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Nederlandse samenvatting
–Summary in Dutch–

Voorraadbeheer is alom tegenwoordig, men wordt er mee geconfronteerd in
een industriële omgeving, op het werk en ook thuis. Overal vindt men voor-
raden: de opgeslagen goederen in een magazijn, het papier voor de printer
op het dienstenbedrijf of gewoon de bewaarde voeding thuis. Om het doel
van deze thesis aan te tonen zullen we een herkenbaar voorbeeld hanteren.
Denk aan de opbergkast thuis en alle producten die men er kan terugvinden:
koffie, koekjes, flessen, producten voor het onderhoud, tandpasta, aardap-
pelen, ... We kunnen snel 50 producten bedenken die men thuis opslaat.
De bevoorrading hiervan vindt plaats door een bezoekje aan de locale su-
permarkt, maar dit vergt een inspanning en heeft dus ook een kost. Om
deze kosten te minimaliseren zouden we kunnen beslissen om in heel grote
hoeveelheden aankopen te doen, dit zal zeker het aantal bezoeken aan de
winkel reduceren. Maar er zijn ook een aantal nadelen aan verbonden: we
moeten de ruimte hebben om deze grote hoeveelheden op te slaan, sommige
van de aangekochte goederen hebben een beperkte houdbaarheid, bij grote
aankopen moeten we ook onmiddellijk het geld hebben om deze aankopen te
betalen, ... Een ander element dat een belangrijke rol speelt bij voorraadbe-
heer is de geboden dienstverlening: hoe vaak zal het voorkomen dat we een
product nodig hebben, maar dat het niet beschikbaar is? We willen een hoge
dienstverlening of service level behalen. Indien we bij 100 verzoeken zeker
98 keer correct willen bediend worden, dan spreekt men van een service level
van 98%. Deze thesis beschrijft de modellen en algoritmes die nodig zijn om
dit soort vragen op te lossen. Zo zullen we voor elk product dat we op stock
willen houden aangeven wat de optimale bestelhoeveelheid is en wanneer een
nieuw order dient geplaatst te worden.

Klassieke voorraadbeheerformules leggen de focus op problemen met één
product. Wij zullen hier de nadruk leggen op problemen met meerdere
producten en ook minimaal één geaggregeerde beperking. Er zijn ook twee
andere types van modellen met meerdere producten welke binnen dit werk
niet behandeld zullen worden: een netwerk van producten (multi-echelon
modellen) en gedeelde bevoorradingsketens. Bij dit laatste probleem moet
één middel gedeeld worden over verschillende producten terwijl de maximaal
beschikbare capaciteit niet mag overschreden worden. De geaggregeerde
beperkingen die wij zullen behandelen hebben betrekking op de voorraad
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KPI’s (key performance indicators), zoals gemiddelde voorraad, gemiddeld
aantal achterstallige orders, gemiddelde herbestelfrequentie, fill rate service
level, ready rate service level, ...

Voorraadmanagers hebben in praktijk doelstellingen en beperkingen die
betrekking hebben op het ganse systeem en deze zijn in ieder geval van toe-
passing op meerdere producten. Zo kan een bedrijf een strategie hebben om
een algemeen fill rate service level te behalen van 97% dit jaar. Dit ser-
vice level zou onderdeel kunnen zijn van een klantencontract en er kunnen
boetes voorzien zijn indien dit niet gehaald wordt. In de praktijk moeten
de managers ook oplossingen vinden als ze geconfronteerd worden met be-
perkte middelen zoals: ruimte, werkmensen en kapitaal. Een magazijn is
niet gemakkelijk uitbreidbaar zonder een significante investering. Er is ook
een beperking op het werkkapitaal dat in goederen kan gëınvesteerd worden.
In de praktijk zien we dat het orderlijn service level (het aantal orderlijnen
dat onmiddellijk uit stock kan geleverd worden) heel vaak gebruikt wordt.
Dit wordt dan vaak benaderd door het fill rate service level (percentage van
het gevraagde volume dat rechtstreeks uit voorraad kan geleverd worden).
Het orderlijn service level is heel beperkt behandeld tot heden in weten-
schappelijke artikels. Onze analyse toont aan dat een fill rate service level
vaak significant hoger is dan het orderlijn service level. Een orderlijn service
level kan enkel berekend worden wanneer we gebruik maken van een exacte
discrete distributie zoals de Poisson of compound Poisson, maar deze dis-
tributies zijn minder makkelijk in het gebruik dan de normale distributie.
Daarom hebben we een benadering gecreëerd die gebaseerd is op de nor-
male distributie die de fout op de KPI’s reduceert, en voornamelijk ook de
fout op het orderlijn service level. Deze fout-reducerende functies zijn van
toepassing voor een (r,Q) politiek, hierbij wordt er een order van grootte
Q besteld zodra het herbestelpunt r bereikt is. Het is ook van toepassing
voor een (s, S) politiek, waar een order geplaatst wordt zodra de voorraad
het niveau s bereikt, de ordergrootte is variabel maar leidt er toe dat het
niveau zal stijgen tot S. De berekening van de optimale waarden r en Q
bij een vraag met een normaal distributie maakt veelvuldig gebruik van de
standaard normale eerste en tweede orde verlies-functies. Deze statistische
functies hebben geen gesloten-vorm formulering. We creëren een rationele
benadering met dubbele precisie voor elk van deze functies alsook voor hun
inverse functies. Hiervoor baseren we ons op het Remez algoritme. Deze
rationele benaderingsfuncties staan toe om bij optimalisaties veel sneller be-
rekeningen te kunnen uitvoeren.

Een aanpak die tegelijkertijd meerdere producten in rekening brengt heeft
twee voordelen: het laat toe om te differentiëren over de verschillende pro-
ducten binnen bepaalde grenzen, wat kan leiden tot een lagere kost. Ander-
zijds laat het ook toe geaggregeerde systeembeperkingen in rekening te bren-
gen, zoals beperkte magazijnruimte of kapitaalsinvestering. Aan de hand
van enkele echte cases zullen we zien dat de kostendaling ten gevolge van
een systeemaanpak in vergelijking met een product per product benadering
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kan oplopen van 5% tot 34% en soms zelfs nog hoger.
Het doel van deze thesis is om dit soort van multi-product voorraad pro-

blemen op te lossen. We maken hiervoor gebruik van de normale distributie
en de ontwikkelde fout-reducerende functies. Op deze manier benaderen we
heel goed de exacte discrete vraagmodellen.

Deze thesis is als volgt gestructureerd: in hoofdstuk 1 geven we een
inleiding van het probleem, de assumpties en we geven tevens ook al een
overzicht van de contributies. Hoofdstuk 2 biedt een literatuur overzicht van
de relevante statistische distributies, de beste benaderingsmethodes, voor-
raadmodellen voor één product alsook de onafhankelijke multi-product mo-
dellen. Hoofdstuk 3 gaat nader in op de fouten die gemaakt worden ten
gevolge van de normale distributie benaderingen. We introduceren hier ook
de fout-reducerende functies. In hoofdstuk 4 creëren we de gesloten-vorm be-
naderingen voor de standaard normale eerste en tweede order verlies-functies
en ook voor hun inverse functies. Hoofdstuk 5 biedt drie methodes om multi-
product problemen op te lossen. In hoofdstuk 6 stellen we twee cases voor en
tonen ook de voordelen aan van een multi-product aanpak. Tenslotte geven
we een overzicht in hoofdstuk 7 van de contributies die gerealiseerd werden
binnen deze studie en geven ook mee wat er in toekomstig onderzoek kan
behandeld worden.





English summary

Inventory management is omnipresent, whether you are in an industrial en-
vironment, at a service company or at home. Everywhere you will find an
inventory of items: the stored products in a warehouse, the printer paper in
the service company or the food products and other consumables at home.
To illustrate the goal of this dissertation we will use an example which we
will all easily recognize. Consider the cupboard at home for storing goods:
coffee, cans of food, beverages, cleaning products, toothpaste, potatoes...
We can imagine having 50 products or more in there. We can replenish the
shelves with new goods by going to the store, but this requires effort and as
such has a cost. This ’reordering’ cost is part of the total cost. We could
assume to make very large orders to minimize this ordering cost, and thus
minimize the number of visits to the local store. But this has also some
disadvantages: we need to have the space to store all this, some of the goods
we need may be perishable (fresh fruit or vegetables), we need to have the
money to buy all these goods... Another factor that comes in place is the ser-
vice provided by our cupboard, how often will we go and look for a product
and notice that it is no longer in stock? We want to have a high service level,
let’s assume that we want to find the product we need 98 times out of 100,
this could be defined as a service level of 98%. This dissertation describes
the models and algorithms necessary to solve this type of questions. In the
end it will give for each item we have on the shelves an order quantity and
also a reorder point. The reorder point indicates when a new order needs to
be placed, the order quantity defines the size of this order.

Classic inventory management equations focus on single item problems.
We will work towards a multi-item approach with at least one aggregate
constraint. There are also two types of multi-item models that will not be
considered in this work: network of items (multi-echelon models) and shared
supply chain processes where one resource needs to be shared over several
items and its maximum capacity cannot be passed. The aggregate con-
straints we consider are on the inventory key performance indicators (KPI’s)
such as average inventory, average back-orders, average order frequency, fill
rate service level, ready rate service level...

These are problems that inventory managers encounter daily in practice:
they are given system-wide goals and constraints on service level, costs or
other resources. As such the company can have for example a strategy to
achieve an overall fill rate service level of 97% for this year. This service level
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may be part of a service contract which has a financial impact in terms of
costly penalties if this pre-set target service level is not achieved. In practice
managers also need to find solutions for the limited available capacity of
several resources. The warehouse has a limited available space that is not
easily surmountable without extra costs. The money available to invest in
inventory also has its limitations. In practice we see that the order line
service level (number of order lines delivered in full out of stock) is very
popular. This is approximated in calculations with a fill rate (percentage
of volume directly delivered out of stock). Order line service level has only
briefly been dealt with in textbooks or in scientific papers. Our analysis
shows that the fill rate is often severely higher than the order line service
level. An order line service level can only be calculated when making use
of exact discrete distributions such as Poisson or compound Poisson, but
these distributions are less easy to use than the normal distribution. So
we created an approximation based on the normal distribution that reduces
the error on each of the existing KPI’s, especially on the order line service
level. These error reduction functions are applicable for the (r,Q) policy,
where an order of size Q is placed as soon as the reorder level r is reached,
and for the (s, S) policy, where an order is placed as soon as the inventory
reaches s to increase inventory to the maximum inventory level S. The
computation of optimal values for an (r,Q) policy in case of normal demand
makes ample use of the standard normal first and second order loss functions.
These statistical functions do not have a closed-form expression. We develop
closed-form double precision rational approximations for these functions and
their inverse functions making use of the Remez algorithm. These rational
approximation functions enable us to reduce the computation time.

A multi-item approach has two benefits: it allows, on the one hand, for
diversification over the different items within given boundaries leading to
lower overall costs and, on the other hand, it makes it possible to integrate
system limitations such as limited warehouse space or maximum investment.
Through examples and cases we see that the cost reduction due to a system
approach compared with a single item approach goes from 5% up to 34%
and higher.

The purpose of this dissertation is to solve multi-item inventory problems,
making use of the normal demand and the newly created error reduction
functions to approximate closely the exact discrete demand models. We also
foresee the use of the very popular order line service level.

This dissertation is structured as follows. In Chapter 1 we introduce the
problem, its assumptions and we also outline the contributions. Chapter
2 gives a literature review on the considered statistical distributions, best
approximations, different single item models and on the independent multi-
item models. Chapter 3 analyzes the errors due to normal approximation
and we introduce our error reduction functions. In Chapter 4 we work out
a closed-form approximation for the standard normal first and second order
loss functions and their inverse functions. Chapter 5 offers three methods
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for solving multi-item inventory problems. In Chapter 6 we present two
real life cases and also demonstrate the significant benefits of a multi-item
approach: large cost benefits and the possibility to include warehouse space
boundaries. Finally we give an overview in Chapter 7 of the contributions
created within this study and some possible future research.





1
Introduction

1.1 Introduction

The issues addressed in this dissertation are concerns and problems encoun-

tered in practice by managers who are confronted with system wide goals

on service level, costs or other resources. As such the company can have

for example a strategy to achieve an overall fill rate service level of 97% for

this year. This service level may be part of a service contract which has a

financial impact in form of costly penalties if this pre-set target service level

is not achieved. In practice managers need to find solutions for the limited

available capacity of several resources. The warehouse has a limited avail-

able space that is not easily surmountable without extra costs. The money

available to invest in inventory also has its boundaries and is sometimes used

as a direct key performance indicator (KPI). Throughout this dissertation

we will focus on the following set of inventory model KPI’s:

• Average inventory: time weighted number of items in stock

• Average backorders: time weighted number of items in backorder

• Average stockout frequency: % of time there is no stock

• Average amount of new backorders: rate at which new backorders are

generated

• Order frequency: rate at which replenishment orders are placed

• Fill rate service level: % of items that can be delivered directly out of

stock
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• Ready rate service level: % of time there is one or more items on stock

• Order line service level: % of order lines that can be delivered imme-

diately and completely out of stock

The limited available workforce capacity can be a reason to limit the num-

ber of orders, as each order requires a set of activities: administer, perform

quality control, receive and put away the goods. So inventory managers have

system wide limitations (space, money or workforce) or goals (service levels

or costs), while the majority of classic inventory formulas focus on single

items and are unable or inefficient to deal with system wide limitations.

Applying a single item approach to attain these goals is not a best prac-

tice, neither is it effective to satisfy the system’s constraints. Nevertheless

we see it being applied too often within companies, without realizing the

loss in efficiency or in money this has as a consequence. An IT system that

lacks the support for a system wide approach may however be another sig-

nificant obstacle. We believe that it is the unawareness of possible system

approaches, by a large number of managers, or the assumed insurmountable

complexity of these approaches that prevents their widespread use. Within

this dissertation we want to work on both these aspects. As a first example

to value these system approaches, we want to refer to Sherbrooke (2004)

who reports using a system approach on 1 414 spare parts resulting in a 46

% reduction of inventory investment without a decrease in performance. We

believe that a better understanding and insight of multi-product inventory

problems with aggregate constraints should become common knowledge for

the inventory manager, knowing that the first papers on these topics date

back to the sixties and seventies. This will certainly help them achieve their

system goals and will have a positive impact on the key performance indi-

cators.

An optimal policy surface, see Gardner and Dannenbring (1979), is a

practical tool to deduct the optimal link between system cost and system

service, while fulfilling the system constraints. An optimal policy surface

can be generated for each system based on its specific characteristics. In

this dissertation we will also provide an overview of the relevant references

and investigate and refine the models and algorithms for the considered

policies. The usefulness in practice requires the possibility of handling large

data sets and easy implementation, e.g. closed-form expressions or the use

of familiar software packages. This is the field where we want to have a

significant contribution.

Zipkin (2000) gives a broad overview of multi-product inventory manage-

ment and its several aspects. An important observation is that multi-product

systems and multi-location systems are fundamentally identical. We observe

the following three categories of multi-product inventory problems:
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1. Independent items with aggregate constraints on average KPI values

2. Network of items

3. Shared supply chain processes (constraint on maximum KPI values)

We will focus in this dissertation on the first category. The first category

of independent items describes problems with distinct supply and demand

processes and no supply-demand links between the items. Of course when

there are no links at all between the items, each item can be treated individ-

ually. This is where we introduce one or multiple aggregate constraints on

the whole set of items. These constraints are not network or supply chain

process related but focus on average KPI values of available resources (aver-

age used space, average investment and average workforce needed over time)

or system result (service level and cost).

A second multi-product inventory category is a network of items with a

supply-demand relationship such as: a series system, an assembly system, a

distribution system, a tree system or a general system. Axsäter (2003) offers

a good overview of multi-echelon serial and distribution inventory systems in

supply chains. Song and Zipkin (2003) give a detailed review on assembly-

to-order systems, this is a system with last minute assembly. Desmet et al.

(2009) present an approximation model for the retailer replenishment lead-

times in a two-echelon distribution system, and discusses its implementation

for safety stock optimization in a one-warehouse and N-identical retailers

system. Desmet et al. (2010) tackle the problem of optimizing safety stocks

in a two-echelon assembly system and present several approximation models

for the assembly lead-time under the assumption of normality of the assembly

demand and normality of components nominal lead times.

Finally there is a multi-product problem category where the items share

the supply chain processes themselves. Two well known problems in this area

are the joint-replenishment problem and the economic lot scheduling problem

(ELSP). Axsäter (2006) discusses extensively both problems. In case of

joint replenishment, a group of items should be replenished jointly as much

as possible due to many reasons: joint setup costs, quantity discounts or

coordinated transports. The ELSP on the opposite tries to spread the cyclic

schedules for a number of items with constant demand and no backordering,

due to a finite production rate and a minimized holding and ordering cost.

We focus on the first category: independent items with one or multiple

aggregate constraints on the average KPI values. This is especially relevant

in the last tier of a supply chain where there is no longer any dependency on

later steps in the supply chain. Here we are also confronted with the uncer-

tainty of the customer demand. Within a retail and spare parts environment

this model has its direct benefits. In a pure end-consumer (retail) setting we

can assume there is no association among the items included in an order.
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1.2 Assumptions

We consider inventory problems under the following assumptions:

• Backorders (no lost sales): if a demand cannot be delivered directly

out of stock, we assume that the client is prepared to wait until re-

plenishment has occurred. The backorders will then be the first to be

delivered. So there is no lost sales.

• Constant replenishment leadtime: we assume a constant replenishment

leadtime throughout our models. So we do not consider a variation on

the lead time.

• Continuous review: we assume a continuous review of the inventory

position. So we do not consider a periodic review.

• Independent items with aggregate constraint(s). As explained in sec-

tion 1.1 we will only focus on multi-item models with independent

items with one or multiple aggregate constraints on average KPI val-

ues. This means we will not consider network of items or shared supply

chain processes.

1.3 How to read

We have written this dissertation to be a self-standing and self-sustaining

document. We used the necessary references, but in order to give the reader

the opportunity to fully understand the contributions of this work, we also

provided brief introductions on the basics of the considered statistical dis-

tributions (section 2.1) and the single item inventory model (sections 2.3.1

- 2.3.7). To highlight our own contributions we have created a specific indi-

cation: a frame with a light-gray background:

Contribution xx: Multi-item ...
We analyze some...

The list of these contributions can also be found in the beginning of this

dissertation, see page xv. So based on the reader’s background in inventory

management, he or she can decide to walk through the dissertation from

chapter to chapter, or from contribution to contribution, in case of a broad

inventory background.

Throughout this dissertation we have added ample examples. These are

here to support and further explain the equations and algorithms, but these

can be skipped when reading the text. They though can give the necessary

clarification when needed. An overview of all the examples is given in the
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beginning of this document, see page xviii. An example can be recognized

as it always indicated in bold as follows:

Example x.x Constant leadtime demand.

1.4 Contributions

Throughout the dissertation we create new contributions on the following

topics:

1. Comprehensive annotated literature review on multi-item inventory

models

• Contribution 1: Multi-item inventory models literature review.

We analyze and annotate some recent and relevant references

grouped into five categories: deterministic constant leadtime de-

mand, news vendor, base-stock, (r,Q) and (s, S) policy.

2. Order line service level

• Contribution 2: Order line service level for a base-stock policy:

We work out an explicit equation for an order line service level in

case of a base-stock compound Poisson demand.

• Contribution 3: Order line service level for an (r,Q) policy: We

work out an explicit equation for an order line service level in case

of an (r,Q) policy with compound Poisson demand.

• Contribution 4: Order line service level for an (s, S) policy: We

work out an explicit equation for an order line service level in case

of an (s, S) policy with compound Poisson demand.

3. Corrected and simplified (r,Q) KPI equations

• Contribution 5: Corrected (r,Q) normal demand KPI equations:

We work out a corrected set of normal demand (r,Q) policy KPI

equations

• Contribution 6: Conditions for simplified normal demand (r,Q)

KPI’s: We develop a set of conditions that allow simpler normal

demand (r,Q) KPI equations

4. (r,Q) and (s, S) KPI error analysis and error reduction functions

• Contribution 7: Normal demand (r,Q) & (s, S) KPI approxima-

tion error analysis: We provide an analysis of the approximation

errors while using a normal demand approximation for a (com-

pound) Poisson demand

• Contribution 8: KPI error reduction functions for (r,Q) and

(s, S): We create significantly improved approximation functions
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for the compound Poisson KPI’s based upon normal demand

equations

5. Closed form approximations for standard normal loss functions

• Contribution 9: SN1OLF algorithm: a closed-form double preci-

sion rational approximation for the standard normal first order

loss function.

• Contribution 10: SN2OLF algorithm: a closed-form double preci-

sion rational approximation for the standard normal second order

loss function.

• Contribution 11: ISN1OLF algorithm: a closed-form double pre-

cision rational approximation for the inverse standard normal first

order loss function.

• Contribution 12: ISN2OLF algorithm: a closed-form double pre-

cision rational approximation for the inverse standard normal sec-

ond order loss function.

6. Multi-item aggregate constrained inventory solution methods

• Contribution 13: MIIAC algorithm: We developed a general us-

able algorithm for multi-item inventory problem with aggregate

constraint(s) and optional also individual constraint(s) (MIIAC).

• Contribution 14: MIISSC: Multi-item heuristic: We developed

a heuristic for a specific multi-item inventory problem with one

aggregate constraint on a system service level (MIISSC).

• Contribution 15: MIINLP: non-linear programming: We show

that real life, large and complex multi-item inventory problems

can be solved in non-linear mathematical programming engines

(MIINLP).

1.5 Outline

The remainder of this dissertation is organized as follows. Chapter 2 gives

a literature review. First we give an overview of the statistical functions

used throughout this dissertation: Poisson, compound Poisson and normal

distribution. Then we provide an overview on the best approximation func-

tion techniques and the necessary links to the body of knowledge of nu-

merical methodologies with special attention for the Remez approximation

algorithm. Next we revisit the foundation of inventory for the single item

model. We consider five single item inventory models: constant demand,

base-stock, newsvendor, (r,Q) and (s, S) and define for each of these mod-

els the relevant KPI’s for Poisson, compound Poisson and normal demand.
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Finally we give an overview of the current scientific body of knowledge on

independent multi-item inventory models with aggregate constraints.

Chapter 3 analyzes and refines some single item inventory model errors.

The relevance of the replenishment rate is discussed and for the popular

order line service level we provide exact equations. We analyze the errors in

case a Poisson or compound Poisson demand is approximated with normal

demand, as is done very often in practice. We finalize this chapter with

error reduction functions that allow reducing the error significantly while

still making use of the easier normal distribution.

In Chapter 4 we work out the necessary closed-form statistical approx-

imations for the standard normal first and second order loss function and

their inverse functions. We want to have fast approximation functions so we

aim for a one pass calculation, allowing an evaluation in milliseconds. The

other two requirements we set for these functions is that they are valid in

the full range and in full accuracy of double precision numbers.

Chapter 5 builds the bridge from a single to a multi-item inventory

model with one or multiple constraints. We develop a general solution al-

gorithm MIIAC. Next we provide a heuristic MIISSC for a more specific

situation with one aggregate service constraint and individual service level

constraints. We conclude with a non-linear programming model (MIINLP)

for a real life complex multi-item situation.

As it is our clear intention to enable solutions for real life problems, we

also investigate a set of real life case studies in Chapter 6. We first deal

with a pharmaceutical wholesaler situation that needs to increase its fill

rate service level, but is confronted simultaneously with a warehouse storage

limitation. We also present a spare parts case with a high percentage of slow

movers, here we focus on cost reduction. In both we apply first a single item

approach followed by a multi-item approach.

Finally we give an overview in Chapter 7 of our contributions and give

some possible future research paths.





2
Literature review and discussion

In this chapter we discuss the literature review on:

1. Considered statistical distributions

2. Best approximation functions

3. Single-item inventory models

4. Multi-item inventory models

We analyze two discrete statistic distribution functions (Poisson and com-

pound Poisson), also the continuous normal distribution and we compare

them. Next we give an introduction to best approximation functions and

focus on the Remez algorithm. We revisit the foundation of inventory for

the single item model and consider five single item inventory models.

1. Deterministic constant demand model

2. Newsvendor model

3. Base-stock

4. (r,Q) model

5. (s, S) model

In the last part we give an overview of the current state and latest develop-

ments in the field of multi-item inventory models, see also De Schrijver et al.

(2011a).
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2.1 Independent demand and statistical dis-
tributions

The focus of this work is on independent demand, demand without relations

between the items. A network of items is an example of dependent demand.

In the final tier of the supply chain, we are directly confronted with the

customer’s unpredictable demand and most often also independent demand.

The demand process will be described by the use of a statistical distribu-

tion. We will focus on three distributions: Poisson, compound Poisson and

the normal distribution. The Poisson distribution represents an arrival pat-

tern of customers. In a compound Poisson process we have a Poisson arrival

pattern, but each customer also has an identical order quantity pattern. Al-

though both of these distributions can describe a whole set of situations and

real-time demand processes, they are not always easy to use or to calculate.

That is why we introduce a third statistical distribution, the normal dis-

tribution. This is an approximation distribution and we will approximate

the Poisson and the compound Poisson distribution. We will show that the

normal distribution can be a very good approximation.

2.1.1 Inventory demand models

The basic demand model is the Poisson process, the simplest model of

random events, demands occur one at a time. A Poisson process is widely

used for several reasons, see Zipkin (2000):

• It is easy and mathematically simple: only one parameter, demand

rate λ

• It is fairly accurate: demand really behaves like a Poisson process,

often demand comes from many, small, nearly independent sources

A Poisson process often closely approximates real demands, but it is not

perfect. Sometimes demand processes behave clearly non-Poisson due to

an external world factor that is not influenced by ourselves, these can be

represented by world demand models. Some influences are: the weather,

the economy, competition, customer status, ... Zipkin (2000) showed that

these world demand models, where demands also occur one at at a time,

still have the same performance formulas as for a Poisson process, only the

leadtime demand distribution needs to be changed. These world demand

models are not considered in this dissertation.

It is a common assumption in stochastic inventory models that the cu-

mulative demand can be modeled by a non-decreasing stochastic process

with stationary and mutually independent increments. Such a process can

always be represented as a limit of an appropriate sequence of compound
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Poisson processes, see Axsäter (2006). If we know the distribution of the

demand, but the parameters can change over time, we have a time-varying

demand. We might apply forecasting systems to estimate these parameters

for the future periods. Also here Zipkin (2000) showed that the qualitative

results remain valid.

If the variance-to-mean ratio is between 0.9 and 1.1 a Poisson process is

acceptable. If the ratio is larger, a compound Poisson process is to be used.

The demand size distribution histogram can then be adapted to align the

compound Poisson distribution variance-to-mean ratio with the real demand.

There also exist goodness-of-fit tests to test the hypothesis of the used model

making use of the χ2-test, see Sherbrooke (2004).

There are several reasons why the normal distribution is widely used,

see Hadley and Within (1963):

• The normal distribution is easy to work with

• Empirical studies have shown that quite often the normal distribution

approximates very well demand distributions encountered in practice

So we will use an inventory model based upon a Poisson or compound

Poisson process, this is a first approximation of the real world. Next we

make an approximation based upon the normal distribution, this is a second

approximation. The first approximation error can be reduced by choosing a

good inventory process definition: which distribution and which parameters,

based on goodness-of-fit tests. This topic is not handled in this dissertation.

The dissertation focuses on minimizing the second error, approximation of

the Poisson or compound Poisson inventory process KPI’s, into a normal

distribution model that can be globally optimized. We prefer an approxima-

tion of inventory KPI’s based on a normal distribution demand over a direct

Poisson distribution approximation for the following reasons:

• The normal distribution is versatile, it can easily handle different

variation-to-mean ratios and thus can approximate both the Poisson

and compound Poisson distribution

• The Poisson and compound Poisson distributions merge towards the

normal distribution (central limit theorem)

• The normal distribution is a continuous distribution, allowing neces-

sary and sufficient conditions for optimality with reasonable complexity

• The stable Remez algorithm can be used to develop highly accurate

Chebyshev approximations for continuous functions

• We can specifically focus directly on the inventory KPI’s in the regions

of importance in practice for each specific replenishment policy
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2.1.2 Poisson process and distribution

The Poisson process is one of the most important models as it describes the

arrival process of customers. The Poisson process is a viable model when the

customers originate from a large and independent population. Mathemat-

ical models always are simplifications of reality, one such simplification is

the assumption of an exponential distribution as an inter-arrival time. The

exponential distribution does not deteriorate with time and the exponential

distribution is the only distribution that has this property, this is also called

the memoryless property. The Poisson process is a counting process, repre-

senting the total number of events (e.g. customers arriving), that occur over

a period of time. The process increments are independent and the number

of events in a time period has a Poisson distribution. The Poisson distribu-

tion is a discrete probability distribution that expresses the probability of a

number of events occurring in a fixed period of time. We will use the abbre-

viation ’Pn’ to refer to the Poisson distribution. These events occur with a

known average rate and independently of the time since the last event, see

also Ross (1996) and Ross (2009). For the stochastic process description we

refer to a random variable X, most often this will represent the leadtime

demand, DL. The fixed period considered here is the leadtime L and the

known demand rate is λ, the average demand during leadtime is ν = λL. In

(2.1) we describe g(k) the mass function of the random variable DL. This

Poisson mass function gives the probability of a demand k, a non-negative

integer value, during leadtime L if average demand during leadtime is ν.

The mean, E[g(k)] (2.2), and variance, V [g(k)] (2.3), are both equal to ν.

g(k) = Pr(DL = k) =
νke−ν

k!
k ≥ 0, k ∈ Z (2.1)

E[DL] =
∑
k≥0

kg(k) = ν (2.2)

(2.3)

V [DL] = σ2

= E
[
g (k)

2
]
− (E [g (k)])

2

= E
[
(g (k)− E [g (k)])

2
]

= ν

Figure 2.1 shows three Poisson mass functions with ν equal to respectively

2, 5 and 8. The g(k) function only exists for integer k values, the lines are

added just to easily interpret this chart.

In (2.4) and (2.5) we give the discrete cumulative Poisson distribution and

its complementary cumulative. (2.7) and (2.8) represent the first order and
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Figure 2.1: Poisson mass function

the second order Poisson loss function, here we use the expression [DL−k]+,

this is explained in (2.6). These loss functions will be often used in the

following sections when we describe the inventory performance indicators.

In Figure 2.2 we plot the cumulative Poisson distribution for ν equal to

respectively 2, 5 and 8.

G(k) = Pr(DL ≤ k) =

k∑
y=0

g (y) (2.4)

G0(k) = Pr(DL > k) =
∑
y>k

g (y) = 1−G(k) (2.5)

(2.6)[DL − k]+ =

{
DL − k if DL − k ≥ 0

0 if DL − k < 0

(2.7)

G1(k) = E
[
[DL − k]+

]
=
∑
y≥k

(y − k)g(y)

=
∑
y≥k

G0 (y)

= −(k − ν)G0(k) + νg(k)
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Figure 2.2: Discrete cumulative Poisson distribution, various ν

(2.8)

G2(k) =
1

2
[[DL − k]+[DL − k − 1]+]

=
1

2

∑
y≥k

(y − k)(y − k − 1)g(y)

=
∑
y≥k

(y − k)G0(y)

=
∑
y>k

[
G1 (y)

]
=

1

2

{[
(k − ν)

2
+ k
]
G0(k)− ν (k − ν) g(k)

}
As we will also need the inverse of the diverse Poisson functions, we

will define them here: the inverse cumulative Poisson distribution (2.9), the

inverse complementary cumulative Poisson distribution (2.10), the inverse

Poisson first order loss function (2.11) and the inverse Poisson second order

loss function (2.12).

Ginv (p) = kp, where kp is smallest k where G (k) ≥ p (2.9)

G0inv (p0) = kp0, where kp0 is smallest k where G0 (k) < p0 (2.10)

G1inv (p1) = kp1, where kp1 is smallest k where G1 (k) < p1 (2.11)

G2inv (p2) = kp2, where kp2 is smallest k where G2 (k) < p2 (2.12)
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Example 2.1 Poisson demand ν = 2

In this Example 2.1, see Table 2.1 and Figure 2.3, we assume a client

demand rate of 20 pieces per year (λ = 20) and a leadtime of 0.1 years,

L = 0.1.
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Figure 2.3: Example 2.1: Poisson functions ν = 2

If the client only orders one piece on each visit, it is appropriate to

apply a Poisson distribution as demand process. The average demand during

leadtime is ν = 2, as is the demand during leadtime variance, σ2 = 2. Later

on we will use this example in an inventory context, so we provide here some

values of the different statistical distributions, see Table 2.1.

Input Value Poisson Value

λ 20 g(2) 0.270671
L 0.1 G(2) 0.676676
ν 2 G0(1) 0.593994
σ2 2 G1(2) 0.541341

G2(2) 0.323324

Table 2.1: Example 2.1: Poisson demand ν = 2
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Example 2.2 Poisson demand ν = 8

Example 2.2 in Table 2.2 gives a set of Poisson functions for a larger

demand during leadtime, ν = 8. This example has a leadtime demand of on

average 8 pieces. In table 2.2 we indicate the demand process parameters and

also the different Poisson function values for k = 9. The Poisson functions

for ν = 8 are also shown in Figure 2.4.

Input Value Poisson Value

λ 80 g(9) 0.124077
L 0.1 G(9) 0.716624
ν 8 G0(9) 0.283376
σ2 8 G1(9) 0.709240

G2(9) 0.920571

Table 2.2: Example 2.2: Poisson demand ν = 8

Comparing Figure 2.3 and 2.4 clearly reveals major differences. We also

see that Figure 2.4 already shows the same likeliness and appearance of the

normal distribution.
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Figure 2.4: Example 2.2: Poisson functions ν = 8
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2.1.3 Compound Poisson distribution

In a Poisson process each customer orders exactly one item, so the total de-

mand equals the total number of customers arrived. In a compound Poisson

(cP) process, see Ross (1996), a customer arrives according a Poisson pro-

cess with intensity τ , but he can demand a quantity larger than one. The

quantities ordered by the different customers are independent but they all

are identically distributed. Let’s consider two examples. If buses arrive at a

sport event according a Poisson process and the number of fans on each bus

are independent and identically distributed, then the number of fans arriv-

ing on a bus over a period of time is a compound Poisson process. Another

example: if the customers leaving a supermarket is assumed to be according

a Poisson process and the amount spent by each customer is supposed to

be independent and identically distributed, then the amount spent over a

period of time is also a compound Poisson process. So in a time interval t

the chance that k customers arrive is expressed by (2.13).

g(k) = Pr(D = k) =
(τt)ke−τt

k!
k ≥ 0, k ∈ Z (2.13)

The size of each customer demand is another stochastic variable fd,

(2.14), that expresses the probability of demand size = d in a compound

Poisson process, see Axsäter (2006). Each customer arriving has the same

stochastic distribution fd determining his quantity ordered, but the fd val-

ues of each customer are independent of each other. We do assume that not

all demand are multiples of some integer larger than one. As soon as f1 > 0

this condition is already met. If the demand sizes would be multiples of e.g.

5, we could then easily convert to a new unit size of 5, this would then satisfy

our condition.

fd = Pr(customer demand = d), j = 1, 2, ... (2.14)

Example 2.3 Compound Poisson demand pattern

Example 2.3 in Figure 2.5 shows fd where a customer orders 1, 2, 3 or 4

pieces when he places an order. Most likely a customer will order 1 piece in

40 % of the time.

The maximum quantity ordered by a client is η (2.15). Based upon the

format of the stochastic variable fd we can calculate the average quantity

ordered by a customer, χ, see (2.16).

η = max(d) where fd > 0 (2.15)

χ =

η∑
d=1

dfd (2.16)
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Figure 2.5: Example 2.3: compound Poisson customer demand size

fkd is the probability of total demand size = d by k customers in a com-

pound Poisson process, this is expressed recursively by (2.17).

fkd =

d−1∑
i=k−1

fk−1i fd−i , where f00 = 1, f1d = fd (2.17)

So the probability that the total quantity demanded over a period of time

t equals d is given by

Pr(D = d) =

∞∑
k=0

[
(τt)ke−τt

k!
fkd

]
(2.18)

The average demand per unit of time λ (2.19) and the variation of the

demand ψ2 (2.20) are for a compound Poisson demand:

λ = E[D] = τ

η∑
d=1

dfd = τχ (2.19)

ψ2 = V [D] = τ

η∑
d=1

d2fd (2.20)

The compound Poisson mass function gY (d) for demand during leadtime

becomes (2.21).

gY (d) = Pr(DL = d) =

∞∑
k=0

[
(τL)ke−τL

k!
fkd

]
(2.21)

The average demand during leadtime and the variation of demand lead-

time are simply:
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ν = E[DL] = λL = τχL (2.22)

σ2 = V [DL] = ψ2L (2.23)

Just like for the Poisson distribution we can now define for the compound

Poisson function the cumulative distribution (2.24), the complementary cu-

mulative distribution (2.25) and the first (2.26) and second order loss (2.27)

functions.

GY (k) = Pr(DL ≤ d) =

d∑
y=0

gY (y) (2.24)

G0
Y (k) = Pr(DL > d) =

∑
y>d

gY (y) = 1−GY (d) (2.25)

(2.26)

G1
Y (d) =

∑
y≥d

(y − d)gY (y)

=
∑
y≥d

G0
Y (y)

= ν −
∑

0≤y<d

G0
Y (y)

(2.27)

G2
Y (d) =

∑
y≥d

(y − d)G0
Y (y)

=
∑
y>d

G1
Y (y)

As we will also need the inverse of the diverse compound Poisson func-

tions, we will define them here.

GinvY (p) = dp, where dp is smallest d where GY (d) ≥ p (2.28)

G0inv
Y (p0) = dp0, where dp0 is smallest d where G0

Y (d) < p0 (2.29)

G1inv
Y (p1) = dp1, where dp1 is smallest d where G1

Y (d) < p1 (2.30)

G2inv
Y (p2) = dp2, where dp2 is smallest d where G2

Y (d) < p2 (2.31)
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Example 2.4 Compound Poisson demand ν = 2

Input Value Input Value Output Value

λ 20 χ 2.3 gY (2) 0.098247
L 0.1 f1 0.4 GY (2) 0.663166
ν 2 f2 0.2 G0

Y (2) 0.336834
σ2 6 f3 0.1 G1

Y (2) 0.984053
τ 8.695652 f4 0.3 G2

Y (2) 1.596813
η 4

Table 2.3: Example 2.4: Compound Poisson ν = 2

In Table 2.3 we present Example 2.4, this continues on Example 2.1

(Table 2.1). We still have λ = 20, L = 0.1 and ν = 2, but in the compound

Poisson case our customers order a quantity varying between 1 and 4. In

Figure 2.6 we show the compound Poisson mass function from Example

2.4. The quantity ordered by the customers, fd, is the same as previously

defined in Figure 2.5. The average ordered quantity per customer is χ = 2.3.

We have lowered the arrival pattern to rate τ = 8.7, in order to have the

same λ = 20 and ν = 2 as in Example 1. In Figure 2.6 we show the different

compound Poisson functions for Example 2.4. If we compare it with Example

2.1 in Figure 2.3, we can see some distinct differences. GY and G0
Y cross

earlier and also G1
Y and G2

Y relate differently close to k = 0.
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Figure 2.6: Example 2.4: Compound Poisson functions
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Example 2.5 Compound Poisson demand ν = 8

The compound Poisson Example 2.5 in Table 2.4 is built in line with the

Poisson Example 2.2 in Table 2.2, where we also had a large λ = 80 and

ν = 8. We keep the same fd customer demand distribution as in Example

2.4. This yields a τ = 34.8 for the customer arrival process. Just like in

Example 2.4 we can see the resemblance of the distribution function with a

normal distribution.

Input Value Input Value Compound Poisson Value

λ 80 χ 2.3 gY (9) 0.073121
L 0.1 f1 0.4 GY (9) 0.658679
ν 8 f2 0.2 G0

Y (9) 0.341321
σ2 24 f3 0.1 G1

Y (9) 1.530409
τ 34.78261 f4 0.3 G2

Y (9) 4.627767
ψ2 240 η 4

Table 2.4: Example 2.5: Compound Poisson ν = 8

Comparing the Example 2.5 (compound Poisson) distributions in Figure

2.7 with the Example 2.2 (Poisson distribution) in Figure 2.4 we also clearly

see the impact of the larger variation, σ2 = 24 in Example 2.5 (compound

Poisson) versus σ2 = 8 in Example 2.2 (Poisson). This is because the cus-

tomers in the compound Poisson example order a quantity between 1 and 4

, while in the Poisson example each customer orders exactly a quantity of

one.
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Figure 2.7: Example 2.5: Compound Poisson functions ν = 8
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2.1.4 Normal distribution

Instead of using exact performance measures based upon the Poisson de-

mand distribution or compound Poisson distribution we can also apply an

approximation distribution. This allows easier calculations. The normal

distribution is one of the most important approximation distributions that

works very well in a lot of situations, except for some cases with a stochastic

leadtime, see section 2.3.8. In probability theory the normal or Gaussian dis-

tribution is a continuous probability distribution that is often used as a first

approximation to describe real-valued random variables that tend to cluster

around a single mean value, see Ross (2009). The normal distribution has

an average E[DL] = ν and a variance V [DL] = σ2. The probability density

function for the normal distribution is (2.32).

f (x) =
1√

2πσ2
exp

(
− (x− ν)2

2σ2

)
(2.32)

The special case where ν = 0 and σ = 1 is called the standard normal

distribution. Each normal distribution can be translated via a simple trans-

formation to a standard normal distribution. If DL, the random variable

leadtime demand, has a normal distribution with average ν and variance σ2,

then Z, (2.33), has a standard normal distribution.

Z =
DL − ν
σ

(2.33)

Later we will use the following notations (2.34) and (2.35) to express the

standardized values of respectively r and r +Q.

z(r) =
(r − ν)

σ
(2.34)

z(r+Q) =
(r +Q− ν)

σ
(2.35)

The standard normal probability density function ϕ is given by (2.36)

and visualized in Figure 2.8.

ϕ (z) =
exp

(
−z2/2

)
√

2π
(2.36)

Φ (z) =

∫ z

−∞
ϕ (x) dx (2.37)

There is no closed-form expression for the normal cumulative distribution

function (2.37). It can be expressed in terms of the special error function,

erf, see (2.38) and (2.39).
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Figure 2.8: Standard normal probability density function

erf (x) =
2√
π

∫ x

0

e−t
2

dt (2.38)

Φ

(
x− ν
σ

)
=

1

2

[
1 + erf

(
x− ν
σ
√

2

)]
(2.39)
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Figure 2.9: Standard normal statistical functions

Within the formulations used later, it is often useful to directly use the

standard normal complementary distribution function Φ0(z) (2.40). Both

Φ(z) and Φ0(z) are visualized in Figure 2.9.

