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1. ANALYSIS OF THE HONEYBEE AND BUMBLEBEE VENOM PROTEOME 

1.1 The venom apparatus: an evolutionary perspective 

Venoms are toxic substances containing a broad range of compounds including organic 

molecules, amines and alkaloids, salts and minerals, amino acids, peptides and proteins [1]. 

A specialized apparatus, such as a stinger, fang, hollow spine or other mechanical delivery 

system delivers these compounds into the victim [1;2]. Venomous animals include sea 

anemones, jellyfish, gastropods, cephalopods, centipedes, insects, echinoderms, 

amphibians, reptiles, fish and five mammalian species. The venom composition, its delivery 

system and physiological target can differ considerably, as these venoms serve different 

functions and evolved independently between the phylogenetically divergent lineages [1].  

 

When people think of insects, images of stings and bites often flash into mind [2]. Venoms 

are widely distributed throughout the class of insects, but the ants, wasps and bees 

belonging to the order of Hymenoptera are the characteristic groups of venomous insects 

[2]. Remarkably, hymenopterans share a common parasitic ancestral origin [3]. Many 

parasitoid wasps of the Terebrantia (paraphyletic suborder [4]) still use their stinging organ 

(terebra) to deposit their eggs inside (endoparasitoids) or outside (ectoparasitoids) the body 

cavity of invertebrate hosts. In addition, venom is released which can target the host’s 

immunity, physiology, mobility, reproductive capacity and even their behavior in order to 

guarantee the offspring’s development [3;5]. The venom composition in parasitoids varies 

between species, even within the same genus, reflecting their important functional 

diversification during evolution [3]. In contrast, in the Aculeata, a monophyletic suborder 

derived within the Terebrantia [4], the ancestral ovipositor has evolved to a highly 

specialized device (aculeus) for injection of venom and no longer serves for the egg-laying 

function, except in more basal lineages (e.g. Drynidae and Chrysididae) [3]. Only species 

belonging to three families sting humans with a high frequency: Vespidae (wasps), Apidae 

(bees) and Formicidae (ants) [6;7]. Vespids include the genera Vespula (yellow jackets), 
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Dolichovespula (aerial yellow jackets), Vespa (hornets) and Polistes (paper wasps), while 

apids include the genera Apis (honeybees) and Bombus (bumblebees). Also few ant species 

belonging to the genera Solenopsis (fire ants) and Pogonomyrmex (harvester ants) retained 

their stinger and are capable of delivering painful stings. Some well-known stinging 

hymenopteran species are depicted in Figure 1. While some of the aculeate species use 

venom only for prey capture purposes, others are also effective against predators, including 

humans [2]. In contrast, bees no longer have a predatory lifestyle and shifted to a diet of 

pollen and nectar. Therefore, the major function of their venom evolved to personal defense 

or defense of the colony by inflicting pain. As the possession of a venomous sting is unique in 

its power against very large enemies, it is believed to have facilitated the evolution towards 

eusociality, the condition of living in colonies with cooperative brood care, reproductive 

castes and overlapping of adult generation, which has evolved multiple times within the 

Aculeata [8]. Remarkably, some eusocial living bees have lost a functional stinger through

Figure 1: Some stinging hymenopteran species: Apis mellifera (a), Bombus terrestris (b), Vespula vulgaris 

(c), Vespa crabro (d), Polistes dominulus (e), Solenopsis invicta (f). Figure adapted from [7]. Pictures 

remain copyright of Informatiecentrum voor Bijenteelt, Ghent University (a), Moniotte Philippe (c), 

ww.zwolle-insecten.nl (d), Devalez Jelle (e), alexanderwild.com (f) 

b c 

d f 
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evolution. The stingless Meliponini have acquired defensive behaviour which differs from 

that of the Apis species. While both queens and workers of primitive stingless bee species 

retained the venom sac homologues of stinging bees, only the queens of evolved meliponine 

species have preserved this vestigial character [9].  

 

1.2 Stingers and venoms of bees 

This PhD project focused on the venom composition of two eusocial aculeate species, the 

European honeybee (Apis mellifera) and European buff-tailed or large earth bumblebee 

(Bombus terrestris). Both belong to the Apidae, the largest family of bees with over 5600 

described species [10]. Honeybees an bumblebees have diverged about 77-95 million year 

ago [11]. The basic sting apparatus structure is anatomically similar, consisting of a long, 

thin, distally bifurcated venom gland which produces the venom compounds (Figure 2) [12]. 

Venom glands are epidermal glands that have evolved from female accessory reproductive 

glands [12]. Venom compounds are stored in the venom sac/reservoir and are released upon 

stinging. However, the life cycle of both species differs. As this can have significant 

implications for the venom composition and sting apparatus, relevant differences are 

described. 

 

Honeybees live in large hives, which can reach up to 80,000 individuals during the summer 

months. Only one queen is present in the hive which lays the eggs, while workers are sterile 

and engage in various tasks depending on their age. While drones lack a stinger, both the 

queen and workers possess a morphologically distinct stinger, which is used for a different 

purpose. Workers use their venom for defending the hive, which is a rewarding target for 

many predators searching for honey, pollen, immature brood and adults. The stinger of 

workers is barbed and possesses an associated set of muscles and nerves, allowing to 

penetrate the target deeper independent of the rest of the body. In case of stinging 

mammals with a thick skin, the stinger is torn from the body and the muscles surrounding 

the venom sac will continue to pump venom into the attacker (Figure 3). This process of 

autotomy maximizes venom delivery [2]. The venom sac of European honeybees contains 

about 150 µg of dry weight venom protein, which is almost completely delivered from the 

sting within one minute [13]. However, tearing the stinger loose damages the honeybee’s
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Figure 2: Morphology of the honeybee worker sting apparatus. Venom is produced by the venom glands, 

stored in the venom sac and released upon stinging via the stinger and its associated set of muscles and 

nerves.  

 

abdomen which leads to its death. In contrast, queens use their stinger only in deadly fights 

with rival queens [14]. Therefore, their stinger is curved and smooth which allows them to 

sting multiple times (Figure 3). Both the venom glands and reservoir are much larger than 

those of workers, enabling the storage of up to 5 times more venom [15]. In contrast to the 

worker venom composition which has been the subject of many studies, less is known about 

the queen venom. Queen venom has been reported to be only half as lethal to mice as 

worker venom [16], which points to a different venom composition. Moreover, the start of 

venom gland activity differs between both castes which has evolved due to the fact that 

queens and workers need a functional venom at a different time in their life [17]. Queens 

use the venom upon emergence to fight with other queens. They can live up to 5 years, but 

by the time they reach the age of 1 to 2 years, their venom has become inactive [16]. In 

contrast, workers use the venom when performing tasks outside the hive, which starts 

around the 20th day of adult life. The venom glands of both castes have only one secretory 

cycle, which starts at the end of pupation in queens and just after emergence in workers. In 

workers, the highest secretory activity of the venom glands is reached around the 16th day. 

Therefore, the venom composition is also age-dependent. In addition to these quantitative 

and qualitative caste- and age-related alterations, seasonal variation in venom composition 

has been demonstrated [18]. Also variability due to geographical and colony-dependent 

factors may exist in honeybee venom, but this has not been studied in-depth. 
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Figure 3: (A) Morphology of the stinger of the honeybee worker and queen. The stinger of the workers is 

straight and barbed, while the queen stinger is curved and smooth. (B) Upon stinging, the barbs present 

on the stinger of workers cause the release of the sting apparatus, which maximizes venom delivery. 

Picture B remains copyright of Kathy Keatley Garvey. 

 

Bumblebee nests are generally much less extensive than those of honeybees. As the queen 

is the only individual surviving through the winter, these are the first ones you see during 

spring. The queen constructs a nest (usually underground) and lays eggs developing in 

workers which forage and live for several weeks. By the end of the summer, new queens and 

drones develop which mate. Only the young queens will survive the winter through 

diapause. Although the amount of venom released during a sting varies from species to 

species and within a species, generally, the amount of venom protein released by a 

honeybee sting is approximately five times greater than that released by a bumblebee sting 

[19]. However, in contrast to honeybees, both the queen and workers possess a smooth and 

curved stinger which is strongly attached and enables them to sting more than once [20]. In 

contrast to honeybee venom which has received much interest, bumblebee venom has been 

investigated only very scarcely.  

 

1.3 Toxicity of bee venom 

A single honeybee sting induces death in other insects and pain and inflammation in higher 

organisms. However, when (accidentally) disturbing a honeybee colony, it responds 

aggressively which can result in mass stinging events. Between different colonies, striking 

variation in the intensity of the aggressive response is noticeable. In docile colonies only a 

few bees may respond, whereas in more aggressive colonies, the response may involve 

hundreds or even thousands of stinging individuals [21]. The most severe aggressive 
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behavior is observed in the Africanized honeybee (AHB), originated in Brazil by introduction 

and cross-breeding of African honeybees (A. mellifera scutellata) with European honeybees 

(predominantly A. mellifera ligustica) [21]. AHBs reached the wild in Brazil in 1957 and 

spread north and south (Figure 4). They appear to produce lower amounts of venom and the 

general biochemical composition and lethality of their venom does not differ from their 

European counterparts [22]. However, AHBs have been found to sting human airways more 

often and are able to release higher amounts of venom upon stinging, suggesting a reason 

for fatalities from relatively small numbers of stings [23;24]. Since bee stings have become a 

public health concern in the American continent, where massive attacks by AHBs in humans 

and animals have been documented, interest in the physiopathological effects of honeybee 

venom increased [22]. Mass envenomations lead to systemic toxicity with a potential fatal 

outcome. Receiving more than 500 stings is usually fatal, although many victims have 

survived more than 1000 honeybee stings by receiving medical treatment [23;25]. A series of 

acute toxic effects were described in mice by inducing a severe, sublethal systemic 

envenomation in response to honeybee venom subcutaneous injections. A variety of 

increased biochemical markers revealed liver, skeletal muscle and kidney damage. Also 

disturbances in the coagulation system and a hemoconcentration (hematocrit and 

Figure 4: Spreading of the Africanized honeybee on the American continents starting from its release in 

the wild in 1957 until 1998. Picture remains copyright of Pearson Education, Inc. 
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hemoglobin increase) effect was observed, while circulating platelet and leukocyte numbers 

remained unaltered. In addition, an inflammatory response including edema, lipid 

peroxidation, nitric oxide production and systemic release of cytokines (IL-1β, IL-6, TNF-α) 

was demonstrated. These findings seem to be in concordance with the reported clinical 

effects in humans [22]. Immediate effects include localized pain, swelling and erythema at 

individual sites. Next, large envenomations cause early systemic symptoms which include 

fatigue, dizziness, nausea, vomiting and diarrhea. Within 24 hours, hemolysis, 

hemoglobinuria, rhabdomyolysis and hepatic transaminase enzyme elevations develop. Also 

subendocardial damage and cardiac enzyme elevation may occur, while renal insufficiency 

and electrolyte abnormalities develop secondary to rhabdomyolysis, hemolysis and acute 

tubular necrosis [26].  

 

The search for an effective treatment for bee envenomation has been the subject of many 

studies. Already in 1999, Jones et al. [27] produced the first antivenom against AHB venom 

by immunizing sheep. However, the use of heterologous sera can cause anaphylaxis and 

serum sickness. Recently, a new antivenom was developed by the use of phage display 

technology, which enabled the production of human antibody fragments binding to two 

major honeybee venom compounds [28]. As currently no commercially available antivenom 

exists, massive envenomations have to be treated with supportive care, involving 

antihistamines, steroids, epinephrine and airway assistance. Aggressive hydration reduces 

the likelihood of rhabdomyolysis-induced renal insufficiency [26]. 

 

Massive bee envenomations by other honeybee subspecies are less common but have been 

described in regions such as England, India, and Hawaii, where Africanized bees are non-

endemic [26]. Venoms of several species of the Apis genus (A. mellifera, A. dorsata, A. 

cerana, A. florea) exhibit an almost identical median lethal dose (LD50) for mice [16], which 

indicates that their venom composition is very similar. Subcutaneously injected honeybee 

venom has a LD50 of 41.6 mg/kg, which is nearly one order of magnitude weaker in 

comparison to LD50 values obtained by intravenous or intraperitoneal routes. This suggests 

that a substantial fraction of the lethal components of bee venom are prevented to enter 

the systemic circulation when administered subcutaneously, which may be caused by venom 

inactivation by host factors and/or binding to locally available tissue target sites [22]. 
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Compared to honeybees, bumblebees rarely sting humans. Intraperitoneal injection 

of venom of the bumblebee B. impatiens (LD50= 7.2 mg/kg) in mice showed that it is about 

half as lethal to vertebrates as honeybee venom (3.5 mg/kg) [29]. However, the venom 

composition of this bumblebee species has not yet been investigated. The LD50 of the 

venom of B. terrestris has not yet been determined.  

 

1.4 Biological function of bee venom compounds 

The European honeybee, A. mellifera, is the most important managed pollinator and is 

domesticated by humans for production of honey. Therefore, a honeybee sting has been an 

unpleasant experience for many people, and many researchers became intrigued by the 

honeybee venom composition and toxic effects of individual venom compounds. More than 

1700 scientific publications on the composition and effects of bee venom in animals and 

humans have been published [30]. Earliest efforts to unravel its venom composition even 

date back to the work of Langer in 1897, who found that it consists of active and hemolytic 

basic components [31]. Today, up to 28 venom proteins and peptides (Table S1) and 4 

biogenic amines are described. 

The two highest abundant venom compounds, melittin and phospholipase A2 (PLA2) 

constitute ~50% and ~10-12% of the venom dry weight respectively [32]. Both have direct 

cell lytic activities. PLA2 activity leads to cell lysis by cleaving plasma membrane 

phospholipids. It hydrolyzes the 2-acyl bonds of phosphatidylcholines, 

phosphatidylethanolamines, phosphatidylinositols and phosphatidylserines, releasing 

lysophospholipids and fatty acids which themselves may further damage the membrane [33]. 

Melittin is a helical amphipatic peptide with hemolyzing activity due to its ability to interact 

with and disrupt cell membranes [33]. It also causes pain by activating specific receptors in 

primary nociceptive neurons [34]. In addition, melittin appears to be the main trigger of 

inflammasome activation [35], which induces a caspase-1-dependent inflammatory response. 

This is characterized by recruitment of neutrophils to the site of envenomation, which can 

protect against the damaging effects of envenomation. In addition, melittin is well-known 

for its antimicrobial properties. Its activity may contribute to the recently suggested function 

of honeybee venom in social immunity of the hive [36;37]. Indeed, venom peptides are 

smeared on the body surface of females and on wax combs, which may protect the bees 

against pathogens attracted to the constant and relatively high temperature and humidity 
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levels maintained in the hive [36]. Additionally, mast cell degranulating peptide, a 

neurotoxin which mediates mast cell degranulation at low concentration [38], was found to 

possess antimicrobial activity [39]. In contrast, the neurotoxic peptide apamin was also 

suggested to be an antimicrobial agent [36], but recently it was shown to lack antiseptic 

activity [39]. Many solitary hymenopteran species have evolved a venom with antimicrobial 

properties, which additionally suggests an important function at the organismic level [3]. 

Indeed, only few pathogens seem to be able to use venom-producing organs of 

Hymenoptera as a natural route of infection, which shows that microbial diffusions into 

these organs and from here to the rest of the body are possibly limited by the biochemical 

venom properties, although also physical barriers may contribute to this observation [3]. In 

addition, it is remarkable that no significant infectious disease of medical importance has 

been described to be vectored by hymenopteran stings, while many insects are vectors for 

microbial pathogens and parasites [3]. In contrast to insect bites, stings are quite rare, which 

may explain why transmission mechanisms of infectious diseases through venoms have not 

evolved. 

Besides melittin and PLA2, honeybee venom contains multiple compounds of lower 

abundance. Only few of them have been functionally characterized. Hyaluronidase cleaves 

hyaluronic acid, which is a large and highly abundant glycosaminoglycan of the vertebrate 

extracellular matrix. This cleavage facilitates the penetration of venom constituents into the 

body [40]. Additionally, for some well-known but functionally non-characterized honeybee 

venom compounds we propose a function based on similar venom compounds from other 

species. First, in snake venom, acid phosphatase has been suggested to play a role in 

liberating purines (mainly adenosine). It acts as a multitoxin and potentiates venom-induced 

hypotension and paralysis [41]. Second, the platelet-derived growth factor (PVF1) may act 

similar to snake venom vascular endothelial growth factor (VEGF)-like molecules, which are 

the most potent vascular permeability factors known and which can facilitate venom 

spreading [42]. Two other enzymes, carboxylesterase and serine carboxypeptidase may play 

a role in degradation of insect neurotransmitters [43] and a wide range of proteins [44], 

respectively. The CUB serine protease is similar to the B. terrestris venom homologue and 

snake venom proteases, which act as a fibrin(ogen)olytic enzyme, decreasing the 

concentration of blood fibrinogen and facilitating the spread of bee venom components 

throughout the bloodstream in mammals [45]. In addition, it may modulate the innate 
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immunity by acting as a prophenoloxidase-activating factor, which triggers the 

phenoloxidase cascade and induces a lethal melanization response in target insects [46;47]. 

Dipeptidyl peptidase IV (DPP IV) was suggested to play a role in the conversion of venom 

components into their active forms in the venom gland, while it may also enhance or 

decrease the chemotactic activity of immune cells after the sting [48]. 

