research addresses the questionWhat are realizable n-ary form equations?

2. Theory

2.1 Axioms of the SI physical quantities

We posit from the 8th edition of the SI [1] a set of axioms derived from promoting some of the SI conventions
to mathematical axioms.

Axiom 1. The base quantities are length, mass, time, electric current, thermodynamic temperature, amount
of substance and luminous intensity.

Axiom 2. The base quantities are independent.

Axiom 3. The physical quantities are organized according to a system of dimensions.

Axiom 4. For each base quantity of the SI, there exists one and only one dimension.

Axiom 5. The product of two quantities is the product of their numerical values and units.
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Axiom 6. The quotient of two quantities is the quotient of their numerical values and units.

The uniqueness of the SI symbols forms an alphabet that is the base of any physical expression.
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Definition 1. The dimension of a physical quantity q is expressed as a dimensional product [1] :

dim q = LαMβTγ IδΘϵNζ Jη ;

where the exponents α, β, γ, δ, ϵ, ζ, η ∈ Z are called dimensional exponents.

The dimensional exponents of the common SI physical quantities take small integer values. When all the di-
mensional exponents are zero, we call the physical quantity dimensionless or a physical quantity of dimension one.
These dimensionless quantities occur in the celebrated Buckingham theorem [3] also known as the Π-theorem.

2.2 Isomorphism between classes of physical quantities and the 7-dimensional integer lattice

Let the set of all physical quantities be denoted by Q. Physical quantities are described by tensors and we can
without loss of generality consider a component of a tensor and denote it as q . We know that concepts in physics are
labeled in many ways. The concept energy has the labels: potential energy, kinetic energy, work, Lagrange function,
Hamilton function,… in the formulations of physics.

To cope with this multitude of labels, we define an equivalence relation between the physical quantities a, b ∈ Q
with notation a ∼ b meaning ``a is dimensionally equivalent to b''. The set of all equivalence classes in Q, given the
equivalence relation ∼ , is the quotient set Q/∼ . The equivalence class for the concept energy has notation [energy]∼ .

We define the surjective function dim(q) from Q to Q/∼ as dim(q) = [q]∼ = LαMβTγIδΘϵNζJη . In the sequel
of this article we omit the symbol for the equivalence relation ∼ and denote the equivalence class as [q] . The class of
dimensionless physical quantities is denoted [1] .

We consider a multiplicative binary operator {·} between the equivalence classes of Q/∼ . The algebraic proper-
ties of the composition of the equivalence classes result in amultiplicative commutative group Q/∼,{·} . We now consider
the set of integer septuples Z7 .

= {(f1, . . . , f7) : fi ∈ Z} . We know that Z7, {+} is an additive commutative group. We
define a mapping dex ():

Definition 2 (Mapping dex ()). The mapping dex () is defined from Q/∼ into Z7 and formally as dex () : Q/ ∼→ Z7 :
dex ([q]) .

= f = (f1, . . . , f7) where fi ∈ Z .

We rename fi such that f1 = α , f2 = β , f3 = γ , …f7 = η being the dimensional exponents taken in
the correct order of a physical quantity q and thus associate the ordered septuple (α, β, γ, δ, ϵ, ζ, η) to a lattice point
f = (f1, . . . , f7) . Observe that we map the unit element [1] of Q/ ∼, {·} on the unit element o = (0, . . . , 0) of
Z7, {+} and thus we have dex ([1]) .

= o = (0, . . . , 0) . Each element of Z7 is the image of one and only one class [q] of
dimensionally equivalent physical quantities. We define the inverse mapping dex−1 ():

Definition 3 (Mapping dex−1 ()). The inverse of the dex () mapping is a mapping of Z7 into Q/∼, and defined as
dex−1 () : ∀a ∈ Z7, ∃[a] ∈ Q/ ∼ : dex−1 (a) .

= [a] .

A homomorphism f : Q/ ∼→ Z7 is an isomorphism if there exists a homomorphism g : Z7 → Q/ ∼ such that
f ◦ g and g ◦ f are the identity mappings of Z7 and Q/ ∼ respectively [4]. We identify f = dex () and g = dex−1 () and
infer that a group isomorphism exists between Q/∼ and Z7 that we denote Z7 ≈ Q/ ∼ [4].