Φ0 (z) =

∫ ∞
z

ϕ (x) dx (2.40)
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Figure 2.10: Standard normal first and second order loss functions

While optimizing some of the performance indicators included in inven-

tory cost functions we will make ample use of the standard normal first

order loss function (2.41) and the standard normal second order loss func-

tion (2.42), see Figure 2.9 and 2.10.

(2.41a)Φ1 (z) =

∫ ∞
z

(x− z)ϕ (x) dx

(2.41b)=

∫ ∞
z

Φ0 (x) dx

(2.41c)= ϕ(z)− zΦ0(z)

(2.42a)Φ2 (z) =

∫ ∞
z

(x− z)Φ0 (x) dx

(2.42b)=

∫ ∞
z

Φ1 (x) dx

(2.42c)=
1

2

[
(z2 + 1)Φ0(z)− zϕ(z)

]
Within optimizations we will also need the inverse of these normal distri-

bution functions: the inverse standard complementary cumulative distribu-

tion Φ0inv (2.43), the inverse standard normal first order loss function Φ1inv

(2.44) and the inverse standard normal second order loss function Φ2inv

(2.45).

Φ0inv (p0) = zp0, where p0 = Φ0 (zp0) (2.43)

Φ1inv (p1) = zp1, where p1 = Φ1 (zp1) (2.44)

Φ2inv (p2) = zp2, where p2 = Φ2 (zp2) (2.45)
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2.1.4.1 Comparison Poisson and normal distribution

As it is our goal to work out easy to use inventory functions, we want to know

where we can use the normal distribution as approximation. We can make

use of the central limit theorem to prove that Poisson converges towards

a normal distribution: the distribution of the sum of a large number of

independent, identically distributed variables has an approximately normal

distribution, whatever the underlying distribution we are looking at, so also

for the Poisson distribution. Let’s assume we have a Poisson distribution Y

with mean ν, then Y can also be expressed by (2.46), where Xi are Poisson

distributions with mean = 1. So the central limit theorem holds for a Poisson

distribution.

Y =

ν∑
i=1

Xi (2.46)

We will discuss three Poisson approximations based on the normal dis-

tribution: the direct normal distribution φ(z(k)), a corrected normal distri-

bution φ(z(k+0.5)) and finally the Wilson-Hilferty approximation. In Figure

2.11 we give 4 comparisons between the cumulative distribution functions

for Poisson G(k) and the normal Φ(z(k)). We compare 4 situations: ν = 2,

ν = 8, ν = 20 and ν = 40. We clearly see the increase in resemblance between

both curves as ν increases. The Poisson distribution is a discrete distribution

and only exists at the discrete values. The normal distribution is a continu-

ous distribution and also exists for negative values, while G(k) only exists for

k ≥ 0, k ∈ Z. In figure 2.11A and 2.11B we also plot Φ(z(k+0.5)), that holds

a ’continuity correction’ to improve the approximation. In figure 2.11C and

2.11D we did not plot the Φ(z(k+0.5)) correction as Φ(z(k)) is already a good

approximation, due to the larger ν and the central limit theorem. Peizer

and Pratt (1968) discuss various types of normal-based approximations to

the Poisson distribution in more detail. Lesch and Jeske (2009) analyze the

Wilson-Hilferty normal based Poisson approximation, which is easy to cal-

culate and also accurate, it is based on the χ2-approximation from Wilson

and Hilferty (1931), see (2.47). (2.47), (2.7) and (2.8) enables us to calculate

the Poisson distribution and its loss functions. Unfortunately the Wilson-

Hilferty approximation would lead to optimization models that have a very

complex formulation and that are not tractable.

(2.47a)G(k) ≈ 1− Φ((c− ν)/σ)

(2.47b)c=(ν/(1 + k))1/3), ν=1− 1/(9(1 + k)) and σ=1/(3
√

(1 + k)

When approximating G1(k) with σΦ1(z(k)) there is no need for a +0.5

correction, see Figure 2.12.
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Figure 2.11: Comparison Poisson and Normal, varying ν and σ2
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2.1.4.2 Comparison compound Poisson and normal distribution

We also make a normal approximation for the compound Poisson distribu-

tion. Using a customer demand pattern fd as defined in Figure 2.5, σ2/ν = 3.

We now compare 4 different situations ν = 2, ν = 8, ν = 20 and ν = 40

with customer demand pattern fd. As with the Poisson case we see an in-

creasing resemblance between GY and Φ as ν increases due to the central

limit theorem. When σ/ν increases, Φ(x = 0) also increases, which means

that Φ for negative values becomes more significant. This is clearly visible

if we compare the first two charts of Figure 2.11 with the first two charts

of Figure 2.13. So larger σ/ν leads to larger deviation between the com-

pound Poisson and its normal approximation. When approximating GY (k)

with Φ(z(k+0.5)), applying a continuity correction, see Figure 2.5A and 2.5B,

approves the approximation, but less than with the Poisson case.
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2.2 Best approximation functions

To solve inventory optimization questions we will be required to have ap-

proximations of several statistical distribution functions. As no closed-form

expressions exist for these statistical functions we will create a set of highly

accurate approximations of normal statistical loss functions and their inverse

functions. So we will create a simpler function for the standard normal first

and second order loss function. As we want to evaluate these loss func-

tions very often at several points, there is a direct gain in performance if

this evaluation can be performed on the simpler and faster approximation

functions. Polynomial expansions such as Taylor and Maclaurin series rep-

resent a function as an infinite sum of terms based upon the derivatives of

the specific function we want to approximate. While they are often used in

theory, for practical work they can be less useful. In practice an algorithm

is required that is fast and accurate, as it may be required several thousands

of times to solve a single specific question. We will use a minimax approxi-

mation, it minimizes the maximum error (absolute or relative) between the

approximation and the considered function.

Burden and Faires (2005) give a survey on approximation theory. Two

types of approximations are considered: discrete and continuous. Discrete

approximations are applied when there is only a limited set of data points

for the function we want to approximate. A least squares technique can

be applied here to form a linear, polynomial or trigonometric polynomial

function. For the latter an efficient method is the Fourier transform.

Continuous approximations can be used if the approximated function is

fully known. Then we can minimize the integral of the errors instead of the

sum. An efficient continuous least squares polynomial approximation leads

to orthonormal sets of polynomials, such as Legendre and Chebyshev poly-

nomials. Chebyshev polynomials are a sequence of orthogonal polynomials

which can be defined recursively. Chebyshev polynomials are important in

approximation theory because the roots of the Chebyshev polynomials of the

first kind, which are also called Chebyshev nodes, are used as nodes in poly-

nomial interpolation. Rational approximations, a ratio of two polynomials,

allow a more uniform method of approximation than polynomials. An ex-

ample is the Padé approximation and a further extension is the Chebyshev

rational approximation. Evgeny Remez developed general computational

methods of Chebyshev approximation for polynomials. Later he developed

a similar algorithm that allowed rational approximations of continuous func-

tions defined on an interval with a prescribed degree of accuracy, see Remez

(1934a), Remez (1934b) and Remez (1934c).

Fraser and Hart (1962) already indicated that for computer programs

that require as nearly as possible approximations the Chebyshev approxi-
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mations are better than others. The Remez algorithm has been developed

into a stable method for finding the best polynomial approximations. Bar-

rar and Loeb (1970) gave proof of the convergence for the classic Remez

algorithm when applied in certain non-linear approximating families. Cody

(1970) provided a survey with methods for generating rational or polyno-

mial approximations to continuous functions. Dunham (1975) investigated

the convergence of the Fraser-Hart variant of the Remez algorithm, which

is used to determine the best rational Chebyshev approximation to a con-

tinuous function. Litinov (1993) describes several construction methods for

rational approximations to functions of one real variable and he focuses on

error auto correction, so that significant errors in the coefficients do not af-

fect the accuracy of the approximation. Elbarbary et al. (2003) construct

a restrictive type of Chebyshev rational approximation to approximate the

exponential function, this approximation yields more accurate results and

exact values at selected points.

2.2.1 Remez method

We use the Boost (2011) C++ algorithm to develop approximations. This

C++ code is based upon the Remez algorithm. We approximate a function

f(x) by way of a function R(x), where R(x) may be either a polynomial P (x)

or a ratio of two polynomials P (x)/Q(x) (a rational function). We want to

find the ”best” rational approximation, where ”best” is defined to be the

approximation that has the least deviation from f(x). We can measure the

deviation by way of an error function which is expressed in terms of absolute

error εabs (2.48), but we can equally use relative error εrel (2.49).

εabs(x) = f(x)−R(x) (2.48)

εrel =
f(x)−R(x)

|f(x)|
(2.49)

The Remez algorithm is briefly explained in more detail in Appendix

A.1.

Example 2.6 Rational minimax Remez approximation

We give a small example to show the benefits of a rational minimax

Remez approximation compared with a more classic equidistant polynomial

approximation. We consider the complementary normal cumulative distri-

bution Φ0 in the range z ∈ [0, 3] and we will make four approximations:

1. Pequidist: an equidistant polynomial approximation of order 4

2. Premez: a minimax polynomial Remez approximation of order = 4
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3. Rremez: a minimax rational Remez approximation of order = 2/2

4. Rremez: a minimax rational Remez approximation of order = 2/2 based

upon a dominant function

For each of these three functions we have five parameters, see (2.50),

(2.51) and (2.52).

Pequidist = −0.0071z4 + 0.028z3 + 0.0672z2 − 0.4305z + 0.5026 (2.50)

Premez = −0.0071z4 + 0.028z3 + 0.0641z2 − 0.4272z + 0.5018 (2.51)

Rremez =
0.0594z2 − 0.3417z + 0.4991

0.2931z2 + 0.0781z + 1
(2.52)

In Figure 2.14 we can see the absolute error εabs for each of the three

approximation functions. For Pequidist we can see a limited Runge effect

near the borders of the considered range, especially near z = 2 we see a steep

increase of the absolute error to a value > 4e− 3. This Runge phenomenon

is an oscillation at the interval borders in case of high degree polynomial

interpolation, see Ralston and Rabinowitz (2001). The Remez polynomial

approximation does not use equidistant nodes and here we can establish an

absolute error εabs < 2e − 3. The third approximation is a Remez rational

function with εabs < 8e− 4.

To explain the strength of dominant functions in the process to find

the best Remez approximation, we will make use of the dominant function

exp(−0.5z2), see (2.53).

Rremez2 = exp(−0.5z2)
0.00209z2 − 0.09749z + 0.49999

0.29995z2 + 0.99215z + 1
(2.53)

Using this dominant function, which we can calculate exact, will yield

far better results. Although we are still using five parameters, as with the

previous approximations, the error has further decreased: εabs < 9.6e − 6

and as such is nearly 100 times smaller than Rremez and 500 times smaller

than Pequidist. Making use of these aspects in a creative way we will be

able to develop novel and highly accurate approximations for the standard

normal first and second order loss function and their inverse in the full range

of double precision values.
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2.3 Single-item inventory models literature re-
view

We review the inventory foundations for single item inventory models. We

use the constant demand model for making the elementary definitions. The

base-stock model is dealt with in great details as it is the foundation of two

other stochastic inventory models we will consider. (r,Q) and (s, S) can be

seen as an average and weighted average of the base-stock model. Illustrative

examples and enlightening figures are used throughout the chapter. We

consider several instances of this single-item inventory problem:

• Constant leadtime demand

• Base-stock: an (r,Q) policy with Q = 1, this is relevant when ordering

costs are negligible compared with other costs

• Newsvendor: a single period model with a stochastic demand and

penalty costs for ordering too much or too little

• (r,Q) policy: an order of size Q is placed as soon as the inventory

position falls to or below the reorder point r

• (s,S) policy: an order is placed to reach the stock maximum level S

as soon as stock falls to or below reorder point s

Each of these models and much more are extensively described in Hadley

and Within (1963), Silver et al. (1998), Zipkin (2000) and Axsäter (2006).

Here we will summarize the relevant and essential elements. This single-item

analysis enables us to make the step towards the multi-item models.

2.3.1 Constant leadtime demand

In the case with constant demand during leadtime the following assumptions

are made: a constant demand rate λ (quantity-units / time-units) and a

constant demand leadtime L (time-units). Under these conditions there are

two questions that need to be answered: When to order? How much to

order? In Figure 2.16 we visualize this perfect world inventory example. We

visualize two lines, I(t) the inventory at time t and also IP (t), the inventory

position at time t. IO(t) is the inventory on order, which is the amount

ordered but not yet arrived at time t. The relation between IP (t), I(t) and

IO(t) is given by (2.54) if there are no backorders or lost sales. As we have

a constant demand leadtime L and a constant client demand rate λ, we can

calculate the demand during leadtime ν and place an order as soon as the

inventory I(t) reaches the reorder point r. In this simple case r = ν, see

(2.55). As such the order will arrive at the moment when the inventory I(t)

would become zero. Using this relation we can express the inventory at time
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t+L based upon the current inventory position IP (t) and the reorder point

r, see (2.56). Setting the reorder point like this will prevent backorders or

lost sales.
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Figure 2.16: Inventory functions: I and IP

IP (t) = I(t) + IO(t) (2.54)

r = ν = λL (2.55)

I(t+ L) = I(t) + IO(t)− ν = IP (t)− ν (2.56)

So an order needs to be placed as soon as the inventory position function

IP (t) reaches the reorder point r = ν. In order to determine the optimal

order quantity, Q∗, we have to know the related costs. For this model we

have three relevant cost components: reorder cost, unit cost and holding

cost, each having its own parameter:

• k = fixed cost to place an order (moneys)

• c = the purchase cost (moneys/quantity − unit)
• h = holding cost, cost to hold one unit in inventory for one unit of

time (moneys/[quantity − unit ∗ time− unit])
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In order to easily express the cost we first define two performance indica-

tors: the average inventory (I), see (2.57), and the average order frequency

(OF ), see (2.58). Both of these performance criteria will depend on the or-

der quantity Q we will choose. The time between two orders, the cycle time

u, is also directly related to the order quantity Q (2.59).

I = Q/2 (2.57)

OF = λ/Q (2.58)

u =
Q

λ
(2.59)

The total average cost of this system, C, depends on Q and can be

expressed by (2.60). Very often we are only interested in the total variable

cost Cv, see (2.61), this part of the cost we can influence.

The optimization of this cost function was firstly discovered and pub-

lished by Harris (1913), later reprinted as Harris (1990), but most commonly

known as the Wilson formula, see Wilson (1934). This total average cost can

be minimized by the EOQ (economic order quantity) Q∗, see (2.62). This

yields the optimal average total cost C∗, see (2.63).

C(Q) = kOF + cλ+ hI (2.60)

Cv(Q) = kOF + hI (2.61)

EOQ = Q∗ =

√
2kλ

h
(2.62)

C∗ = cλ+
√

2kλh (2.63)
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Example 2.7 Constant leadtime demand

Example 2.7 in Table 2.5 describes a model with a demand rate λ = 20,

a holding cost h = 32 and an ordering cost k = 80. To be complete we also

add the leadtime L = 0.1 and the demand during leadtime ν = 2, but these

do not impact the optimal order quantity.

Input Value KPI Value

λ 20 Q∗ 10
h 32 C∗v 320
k 80 I 5
L 0.1 OF 0.5
ν 2

Table 2.5: Example 2.7: Constant leadtime demand

In Figure 2.17 we give a visual overview of the two variable cost com-

ponents hI and kOF and also of the total variable cost Cv. The minimum

value of the variable cost indicates the economic order quantity Q∗ = 10.
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Figure 2.17: Example 2.7: Economic order quantity (EOQ)
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2.3.2 Service levels and backorders

In the previous policy we prevented backorders by ordering as soon as I(t)

reached the reorder level r = ν, to prevent stock breaks. In certain occasions

it can be interesting to allow backorders, so sometimes the orders are not

delivered out of stock immediately. We assume here that clients are prepared

to wait for a certain time and that the orders will be delivered, but later than

the moment of ordering. In other circumstances we might have stock breaks

due to stochastic effects in leadtime demand. This has some implications

on the previously defined inventory functions. There will be moments in

time when the actual inventory I(t) is zero, but there are some outstanding

orders, these are indicated by B(t), the amount of backorders at time t.

A new function, the net inventory at time t, IN(t), is defined. In some

text books IN(t) is named ’inventory level’ instead of ’net inventory’. This

function IN(t) is equal to I(t), when the inventory is positive, and equal to

−B(t), when there are backorders. These new functions will require us to

redefine the inventory position IP (t) as (2.64). These relations are visualized

in Figure 2.18.
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This system has two decision variables: the order quantity Q and the

reorder point r. The reorder point r equals the sum of the safety stock SS

and the demand during leadtime ν, see (2.66). In Figure 2.18 we have a

negative safety stock SS, as it is beneficial to make some customers wait,

under the assumption they are prepared to wait.

IP (t) = IN(t) + IO(t) (2.64)

IN(t+ L) = IN(t) + IO(t)− ν = IP (t)− ν (2.65)

r = SS + ν (2.66)

Throughout this dissertation we will make use of the following indicators to

express the service level, backorders or stockout indicators:

• S1: Replenishment rate: probability of no stockout per replenishment

cycle

• S2: Fill rate service level: fraction of demand that can be satisfied

immediately from stock on hand

• S3: Ready rate service level: fraction of time with positive net inven-

tory IN(t)

• SOL: Percentage of order lines delivered out of stock

• A: Stockout frequency, A = 1− S3

• B: Average backorders

• P : Average amount new backlogs incurred, P = λ(1− S2)

S1 is the specified probability of no stockout per replenishment cycle, see

Silver et al. (1998) and Waters (2003). We will see later that this service

level definition has no real value in practice, see section 3.1.

S1 =
Number of replenishments where IN(t) > 0 at replenishment arrival

Total number of replenishment cycles
(2.67)

S2 is the fill rate service level that equals the fraction of demand that

can be satisfied immediately from stock on hand.

S2 =
Units of demand delivered directly out of stock

Total units demanded
(2.68)

S3 is the ready rate service level which is the fraction of time with positive

net inventory IN(t). Due to the linearity between time and quantities of

the simple model considered here, the fill rate S2 and the ready rate S3 are
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equal to each other. So if IN(t) > 0 in 90 % of the time, the fill rate and

the ready rate are both 90%.

S3 =
Time when IN(t) > 0

Total time
(2.69)

SOL is seen very often in practice, it is the % of order lines that can be

delivered out of stock. An order line refers to one SKU (stock keeping unit)

of which one or multiple items can be ordered. If 5 units are demanded and

only 4 can be delivered out of stock, this leads to SOL = 0% for this order

line. So this service level definition is definitely more severe than the fill rate

S2 definition. In case of a Poisson demand SOL and S2 are equal. Within

this dissertation we will develop order line service level equations in case

of compound Poisson demand for several replenishment policies, see section

3.2.

SOL =
Number of order lines delivered out of stock in full

Total number of order lines
(2.70)

P is the average new backlog, this is related to the fill rate, see (2.71).

P = λ(1− S2) (2.71)

To clarify visually the different performance indicators we define four

intermediate variables in Figure 2.19: S2i, S3i, I
i and Bi. The formulations

for these new performance indicators are given by respectively (2.72), (2.73),

(2.74) and (2.75). Later we will refine (2.72) for the cases where we do not

have a constant leadtime demand.

(2.72a)S2i =

{
Q− ν + r if r < ν

Q if r ≥ ν

(2.72b)S2 =
S2i

Q

(2.73a)A(t) =

{
1 if IN (t) ≤ 0
0 if IN (t) > 0

(2.73b)S3 = limT→∞

[∫ T
0

(1−A(t)) dt

T

]
=
S3i

u
= 1−A
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Figure 2.19: Inventory performance indicators

I = limT→∞

[∫ T
0
I(t)dt

T

]
=
Ii

u
(2.74)

B = limT→∞

[∫ T
0
B(t)dt

T

]
=
Bi

u
(2.75)
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2.3.3 Constant leadtime demand & backorders

When ν ≥ r, thus having a backlog, results in the simplified KPI’s (2.76)-

(2.80):

S2 = S3 = 1− ν − r
Q

(2.76)

I =
(Q+ SS)

2

2Q
(2.77)

B =
(SS)

2

2Q
(2.78)

A =
ν − r
Q

(2.79)

P = λA (2.80)

To express the cost we use a set of additional marginal cost parameters b,

a and p. b is the shortage cost per unit and per time unit (moneys/[quantity-

unit*time-unit]). a is the shortage cost per time unit (moneys/time-unit)

and p is the shortage cost per unit (moneys/quantity-unit). So for each unit

not delivered on time, there is a cost b for each day it is in backlog, a cost

a per time unit there is a stockout and a cost p for each unit not delivered

directly out of stock. The total average cost is (2.81), in practice only one,

or sometimes none, of the three shortage costs is applied: b, a or p.

C(r,Q) = kOF + cλ+ hI + bB + aA+ pP (2.81)

For the time being we will consider the case where a = p = 0. We define

a cost ratio ω (2.82) so we can immediately see the resemblance with the

optimal order quantity in case there is no backlog. By equalizing the partial

derivatives equal to zero we become the conditions for Q∗ (2.83) and r∗

(2.84) in order to minimize the cost.

ω =
b

b+ h
(2.82)

Q∗ =

√
2kλ

hω
(2.83)

r∗ = ν − (1− ω)Q∗ (2.84)

This yields the optimal cost (2.85) for an inventory system with a con-

stant leadtime demand and backorders. The optimal variable cost is (2.86).

C∗ = cλ+
√

2kλhω (2.85)
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C∗v =
√

2kλhω (2.86)

Example 2.8 Constant leadtime demand with backorders

In Example 2.8, Table 2.6, we retake Example 2.7 (Table 2.5). We now

allow backorders with b = 50 and have a leadtime L = 0.1.

Input Value KPI Value

λ 20 Q∗ 12.81
b 50 r∗ -3.00
h 32 C∗v 249.88
k 80 I 2.38
L 0.1 B 0.98
ν 2 OF 1.56
ω 0.61 A 0.39
a 0 P 7.8
p 0 S2 = S3 61%

Table 2.6: Example 2.8: Constant leadtime demand with backorders

This results in r∗ = −3 and Q∗ = 12.80, so we have an increase of the

order quantity compared to Example 2.7 due to the allowed backorders, see

Figure 2.20.
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Figure 2.20: Example 2.8: Constant demand with backorders costs



2-34 Literature review and discussion

In Figure 2.21 we plot three cost curves where we have set the reorder

point to three different values: r = 2, r = −3 and r = −8. Here we see

clearly that the curve with r = −3 has the lowest minimum.
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Figure 2.21: Example 2.8: Constant demand with backorders costs

In Figure 2.22 a three dimensional representation is given of the variable

cost function Cv, depending on the order quantity Q and the reorder point

r.
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Figure 2.22: Example 2.8: Constant demand with backorders costs (3D)
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2.3.4 Base-stock

Within a spare parts environment it is assumed to have small demand rates

and a high unit purchase costs c, inducing a base-stock policy (bS). An (r,Q)

model is an inventory model where an order of size Q is placed as soon as

the net inventory IN(t) reaches the reorder point r. A base-stock model is

an (r,Q) model where Q = 1. As the unit purchase cost (c) is much larger

than the ordering cost (k), the ordering cost is considered negligible and not

withheld in the formulation. The target stock level of a base-stock model is

s, this is linked to the (r,Q) model through (2.87).

s = r + 1 = base-stock target level (2.87)

Within a base-stock level the inventory position IP(t) will always be kept

at the target stock level s. So each customer order will trigger an order for

the supplier. We now no longer consider a constant demand, but a stochastic

demand.

Example 2.9 Base-stock policy
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0
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Time t

IP (t)

IN(t)

D(t)

Figure 2.23: Example 2.9: base-stock policy

In Figure 2.23 we give an evolution of IP (t), IN(t) and D(t). We oversee

a period of 240 working days, the year demand is λ = 25, leadtime L = 5

days and the target stock level is s = 3. Each time when a customer arrives,

we notice that IN(t) decreases with one. The inventory position is constant

at value 3, the target stock level s in this example.
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The previously defined inventory functions I(t), B(t), IP (t), IO(t) and

IN(t) also exist. For each of these functions we can define an equilibrium

function, which is a random variable having the limiting distribution of the

inventory process. So there exists an equilibrium for each of the previously

defined inventory processes.

• I= equilibrium inventory, a random variable having the limiting dis-

tribution of the stochastic process I= {I(t) : t ≥ 0}
• IN = equilibrium net inventory, a random variable having the limiting

distribution of the stochastic process IN= {IN (t) : t ≥ 0}
• IP= equilibrium inventory position, a random variable having the lim-

iting distribution of the stochastic process IP= {IP(t) : t ≥ 0}
• IO= equilibrium inventory on order, a random variable having the

limiting distribution of the stochastic process IO= {IO(t) : t ≥ 0}
• B= equilibrium backorders, a random variable having the limiting dis-

tribution of the stochastic process B= {B(t) : t ≥ 0}
• A= equilibrium stockout indicator, a random variable having the lim-

iting distribution of the stochastic process A= {A(t) : t ≥ 0}
• DL= equilibrium leadtime demand, a random variable having the lim-

iting distribution of the stochastic demand process during leadtime

D= {D(t, t+ L) : t ≥ 0}

With these new definitions we can rephrase the relations between the

net inventory equilibrium IN and the inventory on order equilibrium IO as

follows for a stochastic demand base-stock policy (2.88):

IN = s− IO (2.88)

As the inventory on order IO equals the demand during leadtime in case

of a base-stock policy, (2.88) can be reformulated as (2.89) and (2.90):

IN = s−DL (2.89)

Pr(IN = k) = Pr(DL = s− k) (2.90)

We use (2.90) to formulate the performance indicators. A (2.91) is the stock-

out frequency, being the probability that the net inventory is non-positive.

B (2.93) is the average number of backorders or −IN−, where IN− is given

by 2.92. For calculating the average inventory (2.95) we make use of the

average number of backorders and state that the average inventory equals

the target stock level minus the average demand during leadtime, but we

need to increase this with the average number of backorders. The rate at

which new shortages are incurred is the derivative of B with respect to time,
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see (2.94). As long as there is a continuous demand or a unit demand (Pois-

son), there is a direct link between A and P , namely P = λA. If there is a

bulky demand, like compound Poisson, this relationship between A and P

no longer holds. The order frequency (2.96) remains the same as previously

defined.

A = Pr(IN ≤ 0) = Pr(DL ≥ s) (2.91)

(2.92)IN− =

{
0 if IN > 0

IN if IN (t) ≤ 0

(2.93)B = E
[
IN−

]
= E

[
[DL − s]+

]

(2.94)P =
d(B)

dL

(2.95)I = E
[
IN + [IN ]−

]
= s− ν +B

OF = λ/Q = λ (2.96)

For the base-stock model we will assume that k = 0 and as such the

average total cost (2.81) can be reduced to (2.97) and the average variable

cost becomes (2.98):

C(s) = cλ+ hI + bB + aA+ pP (2.97)

Cv(s) = hI + bB + aA+ pP (2.98)
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2.3.4.1 Base-stock Poisson demand

In case of a demand process with a Poisson distribution we can use the per-

formance indicators formulations (2.91), (2.93) and (2.95) together with the

Poisson formulations (2.1) - (2.97) to reformulate them. We start by defining

the demand during leadtime distribution DL (2.99) and net inventory IN

probability (2.100).

Pr(DL = k) = g(k) =
νke−ν

k!
k ≥ 0, k ∈ Z (2.99)

Pr(IN = k) = Pr(DL = s− k) = g(s− k) (2.100)

A = 1−G(s− 1) = G0(s− 1) (2.101)

B = G1(s) (2.102)

P = λA (2.103)

I = s− ν +B (2.104)

In case of Poisson demand A can be used to express the fill rate S2. This fact

reflects a fundamental property of Poisson processes, know by the PASTA

acronym (Poisson Arrivals See Time Averages), see Zipkin (2000). The time

average in question here is A, and PASTA asserts that a typical arriving

customer finds no inventory with frequency A. Also in the next sections we

will use PASTA to move from S3 = 1 − A to fill rate or order line in case

of Poisson or compound Poisson. As the PASTA property does not hold for

non-Poisson demands, we cannot always state that S2 = 1−A.

S1 = S3 = SOL = S2 = 1−A = G(s− 1) (2.105)

OF = λ (2.106)

To find the optimal target stock level s∗, when a = 0 and p = 0, we also

can ignore the purchasing cost cλ as this is a fixed cost. Setting the first

derivative of the cost equal to zero and making use of the cost ratio ω (2.82)

we find the following condition for the optimal base-stock target level s∗,

(2.107) and (2.108):

∂Cv(s)

∂s
= h+ (h+ b)

∂G1(s)

∂s
= h− (h+ b)G0(s) = 0 (2.107)

G0(s∗ − 1) >
h

b+ h
= 1− ω ≥ G0(s∗) (2.108)



Chapter 2 2-39

Example 2.10 Base-stock Poisson demand

Input Value KPI Value

λ 20 s∗ 2
h 32 C∗v 44.39
k 0 I 0.54
b 50 B 0.54
L 0.1 A 0.59
ν 2 OF 20
σ2 2 S1 = S2 = S3 41%
ω 0.61 P 11.88

a = p 0

Table 2.7: Example 2.10: Base-stock Poisson demand

In Example 2.10, see Table 2.7 we continue on Example 2.8, Table 2.6.

We now have a stochastic demand with a Poisson distribution, so ν = σ2 = 2.

We set k = 0, as we are in a base-stock policy.

We can use Figure 2.3 and Table 2.1 from Example 2.1 on the Poisson

distribution to calculate the base-stock Poisson demand KPI’s. As the short-

age cost, b = 50, is not set very high in comparison with the holding cost,

h = 32, we see that only a low service level S2 and S3 of 41 % is reached.

This is because it is cheaper to have backlogs than to hold extra stock. This

can be understood visually by looking at Figure 2.19, the Ii surface would

increase much more than would decrease the surface Bi by increasing the

reorder point r.

In Figure 2.24 we visualize the cost curves of Example 2.10. The mini-

mum cost is realized when s∗ = 2 and the minimum variable cost Cv = 44.39.
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Figure 2.24: Example 2.10: Base-stock cost, Poisson demand
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2.3.4.2 Base-stock compound Poisson demand

The performance indicators in case of a base-stock policy, see (2.91)-(2.97),

can be transformed to the equations (2.109)-(2.118). Here we have used the

compound Poisson distribution functions: (2.21)-(2.27).

Pr(DL = d) = gY (d) =

∞∑
k=0

[
(τL)ke−τL

k!
fkd

]
(2.109)

Pr(IN = k) = Pr(DL = s− k) = gY (s− k) (2.110)

A = 1−GY (s− 1) = G0
Y (s− 1) (2.111)

B = G1
Y (s) (2.112)

I = s− ν +B (2.113)

S3 = 1−A = 1−G0
Y (s− 1) = GY (s− 1) (2.114)

OF = λ (2.115)

Axsäter (2006) discussed the fill rate service level S2 for an (r,Q) policy

and a compound Poisson demand. We have reformed and simplified it to

an explicit base-stock policy, (2.116). S2 is the ratio between the expected

quantity delivered to the customer and the total quantity demanded. The

delivered quantity is the minimum between the quantity demanded d and

the net inventory level (IN = k), see (2.116). We express the expected new

shortages P using the fill rate S2, see (2.117).

(2.116)
S2 =

∑η
d=1

∑s
k=1min(d, k)fd Pr(IN = k)

χ

=

∑η
d=1

∑s
k=1min(d, k)fd gY (s− k)

χ

P = λ(1− S2) (2.117)

The order frequency performance indicator as defined by (2.118) is only

valid if each basic batch size will be a separate order. In case multiple batch

quantities can be grouped into one order, a more complex definition of the

order frequency than (2.118) is necessary.

OF = λ/Q (2.118)
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Just like for the Poisson demand we can find the optimal target stock level,

if a = p = 0, through (2.119):

G0
Y (s∗ − 1) >

h

b+ h
= 1− ω ≥ G0

Y (s∗) (2.119)

2.3.4.3 Base-stock normal demand

The performance indicators in case of a base-stock policy, see (2.91)-(2.97),

can be transformed to the equations (2.120)-(2.129) if there is a normal

demand distribution. Here we have used the normal distribution functions:

(2.36)-(2.42). SOL is not defined here, as it only makes sense for discrete

demand. As an approximation and upper bound we can use the fill rate S2.

Pr(x < DL ≤ x+ dx)

dx
= ν + σϕ(z(x)) (2.120)

Pr(IN ≤ x) = Φ0(z(s−x)) (2.121)

A = Φ0(z(s)) (2.122)

B = Φ1(z(s))σ (2.123)

P = λA (2.124)

I = s−ν+B = [
s− ν
σ

+Φ1(
s− ν
σ

)]σ = Φ1(
−s+ ν

σ
)σ = Φ1(−z(s))σ (2.125)

S2 = S3 = 1−A = 1− Φ0(z(s)) = Φ(z(s)) (2.126)

S1 = Pr(DL < s) = Φ(z(s)) (2.127)

OF = λ (2.128)

The optimal target stock level, when a = p = 0, is found by:

z(s∗) = Φ0inv(1− ω) (2.129)
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2.3.5 Newsvendor

A newsvendor problem is a single period model with a stochastic demand

and penalty costs for ordering too much (co for each item ordered but not

sold) or too little (cu for each demand that cannot be satisfied). So we have

one period where we need to decide the order quantity Q. There is a cost for

each product not sold at the end of the period and a cost for each demand

not met. We assume a stochastic demand that is normally distributed, ϕ is

the standard normal probability density function (2.36). The total average

cost C(Q) is (2.85).

C(Q) = co

∫ Q

−∞
(Q− x)ϕ(z(x))dx+ cu

∫ ∞
Q

(x−Q)ϕ(z(x))dx (2.130)

Setting the first derivative from C(Q) equal to zero gives (2.131) and

(2.132).

Φ
(
z(Q)

)
=

cu
cu + co

(2.131)

z(Q) = Φinv
(

cu
cu + co

)
(2.132)
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2.3.6 (r,Q) policy

In an (r,Q) policy an order of size Q is placed as soon as the inventory

position would fall to or below the reorder point r. In case of Poisson demand

the IP process is cyclic: r +Q → r +Q− 1 ... → r + 1 → r +Q ... In case

of bulky demand (compound Poisson), we define IPc(t) = r + Q − IP (t).

IPc is a continuous time Markov chain and is irreducible. The sequence of

the state is no longer sequential, but changes at demand epochs. We must

assume for compound Poisson demand that not all demands can be multiples

of one integer larger than one, see section 2.1.3. The stationary frequency

distribution of the stochastic process IP is uniform in the range [r+1, r+Q],

see (2.133). Just like in the previous base-stock policy we can describe the

relation between IN , IP and DL, see the inventory functions in (2.134) and

their equilibrium random variables (2.135).

Pr(IP = i) = 1/Q i ∈ [r + 1, r +Q] (2.133)

IN(t+ L) = IP (t)−D(t, t+ L) (2.134)

IN = IP −DL (2.135)

Example 2.11 (r,Q) policy

In Figure 2.25 we visualize the inventory functions IP (t), IN(t) and the

demand D(t). The year demand is λ = 9.500, the leadtime L = 20 days, the

order quantity Q = 780 and the reorder point r = 1.561.

As IP and DL are independent, we can reuse the characteristics from

the base-stock policy to formulate the performance indicators for an (r,Q)

policy. The distribution of IN can be considered as the average of a set

of base-stock policies with the target stock level s at values in the range of

[r+1, r+Q]. As the other performance indicators are deducted from IN we

can also reuse the base-stock formulations (2.91)-(2.97) and define them as

an average from the base-stock performance indicators, see (2.136)-(2.139).

A(r,Q) =
1

Q

r+Q∑
s=r+1

A(s) (2.136)

B(r,Q) =
1

Q

r+Q∑
s=r+1

B(s) (2.137)

P (r,Q) =
1

Q

r+Q∑
s=r+1

P (s) (2.138)
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Figure 2.25: Example 2.11: (r,Q) policy

I(r,Q) =
1

Q

r+Q∑
s=r+1

I(s) (2.139)

The order frequency (2.140) still follows the formulation as previously

defined.

OF = λ/Q (2.140)

S1 = Pr(DL ≤ r) (2.141)

Cv(r,Q) = kOF + hI + bB + aA+ pP (2.142)

C(r,Q) = cλ+ Cv(r,Q) (2.143)
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2.3.6.1 (r,Q) Poisson demand

In case of a normal demand and an (r,Q) we also assume that the inventory

position IP is uniformly distributed on the range [r, r + Q]. Under these

conditions it is allowed to use the base-stock performance indicators for

a Poisson demand (2.99-2.106) to reformulate these for an (r,Q) policy:

(2.144) - (2.152).

Pr(DL = k) = g(k) =
νke−ν

k!
k ≥ 0, k ∈ Z (2.144)

Pr(IN = j) =
1

Q

r+Q∑
k=max(r+1,j)

g(k − j) where j ≤ r +Q (2.145)

A =
1

Q

[
G1(r)−G1(r +Q)

]
(2.146)

B =
1

Q

[
G2(r)−G2(r +Q)

]
(2.147)

P = λA (2.148)

I =
Q+ 1

2
+ r − ν +B (2.149)

S2 = S3 = SOL = 1−A (2.150)

S1 = Pr(DL ≤ r) = G(r) (2.151)

OF = λ/Q (2.152)

Example 2.12 (r,Q) Poisson demand

Input Value KPI Value

λ 20 r∗ 1
h 32 Q∗ 12
k 80 C∗v 300.13
b 100 I 3.92
L 0.2 B 0.42
ν 4 A 0.25
σ2 4 OF 1.67
a 0 P 5.03
p 0 S2 = S3 = SOL 75%

S1 9%

Table 2.8: Example 2.12: (r,Q) Poisson demand

In Example 2.12 in Table 2.8 we reuse the input from the base-stock

Poisson Example 2.10, Table 2.7, but now there is an ordering cost k = 80.
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We have also increased the shortage cost b = 100 and have set the leadtime

L = 0.2. For an (r,Q) policy replenishment rate S1 is no longer equal to the

fill rate and other service definitions, the S1 = 9% is remarkably lower than

the other service levels S2 = S3 = SOL = 75%. The low S1 service level can

be explained because in nearly each replenishment cycle there is a stockout

situation, but as the order quantity Q is quite large, Q = 12 is 60% of the

year demand, the backorder size when a new order arrives is on average 3

pieces or 25% (1− S2) of the order quantity.
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Q
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Figure 2.26: Example 2.12: (r,Q) cost, Poisson demand (3D)

Federgruen and Zheng (1992) have worked out a surprisingly simple and

efficient algorithm for the determination of an optimal (r,Q) policy. This

algorithm is developed for compound (Poisson) demand, and as such it is

also applicable for Poisson demand. The cost of Example 2.12 is plotted in

three dimensions in Figure 2.26. Figure 2.27 gives a representation of three

cost curves for respectively Q = 8, Q = 12 and Q = 16, while the reorder

point r ranges from -3 up to 5.
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Figure 2.27: Example 2.12: (r,Q) cost, Poisson demand

2.3.6.2 (r,Q) compound Poisson demand

Also for the compound Poisson demand we can reuse the base-stock defi-

nitions and take the average over the range [r + 1, r + Q]. For compound

demand the S2 and P definition require another calculation due to bulky

demand.

Pr(DL = d) = gY (d) =

∞∑
k=0

[
(τL)ke−τL

k!
fkd

]
(2.153)

Pr(IN = j) =
1

Q

r+Q∑
k=max(r+1,j)

gy(k − j) where j ≤ r +Q (2.154)

A =
1

Q

[
G1
Y (r)−G1

Y (r +Q)
]

(2.155)

B =
1

Q

[
G2
Y (r)−G2

Y (r +Q)
]

(2.156)

P = λ(1− S2) (2.157)

I =
Q+ 1

2
+ r − ν +B (2.158)

S3 = 1−A (2.159)

OF = λ/Q (2.160)

In (2.161) we have reformulated the fill rate service level as it was defined

by Axsäter (2006). We limited the upper bounds of the summations to

respectively η and r + Q. This allows a more rapid calculation, instead of

setting them equal to +∞.

S2 =

∑η
d=1

∑r+Q
k=1 min(d, k)fd Pr(IN = k)

χ
(2.161)
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2.3.6.3 (r,Q) Normal demand

The principle that (r,Q) can be seen as the average of a range of base-stock

policies where the target stock level varies over the range [r,Q] also stands

for a continuous normal demand. So we can reuse the normal demand base-

stock policy KPI’s: (2.120)-(2.125). Before going to the full definition, we

first want to point out that in practice very often simplifications are used, as

defined by (2.162)-(2.163). In section 3.3.3 we will give the conditions when

simplifications can be applied without jeopardizing the quality of the result.

A =
σ

Q
Φ1(z(r)) (2.162)

B =
σ2

Q
Φ2(z(r)) (2.163)

Without simplifications, the KPI equations are (2.164)-(2.171).

Pr(x < DL ≤ x+ dx)

dx
= ν + σϕ(z(x)) (2.164)

(2.165)
Pr(IN ≤ x) =

1

Q

∫ r+Q

r

Φ0(z(u−x))du

=
σ

Q

[
Φ1(z(r−x))− Φ1(z(r+Q−x))

]
A =

σ

Q

[
Φ1(z(r))− Φ1(z(r+Q))

]
(2.166)

B =
σ2

Q

[
Φ2(z(r))− Φ2(z(r+Q))

]
(2.167)

I =
Q

2
+ r − ν +B (2.168)

P = λA (2.169)

S2 = S3 = SOL = 1−A (2.170)

OF = λ/Q (2.171)

The replenishment rate S1 service level is not an average, as it only looks

to the probability of no stockout per replenishment cycle, we only need to

look at the reorder point r and it is not influenced by the order quantity Q.

This is the major reason why it should not be used in practice, as it does

not represent a good service for the client.

S1 = Pr(DL ≤ r) = Φ(z(r)) (2.172)
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2.3.7 (s, S) policy

In an (s, S) policy an order is placed to reach the stock maximum level S

as soon as stock falls to or below reorder point s. The order quantity is not

fixed here, but is set in a way that the inventory position IP reaches the

value S. There is no difference between an (r,Q) or (s, S) policy if the order

is placed immediately if the reorder point is reached. This is the case if there

is continuous review and continuous demand or Poisson demand. Here we

will always assume a continuous review. So only in case of a demand that

can be greater than 1, for example the compound Poisson demand, the (s, S)

will be different from the (r,Q) policy. If the inventory position IP drops

to s− 2, an order of size S − s+ 2 will be placed.