For others, the exact function remains elusive. Based on its 3-dimensional structure, 

Api m 6 is highly likely to be a serine protease inhibitor. However, its natural function and 

putative binding partners remain unknown [49]. Major royal jelly protein (MRJP) 8 and 9 

were found to be the most ancient members of the MRJP protein family, which lack the later 

evolved repetitive regions suggested to have a nutritious function. Therefore, both MRJPs 

may possess the original but yet unknown pre-royal jelly function [33]. Vitellogenins are 

transported into oocytes to serve as food for the developing embryo. However, honeybee 

vitellogenin is thought to act as a multifunctional compound involved in many processes, 

such as hormone signaling, food-related behavior, immunity, stress resistance and longevity. 

Therefore, assumptions for its role as a venom protein remain speculative [50]. Also a role 

for the hexamerin 70a (HEX 70a) is not clear. Hexamerins are larval amino acid storage 

proteins important during metamorphosis. In addition, HEX 70a was found to be expressed 

in the fat body of adult workers and gonads from workers, queens and drones, suggesting 

other undefined tissue-specific functions [51;52]. Others, such as icarapin and secapin, 

possess no functional domains elucidating their exact function. We hypothesize that they 

have a toxic function as they were shown to be moderately/highly abundant [53]. Secapin is 

also a major component of queen bee venom [54]. In addition, for multiple compounds 

described to be present in the venom by studies of the 1970s and 80s, no sequence data 

have been generated (Table S1). Therefore, determining their function remains impossible. 

In addition, the venom may contain lowly and very lowly abundant compounds 

without toxic activity. These so called venom trace molecules only have a local function in 

the venom duct or reservoir (maturation or stabilization of the secretes, protection and 

recovery of the gland tissue) or are released by leakage of the gland tissue [7]. Both DPP IV 

and the C1q-like protein were suggested to be members of the venom trace molecules [55], 

although for DPP IV also a toxic function has been proposed (see higher) [48]. 
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Figure 5: In 2005, Peiren and coworkers analyzed the honeybee worker venom by 2D-PAGE separation of 

the venom proteins and mass spectrometry analysis of excised spots (see numbers on gel) [53]. Icarapin 

was identified in four spots (indicated in red). Some spots have a variation in molecular weight of about 

30 kDa. A large part of the gel is obscured by phospholipase A2 (indicated in blue), comprising about 10-

12% of the venom proteins. In addition, this study newly identified PVF1, a platelet-derived growth factor 

(indicated in green). 

 

Besides the identification of 28 honeybee venom proteins and peptides, another level of 

complexity of the venom composition has been revealed. Protein heterogeneity or post-

translational modifications generate different isoforms of several compounds. Protein 

heterogeneity can be caused by allelic variation at a single gene, the occurrence of multiple 

genes encoding highly homologous proteins or by alternative splicing of a single transcript 

[56]. In 2001, Kettner and coworkers [57] identified four isoforms of Api m 6, only differing in 

the amino- and carboxy-terminal ends. Using genome-level information, this heterogeneity 

was later found to be caused by allelic variation [56]. Also, upon 2D-gel separation of pure 

venom, multiple icarapin protein isoforms were found to exist (Figure 5) [53]. In addition, 

two highly similar icarapin transcripts were found [58], which differ by only 0.3 kDa in their 

theoretical molecular weight (MW) (Figure 6). As some 2D-gel spots differ by about 30 kDa 

(Figure 5), we suggest that additional transcripts are generated by the honeybee venom 

glands. Finally, also post-translational modifications, such as glycosylations and other 

enzymatic processes, contribute to the venom complexity. SDS-PAGE separation of purified 

PLA2 reveals three protein bands. While the lowest MW band represents non-glycosylated 
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PLA2, the two higher MW bands correspond to different PLA2 glycoforms [59;60]. In addition, 

melittin’s inactive precursor promelittin and the complete series of ten conversion 

intermediates to the mature peptide were detected in crude honeybee venom [61]. This 

maturation process is executed by DPP IV activity in the venom. 

 

 

Figure 6: Sequence alignment of the two identified alternative splice variants of Api m 10. The molecular 

weight of these variants differs by only 0.3 kDa.  

 

In addition to proteins and peptides, honeybee venom presents biologically active amines. 

Serotonin (5'hydroxytryptamine) injection may cause an increase of pain in large animals, 

lethal vasoconstriction in smaller predators and neurotoxicity in insects [62]. Histamine [63] 

produces dilatation and increased permeability of the blood vessel capillaries. Also 

dopamine and noradrenaline [64] increase the venom distribution by elevating the rate of 

the heart beat [32]. Finally, honeybee venom contains carbohydrates and lipids with an 

unspecified function [65]. 

 

In contrast to A. mellifera, the venoms of other species belonging the Apidae family have 

received only little interest. The few studies focusing on the venom composition of other 

honeybee species (A. cerana, A. dorsata, A. florea) only provided evidence for highly similar 

A. mellifera homologues (Table S2). Also the venom composition of bumblebees has only 

been poorly resolved (Table S3). So far, sequences are available of only five B. terrestris 

venom compounds. The PLA2 [66] and serine protease [45] proteins appear to be 

homologous to their honeybee venom counterparts, while the two described bombolitin 

peptides ([67]; GenBank: ADY75782.1) show structural and biological properties similar to 

honeybee venom melittin. The Kunitz-type serine protease inhibitor [68] affects the victim’s 

variant1        MKTLGVLFIAAWFIACTHSFPGAHDEDSKEERKNVDTVLVLPSIERDQMMAATFDFPSLS 60 

variant2        MKTLGVLFIAAWFIACTHSFPGAHDEDSKEERKNVDTVLVLPSIERDQMMAATFDFPSLS 60 

                ************************************************************ 

 

variant1        FEDSDEGSNWNWNTLLRPNFLDGWYQTLQSAISAHMKKVREQMAGILSRIPEQGVVNWNK 120 

variant2        FEDSDEGSNWNWNTLLRPNFLDGWYQTLQT----HMKKVREQMAGILSRIPEQGVVNWNK 116 

                *****************************:    ************************** 

 

variant1        IPEGANTTSTTKIIDGHVVTINETTYTDGSDDYSTLIRVRVIDVRPQNETILTTVSSEAD 180 

variant2        IPEGANTTSTTKIIDGHVVTINETTYTDGSDDYSTLIRVRVIDVRPQNETILTTVSSEAD 176 

                ************************************************************ 

 

variant1        SDVTTLPTLIGKNETSTQSSRSVESVEDFDNEIPKNQGDVLTA 223 

variant2        SDVTTLPTLIGKNETSTQSSRSVESVEDFDNEIPKNQGDVLTA 219 

                ******************************************* 
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hemostatic system via its antifibrinolytic activity. In addition, B. terrestris venom was shown 

to exert hyaluronidase, acid phosphatase and casein hydrolyzing protease enzymatic activity 

[66]. Venom proteomes of few other bumblebee species (B. ignitus, B. pennsylvanicus, B. 

lapidarius, B. hypocrita sapporoensis and B. ardens ardens) have been investigated (Table 

S3), identifying PLA2s [66;69], serine proteases [46;66;70], bombolitins [71-73], a mast cell 

degranulating peptide [74] and a Kunitz-type serine protease inhibitor [46;75].  

 

1.5 Unraveling the venom proteome 

For venom research, venom can be collected by manual milking or electrostimulation (Figure 

7). Manual milking is preferred as samples collected by electrostimulation may contain 

contaminants derived from saliva or digestive tract fluids [7]. Moreover, the protein 

composition of a venom sample collected by manual milking may closely resemble that of 

venom injected during a natural honeybee sting: in addition to the release of venom 

proteins which are produced by the venom glands, also proteins originating from other 

tissues such as the sting apparatus cell lining, stinger lancets and/or stinger lubricant, which 

has been hypothesized to be generated by the Dufour gland [76], may be released. 

The proteomic technologies used to explore Hymenoptera venom compositions have 

gone through a remarkable evolution. Most research conducted in the 1970s and 80’s relied 

on single compound-oriented, time-consuming and lowly sensitive techniques, identifying 

only a few, primarily highly abundant compounds. Venom constituents were often isolated 

by chromatographic means, followed by bio-assays to determine their function (Table S1, S2 

and S3). However, as co-purified highly abundant venom compounds may have influenced 

these bio-assays, their determined function may be unreliable. Moreover, amino acid 

sequences are often lacking, e.g. for honeybee venom minimine [77], cardiopep [78] and 

adolapin [79] (Table S1), and bumblebee venom hyaluronidase and acid phosphatase (Table 

S3) [66]. Other studies applied chemical sequencing via Edman degradation to obtain 

sequence information of individual compounds (Table S1, S2 and S3). One of the first 

Hymenoptera venom profiling studies involving more sophisticated techniques was 

conducted in the early 80’s. The work used 2D-PAGE to characterize the venom proteins of 

the honeybee and several wasp species [80]. Only since 2000, mass spectrometry was used 

for profiling of Hymenoptera venoms [80]. The shotgun proteomics strategy, based on 

digesting proteins into peptides and sequencing them using tandem mass spectrometry
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Figure 7: Honeybee venom collected by manual milking (A) and electrical milking (B). (A) The stinger is 

pulled out and gently compressing the venom sac releases the venom via the stinger. Venom appearing at 

the tip of the stinger is collected in phosphate buffer. (B) The collector is placed in front of the hive and 

generates low voltage electric pulses, which stimulates worker bees to sting through a latex film onto a 

glass collector plate. Afterwards, the collector plate is removed and the venom can be collected in the 

form of a white powder. 

 

(MS/MS), has been widely adopted. In 2002, Stöcklin and Favreau [61] published the first 

mass spectrometry analysis of honeybee venom, identifying several major compounds 

(Table S1). The use of multiple proteomic methods and the availability of the Apis mellifera 

genome since 2006 [81] has boosted the detection of new bee venom compounds 

significantly [36;53;61;82;83]. 

Two studies, published by a cooperation of the Laboratory of Zoophysiology and L-

PROBE, successfully identified new compounds of the honeybee venom proteome by the 

combination of 2D-PAGE with MALDI-TOF/TOF MS [18;20]. A third gel-based proteome study 

analyzed the honeybee venom gland tissue and identified several compounds putatively 

involved in protecting the venom gland secretory cells from the toxins they produce [33]. 

However, the gel-based approach lacks dynamic range and sensitivity to allow the detection 
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of lowly abundant compounds. Therefore, previous studies suggested the existence of yet 

unknown venom compounds in the honeybee venom proteome. For example, although 

overloading the 2D-gel enabled to improve the spot intensity and resolution of some minor 

proteins, several spots remained unidentified [55] (Figure 8). In addition, a large part of a 

typical honeybee venom 2D-gel is obscured due to highly abundant compounds, such as 

PLA2, that mask the detection of lowly abundant compounds with similar molecular weight 

and pI (Figure 5 and 8). Besides, fractions with an extreme pI or molecular weight remain 

largely unexplored in 2D-PAGE separation. 

 

 

Figure 8: Overloading a 2D-PAGE gel with honeybee venom reveals additional spots of lowly abundant 

compounds (indicated in red). Spot 6 could be identified as a C1q-like venom protein by mass 

spectrometry [55]. The other spots remained unidentified. Due to protein overloading, the high isoelectric 

point (pI) region of the gel is covered by phospholipase A2. 

 

Mass spectrometry studies of in-liquid digested liquid chromatography (LC) venom fractions 

may overcome these issues related to gel-based proteomics and gain deeper insights in 

venom proteomes/peptidomes. In addition, several recent studies have shown that the use

of a combinatorial peptide ligand library (CPLL) can significantly improve the coverage of 

proteomic analyzes as this allows access to many lowly abundant compounds in complex 

proteomes [84]. The solid-phase CPLL consists of a bead-bound set of possibly 64 million 

different hexapeptides, which are bound by constituents of the protein mixture upon 

incubation. Highly abundant proteins saturate their high-affinity binding sites and excess 

protein is washed away, while lowly abundant proteins are enriched by concentration on 
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their specific affinity ligands (Figure 9). This technology is commercially available since 2007 

under the trade name ProteoMiner and has been used in studies of the ‘deep’ venom 

proteome of two snake species, namely the Western diamondback rattlesnake (Crotalus 

atrox) [84] and the African puff adder (Bitis arietans) [85;86], which led to the discovery of a 

large number of proteins previously undetected in these proteomes. CPLL has so far not 

been used in Hymenoptera venomics and may allow to identify many more unidentified 

lowly abundant compounds. 

 

 

Figure 9: Principle of the combinatorial peptide ligand library (CPLL). A mixture of proteins is presented by 

colored dots. The initial sample has a large dynamic range of protein concentrations. It contains high 

amounts of green and blue protein, but only few red and purple protein. This sample is incubated with 

the CPLL, which is a bead-bound hexapeptide library. Highly abundant proteins saturate their high-affinity 

binding sites and excess, unbound protein is washed away (flow-through), while lowly abundant proteins 

are enriched by concentration on their specific affinity ligands. The eluted sample has a reduced dynamic 

range of protein concentrations compared to the initial protein sample. 

 

The modular arrangement of MALDI and ESI ionization with different types of mass analyzers 

has resulted in a wide variety of mass spectrometric instrumentation [87]. Many of them 

have been used in honeybee venom research, except Fourier transform-based mass 

spectrometers (FTMS), although this equipment provides the highest performance in mass 

resolution and mass accuracy [88]. In the context of venom research, only few research 

groups used this technology (Orbitrap or FT-ICR) for protein identifications within the entire 

venom [5;89-92]. One of these studies was conducted by a cooperation of the Laboratory of 

Zoophysiology and L-PROBE, which used 2D-LC-ESI-FT-ICR-MS/MS to investigate the venom 

composition of the ectoparasitoid wasp, Nasonia vitripennis [5]. Using a shotgun proteomic 
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strategy, sixty venom proteins were identified starting from the content of 10 venom 

reservoirs of this minuscule hymenopteran insect only. The discovery of a high number of 

new venom constituents in these studies points to a highly effective technology for 

identification purposes in these complex protein mixtures. Therefore, the combination of 

the CPLL venom sample pre-treatment with FTMS is a promising approach to identify new 

honeybee venom compounds. 

 

Obtaining peptide sequences from acquired MS/MS spectra is most often performed using 

the database search approach. However, the database sequence content is important for 

successful application of this method [93]. Venom proteins can be identified through cross-

species protein identifications, but the success of this approach depends on the level of 

protein homology [7]. As homology decreases, MS/MS data need de novo sequencing 

techniques combined with database blasting [7]. Alternatively, mass spectra can be searched 

against venom gland transcriptome sequence datasets [94]. However, these have not been 

generated for honeybee and bumblebee species. Since 2006, the honeybee genome became 

available [81], which enabled the production of protein prediction datasets, providing 

significant benefits for protein identifications. However, the first generated genome 

sequence was noted to have a bimodal GC content that affected the quality of the assembly 

in some regions and the annotation had fewer genes in the initial gene prediction set 

(OGSv1.0) than would have been expected based on other insect genomes sequenced since 

then [95]. Therefore, while the previous genome sequence was obtained by Sanger 

sequencing and a whole-genome-shotgun model, the honeybee genome was recently re-

sequenced using next-generation sequencing which allows a much deeper sequence 

coverage. This resulted in an improved genome assembly (Amel_4.5), which is more 

contiguous and complete, and a new gene annotation set (OGSv3.2), which includes ~5000 

more protein-coding genes, increasing the gene set by about 50% [95]. Therefore, searching 

generated venom mass spectra against this improved dataset may identify a new set of 

venom proteins.  

 

In contrast to honeybee venom, the venom of B. terrestris has never been investigated using 

mass spectrometry. So far, B. lapidarius is the only bumblebee species from which MS data 

on its venom proteins are available (Table S3). ESI-MS resulted in the detection of 24 
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compounds and the three major compounds were identified as three bombolitins [73]. 

However, this study was hampered by the lack of a well annotated genome. Recently, also 

the genomes of two bumblebee species, B. terrestris and B. impatiens (frequent in eastern 

North-America), were sequenced using a next-generation sequencing approach [96]. This 

now allows an in-depth proteomic analysis of the venom composition of these species. 

However, like honeybee venom, B. terrestris venom contains some highly abundant 

compounds [7;45] (Figure 10). Therefore, the same issues of gel-based proteomics as those 

described for honeybee venom apply for bumblebee venom. Consequently, protein 

enrichment of lowly abundant compounds and the application of a highly sensitive 

proteomic technology is also required to obtain in-depth insights in the bumblebee venom 

proteome. 

 

 

Figure 10: 1D-SDS-PAGE (A; [45]) and 2D-SDS-PAGE (B; [7]) separation of the venom proteins from 

Bombus terrestris reveals the presence of several highly abundant compounds. 