The set Zd is known as the d-dimensional integer lattice [8] that is a discrete subgroup of the real vector space
Rd. The properties of the integer lattice Zd are found in several publications [8, 9] . In the sequel of this article we
choose d = 7 . We select seven basis lattice points of Z7 and choose an orthonormal basis and write using the Conway
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notation [8]:

e1
.
= dex ([length]) = (1, 06) ,

e2
.
= dex ([mass]) = (0, 1, 05) ,

e3
.
= dex ([time]) = (02, 1, 04) ,

e4
.
= dex ([electric current]) = (03, 1, 03) ,

e5
.
= dex ([thermodynamic temperature]) = (04, 1, 02) ,

e6
.
= dex ([amount of substance]) = (05, 1, 0) ,

e7
.
= dex ([luminous intensity]) = (06, 1)

with ei ∈ Z7 .

A set of lattice points is called a lattice constellation [10]. An arbitrary set of physical quantities is represented
by a constellation of points in Z7 . We are interested in the properties of these constellations of points and focus on the
simplest non-trivial constellation consisting of 4 integer lattice points.

Observe that the parallelogram law x+y = zwhere x, y, z ∈ Z7 is valid. We can prove [11] that binary equations
[z] = f(Π)[x][y] are geometrically represented by parallelograms in Z7 . We can define [11] an inner product {·} and
p-norm ∥∥p in Z7 and write f =

∑7
i=1(f · ei)ei .

2.3 Partitions of the d-dimensional integer lattice based on the infinity norm ℓ∞

We calculate the number of equivalence classes that can be formed in a d-dimensional hypercube P s
d [5] when

the infinity norm ℓ∞ = s and s ∈ N. The result is known as the multiset number and given by:

# (P s
d ) =

(
d+ s− 1

s

)

For d = 7 we find the integer sequence A000579 [16]: # (P s
7 ) = 1, 7 , 28, 84, 210, 462, 924, 1716, 3003, 5005, 8008 . . .

where s ∈ {0, . . . , 10} . The value of s = 10 is relevant when considering the second hyper-polarizability that has the
largest coordinate value (-2,-3,10,4,0,0,0) of the tabulated physical quantities.

2.4 Absolute leader classes of a lattice

The representative lattice point, called in signal processing an absolute leader, has only coordinates that are non-
negative integers. A leader class is the set of lattice points of Zd that are connected through a signed permutation. Let
A = {0, 1, 2, . . . , s} be a totally ordered alphabet. The representative of a leader class is a word w constructed from the
alphabet A . The words w have a length d that corresponds to the dimension of Zd . Let di be the number of characters
of type i of the alphabet A . Suppose that the characters of w are subjected to a signed permutation, then the cardinality
of the leader class is given by the equation:

# ([w]) = 2d−d0 d!

d0!d1!d2! . . . ds!
.

We note a leader class of Zd as [w] = (f1, . . . , fd) , where (f1, . . . , fd) are the coordinates of the representative lattice
point. We write the characters in graded reverse lex order [6]. Each leader class forms a set of lattice points that are
centro-symmetric about the origin o [5]. The union of all leader classes is called a codebook [7].
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3. Methods

3.1 Method 1: Decomposition of a lattice point in pairwise orthogonal lattice points

We define distinguishable physical quantities as orthogonal lattice points dex ([x]) and dex ([y]) . The decomposi-
tion of a lattice point z in two pairwise orthogonal lattice points x and y assumes the existence of a system of Diophantine
equations:

parallelogram law: x+ y− z = 0 , (1a)

inner product: x · y = 0 , (1b)

where x, y, z ∈ Z7 . We eliminate y from the equation (1b) and find:

x · x− x · z = 0 . (2)

We apply the method of completing the square and write equation (2) as:

(x− z
2
)2 = (

z
2
)2 , (3)

that represents a 7D-hypersphere in R7 with center at z
2
and radius ∥ z

2
∥2 .

The center of the 7D-hypersphere is only a lattice point if its coordinates are even. Observe that there exists
a unique 7D-hypersphere (3) for each physical quantity [z] . This unique 7D-hypersphere determines the finite set of
pairwise distinguishable physical quantities [x] and [y] that satisfy the binary realizable form equation [z] = f(Π)[x][y] .
We call the above method the ``hypersphere method´´.