Example 2.13 (s, S) policy

In Figure 2.28 we visualize the inventory functions IP (t), IN(t) and the

demand D(t). The year demand is λ = 9.500, the leadtime L = 20 days,

the maximum stock value is S = 2.341 and the reorder point s = 1.561. We

used the same parameters as applied for Figure 2.25, we can clearly see that

in case of an (s, S) policy the IP reaches the maximum stock value S each

time an order is placed. This was definitely not the case in the (r,Q) policy,

see Figure 2.25.
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Figure 2.28: Example 2.13: (s, S) policy

As a consequence the inventory position is no longer uniformly dis-

tributed as was the case for the (r,Q) policy. Instead we are here confronted
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with a renewal process for each of the transitions of the inventory position

IP , this process is triggered when an order is placed. We want to determine

the number of customers that will invoke regeneration (a new order being

placed). We shall express the probability for each value that the inventory

position can take as mk, (2.173). So mk is the probability to reach IP = k

during an order cycle (s + 1 ≤ k ≤ S), so mS = 1, see also Axsäter (2006).

We use the expression fd again, also used to define the compound Poisson

distribution. fd describes the probability that a customer will place an order

of quantity d.

mk =

S∑
i=k+1

mif(i−k), where k ∈ [s+ 1, S − 1] (2.173)

Once we know mk, that needs to be calculated recursively, we have the

number of expected visits to a certain inventory position k. If we divide

this by the average total number of customers during an order cycle we can

express the steady-state distribution of the inventory position IP : ιk, see

(2.174).

ιk = Pr(IP = k) =
mk∑S

i=s+1mi

, where k ∈ [s+ 1, S] (2.174)

Where we had a uniform distribution of IP in case of (r,Q), it was

possible to simply divide by the order size Q to compute the net inventory

IN . As IN = IP −DL and both IP and DL have stochastic distributions,

we need to calculate a weighted average to compute the net inventory for an

(s, S) policy, using the probability for each of the IP values, see (2.175).

Pr(IN = k) =

S∑
i=max(s+1,k)

Pr(IP = i) Pr(DL = i− k), where k ≤ S

(2.175)

In case of compound Poisson demand this can be restated as (2.176):

Pr(IN = k) =

S∑
i=max(s+1,k)

ιi gY (i− k) (2.176)

Just like previously, starting from the net inventory function we can

define the relevant performance indicators (2.177)-(2.181). In (2.179) it is

important to use the proper definitions for ν, see (2.19) and (2.22) as defined

for compound Poisson demand.

A =

S∑
i=s+1

ιiG
0
Y (i− 1) (2.177)
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B =

S∑
i=s+1

ιiG
1
Y (i− 1) (2.178)

I =

S∑
i=s+1

iιi + r − ν +B (2.179)

OF =
τ∑S

i=s+1mi

(2.180)

S2 =

∑η
d=1

∑S
k=1min(d, k)fd Pr(IN = k)

χ
(2.181)

2.3.8 Stochastic leadtimes and periodic review

All of the equations seen in the previous sections can be extended towards

stochastic leadtimes and periodic review. Some additional insights are given

in Appendix B.1 and B.2.



2-52 Literature review and discussion

2.4 Multi-item inventory models annotated lit-
erature review

Contribution 1: Multi-item inventory models annotated lit-
erature review

The inventory problems we discuss in this section can be formulated by

the following equations (2.182a), (2.182b), (2.182c) and (2.182d):

(2.182a)Minimize f(x) =

J∑
j=1

fj(xj)

(2.182b)Subject to gn(x) =

J∑
j=1

gnj(xj) ≤ en, n = 1, .., N

(2.182c)xj ∈ Rm or Zm, j = 1, .., J, m = 1 or 2

(2.182d)xj ≥ lj , lj ∈ Rm or Zm

There are J different inventory items. Each item has m (1 or 2) variables

with lower bound(s) lj . The decision variable values are real but can in some

cases be integer. The functions fj , g1j , ..., gzj are defined on Rm or Zm. We

will only consider items with independent demand subject to at least one

aggregate constraint (N ≥ 1). The inventory cost of these items cannot be

optimized independently due to the active aggregate constraint(s) (2.182b).

We will discuss seven instances of the inventory problem (2.182), see

De Schrijver et al. (2011a). They are grouped according the following five

categories: deterministic constant leadtime demand, newsvendor problem,

base-stock policy, (r,Q) policy and (s, S) policy. For the newsvendor prob-

lem we have two categories: a problem with one aggregate constraint and a

problem with multiple aggregate constraints. The (r,Q) policy is also split

in two categories: the general approach and one without marginal costs.

For each of the considered problems we give one basic model formulation,

we present some extensions to this basic model and finally we discuss its

practical contribution.

2.4.1 Deterministic constant leadtime demand

Let J ≥ 2, N = 1, m = 1, xj ∈ R. The sole decision variable (m = 1) in this

model is Qj , the order quantity for each item. See section 2.3.1 for details

on the single item model. The most simple inventory model is known as the

model with the deterministic constant leadtime. In case of a single item the

order quantity to realize the lowest cost is achieved through the economic
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order quantity (EOQ), see (2.62). When confronted with a binding capacity

constraint, e.g. limited average investment, the widespread EOQ formula

is no longer applicable. In an aggregate approach the order quantities can

also minimize the investment cost, where cj is the purchase cost of item j,

see (2.183a), but without violating the total number of orders per year, see

(2.183b), where λj is the demand rate of item j. Starr and Miller (1962)

determine for each item the optimal order quantity and create an ’optimal

policy curve’ expressing the optimal total average inventory cost for each

total number of orders and vice versa, see Figure 2.29. Using Lagrange

multipliers a closed-form expression is determined for this curve, see (2.184).

For more information on Lagrange multipliers see section 5.2.

(2.183a)Minimize f(x) =

J∑
j=1

(
cjQj

2

)

(2.183b)Subject to g(x) =

J∑
j=1

(
λj
Qj

)
≤ e

f(x)g(x) =
1

2

 J∑
j=1

√
λjcj

2

(2.184)

0 20 40 60 80 100
0

100

200

300

Number of orders g(x)

In
ve

st
m

en
t
f

(x
)

Figure 2.29: Optimal policy curve

Zipkin (2000) performs a sensitivity analysis on this ’optimal policy

curve’ using a ’variety index’ that embodies the effective variety of the sys-
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tem. He proves that the inventory turnover, ratio of demand rate and average

inventory, can even decline while having rapid increasing sales. In his case

study most subsidiaries of the conglomerate had an increased ’variety index’

as the number of items grew faster than the revenue. Hadley and Within

(1963) indicate that the Lagrangian principle can also handle multiple con-

straints such as average floor space and average number of orders or a lower

bound (lj) on the order quantity, but it is much more difficult to solve.

When the aggregate constraint is no longer an average but a maximum

performance measurement aggregate constraint, the problem category tends

to go towards a multi-product inventory problem of the shared supply pro-

cess category, as defined in the introduction. When the maximum investment

or the maximum warehouse space must be limited, instead of the average,

Page and Paul (1976) propose a grouping procedure. ’The equal order in-

terval method’ assures that all the orders are not replenished at the same

time and then the initial composition is maintained. It outperforms the

Lagrangian approach. If the Lagrangian method is used to limit the maxi-

mum use of a resource, a ’normalizing factor’ should be applied, this factor

lies between 0.5 and 1 and the maximum allowed is multiplied with this

factor. Goyal (1978) improves this heuristic making use of order phasing

and a basic replenishment cycle. Rosenblatt (1981) explains that neither

of these methods, Lagrange or grouping, really finds the optimal value due

to simplifications in both formulations. Rosenblatt and Rothblum (1990)

shift towards a penalty like method, where extra capacity can be bought.

Puerto and Fernandez (1998) construct a multi-objective problem using a

Pareto-optimal approach. This is a way of doing global sensitivity analysis

on the solution space. Haksever and Moussourakis (2005) propose a mixed

integer programming model to deal with multiple linear constraints while

making use of piecewise linear approximations. The model chooses between

an independent or a fixed cycle approach. Test problems with up to 30 items

are solved. Boctor (2010) introduces a new mathematical formulation and

an efficient heuristic for this inventory replenishment staggering problem,

which is NP-hard (non-deterministic polynomial-time hard). The replenish-

ment cycles must be integer multiples of a basic cycle. Examples with up to

200 items can be solved approximately within seconds while outperforming

previous heuristics with 11% better results.

Conclusion: closed-form expressions with sensitivity analysis can be

created for the multi-product inventory problem with deterministic constant

demand and an aggregate average resource limitation. Transforming the

aggregate average resource limitation into an aggregate maximum resource

limitation yields a more complex problem. During the last four decades

approximation algorithms were developed and are now able to find high
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quality solutions for this staggering problem with a maximum capacity limit.

2.4.2 Newsvendor model with a single constraint

Let J ≥ 2, N = 1, m = 1, lj = 0, xj ∈ R. The decision variable in this

model is Qj , the order quantity for each item. A newsvendor problem is a

single period model with a stochastic demand and penalty costs for ordering

too much (coj for each item ordered but not sold) or too little (cuj for each

demand that cannot be satisfied). See section 2.3.5 for the single item model.

The stochastic demand has a normal distribution ϕ(z), see (2.185a). Here

we consider the newsvendor problem in a multi-product environment with

one volume capacity constraint, wj is the volume of one unit of item j and

e is the total available volume, see (2.185b). In the work of Hadley and

Within (1963) one can end up with negative order quantities and service

levels in case of a very tight capacity constraint for the problem (2.185).

Hence a lower bound on the order quantity needs to be added: lj = 0, as

was discovered by Lau and Lau (1996). They extend the method so it can

handle general demand distributions making use of the Lagrangian method.

The procedure to solve this problem is rather complicated.

(2.185a)

Minimize f(x) =

J∑
j=1

(
coj

∫ Qj

−∞
(Qj − x)ϕ(z(x)j)dx

+ cuj

∫ ∞
Qj

(x−Qj)ϕ(z(x)j)dx

)

(2.185b)Subject to g(x) =

J∑
j=1

wjQj ≤ e

In an alternative approach using deterministic optimization by Vairak-

tarakis (2000) uncertainty is described using interval and discrete demand

scenarios. Algorithms are applied for min-max regret objectives to obtain

optimal solutions under the defined conditions. Abdel-Malek and Montanari

(2005b) further analyze the phenomenon of the lower bounds and divide the

solution space in three regions: a non binding constraint region, a binding

constraint region where each product can be bought and finally a region

with a very strict constraint resulting in zero order sizes for some products.

An iterative Lagrangian based method is used with an approximation of the

cumulative distribution. Zhang et al. (2009) continue on this work and de-

velop a solution algorithm using a binary search procedure which provides

near optimal solutions for a continuous demand distribution and a good ap-

proximate solution for discrete demand. Multiple aggregate constraints are
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considered as future research. In a 5 item discrete demand test the reached

solution has a gap of 2.2% with the optimal cost, while budget constraint

violation is on average 5%, in case of violation. Abdel-Malek et al. (2008)

expand the scope of this problem by integrating a random yield. They refer

to this problem as the Gardener Problem: a gardener has a limited acreage

and must divide this over several possible crops, while demand and yield

of the crops is uncertain. An exact solution is reached in case of uniform

distribution and an approximate solution in case of other distributions. A 5

item example is demonstrated and validated through simulation.

Conclusion: It is possible to incorporate a capacity constraint and find

optimal solutions for a multi-product newsvendor problem. The pitfall to

end up with negative order quantities or service levels must be prevented

in case of a very binding capacity limit. Adding additional uncertainties or

working with discrete demand complicates the problem, but approximate

solutions are available for small sized problems.

2.4.3 Newsvendor model with multiple constraints

Let J ≥ 2, N ≥ 2, m = 1, lj = 0, xj ∈ R. Having more than one (N ≥ 2)

aggregate constraint converts our multi-product newsvendor problem in a

considerable more difficult problem, see (2.186). In a two constraint example

it is assumed that w1j is the volume of one unit of item j and e1 is the total

available volume, w2j is the purchase cost of one unit of item j and e2 is

the available budget. The primary purpose of Lau and Lau (1996) was to

deal with this multi-constraint problem. Using a Lagrange method is only

possible if one knows the active constraints, the ones that are binding. Only

these constraints can be withheld in the Lagrange function. During the

iterations for finding the correct values for the Lagrange variables, some

constraints may be activated while others are deactivated. They develop a

procedure to manage the pool of active constraints and the primal problem

is converted into a dual problem, because typically there are a huge number

of items but only a small number of constraints. The algorithm performance

is linked to the number of constraints and the tightness of these constraints.

A problem with 1.000 items and 20 constraints is solved within seconds.

(2.186a)
Minimize f(x) =

J∑
j=1

(
coj

∫ Qj

−∞
(Qj − x)ϕ(z(x)j)dx

+ cuj

∫ ∞
Qj

(x−Qj)ϕ(z(x)j)dx

)
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(2.186b)Subject to gn(x) =

J∑
j=1

wnjQj ≤ en, n = 1, .., N

Abdel-Malek and Montanari (2005a) examine the dual of the solution

space with two constraints. An important feature of their approach is its

applicability to general probability distribution functions, while it yields an

optimum or near optimum solution with a known pre-set error. A 4 item

example is solved within 4 iterations with an error on the constraints of less

than 0.05%. Abdel-Malek and Areeratchakul (2007) propose a quadratic

programming approach, enabling the use of available software packages so

that lower bounds and multiple constraints are no longer an issue. This soft-

ware can also work with large data sets and offers sensitivity analysis. An

example from Lau and Lau (1996) with 7 products and 5 constraints, but

now solved with the quadratic programming approach, gives nearly the same

cost while using familiar software instead of a specific algorithm. Niederhoff

(2007) uses separable programming. The simplex method is used to find

solutions for nonlinear programs where the objective function and the con-

straint functions are the sum of functions and each function involves only

one variable. A 10 product example is given, but larger problems form no

issue for the software. Zhou et al. (2008) introduce a risk factor in this

problem defining a CVaR (conditional value at risk) aggregate constraint

that represents a loss function of a portfolio. It is shown that the CVaR

model can be represented as a linear program through approximation of the

demand density function. A 10 item example is solved and analyzed. Özler

et al. (2009) use VaR (value at risk) to limit the risk of earning less than a

desired target. The VaR constraint is an approximation of the total profit

of different products with independent demand and a Normal distribution.

A non-linear solver is used to solve the case with up to 50 items.

Conclusion: although the multi-product newsvendor problem with mul-

tiple aggregate constraints is much harder to deal with than the problem with

one aggregate constraint, it better represents practical situations. Real life

problems can be solved with specific, rather complex, algorithms. Approxi-

mations in problem formulation can incorporate risk factors but enable the

use of familiar linear, quadratic or non-linear software packages. Here we

only have encountered small examples and are still missing real life cases.

2.4.4 Base-stock models

Let J ≥ 2, N = 1, m = 1, xj ∈ Z. The decision variable is the target

stock level sj . Within a spare parts environment it is assumed to have small

demand rates and high unit purchase costs, inducing a base-stock policy.

This is an (r,Q) model where Q = 1 and r = s − 1. See section 2.3.4 for
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the single item model. As the unit purchase cost (cj) is much larger than

the ordering cost (kj), the ordering cost is considered negligible and not

withheld in the formulation. Sherbrooke (2004) uses a system approach on a

set of 1 414 spare parts, resulting in a 46% reduction in inventory investment

without a decrease in performance. The goal is to minimize the investment

in spare parts, see (2.187a), while the time-weighted backorders should be

smaller than a predefined aggregate non-service level (2.187b). G1
j is the

first order Poisson loss function, see (2.7) and the time weighted backorders

are as defined for a single item model, see (2.102). The problem with a

Poisson demand distribution is solved using marginal analysis. It considers

the decrease in backorders by adding one unit to the target stock level, while

comparing with the cost of adding one unit for each item.

(2.187a)Minimize f(x) =

J∑
j=1

cjsj

(2.187b)Subject to g(x) =

J∑
j=1

G1
j (sj) ≤ e

Thonemann et al. (2002) quantifies the expected improvement in case

of a system approach using only a single parameter representation of the

unit cost and average demand skewness over all parts. He integrates a time

weighted fill rate constraint. Systems with high unit cost skewness profit

most from a system approach. Using a 400 item data set it is shown that

a high cost skewness, typical in spare parts, gives an improvement between

13% and 25%.

Hill and Pakkala (2007) minimize the cost that includes holding, back-

order and order fill rate costs. The order fill rate is the probability that a

customer order can be satisfied entirely and immediately from stock, this is

relevant in a retail system to prevent extra shipping costs. Through an iter-

ative procedure an approximate solution is reached. A problem with 2.187

items is solved in seconds. Future research to this work can focus on a com-

pound Poisson demand process. Kranenburg and Houtum (2007) diversify

the target aggregate fill rate over groups of items while commonality exists

between groups and a shared stock is used. A heuristic provides a lower

bound and an approximate solution. In a case study with 2 groups of 700

items on average 6% can be saved in spare parts provisioning costs and it

takes 13 seconds to run this model.

Conclusion: a base stock policy is typically applied in spare parts envi-

ronments. A system wide service level constraint of e.g. 97% can be reached

by attaining this service level with each item. Differentiating the service level
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over the items can reduce the costs significantly, with cost benefits ranging

from 6% up to 46% in the given real life cases.

2.4.5 (r,Q) inventory system

Let J ≥ 2, N = 1, m = 2, xj ∈ R2. The two decision variables (m = 2) for

each item are the reorder point rj and its order quantity Qj . In an (r,Q)

policy an order of size Q is placed as soon as the inventory position falls to

or below the reorder point r. See section 2.3.6 for the single item model.

Hadley and Within (1963) touch this multi-product problem with aggregate

constraint and stochastic demand. An iterative procedure is proposed to

find the appropriate Lagrange multiplier. The goal is to minimize the cost,

see (2.188a). The cost has four components in this case: the ordering cost

(kj), a holding cost (hj), a shortage cost per unit and time unit (bj) and a

shortage cost per unit (pj). The demand rate is λj and the average demand

during leadtime is νj . Φ1 and Φ2 are the first and second order standard

normal loss functions, see also (2.41) and (2.42) for the definitions. In section

2.3.6.3 the single-item (r,Q) model with normal demand is discussed in more

detail. The expected number of orders, with a direct relation to the necessary

workforce, has an upper limit, see (2.188b). Although a general principle is

provided, they do not provide an efficient procedure to deal with the inter-

dependencies between r and Q or how to add lower bounds for the reorder

points (rj ≥ lj ≥ 0). As such it is too time consuming and simplifications

are needed for the problem to be tractable.

(2.188a)

Minimize f(x) =

J∑
j=1

[
λjkj
Qj

+ hj

(
Qj
2

+ rj − νj
)

+

(
hj + bj
Qj

)(
Φ2(z(r)j)− Φ2(z(r+Q)j)

)
+
λjpj
Qj

(
Φ1(z(r)j)− Φ1(z(r+Q)j)

)]

(2.188b)Subject to g(x) =

J∑
j=1

λj
Qj
≤ e

Ghalebsaz-Jeddi et al. (2004) extend this model and explore the impact

of paying purchasing costs (kj) when orders arrive and not when the order is

placed. They assume a Normal distribution for the total budget and use an

approximate formulation for the expected shortage. It must be pointed out

that the approximation neglecting Φ2(z(r+Q)j) or Φ1(z(r+Q)j) may perform

poorly in many situations, see Zipkin (1986a). Unless leadtime demand is
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quite regular and Q is known to be large, neglecting the specified terms may

give misleading results, for more details on this see section 3.3.3. Next they

introduce linear and quadratic piecewise approximations. A 2 item example

gives approximate results, but needing less iterations than the Hadley and

Within (1963) method. Additional constraints are considered as future work.

Bera et al. (2009) transform this problem in a multi-objective optimization

format using a fuzzy chance-constrained technique and surprise function. A

minimax distribution free procedure is applied to solve this problem and a

2 item numerical example is also solved. Zhao et al. (2007) consider the

problem where demand is according a renewal process with customer de-

mands of one unit, e.g. Poisson. The aggregate constraint is the sum of

maximum storage for each item separately, as each item will have a fixed

location space. An algorithm with polynomial time computation complexity

finds the optimal solution and it is tested on an example with 30 items. The

extension towards aggregate constraints with commonly resources, such as

budget, is seen as future research.

Conclusion: even with the immense popular (r,Q) policy, with two

decision variables per item, it is possible to imply aggregate constraints.

The Lagrangian principle is still applicable, but the interdependency of r

and Q increase the computing complexity during each iteration. We must

notify that simplifications, to reduce the inter-dependencies between r and

Q, may give misleading results. Specific techniques are applied to cases with

reduced complexity or to small sized problems. We do not see real life cases

solved in full precision yet.

2.4.6 (r,Q) systems without marginal costs

Let J ≥ 2, N ≥ 1, m = 2, xj ∈ R2. Marginal cost information for inventory

models is not likely available in practice. So here we look into models that

do not use the following marginal cost components: order cost (kj), holding

cost (hj) or shortage costs (aj , bj or pj). The demand rate is λj and the

average demand during leadtime is νj . Φ1 is the first order standard normal

loss function, see also (2.41) for the definition. Gardner and Dannenbring

(1979) minimize the non-service (2.189a), while satisfying the aggregate bud-

get (2.189b) and workforce constraints (2.189c), see section 2.3.6.3 for the

definition of these KPI’s. This is visualized as an optimal policy surface. The

formulations for service level and average inventory are approximate formu-

lations, here as well Φ2(z(r+Q)j) and Φ1(z(r+Q)j) are neglected to simplify

the solving algorithm. For the problem with one constraint an iterative pro-

cedure is used to find the Lagrange variable. With two constraints, (2.189b)

and (2.189c), the iterative search for the Lagrange variables is more com-

plex as there is interdependency between rj and Qj . An application of this
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technique on a sample of 78 180 items shows that workload can go down

25% and service increases with 1% to 6% without increasing the necessary

investment.

(2.189a)Minimize f(x) =

J∑
j=1

λj
Qj

(
Φ1(z(r)j)

)

(2.189b)Subject to g1(x) =
J∑
j=1

(
Qj
2

+ rj − νj
)
≤ e1

(2.189c)g2(x) =

J∑
j=1

(
λj
Qj

)
≤ e2

Schrady and Choe (1971) minimize the long term time weighted back-

orders while respecting a system budget constraint, although a simplifica-

tion was made to both formulations. A first solution approach finds the

Wilson order sizes and iteratively calculates the reorder levels making use of

a Lagrangian function. For multiple constraints an exterior penalty function

method is proposed, see Bazaraa et al. (2006). Lenard and Roy (1995) group

the different items in families. For each family an aggregate item is chosen

drawing efficient policy surfaces, based upon simulation. This approach pre-

vents unacceptable shortage levels for a number of items, which is a possible

result in case the aggregate service level is formulated as an arithmetic mean

of the individual service levels. Hopp et al. (1997) aim at minimizing the

aggregate inventory investment while satisfying a maximum order frequency

and a minimum service level in case of batch demands, thus implying integer

variables. They present three Lagrangian heuristics for approximating the

inventory performance measures. The two simpler heuristics are closed-form

expressions, but can perform poorer in cases of low service level and low or-

der frequency. A practical case proves the necessity for lower bounds on the

reorder level. An implementation of this heuristic in a 30 000 item system

gives a 20% inventory investment reduction for comparable service levels.

Conclusion: in case of using non-marginal costs in the popular (r,Q)

policy for multi-product problems we see the use of simplifications for service

level and inventory performance measures, with known risks. Even with

these limited accuracy simplifications a significant monetary benefit speaks

in favor of a system approach. In the mentioned examples the cost reductions

range from 20% till 25% with a system approach versus an item approach.

It should be highlighted that additional lower bounds might be needed to

assure minimal service levels for all the products and to prevent negative

reorder points.
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2.4.7 (s, S) inventory systems

Let J ≥ 2, N = 1, m = 2, xj ∈ R2. The two (m = 2) decision variables are

the reorder point level (sj) and the order up to level (Sj). In an (s, S) policy

an order is placed to reach the stock maximum level S as soon as stock falls to

or below reorder point s. See section 2.3.7 for the single item model. Mittchel

(1988) developed an algorithm based upon an approximation of demand for

the periodic review (s, S) problem in a multi-product environment with a

service constraint. The goal is to minimize the cost that has two components:

holding cost (hj) and ordering cost (kj), see (2.190a). Mj is the Renewal

function of Φj , the standard normal distribution, and Φ∗j is the (L+1)-fold

convolution of Φj with itself, L is leadtime. There is an aggregate constraint

to achieve a system wide ready rate service level, the fraction of periods

without stock-outs, see (2.190b). The service constraint is not weighted

by demand. Operating costs can be reduced significantly when a uniform

service model, where each item has the same service level, is no longer used.

For a 32 item example with a system service level of 85%, cost reductions

between 20% and 39% are achieved.

Minimize f(x) =

J∑
j=1

[
hj

(∫ Sj−sj

0

∫ Sj−y

−∞
(Sj − y − x) dΦ∗j (x)dMj(y)

+

∫ Sj

−∞
(Sj − x) dΦ∗j (x)

)
+ kj

]
/[1 +Mj(Sj − sj)]

(2.190a)

(2.190b)

Subject to g(x) =

J∑
j=1

[∫ Sj−sj

0

Φ∗j (Sj − y)dMj

+ Φ∗j (Sj)

]
/[N (1 +Mj(Sj − sj))]

≥ e

Schneider and Rinks (1989) use asymptotic properties from the renewal

theory to approximate the optimal solution. Besides the service constraint,

two other aggregate constraints are added: one on maximum workload and

another on maximum storage room. An iterative grid search is performed

for the Lagrange multiplier values. For a 100 item system the results are

visualized in an optimal policy surface chart that shows the tradeoff between

cost and service level, while satisfying the workload and storage constraint.

Cohen et al. (1992) add shortage costs and use a demand weighted fill rate

constraint. There is no backlogging, so unmet demand is lost. A greedy

algorithm is developed to find near-optimal solutions for the approximate
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problem formulation. It is tested on a 4 item part and shows a small error of

3% in case of low service levels, but larger errors up to 17% in case of high

service levels compared to a lower bound value.

Conclusion: an order up policy (s, S) is also often used in real life and

goes often under the name of a min-max system. Here as well we see a

significant cost reduction potential when a system approach is chosen over

an item approach. So although exact solutions cannot be reached, one should

not wait to already profit from a system approach. Cost benefits lie between

20% and 39% in the examples given. Allowing some approximations it is

possible to integrate multiple constraints or shortage costs, but the errors

can no longer be neglected then.

2.5 New contribution

We analyzed and annotated some recent and relevant multi-item inventory

problem references grouped into five categories: deterministic constant lead-

time demand, news vendor, base-stock, (r,Q) and (s, S) policy. We inves-

tigated the proposed model formulations, the algorithmic approaches and

benefits of a system approach versus an item approach. We also highlighted

the limitations from a practical viewpoint of these models, see contribution

1.

2.6 Conclusions

Poisson and compound Poisson processes form a very good representation

of inventory demand. However in practice these are not used often and are

replaced frequently by the normal distribution. Due to the central limit the-

orem Poisson and compound Poisson merge towards the normal distribution

in case of large volumes. For smaller demands or for larger variances we saw

that the differences cannot be neglected.

When optimizing an inventory problem we need to compute thousands

of times the first and second order loss functions of the demand distribution

and also their inverse functions. The Poisson, compound Poisson and normal

distribution have no closed-form expressions for these functions. So there is

a need for accurate and efficient approximation functions. The Remez algo-

rithm is a stable minimax approach to approximate a continuous function

as the ratio of two polynomials.

Although the knowledge on single-item inventory models is vast and the

foundations have been laid in the sixties and before, we establish a great

unawareness in practice. The value of the revision of these fundamentals

cannot be overestimated.
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We see a practical need for a system approach, rather than an item

approach. This would enable managers to realize their goals with an optimal

mix between cost and service, while confronted with limited resources such

as workspace, workforce or investment. In the last decades we find some

research on this topic, although limited and not suited yet for use in practice.

It is our aim to close this gap in the next chapters.



3
Single item inventory models and

approximation error analysis

We revisit two service levels. We discuss the relevance of replenishment rate,

S1. Next we provide formulations for the order line service level SOL in case

of compound Poisson demand. We highlight that the normal demand (r,Q)

policy performance measure definitions are not completely correct. We also

point out that simplified formulations may yield huge errors, here we provide

the conditions to safely use these simplifications.

We demonstrate and analyze the errors when the normal demand model

is used to approximate the Poisson or compound Poisson demand inventory

model. For each inventory KPI we develop an error reduction function and

analyze the improvement and remaining gap.
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3.1 Replenishment rate (S1) relevance

In many textbooks only the very simple service level replenishment rate S1

(2.67) is explained, because it is very easy to calculate in case of normal

demand. S1 is the specified probability of no stockout per replenishment

cycle. Although easy to calculate in case of normal or Poisson demand, it

has little value in practice. S1 is not important for the company holding the

stock and even less for the client. S1 is independent of the order quantity

Q, while S2, S3 and SOL all increase with increasing Q, if r is unchanged,

in case of an (r,Q) policy. From the point of view of completeness we also

added it to the key performance indicators for normal and Poisson demand.

As it is quite complex to compute in case of compound Poisson and as it has

no practical meaning, we did not work it out for compound Poisson demand.

Through an example we will demonstrate the uselessness of the S1 service

level.

Example 3.1 S1 no practical sense as independent from Q

In Example 3.1, Table 3.1, we take two situations with the same demand

over a period of 240 days. We apply an (r,Q) policy and set r = 900 in

both cases, but in the first we have Q = 800, while Q = 1600 in the second

case. We take this example to demonstrate the uselessness of S1. In both

cases we have S1 = 50%: with Q = 800 6 out of 12 times the net inventory

(IN) was negative at the moment of replenishment. With Q = 1600 this is

3 out of 6. In table 3.1 we can see how the other service levels (S2, S3 and

SOL) increase as the order quantity increases. Also in Figure 3.2 we can see

there is a better service level, compared with figure 3.1. So we can conclude

that S1, although easy to calculate sometimes, has no real value to express

a service level, due to these two reasons:

• S1 is not depending on the order quantity Q

• The intrinsic definition of S1 (2.67) has no value for the client or for

the company holding the inventory

These two argument are valid for S1, but not for the other service levels:

• S2, S3 and SOL increase with Q, see table 3.1, e.g. SOL increases from

85% up to 91% as Q increases from 800 up to 1600

• In Example 3.1 we see S1 = 50%, while the three other service levels

are all > 90% in case of Q = 1600. In Figure 3.2 we can also see that

50% is not a good representation of the service level as experienced by

the client or the company holding the stock



Single item inventory models and approximation error analysis 3-3

Input Value a: Q = 800 Value b: Q = 1600 Value

λ 10000 S1 50% S1 50%
ν 833 S2 87% S2 92%
L 0.083 S3 88% S3 94%
r 900 SOL 85% SOL 91%

Table 3.1: Example 3.1: Service levels with Q = 800 and Q = 1600
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Figure 3.1: Example 3.1a: Stockouts with Q = 800
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Figure 3.2: Example 3.1b: Stockouts with Q = 1600
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3.2 SOL order line service level

3.2.1 Base-stock order line service level

Contribution 2: Order line service level for a base-stock pol-
icy

Boylan and Johnston (1994) gave insights in the relationships between

six different frequently used service measures. Order line service level is one

of them, but no direct equations for computation are given. We deduct the

formula for the order line service level SOL from the S2 equation structure.

For SOL we are only interested in the order lines that can be fully satisfied.

In this definition an order line of quantity d = 1 has the same weight as an

order line with quantity d = 100, which is definitely not the case in the S2

definition. As such we can drop min(d, k) in the numerator and χ in the

denominator of (2.116). As it is not a ’weighted’ formula, this reduces the

denominator to 1. As we only take into account the fully delivered order

lines, we only look at the IN positions where IN ≥ d. This yields (3.1), see

also De Schrijver et al. (2012).

(3.1)

SOL =
Number of order lines delivered out of stock in full

Total number of order lines

=

min(η,s)∑
d=1

s∑
k=d

fd Pr(IN = k)

=

min(η,s)∑
d=1

s∑
k=d

fd gY (s− k)

Example 3.2 Base-stock compound Poisson demand

Example 3.2 in Table 3.2 is based upon Poisson Example 2.10, see Table

2.7. The only difference is that we have a compound Poisson demand. We

used the compound Poisson definition from Example 2.4, Table 2.3, where

we have χ = 2.3. In order to keep λ = 20 and ν = 2, we have set τ = 8.7.

The optimal target stock level is s∗ = 2, see Figure 3.3, just like in the

previous Poisson Example 7.

The total variable cost Cv on the other hand is nearly the double, due to

the greater demand variability. The set of KPI’s is also completely different

in Example 2.10 and 3.2. Amongst others there is a clear distinction between

the service level definitions: S3 = 56%, S2 = 35% and SOL = 31%. As

explained previously the stricter SOL service level has a lower value than

the fill rate S2 in case of compound Poisson demand.
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Input Value Input Value KPI Value

λ 20 χ 2.3 s∗ 2
h 32 f1 0.4 C∗v 80.69
k 0 f2 0.2 I 0.98
b 50 f3 0.1 B 0.98
L 0.1 f4 0.3 A 0.44
ν 2 η 4 OF 20
σ2 6 a 0 S2 35%
τ 8.695652 p 0 S3 56%

P 12.90
SOL 31%

Table 3.2: Example 3.2: Base-stock compound Poisson demand
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Figure 3.3: Example 3.2: Base-stock cost, compound Poisson demand
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3.2.2 (r,Q) order line service level

Contribution 3: Order line service level for an (r,Q) policy

In practice we see that a normal demand fill rate is almost always used

to mimic the order line service level. We now show here we can accurately

calculate the order line service with (3.2). This definition is deducted from

the fill rate definition (2.161), but within an order line definition the complete

order needs to be fulfilled, which of course is more severe. So we can remove

the denominator, as the size of the average order line has no impact on the

definition, in the numerator we thus can also drop min(d, k), the size of this

specific order, see also De Schrijver et al. (2012).

SOL =

min(η,r+Q)∑
d=1

r+Q∑
k=d

fd Pr(IN = k) (3.2)

Example 3.3 (r,Q) compound Poisson demand

In Example 3.3, see Table 3.3 we continue on Example 3.2 (Table 3.2),

but as in the previous example we adjust k = 80, b = 100 and L = 0.2.

Input Value Input Value KPI Value

λ 20 χ 2.3 r∗ 0
h 32 f1 0.4 Q∗ 14
k 80 f2 0.2 C∗v 339.10
b 100 f3 0.1 I 4.35
L 0.2 f4 0.3 B 0.85
ν 4 η 4 A 0.28
σ2 12 a 0 P 7.08
τ 8.70 p 0 OF 1.43

S2 65%
S3 72%
SOL 63%

Table 3.3: Example 3.3: (r,Q) compound Poisson demand

In Figure 3.4 we give a 3D representation of the variable cost Cv and we

also indicate the minimum cost at r∗ = 0 and Q∗ = 14. We can see there

is a broad area around this minimum where the cost impact is minimal. In

Figure 3.5 we show three cost curves Cv for respectively Q = 10, Q = 14

and Q = 18 and where r ∈ [−4, 4].
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Figure 3.4: Example 3.3: (r,Q) cost, compound Poisson demand (3D)
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Figure 3.5: Example 3.3: (r,Q) cost, compound Poisson demand
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3.2.3 (s, S) order line service level

Contribution 4: Order line service level (s, S)

We can reuse the (r,Q) definition (3.2) to formulate the order line service

level in case of an (s, S) policy. The major change is the IN definition,

(2.176) in the equation (3.3), see also De Schrijver et al. (2012).

SOL =

min(η,S)∑
d=1

S∑
k=d

fd Pr(IN = k) (3.3)

Example 3.4 (s, S) compound Poisson

Example 3.4 in Table 3.4 retakes the input from the (r,Q) compound

Poisson Example 3.3 in Table 3.3. The (s, S) optimal cost is slightly (< 1%)

better than the (r,Q) optimal cost.

Input Value Input Value KPI Value

λ 20 χ 2.3 s∗ 0
h 32 f1 0.4 S∗ 13
k 80 f2 0.2 C∗v 337.85
b 100 f3 0.1 I 4.31
L 0.2 f4 0.3 B 0.85
ν 4 η 4 A 0.28
σ2 12 a 0 P 7.09
τ 8.70 p 0 OF 1.43

S2 65%
S3 72%
SOL 62%

Table 3.4: Example 3.4: (s, S) compound Poisson demand
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3.3 Normal demand (r,Q) corrections

3.3.1 Corrected (r,Q) normal demand KPI equations

Contribution 5: Corrected (r,Q) KPI equations

Comparing the result of the formula for average inventory I for base-

stock (2.125) and for an (r,Q) policy (2.168), where we set Q = 1, resulted

in different KPI values, especially for the average inventory. In Zipkin (2000)

there is a small reference, although not applied in later formulas, that it is

more correct to integrate over the range [r+0.5, r+0.5+Q]. If we set Q = 1

in equation (2.125) and (2.123), we see we integrate over the range [r, r+ 1],

so the average is r + 0.5. In 2.87 we have seen that s = r + 1. So if we add

0.5 and integrate over the range [r + 0.5, r + 0.5 + Q] with Q = 1 we have

an average of r + 1 which is equal to s. In Figure 3.6 we can clearly see

that the formulas using the ’+0.5’ correction give a far better match with

the Poisson exact KPI.
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Fig.A: ν = 0.5 & σ2 = 0.5
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Fig.B: ν = 10 & σ2 = 10
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Figure 3.6: Impact of no 0.5 correction on r when approximating (r,Q) I

In practice and also in most of the text books when using the normal

approximation in an (r,Q) policy, integration is over the range [r, r + Q]

instead of [r + 0.5, r + 0.5 +Q]. This can make a large difference especially

for small ν, see Figure 3.6. In this Figure ’nl-r’ (normal demand - no 0.5

correction) refers to equation (2.168) without the 0.5 correction, while ’nl-

r+ 0.5’ refers to (3.7). We can see that (2.168) leads to an underestimation

of the approximated average inventory. The corrected (r,Q) normal demand

equations become (3.4)-(3.10).
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(3.4)
Pr(IN ≤ x) =

1

Q

∫ r+0.5+Q

r+0.5

Φ0(z(u−x))du

=
σ

Q

[
Φ1(z(r+0.5−x))− Φ1(z(r+0.5+Q−x))

]
A =

σ

Q

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]
(3.5)

B =
σ2

Q

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

]
(3.6)

I =
Q

2
+ r + 0.5− ν +B (3.7)

P = λA (3.8)

S2 = S3 = SOL = 1−A (3.9)

OF = λ/Q (3.10)

3.3.2 (compound) Poisson A approximation correction

In section 2.1.4.1 and 2.1.4.2 we have seen in Figure 2.11 that a better nor-

mal approximation is achieved for G(k) and GY (k) when using Φ(z(k+0.5))

instead of Φ(z(k)). So if we want to approximate the base-stock Poisson

ready rate, A = G0(s−1), see (2.101), with a normal distribution, this leads

to A = Φ0(z(s−1+0.5)) = Φ0(z(s−0.5)). When comparing with A = Φ0(z(s)),

see (2.122), we thus need to make a ’-0.5’ correction. The reasoning is the

same for ready rate in case of compound Poisson. For approximating G1(k)

and G1
Y (k) this continuity correction is not necessary, see Figure 2.12. This

means no correction needs to be made to the base-stock B equations. The

(r,Q)-policy is an average of base-stock, so combining these findings with

section 3.3.1 results in:

A =
σ

Q

[
Φ1(z(r))− Φ1(z(r+Q))

]
(3.11)

B =
σ2

Q

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

]
(3.12)

I =
Q

2
+ r + 0.5− ν +B (3.13)

P = λA (3.14)

S2 = S3 = SOL = 1−A (3.15)

OF = λ/Q (3.16)
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So the ’0.5’ correction from section 3.3.1 only needs to be made to B and

not to A, when the normal distribution is used to approximate the Poison

or compound Poisson distribution, as this will give better approximating

results. When we want to model a normal distribution demand, we should

apply a ’+0.5 correction’ to A as well.

3.3.3 Conditions for simplified KPI normal demand (r,Q)
expressions

Contribution 6: Conditions for simplified normal demand
(r,Q) KPI’s

Within the existing literature we see that simplifications are applied on

the KPI expressions. Simpler equations may yield larger errors. The impact

of ignoring the second term based on z(r+Q) in equations (3.5) and (3.6) for

A and B is in some cases negligible, but in other cases it can be up to 50%

and more, as we will see in example 3.5.

We will investigate these conditions here. A reasonable measure of rel-

ative error when applying this simplification can be expressed as ε1 and ε2,

see (3.17) and (3.18). The foundations for this analysis have been described

by Zipkin (1986a). We use his findings and work them further out for the

specific case of an (r,Q) replenishment policy in case of normal demand.

ε1(r,Q) = 1−
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

Φ1(z(r+0.5))
=

Φ1(z(r+0.5+Q))

Φ1(z(r+0.5))
(3.17)

ε1(r,Q) = 1−
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

Φ2(z(r+0.5))
=

Φ2(z(r+0.5+Q))

Φ2(z(r+0.5))
(3.18)

We state that a maximum relative error of 1e−3 is acceptable in practice.

In Figure 3.7 the region above the line ε1 = 1e− 3 is where a simplified for-

mula can be used. In figure 3.7 we can see that the condition for ε1 is stricter

than for ε2. So it is sufficient to respect the conditions for ε1. Through linear

regression we can approximate the condition for an acceptable error ε1 in

two intervals: z(r) ∈ [−11, 3] and z(r) ∈ (3, 5]. Both linear regressions in

(3.19) have a high accuracy, the linear regression for the first interval has

R2 = 99.99% and in the second interval we have R2 = 99.98%. R2 is a co-

efficient between 0 and 1 in a statistical analysis that allows the observer to

see how effective one variable is at forecasting another variable. The higher

the R2 the more accurate the approximation is.
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Figure 3.7: Conditions (ε1 & ε2) simplified (r,Q) A & B equations

(3.19a)
Q

σ
≥ −0.95406z(r+0.5) + 3.16766 if z(r+0.5) in [−11,−3]

(3.19b)
Q

σ
≥ 0.05323z2(r+0.5) − 0.62941z(r+0.5)

+ 3.00697 if z(r+0.5) in (−3, 5]

(3.19c)
Q

σ
≥ 1.19073 if z(r+0.5) in ]5,+∞]

So when condition (3.19) is fulfilled one can reduce the definition of A to

(3.20) and B to (3.21), while ε ≤ 1e− 3.