 

 

2. HYMENOPTERA VENOM ALLERGY 

2.1 Allergy mechanism, symptoms and prevalence 

While the toxic activity of Hymenoptera venoms is only of medical importance in case of 

massive sting events, their allergenic properties are of more important concern for human 

health. In man, early exposure to bee venom evokes IgG1, IgG2 and to a lesser extent IgG4 

antibody responses, whereas long-term exposure often found in beekeepers drives the 

immunity to an IgG4 type of humoral response [97;98]. However, some people develop a 
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venom allergy, which is an IgE-mediated type 1 hypersensitivity of non-atopic origin [7]. In 

this case, allergens are taken up and are processed by dendritic cells, which stimulate 

allergen-specific (CD4+) T helper 2 (Th2) cells, causing the production of Th2 cytokines, such 

as interleukin 4 (IL-4) and IL-13 (Figure 11). These are responsible for class switching to the ε 

immunoglobulin heavy chain, allowing IgE production by B cells. IgE binds the high-affinity 

receptor for IgE, FcεRI, which is expressed at the surface of mast cells and basophils. Upon 

cross-linking of the IgE–FcεRI complexes by allergen, mast cells and basophils degranulate, 

releasing vasoactive amines (mainly histamine) and lipid mediators (prostaglandins and 

cysteinyl leukotrienes), which characterize the immediate phase of the allergic reaction. IgE 

also binds FcεRI at the surface of dendritic cells and monocytes, as well as the low-affinity 

receptor for IgE, FcεRII, at the surface of B cells. This process increases the uptake of allergen 

by these antigen presenting cells and the subsequent presentation of allergen-derived 

peptides to specific CD4+ T cells, which drive the late phase of the allergic reaction. In IgE-

mediated venom allergy, the immediate allergic reaction starts within minutes to one hour 

after the sting. Late-phase reactions, starting between three to six hours after the sting are 

exceedingly rare in Hymenoptera venom allergy. 

 

Upon a Hymenoptera sting, patients may suffer from large local or systemic reactions. A 

large local reaction is defined as a swelling around the site of the sting exceeding a diameter 

of 10 cm and which lasts longer than 24 hours (Figure 12) [99]. The underlying mechanism of 

large local reactions is unknown [99]. The prevalence of large local reactions upon 

Hymenoptera stings varies from 2.4% up to 26.4%. Systemic allergic reactions have been 

reported to occur in 0.8 to 5% of the general population [7], but people with specific 

outdoor professions such as beekeepers, gardeners and farmers are at much higher risk 

[100]. Symptoms include pruritus, urticaria, angioedema, nausea, vomiting, diarrhea, 

rhinoconjunctivitis, bronchiospasm, hypotension, cardiovascular collapse and loss of 

consciousness (Figure 12) [101]. Systemic reactions to insect stings can be measured using 

the Müller grading system, which classifies reactions according to the degree of the severeity 

of the reaction (Table 1) [99;102;103]. Severe anaphylactic reactions may leave patients with 

a permanent disability such as hypoxic brain damage with permanent neurologic deficits and 

myocardial infarction. Even fatal reactions after insect stings may occur [99], although this is 

rare. Only 0.03–0.48 fatalities per 1,000,000 inhabitants occur each year due to insect
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Figure 11: The mechanisms of allergic reactions. (A) Sensitization and memory induction. Allergens are 

taken up and are processed by dendritic cells, which causes differentiation and clonal expansion of T 

helper 2 cells (Th2). These produce IL-4 and IL-13 cytokines which induce class switching to IgE and clonal 

expansion of naive and IgE+ memory B-cells. In addition, IgE at the surface of allergen-specific IgE+ B cells 

and other IgE-sensitized antigen-presenting cells facilitates antigen presentation to T cells. T-cell 

activation in the presence of IL-4 increases the differentiation into Th2 cells. (B) Immediate phase of the 

allergic reaction. IgE binds the high-affinity receptor for IgE (FcεRI), which is expressed at the surface of 

mast cells and basophils. Upon cross-linking of the IgE–FcεRI complexes by allergen, mast cells and 

basophils degranulate, releasing vasoactive amines (mainly histamine) and lipid mediators (prostaglandins 

and cysteinyl leukotrienes), which contribute to the immediate symptoms of allergic reactions. (C) The 

late phase allergic reaction involves the recruitment, activation and persistence of eosinophils and T-cells 

at the sites of allergen exposure. Local IgE-facilitated antigen presentation by dendritic cells (DCs) 

increases T-cell activation. Both eosinophils and activated mast cells and basophils, release allergic 

mediators. Figure adapted from [97]. 
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stings [3]. In the United States for instance, the probability of dying following contact with 

hornets, wasps or bees would be in the same order of magnitude (odds of 1 in 71,623) as 

being struck dead by lightning (1 in 84,079) or legally executed (1 in 96,691). However, the 

true prevalence of mortality induced by stings may be underestimated, as sting fatalities go 

unrecognized and misinterpreted [3;104]. Also, for most patients as well as for their families, 

an anaphylactic reaction after a Hymenoptera sting is a very traumatic event. It has been 

demonstrated that patients with anaphylactic responses following yellow jacket stings 

experienced impairment in their quality of life especially because of the emotional distress 

associated with having to be constantly on the alert while leading their everyday lives [99]. 

To date, no parameter has been identified that can predict who will have a future reaction 

and whether it will be a large local reaction or systemic reaction. Several concomitant 

factors may account for the occurrence of a systemic reaction in individual patients. These 

include environmental (the frequency of stings and the type of insect), genetical (the 

persistence of sIgE antibodies and probably other factors) and individual (age, asthma, 

mastocytosis or ischaemic heart disease, concurrent medication and others) factors [104].  

 

 

Figure 12: Symptoms of allergic reactions upon stings: (A) large local reaction, (B) urticaria, (C) 

angioedema. Pictures remain copyright from respectively Dr. P. Marazzi/Photo Researchers, Inc. (A), Dr 

Adrian Morris (B) and [105] (C). 
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The prevalence of stings from all Hymenoptera ranges from 56.6% to 85.5% in an adult life 

[106]. Epidemiologic data specifically addressing honeybee sting are rare. Several studies 

reported that approximately one-third of the Hymenoptera stings are due to honeybee. No 

data exist about the prevalence of large local reactions and fatalities attributed solely to 

honeybees, but one study showed that they are responsible for about half of the systemic 

reactions related to Hymenoptera stings. Beekeepers are a unique population of those 

affected by honeybee venom allergy. They have higher local reaction rates of 12% to 76% 

and higher systemic reaction rates of 4.4% to 43% [99;106]. Interestingly, protection 

correlates with receiving more than 200 stings per year, although 50 stings per year may also 

provide benefit. Especially beekeepers (and their family members) receiving fewer than 25 

sting per year have a high systemic reaction rate of 45% [106].  

 As the risk of being stung by a bumblebee is very small, allergic reactions to 

bumblebee stings are rare. However, allergic reactions have been reported in occupational 

settings [107]. As bumblebees are increasingly used as pollinators of greenhouse plants, the 

prevalence of bumblebee venom allergy expanded, especially in greenhouse workers 

[66;107;108]. 

 

Table 1: Classification of allergic reactions modified according to Müller [102;103]. 

 

 

2.2 Treatment of Hymenoptera venom allergy 

The treatment of allergic symptoms depends on the severity of the allergic reaction. Large 

local reactions are treated with topical/systemic corticosteroids and antihistamines, and by 
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cooling the swollen area. In case of systemic reactions, also auto-injectable adrenaline 

should be used as emergency medication [100]. To provide protection from future stings, 

venom immunotherapy (VIT) is the treatment of choice for patients with grades III and IV. In 

patients with grades I and II, additional factors, such as high exposure to venoms or impaired 

health-related quality of life due to venom allergy, are taken into consideration before 

making a decision of VIT treatment [101;109]. The VIT procedure consists of subcutaneous 

injections of venom extract in two phases: the incremental and the maintenance dose phase. 

Different protocols are used for the incremental dose phase, which allow for achieving the 

maintenance dose phase from within 12 weeks (conventional) to a few days (rush) or a few 

hours (ultra-rush). The maintenance dose of 100 µg of venom extract is given every 4-6 

weeks usually for 3-5 years [101;109].  

 

The exact mechanisms responsible for the beneficial aspects of VIT are not yet fully 

understood (Figure 13). It appears that regulatory T cells play a significant role for a balanced 

Th1/Th2 profile by production of IL-10. VIT induces a shift from Th2-type (IL-4) towards a 

Th1-type (IFN-γ) cytokine response. Increases in the levels of IL-10, IFN-γ and TGF-β lead to 

decreased mast cell and eosinophil activation, and class switching results in down-regulation 

of IgE production and increased IgG4 production [97]. In addition, during build-up VIT a 

transiently reduced number of circulating basophils has been described without significant 

effect on individual basophil histamine content or release. In contrast, maintenance VIT 

lowers the content and release of histamine by basophils upon stimulation with allergen 

[110].  

As previously mentioned, receiving a high number of stings correlates with protection 

of beekeepers, which seems to be mediated through the induction of bee-venom-specific 

IgG. The natural exposure to large doses of venom proteins resembles VIT as both lead to 

modulation of peripheral T-cell responses through the generation of allergen-specific IL-10-

secreting T-cells and the increased synthesis of IL-10 by monocytes and B cells [97]. 

 

VIT is proven effective in the majority of Hymenoptera venom allergic patients. However, as 

systemic allergic side effects to immunotherapy injections have been reported, as well as 

patients which were not protected after immunotherapy treatment, there is considerable 

interest in improving safety and efficacy of VIT [111;112]. Remarkably, honeybee VIT
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Figure 13: Venom immunotherapy induces the generation of regulatory T (Treg) cells, which play 

suppressive roles in proliferative and cytokine responses against the venom allergens. Treg cells are 

characterized by IL-10 and TGF-β secretion capacities that directly or indirectly influence effector cells of 

allergic inflammation, such as mast cells, basophils and eosinophils. Treg cells have an influence on B cells, 

suppress IgE production and induce the production of blocking type IgG4 antibodies against venom 

antigens [113]. 

 

appears to be less effective at providing future protection in comparison with other 

Hymenoptera. According to field stings or sting challenges after VIT, honeybee VIT provides 

approximately 75% to 85% protection from future stings, which is lower than the 

approximately 85% to 93% protection for yellow jacket VIT. Also, honeybee VIT is less safe, 

as the risk for systemic reactions during the full course of treatment ranges from 24% to 41% 

for honeybee, while this is only 5% to 25% for other Hymenoptera [106]. For many years 

honeybee venom was also used to treat bumblebee venom allergy, which was not always 

successful. Since the commercial availability of bumblebee venom extracts and the finding of 

bumblebee venom-specific IgE lacking cross-reactivity to honeybee venom, bumblebee 

venom is now the preferred choice for treatment of bumblebee venom allergy [108;114]. 

Nowadays, allergen extracts are used for immunotherapy. However, due to great 

variability in the amounts of individual allergens, these extracts are difficult to standardize 



General introduction 

25 
 

[115]. Lowly abundant but major allergens may be even missing due to downstream 

processing of extracts [116]. In addition, extracts can be contaminated with allergens from 

other sources or initiate new IgE specificities [115]. Therefore, the use of extracts for 

immunotherapy may cause the currently insufficient safety and efficacy of VIT. Recombinant 

allergens aim to overcome these issues as they can be produced in unlimited amounts, at 

highly standardized quality and with exact physiochemical and immunological properties. 

Allergens can be modified to have more favourable characteristics, including reduced IgE 

reactivity or enhanced immunogenicity [117]. Based on the knowledge of the allergen 

structures, several approaches have been developed, such as recombinant wild-type 

allergens, hypoallergens, T-cell epitope-based vaccines, carrier-bound peptides, genetic 

vaccination and gene therapy [115]. For treating honeybee venom allergy, a phase I clinical 

trial using T-cell epitopes of the Api m 1 allergen has been conducted [118]. Intact T-cell 

epitopes are required to enable the induction of specific T-cell tolerance. In contrast, IgE-

binding B-cell epitopes are prerequisites for sensitisation against the allergen and therefore, 

their binding efficiency must be reduced. Bee venom allergic patients were treated with 

three long synthetic peptides encompassing the entire Api m 1 sequence in a rush 

desensitisation protocol to a maintenance dose of 100 µg. This treatment was safe and 

induced increases in T-cell proliferation, IFN-γ and IL-10 levels, but no Th2 cytokines. Also 

allergen-specific IgG4 levels increased, but not IgE levels. No severe adverse reactions were 

reported [117;118]. Also a prototype of a multi-allergen vaccine including assembled T-cell 

epitopes of three honeybee venom allergens (Api m 1, Api m 2 and Api m 3) showed a 

reduction of specific IgE development towards the native allergen in mice [119]. 

 

2.3 Hymenoptera venom allergy diagnosis 

2.3.1 Conventional diagnosis  

2.3.1.1 Principle and methods 

A correct allergy diagnosis is required for the initiation of an appropriate immunotherapy. 

Currently, diagnosis of Hymenoptera venom allergy begins with assessing the clinical history 

(information on the severity of the reaction, number of stings, sting site, entomological 

identification,…) [99]. Subsequently, in conventional diagnosis, clinical suspicion is confirmed 

by several in vitro and in vivo techniques using venom extracts. In venom skin tests (skin 

prick or intradermal testing) a small amount of venom is introduced to the patient’s skin and 
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the wheal and flare allergic reactions are measured [99]. In addition, the venom-specific IgE 

titers in the serum are measured. At present, two FDA-approved diagnostic tests are 

available [120]. Both ImmunoCAP FEIA (Phadia/Thermo Fisher Scientific, Uppsala, Sweden) 

and Immulite (Siemens Healthcare Diagnostics, Los Angeles, CA, USA) are enzyme-linked 

solid-phase immunoassays which give quantitative results of serum IgE levels in kU/L. For the 

ImmunoCAP FEIA system, the venom extracts of honeybee (A. mellifera), bumblebee (B. 

terrestris), common wasp (Vespula spp.), European paper wasp (Polistes dominulus), paper 

wasp (Polistes spp.), European hornet (Vespa crabro), white-faced hornet (Dolichovespula 

maculata) and yellow hornet (Dolichovespula arenaria) are available. Also the Immulite 

system provides several venom extracts (honeybee, wasp, paper wasp, white-faced hornet 

and yellow hornet). In cases where quantification of sIgE and venom skin tests remain 

negative or yield contradictory or equivocal results, the European Academy of Allergology 

and Clinical Immunology Interest Group on Insect Venom Hypersensitivity advises to use 

cellular tests, such as the basophil activation test (BAT), to demonstrate immunological 

sensitization [99]. Upon encounter of specific allergen that crosslinks FcεRI-bound IgE, 

basophils not only synthesize and secrete bioactive mediators, but also up-regulate the 

expression of certain activation markers that can be quantified flow-cytometrically in the 

BAT [121;122]. However, entrance of this technique in mainstream use is hampered as it is 

not always readily accessible and demands particular expertise [123]. 

 

2.3.1.2 Difficulties of conventional venom allergy diagnosis 

A correct diagnosis is not always straightforward. For example, many patients fail to identify 

or name the hymenopteran species that stung. In addition, it has been demonstrated that 

quantification of venom-specific sIgE and venom skin tests generated entirely false-negative 

results in patients with a history of a severe venom allergy [123]. Besides, although the 

majority of patients is allergic to a single venom, many patients show double positive sIgE 

results to multiple Hymenoptera venoms, which relates to immunochemical cross-reactivity 

[123]. This cross-reactivity can occur on peptide basis due to the presence of similar protein 

allergens in both venoms, or from cross-reactive carbohydrate determinants (CCDs) which 

are IgE recognized carbohydrate moieties ubiquitous on many Hymenoptera venom 

glycoproteins [123]. 
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Many hymenopteran venom proteins contain N- and O-linked glycosylation sites. In contrast 

to venom O-glycans which have so far not been investigated, the N-glycans of both 

honeybee venom allergens Api m 1 (PLA2; [124;125]) and Api m 2 (hyaluronidase; [126]), and 

the wasp venom allergen Ves v 2 (hyaluronidase; [127]) have been well characterized. In 

total, fourteen N-glycans from honeybee venom Api m 1 were identified [124;125] (Figure 14) 

and those of Api m 2 and Ves v 2 were found to be very similar [126;127]. They are 

paucimannosidic and contain fucose α-1,3 and/or α-1,6 linked to the innermost N-

acetylglucosamine (Figure 14). The α-1,3-core fucoses are currently the only known CCDs 

from Hymenoptera venoms. They have been found in the venom of Apis mellifera and 

Vespula vulgaris, while the venoms of all analyzed American (P. annularis, P. fuscatus, P. 

metricus, P. apachus and P. exclamans) and European (P. dominulus) Polistes species are 

CCD-free [128]. For bumblebee venom, no data about the presence of venom CCDs were 

found in literature. 

Besides α-1,3-core fucoses, also β-1,2-core xylose and α-1,3-galactose residues linked 

to N-glycans are known to be CCDs. However, both are not found in insects. Glycosylations 

of plants and some pathogenic helminths contain both α-1,3-core fucoses and β-1,2-core 

xylose and therefore cross-reactions between Hymenoptera venoms and pollen, natural 

rubber latex, vegetables and fruits have been observed in serum investigations [129]. The 

diagnostic relevance of these structures has been described several times, but their clinical 

relevance is still discussed [130]. In contrast, a clear clinical relevance of the α-1,3-galactose 

epitope was confirmed [131]. This CCD is found on glycolipids and glycoproteins of non-

primate mammals, prosimians and New World monkeys, but not in apes, Old World 

monkeys and humans. This CCD is involved in allergy to red meat [132]. 

 

In addition, Hymenoptera venoms have several allergens in common which contribute to 

cross-reactivity (Table 2). A. mellifera venom provides the best immunologically 

characterized model: 12 allergens have been reported, which are named Api m 1 until Api m 

12 following the nomenclature guidelines of the International Union of Immunological 

Societies (IUIS; http://www.allergen.org/Allergen.aspx). In some areas across Asia, A. 

mellifera, A. cerana and A. dorsata coexist [133]. PLA2 has been found to be an important 

allergen in these species and sequence identity is higher than 90%. The venom composition 

of Apis species other than A. mellifera is only poorly characterized and no other allergens 

http://www.allergen.org/Allergen.aspx
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Figure 14: Structures of N-linked glycosylations from phospholipase A2 (Api m 1) of honeybee venom. 