3.2 Method 2: Gödel encoding of physical quantities up to a signed permutation

In number theory the atomic parts are identified as the prime numbers [12]. The prime numbers are the atoms
of the number system and the SI base quantities are the atoms of the physical quantities. We encode each integer lattice
point of Z7

+ by using a similar scheme to the Gödel encoding [13].

Definition 4.

ϕd(f1, . . . , fd) =

d∏
i=1

pfii ,

where pi is the i-th prime number, f = (f1, . . . , fd) and fi ∈ Z+ .

Consider the physical quantity energy represented by the lattice point (2, 1,−2, 0, 0, 0, 0) . The corresponding
leader class for the physical quantity energy is the lattice point with coordinates (2, 2, 1, 0, 0, 0, 0) that is obtained by a
signed permutation of the original coordinates. We calculate for this leader class its Gödel number.

Example 1. ϕ7(2, 2, 1, 0, 0, 0, 0) = 22 · 32 · 51 · 70 · 110 · 130 · 170 = 180

The encoding of the leader classes with a Gödel number allows the factorization of the Gödel number in distinct
factors. Richard J. Mathar (http://home.strw.leidenuniv.nl/ mathar/) has listed in the OEIS [16] the integer series A045778
that gives the factorization of non-negative integers up to m = 1500. The enumeration for common leader classes with
Gödel number ≤ 1500 of the factorization of the Gödel number in n distinct factors is given in Table 1 . The number
of distinct factors is found in the respective columns Fn where n ∈ [2, . . . , 5] . We find that there is a finite number of
canonical form equations for each physical quantity. For the physical quantity energy that corresponds to the leader class
(22, 1, 04)we findF2 = 8 , F3 = 8 andF4 = 1 and thus the physical quantity energy hasF2+F3+F4 = 17 canonical
form equations distributed over 8 binary form equations, 8 ternary form equations and 1 quaternary form equation.
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Table 1: Canonical factorization for Gödel number ≤ 1500 in n distinct factors.
leader class cardinality Gödel number F2 F3 F4 F5

(07) 1 1 0 0 0 0
(1, 06) 14 2 0 0 0 0
(2, 06) 14 4 0 0 0 0

(12, 05) 84 6 1 0 0 0
(3, 06) 14 8 1 0 0 0

(2, 1, 05) 168 12 2 0 0 0
(3, 1, 05) 168 24 3 1 0 0
(13, 04) 280 30 3 1 0 0
(22, 05) 84 36 3 1 0 0

(2, 12, 04) 840 60 5 3 0 0
(3, 2, 05) 168 72 5 3 0 0

(3, 12, 04) 840 120 7 7 1 0
(22, 1, 04) 840 180 8 8 1 0
(14, 03) 560 210 7 6 1 0
(32, 05) 84 216 7 8 1 0

(3, 2, 1, 04) 1680 360 11 17 5 0
(2, 13, 03) 2240 420 11 15 4 0
(3, 13, 03) 2240 840 15 29 13 1
(23, 04) 280 900 12 20 7 0

(32, 1, 04) 840 1080 15 33 17 1
(22, 12, 03) 3360 1260 17 35 16 1

4. Results

4.1 Maxwell's equations and beyond

The integral and differential representation of Maxwell's equations are:
˛

L(S)

E · ds = − ∂

∂t

¨

S

B · dS ∇× E = − ∂

∂t
B

˛

L(S)

H · ds =
¨

S

J · dS +
∂

∂t

¨

S

D · dS ∇×H = J +
∂

∂t
D

‹

S(V )

D · dS =

˚

V

ρf dV ∇ · D = ρf

‹

S(V )

B · dS = 0 ∇ · B = 0

The constitutive equations are:

D · ϵ0E + P = ϵE H =
1

µ0
B−M

We apply the ``hypersphere method´´ to the physical quantities [H], [B], [E], [D] occurring in the celebrated Maxwell's
equations and infer relations between the physical quantities. The SI coordinates of the physical quantities [H], [B], [E], [D]
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are:

Magnetic field strength: dex ([H]) = (−1, 0, 0, 1, 0, 0, 0)
Magnetic induction: dex ([B]) = (0, 1,−2,−1, 0, 0, 0)
Electric field: dex ([E]) = (1, 1,−3,−1, 0, 0, 0)
Electrical displacement: dex ([D]) = (−2, 0, 1, 1, 0, 0, 0)

The results are summarized in isoperimetric distributions giving the frequency of occurrence of rectangles having a
perimeter with value p . We denote electric current I , electric charge q, electric charge density ρf , volume V , area
S, time t, length s, velocity v, electric current density J .