A =
σ

Q
Φ1(z(r+0.5)) (3.20)

B =
σ2

Q
Φ2(z(r+0.5)) (3.21)

When r and Q are not known yet and we need to include A or B in an

optimization, we need to perform an additional step first to assure whether

the simplified formulas can be used. A simple workaround is to determine a

Q = EOQ by using (2.62). As the order quantity Q will only increase due

to additional penalty costs or service level constraints, we can see this as

a safe approach. Establishing whether the simplified formulas can be used,

demands a onetime check, if then the simplified equations can be used, this

can be a big time saver in an iterative search while optimizing a system. The
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relation between Q/σ and z(r+0.5) for ε1 = 1e−3 is given by (3.19a) - (3.19c).

Each of these equations covers a region, the switching point between the

first and second region is at z(r+0.5) = −3 or Q/σ = 5.3743. We reformulate

(3.19a) into (3.22) and (3.19b) into (3.23). So z(r) must exceed a minimum

value that depends on its Q and σ.

if
Q

σ
≥ 5.37430 then z(r+0.5) ≥ 3.46766− Q

0.95406σ
(3.22)

(3.23a)if 1.19073 ≤ Q

σ
<5.37430 then

(3.23b)z(r+0.5) ≥
0.62941−

√
0.21293(Q/σ)− 0.24412

0.10647

if
Q

σ
< 1.19073 , then no simplification allowed (3.24)

Example 3.5 Error due to simplified equations

In Example 3.5, see table 3.5, we take a case where the error would be

extremely large if the simplified equation (3.20) would be used, A > 1 and

S2 < 0, so leading to a negative fill rate service level! The simplified equation

gives a fill rate of -27%, while it should be 81%, thus a difference of more

than 100%! The ratio Q/σ = 0.09 < 1.19073, so the condition (3.24) is

fulfilled and no simplification is allowed. This extreme example shows the

danger of using the simplified equations when it is not allowed. If we respect

the conditions (3.22)-(3.24), we are assured that the error will be acceptable

in practical cases.

Input Value KPI Simple eq. (2.162) Full eq. (2.166)

ν 20 A 127% 19%
σ2 120 S2 -27% 81%
r 29
Q 1
Q/σ 0.09

Table 3.5: Example 3.5: (r,Q) Error due to simplifications

As a more general conclusion we can state that the (r,Q) normal demand

simplified equations (3.20) and (3.21) lead to large errors in case of small

Q, or more specified in case of small Q/σ. The conditions to apply the

simplified equations with an acceptable error are given by (3.22)-(3.24). If

these conditions are not met the equations (3.5)-(3.10) must be used.
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3.4 (compound) Poisson demand normal ap-
proximation

In this section we will approximate the inventory models having Poisson, see

(2.146)-(2.152), and compound Poisson demand, see (2.155)-(2.160), making

use of an inventory model with a normal demand based upon the equations

(3.5)-(3.10). We start from examples given previously and analyze the dif-

ferences.

3.4.1 Poisson Base-stock normal approximation

As the normal distribution is a continuous distribution, we have no guarantee

at all that the optimal target stock level s∗ is an integer value, it can even

be a negative value. In Example 3.6 in Table 3.6 we see that s∗ = 2.39 with

a minimal variable total cost Cv = 44.59. Example 3.6 is an approximation

of the Poisson Example 2.10, see Table 2.7. In Figure 3.8 we can see there

is only a little increase for the cost if s = 2 or s = 3 in Example 3.6.

Example 3.6 Base-stock normal demand, Poisson approximation

Input Value KPI Value

λ 20 s∗ 2.39
h 32 C∗ 44.50
k 0 I 0.78
b 50 B 0.39
L 0.1 A 0.39
ν 2 OF 20

a = p 0 P 13.21
σ2 2 S1 = S2 = S3 61%

Table 3.6: Example 3.6: Base-stock Normal demand, Poisson approximation

In Table 3.7 we compare the KPI’s for Example 2.10, Poisson demand,

and Example 3.6, an approximation with normal demand. For the normal

demand we give the KPI’s for the target stock level integer values surround-

ing the optimal target stock level s∗. We establish a good resemblance

between the KPI’s for Example 2.10 and Example 3.6 for s = 2. Only for

the stock out frequency A and consequently also for the service levels, we

have a larger deviation.
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Figure 3.8: Example 3.6: Base-stock normal demand, Poisson approximation

KPI Poisson Ex 2.10 normal Ex 3.6 normal Ex 3.6

s 2 2 3
Cv 44.39 46.26 48.37
I 0.54 0.56 1.20
B 0.54 0.56 0.20
A 0.59 0.50 0.24
P 11.88 10 4.80
OF 20 20 20

S1 = S2 = S3 41% 50% 76%

Table 3.7: Example 3.6: Base-stock KPI’s Poisson and normal approximation

In the previous examples we have shown the exact inventory models for

a Poisson and compound Poisson leadtime demand as well as the normal

approximations for both. How accurate is the approximation? This is an

important question as it will allow us to determine when to use the less

complex normal approximation. We will now compare for a base-stock policy

three important KPI’s: average inventory I, average backorders B and the

stock out frequency A. Here we did not include the average new shortages

P , because they are directly linked to A. In Figure 3.9 we compare three

situations for a Poisson approximation: ν = 0.5, ν = 2 and ν = 10.

We see that the resemblance between both increases with ν. Only for

small ν the normal approximation gives less accurate results, see Figure 3.9A

for ν = 0.5, especially for the stock out frequency A, that directly determines
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Figure 3.9: Base-stock I, B & A for Poisson and normal demand

the normal approximation service levels in a base-stock policy. For larger ν,

see ν = 10 in Figure 3.9C, we see a very good match between the exact and

the approximated KPI’s.

As we have seen while comparing the distribution approximations, see

section 2.1.4.1, the normal distribution can have negative demands, but we

can now see here there is a limited impact on the KPI’s. This impact in-

creases with the ratio σ/ν, see (3.25). For a Poisson distribution this ratio

is 1/
√
λL, for a compound Poisson this is even bigger: ψ/(λ

√
L).

Pr(DL < 0) = Φ0(
−ν
σ

) (3.25)
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3.4.2 Compound Poisson Base-stock normal approxi-
mation

Example 3.7 Base-stock normal demand, compound Poisson ap-

proximation

Example 3.7 in Table 3.8 is a normal approximation of the compound

Poisson Example 3.2, see Table 3.2.

Input Value KPI Value

λ 20 s∗ 2.68
h 32 C∗v 77.08
k 0 I 1.36
b 50 B 0.67
L 0.1 A 0.39
ν 2 OF 20
σ2 6 P 8.54

a = p 0 S1 = S2 = S3 61%

Table 3.8: Example 3.7: Base-stock Normal demand, compound Poisson
approximation

As expected the optimal target stock level is not an integer value s∗ =

2.68, but again we can see in Figure 3.10 there is little cost impact when

moving to the two neighboring integer values.

0 1 2 3 4 5 6
0

50

100

Q

C
o
st

hI

bB
Cv

Figure 3.10: Example 3.7: Base-stock normal demand, compound Poisson
approximation
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In Table 3.9 we compare the compound Poisson Example 3.2 with the

normal approximation Example 3.7, for the two integer values surrounding

the optimal target stock level. As with the normal approximation of the

KPI comp.Poisson Ex 3.2 normal Ex 3.7 normal Ex 3.7

s 2 2 3
Cv 80.69 80.13 77.72
I 0.98 0.98 1.56
B 0.98 0.98 0.56
A 0.44 0.50 0.34
P 12.90 10 6.83
OF 20 20 20
S3 56% 50% 66%
S2 35% 50% 66%

Table 3.9: Example 3.7: Base-stocks KPI’s compound Poisson and normal
approximation

Poisson example we can notify also here a very close resemblance for s = 2

on variable cost Cv, average inventory I and average backorders B. The

stock out frequency A and the linked service levels also here show a larger

deviation than the other KPI’s. For the fill rate S2 we can report a very

high deviation of 15%. If we realize that in practice the fill rate is used to

’simulate’ the order line service level SOL, we must indicate that carefulness

is necessary, especially if we are confronted with a small leadtime demand.

Now we will make a comparison between the compound Poisson demand

and the normal approximation for the base-stock policy.

As we have a larger ratio σ/ν for the compound Poisson approxima-

tion than for the Poisson approximation, there is also a bigger deviation

between the normal approximation and the compound Poisson distribution,

see Figure 2.13, than between the Poisson distribution and the normal ap-

proximation, see Figure 2.11. Nonetheless the resemblance between the ap-

proximation of the KPI’s is even for the compound Poisson high for ν = 2

and certainly for ν = 10, see Figure 3.11.
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Fig.C: ν = 10 & σ2 = 30
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Figure 3.11: Base-stock I, B & A for compound Poisson and normal demand

In Figure 3.12 we have plotted the average new shortages P and for this

performance measure we do see a clear deviation between the compound

Poisson KPI and the normal demand KPI, as it always underestimated in the

normal approximation. So we can conclude that the normal approximation

is good for I and B. The accuracy is lower for A and is the lowest for P .

So we must be aware that fill rate constraints for a small leadtime demand

does not lend itself for a normal approximation, accuracy is higher for large

ν, Figure 3.12 D, then for small ν, Figure 3.12A.
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Figure 3.12: Base-stock P/λ for compound Poisson and normal demand

3.4.3 Poisson (r,Q) normal approximation

Example 3.8 (r,Q) normal demand, Poisson approximation

We will now use the normal demand to approximate the Poisson demand

in case of an (r,Q) policy. Example 3.8 in Table 3.10 uses the same input

as the Poisson Example 2.12, the optimal r∗ and Q∗ values are as expected

no integer values.

Rounding the optimal values r∗ and Q∗ gives us r = 1 and Q = 12.

Comparing the normal demand (r,Q) policy using these integer values for r

and Q with the exact Poisson (Example 2.12) reveals there is a very close

match between the found optimal and also all of the KPI’s, see Table 3.11.

In Figure 3.13 we compare the normal demand approximation KPI’s I,

B and A with the exact Poisson demand KPI’s for three different order

quantity Q values: Q = 1 (equals base-stock), Q = 5 and Q = 10.
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Input Value KPI Value

λ 20 r∗ 0.59
h 32 Q∗ 12.28
k 80 C∗v 300.11
b 100 I 3.74
L 0.2 B 0.50
ν 4 A 0.24
σ2 4 OF 1.63
a 0 P 4.84%
p 0 S2 = S3 76%

S1 4%

Table 3.10: Example 3.8: (r,Q) normal demand, Poisson approximation

KPI Poisson Ex 2.12 normal Ex 3.8

r 1 1
Q 12 12
Cv 300.13 300.78
I 3.92 3.92
B 0.42 0.42
A 0.25 0.22
P 5.03 4.34
OF 1.67 1.67

S2 = S3 75% 78%
S1 9% 7%

Table 3.11: Example 3.8: (r,Q) KPI’s Poisson and normal approximation

As we made the r + 0.5 corrections for the integration, we see a very

close match for I, Figure 3.13A & B, and B, 3.13C & D. While for the

base-stock KPI’s we still had a relevant deviation for small ν, this aspect is

less prominent in the (r,Q) policy. The (r,Q) KPI’s can be considered as an

average of a set of base-stock KPI’s. The (Q = 1) lines and markers represent

the base-stock KPI’s in Figure 3.13. We have seen that the deviation was the

greatest for small ν and for small r values. As the order quantity Q increases,

the deviation will become smaller for r = −Q, see the examples for Q = 5

and Q = 10. This leads us to conclude that the normal approximation for

Poisson demand is even better for an (r,Q) policy, while it was already well

performing for a base-stock policy. Where the KPI with the biggest deviation

for base-stock policy was the stockout frequency A, we can see that this is

still the weakest approximation, but we see that the resemblance increases

with Q.
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Figure 3.13: (r,Q) KPI’s for Poisson & normal demand
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3.4.4 Compound Poisson (r,Q) normal approximation

Example 3.9 Compound Poisson (r,Q) normal approximation

Converting the compound Poisson Example 3.3 into a normal approxi-

mation gives Example 3.9 in Table 3.12.

Input Value KPI Value

λ 20 r∗ 1.21
h 32 Q∗ 13.25
k 80 C∗v 335.17
b 100 I 4.54
L 0.2 B 0.69
ν 4 A 0.24
σ2 12 OF 1.51
a 0 P 4.82
p 0 S1 = S2 = S3 76%

S1 17%

Table 3.12: Example 3.9: (r,Q) normal demand, compound Poisson
approximation

If we compare the rounded result of Example 3.9 (r = 1 and Q = 13)

we see in Table 3.13 there is little difference in the total variable cost Cv
(1%). The found values for r and Q although are not the same, for the

compound Poisson (r∗, Q∗) = (0, 14) while for the normal approximation we

find (r,Q) = (1, 13). Which makes we can only compare the costs but no

longer the KPI’s. So we also added the normal approximation for (r,Q) =

(0, 14), which gives evidently a higher cost than (r,Q) = (1, 13). Within the

normal approximation for (r,Q) = (0, 14) there is a very close match for I,

B and S3. Only the fill rate S2 and the linked P show a deviation worth

mentioning.

As we did for the base-stock policy we will also make a comparison be-

tween the exact compound Poisson demand (r,Q) policy KPI’s and the nor-

mal demand approximations, see Figure 3.15. For the client demand pattern

we are using the definition form Figure 2.5 with χ = 2.3. We have seen for

compound Poisson base-stock policy KPI approximation, that the increase

of the leadtime demand variation σ2 deteriorated the quality of the approx-

imated KPI’s. We can still see this by comparing Figure 3.13B and 3.15B,

the first has a smaller deviation, σ2/ν = 1, and this yields a better approxi-

mation. Just as with the (r,Q) Poisson demand approximation we see that

the resemblance increases as the order quantity Q increases. The strongest

point of attention goes to the fill rate S2 and average new backlogs P , Figure

3.15G & H. We approximated this by using A. For a small leadtime demand
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KPI compound Poisson Ex 3.3 normal Ex 3.9 normal sol Ex 3.3

r 0 1 0
Q 14 13 14
Cv 339.10 335.44 336.43
I 4.35 4.64 4.33
B 0.85 0.64 0.83
A 0.28 0.23 0.27
P 7.08 4.58 5.40
OF 1.43 1.54 1.43
S2 65% 77% 73%
S3 72% 77% 73%

Table 3.13: Example 3.9: (r,Q) KPI’s compound Poisson and normal

we can see quite large deviations, where the estimated new backlogs is 10%

smaller than the exact new backlogs. This means for small leadtime demand

ν we could set the fill rate at e.g. 73% while the exact value can be much

smaller, e.g. 65%, as we have seen in Example 3.9.

After making the comparison between a compound Poisson with σ2/ν =

3 and the normal approximation, we finally want to test the impact of a

larger σ2/ν on the approximation quality. We have already seen that it will

deteriorate due to the fact that the normal approximation will have a large

volume of negative values. As there is a larger variance in the customer

demand pattern, there will be a larger impact due to discretization. We use

a new customer demand pattern as defined in Figure 3.14 with χ = 4.9 and

σ2/ν = 6.2.
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Figure 3.14: Compound Poisson customer demand size χ = 4.9



Single item inventory models and approximation error analysis 3-25

−10 −8 −6 −4 −2 0 2
0

2

4

6

Fig.A: ν = 0.5 & σ2 = 1.5

I (Q = 1) CP

I (Q = 5) CP

I (Q = 10) CP

I (Q = 1) nl

I (Q = 5) nl

I (Q = 10) nl

−10 −5 0 5 10
0

2

4

6

Fig.B: ν = 10 σ2 = 30

I (Q = 1) CP

I (Q = 5) CP

I (Q = 10) CP

I (Q = 1) nl

I (Q = 5) nl

I (Q = 10) nl

−10 −8 −6 −4 −2 0 2
0

1

2

3

4

5
Fig.C

B (Q = 1) CP

B (Q = 5) CP

B (Q = 10) CP

B (Q = 1) nl

B (Q = 5) nl

B (Q = 10) nl

−10 −5 0 5 10 15 20
0

5

10

15 Fig.D
B (Q = 1) CP

B (Q = 5) CP

B (Q = 10) CP

B (Q = 1) nl

B (Q = 5) nl

B (Q = 10) nl

−10 −8 −6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1
Fig.E

A (Q = 1) CP

A (Q = 5) CP

A (Q = 10) CP

A (Q = 1) nl

A (Q = 5) nl

A (Q = 10) nl

−10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Fig.F

A (Q = 1) CP

A (Q = 5) CP

A (Q = 10) CP

A (Q = 1) nl

A (Q = 5) nl

A (Q = 10) nl

−10 −8 −6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

1
Fig.G

r

P/λ (Q = 1) CP

P/λ (Q = 5) CP

P/λ (Q = 10) CP

P/λ (Q = 1) nl

P/λ (Q = 5) nl

P/λ (Q = 10) nl

−10 −5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Fig.H

r

P/λ (Q = 1) CP

P/λ (Q = 5) CP

P/λ (Q = 10) CP

P/λ (Q = 1) nl

P/λ (Q = 5) nl

P/λ (Q = 10) nl

Figure 3.15: (r,Q) KPI’s for compound Poisson & normal, σ2/ν = 3
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Figure 3.16: (r,Q) KPI’s for compound Poisson & normal, σ2/ν = 6
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3.4.5 Compound Poisson (s, S) normal approximation

Example 3.10 (s, S) normal demand, compound Poisson approxi-

mation

We would also like to have an idea how good a normal approximation

works in case of an (s, S) policy. For the normal approximation we retake

the (r,Q) normal approximation. So within this approximation we not only

approximate the demand but we will also miss the non-uniform distribution

of the (s, S) inventory position IP .

In Table 3.14 we compare the optimal (s, S) solution with the optimal

normal (r,Q) solution in the second column. In the third column we also

add the normal (r,Q) approximation for (r,Q) = (0, 13) which is the optimal

(s, S) solution. The cost Cv is really close to the exact value. Comparing

the first and third column we see an underestimation of average inventory

by 10% and an overestimation of the average backorders by 5%. The largest

error is made on the average new backorders as it is nearly 20%.

KPI compound Poisson Ex15 normal Ex15 normal sol Ex15

s 0 1 0
S 13 13 13
Cv 337.85 335.44 337.67
I 4.31 4.64 3.90
B 0.85 0.64 0.90
A 0.28 0.23 0.29
P 7.09 4.58 5.82
OF 1.43 1.54 1.54
S2 65% 77% 71%
S3 72% 77% 71%

Table 3.14: Example 3.10: (s, S) KPI’s compound Poisson and normal

We know that the (r,Q) and (s, S) are equal in case of continuous review

and a demand that is continuous (e.g. normal) or Poisson. If the reorder

quantity Q = 1 or S − s = 1 there is also no difference between an (r,Q)

and (s, S) policy.

In the next figures we will give an indication of the KPI’s if we would use

a normal (r,Q) approximation for an (s, S) policy while having Q or S−s for

a small leadtime demand ν = 0.5, charts on the left, and a larger leadtime

demand ν = 10, charts on the right. Figure 3.17 is based upon σ2/ν = 3

and Figure 3.18 is based upon a larger variation σ2/ν = 6. In section 3.5 we

will analyze these differences in detail.
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Figure 3.17: (s, S) KPI’s for compound Poisson & normal, σ2/ν = 3
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Figure 3.18: (s, S) KPI’s for compound Poisson & normal, σ2/ν = 6
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3.5 Analysis of KPI approximation errors

Contribution 7: Normal demand (r,Q) & (s, S) KPI approx-
imation error analysis

We give an overview of the errors made by approximating the Poisson

(Pn) or compound Poisson (cP) demand by a normal leadtime demand, see

also De Schrijver et al. (2012). We do this for a demand where χ ranges

from 1 (Poisson, plotted on the top: figures A & B), over χ = 2.3 (plotted

in the middle, figures C & D) up to χ = 4.9 (plotted on the bottom, figures

E & F). Each error is calculated for a small leadtime demand (ν = 0.5),

plotted on the left, and also for a larger leadtime demand (ν = 10), plotted

on the right. For each of these six figures we let r or s range and plot three

curves for three order quantities: Q = 1, Q = 5 and Q = 10. The curve for

Q = 1 matches the base-stock policy. For the curves Q = 5 and Q = 10 we

give the normal approximation error ε for an (r,Q) and an (s, S) policy. We

prefer to use here S2, S3 and SOL instead of P/λ and A, as the service levels

are easier to interpret. The error ε for I is given by 3.26, where nl stands

for normal demand, Pn for Poisson demand and cP for compound Poisson

demand. The errors for B, S2, S3, SOL and OF are calculated accordingly,

see (3.27)-(3.31).

εI = Inl − ICp (3.26)

εB = Bnl −BCp (3.27)

εS3 = S3nl − S3Cp (3.28)

εS3 = S2nl − S2Cp (3.29)

εSOL
= SOLnl − SOLCp (3.30)

εOF = OFnl −OFCp (3.31)

On the following pages we give a visual overview of the errors on the

KPI’s, here we comment and give conclusions on these figures:

• Error average inventory εI , see Figure 3.19

– Max(|εI |) decreases as Q increases for bS and (r,Q)

– Max(|εI |) increases as Q increases for (s, S)

– Magnitude of εI does not increase with ν (Fig A, C & E versus

B, D & F, so the relative error on the total I becomes very small

with increasing ν

– Max(|εI |) is larger for (s, S) than for (r,Q), Fig C-F

– εI can be positive and negative for all policies
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– εI goes towards zero for large r in case of bS and (r,Q)

– εI goes towards a fixed negative value for large r in case of (s, S),

see Fig C-D

• Error average backorders εB , see Figure 3.20

– Max(|εB |) decreases as Q increases for bS and (r,Q)

– |εB | for (s, S) is smaller than for (r,Q) for large r

– Magnitude of εB does not increase with ν (Fig A, C & E versus

B, D & F, so the relative error on the total B becomes very small

with increasing ν

– Max(|εB |) increases rapidly for small r for (s, S), see Fig C-F

– Max(|εB |) is larger for (s, S) than for (r,Q), as expected

– εB can be positive and negative for all policies

– Max(|εB |) is small for (r,Q)

– εB goes towards zero for large r for all policies

– εB is equal for (r,Q) and (s, S) if r = −Q (Fig C-F)

• Error ready rate service level εS3
, see Figure 3.21

– εS3
is always positive for Poisson demand (Fig A & B)

– εS3
is positive for large r and high service levels and then goes

towards zero

– Max(|εS3
|) increases with increasing σ2/ν (lower figures)

– Max(|εS3 |) decreases with increasing ν (figures on the right)

– εS3 is equal for (r,Q) and (s, S) if r = −Q (Fig C-F)

• Error fill rate service level εS2 , see Figure 3.22

– εS2
≥ 0, so there is always an overestimation of the fill rate

– Max(|εS2 |) decrease as ν increases (Fig A, C & E vs B, D & F)

– Max(|εS2
|) is high for small ν (5% till 40%)! (Fig A, C & E)

– εS2
is equal for (r,Q) and (s, S) if r = −Q (Fig C-F)

– εS2 goes towards zero for large r

– Max(|εS2 |) increases with increasing σ2/ν (lower figures)

– Max(|εS2
|) decreases with increasing ν (figures on the right)

• Error order line service level εSOL
, see Figure 3.23

– εSOL
≥ εS2 , so there is always an overestimation of the order line

service level

– εSOL
≥ 0

– εSOL
goes towards zero for large r

– Max(|εSOL
|) up to 50% and more for small ν (Fig A, C & E)

– Max(|εSOL
|) up to 15% and more for larger ν (Fig B, D & F)
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– εSOL
is equal for (r,Q) and (s, S) if r = −Q (Fig C-F)

– Max(|εSOL
|) increases with increasing σ2/ν (lower figures)

– Max(|εSOL
|) decreases with increasing ν (figures on the right)

• Error order frequency (s, S) εOF , see Figure 3.24

– εOF ≥ 0, so we overestimate the (s, S) order frequency because

the average order quantity > S − s
– εOF largest for Q = 1

– εOF decreases as Q increases, approaches zero for larger Q

– εOF is linear with λ, as is OF , if χ is unchanged

– εOF increases with σ2/ν and thus with χ

1. All Max(|ε|) increase with χ and σ2/ν (increasing demand variability)

2. εI = εB for bS and (r,Q)

3. All ε peak for bS at r = −1 for small ν

4. εS2 = εS3 = εSOL
for χ = 1 (Poisson demand), as the KPI’s are also

equal in case of Poisson demand
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3.5.1 Average inventory approximation error
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Figure 3.19: I approximation error
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3.5.2 Average backorders approximation error
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Figure 3.20: B approximation error
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3.5.3 Ready rate approximation error
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Fig.F: cP: χ = 4.9, ν = 10, σ2 = 60

Figure 3.21: S3 approximation error
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3.5.4 Fill rate approximation error

−10 −5 0 5 10
0 %

5 %

10 %

15 %

20 %

25 %

r

Fig.A: Pn: χ = 1, ν = 0.5, σ2 = 0.5

ε(S2,Q=1,bS)
ε(S2,Q=5,rQ/sS)
ε(S2,Q=10,rQ/sS)

−10 0 10 20 30
0 %

1 %

2 %

3 %

4 %

r

Fig.B: Pn: χ = 1, ν = 10, σ2 = 10

−10 −5 0 5 10
0 %

10 %

20 %

30 %

r

Fig.C: cP: χ = 2.3, ν = 0.5, σ2 = 1.5

ε(S2,Q=1,bS)
ε(S2,Q=5,rQ)
ε(S2,Q=10,rQ)
ε(S2,Q=5,sS)
ε(S2,Q=10,sS)

−10 0 10 20 30
0 %

2 %

4 %

6 %

r

Fig.D: cP: χ = 2.3, ν = 10, σ2 = 30

−10 −5 0 5 10
0 %

10 %

20 %

30 %

40 %

r

Fig.E: cP: χ = 4.9, ν = 0.5, σ2 = 3

−10 0 10 20 30
0 %

2 %

4 %

6 %

8 %

10 %

r

Fig.F: cP: χ = 4.9, ν = 10, σ2 = 60

Figure 3.22: S2 approximation error
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3.5.5 Order line service level approximation error
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Figure 3.23: SOL approximation error
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3.5.6 Order frequency (s, S) approximation error

0 10 20 30 40
0

0.5

1

1.5

Q

Fig.C: cP: χ = 1.5, λ = 5

ε(OF,(s,S))

0 10 20 30 40
0

10

20

30

Q

Fig.D: cP: χ = 1.5, λ = 100

ε(OF,(s,S))

0 10 20 30 40
0

1

2

3

Q

Fig.C: cP: χ = 2.3, λ = 5

ε(OF,(s,S))

0 10 20 30 40
0

20

40

60

Q

Fig.D: cP: χ = 2.3, λ = 100

ε(OF,(s,S))

0 10 20 30 40
0

1

2

3

4

Q

Fig.E: cP: χ = 4.9, λ = 5

ε(OF,(s,S))

0 10 20 30 40
0

20

40

60

80

Q

Fig.F: cP: χ = 4.9, λ = 100

ε(OF,(s,S))

Figure 3.24: OF (s, S) approximation error
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3.6 KPI error reduction functions

In the previous section 3.5 we have analyzed the errors made when applying

a normal demand approximation for a Poisson or compound Poisson demand

and for an (r,Q) or (s, S) policy. We now want to create functions that can

reduce these errors, while still using the normal approximation as foundation.

3.6.1 Assumptions and data set

In practice we almost always encounter the following assumptions:

• r ≥ 0

• S2 ≥ 80%

Making use of these assumptions we create a data set of 1450 (JDS)

instances based upon the following variable ranges:

• r ≥ 0, and service level ≥ 80% and ≤ 99.9%

• ν ∈ [0.05, 0.5, 1, 2, 5, 10, 15, 20], for ν > 20 normal approximation error

is negligible

• Q ∈ [1, 5, 9, 13, 17], so Q cover the range from 1 till ν

• σ2/ν ∈ [1, 3, 6], so we have Poisson demand and compound Poisson

demand based upon Figures 2.5 and 3.14

For the OF (s, S) approximation we have slightly adapted the data set,

as this KPI does not depend on r. We have assumed L = 1, so λ = ν and

ψ = σ. We here let Q vary between 1 and 40, ψ2/λ was set at 1.18, 1.66, 3

and 6.

In the following sections we will create scenarios of performance indicator

formulations, leading to an error reduction. The error functions are defined

in (3.32) - (3.35). In (3.35) S can be replaced by S2, S3 and SOL. For the

average inventory and order frequency error we convert it in a relative error,

so we can also express it in %. For the average backorders KPI B we do not

express it in %, because in the range we are interested (S2 ≥ 80%) there are

really small B-values, what would lead to extreme high % errors, but these

errors have no practical meaning.

ε|I| = |Inl − IcP
IcP

| (3.32)

ε|B| = |Bnl −BcP | (3.33)

ε|OF | = |OFnl −OF cP
OF cP

| (3.34)

ε|S| = |Snl − ScP | (3.35)
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The average and maximum error definitions are given by (3.36)-(3.43).

εmax|I| = max(ε|I|j), j = 1, ..., JDS (3.36)

εmax|B| = max(ε|B|j), j = 1, ..., JDS (3.37)

εmax|OF | = max(ε|OF |j), j = 1, ..., JDS (3.38)

εmax|S| = max(ε|S|j), j = 1, ..., JDS (3.39)

εavg|I| =

∑JDS

j=1 ε|I|j

JDS
(3.40)

εavg|B| =

∑JDS

j=1 ε|B|j

JDS
(3.41)

εavg|OF | =

∑JDS

j=1 ε|OF |j

JDS
(3.42)

εavg|S| =

∑JDS

j=1 ε|S|j

JDS
(3.43)

3.6.2 Error reductions: complete & corrected formulas

In practice most often, practically always, the simplified equations are used,

this is here defined as scenario 1. In scenario 2 we use the complete equations

and in scenario 3 we apply the 0.5 correction, see contribution 5. We analyze

the average and maximum absolute error.

• Scenario 1: (r,Q) nl classic simplified equations, (2.162)-(2.163)

• Scenario 2: (r,Q) nl classic complete equations, (2.166)-(2.168)

• Scenario 3: (r,Q) nl with 0.5 correction, (3.5)-(3.7)

We highlighted the risk of using simplified equations in section 3.3.3.

Figure 3.25 now illustrates this risk, the maximum absolute errors for ready

rate, fill rate and order line service levels in both replenishment policies (r,Q)

and (s, S) significantly drop in scenario 2, when no simplifications are made.

The maximum errors on the service levels drop from respectively 100%, 58%

and 44% to 11%, 12% and 15%. The error peaks of 100% (and more) happen

for example on this case: ν = 20, σ2/ν = 6, σ = 10.97, Q = 1, r = 29, the

actual ready rate is 81%, while the simplification, (S3 = 1−(2.162)), gives

a ready rate of -27%, giving an absolute error of more than 100%! This

case has been worked out in detail in Example 3.5, where we explain the

conditions to use the simplified equations with an acceptable error. For the

inventory KPI we see a major drop in error in scenario 3: going from 50% to
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Figure 3.25: Maximum errors εmax|I|, εmax|B| & εmax|S|: Scenarios 1-3
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Figure 3.26: Average errors εavg|I|, εavg|B| & εavg|S|: Scenarios 1-3
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2.5% for (r,Q) and to 19% for (s, S). The backorders KPI drops from 100%

to 20% in scenario 2.

In Figure 3.26 we see that the average inventory error drops significantly

in scenario 3 where we apply the 0.5 correction as described in section 3.3.1.

For an (r,Q) replenishment the average error drops from 4% down to 0.2%.

For (s, S) the average error is also reduced from 6% down to 3.5%. So the

error reduction in scenario 3 is really significant for the average inventory in

an (r,Q) policy, here we will no further look for additional error reduction

functions. For an (s, S) policy we will later try to further reduce the error.

Scenario 3 has no impact on the service levels, it even mildly increases the

average compared to scenario 2. Further we see a significant decrease for the

ready rate service level S3 in scenario 2, going from 2% to 0.5%. For fill rate

and order line service level the error remains around 2%.

The error on the order frequency in case of (s, S) replenishment has not

been plotted on the previous figures, as these errors are much bigger, the

maximum error is reached when Q = 1.

• εmax|OF | = 390%

• εavg|OF | = 11.93%

3.6.3 Error reduction functions model

Contribution 8: KPI error reduction functions for (r,Q) and
(s, S)

Based upon our generated data set and assumptions, see section 3.6.1, we

now will create additional error reduction functions. The idea is to start from

the KPI equations as used in scenario 3 and find error reduction functions, δ,

that will reduce the error gap with the actual Poisson and compound Poisson

KPI’s. Using an LP (linear programming) model we want to improve the

approximation quality of IcP , BcP , OF cP and ScP making use of respectively

Inl, Bnl, OFnl and Snl plus some of the other input parameters: ν, σ, r

and Q, see (3.44)-(3.47). Inl, Bnl, OFnl and Snl represent the KPI’s as

calculated by scenario 3 with normal demand and IcP , BcP , OF cP and ScP ,

are the exact compound Poisson KPI’s.

(3.44a)Minimize f =

J∑
j=1

|1− ScPj − δSj |, j = 1, .., JDS

(3.44b)Subject to δSj ≥ 0

(3.44c)δmax ≥ |1− ScPj − δSj |

(3.44d)δSj = p(Sa)(1− Snlj)2 + p(Sb)(1− Snlj) + p(Sc)
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(3.45a)Minimize f =

J∑
j=1

|
IcPj − δIj
IcPj

|, j = 1, .., JDS

(3.45b)Subject to δIj ≥ 0

(3.45c)δmax ≥ |
IcPj − δIj
IcPj

|

(3.45d)δIj = p(Ia)(1− Inlj)
2 + p(Ib)(1− Inlj) + p(Ic)

(3.46a)Minimize f =

J∑
j=1

|BcPj − δBj |, j = 1, .., JDS

(3.46b)Subject to δBj ≥ 0

(3.46c)δmax ≥ |BcPj − δBj |

(3.46d)δBj = p(Ba)(1−Bnlj)
2 + p(Bb)(1−Bnlj) + p(Bc)

(3.47a)Minimize f =

J∑
j=1

|
OF cPj − δOFj

OF cPj
|, j = 1, .., JDS

(3.47b)Subject to δOFj ≥ 0

(3.47c)δmax ≥ |
OF cPj − δIj
OF cPj

|

(3.47d)δOFj = p(OFa)/Q
2
j + p(OFb)Qj + p(OFc)

So δS , δA, δB and δOF can be used to approximate respectively the

appropriate service levels, the average inventory, the average backorders and

the order frequency, see (3.48)-(3.51), the normal demand KPI’s can be

calculated using (3.5)-(3.7).

ScP ≈ 1− δS = 1−
[
p(Sa)(1− Snl)2 + p(Sb)(1− Snl) + p(Sc)

]
(3.48)

IcP ≈ δI = p(Ia)(1− Inl)
2 + p(Ib)(1− Inl) + p(Ic) (3.49)

BcP ≈ δB = p(Ba)(1−Bnl)
2 + p(Bb)(1−Bnl) + p(Bc) (3.50)
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OF cP ≈ δOF = p(OFa)/Q
2 + p(OFb)/Q+ p(OFc) (3.51)

The decision variables of this model are included in pXa, pXb and pXc,

where X is any of the KPI’s and defined by (3.52)-(3.54) for δS , δA, δB . So

the real decision variables are: pa1 − pa9, pb1 − pb13 and pc1 − pc13, which

gives in total 35 decision variables.

pa = pa1ν+pa2σ+pa3 +pa4/ν+pa5/ν
2 +pa2 +pa6/σ+pa7/σ

2 +pa8Q+pa9r

(3.52)

(3.53)pb = pb1ν + pb2σ + pb3 + pb4ν
2 + pb5σ

2

+ pb6/ν + pb7/ν
2 + pb8/σ + pb9/σ

2 + pb10Q+ pb11r+ pb12/Q+ pb13/Q
2

(3.54)pc = pc1/ν + pc2ν
2 + pc3σ

2 + pc4ν
2 + pc5

√
σ + pc6

√
ν

+ pc7/σ+ pc8/σ
2 + pc9σ/ν + pc10σ

2/ν + pc11ν/σ+ pc12Q/ν + pc13Q/ν
2

The decision variables for δOF of this model are included in pa, pb and

pc as defined by (3.55)-(3.57).

(3.55)pa = pa1λ+ pa2ψ + pa3

+ pa4/λ+ pa5/λ
2 + pa2 + pa6/ψ + pa7/ψ

2 + pa8Q+ pa9r

(3.56)pb = pb1λ+ pb2ψ + pb3 + pb4λ
2 + pb5ψ

2

+ pb6/λ+ pb7/λ
2 + pb8/ψ+ pb9/ψ

2 + pb10Q+ pb11r+ pb12/Q+ pb13/Q
2

(3.57)pc = pc1/λ+ pc2λ
2 + pc3ψ

2 + pc4λ
2 + pc5

√
ψ + pc6

√
λ

+pc7/ψ+pc8/ψ
2 +pc9ψ/λ+pc10ψ

2/λ+pc11λ/ψ+pc12Q/λ+pc13Q/ν
2

We can now create different δ functions by allowing different sets of the

model decision variables to differ from zero. We gradually also decrease the

δmax, this is the maximum error allowed, from δ1 to δ3. We create three sets

to be used in scenario 4, 5 and 6. The accuracy increases, but also does the

complexity to compute these functions.

1. δ1: pXa = 0, pXb = f(ν, σ) and pXc = f(ν, σ)

• This gives a linear relation between ScP and Snl

• The parameters pXb and pXc only depend on values that are

known up front, so pb10 − pb13 and pc12 − pc13 must be zero
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• As such it can be easily integrated in optimization algorithms

without increasing the algorithm complexity

2. δ2: pXa = f(ν, σ) , pXb = f(ν, σ) and pXc = f(ν, σ)

• This gives a quadratic relation between ScP and Snl

• The parameters pXa, pXb and pXc only depend on values that are

known up front, so pa8 − pa9, pb10 − pb13 and pc12 − pc13 must be

zero

• It can be integrated in optimization algorithms, but it will require

additional logic to solve

3. δ3: pXa = f(ν, σ, r,Q) , pXb = f(ν, σ, r,Q) and pXc = f(ν, σ,Q)

• This gives a quadratic relation between ScP and Snl

• The parameters pXa, pXb and pXc also depend on r and Q, if

these are unknown it increases complexity

• It it not suggested to use this function for optimization algorithms

• The main purpose of this function is to easily evaluate the KPI’s

if r and Q are known already

Next to the three previously defined scenarios in section 3.6.2, we have

three additional scenarios:

• Scenario 4: Scenario 3 & an additional error reduction function δ1

• Scenario 5: Scenario 3 & an additional error reduction function δ2

• Scenario 6: Scenario 3 & an additional error reduction function δ3

For the δOF we only create two, as δ3 makes no sense, since r has no

impact and Q has already been implicitly included.

For δ1, δ2 and δ3 we have created each time two sets of parameters (pXa,

pXb and pXc). The first set of parameters, respectively called δ1a, δ2a and

δ3a, does not use all the allowed parameters, but only the most relevant.

This has the advantage that fewer calculations are needed in (3.52)-(3.54),

but it also has a small price on the accuracy. The second set of parameters

does use all the allowed parameters, these are called: δ1b, δ2b and δ3b. The

list of all the parameters is given in appendix A.2.2. The links between the

different scenarios and δ’s are: Scenario 4a uses δ1a, Scenario 4b uses δ1b,

Scenario 5a uses δ2a, Scenario 5b uses δ2b, Scenario 6a uses δ3a and Scenario

6b uses δ3b.

So we can conclude that in practice one has now the ability to continue to

use the normal distribution (r,Q) equations and have a much better (r,Q)

and (s, S) Poisson or compound Poisson KPI’s approximation through a

simple algebraic computation: (3.48)-(3.51). Per item and per KPI we once

compute a set of three parameters (pa, pb and pc, see (3.52-3.54) based upon

the tables in appendix A.2.2.
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3.6.4 Error reduction functions results

In Figure 3.27 we compare each of the maximum errors εmax|I|, εmax|B| &

εmax|S| of scenario 3 with each of the new error reduction functions (scenario

4-6). The figure values are also available in appendix A.2.1. We observe:

• εmax|I|: for (s, S) drops immediately from 19% to 7% in scenario 4.

Scenario 6 decreases further to 4.5%.

• εmax|B|: drops from over 20% to 10% in scenario 4, in scenario 6

maximum error further decreases to 4% for both (r,Q) and (s, S)

• εmax|S3|: the maximum error gradually decreases from 9% (scenario 3)

to 3% in scenario 6

• εmax|S2|: drops immediately from over 14% (scenario 3) to 8% in sce-

nario 4. For (r,Q) it further decreases to 5% in scenario 6, while for

(s, S) it decreases to 7%

• εmax|SOL|: immediately drops to half in scenario 4 (from 16% to 8%.

It further decreases to 6% in scenario 6.

In Figure 3.28 the average errors εavg|I|, εavg|B| & εavg|S| for scenario 3-6

are visualized.

• εavg|I|: for (s, S) drops from 3% (scenario 3) to 1.4% in scenario 4. It

further decreases to 0.6% in scenario 6.

• εavg|B|: it drops from around 4% to +- 2.5% in scenario 4a. It gradually

decreases towards 0.7% in scenario 6b.

• εavg|S3|: although already small (1.1% (r,Q) and 0.7% (s, S)), it steadily

decreases towards 0.3% in scenario 6b

• εavg|S2|: drops immediately from 2% in scenario 3 to less than 1% in

scenario 4a. From here it gradually further decreases towards 0.4% in

scenario 6b

• εavg|SOL|: drops immediately from 2.4% in scenario 3 to 1.2% in sce-

nario 4a. From here it gradually further decreases towards 0.6% in

scenario 6b

As the εavg|OF | and εmax|OF | is larger we will plot them in distinct Figures

3.29 and 3.30 for respectively the maximum and the average error.