Figure adapted from [125]. 

 

have been identified, but probably honeybee species have a highly similar venom 

composition containing allergens with high sequence identity. No data are available about 

cross-reactivity between different honeybee venoms, but this is expected to be high.  

Only few bumblebee venom allergens have been characterized (Table 2). Differences 

in IgE binding between venoms of the European B. terrestris and North-American B. 

pennsylvanicus have been reported [134;135]. Although sequence identity between their 

PLA2 allergens is high (83.8%), they contain partially different IgE epitopes [66]. Also the 

casein hydrolyzing protease is a major allergen which shows only partial cross-reactivity 

between both species. Besides, several studies reported a high degree of cross-reactivity 

between honeybee and bumblebee venom [114]. It has been suggested that there exist two 

types of patients sensitised to bumblebee venom. The first type of patients has primary 

earlier exposure and sensitization to honeybee venom and contains IgE highly cross-reactive 

with honeybee venom. The second type of patients are specifically sensitised to bumblebee 

venom due to occupational exposure and exhibit IgE with low or absent cross-reactivity to 

honeybee venom [107]. Species-specific IgE epitopes exist, which is supported by the 

moderate sequence identity (52.9%) between the major honeybee and B. terrestris PLA2 
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allergens. As treatment by VIT using honeybee venom failed in some bumblebee allergic 

patients, the use of bumblebee venom for immunotherapy is recommended [114]. This 

makes a decisive diagnosis necessary. 

Vespula, Dolichovespula and Vespa are three genera belonging to the Vespinae 

subfamily. In Europe, Vespula species are the most important stinging wasps, also called 

yellow jackets in America. As they are attracted to protein and sugar foods and drinks, these 

scavenger species sting humans more often than honeybees. Different Vespula venoms 

strongly cross-react, while also substantial cross-reactivity between Vespula, Vespa and 

Dolichovespula venoms has been reported [99]. Polistes (paper wasps) and Polybia species 

belong to the Polistinae subfamily. Polistes species are especially found in the 

Mediterranean areas, while Polybia is a genus from South-America. Cross-reactivity of 

Vespinae with Polistinae is generally lower than cross-reactivity within the Vespinae. Also 

cross-reactivity between European species of Polistes (P. dominulus, P. gallicus) is very 

strong compared to cross-reactivity between European and American Polistes species [99]. 

PLA1 and antigen 5 proteins are the major venom allergens of many wasp species (Table 2). 

Also a small group of ant species is capable of stinging humans and these stings can 

cause allergic reactions [136]. Although these species are not found in Europe, they are 

sometimes spread by international transport of cargo. The most medically important 

aggressive ants are the fire ants of the genus Solenopsis. In contrast to the proteinaceous 

venoms of other Hymenoptera, ant venoms are mostly composed of alkaloids. Nevertheless, 

four protein allergens have been characterized, including a member of the antigen 5 family 

(Sol i 3). Sera from patients sensitized to Sol i 3 do not cross-react with wasp antigen 5. In 

contrast, the PLA1 allergen, Sol i 1, exhibits cross-reactivity with wasp venom phospholipases. 

Sol i 2 and Sol i 4 have not been found in other venoms. Other venomous ants belong to the 

Pachycondyla, Myrmecia and Pogonomyrmex genera [136]. Recently, the genomes of three 

stinging ant species (Solenopsis invicta, Harpegnathos saltator, Pogonomyrmex barbatus) 

were sequenced [137-139], which should stimulate more studies on ant venom 

compositions and immunological characterization of the venom compounds. 
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Table 2: All Hymenoptera venom allergens from the official list of allergens of the IUIS (http://www.allergen.org/Allergen.aspx) are shown. Homologous allergens 

within each genus are presented per protein name. 

Family Genus Protein name Allergen name             

Apidae Apis   A. mellifera A.cerana A. dorsata         

  

Phospholipase A2 Api m 1 Api c 1 Api d 1 

    

  

Hyaluronidase Api m 2 

      

  

Acid phosphatase Api m 3 

      

  

Melittin Api m 4 

      

  

Dipeptidyl peptidase IV Api m 5 

      

  

Protease inhibitor Api m 6 

      

  

CUB serine protease Api m 7 

      

  

Carboxylesterase Api m 8 

      

  

Serine carboxypeptidase Api m 9 

      

  

Icarapin Api m 10 

      

  

MRJP8 and MRJP9 Api m 11 

      

  

Vitellogenin Api m 12 

      

            Bombus   B. terrestris B. pennsylvanicus           

  

Phospholipase A2 Bom t 1 Bom p 1 

     

  

Protease Bom t 4 Bom p 4 

     Vespidae Vespula   V. vulgaris V. maculifrons V.squamosa V. flavopilosa V. germanica V. pensylvanica V. vidua 

  

Phospholipase A1 Ves v 1 Ves m 1 Ves s 1 

    

  

Hyaluronidase Ves v 2 Ves m 2 

     

  

Dipeptidyl peptidase IV Ves v 3 

      

  

Antigen 5 Ves v 5 Ves m 5 Ves s 5 Ves f 5 Ves g 5 Ves p 5 Ves vi 5 

  

Vitellogenin Ves v 6 

      

          

          

          

          

http://www.allergen.org/Allergen.aspx
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  Dolichovespula   D. maculata D. arenaria           

  

Phospholipase A1 Dol m 1 

      

  

Hyaluroniase Dol m 2 

      

  

Antigen 5 Dol m 5 Dol a 5 

     

            Vespa   V. crabro V. mandarinia V. magnifica         

  

Phospholipase A1 Vesp c 1 Vesp m 1 

     

  

Hyaluronidase 

  

Vesp ma 2 

    

  

Antigen 5 Vesp c 5 Vesp m 5 Vesp ma 5 

    

            Polistes   P. dominulus P. exclamans P. annularis P. gallicus P. fuscatus P. metricus   

  

Phospholipase A1 Pol d 1 Pol e 1 Pol a 1 Pol g 1 

   

  

Hyaluronidase 

  

Pol a 2 

    

  

Serine protease Pol d 4 Pol e 4 

     

  

Antigen 5 Pol d 5 Pol e 5 Pol a 5 Pol g 5 Pol f 5 Pol m 5 

 

            Polybia   P. paulista P. scutellaris           

  

Phospholipase A1 Poly p 1 

      

  

Antigen 5 

 

Poly s 5 

     Formicidae Myrmecia   M. pilosula             

  

Pilosulin-1 Myr p 1 

      

  

Pilosulin-3 Myr p 2 

      

  

Pilosulin-4 Myr p 3 

      

            Solenopsis   S. invicta S. geminata S. richteri S. saevissima       

  

Phospholipase A1 Sol i 1 

      

   

Sol i 2 Sol g 2 Sol r 2 Sol s 2 

   

  

Cystein-rich venom protein Sol i 3 Sol g 3 Sol r 3 Sol s 3 

   

   

Sol i 4 Sol g 4 
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2.3.2. Component-resolved diagnosis 

2.3.2.1 Principle and methods 

As mentioned, conventional tests not always allow to establish correct diagnosis. During the 

last decade, component-resolved diagnosis (CRD) has entered the field of allergy diagnosis. 

In contrast to conventional sIgE assays, CRD relies on quantification of sIgE antibodies to 

single components, purified from natural sources or obtained by recombinant techniques. 

The use of species-specific unique marker components and cross-reactive determinants can 

help to distinguish between a true double sensitisation (patient needs immunotherapy with 

both allergens) and cross-sensitization to several unrelated allergen sources 

(immunotherapy restricted to sensitizing allergen) [140]. Analyzing sIgE to a well-chosen 

panel of allergens increases sensitivity and leads to a better discrimination between 

different allergies than diagnostic tests using extracts [141;142]. As obtaining high amounts 

of highly standardized allergens is crucial for diagnostic purposes, recombinantly produced 

allergens are preferred over purified allergens [142]. In addition, careful selection of the 

expression system allows to obtain allergens without confounding CCDs.  

 

In addition to venom extracts, the ImmunoCAP FEIA and Immulite immunoassays also 

provide several recombinant CCD-free venom allergens which allow to perform CRD. rVes v 1, 

rVes v 5, rApi m 1 and rPol d 1 (expression system is not clarified by the manufacturer) can 

be used for the ImmunoCAP FEIA system, while the Immulite system provides rApi m 1, rApi 

m 2 and rVes v 5 (produced in Sf9 insect cell line). Each assay requires 40 µl (ImmunoCAP 

FEIA) or 5µl (Immulite) of serum to test a single allergen. In contrast, sIgE can now be 

simultaneously determined towards more than 100 allergen compounds of many sources by 

use of microarray technology, which needs only a very small quantity (20 µl) of serum 

(ImmunoCAP ISAC, Phadia/Thermo Fisher Scientific; request for FDA approval under way) 

(Figure 15). This enzyme-linked immunoassay generates semi-quantitative results (ISAC 

standardised units) [120]. While venom extracts are lacking, rApi m 1, nApi m 4, rVes v 5 and 

rPol d 5 are included hymenopteran venom allergens. However, this test is almost never 

applied in venom allergy diagnosis as the spotted selection of components often does not 

allow a decisive diagnosis. 
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Figure 15: The ImmunoCAP ISAC (Phadia) test is a microarray-based diagnostic test. Over 100 purified and 

recombinant allergens are immobilized on the array. IgE antibodies from the patient serum bind to 

specific allergens. Next, allergen-bound IgEs are recognized by a fluorescently-labeled antibody. The 

generated fluorescent signal is detected by a microarray scanner. Figure from Phadia. 

 

As CRD can help to distinguish between different Hymenoptera venom allergies in many 

patients [143], well studied venom proteomes and allergen repertoires of a broad range of 

stinging species are required for the development of such diagnostic tools. Although for 

some species several major allergens have been characterized, an in-depth knowledge of 

their venom composition is often lacking. Besides A. mellifera, the venom proteomes of 

several hymenopteran species known to sting humans have been studied by mass 

spectrometry (Table S4). However, most studies identified only a limited number of venom 

proteins. In-depth proteomic insights have only been obtained for the venoms of the 

neotropical social wasps Agelaia pallipes pallipes and Polybia paulista, and the red imported 

fire ant Solenopsis invicta. However, the allergenic potential of only few of the identified 

venom compounds has been determined (Table 2). 

 

2.3.2.2 Distinguishing between honeybee and wasp venom allergy using CRD 

In Europe, approximately two thirds of patients with allergy to Hymenoptera venom react to 

wasp stings and one third to bee stings. Therefore, obtaining a correct diagnosis between 

both culprit species is important. However, of patients with systemic allergic reactions to 

Hymenoptera stings, up to 59% have serum-specific IgE antibodies to venoms of both 

honeybee and wasp [144]. This double positivity can be partially explained by IgE reactivity 

to CCDs present on both honeybee and wasp venom proteins. Indeed, in our region 
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sensitization to CCD is found in about 20% of the patients with hymenoptera venom allergy, 

particularly honeybee venom allergy [145]. In addition, both venoms have several allergens 

in common. The hyaluronidase enzyme has long been recognised as the most relevant cross-

reactive allergen. However, cross-reactivity between Ves v 2 and Api m 2 is mainly induced 

by CCDs and less often because of shared peptide epitopes [146]. Moreover, Ves v 2 was 

found to be only a minor wasp venom allergen as it is IgE recognized by only 10-15% of the 

wasp allergic patient. Recently, additional honeybee and Vespula vulgaris venom 

homologues have been discovered, which may be responsible for cross-reactivity between 

both venoms. The dipeptidyl peptidase IV allergens of A. mellifera (Api m 5) and V. vulgaris 

(Ves v 3) share 53.8% sequence identity. A recombinant anti-Api m 5 human monoclonal IgE 

antibody reacts to a similar extent with both CCD-free Api m 5 and Ves v 3. This suggests the 

presence of a conserved protein epitope, which may also be recognized by IgE of venom 

allergic patients [48]. Also, Blank and co-workers [50] very recently provided indications for 

cross-reactivity between the venom vitellogenins (Api m 12 and Ves v 6). 

 

Conventional tests are used as the first line of laboratory investigation, but not always allow 

to distinguish between honeybee and wasp venom allergy. For patients in which the culprit 

insect is uncertain, and/or double-positive results are obtained with conventional venom 

extracts, the second-line analysis of IgE to available CCD-free, species-specific recombinant 

allergens has been found to be helpful in the identification of the relevant sensitization 

[123;143;147-149]. In patients with allergy to wasp venom, the diagnostic sensitivity of a 

combination of the currently available wasp venom allergens rVes v 5 and rVes v 1 has been 

reported to be as high as 92% to 96% [123;141;149]. In contrast, the diagnosis of honeybee 

venom allergy using solely Api m 1 lacks sensitivity as, depending on the patient population, 

between 20% and 42% of the patients lacks IgE reactivity to rApi m 1 [141;144;148-150]. 

From ImmunoCAP data, it can be suggested that sensitisation to multiple honeybee venom 

allergens is common [144]. For example, in a large patient population (82 honeybee venom 

allergic patients), it was shown that 75.6% of the patients was sensitized to rApi m 1, 46.3% 

to rApi m 2, and 26.8% to nApi m 4. Moreover, these data demonstrated that the 

combination of ImmunoCAPs with Api m 1, Api m 2 and Api m 4 increased the sensitivity of 

CRD to 89%. It is clear that additional honeybee venom allergens are necessary to further 

increase sensitivity and allow a better discrimination of bee and wasp venom allergy [144]. 
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As the major honeybee venom allergen rApi m 10 was not recognized by serum IgE of wasp 

venom allergic patients [116], this is an interesting candidate. The immunological 

characterization of additional honeybee venom compounds may identify novel species-

specific major allergens that allow to develop diagnostic tests with improved sensitivity and 

specificity. A multiplex diagnostic test, which screens for IgE recognition of multiple 

honeybee- and wasp-specific venom allergens, should be developed to allow to distinguish 

between honeybee and wasp venom allergy using a limited amount of serum. 

 

In conventional diagnosis, quantification of venom-specific sIgE sometimes generates false-

negative results. Recently, it has been demonstrated that spiking these venom extracts with 

recombinant venom allergens can increase the sensitivity of these diagnostic tests. Indeed, 

supplementing wasp venom extract with the major allergen rVes v 5 improved ImmunoCAP 

sensitivity and allowed a correct diagnosis of wasp venom allergy in patients sensitized to 

Ves v 5 but demonstrating a negative sIgE to wasp venom [123;151].   

 

2.4 Identification and characterization of honeybee and bumblebee venom allergens 

The characterization of novel allergens is an important step towards better diagnostics and 

immunotherapy. Compounds are incorporated into the IUIS official list of allergens in case 

IgE binding is demonstrated by 5 sera of patients allergic to the respective allergen source or 

in case of IgE binding by at least 5% of all tested sera of patients allergic to the respective 

allergen source. The identification of novel allergens is often performed by 2D-PAGE 

separation of the source extract, followed by immunoblotting using sera of allergic patients 

and protein identification of IgE recognized spots by mass spectrometry. Alternatively, 

individual proteins are purified or produced as recombinants and their IgE recognition is 

analyzed by ELISA, spot blot or Western blot. Next, in vitro cellular tests such as the basophil 

activation test (BAT) allow to analyze if IgE recognized compounds can stimulate basophils to 

release allergenic mediators. Allergens require at least two epitopes to cross-link the high 

affinity IgE receptor (FcεRI), which causes basophil activation. Once an allergen has been 

identified, IgE mapping studies using microarrays can reveal relevant information about the 

antigen structure and epitopes, and the patient’s immune response [152].  
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Several venom allergens of bees, wasps, paper wasps, hornets, and ants have been 

identified (Table 2). The immunological characterization of novel venom proteins requires 

large quantities of pure venom proteins, which are often difficult to obtain using purification 

strategies [153]. As recombinant production solves these issues, recombinantly produced 

compounds are the favoured choice for immunological characterization. In addition, this 

technology allows to select an expression host which produces recombinants containing the 

preferred post-translational modifications. As the clinical relevance of CCDs is still 

controversial, Hymenoptera venom proteins are preferably obtained without CCDs, which 

allows to evaluate the allergenicity at the mere protein level. Several cell lines are available 

which allow the recombinant production of CCD-lacking proteins. However, prokaryiotically 

produced, non-glycosylated proteins may suffer limitations regarding folding, solubility, 

activity and IgE epitope conservation, while yeasts and mammalian cell lines produce 

aberrant glycosylations [154]. Insect cell lines provide expression hosts that are 

phylogenetically as close as possible to the parental organism, making them indispensable 

for recombinant insect venom protein production. In addition, expression in insect cells 

mostly results in secretion of biologically active and soluble proteins, usually in glycosylated 

form. This added glycosylation is more authentic than that from other hosts [155], although 

variation between different insect cell types has been noticed. Seismann and co-workers 

[156] showed that HighFive (Trichoplusia ni) and Sf9 (Spodoptera frugiperda) cells both 

produce N-linked glycosylations, but HighFive glycosylations include α-1,3-core fucosylations 

which are lacking in Sf9 cells. These fucose residues are the only known CCDs of 

Hymenoptera venoms. Consequently, the evaluation of the allergenicity of novel 

hymenopteran venom proteins is preferably executed using the baculovirus-mediated 

infection of Sf9 insect cells, as this cell line produces the natural insect-specific post-

translational modifications, but without CCDs which interfere with the identification of 

proteinous epitopes [156]. 