4.1.1 Magnetic field strength [H]

The Gödel number of the leader class is 6 with F2 = 1 and thus 1 binary canonical form equation exist for
H . We select the smallest non-degenerated rectangle of [H] having p = 4. Observe that [H] has a non-degenerated

Table 2: Isoperimetric distribution for [H] .
Perimeter p Frequency f

2.828 1

4 1

unique rectangle. We find the lattice points x = (−1, 0, 0, 0, 0, 0, 0) and y = (0, 0, 0, 1, 0, 0, 0) . We suggest the binary
realizable form equation:

H = f(Π)

(
1

s

)
(I)

Hs = f(Π)I˛

L(S)

H ds = f(Π)

¨

S

J t · dS

˛

L(S)

H · ds = f(Π)

¨

S

J t · dS

that is one of the integral forms of Maxwell's equations when J t = J +
∂D
∂t

.

4.1.2 Magnetic induction [B]

The Gödel number of the leader class is 60 with F2 = 5 and F3 = 3 and thus 5 binary and 3 ternary canonical
form equations exist for B. We restrict the search to the binary form equations of B. We select the non-degenerated

Table 3: Isoperimetric distribution for [B] .
Perimeter p Frequency f

4.489 1

6.472 2

6.828 9

6.928 8

rectangle of [B] having p = 6.828 . We find the lattice points x = (−1, 1,−1,−1, 0, 0, 0) and y = (1, 0,−1, 0, 0, 0, 0) .
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We suggest the binary realizable form equation:

B = f(Π)v
( m

sIt

)
Bs

v
= f(Π)

m

qˆ
Bdt = f(Π)

m

q

∂

∂x

ˆ
B dt = f(Π)

∂

∂x

(
m

q

)
∂

∂y

ˆ
B dt = f(Π)

∂

∂y

(
m

q

)
∂

∂z

ˆ
B dt = f(Π)

∂

∂z

(
m

q

)
ˆ

(∇ · B) dt = f(Π)(
∂

∂x
+

∂

∂y
+

∂

∂z
)

(
m

q

)
=

1

2
f(Π)∇

(
1

γ

)
The right hand side of the equation is related to the gyro-magnetic ratio γ = q

2m . For an isolated electron we have

|γe| = ge
|−e|
2me

= ge
µB
~ where µB is the Bohr magneton. The electron g-factor has been measured to twelve decimal

places ge = 2.0023193043617(15) . The gyro-magnetic ratio is constant but varies from one nucleus to another. We
infer that if the gradient of the reciprocal of the gyromagnetic ratio∇

(
1
γ

)
= 0 then we find

´
(∇ · B) dt = 0 . We find

one of the differential forms of Maxwell's equations.

4.1.3 Electric field [E]

The Gödel number of the leader class is 840 with F2 = 15, F3 = 29, F4 = 13 and F5 = 1 and thus we have
15 binary, 29 ternary, 13 quaternary and 1 quinternary canonical form equations for E. We restrict the search to the
binary form equations of E. We select a non-degenerated rectangle of [E] having p = 9.152 . We find the lattice points

Table 4: Isoperimetric distribution for [E] .
Perimeter p Frequency f

6.928 1

8.633 3

9.152 6

9.464 19

9.656 39

9.763 42

9.797 18

x = (−1, 0,−1, 0, 0, 0, 0) and y = (2, 1,−2,−1, 0, 0, 0) . We suggest the binary realizable form equation:

E = f(Π)

(
1

st

)
(BS)

Es = f(Π)
1

t
BS

˛

L(S)

E ds = f(Π)
d
dt

¨

S

B · dS

˛

L(S)

E · ds = f(Π)
∂

∂t

¨

S

B · dS
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that is one of the integral forms of Maxwell's equations when f(Π) = −1.

4.1.4 Electrical displacement [D]

The Gödel number of the leader class is 60 with F2 = 5 and F3 = 3 and thus 5 binary and 3 ternary canonical
form equations exist for D. We restrict the search to the binary form equations of D. We select the non-degenerated

Table 5: Isoperimetric distribution for [D] .
Perimeter p Frequency f

4.489 1

6.472 2

6.828 9

6.928 8

rectangle of [D] having p = 6.828 . We find the lattice points x = (−2, 0, 0, 0, 0, 0, 0) and y = (0, 0, 1, 1, 0, 0, 0) . We
suggest the binary realizable form equation:

D = f(Π)

(
1

S

)
(q)

DS = f(Π)q‹

S(V )

D dS = f(Π)q

‹

S(V )

D · dS = f(Π)

˚

V

ρf dV

that is one of the integral forms of Maxwell's equations.