• εmax|OF | goes up to 390%, which means that an uncorrected order

frequency can be 5 times the correct one, this happens especially with

Q = 1

• εmax|OF | can be reduced to 35% for scenario 5b

• εavg|OF | is also larger than for the other KPI’s, but we can reduce it

from 12% in scenario 3 to less than 2% in scenario 5b
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Figure 3.27: Maximum errors εmax|I|, εmax|B| & εmax|S|: Scenarios 3-6



3
-4

8
C
h
a
p
t
e
r
3

IrQ IsS BrQ BsS S3rQ S3sS S2rQ S2sS SOLrQ SOLsS

0%

0.5%

1%

1.5%

2%

2.5%

3%

Average error on KPI’s: Scenario 3-6

3
4a
4b
5a
5b
6a
6b

Figure 3.28: Average errors εavg|I|, εavg|B| & εavg|S|: Scenarios 3-6



Single item inventory models and approximation error analysis 3-49

OFsS
0 %

100 %

200 %

300 %

400 %

Maximum error order frequency (s,S): Scenario 3-5

3
4a
4b
5a
5b

Figure 3.29: Maximum error εmax|OF |: Scenarios 3-5
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Example 3.11 Example of error reduction functions

Let’s now give an example how these functions can be applied. We take

a problem that was not included in the data set for creation of the error

reduction function. We do respect the assumption from section 3.6.1. We

have the following parameters: r = 12, Q = 10, ν = 7, σ = 5.06, χ = 3. The

client demand pattern is 20% chance to ask 1, 2, 3, 4 or 5 units.

IrQ IsS BrQ BsS OFsS
%

cP 10,7 11,2 0,16 0,14 61.8
1 10,1 10,1 0,10 0,10
2 10,1 10,1 0,10 0,10
3 10,6 10,6 0,08 0,08 70.0
4a 11,1 0,13 0,14 58.6
4b 11,1 0,12 0,12 59.3
5a 11,1 0,16 0,16 61.3
5b 11,1 0,16 0,14 62.1
6a 11,2 0,16 0,14
6b 11,2 0,16 0,14

S3rQ S3sS S2rQ S2sS SOLrQ SolsS
% % % % % %

cP 94,5 95,0 91,7 92,6 90,2 91,1
1 95,7 95,7 95,7 95,7 95,7 95,7
2 95,7 95,7 95,7 95,7 95,7 95,7
3 96,4 96,4 96,4 96,4 96,4 96,4
4a 95,4 96,0 92,8 93,0 90,9 92,6
4b 95,5 96,0 93,0 93,5 91,7 92,6
5a 94,8 95,4 90,2 91,1 87,7 91,0
5b 94,9 95,4 91,0 92,3 89,3 90,1
6a 94,6 95,2 90,7 92,0 89,4 90,3
6b 94,6 95,1 91,1 92,3 89,3 90,5

Table 3.15: Example 3.11 KPI’s and error reduction functions

Table 3.15 gives the KPI values for each of the scenarios. We can compare

it with the exact compound Poisson (cP) values, listed on the first line of

the table. In Figure 3.31 we can see the impact on the errors εI , εB and εS ,

see (3.26)-(3.30), for Example 3.11. As we do not show the absolute error,

we can now see that the approximation can be an under or overestimation.

We can also clearly see that the error decreases going from scenario 1 up to

6. Per instance there may be some deviations, we notice here for example

that scenario 5a gives a larger error than 4a and 4b for S2sS.
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3.7 New contributions

In this chapter we have made new contributions on the following three topics:

1. Order line service level

2. Corrected and conditions for simplified (r,Q) KPI equations

3. (r,Q) and (s, S) KPI error analysis and error reduction functions

We developed an explicit equation for an order line service level in case of

a base-stock, an (r,Q) and an (s, S) policy with compound Poisson demand.

The order line service level is important as it is often used in practice, while

no previous definition or equation exists for compound Poisson in other works

or papers. See contributions 2, 3 and 4.

We worked out a corrected set of normal demand (r,Q) policy KPI’s.

For this we make a 0.5 correction in the equations, replacing r with r+ 0.5.

We showed the direct beneficial impact on the KPI’s, especially on average

inventory and average backorders. The direct benefits were greatest with

small ν. See contribution 5.

We developed a set of conditions for a normal demand (r,Q) policy, to

know when it is safe to use simpler equations, allowing a relative error of

1e− 3 compared to the complete formula. In practice the simpler equations

are widespread used leading to large errors in some cases. See contribution

6.

We provided an analysis of the approximation errors while using a nor-

mal demand approximation for a Poisson or compound Poisson demand. We

did this for three replenishment policies: base-stock, (r,Q) and (s, S). We

saw very large errors for order line service level up to 60% for small leadtime

demand and up to 15% for larger leadtime demand. See contribution 7. We

created significantly improved approximation functions for the Poisson and

compound Poisson exact KPI’s based upon a normal distribution. This has

the major benefit that we can still apply the simpler normal demand func-

tions while having acceptable and significantly reduced errors. The average

error in our realistic data set drops from more than 2% to 0.5% and less.

The maximum error drops from 40%-50% to 5%. See contribution 8.
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3.8 Conclusions

The replenishment rate S1 has no valuable meaning and should not be used

in practice.

It is now possible to calculate the order line service level in case of com-

pound Poisson demand.

The normal demand (r,Q) inventory KPI is more accurate if a 0.5 cor-

rection is applied.

Using simplified normal demand (r,Q) equations can lead to tremendous

errors, a simple set of conditions need to be checked first.

Blindly using the normal distribution demand to replace the Poisson or

compound Poisson demand can lead to maximum errors of 50% for average

inventory, 25% for average backorders, 10% on the ready rate, 15% on the

fill rate and 17% on the order line service level for both the (r,Q) and

(s, S) replenishment policies. The order frequency shows a maximum error

of nearly 400% in case of (s, S) policy with small S − s.
Making use of simple error reduction functions, that are a small algebraic

computations based on the normal distribution equations, we see an immense

reduction of these maximum errors: a reduction from 50% down to 5% for

average inventory, from 25% down to 4% for average backorders, from 10%

down to 3% on the ready rate, from 15% down to 6% on the fill rate and

from 17% down to 6% on the order line service level for both the (r,Q)

and (s, S) replenishment policy. The (s, S) order frequency maximum error

drops from 400% down to 35%.

Using the full set of error reduction functions the average error on in-

ventory, backorders, ready rate, fill rate an order line service level can be

reduced to less than 1%!





4
Best approximations normal loss

functions

We present double precision algorithms based upon rational approximations

for the standard normal first and second order loss functions and their inverse

functions. These functions are used frequently in inventory management.

No direct approximations or closed-form expressions exist for the first and

second order normal loss functions and their inverse functions. Calculations

are currently based on intermediate computations of the cumulative normal

distribution or tabulations and results depend on the accuracy and valid

range of these underlying functions. We deal with these issues and present

direct, double precision accurate algorithms valid in the full range of double

precision floating point numbers.
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4.1 Introduction and motivation

Let ϕ be the standard normal probability density function, Φ the standard

normal cumulative distribution and Φ0 its complementary function, as re-

spectively defined by (4.1), (4.2) and (4.3a). Then Φ1 is the standard normal

first order loss function, see (4.4a) and Φ2 is the standard normal second or-

der loss function, see (4.5a).

The inverse of the standard normal cumulative distribution, Φ0inv, is

defined by (4.3b). Wichura (1988) provides an approximation algorithm for

Φ0inv. The inverse standard normal first order loss function is Φ1inv, (4.4b)

and the inverse standard normal second order loss function is Φ2inv, (4.5b).

More details on these functions can be found in section 2.1.4.

ϕ (z) =
exp

(
−z2/2

)
√

2π
(4.1)

Φ (z) =

∫ z

−∞
ϕ (x) dx (4.2)

(4.3a)Φ0 (zp0) =

∫ ∞
zp0

ϕ (x) dx = p0

(4.3b)Φ0inv (p0) = zp0

(4.4a)Φ1 (zp1) =

∫ ∞
zp1

Φ0 (x) dx = p1

(4.4b)Φ1inv (p1) = zp1

(4.5a)Φ2 (zp2) =

∫ ∞
zp2

Φ1 (x) dx = p2

(4.5b)Φ2inv (p2) = zp2

The cumulative normal distribution and its approximation have been

studied in several papers. Waissi and Rossin (1996) have presented a simple

sigmoid function for the approximation of the cumulative standard normal

probabilities for −8 ≤ z ≤ 8. Bryc (2002) presented two simple formulas

for the approximation of the standard normal right tail probabilities. Kiani

et al. (2008) worked out a closed-form expression and also a series approach

for approximating the normal distribution. This formula has a maximum

absolute error of 6.5e-9 and the series have a very high accuracy over the
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whole range. Linhart (2008) compared three C functions to compute the log-

arithm of the cumulative standard normal distribution, based upon existing

algorithms.

In Figure 4.1 Φ0, Φ1 and Φ2 are shown for z in the range [0,3]. Figure

4.2 gives the functions Φ0inv, Φ1inv and Φ2inv over the range [0.001, 0.999]

and Figure 4.3 plots Φ1inv and Φ2inv over the range [0.001, 3].
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Figure 4.1: Φ0, Φ1 and Φ2 over range [0, 3]

0.2 0.4 0.6 0.8 1

−2

0

2

p

z

Φ0inv

Φ1inv

Φ2inv

Figure 4.2: Φ0inv, Φ1inv and Φ2inv over range [0.001, 0.999]
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Figure 4.3: Φ1inv and Φ2inv over range [0, 3]

Closed-form expressions for computing Φ1 and Φ2 do not exist. Calculat-

ing the values of the standard normal first and second order loss function can

be done using the cumulative normal distribution, see (4.6) and (4.7), which

on its turn could be based on the cumulative error function. So currently

an intermediate step is needed to calculate Φ1 and Φ2. The accuracy of the

result depends on the accuracy and valid range of the underlying cumulative

normal function (2.39).

For the calculation of Φ1inv and Φ2inv a root-finding method is necessary

on top of the functions (4.6) and (4.7) to calculate Φ1inv or Φ2inv. With the

approximations developed here we want to deal with these issues.

Φ1 (z) = −zΦ0 (z) + zϕ (z) (4.6)

Φ1 (z) =
1

2

[
(z2 + 1)Φ0(z)− zϕ(z)

]
(4.7)

Within inventory management Φ1, Φ2, Φ1inv and Φ2inv are needed to

calculate the KPI’s in a base-stock policy and a (r,Q) replenishment policy

with normal distribution demand, see section 2.3.4.3 and 2.3.6.3. As these

computations are needed on a large scale in inventory problems with a huge

amount of items, we see the direct benefit of having a highly efficient and

effective approximation within the range and the accuracy of double precision

floating point numbers. Other statistical applications where these and other

repeated integrals can be used are listed in Withers and Nadarajah (2010):
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• Calculation of moments of truncated normal distribution

• Expression of the non-central t density

• Calculation of shape distributions

As we want to cover the range of double precision floating point values

of the IEEE 754 standard, see Goldberg (1991), the smallest positive value

that can be represented is 2.2250738585072014e − 308. Lower values are

subnormal and thus cannot be represented to full precision. The maximum

double value is 1.7976931348623157e + 308. The considered range for our

approximations is [2.2250738585072014e− 308, 1.7976931348623157e+ 308].

4.2 Repeated integrals of the univariate nor-
mal distribution

We first describe a Taylor series function for Φ1 and Φ2 with managed pre-

cision used as the foundation for the approximation with double precision

of Φ1, Φ2, Φ1inv and Φ2inv. Then a rational approximation is generated,

making use of the Remez minimax C++ implementation, see Boost (2011).

Withers and Nadarajah (2010) extended the divergent expansion for Mill’s

ratio for repeated integrals of the univariate normal distribution and Taylor

series are also presented. It is shown that the error approximated by the

first k terms of its Laplace-type approximation is bounded in magnitude by

the kth term. Φ1 and Φ2 can be translated in the following Taylor series:

Φ1 (z) = ϕ (z)

∞∑
j=0

(−z)j tj+1

j!
(4.8)

Φ2 (z) =
ϕ (z)

2

∞∑
j=0

(−z)j tj+2

j!
(4.9)

where

(4.10a)t0 =

√
π

2

(4.10b)t1 = 1

(4.10c)tk = 1 ∗ 3 ∗ ...(k − 3)(k − 1)t0, for k even

(4.10d)tk = 2 ∗ 4 ∗ ...(k − 3)(k − 1), for k odd

Equations (4.8) and (4.9) are used to calculate very high precision Φ1

and Φ2 values, with a relative error magnitude of less than 1e-32. Validation

sets are created for 1 000, 10 000, 100 000 and 1 000 000 random z values
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with this accuracy, to be used to test our approximation algorithms. The

necessary number of terms in (4.8) and (4.9) to achieve a maximum εrel
is limited to k, defined for Φ1 and Φ2 respectively by condition (4.11) and

(4.12):

εrel = |

(
(−z)k+1

tk+2

(k + 1) !

)
/

 k∑
j=0

(−z)j tj+1

j!

 |≤ 1e− 32 (4.11)

εrel = |

(
(−z)k+1

tk+3

(k + 1) !

)
/

 k∑
j=0

(−z)j tj+2

j!

 |≤ 1e− 32 (4.12)

4.3 Developing rational approximations

The development of a rational approximation with double precision, making

use of double precision numbers, is a cumbersome and time demanding task.

The creation of the four approximations described in this chapter has taken

over a year before the current accuracy and efficiency was reached. In order

to end up with this approximation we have to walk through a series of steps,

but it also involves a lot of iterations. An introduction to best approxima-

tion functions is given in 2.2 and the Remez algorithm is described in A.1.

We describe the steps needed to develop a rational minimax approximation

making use of Remez algorithm.

1. Decide which function you want to approximate.

2. Decide on the range over which you want to approximate it: we want

to cover the full range of double precision numbers.

3. Decide on the accuracy of the approximation: we want to end up with

double precision accuracy.

4. Decide on the type of error: absolute or relative: we choose to minimize

the relative error.

5. Have an exact description of the function we want to approximate over

the range we want to approximate it. If no exact functions exists, then

there should be a function with at least twice the precision of our tar-

get approximation precision, so in our case we need an ’exact’ function

with a precision of 1e-32 (see section 4.2). For this we use an arbitrary

precision floating point library, Shoup (2011). Creating this ’exact’

function was an approximation on its own, but then of a much higher

accuracy. Here we did not have the burden of limiting number accu-

racy or we did not need to limit the number of regions or number of



Best approximations normal loss functions 4-7

parameters. On the other hand we needed to use the iterative formu-

lation (4.8) and (4.9), which had a very high computation effort and

was thus slow. After creating sets of rational approximations using the

Remez algorithm with Boost (2011) for Φ1 and Φ2 with a very high

accuracy, we also created very high precision approximations for the in-

verse functions Φ1inv and Φ2inv making use of a bisection root-finding

method.

6. Choose the number of regions and the range of each region. We want

to minimize the number of regions. The regions have preferably a small

overlap, as we know that errors tend to enlarge near the borders

7. Find an appropriate ’dominant’ function that ’looks like’ the function

we want to approximate in the considered region. Here it is no longer

an exact science. It involves a lot of trial and error, rescaling the X and

Y axis, shifting the axes, using a logarithmic scale, skewing the initial

control points, ... Quite often we find here we need to split up certain

regions (again) or redefine them, so go back to step 6. So here lays the

’craftsmanship’ to ’persuade’ the Remez algorithm to converge with the

target accuracy. Some functions show divergent behavior and need to

be adjusted first. Also we need to be very careful to always use numbers

that can be represented exactly in double precision format. Sometimes

the Remez algorithm solution is mathematically sound, but is useless

in practice due to too much rounding off on the errors or because of

roots in the denominator. When we believe we have covered the whole

range, using several regions, we need to test the approximation and go

to step 8.

8. Testing. Here we are looking for errors due to roots in the denomina-

tor or due to the double precision calculation, while within the Remez

algorithm we applied a far more accurate precision (1e-32). When en-

countering these issues, we need to go back to step 6. We created

test sets with 1 000, 10 000, 100 000 and one million instances that

have random input values over the whole range that can be represented

exactly using double number precision, e.g. the number 1 can be rep-

resented exactly, the number 0.1 not. If no errors are found we can go

to step 9.

9. Stop
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4.4 SN1OLF: Φ1 Approximation

Contribution 9: SN1OLF algorithm

In this section we will create an algorithm that allows a one pass double

precision accurate calculation of Φ1(z) over the full range of double precision

floating point numbers, see De Schrijver et al. (2011c). Figure 4.4 shows

Φ1(z) in the range [-1,3].
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0.2

0.4

0.6

0.8

1

z

p

Φ1

Figure 4.4: Φ1 over range [-1, 3]

4.4.1 SN1OLF Algorithm

As there is a direct relation between Φ1(z) and Φ1(−z), we will only consider

the positive range for the approximation algorithm. This relation is given

by (4.13) for calculating Φ1 in case of negative z values. We also know that

Φ1 (7.96582630953042053) = 1e − 16, so for z > 7.96582630953042053 we

can further simplify (4.13) into (4.14).

Φ1 (−z) = Φ1 (z) + z (4.13)

Φ1 (−z) = z, if z > 7.96582630953042053 (4.14)

For the approximation of the standard normal first order loss function

Φ1 we have defined three regions. The maximum value of the third region,

37.4227413752986, yields the smallest value that can be represented in double

precision: 2.2250738585072014e− 308, see equation (4.15).
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φ1(37.4227413752986) = 2.2250738585072014e− 308 (4.15)

SN1OLF range from to

1 0 2
2 2 5
3 5 37.4227413752986

Table 4.1: SN1OLF algorithm ranges

For each of the three regions we use a dominant function exp(−0.5r2) as

a basis, where r = −z if z is negative and else r = z. We also perform a cor-

rection in the calculation of exp(−0.5r2), based upon a cut-off to allow exact

multiplication, see (4.16) - (4.18). A likewise correction was also used in the

approximation of the cumulative normal distribution, the pnorm function

of the R project, see R (2011). This pnorm function was based upon Cody

(1993). In each of the three regions we use a different formulation for the ab-

scissa. For z values larger than the 37.4227413752986, the algorithm returns

zero as Φ1 value. For negative z values (4.13) is used in the algorithm.

q =
b64rc

64
(4.16)

d = (r − q)(r + q) (4.17)

e = exp(−0.5q2)exp(−0.5d) (4.18)

SN1OLF Algorithm

The SN1OLF acronym stands for standard normal first order loss function.

The SN1OLF rational functions and its parameters are given in Appendix

A.3.

1. If z < −7.96582630953042053 then p = 0 and go to step 7 else go to

step 2

2. If z < 0 then r = −z else r = z, go to step 3

3. If r ≤ 2: with x = r, set p = (A.4), go to step 7

4. If r ≤ 5: with x = r − 2, set p = (A.5), go to step 7

5. If r ≤ 37.4227413752986: with x = 1/r2, set p = (A.6), go to step 7

6. If r > 37.4227413752986: p = 0, go to step 7

7. If z < 0 then Φ1(z) = p− z else Φ1(z) = p
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4.4.2 SN1OLF Algorithm validation

We use four validation sets with respectively 1 000, 10 000, 100 000 and 1 mil-

lion random z points uniformly distributed in the range [0, 37.4227413752986].

The z values in these data sets were chosen such that it are exact double

precision values. These Φ1(z) test values have a relative error (4.19) of less

than 1e-32. For each of the sets we give the maximum magnitude of the

relative error (4.20) of algorithm SN1OLF and the RMS, root mean square,

(4.21) of the relative error, see Table 4.2.

εrel =
Φ1(z)− SN1OLF (z)

|Φ1(z)|
(4.19)

Max(|εrel|) = Max(|εrel1|, |εrel2|, ..., |εreln|) (4.20)

RMS(εrel) =

√
1

n
(ε2rel1 + ε2rel2 + ...+ ε2reln) (4.21)

Test points Max(εrel) RMS(εrel)

1 000 5.33e-16 1.60e-16
10 000 6.10e-16 1.62e-16

100 000 6.70e-16 1.62e-16
1 000 000 7.04e-16 1.62e-16

Table 4.2: Magnitude relative error SN1OLF

In Figure 4.5 we plot the relative error εrel of the SN1OLF algorithm for

the validation set with 1 000 points.

4.4.3 SN1OLF test data for algorithm

Table 4.3 gives values that may be used to check whether the SN1OLF

algorithm has been correctly implemented.

z p = SN1OLF

1 8.331547058768629e− 002
10 7.474560254589329e− 025
37 1.545199190512203e− 301

Table 4.3: Test data for algorithm SN1OLF
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Figure 4.5: SN1OLF relative error (1 000 test points)

4.5 SN2OLF: Φ2 Approximation

Contribution 10: SN2OLF algorithm

In this section we will create an algorithm that allows a one pass double

precision accuracy calculation of Φ2(z) over the full double range of of double

precision floating point numbers, see De Schrijver et al. (2011c). Figure 4.6

shows Φ2(z) in the range [0,3].

4.5.1 SN2OLF Algorithm

As there is also a direct relation between Φ2(z) and Φ2(−z), we will only

consider the positive range for the approximation algorithm. This relation

is given by (4.22) for calculating Φ2 in case of negative z values. We also

know that Φ2 (7.707353552279367) = 1e− 16, so for z > 7.707353552279367

we can further simplify (4.22) into (4.23).

Φ2 (−z) = −Φ2 (z) + (
z2 + 1

2
) (4.22)

Φ2 (−z) =
z2 + 1

2
, when z > 7.707353552279367 (4.23)

For the approximation of the standard normal second order loss function

Φ2 we have defined three regions. The maximum value of the third range,
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Figure 4.6: Φ2 over range [-1, 3]

37.3259727019187, yields the smallest value that can be represented in double

precision: 2.2250738585072014e− 308, (4.24).

Φ2(37.3259727019187) = 2.2250738585072014e− 308 (4.24)

SN2OLF range from to

1 0 2
2 2 5
3 5 37.3259727019187

Table 4.4: SN2OLF algorithm ranges

For the first and the second range we use a dominant function exp(−0.5r2)

as a basis, for the third range we use exp(−0.5r2)/r. In each of the three

regions we use a different formulation for the abscissa. For z values larger

than the 37.3259727019187, the algorithm returns zero as Φ2 value. For

negative z values (4.22) is used in the algorithm.
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SN2OLF Algorithm

The SN2OLF acronym stands for standard normal second order loss func-

tion. The SN2OLF rational functions and its parameters are given in Ap-

pendix A.4.

1. If z < −7.707353552279367 then p = 0 & go to step 7 else go to step 2

2. If z < 0 then r = −z else r = z, go to step 3

3. If r ≤ 2: with x = r, set p = (A.7), go to step 7

4. If r ≤ 5: with x = r − 2, set p = (A.8), go to step 7

5. If r ≤ 37.3259727019187: with x = 1/r2, set p = (A.9), go to step 7

6. If r > 37.3259727019187: p = 0, go to step 7

7. If z < 0 then Φ2(z) = −p+ 0.5(z2 + 1) else Φ2(z) = p

4.5.2 SN2OLF Algorithm validation

We used four validation sets with respectively 1 000, 10 000, 100 000 and

1 million random z points uniformly distributed over the broad range de-

fined by [0, 37.4227413752986]. These Φ2 validation values have a relative

error (4.25) of less than 1e-32. For each of the sets we give the maximum

magnitude of the relative error (4.26) of algorithm SN2OLF and the RMS

(4.27) of the relative error, see Table 4.5. The definition of εrel for SN2OLF

is given by (4.25). Max(εrel) is given by 4.26) and RMS(εrel) by (4.27).

εrel =
Φ2(z)− SN2OLF (z)

|Φ2(z)|
(4.25)

Max(|εrel|) = Max(|εrel1|, |εrel2|, ..., |εreln|) (4.26)

RMS(εrel) =

√
1

n
(ε2rel1 + ε2rel2 + ...+ ε2reln) (4.27)

Test points Max(εrel) RMS(εrel)

1 000 5.63e-16 1.64e-16
10 000 6.15e-16 1.61e-16

100 000 6.74e-16 1.62e-16
1 000 000 7.39e-16 1.61e-16

Table 4.5: Magnitude relative error SN2OLF

In Figure 4.7 we plot the relative error εrel of the SN2OLF algorithm,

defined by (4.25).
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Figure 4.7: SN2OLF relative error (1 000 test points)

4.5.3 SN2OLF test data for algorithm

Table 4.6 gives values that may be used to check whether the SN2OLF

algorithm has been correctly implemented.

z p = SN2OLF

1 3.766989167188537e− 002
10 7.264638478559902e− 026
37 4.167108814713861e− 303

Table 4.6: Test data for algorithm SN2OLF
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4.6 ISN1OLF: Φ1inv Approximation

Contribution 11: ISN1OLF algorithm

In this section we will create an algorithm that allows a one pass dou-

ble precision accuracy calculation of Φ1inv(p) over the full range of double

precision floating point numbers, see De Schrijver et al. (2011b). Figure 4.8

shows Φ1inv(p) in the range [0,2].
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Figure 4.8: Φ1inv over range [0, 2]

4.6.1 Φ0inv and Φ1inv approximation differences

In comparison with the approximation of Φ0inv, see Wichura (1988), Φ1inv

has two additional difficulties.

First, the Φ1inv root (4.28a) is not an exact double value, where for Φ0inv

the root is an exact double: 0.5. The Φ1inv root value is expressed with 32

digits in (4.28b). The most accurate double presentation is (4.28c), which

is greater than the actual root value. The two values with an exact double

representation closest to the root are (4.28c) and (4.28d), respectively to the

right and to the left of the root. These values will be used in ranges close to

the root, as we do not want the algorithm to depend on the representation

of π, and its accuracy, within the used programming language.

(4.28a)Φ1 (0) =
1√
2π
⇒ Φ1inv

(
1√
2π

)
= 0
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(4.28b)= 0.398942280401432677939946059934

(4.28c)< 0.398942280401432702

(4.28d)> 0.398942280401432647

The second difference is that Φ0inv has a closed-form expression for the

range left and right of its root, (4.29). Although there is a closed-form expres-

sion for positive and negative values of Φ1, (4.30), this cannot be converted

into a closed-form expressions for Φ1inv values left and right of its root. So

the range covered by the Φ1inv approximation should not only cover from

2.2250738585072014e−308 to the root, but from 2.2250738585072014e−308

to 1.7976931348623157e+ 308.

Φ0inv (1− p) = −Φ0inv (p) , p ∈ [0, 1] (4.29)

Φ1 (−zp) = Φ1 (zp) + zp (4.30)

Although (4.30) does not give a closed-form expression for values to the

right of the root for Φ1inv, it enables an approximation for p values larger

than 7.96582630953042053. As Φ1 (7.96582630953042053) = 1e− 16, (4.30)

can be approximated by (4.31) in case of double precision calculations. As

such Φ1inv can be approximated by (4.32) in double precision for p values

larger than 7.96582630953042053.

Φ1 (−zp) = zp, when zp > 7.96582630953042053 (4.31)

Φ1inv (p) = −p, when p > 7.96582630953042053 (4.32)

4.6.2 ISN1OLF Algorithm

The list below gives the parameters used in the approximation and its algo-

rithm.
r0 = 2.2250738585072014e− 308 r1 = 7.96582630953042053
r2 = 1.1875 r3 = 0.5234375
r4 = 0.6640625 r5 = 0.398942280401432702
r6 = 0.398942280401432647 r7 = 0.367692280401432647
r8 = 0.102067280401432647 r9 = 0.296875
r10 = 1.7976931348623157e+ 308

Here we describe algorithm ISN1OLF, given a value p, it will compute

z = Φ1inv (p) with double precision in the range [r0, r10]. The acronym

ISN1OLF stands for ’inverse standard normal first order loss function’. The
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valid range is divided in 8 sub ranges, 4 left of the root and 4 to the right

of the root. For p values close to zero we first perform a conversion based

upon the square root and the natural logarithm of p.

ISN1OLF Algorithm

The rational functions and its parameters are given in Appendix A.5.

1. If p > r1 set z = −p, go to step 10

2. If p ≥ r2: with x = (p− r2), set z = (A.10), go to step 10

3. If p ≥ r3: with x = (p− r3) /r4, set z = (A.11), go to step 10

4. If p ≥ r5: with x = (p− r5) ∗ 8, set z = (A.12), go to step 10

5. If p ≥ r7: with x = (r6 − p) ∗ 32, set z = (A.13), go to step 10

6. If p ≥ r8: with y = (r6 − p), x = (r9 − y), set z = (A.14), go to step

10

7. Set y =
√

ln(−p)
8. If y ≤ 6: with x = (y − 1.5), set z = (A.15), go to step 10

9. Else: with x = (y − 6), set z = (A.16), go to step 10

10. Φ1inv (p) = z

4.6.3 ISN1OLF Algorithm validation

We used four validation sets with respectively 1 000, 10 000, 100 000 and

1 million random p points uniformly distributed in the range [1e− 100, 8].

The Φ1inv values have a relative error (4.33) of less than 1e-32. For each

of the sets we give the maximum magnitude (4.20) of the relative error of

algorithm ISN1OLF and the RMS (4.35) of the relative error, see Table 4.7.

εrel =
Φ1inv(p)− ISN1OLF (p)

|Φ1inv(p)|
(4.33)

Max(|εrel|) = Max(|εrel1|, |εrel2|, ..., |εreln|) (4.34)

RMS(εrel) =

√
1

n
(ε2rel1 + ε2rel2 + ...+ ε2reln) (4.35)

Range Test points Max(εrel) RMS(εrel)

[1e− 100, 8] 1 000 3.95e-16 6.08e-17
[1e− 100, 8] 10 000 4.62e-16 6.05e-17
[1e− 100, 8] 100 000 5.77e-16 6.02e-17
[1e− 100, 8] 1 000 000 6.33e-16 6.05e-17

Table 4.7: Magnitude relative error
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In Figure 4.9 we plot the relative error εrel of the ISN1OLF algorithm.

1 2 3 4 5 6 7 8
−4 · 10−16

−2 · 10−16

0

2 · 10−16

4 · 10−16

p

εrel

Figure 4.9: ISN1OLF relative error (1 000 test points)

In Table 4.8 we test the values close to p = 0. Again we used four

validation sets with respectively 1 000, 10 000, 100 000 and 1 million random

p points and Φ1inv values that have an error of less than 1e-32, but now the

random p values are uniformly distributed on a logarithmic scale within the

considered range. We again make sure that the z values can be exactly

represented by a double precision number.

Range Test points Max(εrel) RMS(εrel)

[r0, r8] 1 000 6.30e-16 1.86e-16
[r0, r8] 10 000 7.16e-16 1.85e-16
[r0, r8] 100 000 7.99e-16 1.80e-16
[r0, r8] 1 000 000 9.47e-16 1.86e-16

Table 4.8: Magnitude relative error ISN1OLF: p close to 0 on a logarithmic scale
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In Figure 4.10 we plot the relative error εrel of the ISN1OLF algorithm

on a logarithmic scale. This allows us to check the precision for p values

close to zero where Φ1inv increases rapidly.
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Figure 4.10: ISN1OLF relative error (1 000 test points on logarithmic scale)

4.6.4 ISN1OLF test data for algorithm

Table 4.9 gives values that may be used to check whether the algorithm has

been correctly implemented.

p z = ISN1OLF

1e− 100 21.12967328021652
0.25 0.3448674639990244
1 −0.8994715612537435

Table 4.9: Test data for algorithm ISN1OLF
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4.7 ISN2OLF: Φ2inv Approximation

Contribution 12: ISN2OLF algorithm

In this section we will create an algorithm that allows a one pass double

precision accuracy calculation of Φ2inv(p) over the full range of double pre-

cision floating point numbers. Figure 4.11 shows Φ2inv(p) in the range [0,2].

0.5 1 1.5 2
−2

−1

0

1

2

p

z

Φ2inv

Figure 4.11: Φ2inv over range [0, 2]

(4.36) gives the Φ2 relation for positive and negative z values. We know

that Φ2 (7.707353552279367) = 1e− 16, so for larger z values we can further

simplify (4.36) into (4.37). We now can find a very simple Φ2(p) expression

for p > 30.2016493899167, see (4.38).

Φ2 (−z) = −Φ2 (z) + (
z2 + 1

2
) (4.36)

Φ2 (−z) =
z2 + 1

2
= p, when z > 7.707353552279367 (4.37)

Φ2inv (p) = −
√

2p− 1 = z, when p > 30.2016493899167 (4.38)

4.7.1 ISN2OLF Algorithm

We describe the ISN2OLF algorithm, given a value p, it will compute z =

Φ2inv (p) with double precision in the range [ 2.2250738585072014e-308,
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1.7976931348623157e+308]. The acronym ISN2OLF stands for ’inverse stan-

dard normal second order loss function’. The valid range is divided in 7 sub

ranges, 3 left of the root and 4 to the right of the root. For p values close

to zero we first perform a conversion based upon the square root and the

natural logarithm of p.

ISN2OLF Algorithm

The rational functions and its parameters are given in Appendix A.6.

1. If p > 30.2016493899167 set z = −
√

2p− 1, go to step 9

2. If p ≥ 10: with x = (30.25− p), set z = (A.17), go to step 9

3. If p ≥ 2.25: with x = (10− p), set z = (A.18), go to step 9

4. If p ≥ 0.25: with x = (8p− 2), set z = (A.19), go to step 9

5. If p ≥ 0.125: with x = (8p− 1), set z = (A.20), go to step 9

6. Set y =
√

ln(−p)
7. If y ≤ 4.4375: with x = (y − 1.4375), set z = (A.21), go to step 9

8. Else: with x = (y − 4.4375), set z = (A.22), go to step 9

9. Φ1inv (p) = z

4.7.2 ISN2OLF Algorithm validation

We used four validation sets with respectively 1 000, 10 000, 100 000 and 1

million random p points uniformly distributed in the range [1e− 100, 30.25].

These Φ2inv validation values have a relative error (4.39) of less than 1e-32

in the used test sets. For each of the sets we give the maximum magnitude

(4.40) of the relative error of algorithm ISN2OLF and the RMS (4.41) of the

relative error, see Table 4.10. The definition of εrel for ISN2OLF is given by

(4.39).

εrel =
Φ2inv(p)− ISN2OLF (p)

|Φ2inv(p)|
(4.39)

Max(|εrel|) = Max(|εrel1|, |εrel2|, ..., |εreln|) (4.40)

RMS(εrel) =

√
1

n
(ε2rel1 + ε2rel2 + ...+ ε2reln) (4.41)
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Range Test points Max(εrel) RMS(εrel)

[1e− 100, 30.25] 1 000 5.82e-16 8.69e-17
[1e− 100, 30.25] 10 000 6.06e-16 8.83e-17
[1e− 100, 30.25] 100 000 7.22e-16 8.74e-17
[1e− 100, 30.25] 1 000 000 9.02e-16 8.74e-17

Table 4.10: Magnitude relative error ISN2OLF

In Figure 4.12 we plot the relative error εrel of the ISN2OLF algorithm,

defined by (4.25).
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Figure 4.12: ISN2OLF relative error (1 000 test points)

In Table 4.11 we test the values close to p = 0. Again we used three

validation sets with respectively 10 000, 100 000 and 1 million random p

points and Φ2inv values that have an error of less than 1e-32, but now the

random p values are uniformly distributed on a logarithmic scale within the

considered range.
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Range Test points Max(εrel) RMS(εrel)

[2e− 308, 1] 1 000 7.20e-16 2.03e-16
[2e− 308, 1] 10 000 7.80e-16 2.06e-16
[2e− 308, 1] 100 000 8.83e-16 2.03e-16
[2e− 308, 1] 1 000 000 8.98e-16 1.95e-16

Table 4.11: Magnitude relative error ISN2OLF: p close to 0 on a logarithmic scale

In Figure 4.13 we plot the relative error εrel of the ISN2OLF algorithm on

a logarithmic scale, defined by (4.25). This allows us to check the precision

for p values close to zero where Φ2inv increases rapidly.
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Figure 4.13: ISN2OLF relative error (1 000 test points on logarithmic scale)

4.7.3 ISN2OLF test data for algorithm

Table 4.12 gives values that may be used to check whether the algorithm has

been correctly implemented.
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p z = ISN2OLF

1e− 100 20.985451858273187
0.125 0.40523380736278680
1 −1.03431406136896097

Table 4.12: Test data for algorithm ISN2OLF

4.8 New contributions

In this chapter we have made new contributions on the following topic:

• Closed form approximations for standard normal loss functions

We created the SN1OLF, SN2OLF, ISN1OLF and ISN2OLF algorithms.

These are double precision rational approximations for respectively

• SN1OLF: Φ1 approximation, see contribution 9

• SN2OLF: Φ2 approximation, see contribution 10

• ISN1OLF: Φ1inv approximation, see contribution 11

• ISN2OLF: Φ2inv approximation, see contribution 12

4.9 Conclusion

No closed-form expressions existed for the standard normal loss functions

and their inverse to allow rapid and accurate computations. With these new

algorithms it is now possible to have a double precision accurate computation

of these functions and their inverse in the full range of double precision

floating point numbers. These algorithms will enable a direct reduction of

the necessary calculation time when solving inventory problems based on the

normal distribution.



5
Multi-item inventory model and

solution algorithms

Finally we come to the core goal of this dissertation and formulate the multi-

item inventory model with one or more aggregate constraints. We use the

previous sections to make a concise formulation. We work out three methods

to solve a multi-item inventory model:

1. MIIAC algorithm: a general method to solve a multi-item problem

with aggregate and individual constraint(s)

2. MIISSC heuristic: to solve a specific multi-item problem with one

aggregate and for each item one individual service constraint

3. MIINLP approach: the use of a non-linear programming engine to

solve real life multi-item problems
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5.1 Multi-item inventory problem

Now we have defined the necessary demand distributions, the exact model

formulations for the different inventory policies and the error reduction func-

tions, we can easily make the step to a multi-item inventory model with one

or more multiple aggregate and individual constraints. We will focus on a

normal distribution, where we can use additional error reduction functions

to close the gap with the exact Poisson or compound Poisson formulations.

We choose this approach as it allows us to use the easier normal distribution,

but we can avoid significant errors using the error reduction functions, as de-

sired in practice. We retake the general definition of our problem, (5.1), see

also the literature review in section 2.4. We now focus on an (r,Q) model.

This can be reduced to a base-stock policy, setting Q = 1. Making use of

the error reduction functions we can have better KPI values for (r,Q) but

also for (s, S), see section 3.6.

(5.1a)Minimize f(r,Q) =

J∑
j=1

fj(rj , Qj), j = 1, .., J

(5.1b)Subject to gan(r,Q) =

J∑
j=1

ganj(rj , Qj) ≤ ean, n = 1, .., N

(5.1c)gioj(rj , Qj) ≤ eio, o = 1, .., O

There are J different inventory items. Each item has 2 variables r and

Q. The decision variable values are real as we consider normal distribution.

There is one goal function f(r,Q), one or multiple (N) aggregate constraint

functions gan(r,Q) and one or multiple (O) individual item constraint func-

tions gioj(rj , Qj). The functions fj , ga1j , ..., gaNj and gi1j , ..., giOj are

thus defined on R2. Each aggregate constraint function gan has an upper

limit ean and each individual constraint function gio has an upper limit eio.

Upper and lower bounds on r and Q can be included in gio. As we assume a

normal demand, a continuous function, we have r ∈ R and Q ∈ R. For these

goal and constraint functions we will always need one or multiple KPI’s as

defined for the single item inventory models. S1 is not included in the list of

KPI’s here as S1 has no practical value for the customer, as it only represents

the % of order cycles without stockouts.

• I: average inventory

• B: average backorders

• A: stockout frequency

• P : average new backorders
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• OF : average order frequency

• Cv: variable cost

• S2: fill rate service level

• S3: ready rate service level

• SOL: order line service level

We will base us here on the normal demand (r,Q) error reduction func-

tions. For the multi-item model optimization we will make use of δ1, see

section 3.6.3, so pa = 0 and (3.48)-(3.51) can be reduced to (5.2)-(5.5).

ScP ≈ S̃cP = p(Sb)Snl + p(Sf) (5.2)

IcP ≈ ĨcP = p(Id)Inl + p(Ie) (5.3)

BcP ≈ B̃cP = p(Bd)Bnl + p(Be) (5.4)

OF cP ≈ ÕF cP = p(OFb)/Qj + p(OFc) (5.5)

In order to have a clear readable linear formulation we have inserted pd,

pe and pf , see (5.6)-(5.8). The pb and pc values can be found in Appendix

A.2.2 for each of the KPI’s and for (r,Q) and (s, S) replenishment policies.

pd = −pb (5.6)

pe = pb + pc (5.7)

pf = 1− pb − pc (5.8)

We now can reformulate approximations (5.2)-(5.5) for the compound

Poisson KPI’s: (5.9)-(5.16). Notice that we only need to change the param-

eters pa-pf , if we need it for an (r,Q) or an (s, S) policy. The tables with

these parameters are available in Appendix A.2.2.

B̃cP = p(Bd)
σ2

Q

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

]
+ p(Be) (5.9)

ĨcP = p(Id)

[
Q

2
+ r − ν + 0.5 +

σ2

Q

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

]]
+ p(Ie)

(5.10)

S̃2cP = p(S2b)

[
1− σ

Q

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]
)

]
+ p(S2f) (5.11)

S̃3cP = p(S3b)

[
1− σ

Q

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

)
]

]
+ p(S3f) (5.12)

S̃OLcP = p(SOLb)

[
1− σ

Q

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]]
+p(SOLf) (5.13)
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ÕF cP = p(OFb)/Q+ p(OFc) (5.14)

ÃcP = 1− S̃3cP (5.15)

P̃cP = λ
(

1− S̃2cP

)
(5.16)

We only consider items with independent demand subject to at least one

aggregate constraint (N ≥ 1). The inventory cost of these items cannot be

optimized independently due to the active aggregate constraint(s) (5.1b).

Using these KPI’s we can model a wide variety of multi-item inventory

models with one or multiple constraints.

Example 5.1 Classic multi-item inventory problem

We present now a classic example to show how easily this can now be

modeled.

A warehouse manager has to minimize his inventory costs, while respect-

ing the overall demand weighted fill rate service level of 95%. He is allowed to

vary the fill rate service level per item, but each item also has a minimum fill

rate service level of 85%. Additionally it is said that no item can have a neg-

ative reorder point, out of practical arrangements. The manager applies an

(r,Q) replenishment strategy. There are no shortage costs (a = p = b = 0),

but within the company a fixed replenishment cost is applied k = 80 and

the holding cost component is defined as 20% of the unit cost, so h = 0.2c.