 

The list of honeybee venom allergens (Table 2) includes both major and minor allergens. 

When the majority (>50%) of the tested population reacts to an allergen, it is described as a 

major allergen, whereas minor allergens are recognized by a limited number of patients. 

Although melittin is the highest abundant honeybee venom compound, it is only a minor 

allergen (Api m 4), active in less than one third of bee allergic patients. As melittin is a highly 
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abundant, non-glycosylated peptide, it was only immunologically characterized in its natural 

form. The allergenicity of most other allergens has been determined using the recombinant 

form of these proteins. However, IgE recognition of individual allergens differs markedly 

between different studies, which may be explained by variable inclusion criteria of patients, 

geographical differences, differences in the immunoassay parameters and biochemical 

properties of the recombinants. For example, for Api m 1 (PLA2) which is the most important 

allergen in honeybee venom, a large difference in the frequency of Api m 1 sensitization 

(56.7-97%) is seen between different studies. Previously, it was suggested that sensitivity 

might depend on the inclusion criteria of patients. For example, patients without detectable 

sIgE to bee venom and negative skin test results are more likely to be negative for Api m 1. 

However, this variation has recently been attributed to geographical factors, as a north-

south difference in Api m 1 sensitization was demonstrated, with highest levels in Northern 

Europe (Figure 16) [157]. This observation may be the effect of a variable venom 

composition. Several other allergens have been recombinantly expressed in E. coli and/or 

Sf9 insect cells, which enabled to evaluate IgE recognition beyond CCD-reactivity. Api m 2 

[156], Api m 5 [48], Api m 10 [116], Api m 11 [158] and Api m 12 [50] are typical glycosylated 

allergens with allergenic relevance beyond their carbohydrate epitopes. As Api m 6 is a non-

glycosylated protein, it was immunologically characterized as a bacterial recombinant, which 

revealed that is a minor allergen [49]. In contrast, IgE recognition of Api m 3 has only been 

examined as a purified venom protein [153] and as a recombinant produced in the HighFive 

cell line which adds CCDs [159]. Therefore, its allergenicity should be confirmed by 

production of a CCD-lacking recombinant. Api m 7, Api m 8 and Api m 9 still need to be 

immunologically characterized, although they have been added to the official list of 

honeybee allergens. 

 

The protein structure of several honeybee venom allergens has been determined by X-ray 

crystallography (Api m 1, Api m 2, Api m 4) [6], while for others (Api m 3, Api m 6 and Api m 

7) structures have been determined indirectly by homology modelling based on the known 

crystallographic structures of related proteins [47;49;160]. Available protein structures are 

valuable information to predict the location of linear and conformational IgE epitopes using 

bioinformatics. For IgE binding, surface lysyl residues have been observed to be essential, 

while linear antigenic determinants should be accessible to the solvent, contain both 
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Figure 16: North-south difference in Api m 1 sensitisation in Europe [157]. 

 

hydrophobic and hydrophilic residues and preferably be present in loops, avoiding helical 

regions [160]. The IgE-binding epitopes of Api m 3, Api m 6 and Api m 7 were predicted 

based on their determined structure. Also peptide arrays using overlapping peptides 

spanning the complete protein can be used to identify the linear epitopes but these have not 

been executed for honeybee venom allergens. 

 

Until now, all immunologically characterized honeybee venom compounds were shown to 

be recognized by IgE antibodies, except the lowly abundant C1q-like venom protein [55]. A 

preliminary test using recombinant C1q failed to demonstrate IgE recognition by serum from 

patients with a documented severe honeybee/wasp venom allergy. However, C1q was 

produced as an insoluble, non-glycosylated recombinant protein in a prokaryotic expression 

system. As the lack of post-translational modifications may cause an incorrect folding of the 

bacterial recombinant, its observed lack of IgE recognition may not correspond to that of the 

natural counterpart. In addition, IgE recognition of C1q was analyzed with sera of only a very 

limited collection of honeybee and wasp venom allergic patients [55]. Therefore, further 

research should determine the allergenic nature of this compound.  

Additionally, several proteins known to be present in honeybee venom for several 

years have never been immunologically characterized. Two compounds, PVF1 and 

hexamerin 70A, were found in venom proteomic studies of 2005 [53; also Figure 5] and 2006 

[82] (Table S1) respectively and are interesting candidates for immunological 
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characterization. Moreover, novel proteomic approaches may reveal additional honeybee 

venom compounds with allergenic potency.  

Allergen protein heterogeneity may make this picture even more complex. Indeed, 

protein heterogeneity has been reported to be immunologically relevant. For example, the 

birch genome contains at least 7 pollen-expressed genes that encode distinct Bet v 1 

isoforms with varying IgE reactivity [161;162]. Also in honeybee venom, different isoforms of 

allergens have been described. The four described Api m 6 isoforms differ in their primary 

structure at the amino and carboxy terminus by a maximum of six amino acids. Immunoblot 

analyses revealed no isoform-specific IgE [57]. Also two highly similar Api m 10 (icarapin) 

alternative splice variants were identified (Figure 6) [58], which were both found to be IgE 

recognized [58;116]. However, as mentioned, 2D-PAGE separation of honeybee venom 

revealed additional icarapin protein spots (Figure 5) [53]. This strongly suggests that 

additional Api m 10 isoforms exist. As isoforms differ by their protein sequence and/or 

conformation, IgE reactivity between different isoforms may vary and result in a variable 

allergenicity.  

 

So far, for the bumblebee B. terrestris, only two venom allergens have been added to the 

IUIS list (Table 2). Both the PLA2 (Bom t 1) and casein hydrolyzing protease (Bom t 4) were 

purified from the venom and were shown to be IgE recognized by six sera of occupationally 

sensitized patients [66]. Additional bumblebee allergens are expected to exist. However, as 

bumblebee venom allergic patients are still quite rare, further research will be confined by 

the limited availability of blood samples required for immunological characterization of 

newly identified venom compounds. 

 

 

3. ADDENDUM 

Supplementary tables can be found on the included CD-ROM or can be requested by e-mail 

from matthiasvanvaerenbergh@hotmail.com and Dirk.deGraaf@UGent.be. 

 

Table S1 shows all honeybee (Apis mellifera) venom compounds described in literature. 

Allergen names and GenBank accession numbers are presented. In addition, all identification 

methods used to identify these compounds are included. Sampling method: the methods 

mailto:matthiasvanvaerenbergh@hotmail.com
mailto:Dirk.deGraaf@UGent.be
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used to collect the venom sample (MM= manual milking; EM: electrical milking; VG= venom 

gland tissue; ND: not defined). Separation methods: methods applied to separate the venom 

proteins. Identification methods: technology used to identify the venom proteins. NA= no 

data available in literature.  

 

Table S2 presents all identified venom compounds of Apis species other than Apis mellifera. 

Allergen names and GenBank accession numbers are shown. Venom protein evidence has 

been obtained for only few compounds. For others, venom gland transcript data have been 

sequenced. NA= no data available in literature. 

 

Table S3 shows all identified venom compounds of bumblebee species. Allergen names and 

GenBank accession numbers are shown. Separation methods: methods applied to separate 

the venom proteins. Identification methods: technology used to identify the venom proteins 

or transcripts. NA= no data available in literature. 

 

Table S4 presents all proteomics studies of venoms of hymenopteran species known to sting 

humans (honeybee and bumblebees not included). Species names, protein identification 

methods and the results are shown. Table adapted from [163]. 
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The Laboratory of Zoophysiology has a strong connection with the Flemish beekeeping 

sector. It houses the Service Centre for Beekeepers and conducts the diagnosis of honeybee 

diseases in the Diagnostic Centre for Bee Diseases. It sustains many bee hives throughout 

the year, which also allows access to these fascinating insects for research purposes. In 

addition to the expertise in bee pathology and the search for the causes of winter losses in 

bee colonies, our group has shown strong interest in the venom composition of the 

honeybee and parasitoid wasp Nasonia vitripennis. The function of Nasonia venom in host-

parasitoid releationships is being investigated, while studies of the honeybee venom have a 

biomedical finality. Our approach as insect physiologists reveals a remarkable biochemical 

complexity of the venom with putative immunological consequences. Our work is the basis 

for further medical investigations focusing on improvement of venom allergy diagnosis and 

treatment, and elucidation of the clinical consequences of bee stings. 

 

This PhD has two general objectives. The first objective is to obtain in-depth insights in the 

venom composition of the honeybee (A. mellifera) and bumblebee (B. terrestris) by 

integrating genome, transcriptome and proteome information. Second, this work aims to 

advance knowledge about the immunological implications of the venom proteome by 

investigating the allergenic properties of immunologically uncharacterized venom 

compounds and by analyzing the immunological relevance of allergen protein heterogeneity.  

We conducted several experiments to achieve these objectives. The results are described in 

five consecutive chapters. In chapter 1, we want to identify novel honeybee venom 

compounds using liquid chromatography-mass spectrometry, an approach which overcomes 

the issues of gel-based proteomics. The second objective is to investigate if the Ag5-like 

sequence, previously found by mining the honeybee genome, is expressed by the honeybee 

venom glands. Finally, we try to confirm that the novel identified compounds and the Ag5-

like compound are present in the venom by analyzing their IgG4-reactivity using sera of 

immune beekeepers. In chapter 2 we explore the hidden honeybee venom proteome by 
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integrating a combinatorial peptide ligand library venom pre-treatment with FTMS, while in 

chapter 3 the venom proteome of the European buff-tailed bumblebee, B. terrestris, is 

unraveled using an identical approach. Also genome information is used to obtain further 

insights in the venom composition of both species. The objective of chapter 4 is to 

investigate the nature of Api m 10 protein heterogeneity and to explore its effect on IgE 

reactivity using sera of honeybee venom allergic patients. In chapter 5, we evaluate the 

allergenic potential of the honeybee venom C1q-like and PVF1 proteins by analyzing IgE 

reactivity and basophil activation. 
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Extending the honeybee venome with the antimicrobial peptide 

apidaecin and a protein resembling wasp antigen 5 

 

The work presented in Chapter 1 was adapted from the following work: 

M. Van Vaerenbergh, D. Cardoen, E. M. Formesyn, M. Brunain, G. Van Driessche, S. Blank, E. 

Spillner, P. Verleyen, T. Wenseleers, L. Schoofs, B. Devreese, D. C. de Graaf. Extending the 

honeybee venome with the antimicrobial peptide apidaecin and a protein resembling wasp 

antigen 5. Insect Molecular Biology, 2013, 22(2), 199-210. 

 

1.1 CONTRIBUTIONS 

D. de Graaf and B. Devreese assisted with the study design. The proteomic analysis of 

honeybee worker venom was executed by M. Brunain and G. Van Driessche, while D. 

Cardoen and P. Verleyen performed the peptidomic analysis of the venom apparatus tissue. 

M. Brunain, E. M. Formesyn, C. Baillon and B. Demets applied RT-PCRs on venom gland 

tissue to confirm apidaecin expression and explore spatial and seasonal variation of Ag5-like 

gene expression. T. Wenseleers contributed by executing the phylogenetics analysis. During 

a 6 week internship of M. Van Vaerenbergh at the Institute of Biochemistry and Molecular 

Biology (Hamburg University, Germany), he was assisted by F. I. Bantleon and S. Blank for 

Ves v 5 insect cell expression. M. Van Vaerenbergh verified all data, performed the RT-PCR, 

cloning, expression and purification of the antigen 5-like protein, determined the IgG4 titers 

of beekeeper sera using ELISA and conducted the immunoblotting experiment. M. Van 

Vaerenbergh wrote the article and was assisted by the co-authors through the writing phase. 

 

 

1.2 ABSTRACT 

Honeybee venom is a complex mixture of toxic proteins and peptides. In this study we tried 

to extend our knowledge of the venom composition by two different approaches. First, 

Chapter 1 
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worker venom was analyzed by liquid chromatography-mass spectrometry and this revealed 

for the first time the antimicrobial peptide apidaecin in such samples. Its expression in the 

venom gland was confirmed by reverse transcription PCR and by a peptidomic analysis of the 

venom apparatus tissue. Second, genome mining revealed a list of proteins with 

resemblance to known insect allergens or venom toxins, one of which showed homology to 

proteins of the antigen 5 (Ag5)/Sol i 3 cluster. It was demonstrated that the honeybee Ag5-

like gene is expressed by venom gland tissue of winter bees but not of summer bees. Besides 

this seasonal variation, it shows an interesting spatial expression pattern with additional 

production in the hypopharyngeal glands, the brains and the midgut. Finally, our 

immunoblot study revealed that both synthetic apidaecin and the Ag5-like recombinant 

from bacteria evoke no humoral activity in beekeepers. Also, no IgG4-based cross-reactivity 

was detected between the honeybee Ag5-like protein and its yellow jacket paralogue Ves v 

5. 

 

 

1.3 INTRODUCTION 

Honeybees defend the hive against predators and external threats using venom which 

contains several toxic compounds that cause death in other insects or inflict pain in higher 

organisms. In man, early exposure to bee venom evokes IgG1, IgG2 and to a lesser extent 

IgG4 antibody responses, whereas long-term exposure often found in beekeepers drives the 

immunity to an IgG4 type of humoral response [1;2]. Allergy to a bee sting is mediated by IgE 

antibodies and, so far, 12 honeybee venom allergens have been listed by the International 

Union of Immunological Societies (IUIS; http://www.allergen.org/Allergen.aspx), 

representing most of the compounds that are immunologically meaningful.  

Following the sequencing of the honeybee genome [3], venom protein maps became 

available with newly discovered proteins, some of which were subsequently studied in detail 

and assigned as new allergens [4-9]. Remarkably, the venom protein composition could also 

be further completed by whole venom gland tissue mass spectrometry, a study initially 

performed in order to understand why the toxic compounds are not self-destructive [10]. 

However, the previous venom and gland proteomic studies combined two-dimensional (2D) 

gel electrophoresis with MALDI-TOF/TOF (matrix-assisted laser desorption/ionization 

tandem time of flight) and/or liquid chromatography (LC)-MS/MS, and these gel-based 

http://www.allergen.org/Allergen.aspx
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approaches have some disadvantages: very lowly abundant compounds are not visible on 

the gel and low molecular weight fractions are lacking because of their higher 

electrophoretic mobility which allows them to migrate out of the gel. In order to overcome 

these issues related to gel-based proteomics and to gain deeper insights in venom and 

venom gland proteomes/peptidomes we extended our search for the venom constituents 

with a mass spectrometric study of in liquid digested LC fractions from venom and venom 

gland tissue.  

In addition, we focused on a remarkable peculiarity of honeybee venom: the lack of 

an antigen 5 (Ag5) homologue, an issue that was contested by a genome mining study that 

revealed multiple protein predictions with resemblance to the proteins of the Ag5/Sol i 3 

cluster [3]. Ag5 is a common venom allergen of the vespid group that includes wasps, yellow-

jackets and hornets of the genera Vespula, Vespa, Dolichovespula and Polistes. In fact, 

according to the IUIS allergen list Ag5 has been discovered in almost every species of the 

here above listed vespid genera and for some of them it seems to be the solely known 

venom allergen. Moreover, the ants of the genus Solenopsis (Solenopsis invicta, Sol i 3; 

Solenopsis richteri, Sol r 3; Solenopsis saevissima, Sol s 3) all have a major allergen that 

shows strong resemblance to vespid Ag5. Although immunologically characterized in detail, 

the function of Ag5 proteins within wasp and fire ant venom remains largely unexplored 

[11]. Proteins belonging to the Ag5/Sol i 3 cluster form a major and distinct clade of the CAP 

(cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins) 

superfamily, whose members are found in a broad range of organisms spanning the entire 

animal kingdom [11]. Remarkably, Ag5 homologues have so far been discovered in the 

venoms of none of the hymenopteran species belonging to the Corbiculate bees, such as 

honeybees and bumblebees. In this second part, we focused on a honeybee Ag5-like protein 

(NCBI RefSeq: XP_001122516.2) showing the highest sequence similarity with the venom 

Ag5 of the yellow jacket, Vespula vulgaris. We relied on gene expression studies in order to 

verify whether this protein is produced by the honeybee venom glands and determined its 

phylogenetic relationship with other hymenopteran Ag5s.  

Finally, the immunological significance of this Ag5-like protein and of new 

venom/venom gland compounds derived from the proteomic study was determined by 

Western blot using sera of highly exposed, immune beekeepers.  
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1.4 MATERIALS AND METHODS 

1.4.1 Ethics statement 

Blood sampling was approved by the local ethics committee (registration number: 

B67020072793) and all participants provided verbal informed consent. There was a verbal 

agreement with the participants that the samples would be used for no other purposes than 

the determination of the immune status against bee venom. The procedure was kept rather 

informal as the participants (beekeepers) were employed or in a way connected with the 

research center.   

 

1.4.2 Animals, venom and tissue collection 

Summer and winter worker honeybees (Apis mellifera carnica) were collected from the hives 

of the experimental apiaries of Ghent University and K.U. Leuven, which were reared using 

standard beekeeping methods. BFR honeybees were collected during the winter from a hive 

that was placed for several months in a climate room that simulates summer conditions 

(temperature fixed at 25°C, ad libitum sugar solution, plain water and pollen). 