4.1.5 Discussion

We find that the physical quantities [D] and [B] have the same isoperimetric distributions and thus we find a
matrix M such that dex ([D])ᵀ = M dex ([B])ᵀ where:

M =



0 0 1 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


represents a signed permutation matrix. The automorphism group of the 7-dimensional cubic lattice Aut(Z7) contains all
permutations and sign changes of the 7 coordinates and has order 27 7! = 645120. Each signed permutation matrix is an
orthogonal matrix [14]. It is known from linear vector quantization [15] that the ℓ2-norm and the phase of a lattice point
are used to partition a lattice. However, this norm and phase are not the correct classifiers for the physical quantities.
If we use instead as classifier the ℓ∞-norm we obtain equivalence classes for which the elements of the class have the
same isoperimetric distribution [11]. In the framework of information theory we state that the lattice points dex ([D]) and
dex ([B]) are elements of the absolute leader class (2, 12, 04) that has cardinality 840.
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4.2 Distribution of unique rectangles in one orthant of the 7D integer lattice

We determine the distribution of non-degenerated unique rectangles formed by 4 lattice points o, x, y, z in Z7 as
function of the infinity norm ∥z∥∞ = s . We define a sample spaceΩ consisting of one orthant of the 7D-hypercube with
infinity norm ∥z∥∞ = s, with s ∈ N and search for the event of an unique perimeter p . Table 6 gives the result of the
search for rectangles. We find in one orthant of the 7D-hypercube where ∥z∥∞ ≤ 10, a total of 7747 unique rectangles
out of 6510466998 rectangles. The unique rectangles represent unique realizable binary form equations of the type
[z] = f(Π)[x][y] for the selected physical quantity [z]. These sequences of integers are not listed in the OEIS [16] and we
suggest further research on it. We observe that the ratio of the number of unique rectangles to the number of rectangles is

Table 6: Distribution of rectangles in Z7 as function of the infinity norm ∥z∥∞ = s .
Infinity norm ∥z∥∞ = s UR =# unique rectangles R = # rectangles UR

R
1 1 120 8.33e-03
2 7 7196 9.73e-04
3 26 162554 1.60e-04
4 79 1341957 5.89e-05
5 182 9255603 1.97e-05
6 333 40532530 8.22e-06
7 693 168302117 4.12e-06
8 1180 523421602 2.25e-06
9 1999 1637895896 1.22e-06
10 3247 4129547423 7.86e-07
Total 7747 6510466998 1.19e-06

decreasing for increasing infinity norm ∥z∥∞ = s and that for s = 10 the ratio is 7.86e-07 . The 7D-hypercube, where
∥z∥∞ ≤ 10 contains all known physical quantities and all know physical relations between these quantities.

5. Conclusion

We show that each SI physical quantity, that is represented by a lattice point in a seven dimensional integer lattice
Z7, has a unique 7D-hypersphere. The lattice points incident on the 7D-hypersphere are rectangles formed by 4 lattice
points o, x, y, z in Z7 where z = x + y . The resulting rectangles are the geometric representation of the realizable
binary form equations of the type [z] = f(Π)[x][y] for the selected physical quantity [z]. We apply the ``hypersphere
method´´ on the physical quantitiesE,H ,D,B and find the integral forms of Maxwell's equations. We find in one orthant
of the 7D-hypercube, where ∥z∥∞ ≤ 10, a total of 7747 unique rectangles that represent unique realizable binary form
equations. We observe that the ratio of the number of unique rectangles to the number of rectangles is decreasing for
increasing infinity norm ∥z∥∞ = s and that for s = 10 the ratio is 7.86e-07 . The 7D-hypercube, where ∥z∥∞ ≤ 10

contains all known physical quantities and all know physical relations between these quantities. A second method is
developed for n-ary form equations based on the Gödel encoding of a leader class of a physical quantity. The canonical
factorization of the Gödel number in n distinct factors generates the n-ary form equations of a physical quantity.
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