The model becomes:

(5.17a)Minimize f(x) =

J∑
j=1

C̃vcPj(rj , Qj)

(5.17b)=

J∑
j=1

[0.2cj ĨcPj + 80ÕF cPj ]

(5.17c)Subject to g0(x) =

J∑
j=1

[λjS̃2cPj ] ≥ 0.95

(5.17d)gj(x) = S̃2cPj ≥ 0.85, j = 1, .., J

(5.17e)rj ≥ 0, j = 1, .., J

It is this kind of problems we will solve.
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5.2 Lagrange multipliers and convexity

The method of Lagrange multipliers is based on the fact that the gradient

vector of the objective function is perpendicular to the constraints surface

at an optimal point. This method is suitable for some optimization prob-

lems with equality constraints. In case inequality constraints are involved,

one needs first to determine which of these inequality constraints are bind-

ing and then add them to the equality constraints. These constraints are

called the active set of constraints and this set changes during the iterative

solution search. Let ζ be the Lagrange variables associated to the aggregate

constraints and ξ the Lagrange variables of the individual constraints. The

sum of the goal function and the product of the Lagrange multipliers with

the active constraints form the ’Lagrange function’ Z(x, ζ, ξ) (5.18a). Set-

ting the partial derivatives of the Lagrangian function equal to zero (5.18b)

provides a necessary condition for a solution to the constrained problem

(5.1), an extensive and detailed discussion of this approach can be found in

Bertsekas (1996) and Bazaraa et al. (2006).

(5.18a)

Z(r,Q, ζ, ξ) = f(r,Q) +

N∑
n=1

ζn [gan(r,Q)− ean]

+

O∑
o=1

J∑
j=1

ξoj [gioj(r,Q)− eio]

(5.18b)∇Z = 0

Everett (1963) points out the usefulness of Lagrange multipliers for opti-

mization in the presence of constraints. He underlines that it is not limited

only to differentiable functions. This method is specifically useful to solve

allocation problems with limited resources when faced with independent ac-

tivities. Patriksson (2008) gives a survey on the continuous nonlinear re-

source allocation problem. In his paper, a rich list of applications is given,

amongst which a few inventory cases. Most of available techniques are based

on iteratively finding the Lagrange multiplier(s).

Within each iteration the r and Q values are calculated or approximated,

which allows a check on the constraint validation. The challenge in the

solution of (5.18b) lies in limiting the number of iterations and reducing

the complexity to calculate r and Q in each iteration in order to find the

appropriate Lagrange multipliers ζ and ξ.

Note that the problem (5.1) can also be approached using other tech-

niques than Lagrange multipliers, see section 2.4. Some authors apply linear

programming and heuristics. In case of integer demand specific enumera-

tion techniques or sometimes mixed integer programming is used, working
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fine for smaller models. Continuous approximations can also provide lower

bounds.

Rosling (2002a) proved that shortage cost may include nonlinear back-

order costs (A, P , S2 and S3) of dimensions (moneys/quantity unit) and

(moneys/time unit). He states that the cost rate that summarizes the ex-

pected holding and shortage costs with nonlinear shortage costs remains

quasi-convex, although it is not convex, if and only if for all non-negative cost

coefficients the cumulative distribution of lead time demand is log-concave.

It is proven that in the case of a continuous review model where the cumu-

lative demand has a continuous sample path, e.g. normal distribution, that

the necessary conditions are fulfilled and thus the cost rate is quasi-convex.

Rosling (2002b) explains that if the cost rate function is quasi-convex, then

the cost per period, Cv, is pseudo-convex. The necessary and sufficient

condition for a minimum of a pseudo-convex function is to set the partial

derivatives equal to zero.

5.3 Multi-item inventory model

5.3.1 Lagrangian function

Our multi-item problem is defined in (5.1). As we know each of the KPI’s,

(5.9)-(5.16), we can construct a general aggregate goal, aggregate constraint

and single constraint function. Next to the 8 KPI’s we also included the

decision variables r and Q themselves.

Each of the problems we encountered can be constructed using the func-

tions (5.19)-(5.21). In practice only a limited number of the parameters α,

β and γ are different from zero.

(5.19)fj(r,Q) = αIj ĨcPj + αOFjÕF cPj + αBjB̃cPj + αAjÃcPj + αPjP̃cPj

+ αS2jS̃2cPj + αS3jS̃3cPj + αSOLjS̃OLcPj + αrjr + αQjQ

(5.20)

ganj(r,Q) = βInj ĨcPnj + βOFnjÕF cPnj + βBnjB̃cPnj

+ βAnjÃcPnj + βPnjP̃cPnj + βS2njS̃2cPnj

+ βS3njS̃3cPnj + βSOLnjS̃OLcPnj + βrnjr + βQnjQ

gioj(r,Q) = γIoj ĨcPoj + γOFojÕF cPoj + γBojB̃cPoj + γAojÃcPoj + γPojP̃cPoj

+ γS2ojS̃2cPoj + γS3ojS̃3cPoj + γSOLojS̃OLcPoj + γrojr + γQojQ

(5.21)
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Combining the problem definition (5.1) and (5.18a) results in the La-

grangian function: (5.22).

(5.22a)

Z(r,Q, ζ, ξ) =

J∑
j=1

fj(rj , Qj) +

N∑
n=1

ζn

 J∑
j=1

ganj(rj , Qj)− ean


+

O∑
o=1

J∑
j=1

ξoj [gioj(r,Q)− eio]

(5.22b)∇Z = 0

5.3.2 Conditions for optimum

Finding a solution to our problem (5.1) can now be transformed to solving

(5.22), where we only need to consider the binding constraints. Setting

the partial derivatives equal to zero yields a set of equations forming the

necessary conditions for our solution. We are confronted with the following

set of (2J +N +OJ) equations: (5.23)-(5.26).

∂Z

∂rj
= 0, j = 1, .., J (5.23)

∂Z

∂Qj
= 0, j = 1, .., J (5.24)

∂Z

∂ζn
= 0, n = 1, .., N (5.25)

∂Z

∂ξoj
= 0, o = 1, .., O, j = 1, .., J (5.26)

To ease the formulations we introduce θ, defined by (5.27), where X can

be any of the KPI’s. So the Lagrangian function (5.22a) becomes (5.28), see

Appendix B.3.3 for intermediate steps.

θXj = αXj +

N∑
n=1

βXnjζn +

O∑
o=1

γXnjξoj (5.27)

Z(r,Q, ζ, ξ) =

J∑
j=1

[
θIj ĨcPj + θOFjÕF cPj + θBjB̃cPj + θAjÃcPj + θPjP̃cPj

+ θS2jS̃2cPj + θS3jS̃3cPj + θSOLjS̃OLcPj + θrjr + θQjQ
]

−
N∑
n=1

ζnean −
O∑
o=1

ξojeio

(5.28)
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We also introduce the abbreviations: (5.29)-(5.34)

Φ0
rj = Φ0(z(r+0.5)j) (5.29)

Φ0
rQj = Φ0(z(r+0.5+Q)j) (5.30)

Φ1
rj = Φ1(z(r+0.5)j) (5.31)

Φ1
rQj = Φ1(z(r+0.5+Q)j) (5.32)

Φ2
rj = Φ2(z(r+0.5)j) (5.33)

Φ2
rQj = Φ2(z(r+0.5+Q)j) (5.34)

The partial derivatives (5.23) and (5.24) can be converted into respec-

tively (5.35) and (5.36), where we use six new parameters θ1j - θ
6
j , see (5.37)-

(5.42). The intermediate steps are explained in Appendix B.3.4.

(5.35)θ1j
[
Φ1
rj − Φ1

rQj

]
+ θ2j

[
Φ0
rj − Φ0

rQj

]
+ θ3j = 0

Qj =

√√√√θ4j

[
Φ2
rj − Φ2

rQj −
QjΦ1

rQj

σj

]
+ θ5j

[
Φ1
rj − Φ1

rQj −
QjΦ0

rQj

σj

]
+ θ6j

(5.36)

(5.37)θ1j = −
(
θIjp(Id)j + θBjp(Bd)j

)
σj

(5.38)θ2j = (θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j + θSOLjp(SOLb)j

(5.39)θ3j = Qj

(
θrj + θIjp(Id)j

)

(5.40)θ4j =
2σ2

j

(
θIjp(Id)j + θBjp(Bd)j

)
θIjp(Id)j + 2θQj

θ5j =
−2σj

[
(θS2j − θPjλj)p(S2c)j + (θS3j − θAj)p(S3c)j + θSOLjp(SOLc)j

]
θIjp(Id)j + 2θQj

(5.41)

(5.42)θ6j =
2θOFjp(OFb)j

θIjp(Id)j + 2θQj
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The partial derivatives (5.25) and (5.26) give each of the N aggregate

and OJ individual constraints and these can be translated in respectively

(5.43) and (5.44). We must stress that this mathematical representation

assumes equality constraints. In reality we will have inequality constraints

(≤ or ≥). In case of an ≥ constraint, the functions (5.43) and (5.44) need

to be greater than zero. If this is the case the respective Lagrange variables

can be omitted in the Lagrange function, if the functions are negative, a

Lagrange variable needs to be integrated in the Lagrange function. In an

iterative search this needs to be checked each iteration for each Lagrange

variable.

(5.43)

J∑
j =1

[
βInj ĨcPnj + βOFnjÕF cPnj + βBnjB̃cPnj + βAnjÃcPnj

+ βPnjP̃cPnj + βS2njS̃2cPnj + βS3njS̃3cPnj

+ βSOLnjS̃OLcPnj + βrnjr + βQnjQ
]
− ean = 0

(5.44)

γIoj ĨcPoj + γOFojÕF cPoj + γBojB̃cPoj + γAojÃcPoj

+ γPojP̃cPoj + γS2ojS̃2cPoj + γS3ojS̃3cPoj

+ γSOLojS̃OLcPoj + γrojr + γQojQ− eio = 0

For the aggregate constraints (5.43) it is desirable to create an expression

for the Lagrange variable. We assume there is only one KPI per aggregate

constraint, which is always the case in practice. In (5.45) we create an

expression for ζn, see Appendix B.3.4.3 for deduction of this equation. We

assume first that the aggregate constraint is derived from A: Ã, P̃ , S̃2, S̃3 or

S̃OL. We use in these equations Ã, but this can be replaced by the previously

mentioned KPI’s. We find θ2−ζj and θ2+ζj in the equation, that are parts of

θ2j . θ
2−ζ
j has all the factors except the ζn factor, θ2+ζj has only the ζn factor,

without ζn itself.

ζn =

J∑
j=1

−(θ1j
[
Φ1
rj − Φ1

rQj

]
+ θ2−ζj

[
Φ0
rj − Φ0

rQj

]
+ θ3j )

θ2+ζj

[
Φ0
rj − Φ0

rQj

] βAnjÃcPnj

/ean
(5.45)

For an aggregate constraint based on a B derivative (B̃ and Ĩ) this be-

comes (5.46). In this equation we also see θ1−ζj and θ1+ζj , that are parts of

θ1j . θ
1−ζ
j has all the factors except the ζn factor, θ1+ζj has only the ζn factor,
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without ζn itself.

ζn =

J∑
j=1

−(θ1−ζj

[
Φ1
rj − Φ1

rQj

]
+ θ2j

[
Φ0
rj − Φ0

rQj

]
+ θ3j )

θ1+ζj

[
Φ1
rj − Φ1

rQj

] βBnjB̃cPnj

/ean
(5.46)

For the individual A derived constraints the Lagrange multipliers can

be determined by (5.47). See Appendix B.3.4.4 for the deduction of this

equation. We find θ2−ξj and θ2+ξj in the equation, that are parts of θ2j . θ
2−ξ
j

has all the factors except the ξoj factor, θ2+ξj has only the ξoj factor, without

ξoj itself.

ξoj =

−(θ1j
[
Φ1
rj − Φ1

rQj

]
+ θ2−ξj

[
Φ0
rj − Φ0

rQj

]
+ θ3j )

θ2+ξj

[
Φ0
rj − Φ0

rQj

] γAojÃcPoj

 /eio
(5.47)

For the individual B derived constraints the Lagrange multipliers can be

determined by (5.48). In this equation we also see θ1−ξj and θ1+ξj , that are

parts of θ1j . θ
1−ξ
j has all the factors except the ξoj factor, θ1+ξj has only the

ξoj factor, without ξoj itself.

ξoj =

−(θ1−ξj

[
Φ1
rj − Φ1

rQj

]
+ θ2j

[
Φ0
rj − Φ0

rQj

]
+ θ3j )

θ1+ξj

[
Φ1
rj − Φ1

rQj

] γBojB̃cPoj

 /eio
(5.48)



Multi-item inventory model and solution algorithms 5-11

5.4 Multi-item inventory algorithm

Contribution 13: MIIAC algorithm

MIIAC stands for multi-item inventory problems with aggregate con-

straint(s). We now will describe a general optimization algorithm for a

multi-item inventory model (5.1) with the goal function given by (5.19), the

aggregate constraints by (5.20) and with a possibility for individual con-

straints (5.21). The lower and upper bounds on the decision variables r and

Q can be included in the individual constraints. We assume that at least

one of the aggregate constraints are binding, if not they can be discarded

from the problem.

Our approach is based upon an iterative search method. Within this

algorithm we make multiple use of a procedure to calculate r and Q for

each item given a set of Lagrange variables (ζ1..ζn, ξ11..ξoj), this we call the

rQ-Lagrange procedure. When we refer to the complete set of Lagrange

multipliers we will notify this as (ζ, ξ) without indexes, when we write an

index, we refer to one specific Lagrange multiplier. We refer to this method

by rQ∗j (ζ, ξ). The accuracy of this model is set by the allowed error ε.

rmin, rmax, Qmin and Qmax are the lower and upper bounds on the decision

variables r and Q.

rQ-Lagrange procedure: rQ∗j (ζ, ξ)

1. Set Q0 = EOQ with (2.62) and r0 = 0

2. Set i = 1

3. Compute ri with (5.35) using Qi−1

4. If ri < rmin, set ri = rmin

5. If ri > rmax, set ri = rmax

6. Compute Qi with (5.36) using ri

7. If Qi < Qmin, set Qi = Qmin

8. If Qi > Qmax, set Qi = Qmax

9. If |Qi−Qi−1|≤ ε and |ri− ri−1|≤ ε go to step (11) else go to step (10)

10. Set i = i+ 1 and got to step (3)

11. Stop

The MIIAC algorithm is a search procedure for the correct set of La-

grange multipliers (ζ, ξ). Once these are found, we can determine the solu-

tion (r,Q) values with the rQ-Lagrange procedure. The MIIAC algorithm

first finds an upper and lower bound for each Lagrange multiplier. Using

a bi-section method we than successively find the multipliers for each ag-
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gregate and individual constraints. Repeating these steps converges to the

Lagrange multipliers solving our problem.

MIIAC algorithm

1. Initialize

(a) Set initial Q0 (2.62) and r0 (2.170) values for each item

(b) For n = 1..N calculate an upper ζ0+n and lower ζ0−n value, based

on two successive calculations of (5.45) or (5.46)

(c) For o = 1..O and j = 1..J calculate an upper ξ0+oj and lower ξ0−oj
value, based on two successive calculations of (5.47) or (5.48).

Exclude upper and lower bounds, these are directly included in

the procedure for rQ∗j (ζ, ξ).

(d) Check for feasibility: set all variables to lower bounds and check

aggregate constraints, do the same for upper bounds, if infeasible

go to step 5

2. Find aggregate constraint Lagrange multiplier(s)

(a) Set n = 1

(b) If gan(rQ∗j (ζ, ξ)) ≤ ean then set ζn = 0 and go to step (2.h) else

go to step (2.c)

(c) Set ζn = ζ0+n , if gan(rQ∗j (ζ, ξ)) ≤ ean then set ζ0+n = ζ0+n ∗ 2 and

repeat this step, else set ζ+n = ζ0+n
(d) Set ζn = ζ0−n , if gan(rQ∗j (ζ, ξ)) ≥ ean then set ζ0−n = ζ0−n /2 and

repeat this step, else set ζ−n = ζ0+n
(e) Set ζ∗n = (ζ+n + ζ−n )/2 and set ζn = ζ∗n
(f) If gan(rQ∗j (ζ, ξ)) ≤ ean then set ζ−n = ζ∗n else set set ζ+n = ζ∗n
(g) If |gan(rQ∗j (ζ, ξ)) − ean|≥ ε then go back to step (2.e) else go to

step (2.h)

(h) If n < N then set n = n+ 1 and go back to step (2.b) else go to

step (3)

3. Find individual constraints Lagrange multipliers

(a) Set o = 1 and set j = 1

(b) If gioj(rQ
∗
j (ζ, ξ)) ≤ eio then set ξoj = 0 and go to step (3.h) else

go to step (3.c)

(c) Set ξoj = ξ0+oj , if gio(rQ
∗
j (ζ, ξ)) ≤ eio then set ξ0+n = ξ0+n ∗ 2 and

repeat this step, else set ξ+io = ξ0+io
(d) Set ξoj = ξ0−oj , if gio(rQ

∗
j (ζ, ξ)) ≥ eio then set ξ0−n = ξ0−n /2 and

repeat this step, else set ξ−io = ξ0−io
(e) Set ξ∗io = (ξ+io + ξ−io)/2 and set ξio = ξ∗io
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(f) If gio(rQ
∗
j (ζ, ξ)) ≤ eio then set ξ−n = ξ∗n else set set ξ+n = ξ∗n

(g) If |gio(rQ∗j (ζ, ξ)) − eio|≥ ε then go back to step (3.e) else go to

step (3.h)

(h) If j < J then set j = j + 1 and go to step (3.b) else go to step

(3.h)

(i) If o < O then set o = o + 1 and go to step (3.b) else go to step

(4)

4. Check solution quality

(a) Set n = 1

(b) If |gan(rQ∗j (ζ, ξ)) − ean|≥ ε then go to step (4.d) else go to step

(4.c)

(c) If n < N then set n = n+ 1 and go back to step (4.b) else go to

step (5)

(d) Go back to step (2)

5. Stop

In the MIIAC algorithm we assume that the KPI increases as the La-

grange multiplier increases. If the KPI decreases as the Lagrange multiplier

increases, then bi-section method in the steps (2.c), (2.d) and (2.f) for the ag-

gregate constraint(s) and (3.c), (3.d) and (3.f) for the individual constraints

need to be reversed.
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5.5 Multi-item inventory heuristic

We now want to create an approximating heuristic for a specific case en-

countered very much in practice:

• Cost: only ordering costs k and holding costs h

• Aggregate constraint: Service level

• Individual constraint: minimum service level per item

5.5.1 Multi-item aggregate fill rate constraint analysis

The MIIAC algorithm can deal with a much wider range of scenarios then

the one we focus on here, but we focus on this specific set of goal function,

aggregate and individual constraint(s) due to its dominant presence in prac-

tice. We start from the data set and assumptions used in section 3.6. In

our formulations Cv(S2nl = 99.9%) is replaced with Cv(99.9%). In the next

figures we plot the following cost functions (Cv, C
a
v , C

b
v, C

c
v, C

d
v ) in respect to

the fill rate in case of normal demand S2nl. We used a large data set, but plot

here only ten items to keep a good oversight of the dynamics. We start from

the marginal cost per unit demanded given a certain fill rate S2: Cav (S2nl).

The expressions Cbv-C
d
v serve to find a general usable approximation that can

easily and generally be approximated with a simple function. In step 1 till

4 we rescale and reformulate the costs versus the fill rate. This brings us to

step 4 or Figure 5.4, where each of the lines are almost on top of each other.

In step 5, Figure 5.5, we create a very simple algebraic expression that is an

approximation of the curves from step 4. So basically we approximate the

curves in Figure 5.4 with one simple expression, seen in Figure 5.5. Here we

list the different steps:

1. Cv(S2nl) variable cost (2.142), Figure 5.1

2. Cav (S2nl) marginal variable cost (5.49) per unit of demand, Figure 5.2

3. Cbv(S2nl) reset marginal variable cost (5.50) per unit of demand, Figure

5.3

4. Ccv(S2nl) reset and normalized marginal variable cost ratio (5.51) per

unit of demand, Figure 5.4. So here we normalize each of the curves

so they all can be expressed in a % going from 0% till 100%

5. Cdv (S2nl) reset and normalized marginal variable cost ratio approxima-

tion (5.52) per unit of demand, Figure 5.5

The Figures 5.1 - 5.5 visually show how the Cdv function helps to approx-

imate the variable cost Cv for each S2nl.
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(5.49)
Cav (x2) ≈ ∂Cv(x2)

∂S2nl

1

λ

= lim
x1→0

[
Cv(x2)− Cv(x2 − x1)

x1

]
1

λ

Cbv(S2nl) = Cav (S2nl)− Cav (S2nl = 80%) (5.50)

Ccv(S2nl) =
Cbv(S2nl)

Cbv(S2nl = 99.9%)
(5.51)

Ccv(S2nl) ≈ Cdv = 1/[100 (1− (S2nl − 0.8)/0.199)] (5.52)

Figure 5.4 clearly shows a quite uniform relation over the different items

between S2nl and Ccv. Combining (5.50)-(5.52), and using some algebra

gives (5.53). In the same way we can use it to express S2nl in function of

the cost, see (5.54).

Cav (S2nl) ≈ Cev(S2nl) = Cav (60%) +
Cav (99.9%)− Cav (80%)

100 (1− (S2nl − 0.8)/0.199)
(5.53)

S2nl ≈ Se2nl = 0.8 + 0.199

[
1− Cav (99.9%)− Cav (80%)

100 [Cev(S2nl)− Cav (80%)]

]
(5.54)

We can now approximate the marginal costs Cav in (5.54) by using the

variable costs Cv, (5.55).

S2nl ≈ Sf2nl

= 0.8 + 0.199

[
1− [Cv(99.9%)− Cv(99.5%)]/0.4%− Cv(80%)/80%

100 [Cev(S2nl)− Cv(80%)/80%]

]
(5.55)

Rescaling the x-axis (S2nl) allows the use of the error reductions func-

tions. ScP (S2nl = 80%) is noted as ScP (80%), it represents the approximate

service level for a compound Poisson distribution when S2nl = 80%, making

use of the error corrections functions, see (3.48). We can now reformulate

(5.55) into (5.56).

(5.56)ScP ≈ ScP (0.8) + [ScP (0.999)− ScP (0.8)]

[
1

− [Cv(99.9%)− Cv(99.5%)]/[ScP (0.999)− ScP (0.8)]− Cv(80%)/ScP (0.8)

100 [Cev(S2nl)− Cv(80%)/ScP (0.8)]

]
The approximation function Cdv is at the heart of the heuristic that we

will work out in the next section. It simplifies the relationship between the
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variable cost and the fill rate: (5.56). We only need to compute three points

at the fill rates: 80%, 99.5% and 99.9%. All intermediate points can be

computed with (5.53).

80 % 85 % 90 % 95 % 100 %

1,000

2,000

3,000

S2nl

C
v

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10

Figure 5.1: Variable cost versus fill rate: Cv(S2nl)

80 % 85 % 90 % 95 % 100 %

20

40

60

80

100

S2nl

C
a v

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10

Figure 5.2: Marginal variable cost versus fill rate: Ca
v (S2nl)
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0
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40

60

80

100

S2nl
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b v
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Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10

Figure 5.3: Reset marginal variable cost versus fill rate: Cb
v(S2nl)

80 % 85 % 90 % 95 % 100 %
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40 %
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80 %
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S2nl

C
c v
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Item 3
Item 4
Item 5
Item 6
Item 7
Item 8
Item 9
Item 10

Figure 5.4: Reset and normalized marginal variable cost versus fill rate: Cc
v(S2nl)
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80 % 85 % 90 % 95 % 100 %

20 %

40 %

60 %

80 %

100 %

S2nl

C
d v

Figure 5.5: Reset and normalized marginal variable cost approximation versus fill
rate: Cd

v (S2nl)
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5.5.2 Multi-item inventory heuristic procedure

Contribution 14: MIISSC: Multi-item heuristic

Once we have a mathematical representation of the marginal cost per unit

at a given fill rate Cav (S2nl) (5.53), it opens the doors to apply a marginal

analysis, as it was used in a base-stock model, see section 2.4.4. Marginal

analysis considers the decrease in backorders by adding one unit to the target

stock level, while comparing with the cost of adding one unit for each item.

Here we apply the same principle.

You could imagine that we start with each item on the minimum service

level, e.g. 80%. Then we could ask how to invest one extra monetary unit.

The answer to this question is the item that will have the largest contribution

in increasing the system wide fill rate service level that is here defined as

the demand weighted service level. Figure 5.2 helps in understanding this

principle. We have plotted there 10 items and their marginal costs for one

extra item at each service level. If we set Cav = 20 we can see that for some

items we can have a service level of nearly 100%, while two items then have

a fill rate of respectively 82% and 92%. For one item we need to allow a

marginal cost of 44 in order to reach the individual minimum service level of

80%. Setting each item’s service level equal to the service level encountered

at the marginal cost line (e.g. 20 or another value), will reach the aim

we have in case of an aggregate service level constraint. Cheaper items

will have a higher service level than more expensive items. This can now

be translated in the MIISSC (Multi-item inventory problem with a system

service constraint) heuristic procedure. The goal is to iteratively find the

marginal cost Cav that will yield the desired aggregate service level, for some

items the cost may be higher as we also need to respect a minimum service

level per item. The interesting part on this approach is that we can use

the error reduction functions created for each of the types of service levels

in section 3.6.3. We can easily include the simple (δ1) or more complex

(δ2) error reduction functions applying equation (3.48) on the x-axis in our

examples. We write the heuristic for a general service level definition based

on the error reduction functions. ScP (S2 = 80%) refers to the service level for

compound Poisson demand based on error reduction and the normal demand

fill rate service level here equal to 80%. Using these error reduction functions

we can also determine the normal demand fill rate that corresponds with a

certain compound Poisson service level, we express this as: S2(ScP = 80%).

So the goal of MIISSC is: achieve a system wide service level SgoalcP and

also respect the minimum individual service level SmincP . The service level

definition takes into account the error reduction function.
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MIISSC heuristic

1. Initialize

(a) Set initial Q0 (2.62) and r0 (2.170) based on target service level

for each item

(b) Calculate Cvj(r
0, Q0) (2.142) for each item

(c) Set Ctotv =
∑J
j=1 Cvj and Λ =

∑J
j=1 λ

(d) Set initial system marginal cost Cev(1) = 0.5Ctotv /Λ

2. Find system marginal cost linked to aggregate fill rate

(a) Set iteration i = 1

(b) Set j = 1

(c) Set Caminvj = Cavj(S2nl(S
min
cP )) using (5.53)

(d) If Caminvj ≥ Cev(i) then set ScPj = SmincP and go to step (2f) else

go to step (2e)

(e) Set ScPj = SecPj using (5.56) and go to step (2f)

(f) If j < J then set j = j+ 1 and go to step (2c) else go to step (2g)

(g) Set SsyscP = (
∑J
j=1 λjScPj)/Λ and go to step (2h)

(h) If |SsyscP − S
goal
cP |≤ ε then go to step (3) else go to step (2i)

(i) If SsyscP > SgoalcP then set i+ = i and go to step (2l)

(j) If SsyscP < SgoalcP then set i− = i and go to step (2k)

(k) If i+ = 0 then set Cev(i+ 1) = Ceiv ∗ 2 and go to step (2n)

(l) If i− = 0 then set Cev(i+ 1) = Ceiv /2 and go to step (2n)

(m) Set Cev(i+ 1) = [Cev(i+) + Cev(i−)]/2 and go to step (2n)

(n) Set i = i+ 1 and go to step (2b)

3. Compute rj and Qj given S2j (See Rosling (2002b)), for j = 1..J and

go to step 4

4. Stop

The main advantage of MIISSC compared with MIIAC is that in MI-

ISSC only three service level points need to be calculated for each item for

the equations (5.53) and (5.56). All the other points are deducted from

the approximation (5.52), only requiring a simple algebra computation and

no extra statistical iterative steps. This reduces the number of necessary

intermediate computations and reduces calculation time. In the numerical

example in section 5.7 we will see that the MIISSC results closely match the

MIIAC results.
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5.6 General non-linear programming

Contribution 15: MIINLP: non-linear programming

In section 2.4 we have seen multiple examples where general optimization

engines are used to solve an approximated model representation. Some use

linear programming models (LP): see Niederhoff (2007), Zhou et al. (2008)

and Ghalebsaz-Jeddi et al. (2004). Others apply mixed integer programming

(MIP): Haksever and Moussourakis (2005). Also a quadratic programming

approach was used, see Abdel-Malek and Areeratchakul (2007). We once

encountered the use of non-linear solver used: Özler et al. (2009), but then

only for a problem with a very limited size (50 items).

We now use a non-linear mathematical programming approach for our

problem (5.1). We use the IPOPT (Interior point optimization) engine,

a software package for large-scale non-linear optimization. Wachter and

Biegler (2006) present IPOPT as a primal-dual interior point algorithm with

a filter line-search method for non-linear programming. They analyzed local

and global convergence properties and provide a comprehensive description

of the IPOPT algorithm. Heuristics are also considered in IPOPT to allow

faster performance.

We use as distributed optimization environment ’Optimization services’

(OS), see Fourer et al. (2010), in which solvers, modeling languages and an-

alyzers are implemented as services under a unified network. Standards are

defined for all necessary activities: representation of optimization instances,

results and solver options. It offers the big advantage that it can address

different solvers from one point and that it has a uniform modeling language.

For our inventory model it allows to use specific non-linear expressions, we

are more precisely interested in the normal statistical distributions. The

normal cumulative functions were not yet available, but the error function

was. We can then use this error function to represent the normal cumulative

distribution function, see (2.39), and from there we can use this function

to represent the standard normal first and second order loss function, see

(2.41) and (2.42). OS integrates the Vedder (1987) implementation of the

error function.

We were able to model and solve our problem for large scale instances. So

it is possible to use these general non-linear optimization engines for real-life

cases. MIINLP approaches the MIIAC quality, but it is slower, on the other

hand MIINLP is more versatile.
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5.7 Numerical example

Example 5.2 Multi item problem, single item solution

As an example we will start with a very simple three item example to

show the benefits of the several contributions made in this dissertation.

Input Item1 Item2 Item3 Input Item1 Item2 Item3

λ 40 20 20 f1 5% 40% 100%
h 20 250 70 f2 10% 20% 0%
k 80 80 80 f3 15% 10% 0%
b 0 0 0 f4 20% 30% 0%
L 0.1 0.1 0.1 f5 15% 0% 0%
ν 4 2 4 f6 10% 0% 0%
σ2 24.08 6 4 f7 10% 0% 0%
τ 8.2 8.7 20 f8 5% 0% 0%
χ 4.9 2.3 1 f9 5% 0% 0%
a 0 0 0 f10 5% 0% 0%
p 0 0 0

Table 5.1: Example 5.2: Multi-item example

Consider a situation where we want an aggregate demand weighted order

line service level of 94%, where the individual order line service level can be

no lower than 80%. We now use five methods to solve this:

1. Individual fill rate (94%) as approximation, normal demand

2. Individual order line (94%), compound Poisson demand

3. MIIAC: Aggregate order line (94%), normal demand

4. MIISSC: Aggregate order line (94%), normal demand

5. MIINLPC: Aggregate order line (94%), normal demand

In practice method 1 is used most often, order line is simply replaced

with the fill rate service level. Method 1 and 2 apply an individual ap-

proach, setting an identical individual target to each item. Only method 2

uses a discrete distribution. All the other methods are based on a normal

distribution, so for each of these found (r,Q) solutions we need to perform

a rounding step. This step will induce a deviation on the result. Method 3,

4 and 5 have a system approach, the goal is to reach 94% order line service

level, while preventing individual order line service levels below 80%. In

method 3, 4 and 5 we use the error reduction functions to mimic the order

line service level. Each of these methods will yield for each item an r and

Q value, see table 5.2. For MIIAC and MIINLP we see the same results,

this should be no surprise, both methods have the same model formulation,
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MIIAC uses Lagrange multipliers to solve it, while MIINLP applies interior

point optimization. MIISSC also has the same model formulation as method

3 and 5, but the heuristic does not guarantee the optimal solution.

Item1 Item2 Item3
Method r Q r Q r Q

1: Ind Nl S2 5 22 3 5 4 11
2: Ind cP SOL 9 31 6 6 4 11
3: MIIAC SOL 12 20 3 5 6 11
4: MIISSC SOL 13 20 3 5 6 11
5: MIINLP SOL 12 20 3 5 6 11

Table 5.2: Example 5.2: Multi-item approach, r and Q values

For each of the found and rounded r and Q values we calculated the

exact SOL service level in case of compound Poisson demand, see table in

5.3.

Method Item1 Item2 Item3 Weighted average Cost

1: Ind Nl S2 83.3% 78.5% 92.9% 86.2% 2.459
2: Ind cP SOL 94.5% 94.6% 92.9% 93.9 % 3.369
3: MIIAC SOL 95.6% 78.5% 98.2% 93.2 % 2.727
4: MIISSC SOL 96.5% 78.5% 98.2% 93.6 % 2.747
5: MIINLP SOL 95.6% 78.5% 98.2% 93.2 % 2.727

Table 5.3: Example 5.2: Multi-item example, exact SOL and cost

1 2 3 4 5
80 %

85 %

90 %

95 %

100 %

Method

Weighted SOL multi-item

1 2 3 4 5
2,000

2,500

3,000

3,500

Method

Costs

Figure 5.6: Example 5.2: Multi-item Weighted SOL and Cv

Method 1 completely fails and the SOL compound Poisson service level

lies 8% below what was desired, and hence the cost is obviously lower. Due
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to the discrete distribution aspect we see in method 2 that the exact 94%

service level cannot be reached in method 2, for item 1 and 2 it is over 94%,

while for item 3 it is lower, the weighted average is 93.9%. For method 3,

4 and 5 we do not respect the individual minimum service level of 80% for

item 2, this is because the SOL error reduction function still has a 1.5% error

gap. MIIAC, MIISC and MIINLP are less than 1% below the 94% target,

and the cost has a reduction of 18%, compared with method 2.

Example 5.3 MIIAC sensitivity analysis

In Figure 5.7 we show the costs of an individual item approach (method

2 out the previous example) and for a system approach (MIIAC method 3

out the previous example). We analyze the cost impact when shifting the

target aggregate order line service level from 80% up to 98%. As we have

set a minimum individual service level of 80%, it is logic there is no cost

difference at 80%. In the theoretical case of 100% or when approaching

100% there will be no cost difference either, as each item will need a service

level of 100%.

80 % 85 % 90 % 95 %
2,000

2,500

3,000

3,500

4,000

SOL

C
o
st

individual approach
system approach MIIAC

Figure 5.7: Example 5.2: MIIAC cost sensitivity analysis

In Figure 5.8 the relative cost savings for MIIAC compared with an

individual approach are plotted. We know that at 80% and near 100% this

is 0%. But now we can see that in our simple example the cost difference goes

up to nearly 20% at SOL = 96%. From there on the cost savings decrease

again very rapidly. But the major interest here is to see that the MIIAC

method combined with the error reduction function allows to have reliable

service levels and significant cost savings (12%-19%) in the range of service

levels used very often in practice: between 90% and 98%.
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Figure 5.8: Example 5.2: MIIAC cost savings

5.8 Performance

In order to get an indication of the speed we did a small test case with 10,

100, 500 and 1.000 items. The problem had one aggregate service constraint

and also individual service constraints. We solved theses cases with MIIAC,

MIISSC and MIINLP. The results are given in Table 5.4.

Method 10 items 100 items 500 items 1.000 items

MIISSC 0.05 0.22 1.15 2.19
MIIAC 0.21 1.17 5.34 10.67

MIINLP 0.01 4.10 181.18 1265.53

Table 5.4: Performance multi-item methods: computation time in seconds

200 400 600 800 1,000

2

4

6

8

10

Number of items

C
al

cu
la

ti
on

ti
m

e
(s

ec
on

d
s)

MIAAC
MIISSC

200 400 600 800 1,000
0

200

400

600

800

1,000

1,200

Number of items

MIINLP

Figure 5.9: Performance multi-item solution methods
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Figure 5.9 clearly shows that the calculation time for MIIAC and MIISSC

grows linear with the number of items. The calculation time for MIISSC is

20% of the one needed for MIIAC. For the MIINLP the calculation time

increases rather polynomial or exponentially. So MIISSC is 600 times faster

than MIINLP for an instance of 1 000 items.

5.9 New contributions

We developed three methods for solving multi-item inventory problems with

one or multiple aggregate and individual constraints.

The MIIAC algorithm is a general approach for a multi-item inventory

problem with aggregate constraints. MIIAC makes use of Lagrange multi-

pliers. MIIAC efficiently and effectively solves real and complex inventory

situations in a calculation time that increases linear with the number of

items. See contribution 13.

We developed a heuristic for a specific multi-item inventory problem with

one aggregate constraint on a system service level and also an individual

service constraint per item: MIISSC. Although less versatile than MIIAC,

it is 5 times faster. See contribution 14.

We showed that real life large and complex multi-item inventory cases

can be solved in non-linear mathematical programming engines (MIINLP).

Making use of ’Optimization services’ we could integrate the necessary sta-

tistical functions. This MIINLP approach has the advantage being even

more flexible than MIIAC, the MIINLP computation time is higher than for

MIISSC and MIIAC and it also increases much more rapidly with increasing

number of items. See contribution 15.

5.10 Conclusions

Multi-item inventory models with aggregate constraint(s) were out of reach

of inventory managers, but we made a step at closing the gap. So now they

can benefit from the significant cost savings from a system approach on the

one hand, but are also capable to integrate aggregate constraints such as

investment, workforce, system service level or warehouse space. Depending

on the needs we offer three approaches with different flavors of versatility and

efficiency. All three can be combined with the error reduction functions, so

guaranteeing a good match with Poisson and compound Poisson processes.
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Real life cases

In this chapter we give two real life cases. The first is a wholesaler en-

vironment where we want to maximize the service level but where we are

confronted with an investment and warehouse constraint. The MIIAC al-

gorithm is used to solve this. The second case deals with a spare parts

warehouse with a wish to reduce cost but maintain the service level. The

MIISSC heuristic is used to optimize costs under given constraints. In both

cases we can see a significant improvement using a system approach over an

individual item approach.
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6.1 A wholesaler case study

We will apply the MIIAC algorithm to deal with a multi-product inventory

problem with an aggregate constraint. The wholesaler in this case supplies

the pharmacies within a predefined region. An order from the pharmacist

given in the morning over the internet is delivered in the afternoon. The

company has a portfolio of 26.000 stock keeping units (SKU) and an average

of 43.500 customer order lines per day with on average only 1,59 pieces per

order line. As the sales margin is under pressure, the company felt the need

to lower the inventory costs two years ago, but also to improve the fill rate

service level, which was lower than the target of 97,5 %. The reasons for

the reduced service level were the unpredictable customer demand pattern,

the supplier reliability and quality of the products. At the same time the

company was confronted with a rapidly increasing number of SKU’s and

a limited available warehouse space. This meant that in practice ad hoc

solutions needed to be found to deal with the shortage of available warehouse

space. A high service level is very important in this highly competitive

market.

We will compare three scenario’s:

1. AS IS: the original r and Q values

2. ABC: r and Q resulting from an ABC-categorized item optimization

3. MIIAC: r and Q values given by the MIIAC algorithm

For each of these scenario’s we compute S2 and I based upon (3.5) and

(3.7). Scenario 1 uses the r and Q values that existed, for each item the fill

rate S2 and the average investment cost was calculated. This resulted in an

average system fill rate of 96.7%.

In scenario 2 the company applied a differentiated item level computa-

tion. The order quantity Q was the EOQ (2.62). Based upon this order

quantity a reorder point value r was computed with (3.5). An ABC revenue

analysis was made to set a higher service level of 99,50% fill rate to the A

category, 98% tot the B category items and 96% to the C category items.

The A category comprises the fast movers, while the C-category is a set

of slow movers. By going towards a fill rate based safety stock calculation

that is differentiated over the items using an ABC analysis the investment

reduces with 12% while reaching a system fill rate of 97,5%. As the needed

space for inventory did not decrease, there was still a warehouse space issue.

In scenario 3, the company was looking to further optimize their inven-

tory, but more importantly they were still confronted with the limited ware-

house space. So in scenario 3 a system approach was used. As the wholesaler

has an (r,Q) policy and the goal is to maximize the demand weighted fill rate
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system service level (6.1a) given an inventory budget and the available ware-

house space, the MIIAC algorithm was used. In the aggregate investment

constraint (6.1b) we introduced the purchase cost (cj), as the cost may differ

significantly over the items. The warehouse space constraint is (6.1c) where

wj is the space required by item j. This aggregate warehouse space constraint

is based upon the average used warehouse space and not the maximum used

warehouse space. When focusing on the maximum used warehouse space,

the problem is called the ’replenishment staggering problem’. This is much

more difficult to solve. This replenishment staggering problem is discussed in

section 2.4.1. The staggering problem can also be solved using a Lagrangian

approach, but a ’normalizing factor’ must be applied in the right hand side

of the constraint, so in e2. We computed e2 by stating that the average

inventory space in scenario 3 must be 10% smaller than the average inven-

tory space in scenario 1, where we knew there was not enough space. This

was based upon the warehouse manager’s experience that a 10% decrease in

needed space will be sufficient.

(6.1a)Maximize f(x) =

J∑
j=1

λjS2j

(6.1b)Subject to g1(x) =

J∑
j=1

cjIj ≤ e1

(6.1c)g2(x) =

J∑
j=1

wjIj ≤ e2

Scenario Service level S2 Investment Decrease Space

1: AS IS 96.7% 12.486.953 0% 7
2: ABC 97.5% 10.986.844 12% 7
3: MIIAC 97.5% 10.350.000 17% 3

Table 6.1: Case 1: service levels and inventory costs

Using the MIIAC approach it is possible to create an optimal policy

curve that indicates the maximum fill rate system service level for a certain

inventory investment where the available warehouse space is not neglected.

This system approach resulted in an additional 5% reduction in necessary

inventory investment, or a 17% reduction versus the initial situation, while

attaining the same system fill rate of 97,5%. It was also shown that a higher

system fill rate of 98,5% can be reached if the inventory investment is not to

be reduced. But even more important is the fact that these solutions already

take into account the available warehouse space.
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Figure 6.1: Spare parts case: service level and costs: 4 scenarios

In this case study we saw that an item approach combined with an ABC

analysis (scenario 2) was able to reduce the inventory investment while at-

taining the target fill rate, but was unable to incorporate the limited ware-

house space at the same time. When applying a MIIAC system approach,

in scenario 3, both aggregate constraints, investment and warehouse space,

can be satisfied and further cost or service improvement can be realized.