Pure honeybee worker venom was collected by ‘manually milking’ as described by 

Peiren et al. [9]. Venom glands and their reservoirs of 10 honeybees were dissected as 

described previously [10]. Honeybee worker brain, hemocytes, venom gland, 

hypopharyngeal gland, salivary gland, drone mucus glands, midgut, deviscerated abdomen 

and muscle tissue for RNA extraction were dissected as described by de Graaf et al. [5] and 

submerged in RNALater®.  

 

1.4.3 Proteomics/peptidomics 

1.4.3.1 Proteomic analysis of pure venom 

Two milligrams of pure worker honeybee venom was dissolved in 200 µl of 0.1% TFA (buffer 

A) and separated on a Shimadzu RP-HPLC system consisting of an SCL-10Avp system 

controller, LC-ADvp pump, FCV-10Alvp low pressure gradient unit, SPD-10Avp UV-VIS 

detector and an FRC-10A fraction collector. Proteins were eluted from the Pathfinder 300 

C18 AP column (Shimadzu) by a linear gradient from 0-100% buffer B containing 30% 0.1% 

TFA and 70% acetonitrile over a 35 minute period (0.7ml/min). Separate protein peaks were 

collected and dried by vacuum centrifugation. Consequently, 10 µg protein of each peak was 

dissolved in 10 µl of 50 mM ammonium bicarbonate. Further reduction, alkylation, tryptic 
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digestion and guanidination were executed according to the In-Solution Tryptic Digestion 

and Guanidination kit protocol (Thermo Scientific). 

MALDI mass spectrometry was carried out on a 4700 MALDI TOF/TOF Analyzer 

(Applied Biosystems, Boston, MA, USA). One microliter of the guanidinated sample was 

mixed with 1 µl α-cyano-4-hydroxycinnamic acid (10 mg/ml) in 60% acetonitrile containing 

0.1% TFA and 10% ethanol. All MALDI spectra were calibrated with 4700 Proteomics 

Analyzer Calibration Mixture (4700 Cal Mix, Applied Biosystems) and, prior to data 

collection, all instrumental parameters were tuned. Protein identification (Peptide Mass 

Fingerprinting) was performed by searching the extracted peaks against the SwissProt and 

in-house Apis mellifera database using the MASCOT search engine (Matrixscience, London, 

UK) [peptide mass tolerance: 0.100 Da, 2 missed cleavages, deamidation (NQ) and oxidation 

(M)]. Further confirmation of the identification of the proteins was done by selecting the 

highest peaks for MS/MS fragmentation spectrometry and using the above described 

Mascot search engine (peptide mass tolerance: 0.250 Da, 1 missed cleavage, MS/MS 

tolerance: 0.25 Da). 

 

1.4.3.2 Peptidomic analysis of venom apparatus tissue  

We made a peptide extract of 10 dissected poison sacks in 100 μl methanol/water/acetic 

acid (90/9/1, v/v/v). Upon thoroughly sonicating, the sample was centrifuged for 10 min at 

14000 rpm at 4 °C. The supernatants was transferred and the resulting pellet was 

resuspended in 20 μl of methanol/water/acetic acid (90/9/1, v/v/v). Sonication and 

centrifugation steps were repeated and both supernatants were pooled, dried (vacuum 

centrifuge) and stored at -30 °C until further analysis. To analyze the sample, the dry extract 

was dissolved in 5% acetonitrile and 0.5% formic acid and separated by nanoLC with a 

Dionex UltiMate™ 3000 Dual LC System (Dionex) device, coupled online to a MicrOTOF-Q 

(Bruker Daltonics) mass spectrometer. We applied an acetonitrile gradient from 5% to 40% 

in 30min, followed by a gradient to 90% in 3 min and back to 5% in 10 min. As much peptides 

as possible were fragmented in a collision cell. 

The data obtained by mass spectrometry were converted to an .mgf-file and used as 

the input on the in-house Mascot server for an MS/MS–ion search. We performed searches 

with variable modifications (amidation, pyroglutamate and oxidation of methionine) and 

with a peptide tolerance and MS/MS tolerance of 0.2 Da in the in-house Apis neuropeptide 
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precursor database. This database consists of the 39 neuropeptide precursors, including two 

precursors for apidaecin [12;13]. 

 

1.4.4 RNA isolation, cDNA synthesis, primer development and reverse transcription PCR 

Tissue RNA isolation, cDNA synthesis, reverse transcription PCR and amplicon sequencing 

was done as described by de Graaf et al. [5]. DNA elongation in PCR was adapted to 1 min at 

72 °C. For amplification of transcripts from various cDNA sources, primers were developed 

with a melting temperature ™ of approximately 60 °C, using the formula Tm = 2(A + T) + 4(G 

+ C) °C. The different primer sets are listed in Table 1.1. Primer sequences for amplification 

of apidaecin were developed as used by Casteels-Josson et al. [14] (primers 5SB6-2 and 

3(S)B6). Profilin (NM_001098167) primers to control for the presence of genomic DNA are 

 

Table 1.1: Primer sets used in reverse transcription PCR: CDS: Primer set to amplify the coding sequence; 

gDNA_CTL: Primer set to control the presence of genomic DNA; cDNA_CTL: Primer set to control the 

presence of cDNA; CONS: Primer set to amplify a conserved domain; ORF: Primer set to amplify the entire 

open reading frame; MAT: Primer set to amplify the mature fragment (=ORF without the signal sequence). 

Gene Primer sequence Amplicon length 

   Apidaecin  5’-CCAACCTAGATCCGCCTACTCGACCT-3’ multiple isoforms 

(CDS) 5’-TATTTCACGTGCTTCATATTCTTC-3’ 
 

   Profilin 5’-GCGACAAGAGGGAAAGTACG-3’ 685 bp 

(gDNA_CTL) 5’-CGGTGGACAAAATTCTGGAG-3’ 
 

   Profilin 5’-GGCTTCGAAGTAAGTAAAGAGGA-3’ 248 bp 

(cDNA_CTL) 5’-AGTTTTTCAACGACCGATGC-3’ 
 

   PLA2 5’-ATGCAAGTCGTTCTCGGATC-3’ 501 bp 

(cDNA_CTL) 5’-ATACTTGCGAAGATCGAACCA-3’ 
 

   Ag5-like 5’-CTGACCTGGGACGATGAACT-3’  252 bp 

(CONS) 5’-GCCTATTAAATAACTATTAGCCCAGAA-3’  
 

   Ag5-like 5’-ATGGCGCGGGAGGGAATAA-3’ 672 bp 

(ORF) 5’-TTAACATCGAGTTCCCAGATAA-3’ 
 

   Ag5-like 5’-CACCGATGTTATTTCCTGCATCGGC-3’ 609 bp 

(MAT) 5’-TTAACATCGAGTTCCCAGATAA-3’ 
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developed within its first intron, while exon primers are used to control for the presence of 

cDNA. Honeybee venom phospholipase A2 (PLA2, NM_001011614.1) primers and primers for 

amplification of the predicted honeybee antigen 5-like sequence (Ag5-like, 

XM_001122516.2) are developed at the extreme 5’ and 3’ ends of the coding sequence. 

Additionally, primers were developed for amplifying the secreted mature Ag5–like sequence 

which lacks a signal sequence (determined using the SignalP 4.0 Server: 

http://www.cbs.dtu.dk/services/SignalP/) [15]. For directional cloning of the mature Ag5-like 

sequence in the prokaryotic expression vector, the forward primer was preceded by four 

bases (CACC). Also a set of primers in conserved regions of the Ag5-like sequence was 

determined by aligning a set of Ag5 homologous sequences. 

 

1.4.5 Production and purification 

1.4.5.1 Recombinant baculovirus expression 

Recombinant yellow jacket Ves v 5 was produced in Sf9 insect cells as described by Seismann 

et al. [16]. The cellular supernatant containing the secreted recombinant protein was 

dialyzed to PBS pH 8.0 and supplied to a Hi-Trap column (Sigma-Aldrich) for His-tag 

purification at a flow rate of 1 ml/min (ÄKTAprime™ plus system, GE Healthcare Life 

Sciences). The column was washed by a four step-gradient with elution buffer (PBS pH8.0 

containing 300 mM imidazole): 10 min gradient to 3% elution buffer followed by 10 min at 

constant 3% elution buffer, which was repeated with elevating concentrations of elution 

buffer (to 6%, 10% and 15%). The recombinant protein was eluted from the column with 

100% elution buffer. Protein dialysis to PBS was executed by desalting (PD MidiTrap G-25, GE 

Healthcare) and sample purity was determined by Coomassie Brilliant Blue R-250 staining of 

an SDS-PAGE gel run under reducing (2x Laemmli sample buffer with 10% of β-

mercaptoethanol) and denaturing conditions (sample at 100 °C for 5 min and SDS added to 

PAGE gel and running buffer). The protein concentration of the sample was estimated by 

comparing the staining intensity on a Coomassie stained SDS-PAGE gel with a dilution series 

of albumin standard. 

 

1.4.5.2 Recombinant bacterial expression 

Equine uterocalin and the mature honeybee Ag5-like sequence were cloned, sequenced and 

expressed following procedures described by de Graaf et al. [5]. For denaturing purification 

http://www.cbs.dtu.dk/services/SignalP/
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of recombinant proteins by His-tag, cell pellets were dissolved in 8 ml of lysis buffer (50 mM 

NaH2PO4, 300 mM NaCl, 10 mM imidazol and 8M ureum) and sonicated on ice with five ten-

second pulses at high intensity. After centrifugation (13500 rpm, 4°C, 30 min) supernatant 

was supplied to the Profinity IMAC Ni-charged resin (Bio-RAD) which was equilibrated with 

lysis buffer. The resin was washed with 24 ml of wash buffer (50 mM NaH2PO4, 300 mM 

NaCl, 20 mM imidazole and 8M ureum) and recombinant protein was eluted in elution 

buffer (50 mM NaH2PO4, 300 mM NaCl, 500 mM imidazol and 8M ureum). After dialysis to 

lysis buffer (SnakeSkin dialysis tubing, 3.5 MWCO, Thermo Scientific) recombinant Ag5-like 

protein was further purified by a second identical purification step. Dialysis to PBS, sample 

purity and protein concentration determination was done as mentioned previously. 

 

1.4.6 Sera  

Sera were collected of 10 highly exposed beekeepers which have no allergic symptoms upon 

bee stings. Information about whether or not they have a history of yellow jacket stings was 

also available. In addition, we collected five negative control sera from persons that had 

never been stung by hymenopteran insects.  

 

1.4.7 ELISA 

Honeybee venom-, honeybee venom PLA2- and melittin-specific serum IgG4 titers were 

determined for all sera using ELISA. Nunc MaxiSorp® flat bottom 96 well plates were coated 

with 150 µl of honeybee venom (2 µg/ml, Sigma-Aldrich), purified honeybee venom PLA2 (4 

µg/ml, Latoxan) and purified melittin (1 µg/ml, Latoxan) in coating buffer (100 mM 

bicarbonate/carbonate buffer, pH 9.6) at 4°C overnight. Subsequently, wells were washed 

three times with PBST, blocked with 50 mg/ml skimmed milk powder in PBS at room 

temperature for 2 hours and washing was repeated. For each serum sample a two-fold 

dilution series from 1:40 to 1:20480 was performed using blocking buffer. Plates were 

incubated for 45 minutes at 37°C and washed three times before bound IgG4 was detected 

with 150 µl of HRP-conjugated mouse anti-human IgG4 (Southern Biotech) diluted in 

1:10000 in blocking buffer (1 hour at 37°C). Wells were washed three times with PBST and 

200 µl of substrate solution (SIGMAGAST OPD, Sigma-Aldrich) was added to each well. After 

30 minutes, the reaction was stopped with 100 µl of stop solution (3M HCl) and the plates 

were read at 490 nm. Antibody titer was defined as the highest dilution with a reading above 
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the mean of the negative controls plus 1.96 SDs. 

 

1.4.8 Western blotting 

Twelve microgram of each protein fraction was separated by 15% SDS-PAGE under reducing 

and denaturing conditions in a discontinuous system (Bio-Rad) and blotted to polyvinylidene 

difluoride membrane. After blotting, the membrane was cut into strips, blocked for 2 hours 

and incubated overnight at 4 °C with 2 ml of diluted serum (1/16 diluted in blocking 

solution). Subsequently, strips were washed three times with blocking solution and 

incubated in 2 ml of 1:1000 diluted HRP-conjugated mouse anti-human IgG4 antibody 

(Southern Biotech) in blocking solution. Finally, blots were washed 3 times with PBST and 

once with PBS before DAB staining. Anti-His staining of His-tagged recombinant proteins was 

done as described before [4;5]. Ponceau S staining was used for determination of blotting 

success of non-His-tagged proteins. PBS buffer and 1 µg of recombinant equine uterocalin 

was spotted to serve as negative controls [17].  

 

1.4.9 Phylogenetic analysis 

Sequences related to our honeybee Ag5-like sequence in other Hymenoptera were retrieved 

based on a protein blast against all non-redundant protein and predicted protein sequences 

in NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) using default search 

parameters. Low quality or incomplete sequences, or sequences that showed unusually high 

sequence divergence, were removed. Subsequently, sequences were aligned using MUSCLE 

[18], after which a neighbor-joining phylogenetic tree was estimated using the Jones-Taylor-

Thornton ([19]) model (+G). A discrete Gamma distribution with three categories was used 

to model differences in the substitution rate among sites. Mean evolutionary rates in these 

categories were estimated at 0.34, 0.84, 1.82 substitutions per site and the shape parameter 

of the gamma distribution was estimated at 1.9. In all calculations, positions with less than 

50% site coverage were eliminated. This resulted in a total of 51 sequences of 208 amino 

acid positions each in the final dataset. The reliability of the phylogenetic placement of the 

sequences was assessed using the bootstrap method using 500 bootstrap replicates. A 

tentative classification of sequences into orthologue groups was made based on the 

repeated appearance in the tree of sequences from species with known phylogenetic 

placement and fully sequenced genomes (e.g. Nasonia, Apis). All evolutionary analyses were 
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conducted using MEGA5 [20;20;20;20;21]). Maximum likelihood or Bayesian trees, obtained 

using Mr. Bayes, resulted in very similar phylogenetic patterns as the ones obtained using a 

neighbor-joining approach (results not shown). 

 

 

1.5 RESULTS  

1.5.1 Proteomic analysis of pure worker venom 

The chromatogram of the RP-HPLC separated worker honeybee venom is shown in Figure 

1.1. MALDI-TOF/TOF analysis of twenty-six separated protein peaks resulted in the 

identification of nine known venom proteins as well as of the antimicrobial peptide 

apidaecin which up to now had not been detected in honeybee venom. The results of the 

mass spectrometric identifications are summarized in Table 1.2. 

 

Figure 1.1: RP-HPLC chromatogram of 2 mg of separated pure honeybee venom. The linear gradient of 0-

100% buffer B over a 35 minute period is represented by the dotted line. More information about the 

evaluated peaks, which are numbered on the chromatogram, can be found in Table 1.2. 

 

1.5.2 Peptidomic analysis of venom apparatus tissue 

The GNNRPVYIPQPRPPHP peptide was also found in our analysis of the venom apparatus 

tissue peptidome (Figure S1.1), which suggests the expression of apidaecin by the venom 

gland. Additional peptides of melittin, phospholipase A2, PDGF/VEGF-like protein and 
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secapin were also found, all representing compounds that are known to occur in honeybee 

venom and/or venom apparatus tissue [9;10]. 

 

1.5.3 RT-PCR confirmation of apidaecin expression by honeybee worker venom gland 

tissue 

Reverse transcription PCR (RT-PCR) on honeybee worker venom gland tissue using primers at 

the extreme ends of the coding sequence of prepro-apidaecin generated a pool of amplicons 

with different sizes (Figure 1.2). An identical band pattern was seen in RT-PCR of hemocyte 

derived cDNA and confirmed earlier observations of Casteels-Josson et al. [14]. Moreover, in 

the latter study it was proven that all generated PCR fragments contained genuine apidaecin 

sequences. Sequencing of the smallest amplicon band revealed its apidaecin precursor 

identity and confirmed the apidaecin expression by the venom gland. 

 

 

Figure 1.2: Reverse transcription PCR confirmation of apidaecin expression by honeybee worker venom 

gland tissue. 1= venom gland cDNA with apidaecin coding sequence primers, 2= hemocyte cDNA with 

apidaecin coding sequence primers, 3= venom gland gDNA control with profilin intron primers, 4= venom 

gland cDNA control with profilin exon primers, 5= venom gland cDNA control based on the honeybee 

venom PLA2 sequence, 6= no template control with PLA2 primer set, M= 50 bp DNA marker (New England 

Biolabs). Base pair lengths of major marker bands are shown. 

 

1.5.4 Spatial and seasonal variation of Ag5-like gene expression 

RT-PCR on venom gland tissue from winter bees with primers developed in conserved 

regions of the Ag5-like gene prediction generated an amplicon of the expected length (252 

bp, result not shown). In contrast, RT-PCR on different tissues of summer bees using the 

same conserved primer set demonstrated the expression of the Ag5-like gene in the  
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Table 1.2. Protein identification on the HPLC peaks of honeybee venom. The molecular weight (MW), pI (isoelectric point) and sequence coverage of the mature 

protein (without signal peptide) are represented between brackets. 1 Based on the found peptides no differentiation of the apidaecin precursor isoform was 

possible. Data are presented for apidaecin 14 (GI:58585168). Other apidaecin precursors containing the found peptide sequences were present in the database: 

apidaecin 22 (GI:58585226), apidaecin 73 (GI:4539289). 