Before we started the creation of the scenarios, the main idea was to cre-

ate a business case to ask management’s approval for a warehouse expansion.

This was still the conviction after seeing the results of scenario 2, although

it gave the target service level and a better cost, we could also see that the

needed warehouse space had not decreased. So there was still a need for

costly warehouse expansion. Scenario 3 although provided the unexpected

breakthrough. Now it was possible to include a warehouse space constraint,

leading to a solution that will fit within the existing walls. The main expec-

tation was that the service level target would no longer be reachable. It is

here that the big surprise came. The MIIAC parameters were set so that

the individual fill rates could be not lower than 90%. So there were now two

big differences with scenario 2:

1. We allowed a bigger variance of fill rate over the items: 90%-99.99%

(scenario 3) in stead of 96%-99.5% (scenario 2)

2. Within the range 90%-99.99% every value was possible in scenario 3,

while in scenario 2 only 3 values were possible: 96%, 98% and 99.5%

and the allocation was made on a rule of thumb

So in the next board meeting the following message could be brought:

The awaited warehouse investment can be postponed, while we will be able

to increase fill rate up to target!
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6.2 Spare parts case

In this case we look at a company that is a diversified supplier of products

and services for industry. As quality and reliability is key in the company’s

strategy, they want to see this also applied in their inventory management.

From the site we analyzed they provide the European and African market

with spare parts for their products. Headquarters has clear directives in

decreasing inventory costs. This was the main reason to analyze and improve

their inventory parameter settings.

We consider a portfolio of nearly 40 000 items. More than half of these

items can be considered as slow moving items or as lumpy demand, where

demand is zero most of the time. About 25% of the items can be seen as

a steady demand, while another 15% has a quite large demand but with a

large variation. We will consider the following four scenarios:

1. AS IS scenario: these are the r and Q values used before we started

this exercise

2. Single item r optimization, only r is considered for change. It was

asked to only adapt the safety stock. Q was to be the same as in

scenario 1. r was adapted based upon an in-house software package,

the equations were unknown.

3. Single item r and Q optimization: using corrected (r,Q) equations, see

section 3.3.1

4. MIISSC heuristic: system optimization of r and Q values

We will use the S2 definition (3.9) to evaluate the service level for each of

the four scenarios, without error reduction functions. Currently in scenario

1 the demand weighted service level is 99.38% with a cost of 6.4 million.

The question was to decrease this inventory cost. The used cost param-

eters are: h = 0.17c, k = 25. There is a wide range in the purchase cost c,

varying from 0.01, for the cheapest item, to over 100.000 for the most ex-

pensive item. Management wants to maintain the current service, but feels

the need to decrease costs. Cost for each scenario is based upon (3.7) and

(3.10).

For each of the scenarios we show the service level and the inventory cost,

see table 6.2 and Figure 6.2.

Scenario 2 represents the initial question asked, to optimize solely the

safety stocks. The safety stock is the reorder point plus the demand during

lead time. So the only parameter we could adapt is the reorder point r. It

was believed that the cost was mainly due to the safety stock, and not to

the cycle stock, which is the result of the order quantities. We will see in the

results that this is clearly a misconception. Recomputing the reorder point
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with their software system, while maintaining Q, succeeds in reducing the

inventory cost with 23%, the fill rate even increases up to 99.98%.

Scenario S2 Cost Decrease

1: AS IS 99.38% 6.447.016 0%
2: Single item r optimization 99.98% 4.941.287 23%
3: Single item r & Q optimization 99.35% 2.793.448 57%
4: MIISSC 99.35% 1.848.510 71%

Table 6.2: Case 2: service levels and inventory costs
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Figure 6.2: Spare parts case: service level and costs: 4 scenarios

Scenario 3 also changes the order quantities, where we simultaneously

optimize the r and Q values achieving the identical service level for each item.

We convinced the company to create this additional scenario as we knew its

potential. This scenario 3 results in a cost reduction of 57% compared with

the AS IS scenario. Compared with scenario 2, we see a 43% cost reduction.

The achieved service level is 99.35%, this was set as goal, as no service

level decrease compared with AS IS was acceptable for management. In this

scenario each item has an individual service level constraint of S2 = 99.35%.

So we can conclude here that the current order quantities are definitely

not optimized. While initially everybody was strongly convinced that the

order quantities could definitely not change, as they were the results of long

negotiations over the past years, this was no longer the case when the results

of scenario 3 were shown. Renegotiating the order quantities was now seen a

business case of 1.2 million, being the difference between the cost in scenario

2 and 3. So some effort could be made to come closer to the optimal order

quantities. The company also was given a priority list, as we could indicate

the top 100 items where most of the cost difference was situated.
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So scenario 2 and 3 tells us that the AS IS situation is not optimized.

Taking first steps on single-item level gives a huge improvement. It must be

said that this situation is unfortunately not uncommon in practice.

In scenario 4 we even took it one step further and used the MIISSC

heuristic. Although it was clear that management would move from scenario

1 to a mix of scenario 2 and scenario 3: for most items the Q value will not

change in the near future, only for the top 100 items negotiations will be

started. We explained that differentiating the service levels over the items

had another untouched potential. In order to estimate the potential benefit

we also calculated these costs and service levels. MIISC results in a service

level differentiation over the different items, see Figure 6.3. Nearly 50% of

the items end up with a service level between 99% and 100%, we also see that

12% of items have a service level of 80%, which we had set as the minimum

individual service level. The overall demand weighted service level is again

99.35% as in scenario 3.
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0 %

10 %

20 %

30 %

40 %

50 %

S2 individual service level

%
of

it
em

s

MIISSC diversified service level

Figure 6.3: Spare parts case: MIISSC diversified service level

Realizing the cost savings from scenario 2, 3 and 4 will ask time, as

current stocks need to descend to the new targets in a natural way. For

items where this may take too long (up to five years and more), it can be

decided to scrap certain stock.

The costs in scenario 4 further decrease with 0.9 million and we end

up with a 71% cost decrease compared with the current AS IS situation.

Compared with scenario 3 we have a 34% cost reduction, while having the
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same overall demand weighted service level of 99.35%. Management was

surprised that a further decrease would be possible, but nevertheless they

considered this as unreachable for the moment.

So our conclusion here is that the current AS IS situation (scenario 1)

has a very high cost for the achieved service level. Optimizing the safety

stocks with their in-house software system, while still using the AS IS order

quantities, can decrease the cost already significantly, but it leads to a fill

rate higher than necessary (scenario 2). With scenario 3 we could explain

that a combined optimization of r and Q will realize a cost less than half of

the original, so we must state that re-evaluating the order quantities is at

order, especially for the ’top 100’ products. It was clear for management that

renegotiating these order quantities was a necessity. Finally we demonstrated

the MIISC heuristic as a system approach in scenario 4, differentiating the

service level over the different items between 80% and 100%, which can

realize a further cost benefit of 34% compared with scenario 3.

6.3 Conclusion

We have given two real life examples where we used a system approach. In

practice we start from the current situation and first perform an individ-

ual item analysis and optimization, because this gives already a first result

improvement. It is also a necessary step to convince the companies. This

intermediate step also helps them to understand the additional value of a

system approach. In our first case the system approach gave an additional

5% reduction in necessary inventory investment, knowing that a manual di-

versification was already applied. But more importantly we were able to

integrate the warehouse space constraint in our solution.

In our second case we could realize an additional 34% cost reduction,

going from an individual to a system approach. We can conclude that these

efficiency gains are really appealing to inventory managers, but it requires

the necessary time and intermediate steps to convince them.
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Within a broad range of situations we see a practical need for an inventory

system approach, rather than an item approach. This enables managers to

realize their goals with an optimal mix between cost and service while con-

fronted with limited resources such as workspace, workforce or investment.

7.1 Contributions

Throughout this dissertation we made several contributions to solve the

multi-item inventory problem with aggregate constraint(s) and/or individual

constraints more effectively, more accurately and more efficiently. Here is an

overview of these contributions:

1. A comprehensive annotated literature review of multi-item inventory

models, see contribution 1.

2. An order line service level: We provided equations for the popular

order line service level in case of base-stock, (r,Q) and (s, S) policy,

see contributions 2, 3 and 4.

3. Corrected and simplified (r,Q) KPI equations. We worked out a more

accurate set of normal demand (r,Q) policy KPI’s, especially average

inventory and backorders profit greatly, see contribution 5. We devel-

oped an easy condition to check whether simplified equations can be

used, without the risk of significant accuracy loss, see contribution 6.
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4. (r,Q) and (s, S) KPI error analysis and error reduction functions. We

provided an analysis of the approximation errors while using a nor-

mal demand (r,Q) approximation for a Poisson or compound Poisson

demand (r,Q) or (s, S) policy. We established errors up to 60% for

order line service level, see contribution 7. Based upon this analysis we

created significantly improved approximation functions for the Poisson

and compound Poisson exact KPI’s based upon a normal distribution.

This has the major benefit that we can still apply the simpler normal

demand functions while having acceptable and significantly reduced

errors. The average error in our realistic data set drops from more

than 2% to 0.5% and less. The maximum error drops from 40%-50%

to 5%. See contribution 8.

5. Closed form approximations for standard normal loss functions. We

created the SN1OLF, SN2OLF, ISN1OLF and ISN2OLF algorithms.

These are double precision rational approximations for respectively the

standard normal first and second order loss function and their inverse

functions. As these functions are in the core of inventory management

in case of normal demand, these functions have a direct beneficial

impact on the computation time. See contributions 9, 10, 11 and 12.

6. Multi-item aggregate constrained inventory solution methods. We cre-

ated three methods for solving multi-item inventory problems. The

MIIAC algorithm is a general approach for a multi-item inventory

problem with aggregate and individual constraints making use of La-

grange multipliers, see contribution 13. MIISSC is a heuristic for a

specific multi-item inventory problem with one aggregate and individ-

ual constraint on a system service level, see contribution 14. We also

showed that real life large and complex multi-item inventory cases can

be solved in non-linear mathematical programming engines (MIINLP),

see contribution 15.

7.2 Future research

We realize that these results were only possible due to previous break-

throughs. Therefore we are also aware that these results are also only an

intermediate step to the next scientific contributions.

The assumptions used for the creation of the error reduction functions,

see section 3.6.1, can be changed to cover a broader set of scenarios. As such

it can also be established when corrections are not needed, due to very small

differences.

The closed form approximations for the standard normal loss functions

can be used to create closed form functions directly solving equations (7.1)
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and (7.2). [
Φ1 (z)− Φ1 (z + zc)− c

]
= 0 (7.1)

a
[
Φ1 (z)− Φ1 (z + zc)

]
+ b

[
Φ0 (z)− Φ0 (z + zc)

]
− c = 0 (7.2)

Finally we think that additional heuristics can be created for special

conditions, in a way as MIISSC is a heuristic for a special condition. We

think this has a direct benefit, because in practice these will be welcomed

due to higher simplicity in implementation.
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A
Approximation functions and

parameters

A.1 Remez algorithm

In section 2.2.1 we briefly introduced the Remez, here we give some more

insights in the Remez algorithm. The minimax rational function R(x) is

defined to be the function that yields the smallest maximal value of the

error function. Chebyshev showed that there is a unique minimax solution

for R(x) that has the following properties (Ralston and Rabinowitz (2001)):

• If R(x) is a polynomial of degree N , then there are N + 2 unknowns:

the N + 1 coefficients of the polynomial, and maximal value of the

error function.

• The error function has N + 1 roots, and N + 2 extrema (minima and

maxima).

• The extrema alternate in sign, and all have the same magnitude.

If we know the location of the extrema of the error function ε then we can

write N + 2 simultaneous equations where ε is the maximal error term, and

xi are the abscissa values of the N + 2 extrema of the error function. It

is then trivial to solve the simultaneous equations to obtain the polynomial

coefficients and the error term (A.1).
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R(xi) + (−1)iε = f(xi) where i = 1..N + 2 (A.1)

The Remez algorithms are discussed in DeVore and Lorentz (1993) and

Ralston and Rabinowitz (2001). The Remez method is an iterative technique

which, given a broad range of assumptions, will converge on the extrema of

the error function, and therefore will give the minimax solution. Before

we can begin the Remez method, we must obtain an initial value for the

location of the extrema of the error function. We could ”guess” these, but

a much closer first approximation can be obtained by first constructing an

interpolated polynomial approximation to f(x). In order to obtain the N+1

coefficients of the interpolated polynomial we need N + 1 points (x0...xN ),

with our interpolated form passing through each of those points that yields

N+1 simultaneous equations:

f(xi) = P (xi) = c0 + c1xi...+ cNx
N
i (A.2)

Which can be solved for the coefficients c0...cN in P (x). Obviously this

is not a minimax solution, indeed our only guarantee is that f(x) and P (x)

touch at N + 1 locations, away from those points the error may be arbi-

trarily large. However, we would clearly like this initial approximation to

be as close to f(x) as possible, and it turns out that using the zeros of an

orthogonal polynomial as the initial interpolation points is a good choice.

We use the zeros of a Chebyshev polynomial as these are particularly easy

to calculate, these are the Chebyshev nodes. We prefer these Chebyshev

nodes above equidistant nodes, as equidistant nodes produce the Runge ef-

fect. This Runge phenomenon is an oscillation at the interval borders in case

of high degree polynomial interpolation, see Ralston and Rabinowitz (2001).

Next there are two steps that are executed iteratively until the control points

are located at the extrema of the error function, and then we have found the

minimax solution. These two steps are:

1. Obtain the error term ε and the coefficients of P (x)

2. Locate the extrema of the new approximation P (x) from the previous

step

This method can be extended to a rational approximation (A.3). P (x)

and Q(x) are polynomials and then we proceed as before, except that now

we have N + M + 2 unknowns if P (x) is of order N and Q(x) is of order

M . This assumes that Q(x) is normalized so that its leading coefficient is

1, giving N + M + 1 polynomial coefficients in total, plus the error term ε.

However now the equations become non-linear for the error term ε, which
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complicates the solution method as we need to solve the set of non-linear

equations iteratively until a stable value for ε is found.

f(x) = R(x) =
P (x)

Q(x)
(A.3)

A.2 Error reduction functions tables

A.2.1 Maximum and average errors

Scenarios

KPI 1 2 3 4a 4b 5a 5b 6a 6b

IrQ 50,84% 50,84% 2,56%
IsS 50,84% 50,84% 19,02% 7% 7% 7% 7% 4,5% 4,5%
BrQ 100% 18,74% 24,71% 10% 10% 6% 6% 4% 4%
BsS 100% 18,69% 24,65% 10% 10% 7% 7% 4% 4%
OFsS 390% 200% 200% 35% 35%
S3rQ 100% 7,04% 9,2% 6% 6% 4,5% 4,5% 3% 3%
S3sS 100% 11,72% 9,2% 6% 6% 5% 5% 3% 3%
S2rQ 58,2% 12,39% 14,8% 8% 8% 5% 5% 5% 5%
S2sS 58,2% 12,39% 14,8% 8% 8% 7% 7% 7% 6,37%
SOLrQ 44,61% 16,17% 16,8% 8% 8% 6% 6% 6% 6%
SOLsS 44,61% 14,81% 15,9% 8% 8% 6% 6% 5,5% 5,5%

Table A.1: Maximum errors εmax|I|, εmax|B| & εmax|S|: Scenarios 1-6

Scenarios

KPI 1 2 3 4a 4b 5a 5b 6a 6b

IrQ 3,99% 4,12% 0,33%
IsS 6,84% 6,77% 3,2% 1,39% 1,25% 1,21% 1,09% 0,85% 0,66%
BrQ 5,32% 3,63% 4,36% 2,33% 1,87% 1,53% 1,16% 1,16% 0,76%
BsS 4,74% 2,84% 3,61% 2,92% 2,22% 1,75% 1,28% 1,14% 0,7%
OFsS 11.93% 5.74% 5.35% 3.45% 1.73%
S3rQ 2,42% 0,66% 1,08% 0,59% 0,57% 0,51% 0,44% 0,41% 0,3%
S3sS 2,51% 0,7% 0,73% 0,68% 0,59% 0,45% 0,42% 0,4% 0,31%
S2rQ 2,22% 1,8% 2,21% 0,89% 0,83% 0,73% 0,57% 0,56% 0,43%
S2sS 1,92% 1,51% 1,93% 0,89% 0,82% 0,75% 0,56% 0,52% 0,39%
SOLrQ 2,4% 2,2% 2,58% 1,28% 1,15% 1,13% 0,78% 0,74% 0,65%
SOLsS 2,07% 1,9% 2,27% 1,22% 1,08% 0,94% 0,77% 0,73% 0,61%

Table A.2: Average errors εavg|I|, εavg|B| & εavg|S|: Scenarios 1-6

A.2.2 Error reduction function parameters

In order to calculate the error reduction functions we use (3.48)-(3.51). We

need to calculate pa, pb and pc using

• (3.52)-(3.54) for I, B and the service levels S

• (3.55)-(3.57) for OF

In the following tables we give the pa1 − pa9, pb1 − pb13 and pc1 − pc13
values for δS2, δS3, δSOL, δI , δB and δOF for an (r,Q) and (s, S) policy.
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A
p
p
e
n
d
ix

A

Param s2sS δ1a s2sS δ1b s2sS δ2a s2sS δ2b s2sS δ3b s2sS δ3a

pa1 0 0 0,62079872 0,1599473 1,0798454 1,3967634
pa2 0 0 0,12802276 -0,57096543 0,91040687 1,323997
pa3 0 0 -20,034212 0,72213321 -5,378452 -9,5274545
pa4 0 0 -49,531247 -40,017852 -28,399061 -36,045843
pa5 0 0 -3,1482104 -3,2059023 -2,9431094 -5,1367495
pa6 0 0 36,026886 -12,801874 0,59132196 9,0097137
pa7 0 0 36,703659 55,768683 34,372128 38,424411
pa8 0 0 0 0 -0,14036164 -0,1395666
pa9 0 0 0 0 -0,91854392 -1,1488489
pb1 -0,02611578 -0,074707104 -0,090256163 -0,072040932 -0,15649184 -0,17234494
pb2 -0,39295316 -0,088121154 0 -0,043230975 -0,11692107 -0,13102561
pb3 4,4158436 2,7172644 4,0626909 2,8118799 2,6979054 3,0054568
pb4 0 0,0019196106 0 0,0011752242 0,00082906157 0
pb5 0,019977146 0,0048107489 0 0,0049695396 0,0017346291 0
pb6 2,1137474 1,6672442 5,5701984 4,4659515 3,7824873 5,1203535
pb7 -0,10157257 0,0091226001 0 0,032904793 0,036329303 0
pb8 -7,410916 -2,8350503 -5,7912643 -2,5199876 -2,1401526 -2,9176387
pb9 2,6837517 -0,026093258 -2,4261323 -3,280375 -2,7530877 -3,214286
pb10 0 0 0 0 0,0078792799 0
pb11 0 0 0 0 0,094479321 0,12325378
pb12 0 0 0 0 0,33400085 -0,51776544
pb13 0 0 0 0 -0,19454628 0,50003518
pc1 0 -0,063525496 0 -0,0071437738 -0,00227371 0
pc2 0 0,00077584365 0 0,00026803271 -0,00021250232 0
pc3 0 0,000094147634 0 -0,000055976107 -0,000064628204 0
pc4 0 -0,000035129026 0 0,00000030004384 -0,00000097659247 0
pc5 0 -0,037811223 0 -0,0083671567 -0,0070232835 0
pc6 0 0,027375788 0 0,0062666771 0,0045740367 0
pc7 0 0,0002613652 0 0,010794375 0,0046186448 0
pc8 -0,0029257815 0,038203518 0 -0,0012884843 0,0047034847 0
pc9 0,013107402 0,046439026 0 0,0031299817 0,0036350312 0
pc10 0 0,0010210386 0 0,0024085224 0,0024714804 0
pc11 0 -0,0084033388 0 -0,0027621457 -0,0017252219 0
pc12 0 0 0 0 -0,00046685486 0
pc13 0 0 0 0 0,000023300055 0

Table A.3: Error reduction function parameters S2 (s, S)
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Param s2rQ δ1b s2rQ δ1a s2rQ δ2b s2rQ δ2a s2rQ δ3b s2rQ δ3a

pa1 0 0 0,319345 0,58264678 1,3068164 2,2438518
pa2 0 0 -0,14218018 0,71534621 1,1916032 2,1018105
pa3 0 0 -7,8907152 -27,110399 -5,69654 -22,308692
pa4 0 0 -59,762032 -48,817051 -56,129956 -34,142493
pa5 0 0 -10,355889 -23,213402 -9,2795231 -19,960706
pa6 0 0 5,0696127 58,796136 -3,3440988 25,930044
pa7 0 0 72,099316 40,0512 71,648701 45,059747
pa8 0 0 0 0 -0,21660837 -0,21502194
pa9 0 0 0 0 -1,1380356 -1,6803797
pb1 -0,093056357 -0,025548024 -0,11393864 -0,084645242 -0,18721526 -0,2032524
pb2 0,04867344 0,024706683 -0,12417076 -0,094639771 -0,19038537 -0,1325155
pb3 2,6715921 1,8876832 4,6291679 5,4161753 4,0641117 4,388622
pb4 0,0020777944 0 0,0016722105 0 0,0017622894 0
pb5 -0,0040073297 0 0,0057130999 0 0,0051953383 0
pb6 1,6447414 2,6554164 6,1509592 6,6159906 6,0273045 4,7483159
pb7 -0,011862679 0,013296669 -0,062070529 -0,2361067 -0,018703533 0
pb8 -3,4403478 -2,0493715 -7,1283813 -11,683471 -5,0713104 -6,6014941
pb9 0,55228586 -1,2321784 -1,8629891 1,2794969 -3,0855901 -0,62462837
pb10 0 0 0 0 0,0034387417 0
pb11 0 0 0 0 0,0863032 0,11437209
pb12 0 0 0 0 0,084609035 0,92880496
pb13 0 0 0 0 -0,077634809 -0,71173895
pc1 -0,059868984 -0,022121814 -0,048293748 0 -0,015728501 0,03957095
pc2 0,00098715684 0 0,00064660185 0 -0,000045354969 0
pc3 0,00036582933 0 0,00020343543 0 0,0000020999789 0
pc4 -0,000051599837 0 -0,000017642764 0 -0,0000075524917 0
pc5 -0,04933468 0 -0,024821085 0 -0,015265794 0
pc6 0,029943003 0 0,013592632 0 0,0087347614 0
pc7 0,0020444964 0 -0,00048029309 0 0,0053503178 0
pc8 0,027481707 0,018575703 0,02745706 0 0,012794724 -0,039567334
pc9 0,058392313 0,015879836 0,037858452 0,011040824 0,012528778 0
pc10 0,0006286459 0 0,00022471902 0 0,0029106283 0
pc11 -0,0057044102 0 -0,0023789469 0 -0,0022140348 0
pc12 0 0 0 0 -0,00045734151 0
pc13 0 0 0 0 0,000022824387 0

Table A.4: Error reduction function parameters S2 (r,Q)
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Param solrQ δ1b solrQ δ1a solrQ δ2b solrQ δ2a solrQ δ3b solrQ δ3a

pa1 0 0 0,69304572 1,1386248 1,8695746 2,0096875
pa2 0 0 -0,49655237 0,75921572 1,6232623 1,6950568
pa3 0 0 -16,583902 -37,863546 -18,17976 -20,522426
pa4 0 0 -73,593654 -59,091644 -68,680361 -59,450898
pa5 0 0 -9,6870649 -19,241753 -16,109663 -21,682771
pa6 0 0 28,179534 65,26442 18,402429 18,600763
pa7 0 0 71,451382 52,989003 82,295512 81,575836
pa8 0 0 0 0 -0,1931702 -0,17905432
pa9 0 0 0 0 -1,3068424 -1,3919834
pb1 -0,13502253 -0,051127719 -0,17205385 -0,14427946 -0,25211473 -0,20194119
pb2 0,20292933 0 -0,038207738 -0,049839461 -0,27915822 -0,27171325
pb3 2,7780417 3,2170714 5,5112844 5,9813171 5,7136177 5,6059237
pb4 0,0028229168 0 0,0020503299 0 0,0014088256 0
pb5 -0,011190191 0 0,0048034974 0 0,0091516859 0,010653448
pb6 1,7122237 2,5288408 7,5777913 7,1311986 8,1305118 7,8474796
pb7 -0,028996949 0 -0,10454289 0 -0,063883248 -0,037919489
pb8 -4,1115344 -5,8470184 -9,4049023 -10,338384 -8,5747618 -8,2768653
pb9 0,97157652 1,4931449 -1,982907 -1,4611739 -3,3329951 -3,4425888
pb10 0 0 0 0 0,0021086 -0,0090364055
pb11 0 0 0 0 0,11384496 0,099286812
pb12 0 0 0 0 -0,36691561 -0,47740656
pb13 0 0 0 0 0,30272232 0,41608523
pc1 -0,16087068 -0,10301964 -0,15054173 -0,048512801 -0,11655432 -0,078485268
pc2 0,001925227 0 0,0015424546 0 0,00085523308 0
pc3 0,00067314505 0 0,00045114229 0 0,00019934309 0
pc4 -0,00010486939 0 -0,000066188166 0 -0,000044067262 0
pc5 -0,10350144 -0,023138145 -0,076560567 0 -0,063676544 -0,049894364
pc6 0,062975271 0,011059809 0,046388721 0 0,039180756 0,025364021
pc7 -0,017052662 -0,060077067 -0,017920381 -0,043159059 -0,00041884938 0
pc8 0,097046664 0,098028167 0,099733485 0,048341894 0,082243808 0,067466939
pc9 0,13882216 0,084293184 0,11362056 0,043923377 0,082113792 0,051951869
pc10 -0,00051077774 0 -0,00073500703 0 0,0026553054 0,0073128753
pc11 -0,012250117 0 -0,0097755154 0 -0,010102833 -0,004524725
pc12 0 0 0 0 -0,00065924394 -0,0000010245204
pc13 0 0 0 0 0,000032919509 0

Table A.5: Error reduction function parameters SOL (r,Q)
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Param solsS δ1b solsS δ1a solsS δ2b solsS δ2a solsS δ3a solsS δ3b

pa1 0 0 0,467753 0 2,0188102 1,6047157
pa2 0 0 -0,62381432 0 1,7456738 1,4809897
pa3 0 0 -8,3000401 -7,5222445 -17,365721 -9,901217
pa4 0 0 -78,024238 -64,291931 -60,03781 -66,13594
pa5 0 0 -9,118183 -27,321977 -13,624565 -11,808639
pa6 0 0 6,9033246 16,883768 17,886888 2,6149926
pa7 0 0 89,307234 81,263497 68,918499 83,646533
pa8 0 0 0 0 -0,080646435 -0,14984375
pa9 0 0 0 0 -1,5722694 -1,2696389
pb1 -0,12094627 0 -0,16964522 0 -0,1919155 -0,24487291
pb2 -0,034701614 0 -0,20919519 0 -0,048718894 -0,27565277
pb3 3,3806048 1,7308892 5,7764932 2,6644645 3,1068135 4,4942627
pb4 0,002845863 0 0,0029507562 0 0 0,0013560846
pb5 0,0031633904 0 0,014033752 0 0 0,0083151585
pb6 1,6245828 2,927518 7,5568163 8,875388 6,8950591 7,247074
pb7 -0,026997998 0 -0,083969775 -0,070279616 0 -0,014953498
pb8 -4,5945376 -2,1751484 -9,1087691 -6,0176849 -3,7798189 -6,001812
pb9 1,0996987 -1,1645099 -2,4885522 -3,9639563 -4,7702216 -4,1129281
pb10 0 0 0 0 0 0,010487004
pb11 0 0 0 0 0,11263307 0,1319167
pb12 0 0 0 0 1,5565025 0,23278798
pb13 0 0 0 0 -1,075476 -0,085658465
pc1 -0,1311776 -0,1069731 -0,16225023 -0,13621486 -0,11010993 -0,15357573
pc2 0,0020868316 0 0,0020510924 0 0 0,0011368941
pc3 0,00030487165 0 0,0003143049 0 0 0,00021905194
pc4 -0,00010782086 0 -0,00009273536 0 0 -0,000064822988
pc5 -0,12011277 -0,021604686 -0,10871587 -0,027941029 -0,027575727 -0,087837502
pc6 0,082366833 0,0096659676 0,074126475 0,012509152 0,012659412 0,057779277
pc7 0,016860695 -0,0569233 0,0069348589 -0,059197018 -0,050634706 0,0023113938
pc8 0,06213046 0,10150033 0,094714791 0,12913954 0,10354824 0,1072372
pc9 0,11396067 0,083199378 0,11998647 0,093172242 0,082278443 0,11004475
pc10 0,0048782829 0 0,0023721561 0 0 0,0021967392
pc11 -0,023486002 0 -0,021553579 0 0 -0,016816743
pc12 0 0 0 0 0 -0,00092234322
pc13 0 0 0 0 0 0,000046074473

Table A.6: Error reduction function parameters SOL (s, S)
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Param IsS δ1b IsS δ1a IsS δ2b IsS δ2a IsS δ3b IsS δ3a

pa1 -0,000000061726575 0 -0,000024597061 0 -0,000022233502 0
pa2 0 0 -0,000035166878 0 -0,00021778966 0
pa3 0 0 -0,0005388069 0 0,066003069 0,050709921
pa4 0 0 0,008050581 0,0081718164 0,002656812 0
pa5 0 0 0,00011652671 0 0,00048410896 0
pa6 0 0 0,0050781063 -0,00019068446 0,010987296 0
pa7 0 0 -0,011486639 -0,0081263923 -0,014667448 0
pa8 0 0 0 0 0,000032648677 0
pa9 0 0 0 0 0,00004010176 0
pb1 -0,0025764719 0 -0,0039686866 0 -0,070117446 -0,051510448
pb2 -0,0098426339 0 -0,0094142031 0 -0,018005136 0
pb3 -0,92690419 -0,99953821 -0,89648272 -0,9921362 -1,0079009 -1,0847093
pb4 0,00010682364 0 0,00010617388 0 0,000032749003 0
pb5 0,00045497906 0 0,00016799714 0 -0,00016463736 0
pb6 0,034611098 0,059871312 0,092009885 0,1433803 0,019713545 -0,023427678
pb7 -0,0014323344 0 -0,0013833724 0 0,0013257499 0
pb8 -0,11287128 0 -0,13619071 -0,01723058 -0,0059184347 0,033278629
pb9 0,015742283 -0,059891933 -0,0389248 -0,13989362 -0,049067208 0,016956699
pb10 0 0 0 0 0,035636702 0,027091235
pb11 0 0 0 0 0,069766739 0,051149464
pb12 0 0 0 0 0,059859018 0,17951705
pb13 0 0 0,000000066766483 0 -0,00028688556 -0,086893296
pc1 -0,44421604 -0,2243474 -0,3512382 -0,12701685 0,44515235 0,27352032
pc2 -0,0096858895 0 -0,010120986 0 -0,0017744491 0
pc3 0,0055107123 0 0,0016409903 0 -0,019426889 0
pc4 0,0010038532 0 0,00071139628 0 0,00075656267 0
pc5 1,9058952 0,83211798 1,8816769 0,86764862 1,3216582 0,97312677
pc6 -1,1923422 -0,18780714 -1,1043952 -0,24677476 -0,70856314 -0,61612252
pc7 -0,84888648 0,08943598 -0,84138088 -0,008298677 0,29621927 0,48035222
pc8 0,73456158 0,16232721 0,65818496 0,081245945 -0,37826953 -0,31361945
pc9 0,50816013 0,33300936 0,4602371 0,35322605 -0,34648177 -0,18888714
pc10 -0,1471501 0 -0,12125449 0,0070439095 0,09488898 0,10277405
pc11 0,46374796 0 0,4176159 0,052638078 0,2636648 0,32075334
pc12 0 0 0 0 0,016601098 0
pc13 0,00000013871821 0 0 0 -0,00088358873 0

Table A.7: Error reduction function parameters I (s, S)
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Param S3rQ δ1b S3rQ δ1a S3rQ δ2b S3rQ δ2a S3rQ δ3b S3rQ δ3a

pa1 0 0 0,085399496 0 1,0943654 1,3880446
pa2 0 0 -0,15165073 0 0,50062075 0,34580753
pa3 0 0 -1,1708071 -2,3393569 -4,9100706 -3,9502013
pa4 0 0 -1,267889 -2,9987214 -7,1374419 -12,383092
pa5 0 0 -2,0602956 -0,74499835 -1,2671549 2,3029312
pa6 0 0 -5,8637482 4,4041362 6,9338997 7,9256682
pa7 0 0 9,8011412 -3,7629032 2,892984 0,24917512
pa8 0 0 0 0 -0,29892799 -0,39800407
pa9 0 0 0 0 -1,043527 -1,3654603
pb1 0,0061516398 0 -0,016611751 0 0,0057108984 0,044169686
pb2 -0,013114407 0 -0,093060786 0 0,13472509 0,18601419
pb3 1,1160387 1,0243127 2,1242357 1,3851264 0,95816674 0,62462838
pb4 -0,00017220305 0 0,0001548575 0 0,000090312202 0
pb5 -0,00014256374 0 0,004414882 0 -0,0020432094 0
pb6 -0,18793433 -0,24104327 -0,066495961 0 0,5990843 0,9212463
pb7 0,058776026 0,062914086 0,048068125 0 0,080109281 0
pb8 0,19080206 0,45380749 -1,1456559 -0,18011099 0,9114942 0,52832674
pb9 0,23937879 0,15444144 0,64479804 0,64127494 -1,1010966 -0,70875438
pb10 0 0 0 0 -0,0035062859 0
pb11 0 0 0 0 -0,015508881 -0,046687169
pb12 0 0 0 0 1,465662 3,5532961
pb13 0 0 0 0 -1,0667048 -2,690616
pc1 0,077337854 0,035087078 0,12639855 0,048173773 0,035873378 0
pc2 0,000095523076 0 0,00018049235 0 -0,00094787924 0
pc3 -0,000053914397 0 -0,0001708423 0 -0,000029536141 0
pc4 0,0000027533576 0 -0,00000048333429 0 -0,00000094691379 0
pc5 0,00010907406 0 -0,013796107 0 0,0011532527 0
pc6 0,0013185739 0,001257514 0,012239387 0 -0,00044558679 0
pc7 0,036266244 0 0,067668835 0,0040243892 0,005939494 0
pc8 -0,079818236 -0,035094308 -0,13195245 -0,049013198 -0,016030193 0
pc9 -0,03461982 0 -0,059730544 0 -0,010310413 0,0056714571
pc10 0,0041737555 0 0,0087774449 0 0,00163337 0
pc11 -0,0016978361 0 -0,0068410228 0 0,00010514429 0
pc12 0 0 0 0 -0,0010492133 0
pc13 0 0 0 0 0,000052424791 0

Table A.8: Error reduction function parameters S3 (r,Q)
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Param S3sS δ1b S3sS δ1a S3sS δ2b S3sS δ2a S3sS δ3b S3sS δ3a

pa1 0 0 -0,023523489 -0,066557217 0,79716786 1,1004365
pa2 0 0 -0,22239121 -0,079148757 0,24563603 0,11116558
pa3 0 0 2,561479 1,0607154 -2,5401893 -2,5189868
pa4 0 0 -5,3174679 -9,0124531 -5,1786972 -4,2311883
pa5 0 0 -3,0142827 0,85775502 -2,2230304 -1,4826028
pa6 0 0 -13,108538 -3,5843943 0,75442799 -1,2026959
pa7 0 0 16,398976 3,9693038 6,2873342 4,7480286
pa8 0 0 0 0 -0,210914 -0,31146123
pa9 0 0 0 0 -0,76441535 -1,0611184
pb1 0,023261821 0,010602112 0,029995251 0,015383004 0,022651616 0,042505199
pb2 -0,041788549 0 -0,063557997 0,0013438501 0,040855584 0,15363745
pb3 0,96039315 0,69788195 0,88400159 0,74214382 0,8651097 0,66173617
pb4 -0,00054507491 0 -0,00059914455 0 -0,0004558522 0
pb5 0,00135193 0 0,0041701925 0 0,001538229 0
pb6 -0,39202681 -0,66614885 0,9275488 0,82861836 0,40951903 -0,0270674
pb7 0,063909296 0,082563833 0,080496624 0 0,082639597 0,073666401
pb8 0,53672128 1,5132097 1,4155337 1,5956779 1,0643775 1,1108969
pb9 0,27151237 -0,034507398 -1,4759625 -1,1659123 -0,96896191 -0,39122065
pb10 0 0 0 0 0,00095402484 0
pb11 0 0 0 0 -0,0076935887 -0,045377121
pb12 0 0 0 0 1,3172217 2,898966
pb13 0 0 0 0 -0,81698144 -2,0588137
pc1 0,12062611 0,04830026 0,024222868 0 0,059882246 0,067215047
pc2 0,00011392892 0 -0,00010053671 0 -0,0010037635 0
pc3 -0,00023221194 0 -0,0000834355 0 -0,00010328889 0
pc4 0,0000022411815 0 0,0000019777199 0 0,0000047278894 0
pc5 -0,0065806764 0 0,0051643193 0 0,0049922801 0
pc6 0,0090091832 0 -0,0011499499 0 -0,0016880004 0
pc7 0,061551946 0 0,0073354859 -0,0041390341 0,014291823 0,021083482
pc8 -0,12366612 -0,048292576 -0,021018733 0 -0,038026028 -0,067333684
pc9 -0,059343686 0 -0,01341274 0,0059837697 -0,023130176 -0,020932926
pc10 0,0079681805 0 0,0013872326 0 0,0023631857 0,001771745
pc11 -0,006278154 0 -0,00082902164 0 -0,00064241617 0
pc12 0 0 0 0 -0,001049244 0
pc13 0 0 0 0 0,00005241951 0

Table A.9: Error reduction function parameters S3 (s, S)
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Param BsS δ1b BsS δ1a BsS δ2b BsS δ2a BsS δ3b BsS δ3a

pa1 0 0 -0,013141666 0 0,045610567 0,083894246
pa2 0 0 0,10585247 0 0,11102559 0
pa3 0 0 -0,86105751 0 -1,1640106 -0,27618939
pa4 0 0 -12,907645 -8,5711248 -8,1741138 -0,73045135
pa5 0 0 -16,1782 -15,27667 -12,572759 -11,377109
pa6 0 0 -0,55247016 0 6,4528212 5,5457076
pa7 0 0 19,15342 3,6548146 5,2353 -13,957536
pa8 0 0 0 0 0,0084453453 0
pa9 0 0 0 0 -0,047178105 -0,065098304
pb1 0,029368322 0,0026452142 0,021304269 0 -0,040287323 -0,090527551
pb2 -0,15345475 -0,046744296 -0,33246519 0 -0,1972893 0
pb3 -0,30596058 -0,40753976 0,38005522 -1,4801646 0,81426622 -0,10143568
pb4 -0,0011518666 0 0,00062093455 0 0,00035270567 0
pb5 0,008048889 0 0,0079543219 0 0,0014229548 0
pb6 -1,4405609 -1,2337302 20,930056 12,034436 12,377779 -1,3464277
pb7 0,56047723 0 33,050652 32,073722 25,962811 23,949538
pb8 -2,0192791 -2,7303711 3,607392 2,2814716 -10,128964 -11,441936
pb9 2,8699676 4,6387139 -36,734813 -6,7824148 -10,181715 27,660661
pb10 0 0 0 0 -0,0087498648 0
pb11 0 0 0 0 0,044580822 0,062227979
pb12 0 0 0 0 0,030530765 0,037409253
pb13 0 0 0 0 -0,011086771 0
pc1 1,6750431 1,1355501 -7,8517908 -3,8335535 -4,1658243 2,1158533
pc2 -0,55997324 0 -16,871833 -16,787725 -13,388373 -12,572273
pc3 -0,0046452963 0 -0,002794364 0 0,00035266287 0
pc4 0,00074707857 0 -0,00071466375 0 -0,0004036302 0
pc5 0,46624503 0,33976156 0,50813039 1,136255 0,2764656 0,16047315
pc6 -0,11049862 -0,044612443 0,10467248 -0,50680569 0,031000334 0
pc7 2,3286767 2,9445753 -2,7239683 -1,5952473 3,923346 6,0625832
pc8 -3,1213502 -4,5750724 17,378558 3,1286008 4,8410043 -13,774365
pc9 -0,2580148 0 -0,19037294 0,38149443 -0,047928577 0,029283657
pc10 0,052139526 0 0,053062277 -0,12342129 0,020907908 0
pc11 -0,011740347 0 -0,079852988 0,27986063 -0,020380849 0,047080175
pc12 0 0 0 0 -0,00038045208 0
pc13 0 0 0 0 0,000020391285 0

Table A.10: Error reduction function parameters B (s, S)
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Param BrQ δ1b BrQ δ1a BrQ δ2b BrQ δ2a BrQ δ3b BrQ δ3a

pa1 0 0 0,033552024 0,0084996797 0,091572982 0,098727271
pa2 0 0 0,066897257 0 0,095133477 0
pa3 0 0 -1,5711771 -0,96803604 -1,7359944 -0,92395767
pa4 0 0 -9,3049324 -2,8590993 -7,2254122 -8,7392022
pa5 0 0 -24,086373 -40,819616 -16,196139 -11,149293
pa6 0 0 -2,3642817 0 5,1178729 8,5216404
pa7 0 0 25,130535 16,127741 9,0294157 -4,0585292
pa8 0 0 0 0 -0,00059425586 0
pa9 0 0 0 0 -0,052032554 -0,058419036
pb1 0,020054038 -0,0033394728 -0,040679921 -0,0098007613 -0,10127791 -0,09396777
pb2 -0,22610445 -0,04272605 -0,21751161 -0,057497187 -0,17850458 -0,050869315
pb3 -0,30889157 -0,55950106 0,90322299 0,42281643 1,3180802 0,52434557
pb4 -0,00033768972 0 0,00018888977 0 0,00029815249 0
pb5 0,011624369 0 0,0053384655 0 0,0014943247 0
pb6 -1,3027915 -1,6872465 14,160648 0 11,086973 14,59415
pb7 -0,097990912 0 48,315479 82,119669 32,714948 22,748066
pb8 -1,1556993 -2,0722247 8,9812892 3,6545952 -6,1257914 -15,325987
pb9 2,1050176 4,7108023 -49,537036 -32,369029 -18,649202 8,0460466
pb10 0 0 0 0 0,00066983096 0
pb11 0 0 0 0 0,050484555 0,056865999
pb12 0 0 0 0 0,04905653 0
pb13 0 0 0 0 -0,035305342 0
pc1 1,5190271 1,692528 -4,8581299 2,8560255 -3,9106454 -5,8975889
pc2 0,097215411 0 -24,226568 -41,296012 -16,516449 -11,594704
pc3 -0,0061694587 0 -0,0014870891 0 0,00052671721 0
pc4 0,00011035401 0 -0,000087907438 0 -0,00018595935 0
pc5 0,49107953 0,3571005 0,52348689 0,35305486 0,21779782 0,24547528
pc6 0,031845643 -0,031361668 0,045272614 0 0,1225353 0
pc7 1,38206 2,4147437 -6,2579147 -3,2463954 1,2546723 7,1482715
pc8 -2,2970276 -4,7722824 24,299702 16,09246 9,5730315 -4,0884021
pc9 -0,24837688 0 0,00018992301 0 0,036861917 0
pc10 0,059479723 0 0,0072992099 0 0,013293022 0,017389878
pc11 -0,073772699 0,029479354 -0,0046283332 0 -0,030366051 0
pc12 0 0 0 0 0,00001266313 0
pc13 0 0 0 0 -0,00000032137084 0

Table A.11: Error reduction function parameters B (r,Q)
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Param OFsS δ1b OFsS δ1a OFsS δ2b OFsS δ2b

pa1 0 0 -0.40184933 -0.37245727
pa2 0 0 -0.39893309 -0.43560539
pa3 0 0 1.0439325 0.96323606
pa4 0 0 -0.22094488 -0.1558756
pa5 0 0 0.0095930268 0.0066710507
pa6 0 0 -0.183109 -0.201526
pa7 0 0 0.023855756 0.025503617
pa8 0 0 0 0
pa9 0 0 0 0
pb1 1.0825233 1.0443514 1.0948724 1.0695131
pb2 0.0011437009 0.0008733351 0.057753116 0.070466173
pb3 -0.0037754807 -0.0022813356 -0.1307431 -0.089241301
pb4 0.000025363408 0 0.000054158232 0
pb5 -0.08007622 -0.073589227 -0.053196367 -0.049419443
pb6 0.00020387933 0 0.0249364 0
pb7 -0.000013508497 0 -0.0010740496 0
pb8 0.0035132831 0.00099487197 0.023068394 0.032656664
pb9 -0.00056869978 0 -0.0028905064 -0.0035057537
pb10 0 0 0 0
pb11 0 0 0 0
pb12 0 0 0 0
pb13 0 0 0 0
pc1 -0.0013839936 0 -0.0019658246 0
pc2 0.000051429025 0 0.000071330515 0
pc3 0.0021895006 0.0017203621 0.0011365446 0
pc4 -0.000049320344 0 -0.000044573323 0
pc5 0.0071996099 0 0.0088980897 0
pc6 -0.012176639 0.00053031108 -0.014680838 0.0036977038
pc7 0.0015231389 0 0.0021901296 0
pc8 -0.00011910586 0 -0.0001683209 0
pc9 0.00037049671 0 0.00068804045 0
pc10 -0.00038345406 0 -0.00067332631 0
pc11 0.0027653244 -0.0011086211 0.0043885429 -0.0050080494
pc12 0 0 0 0
pc13 0 0 0 0

Table A.12: Error reduction function parameters OF (s, S)
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A.3 SN1OLF rational functions

A.3.1 SN1OLF rational function expressions

The parameters for the SN1OLF rational functions are given in the next

section A.3.2.

p = e(((((((a7x+ a6)x+ a5)x+ a4)x+ a3)x+ a2)x+ a1)x+ a0)

/(((((((b7x+ b6)x+ b5)x+ b4)x+ b3)x+ b2)x+ b1)x+ 1) (A.4)

p = e(((((((c7x+ c6)x+ c5)x+ c4)x+ c3)x+ c2)x+ c1)x+ c0)

/((((((d6x+ d5)x+ d4)x+ d3)x+ d2)x+ d1)x+ 1) (A.5)

p = e((((((e6x+ e5)x+ e4)x+ e3)x+ e2)x+ e1)x+ e0)

/((((((f6x+ f5)x+ f4)x+ f3)x+ f2)x+ f1)x+ 1) (A.6)

e in the previous equations is given by (4.18).

A.3.2 SN1OLF rational function parameters

Here we provide the list of used parameters for the rational functions of the

SN1OLF algorithm and its rational function expressions from A.3.1.

a0 = 0.39894228040143268 a1 = 0.21002474394780039
a2 = 0.071246581285295085 a3 = 0.013032473433200309
a4 = 0.0014595736472943335 a5 = 0.68547041219742437e− 4
a6 = 0.99733431803299761e− 7 a7 = −0.26957666631539149e− 8

b1 = 1.7797680988671933 b2 = 1.4091972145738764
b3 = 0.64572332747815564 b4 = 0.18572649551025895
b5 = 0.033713766857832489 b6 = 0.0036017759390713289
b7 = 0.00017644910556614172

c0 = 0.062738277955091465 c1 = 0.03502297980288093
c2 = 0.0086444588653607395 c3 = 0.0010417848156028285
c4 = 0.51961903750684434e− 4 c5 = −0.78871551226211378e− 8
c6 = 0.32785620480866639e− 9 c7 = −0.68891223622269787e− 11

d1 = 1.2376563024482419 d2 = 0.65808751220578398
d3 = 0.19293566790434162 d4 = 0.033000199681586271
d5 = 0.0031350224464661629 d6 = 0.00012992843915945728

e0 = 0 e1 = 0.39894228040143246
e2 = 22.685111028866376 e3 = 434.7910643487663
e4 = 3356.8807938223652 e5 = 9642.0097656947831
e6 = 6953.32433232037
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f1 = 59.863140718098526 f2 = 1254.4489976092465
f3 = 11384.852193724395 f4 = 44847.385892906192
f5 = 66740.214462756024 f6 = 24612.052740704975

A.4 SN2OLF rational functions

A.4.1 SN2OLF rational function expressions

The parameters for the SN2OLF rational functions are given in the next
section A.4.2.

p = e(((((((a7x+ a6)x+ a5)x+ a4)x+ a3)x+ a2)x+ a1)x+ a0)

/(((((((b7x+ b6)x+ b5)x+ b4)x+ b3)x+ b2)x+ b1)x+ 1) (A.7)

p = e(((((((c7x+ c6)x+ c5)x+ c4)x+ c3)x+ c2)x+ c1)x+ c0)

/(((((((d7x+ d6)x+ d5)x+ d4)x+ d3)x+ d2)x+ d1)x+ 1) (A.8)

p = (e/r)(((((((e7x+ e6)x+ e5)x+ e4)x+ e3)x+ e2)x+ e1)x+ e0)

/(((((((f7x+ f6)x+ f5)x+ f4)x+ f3)x+ f2)x+ f1)x+ 1) (A.9)

e in the previous equations is given by (4.18).

A.4.2 SN2OLF rational function parameters

Here we provide the list of used parameters for the rational functions of the
SN2OLF algorithm and its rational function expressions from A.4.1.

a0 = 0.25 a1 = 0.059466962529246364
a2 = 0.018355620244174282 a3 = 0.0013812459438037644
a4 = 0.00014355195520570905 a5 = −0.42377117322615563e− 5
a6 = 0.23809047340616304e− 6 a7 = −0.66469958200808304e− 8

b1 = 1.8336369717227178 b2 = 1.4994837406863502
b3 = 0.71174545900099654 b4 = 0.21283752915627627
b5 = 0.040355035917229408 b6 = 0.0045311760763075409
b7 = 0.00023537531946841132

c0 = 0.021312722656493838 c1 = 0.010215604212941093
c2 = 0.0022887091738377789 c3 = 0.00025389013286717049
c4 = 0.11978235751305706e− 4 c5 = −0.34553072087589492e− 8
c6 = 0.13207941962153137e− 9 c7 = −0.25413412919933679e− 11

d1 = 1.4230202937400878 d2 = 0.89399309288656039
d3 = 0.32221715492195554 d4 = 0.072173572962398247
d5 = 0.010084050800734187 d6 = 0.00081764995576340292
d7 = 0.29873078267110186e− 4
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e0 = 0 e1 = 0.39894228040143267
e2 = 33.297276519443342 e3 = 998.54933699193513
e4 = 13241.10184554912 e5 = 76008.291350745479
e6 = 147125.44161757116 e7 = 3819.8748949681348

f1 = 89.463894791843534 f2 = 2994.7753704691611
f3 = 47553.297230451145 f4 = 373929.25975228526
f5 = 1369924.7218087889 f6 = 1858297.0898555859
f7 = 236391.73034752403

A.5 ISN1OLF rational functions

A.5.1 ISN1OLF rational function expressions

Here we list the rational functions used in the Algorithm ISN1OLF. The
parameters for the SN2OLF rational functions are given in the next section
A.5.2.

z = −p+
[
(exp(−0.5p2)/p2

]
∗

((((((((((m10x+m9)x+m8)x+m7)x+m6)x+m5)x

+m4)x+m3)x+m2)x+m1)x+m0)

/((((((((((n10x+ n9)x+ n8)x+ n7)x

+ n6)x+ n5)x+ n4)x+ n3)x+ n2)x+ n1)x+ 1) (A.10)

z = −p+
[
(exp(−0.5p2)/

√
p
]
∗

(((((((k7x+ k6)x+ k5)x+ k4)x+ k3)x+ k2)x+ k1)x+ k0)

/(((((((l7x+ l6)x+ l5)x+ l4)x+ l3)x+ l2)x+ l1)x+ 1) (A.11)

z = ((((((i6x+ i5)x+ i4)x+ i3)x+ i2)x+ i1)x+ i0)

/(((((j5x+ j4)x+ j3)x+ j2)x+ j1)x+ 1) (A.12)

z = (((((g5x+ g4)x+ g3)x+ g2)x+ g1)x+ g0)

/((((h4x+ h3)x+ h2)x+ h1)x+ 1) (A.13)

z = y ∗ ((((((((e8x+ e7)x+ e6)x+ e5)x

+ e4)x+ e3)x+ e2)x+ e1)x+ e0)

/((((((((f8x+ f7)x+ f6)x+ f5)x

+ f4)x+ f3)x+ f2)x+ f1)x+ 1) (A.14)
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z = y ∗ ((((((((c8x+ c7)x+ c6)x+ c5)x

+ c4)x+ c3)x+ c2)x+ c1)x+ c0)

/((((((((d8x+ d7)x+ d6)x+ d5)x

+ d4)x+ d3)x+ d2)x+ d1)x+ 1) (A.15)

z = y ∗ ((((((((a8x+ a7)x+ a6)x+ a5)x

+ a4)x+ a3)x+ a2)x+ a1)x+ a0)

/((((((((b8x+ b7)x+ b6)x+ b5)x

+ b4)x+ b3)x+ b2)x+ b1)x+ 1) (A.16)

A.5.2 ISN1OLF rational function parameters

Here we provide the list of used parameters for the rational functions of the
ISN1OLF algorithm and its rational function expressions from A.5.1.

a0 = 1.310444679913372 a1 = 1.0496342982777808
a2 = 0.34297377276691108 a3 = 0.058806303584142083
a4 = 0.0056707052143933359 a5 = 0.00030646561311550538
a6 = 0.87299508529791606e− 5 a7 = 0.11359029676757079e− 6
a8 = 0.47715414930209652e− 9

b1 = 0.77935982713146056 b2 = 0.24949458983424002
b3 = 0.04218517946986447 b4 = 0.0040342579952242503
b5 = 0.00021712896462726042 b6 = 0.61753952795739417e− 5
b7 = 0.8032129209966964e− 7 b8 = 0.33739809465660943e− 9

c0 = 0.58234615354415903 c1 = 2.3954910046771972
c2 = 3.7644259282127282 c3 = 3.1822730248163338
c4 = 1.5804886582031085 c5 = 0.45927351465091796
c6 = 0.071752521699595843 c7 = 0.0051073685232919929
c8 = 0.00011544405570833181

d1 = 2.8868777130708606 d2 = 3.7190165916935734
d3 = 2.7459319764867306 d4 = 1.2389548635486364
d5 = 0.33776812350821943 d6 = 0.051177121304169432
d7 = 0.0036125038564975782 d8 = 0.81625833768166845e− 4

e0 = 3.0018269039209338 e1 = 87.774236056726657
e2 = 989.7575959597692 e3 = 5425.7139678862877
e4 = 15009.178138029023 e5 = 19803.67505848015
e6 = 10861.978269562645 e7 = 2360.7711979594225
e8 = 394.32281881668326

f1 = 31.891192048993958 f2 = 399.96189801714692
f3 = 2505.8535715458245 f4 = 8237.9586584846684
f5 = 13666.751461068495 f6 = 10067.57909732112
f7 = 2583.8131935382122 f8 = 292.57249970310298
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g0 = 0.61175758417034084e− 16 g1 = 0.062499999999999994
g2 = −0.0072754785571224347 g3 = 0.00020727510842806252
g4 = 0.82125690103447695e− 7 g5 = −0.21022601430286476e− 7

h1 = −0.14134154943904849 h2 = 0.0055971987449862891
h3 = −0.31892520349077855e− 4 h4 = −0.8898381877233207e− 6

i0 = −0.49846544058069863e− 16 i1 = −0.25000000000000002
i2 = −0.15242142496267809 i3 = −0.030445417368412181
i4 = −0.0023029650958645681 i5 = −0.68276543115638487e− 4
i6 = −0.12757147423548785e− 5

j1 = 0.70942126995107004 j2 = 0.17264183638706689
j3 = 0.016757888840674101 j4 = 0.00058599116642757624
j5 = 0.76994691214814959e− 5

k0 = 0.24488851831921104 k1 = 0.48029713677686631
k2 = 0.18301189125291796 k3 = −0.026160178329977429
k4 = 0.021184219173857513 k5 = −0.0029987754713519703
k6 = 0.00072233393146827096 k7 = −0.44262578270966203e− 4

l1 = 2.5410054607988286 l2 = 2.0418856609447443
l3 = 0.5529951895300247 l4 = 0.055678606510953158
l5 = 0.017367680496451343 l6 = 0.0062574676815150778
l7 = 0.00039215993062993774

m0 = 0.18756233208103297 m1 = 0.31676099852893919
m2 = 0.18050826111441451 m3 = 0.075146244143085796
m4 = 0.036805415000645036 m5 = 0.0093534945621974929
m6 = 0.0034409217608655729 m7 = 0.00063248029913634361
m8 = 0.00019426953835475993 m9 = 0.16897829742340167e− 4
m10 = 0.80030048496041983e− 5

n1 = 1.1106105568550152 n2 = 0.52698392742028986
n3 = 0.23366691487529792 n4 = 0.09983456392019021
n5 = 0.031404493662692849 n6 = 0.007561621875344939
n7 = 0.0020956017866871155 n8 = 0.00047749988216206908
n9 = 0.47477680185174772e− 4 n10 = 0.19898093244659233e− 4

A.6 ISN2OLF rational functions

A.6.1 ISN2OLF rational function expressions

Here we list the rational functions used in the Algorithm ISN1OLF. The
parameters for the SN2OLF rational functions are given in the next section
A.6.2.

z = −
√

2p− 1− [(((k3x+ k2)x+ k1)x+ k0)

/((l2x+ l1)x+ 1)]/(p2exp(p)) (A.17)
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z =
√

2p− 1− [((((((((i8x+ i7)x+ i6)x+ i5)x

+ i4)x+ i3)x+ i2)x+ i1)x+ i0)

/(((((((j7x+ j6)x+ j5)x

+ j4)x+ j3)x+ j2)x+ j1)x+ 1)]/(p2exp(p)) (A.18)

z = (p− 0.25)((((((((((g10x+ g9)x+ g8)x+ g7)x+ g6)x+ g5)x

+ g4)x+ g3)x+ g2)x+ g1)x+ g0)

/(((((((((h9x+ h8)x+ h7)x

+ h6)x+ h5)x+ h4)x+ h3)x+ h2)x+ h1)x+ 1) (A.19)

z = (0.25− p)((((((e6x+ e5)x

+ e4)x+ e3)x+ e2)x+ e1)x+ e0)

/((((((f6x+ f5)x

+ f4)x+ f3)x+ f2)x+ f1)x+ 1) (A.20)

z = y ∗ (((((((((c9x+ c8)x+ c7)x+ c6)x+ c5)x

+ c4)x+ c3)x+ c2)x+ c1)x+ c0)

/(((((((((d9x+ d8)x+ d7)x

+ d6)x+ d5)x+ d4)x+ d3)x+ d2)x+ d1)x+ 1) (A.21)

z = y ∗ (((((((((a9x+ a8)x+ a7)x+ a6)x+ a5)x

+ a4)x+ a3)x+ a2)x+ a1)x+ a0)

/((((((((b8x+ b7)x

+ b6)x+ b5)x+ b4)x+ b3)x+ b2)x+ b1)x+ 1) (A.22)

A.6.2 ISN2OLF rational function parameters

Here we provide the list of used parameters for the rational functions of the
ISN2OLF algorithm and its rational function expressions from A.6.1.
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a0 = 5.2198298531688834 a1 = 7.1201527678911184
a2 = 4.0739724299280747 a3 = 1.2669804338888258
a4 = 0.23180079430882858 a5 = 0.025237719381674411
a6 = 0.0015819133851575586 a7 = 0.52650219825908774e− 4
a8 = 0.79459303700632415e− 6 a9 = 0.38024526839979055e− 8

b1 = 1.0673186810264216 b2 = 0.46729981833312222
b3 = 0.10740205955064567 b4 = 0.013760939980712562
b5 = 0.0009683499066951873 b6 = 0.3481642746061499e− 4
b7 = 0.54994180705908756e− 6 b8 = 0.26887279808569303e− 8

c0 = 0.39809887620896078 c1 = 2.2684791327198945
c2 = 3.508852142313804 c3 = 2.9327917474980908
c4 = 1.4398260352034985 c5 = 0.37513333511116429
c6 = 0.01101914722332671 c7 = −0.023767990201524592
c8 = −0.006273971048499002 c9 = −0.00044295558464790916

d1 = 1.7407135490813085 d2 = 1.579510089960357
d3 = 0.8178759912045096 d4 = 0.23316641869675973
d5 = 0.013450822538275304 d6 = −0.012934400112314594
d7 = −0.0040067813159069966 d8 = −0.00031280736215242744
d9 = −0.6008115162653259e− 8

e0 = 3.2418704589022945 e1 = 8.0517058410168211
e2 = 7.2511010225147658 e3 = 2.8781817211447518
e4 = 0.48581400669268295 e5 = 0.027546558547237258
e6 = 0.00023309131706558357

f1 = 2.83278290598764 f2 = 3.0221254939939149
f3 = 1.5074963751663713 f4 = 0.35382835486750113
f5 = 0.03423435350038521 f6 = 0.00091098059445654428

g0 = −2.5066282746310005 g1 = −4.0758059576080205
g2 = −2.648577122745974 g3 = −0.88496508978927867
g4 = −0.16349523069287772 g5 = −0.016802187200224274
g6 = −0.00092374517397341856 g7 = −0.24739020466270336e− 4
g8 = −0.26075688491270463e− 6 g9 = −0.50763803346039848e− 9
g10 = 0.38410357558821514e− 12

h1 = 1.8223608640512509 h2 = 1.353705293439588
h3 = 0.52993788827705204 h4 = 0.1183052764283123
h5 = 0.015278616280718715 h6 = 0.0011113982886871742
h7 = 0.42453596359550705e− 4 h8 = 0.73510591959860863e− 6
h9 = 0.39466243968973455e− 8

i0 = 0.14020972127662181 i1 = 0.068079860885949756
i2 = −0.048768499520436906 i3 = 0.010568466878658061
i4 = −0.0011641165848097204 i5 = 0.71693389721573075e− 4
i6 = −0.23713811542172557e− 5 i7 = 0.33058654513583253e− 7
i8 = −0.41371292946094178e− 12
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j1 = 0.49841377673084252 j2 = −0.34045426916659383
j3 = 0.071551678401172788 j4 = −0.007669174370693392
j5 = 0.00046011838108922945 j6 = −0.14822897041059011e− 4
j7 = 0.20107322967847599e− 6

k0 = 0.1547407329026946 k1 = −0.008439916324944443
k2 = 0.00011207299681885017 k3 = 0.13345453831138152e− 9

l1 = −0.052691158482935122 l2 = 0.0006815223132616962





B
Model extensions and derivatives

B.1 Stochastic leadtimes

The customer demand can be stochastic, but also the leadtime is not nec-
essarily constant and can also be stochastic. Zipkin (2000) gives a good
overview of the impact of a stochastic leadtime. We can consider three
categories:

1. Independent stochastic leadtimes

2. Limited-capacity supply systems

3. Exogenous sequential supply systems

The first category, independent stochastic leadtimes, is a parallel pro-
cessing system, with infinite capacity that works independently. In this case
an order that is placed later than a considered order may arrive earlier, so
the FIFO (first in first out) principle is not respected. Here leadtime uncer-
tainty has no impact in case of a base-stock system with Poisson demand
and little impact in case of an (r,Q) system. For an (r,Q) system that uses
a normal approximation, we need to redefine σ2 by (B.1). Here L2 indicates
a random variable that is the minimum of two independent copies of L, so
L2 = min

{
L1, L2

}
.

σ2 = λE[L] +min
{
λ(q − 1)(E[L]− E[L2]), λ2V [L]

}
(B.1)

Systems with limited capacity can have several forms (single process,
series, parallel, assembly, ...). As there may bottlenecks due to limited ca-
pacity, this has a direct impact on the leadtime and the system performance
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indicators. Here each order’s leadtime depends on the encountered bottle-
necks and work in progress in the system that depends on previous orders,
this system is called endogenous. These limited capacity cases are not con-
sidered in this study.

The third considered category is the exogenous sequential supply systems,
where the effect of our own orders on the whole system can be neglected. A
special case here is the exogenous sequential supply system, where the FIFO
rule is respected for the placed orders, but where we assume an incapacitated
system. If we approximate D, that incorporates the effect of variation on
customer demand and variation on leadtime, we have the following approx-
imation for the mean (B.2) and variation (B.3) of DL in case of stochastic
leadtime.

ν = E[DL] = λE[L] (B.2)

σ2 = V [DL] = Ψ2E[L] + λ2V [L] (B.3)

Zipkin (1986b) showed that the net inventory IN and the inventory po-
sition IP distributions in the standard continuous-time model with backo-
rders, see B.4, are valid under broad conditions of stochastic leadtime if the
leadtimes are generated according a specific but plausible scenario. These
include cases where the leadtime consists of travel time and also settings
where a supplier processes orders according to a queuing process, provided
many orders arrive also from other independent sources. This mechanism
is to ensure orders never cross. The demand processes can be of general
classes of compound-counting processes and it also stands in a variety of
order policies: (r,Q) and (s, S).

IL(∞) = IP (∞)−DL(∞) (B.4)

B.2 Periodic review

For all the previous discussed inventory models we assumed continuous re-
view. Where in the early days this was not possible due to the lack of
support IT systems to do the continuous monitoring of the stock, nowadays
we no longer see this as a reason to prevent applying a continuous review
system. On the other hand there may be other reasons to prefer a periodic
review, which is easier to manage and which does not require an expensive
IT system. A periodic review system allows you to evaluate weekly your
stock, which could allow you to group some orders from the same supplier
and will enable us to group the receiving of goods. So here we will give a
brief explanation on the impact of a periodic review while still applying a
continuous time-line.

We start from the base-stock policy, because this is the basis of the
(r,Q) and (s, S) order policy as we have seen. In periodic review base-stock
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policy where we have a review period T and then order a quantity to bring
the inventory position IP up to the target stock level s. As explained in
Zipkin (2000) the net inventory process IN does not have a true limiting
distribution, due to the cyclic behavior of the order policy, but it does has
a long-run frequency distribution: IN. In between review point (0 ≤ t ≤ T ),
the relation between the net inventory IN and the inventory on order IO
is still valid, see B.5. If we denote the uniform mixture of demand over the
interval [0, T ) as D, we can state B.6.

IN(t) = s− IO(t) (B.5)

IN = s−D (B.6)

From here on there is a full resemblance with the classic base-stock policy,
we only need to redefine the leadtime variable demand. Here we use a con-
ditional probability mass function where g(d|t) is a function of d depending
on the parameter t, and t can vary over the range [0, T ).

g(d|t) = (νt)de−νt/d! (B.7)

(B.8)
gD(d) =

1

T

∫ T

0

g(d|t+ L)dt

=
1

λT

[
G0(d|L+ T )−G0(d|L)

]
(B.9)G0

D(d) =
1

λT

[
G1(d+ 1|L+ T )−G1(d+ 1|L)

]
(B.10)G1

D(d) =
1

λT

[
G2(d|L+ T )−G2(d|L)

]
Using these redefined demand functions we end up with the same definitions
for the KPI’s:

A = G0
D(s− 1) (B.11)

B = G1
D(s) (B.12)

P = λA (B.13)

I = s− λ(L+
T

2
) +B (B.14)

For the normal approximation of this periodic review model we can apply
the same approach.

For other combinations of periodic review and how to model them we
refer to Rosling (2002a). Johnson et al. (1995) test a variety of approxima-
tions in a periodic inventory system and they also show that simpler fill rate
expressions perform poorly and underestimate the real fill rate.
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B.3 KPI partial derivatives

We will first give some overall derivative rules for r and Q for the first and
second order normal loss function: (B.15)-(B.22).

∂Φ2(z(r+0.5))

∂r
= −

Φ1(z(r+0.5))

σ
(B.15)

∂Φ2(z(r+0.5))

∂Q
= 0 (B.16)

∂Φ1(z(r+0.5))

∂r
= −

Φ0(z(r+0.5))

σ
(B.17)

∂Φ1(z(r+0.5))

∂Q
= 0 (B.18)

∂Φ2(z(r+0.5+Q))

∂r
= −

Φ1(z(r+0.5+Q))

σ
(B.19)

∂Φ2(z(r+0.5+Q))

∂Q
= −

Φ1(z(r+0.5+Q))

σ
(B.20)

∂Φ1(z(r+0.5+Q))

∂r
= −

Φ0(z(r+0.5+Q))

σ
(B.21)

∂Φ1(z(r+0.5+Q))

∂Q
= −

Φ0(z(r+0.5+Q))

σ
(B.22)

B.3.1 Q partial derivatives

Here we make use of the following KPI definitions: (5.9)-(5.16). We also use
the normal function derivative rules: (B.15)-(B.22).

Average backorders

(B.23a)

∂B̃cP
∂Q

= −p(Bd)
σ2

Q2

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

]
+ p(Bd)

σ2

Q

[
Φ1(z(r+0.5+Q))

σ

]

(B.23b)
= −p(Bd)

σ2

Q2

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

−
QΦ1(z(r+0.5+Q))

σ

]

Average inventory
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(B.24a)

∂ĨcP
∂Q

=
p(Id)

2
− p(Id)

σ2

Q2

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

]
+ p(Id)

σ2

Q

[
Φ1(z(r+0.5+Q))

σ

]

(B.24b)
=
p(Id)

2
− p(Id)

σ2

Q2

[
Φ2(z(r+0.5))− Φ2(z(r+0.5+Q))

−
QΦ1(z(r+0.5+Q))

σ

]

Fill rate service level

(B.25a)

∂S̃2cP

∂Q
= p(S2b)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]
− p(S2b)

σ

Q

[
Φ0(z(r+0.5+Q))

σ

]

(B.25b)
= p(S2b)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

−
QΦ0(z(r+0.5+Q))

σ

]

Ready rate service level

(B.26a)

∂S̃3cP

∂Q
= p(S3b)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]
− p(S3b)

σ

Q

[
Φ0(z(r+0.5+Q))

σ

]

(B.26b)
= p(S3b)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

−
QΦ0(z(r+0.5+Q))

σ

]

Order line service level

(B.27a)

∂S̃OLcP
∂Q

= p(SOLb)
σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]
− p(SOLb)

σ

Q

[
Φ0(z(r+0.5+Q))

σ

]
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(B.27b)
= p(SOLb)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

−
QΦ0(z(r+0.5+Q))

σ

]

Order frequency

(B.28a)
∂ÕF cP
∂Q

=
−p(OFb)
Q2

Stockout frequency

(B.29a)
∂ÃcP
∂Q

= −∂S̃3cP

∂Q

(B.29b)
= −p(S3b)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

−
QΦ0(z(r+0.5+Q))

σ

]

Average new backorders

(B.30a)
∂P̃cP
∂Q

= −λ∂S̃2cP

∂Q

(B.30b)
= −λp(S2b)

σ

Q2

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

−
QΦ0(z(r+0.5+Q))

σ

]

B.3.2 r partial derivatives

Here we make use of the following KPI definitions: (5.9)-(5.16). We also use
the normal function derivative rules: (B.15)-(B.22).

Average backorders

(B.31a)
∂B̃cP
∂r

= −p(Bd)
σ

Q

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]

Average inventory
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(B.32a)
∂ĨcP
∂r

= p(Id)

[
1− σ

Q

[
Φ1(z(r+0.5))− Φ1(z(r+0.5+Q))

]]

Fill rate service level

(B.33a)
∂S̃2cP

∂r
=
p(S2b)

Q

[
Φ0(z(r+0.5))− Φ0(z(r+0.5+Q))

]

Ready rate service level

(B.34a)
∂S̃3cP

∂r
=
p(S3b)

Q

[
Φ0(z(r+0.5))− Φ0(z(r+0.5+Q))

]

Order line service level

(B.35a)
∂S̃OLcP
∂r

=
p(SOLb)

Q

[
Φ0(z(r+0.5))− Φ0(z(r+0.5+Q))

]

Order frequency

(B.36a)
∂ÕF cP
∂r

= 0

Stockout frequency

(B.37a)
∂ÃcP
∂r

= −∂S̃3cP

∂r

(B.37b)= −
p(S3b)

Q

[
Φ0(z(r+0.5))− Φ0(z(r+0.5+Q))

]

Average new backorders

(B.38a)
∂P̃cP
∂r

= −λ∂S̃2cP

∂r

(B.38b)= −λ
p(S2b)

Q

[
Φ0(z(r+0.5))− Φ0(z(r+0.5+Q))

]
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B.3.3 Lagrange function

(B.39)

Z(r,Q, ζ, ξ) =

J∑
j=1

fj(rj , Qj) +

N∑
n=1

ζn

 J∑
j=1

ganj(rj , Qj)− ean


+

O∑
o=1

J∑
j=1

ξoj [gsoj(r,Q)− eio]

Z(r,Q, ζ, ξ) =

 J∑
j=1

[
αIj ĨcPj+αOFjÕF cPj+αBjB̃cPj+αAjÃcPj+αPjP̃cPj

+ αS2jS̃2cPj + αS3jS̃3cPj + αSOLjS̃OLcPj + αrjr + αQjQ
]

+

N∑
n=1

ζn

 J∑
j=1

[
βInj ĨcPnj + βOFnjÕF cPnj + βBnjB̃cPnj

+ βAnjÃcPnj + βPnjP̃cPnj + βS2njS̃2cPnj + βS3njS̃3cPnj

+ βSOLnjS̃OLcPnj + βrnjr + βQnjQ
]
− ean


+

 O∑
o=1

J∑
j=1

ξoj

[
γIoj ĨcPoj + γOFojÕF cPoj + γBojB̃cPoj

+ γAojÃcPoj + γPojP̃cPoj + γS2ojS̃2cPoj + γS3ojS̃3cPoj

+ γSOLojS̃OLcPoj + γrojr + γQojQ− eio
]

(B.40)

We introduce the θ abbreviation:

θXj = αXj +

N∑
n=1

βXnjζn +

O∑
o=1

γXnjξoj (B.41)
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Now we can simplify the Z equation:

Z(r,Q, ζ, ξ) =

J∑
j=1

[
θIj ĨcPj + θOFjÕF cPj + θBjB̃cPj + θAjÃcPj + θPjP̃cPj

+ θS2jS̃2cPj + θS3jS̃3cPj + θSOLjS̃OLcPj + θrjr + θQjQ
]

−
N∑
n=1

ζnean −
O∑
o=1

ξojeio

(B.42)

B.3.4 Lagrange derivatives

∂Z

∂rj
= 0, j = 1, .., J (B.43)

∂Z

∂Qj
= 0, j = 1, .., J (B.44)

∂Z

∂ζn
= 0, n = 1, .., N (B.45)

∂Z

∂ξoj
= 0, o = 1, .., O, j = 1, .., J (B.46)

We make use of the following abbreviations:

Φ0
r = Φ0(z(r+0.5)j) (B.47)

Φ0
rQ = Φ0(z(r+0.5+Q)j) (B.48)

Φ1
r = Φ1(z(r+0.5)j) (B.49)

Φ1
rQ = Φ1(z(r+0.5+Q)j) (B.50)

Φ2
r = Φ2(z(r+0.5)j) (B.51)

Φ2
rQ = Φ2(z(r+0.5+Q)j) (B.52)

B.3.4.1 Lagrange derivatives r

∂Z

∂rj
= θIj

∂ĨcPj
∂rj

+ θOFj
∂ÕF cPj
∂rj

+ θBj
∂B̃cPj
∂rj

+ θAj
∂ÃcPj
∂rj

+ θPj
∂P̃cPj
∂rj

+ θS2j
∂S̃2cPj

∂rj
+ θS3j

∂S̃3cPj

∂rj
+ θSOLj

∂S̃OLcPj
∂rj

+ θrj

(B.53)
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∂Z

∂rj
= θIjp(Id)j

[
1− σj

Qj

[
Φ1
r − Φ1

rQ

]]
+ θOFj0

+ θBj(−p(Bd)j)
σj
Qj

[
Φ1
r − Φ1

rQ

]
+ θAj(−

p(S3b)j

Qj
)
[
Φ0
r − Φ0

rQ

]
+ θPj(−λ

p(S2b)j

Qj
)
[
Φ0
r − Φ0

rQ

]
+ θS2j

p(S2b)j

Qj

[
Φ0
r − Φ0

rQ

]
+ θS3j

p(S3b)j

Qj

[
Φ0
r − Φ0

rQ

]
+ θSOLj

p(SOLb)j

Qj

[
Φ0
r − Φ0

rQ

]
+ θrj

(B.54)

∂Z

∂rj
= −

(
θIjp(Id)j + θBjp(Bd)j

) σj
Qj

[
Φ1
r − Φ1

rQ

]
+
(

(θS2j − θPjλj)p(S2b)j

+(θS3j−θAj)p(S3b)j+θSOLjp(SOLb)j

) 1

Qj

[
Φ0
r−Φ0

rQ

]
+θrj+θIjp(Id)j

(B.55)

∂Z

∂rj
= −

(
θIjp(Id)j + θBjp(Bd)j

)
σj
[
Φ1
r − Φ1

rQ

]
+
(

(θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j + θSOLjp(SOLb)j

) [
Φ0
r

− Φ0
rQ

]
+
(
θrj + θIjp(Id)j

)
Qj

= 0

(B.56)

(B.57)θ1 = −
(
θIjp(Id)j + θBjp(Bd)j

)
σj

(B.58)θ2 = (θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j + θSOLjp(SOLb)j

(B.59)θ3 = Qj

(
θrj + θIjp(Id)j

)
(B.60)θ1

[
Φ1
r − Φ1

rQ

]
+ θ2

[
Φ0
r − Φ0

rQ

]
+ θ3 = 0

B.3.4.2 Lagrange derivatives Q

∂Z

∂Qj
= θIj

∂ĨcPj
∂Qj

+ θOFj
∂ÕF cPj
∂Qj

+ θBj
∂B̃cPj
∂Qj

+ θAj
∂ÃcPj
∂Qj

+ θPj
∂P̃cPj
∂Qj

+ θS2j
∂S̃2cPj

∂Qj
+ θS3j

∂S̃3cPj

∂Qj
+ θSOLj

∂S̃OLcPj
∂Qj

+ θQj

(B.61)
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∂Z

∂Qj
= θIj(

p(Id)j
2

− p(Id)j
σ2
j

Q2
j

[
Φ2(z(r+0.5)j) − Φ2(z(r+0.5+Q)j) −

QjΦ
1(z(r+0.5+Q)j)

σj

]
)

+ θOFj

−p(OFb)j

Q2
j

+ θBj(−p(Bd)j

σ2
j

Q2
j

[
Φ2(z(r+0.5)j) − Φ2(z(r+0.5+Q)j) −

QjΦ
1(z(r+0.5+Q)j)

σj

]
)

+ θAj(−p(S3b)j
σj

Q2
j

[
Φ1(z(r+0.5)j)−Φ1(z(r+0.5+Q)j)−

QjΦ
0(z(r+0.5+Q)j)

σj

]
)

+θPj(−λp(S2b)j
σj

Q2
j

[
Φ1(z(r+0.5)j)−Φ1(z(r+0.5+Q)j)−

QjΦ
0(z(r+0.5+Q)j)

σj

]
)

+ θS2j(p(S2b)j
σj

Q2
j

[
Φ1(z(r+0.5)j) − Φ1(z(r+0.5+Q)j) −

QjΦ
0(z(r+0.5+Q)j)

σj

]
)

+ θS3j(p(S3b)j
σj

Q2
j

[
Φ1(z(r+0.5)j) − Φ1(z(r+0.5+Q)j) −

QjΦ
0(z(r+0.5+Q)j)

σj

]
)

+ θSOLj(p(SOLb)
σj

Q2
j

[
Φ1(z(r+0.5)j) − Φ1(z(r+0.5+Q)j)

−
QjΦ

0(z(r+0.5+Q)j)

σj

]
) + θQj

(B.62)

∂Z

∂Qj
=
p(Id)jθIj

2
−
(
θIjp(Id)j + θBjp(Bd)j

) σ2
j

Q2
j

[
Φ2(z(r+0.5)j) − Φ2(z(r+0.5+Q)j)

−
QjΦ

1(z(r+0.5+Q)j)

σj

]
+
(
−θAjp(S3b)j − θPjλp(S2b)j + θS2jp(S2b)j

+ θS3jp(S3b)j + θSOLjp(SOLb)

) σj

Q2
j

[
Φ1(z(r+0.5)j) − Φ1(z(r+0.5+Q)j)

−
QjΦ

0(z(r+0.5+Q)j)

σj

]
+ θQj + θOFj

−p(OFb)j

Q2
j

(B.63)

∂Z

∂Qj
=
p(Id)jθIj

2
−
(
θIjp(Id)j + θBjp(Bd)j

) σ2
j

Q2
j

[
Φ2

r − Φ2
rQ −

QjΦ
1
rQ

σj

]
+
(
(θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j + θSOLjp(SOLb)j

) σj

Q2
j

[
Φ1

r

− Φ1
rQ −

QjΦ
0
rQ

σj

]
+ θQj −

θOFjp(OFb)j

Q2
j

= 0

(B.64)
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Q2
j

(
p(Id)jθIj

2
+ θQj

)
=
(
θIjp(Id)j + θBjp(Bd)j

)
σ2
j

[
Φ2

r − Φ2
rQ −

QjΦ
1
rQ

σj

]
−
(
(θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j

+θSOLjp(SOLb)j

)
σj

[
Φ1

r −Φ1
rQ−

QjΦ
0
rQ

σj

]
+θOFjp(OFb)j

(B.65)

Q2
j =

(
2

p(Id)jθIj + 2θQj

)[(
θIjp(Id)j + θBjp(Bd)j

)
σ2
j

[
Φ2

r − Φ2
rQ −

QjΦ
1
rQ

σj

]
−
(
(θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j + θSOLjp(SOLb)j

)
σj

[
Φ1

r

− Φ1
rQ −

QjΦ
0
rQ

σj

]
+ θOFjp(OFb)j

]
(B.66)

(B.67)Q2
j = θ4

[
Φ2

r − Φ2
rQ −

QjΦ
1
rQ

σj

]
+ θ5

[
Φ1

r − Φ1
rQ −

QjΦ
0
rQ

σj

]
+ θ6

(B.68)θ4 =
2σ2

j

(
θIjp(Id)j + θBjp(Bd)j

)
p(Id)jθIj + 2θQj

(B.69)θ5 =
−2σj

[
(θS2j − θPjλj)p(S2b)j + (θS3j − θAj)p(S3b)j + θSOLjp(SOLb)j

]
p(Id)jθIj + 2θQj

(B.70)θ6 =
2θOFjp(OFb)j

p(Id)jθIj + 2θQj

(B.71)Qj =

√
θ4
[
Φ2

r − Φ2
rQ −

QjΦ1
rQ

σj

]
+ θ5

[
Φ1

r − Φ1
rQ −

QjΦ0
rQ

σj

]
+ θ6

B.3.4.3 Lagrange derivatives aggregate constraints

∂Z

∂ζn
=

J∑
j=1

[
βInj ĨcPnj + βOFnjÕF cPnj + βBnjB̃cPnj + βAnjÃcPnj

+ βPnjP̃cPnj + βS2njS̃2cPnj + βS3njS̃3cPnj + βSOLnjS̃OLcPnj

+ βrnjr + βQnjQ
]
− ean

(B.72)

Making use of (B.72) in step (B.73b) and next in step (B.73c) we replace
ζn through a reformulation of (5.35).
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(B.73a)ζn =

∑J
j=1 ζnβAnjÃcPnj∑J
j=1 βAnjÃcPnj

(B.73b)=

J∑
j=1

ζnβAnjÃcPnj/ean

=

J∑
j=1

−(θ1j
[
Φ1
rj − Φ1

rQj

]
+ θ2−ζj

[
Φ0
rj − Φ0

rQj

]
+ θ3j )

θ2+ζj

[
Φ0
rj − Φ0

rQj

] βAnjÃcPnj

/ean
(B.73c)

B.3.4.4 Lagrange derivatives individual constraints

∂Z

∂ξoj
= γIoj ĨcPoj + γOFojÕF cPoj + γBojB̃cPoj + γAojÃcPoj + γPojP̃cPoj

+ γS2ojS̃2cPoj + γS3ojS̃3cPoj + γSOLojS̃OLcPoj + γrojr+ γQojQ− eio
(B.74)

(B.75a)ξoj =
ξn
1

(B.75b)=
ξojγAojÃcPoj

γAojÃcPoj

(B.75c)= ξojγAojÃcPoj/eio

=

−(θ1j
[
Φ1
rj − Φ1

rQj

]
+ θ2−ξj

[
Φ0
rj − Φ0

rQj

]
+ θ3j )

θ2+ξj

[
Φ0
rj − Φ0

rQj

] γAojÃcPoj

 /eio
(B.75d)
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