Name Acc. N° MW  
in Da 

pI Peptide 
mass 

Peptide sequences Sequence 
coverage 

Score Peak 

         
Apamin gi|58585166| 5,220 8.77 726.33 RCQQH 34 86 3, 4 
  (1,928) (8.83) 987.48 APETALCAR (82)   
         
Mast cell-degranulating gi|58585162| 5,777 9.87 1158.64 HVIKPHICR 20 79 3, 4 
peptide  (2,477) (10.28) 1314.72 RHVIKPHICR (45)   
         
Apidaecin 1 gi|58585168| 19,368 11.29 1837.97 GNNRPVYIPQPRPPHP 9 17 10, 12, 13 
  (17,359) (11.30) 1994.07 GNNRPVYIPQPRPPHPR (11)   
         
Secapin gi|58585180| 8,674 9.51 971.54 YIIDVPPR 10 44 13, 14, 15 
  (2,868) (10.05)   (32)   
         
Venom allergen gi|94400907| 10.015 10.06 1091.40 ICAPGCVCR 35 143 13, 15 
Api m 6  (7,598) (9.89) 1108.48 CPSNEIFSR (45)   
    1184.57 FGGFGGFGGLGGR    
    1293.59 GKCPSNEIFSR    
         
Icarapin gi|60115688| 24,773 4.51 1003.51 EQMAGILSR 21 113 16, 22, 23 
  (22,697) (4.40) 1072.53 EQGVVNWNK (23)   
    1282.67 IPEQGVVNWNK     
    1581.91 KNDTVLVLPSIER    
    1606.74 SVESVEDFDNEIPK    
Phospholipase A2 gi|58585172| 19,058 7.55 918.30 HTDACCR 43 256 17, 19 
  (15.149) (8.07) 1034.46 CLHYTVDK (53)   
    1125.56 VYQWFDLR    
    1193.69 HGLTNTASHTR    
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    1253.56 LEHPVTGCGER    
    1663.64 THDMCPDVMSAGESK    
    1837.73 LSCDCDDKFYDCLK    
         
Melittin gi|58585154| 7,580 4.69 1510.91 VLTTGLPALISWIK 31 97 20, 22, 23, 
  (5,119) (4.51) 1667.01 VLTTGLPALISWIKR   24, 25 
         
Hyaluronidase gi|58585182| 44,232 8,82 798.45 HLQVFR 6 77 23 
  (40.47) (8.82) 1191.62 DHLINQIPDK (7)   
    1228.53 EHPFWDDQR    
         
Venom acid gi|61656214| 45,360 5.63 888.52 QINVIFR 28 85 26 
phosphatase  (43,905) (5.83) 1015.62 KLYGGPLLR (29)   
    1152.59 EYQLGQFLR    
    1379.74 IVYYLGIPSEAR    
    1752.80 DPYLYYDFYPLER    
    1982.99 LQQWNEDLNWQPIATK    
    2068.00 FVDESANNLSIEELDFVK    
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hypopharyngeal glands, the brains and the midgut only, but not in the venom glands and the 

other tissues (hemocytes, salivary glands, drone mucus glands, deviscerated abdomen and 

muscle tissue). The Ag5-like gene seemed to be expressed most abundantly in the brains 

(results not shown).  

To confirm these results, RT-PCRs were carried out on venom gland tissue of winter, 

summer and bee flight room (BFR) honeybees using primers developed at the 5’- and 3’- 

terminal ends of the predicted coding sequence. In contrast to winter bee venom glands, no 

Ag5-like gene expression was demonstrated in summer and BFR bee venom glands. 

Additionally, the Ag5-like gene was shown to be expressed abundantly in brains of winter 

and BFR bees. The same results were obtained with primers for amplification of the Ag5-like 

fragment without signal peptide (Figure 1.3). The mature winter venom gland fragment was 

cloned and sequenced (NCBI accession number JX310326), which confirmed its Ag5 

similarity. Six nucleotide substitutions were found between the cloned fragment and the 

predicted NCBI sequence (XM_001122516.2), but none of them influenced the amino acid 

sequence (sequence alignments in Figure S1.2). 

 

 

Figure 1.3: Seasonal variation of Ag5-like gene expression in venom gland and brain tissue of honeybee 

workers. Expression patterns of the Ag5-like gene were determined by reverse transcription PCR. In 

winter honeybees the Ag5-like gene is expressed by venom glands and brain tissue. Summer and BFR 

venom glands lack Ag5-like gene expression, while its expression was demonstrated in brain tissue of BFR 

bees. Ag5-like gene expression in brain tissue of summer bees was not determined (ND). ORF= open 

reading frame based on the Ag5-like prediction (XM_001122516.2). MAT= mature Ag5-like prediction 

without signal sequence. += profilin cDNA control. 
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1.5.5 Ag5 sequence analysis and phylogenetics 

Sequence alignment of hymenopteran Ag5-like sequences shows that Ag5 has a complex 

evolutionary history, with frequent gene duplications and losses. Within the Hymenoptera 

alone, at least six orthologous groups of sequences can be distinguished (Figure 1.4, groups 

A-F). Among these, the studied A. mellifera Ag5-like sequence (Figure 1.4, highlighted) is 

orthologous to other predicted Ag5-like sequences from the bumblebees Bombus terrestris 

and B. impatiens, the leafcutter bee Megachile rotundata and the jewel wasp Nasonia 

vitripennis (Figure 1.4, group D). The sequence, however, is clearly paralogous to previously 

reported Ag5 allergen sequences in Vespidae wasps (Vespula, Vespa, Dolichovespula, 

Polistes, Polybia and Rhynchium) and ants (e.g. Solenopsis) (Figure 1.4 group A). 

 

1.5.6 Immunoblotting 

We were able to produce recombinant honeybee Ag5-like protein and equine uterocalin 

(irrelevant protein) in E. coli and Ves v 5 in Sf9 insect cells and purify them by affinity 

chromatography (Figure S1.3). The apidaecin peptide sequence GNNRPVYIPQPRPPHPRL was 

produced synthetically.  

ELISA revealed very high titers of IgG4-antibodies specific for honeybee venom, PLA2 

and melittin in all beekeepers’ sera (results in Table S1.1).  

Western blots showed lacking IgG4 recognition of purified bacterial recombinant 

Ag5-like protein and synthetically produced apidaecin in all sera ( Figure 1.5). In addition, 

several sera of beekeepers with a history of yellow jacket stings (sera 2-8 and 10) recognize 

the recombinant Ves v 5 by IgG4 (strips 5-8 and 10). Thus, no cross-reactivity was observed 

between the Ag5-like protein from bacteria and Ves v 5 from insect cells. Anti-His staining 

revealed multiple bands probably resulting from dimerization and/or degradation of the 

recombinants. One of the negative controls (strip 12) contains IgG4-antibodies responsive to 

the blocking milk proteins. 

 

 

1.6 DISCUSSION 

First, the present study aimed to unravel the complex honeybee venom mixture by a gel-free 

proteomic analysis. Our preceding approaches were based on 2D gel-separation of venom 

proteins followed by a mass spectrometric analysis of excised spots [5;9]. Although those 
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Figure 1.4: Neighbor-joining phylogenetic tree of hymenopteran Ag5s. Phylogenetic placement of the 

Apis mellifera Ag5 like protein sequence (highlighted) in comparison to other known or predicted 

hymenopteran Ag5 like proteins, as indicated based on a neighbor joining analysis with a Jones-Taylor-

Thornton (1992) (G+) substitution model. Tentative orthologue groups are indicated with letters A-F. The 

numbers at the nodes indicate bootstrap support. Branches with less than 70% bootstrap support were 

collapsed.  
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analyses successfully identified four new venom compounds, that technology is limited to 

detect low molecular weight (<10kDa) and lowly abundant compounds. The present liquid-

based venom proteome analysis confirmed the presence of multiple honeybee venom 

compounds, but also revealed the presence of three additional peptides which were not 

found in our preceding gel-based analyses: while apamin and mast cell degranulating 

peptide (MCD) were already discovered before [22-24], the 18 amino acid peptide apidaecin 

had never been described in venom samples. 

For venom research, a venom sample collected by manual milking is preferred over 

samples collected by electrostimulation, as the latter may contain contaminants derived 

from saliva or digestive tract fluids (de Graaf et al., 2009). Moreover, the protein 

composition of a venom sample collected by manual milking may closely resemble that of 

venom injected during a natural honeybee sting: in addition to the release of venom 

proteins which are produced by the venom glands, also proteins originating from other 

tissues such as the sting apparatus cell lining, stinger lancets and/or stinger lubricant, which 

has been hypothesized to be generated by the Dufour gland [25], may be released. As such, 

we were uncertain about the tissue origin of the apidaecin peptide detected in the venom 

sample. This issue was resolved by the detection of apidaecin transcripts (by RT-PCR) and an 

apidaecin peptide (by peptidomics) in the venom gland tissue, which indicates that this 

peptide is produced by the venom glands. 

Apidaecins were firstly discovered by Casteels et al. [26] in honeybee lymph upon 

bacterial infection and were described to be expressed by hemocytes [14]. They are small, 

proline-rich antibacterial peptides which are generated by processing of single precursor 

proteins. This multipeptide precursor structure allows to amplify the insects’ immune 

response upon bacterial challenge [14]. Moreover, its genomic structure enables the 

development of a pathogen-specific response by splice variation [27]. Different isoforms are 

described which all derive from a single prepro-protein. The peptides detected in the venom 

and venom glands correspond to the apidaecin isoforms Ia or Ib [28] and may also play 

important antimicrobial roles. As antimicrobial peptide expression by barrier epithelial cell 

linings of multiple tissues seems to be a general feature of host defense in multicellular 

organisms [29], apidaecin expression by venom apparatus epithelial cells may protect the 

individual honeybee against invading pathogens. Alternatively, its presence in the venom 

may also have a function in the social immunity of the hive. Indeed, as honeybee
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Figure 1.5: IgG4 responses to apidaecin, honeybee Ag5-like protein and yellow jacket Ves v 5 in 

beekeepers. Pure proteins were separated by SDS-PAGE under reducing and denaturing conditions and 

transferred to PVDF. Membranes were incubated with sera of beekeepers (strip 1-10) and negative control 

sera of subjects never stung by hymenopterans (strip 11-15), followed by enzyme-linked anti-human IgG4. 

M= PageRuler™ Prestained Protein ladder (Fermentas). Molecular weights (kDa) of the marker bands are 

shown. Positive controls (+) are executed by Ponceau (apidaecin band indicated by an arrowhead) and anti-

His staining (Ag5-like protein and Ves v 5). 

 

venom is present on the cuticle of adult bees and on comb wax, it has been suggested that it 

may act as a social antiseptic device [22;30]. Unlike the reported lytic antibacterial activity of 

other venom peptides such as melittin and possibly also MCDP [22;31], apidaecin kills bacteria 

through a bacteriostatic process. It is predominantly active against many Gram-negative 

bacteria by special antibacterial mechanisms [31]. Consequently, apidaecin may be one of the 

peptides playing an important role in protection of the hive against these pathogenic bacteria. 
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Second, this study focuses on the identification of an Ag5-like gene transcript expressed by the 

honeybee venom glands. Ag5s are important and highly abundant venom allergens within the 

Vespidae and Formicidae families. Remarkably, an Ag5 protein has never been detected in 

venom proteome analyses of honeybees or any other member of the Apidae family. Based on 

an NCBI prediction, we were able to clone, sequence and recombinantly produce an Ag5-like 

sequence expressed by the venom gland of winter honeybees. However, it seems that venom 

gland tissue of summer and BFR honeybees do not express this protein, whereas its 

expression is maintained in the brain tissue. So far, most proteomic studies focused on venom 

of summer bees, which may explain why it remained undetected. Because of the putative 

presence of a signal peptide, we hypothesize that the honeybee Ag5-like protein is secreted by 

the venom gland of winter bees. A proteomic study focusing on the venom of winter bees 

should further confirm this hypothesis.  

Additionally, we demonstrated Ag5-like expression in the hypopharyngeal glands and 

the midgut of summer bees, while expression is lacking in hemocytes, salivary gland, mucus 

glands (drones), deviscerated abdomen and muscle tissue. Midgut expression has also been 

reported in Drosophila [11]. On the other hand, honeybee Ag5-like protein is not expressed in 

salivary glands, while Ag5s have been found in the saliva of blood feeding Diptera such as 

ticks, sand flies, stable flies and mosquitoes [11]. Unfortunately, the function of any of the 

Ag5s remains unknown [11], which makes it difficult to explain this spatial and seasonal 

variation pattern in the honeybee. 

 

Third, our analysis revealed the lack of IgG4 recognition of both apidaecin and honeybee Ag5-

like protein by the beekeepers’ sera. Beekeepers are regularly stung in summer time, which is 

known to cause a strong venom-specific IgG4 response [2]. We are unable to conclude 

whether this lack in humoral response against both compounds is the result of low 

immunogenicity, low abundance in the venom and/or low exposure. In case of the 

antimicrobial peptide apidaecin a low immunogenicity can be explained by its short length 

[32]. For the honeybee Ag5-like protein, its restricted expression in winter time certainly 

lowers the exposure to this venom compound significantly, as beekeepers are then hardly 

stung. However, we cannot exclude that the immunogenicity of the natural protein differs 

from that of the tested recombinant due to a possible incorrect folding of the latter. An 

incorrect folding of bacterial recombinants may be caused by the lack of post-translational 
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modifications such as glycosylations and disulfide bridges [33]. The absence of glycosylations 

cannot be responsible for an incorrect folding of the Ag5-like recombinant as glycosylation 

sites are absent (inferred by NetNGlyc 1.0 and NetOGlyc 3.0). In contrast, four disulfide 

bridges are predicted to be present (inferred by DISULFIND). As the bacterial recombinant was 

produced in the cytoplasm, it may lack these disulfide bridges [33]. Moreover, for the 

immunoblot experiment, electrophoretic separation has been conducted under reducing and 

denaturing conditions, which generally disrupts the protein conformation. As such, the lack of 

IgG4 recognition of the recombinant Ag5-like protein may be the result of the loss of relevant 

discontinuous B-cell epitopes, in contrast to the continuous epitopes which have been 

preserved. However, conformational epitope renaturation during or after transfer of the 

protein to the Western blot membrane has been described [34]. Further experiments should 

clarify if the honeybee venom Ag5-like protein truly lacks immunoreactivity. Also, a preceding 

study showed that the conformation of the Ag5 from wasp venom, Ves v 5, differs between 

the bacterial recombinant and the natural protein, and that refolding strategies were needed 

to obtain its full immunoreactivity [35]. Therefore, refolding strategies may also help to obtain 

a correctly folded Ag5-like bacterial recombinant. This can be confirmed by comparing the 

solubility, electrophoretic behavior, disulfide content and circular dichroism-spectrum 

between natural and recombinant Ag5-like protein. Besides, yeast (Pichia pastoris) or insect 

(Sf9) cell expression systems were shown to be good alternatives for production of a correctly 

folded Ves v 5 [16;36]. Next, immunoreactivity should be analyzed under non-reducing and 

non-denaturing conditions, for example by ELISA.  

Also, no IgG4 cross-reactivity between the Ag5-like protein and Ves v 5 was detected. 

Although two expression systems with differential capacities to perform post-translational 

modifications were used to produce these recombinants, we believe this may not have 

influenced the outcome of our immunoblot experiment. As also Ves v 5 lacks glycosylation 

sites, both proteins were produced without carbohydrate groups. In contrast, while the 

bacterial system probably has not foreseen the Ag5-like recombinant with the correct disulfide 

bridges, Ves v 5 produced in the baculovirus system is secreted and likely contains appropriate 

disulfide bridges. However, this difference has been neutralized in our immunoblot 

experiment by the electrophoretic separation of both proteins under reducing and denaturing 

conditions. As such, we hypothesize that the low sequence identity between both compounds 

(25% sequence identity, Figure 1.6) plays a more significant role. In addition, the honeybee 
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Ag5-like sequence shows low sequence identity (max 27%) with other hymenopteran venom 

Ag5 allergens, a remarkable characteristic which was resolved by our phylogenetic analysis. It 

appears that hymenopteran Ag5s have a complex evolutionary history with frequent gene 

duplications and losses, and that the honeybee Ag5-like protein is clearly paralogous to the 

group of ant and wasp venom allergens (Figure 1.4, resp. groups D and A). Sequence identity is 

generally much higher between the orthologous group of venom allergens, which may be 

responsible for the observed IgE cross-reactivities between venom Ag5s of the Vespula genus 

and even between Vespula and Dolichovespula Ag5s and between Vespula and Vespa Ag5s 

[37]. Most likely, IgE-level cross-reactivity between the honeybee Ag5-like protein and these 

other hymenopteran venom Ag5s may also be lacking due to this low sequence identity. 

 

 

Figure 1.6: Protein sequence alignment of yellow jacket Ves v 5 (Ves_v_5; Q05110.1) and detected 

honeybee Ag5-like (XP_001122516.2) by ClustalW. They have a sequence identity of 25%. 

 

Whereas traditional diagnostic tools rely on whole venom preparations, the so-called 

component resolved diagnosis (CRD) allows to determine the patients’ allergen recognition 

profile. Originally aimed at adapting the immunotherapy to the patients-specific profile, this 

approach also allows to determine the culprit species, a problem that often raises because the 

patients fail to identify or name the hymenopteran species that stung and because presently 

used diagnostic tests based on whole venom often reveal a false double positivity to multiple 

species due to their similar cross-reactive allergens and cross-reactive carbohydrate 

determinants (CCD’s) [38]. CRD using species-specific allergens may solve this issue. In many 

European countries, the European honeybee (A. mellifera) and yellow jackets (V. vulgaris) are 
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the most prevalent stinging insects. As such, several research studies have recently focused on 

their differential allergy diagnosis by CRD [16;39;40]. One of the important differential 

allergens is Ag5 which is a major venom allergen of the yellow jacket, while so far no 

honeybee venom Ag5 homologue had been described. Our present finding on the occurrence 

of a paralogue of Ves v 5 in the bee venom gland and on its peculiar expression restricted to 

winter time is an important observation. Due to the limited contact between humans and 

winter bees, we hypothesize that sera of honeybee venom allergic patients lack specific IgE 

antibodies to the honeybee Ag5-like protein. Moreover, cross-reactivities with wasp and ant 

venom Ag5s may not be present due to a low sequence identity. As such, our findings are so 

far in favor of a differential diagnosis of sting allergy by CRD. 
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1.8 ADDENDUM 

Supplementary figures and tables can be found on the included CD-ROM or can be requested 

by e-mail from matthiasvanvaerenbergh@hotmail.com and Dirk.deGraaf@UGent.be. 

 

Figure S1.1: Peptide mass fingerprint and MS/MS fragmentation spectrum of the identified 

apidaecin peptide in venom gland tissue. 

mailto:matthiasvanvaerenbergh@hotmail.com
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Figure S1.2: Nucleotide and protein sequence alignments of the cloned honeybee Ag5-like 

sequence with the NCBI prediction (by ClustalW).  

 

Figure S1.3: Coomassie blue staining of SDS-PAGE separated synthetic apidaecin peptide and 

purified recombinants uterocalin, Ves v 5 and honeybee Ag5-like protein. 

 

Table S1.1: Information about beekeeper sera. 
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Exploring the hidden honeybee (Apis mellifera) venom proteome by 

integrating a combinatorial peptide ligand library approach with 

FTMS 

 

The work presented in Chapter 2 was adapted from the following manuscripts: 

1) M. Van Vaerenbergh, G. Debyser, B. Devreese, D. C. de Graaf. Exploring the hidden 

honeybee (Apis mellifera) venom proteome by integrating a combinatorial peptide 

ligand library approach with FTMS. Journal of Proteomics, in press. This work will be 

published as a companion paper of the unpublished manuscript of the Honeybee 

Genome Sequencing and Analysis Consortium, reporting on the re-sequencing of the 

honeybee genome:  

2) Honeybee Genome Sequencing and Analysis Consortium. Finding the missing honey bee 

genes: lessons learned from a genome upgrade. Unpublished work.  

 

 

2.1 CONTRIBUTIONS 

D. de Graaf and B. Devreese assisted with the study design. M. Van Vaerenbergh executed all 

experiments. G. Debyser provided technical assistance for the LC-ESI-LTQ-FT-ICR-MS 

experiments and setting up Mascot searches. L. De Smet assisted during cutting out gel slices 

from the SDS-PAGE gels. K. Morreel calibrated the FT-ICR and LTQ mass analyzers. M. Van 

Vaerenbergh performed all data analysis and gene annotation. 

M. Van Vaerenbergh wrote the manuscript reporting on the identification of novel 

honeybee venom compounds. This manuscript is accepted for publication in Journal of 

Proteomics and will be published as a companion paper of the main genome paper from the 

Honeybee Genome Sequencing and Analysis Consortium, which will publish the data of a re-

sequencing of the honeybee genome. Publication of this companion paper is put on hold by 

Chapter 2 
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Journal of Proteomics until the main genome paper will be released. M. Van Vaerenbergh also 

wrote a section about the annotation of venom genes, the contribution of improved gene 

predictions to the identification of new venom proteins, and genome mining to discover the 

tertiapin gene, which will be included in the main genome paper manuscript. All authors of 

the companion paper will also be included in the author list of the main genome paper, known 

as the Honeybee Genome Sequencing and Analysis Consortium. The co-authors assisted 

throughout the writing phase of the companion paper and section of the main genome paper. 

 

2.2 ABSTRACT 

At present, 30 compounds have been described in the venom of the honeybee, and 16 of 

them were confirmed by mass spectrometry. Previous studies typically combined 2-D PAGE 

with MALDI-TOF/TOF MS, a technology which now appears to lack sensitivity to detect 

additional venom compounds. Here, we report an in-depth study of the honeybee venom 

proteome using a combinatorial peptide ligand library sample pretreatment to enrich for 

minor components followed by shotgun LC-FT-ICR MS analysis. This strategy revealed an 

unexpectedly rich venom composition: in total 102 proteins and peptides were found, with 83 

of them never described in bee venom samples before. Based on their predicted function and 

subcellular location, the proteins could be divided into two groups. A group of 33 putative 

toxins is proposed to contribute to venom activity by exerting toxic functions or by playing a 

role in social immunity. The other group, considered as venom trace molecules, appears to be 

secreted for their functions in the extracellular space, or are unintentionally secreted by the 

venom gland cells due to insufficient protein recycling or co-secretion with other compounds. 

In conclusion, our approach allowed to explore the hidden honeybee venom proteome and 

extended the list of potential venom allergens. 
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2.3 GRAPHICAL ABSTRACT 

 

 

 

2.4 INTRODUCTION 

Honeybee venom is composed of a mixture of biogenic amines, peptides and proteins. The 

venom causes local tissue damage, which induces death in other insects and pain and 

inflammation in higher organisms [1]. Worker bees use their sting apparatus in order to 

defend the colony and their food stock. Moreover, as it was recently demonstrated that in the 

bee hive venom peptides are smeared on the body surface of females and on wax combs, an 

additional function of bee venom in social immunity has been hypothesized [2]. 

 Early efforts to unravel the bee venom composition date back to the work of Langer in 

1897 [3]. Today, up to 30 venom proteins and peptides are described [4-22]. However, some 

of those lack a proper characterization. Several venom constituents isolated in the 1970’s and 

80’s by chromatographic means are described by their enzymatic activity or amino acid 

composition, but amino acid sequences are often lacking, e.g. for minimine [22], cardiopep [5] 

and adolapin [6]. The development of proteomic methods, and later of the Apis mellifera 

genome [23], has boosted the detection of new bee venom compounds significantly 

[7;9;11;19;20]. 

 Preceding studies investigating the honeybee venom proteome often combined 2-DE 

with MALDI-TOF/TOF MS [19;21]. However, this method lacks dynamic range and sensitivity to 
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allow the detection of lowly abundant compounds. In addition, low molecular weight fractions 

remain largely unexplored due to poor resolution in classical SDS-PAGE separation. Therefore, 

previous studies suggested the existence of yet unknown venom compounds [19;21]. For 

example, a large part of a typical honeybee 2D-gel is obscured due to highly abundant 

compounds, such as phospholipase A2 (PLA2; 10–12% of the venom dry weight [24]), that mask 

the detection of lowly abundant compounds with similar molecular weight and pI. 

Several studies have shown that the use of a combinatorial peptide ligand library 

(CPLL) can significantly improve the coverage of proteomic analyses as this allows to access 

many lowly abundant compounds in complex proteomes [25]. The method has been used in 

studies of the ‘deep’ venom proteome of two snake species, namely the Western 

diamondback rattlesnake (Crotalus atrox) [25] and the African puff adder (Bitis arietans) 

[26;27] and led to the discovery of a large number of proteins previously undetected in these 

proteomes. In this work, we now adopted CPLL that has so far not been used in Hymenoptera 

venomics. 

The modular arrangement of MALDI and ESI ionization with different types of mass 

analyzers has resulted in a wide variety of mass spectrometric instrumentation [28]. Many of 

them have been used in honeybee venom research, except FTMS, although this equipment 

provides the highest performance in mass resolution and mass accuracy [29]. In the context of 

venom research, only few research groups used this technology (Orbitrap or FT-ICR) for 

protein identifications within the entire venom [30-34]. The discovery of a high number of 

new venom constituents in these studies points to a highly effective technology for 

identification purposes in these complex protein mixtures. 

Since 2006, the honeybee genome became available [23], which provided significant 

benefits for protein identifications as the mass spectra can be searched against the available 

protein predictions. However, the first generated genome sequence was noted to have a 

bimodal GC content that affected the quality of the assembly in some regions and the 

annotation had fewer genes in the initial gene set (OGSv1.0) than would have been expected 

based on other insect genomes sequenced since then [35]. Therefore, while the previous 

genome sequence was obtained by Sanger sequencing and a whole-genome-shotgun model, 

the honeybee genome was recently re-sequenced using next-generation sequencing which 

allows a much deeper sequence coverage. This resulted in an improved genome assembly 

(Amel_4.5), which is more contiguous and complete, and a new gene annotation set 



Chapter 2 

81 
 

(OGSv3.2), which includes ~5000 more protein-coding genes, increasing the gene set by about 

50% [35]. Therefore, searching generated venom mass spectra against this improved dataset 

may identify a new set of venom proteins. 

The present study aimed an in-depth analysis of the honeybee venom proteome by 

merging CPLL sample pretreatment and nanoLC FT-ICR MS/MS. The CPLL flow-through and 

elution samples were separated using 1D-SDS-PAGE. Then, proteins and peptides were 

identified by a complete slice-by-slice LC-ESI-LTQ-FT-ICR MS/MS analysis of tryptic peptides. 

Such a sample decomplexation/fractionation before mass spectrometry is the best approach 

for maximum protein coverage [33]. Functions of the identified compounds were predicted 

using bioinformatics. All venom genes were annotated on the improved honeybee genome 

assembly [35] and the contribution of the improved gene predictions to the identification of 

novel venom proteins was determined. 

 

 

2.5 MATERIALS AND METHODS 

2.5.1 Venom collection 

Mid July 2011, adult worker honeybees (Apis mellifera carnica) were collected at the hive 

entrance. Pure venom was collected as previously described [19]. Venom of 150 honeybees 

was pooled to a protein concentration of 69.54 mg/ml, as determined by Bradford protein 

assay (Thermo Scientific Pierce, Hudson, NH, USA). 

 

2.5.2 Protein enrichment 

The dynamic range of protein concentrations in the honeybee venom sample was compressed 

by a CPLL approach (ProteoMiner protein enrichment small-capacity kit, Bio-Rad Laboratories, 

Hercules, CA, USA). This experiment was performed according to the instructions of the 

manufacturer. In brief, 200 µl of venom sample was added to the beads for 2 hours at room 

temperature on a rotational shaker. Subsequently, the non-binding fraction was collected 

(=flow-through). Non-specific binding components were removed by 3 rounds of washing (150 

mM NaCl, 10 mM NaH2PO4, pH 7.4). Bound proteins were eluted with 3 steps of 20 µl elution 

buffer (8 M urea, 2% CHAPS, 5% acetic acid) and pooled.  



Chapter 2 

82 
 

2.5.3 1D-SDS-PAGE 

Approximately 100 µg of both flow-through and eluted protein fractions were loaded on a 

10% Tris-glycine-SDS-PAGE gel and separation was carried out at 140V. In addition, 25 µg of 

flow-through proteins and 50 µg of elution proteins were separated at 100V on a 16.5% Tris-

tricine-SDS-PAGE gel. Gel separation was carried out on a Mini protean 3 system (Bio-Rad 

Laboratories, Hercules, CA, USA) and was continued until the blue bromophenol front reached 

the bottom of the gels. Tricine gel fixation was performed in 0.3% TCA for 30 min. Both gels 

were stained with Coomassie Brilliant Blue G250 and the background was destained with 30% 

MeOH. Proteins were reduced in-gel by adding 10 mM DTT/25 mM NH4HCO3 (56°C for 45 min) 

and alkylated in 55 mM iodoacetamide/25 mM NH4HCO3 (RT for 45 min). Subsequently, the 

gel was washed in 25 mM NH4HCO3. All flow-through and elution protein bands larger than 40 

kDa were cut out of the 10% glycine gel, while those smaller than 40 kDa were cut out of the 

16.5% tricine gel. Also gel parts without any visible protein bands were excised and analyzed. 

Residual Coomassie staining was removed by washing the gel pieces in 150 µl of 200 mM 

NH4HCO3/50% ACN for 30 min at 37°C. Gel pieces were dried in a speedvac (Thermo Savant, 

Holbrook, NY, USA). 

 

2.5.4 In-gel digest 

An in-gel tryptic digest was performed by adding 12 µl of trypsin solution (0.002 µg/µl in 50 

mM NH4HCO3; sequencing grade modified trypsin, Promega, Madison, WI, USA) to each gel 

piece. After overnight incubation at 37°C, the solution with hydrophilic tryptic peptides was 

collected. Hydrophobic tryptic peptides were extracted from the gel by two subsequent 

incubation steps (15 min at 30 °C) with respectively 60 and 40 µl of 60% ACN/0.1% formic acid. 

Hydrophilic and hydrophobic peptides of each gel piece were pooled, dried by speedvac and 

dissolved in 15 µl 2% ACN/0.1% formic acid.  

 

2.5.5 LC-ESI-LTQ-FT-ICR-MS 

Five µl of the tryptic peptide fractions were analyzed, with the exception of fractions obtained 

from heavily stained gel bands for which only 2 µl was injected. LC-ESI-FT MS analysis was 

performed as described in previous research [32]. Subsequently, raw LC-MS/MS data were 

analyzed using the Mascot v2.3 search engine (Matrix Science, London, UK). MS/MS data were 

searched against the Amel4.5 NCBI Refseq (available at 
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ftp://ftp.ncbi.nih.gov/genomes/Apis_mellifera/protein/; database contains 10570 sequences 

and 5504336 residuals) and Augustus9 (available at http://www.hgsc.bcm.tmc.edu/ftp-

archive/Amellifera/Amel_4.5GenePredictions/Augustus/; database contains 11560 sequences 

and 7698817 residuals) protein prediction databases [35]. An automatic decoy database 

search was performed to enable false discovery rate (FDR) determination. The significance 

threshold was adapted to 0.001 to reach a FDR<1% for the identity threshold of both database 

searches. Searches were executed with carbamidomethylation of cysteines as a fixed 

modification and oxidation of methionines as a variable modification. One tryptic miscleavage 

was permitted and peptide mass tolerance and MS/MS tolerance were set to 10 ppm and 0.3 

Da, respectively. Precursor peptide charge state was set to 2+ and 3+. 

 

2.5.6 Criteria for positive identifications 

Setting the significance threshold at p<0.001 led to a FDR of 0.32% for the Amel4.5 NCBI 

Refseq search and 0.93% for the Augustus9 search. We defined positive protein identifications 

as queries detected by at least two unique, bold and red (significant and top ranking) peptides 

from the Mascot output with an ion score ≥30. In addition, the discovery of small peptides was 

enabled by allowing queries with a sequence coverage higher than 10% due to the detection 

of only one, bold and red (significant and top ranking) peptide with an ion score ≥30. All 

protein identifications were merged in one list and all double identifiers were removed. 

 

2.5.7 Sequence analysis  

As not all sequences are correct in prediction datasets, we tried to determine the correct 

protein sequence for each identification. First, this was done by searching for available EST 

data by Blast searches against the Amel_4.5 scaffolds on Beebase [36], which shows available 

honeybee ESTs mapped on the genome. Second, UniProt blast searches [37] were performed 

to find homologues in well-annotated species such as Drosophila melanogaster, Mus musculus 

and Homo sapiens. Sequence identity of the honeybee venom predictions and their 

homologues was evaluated using the ClustalW software (standard parameters; [38]). The 

combination of honeybee EST evidence and homology-based evidence was used to determine 

the correct protein sequences. A database containing all correct(ed) protein sequences was 

constructed, which was used for performing bioinformatic analyses further described in this 

section.  

ftp://ftp.ncbi.nih.gov/genomes/Apis_mellifera/protein/
http://www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/Amel_4.5GenePredictions/Augustus/
http://www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/Amel_4.5GenePredictions/Augustus/
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The presence of an N-terminal secretion signal peptide was verified using the 

SignalP4.0 server [39]. Sequences were truncated to a length of 200 amino acids and the D-

cutoff for signalP-TM networks was set to 0.350. Next, to determine a putative function for 

protein predictions, protein signatures were searched by InterProScan [40] and peptidase and 

protease inhibitor families were searched by Blast MEROPS [41]. GO-terms were assigned 

using Blast2GO v.2.6.0 [42]: honeybee venom proteins were subjected to a BlastP against the 

Swiss-Prot database using an expect value of E= 10-3. Mapping and GO-annotation were 

performed using default parameters. Proteins existing in exosomes were searched in the 

exosome protein database ExoCarta (http://www.exocarta.org/). Also, similar proteins 

present in venoms of other species were searched by a stand-alone Blast search of the Apis 

venom sequence database against a constructed database containing all venom proteins 

present in GenBank, but lacking predicted venom sequences, Apis mellifera sequences and 

patent sequences. 

 

2.5.8 Annotation of venom genes and contribution of improved gene prediction datasets to 

the identification of new venom proteins 

The correct sequence of every identified honeybee venom compound was determined by the 

combination of honeybee EST evidence, homology-based evidence (see section 2.4.7) and 

peptide information. Venom genes were manually annotated on the improved honeybee 

genome assembly using Apollo for the A. mellifera assembly Amel_4.5 [35].  

To determine the contribution of the improved gene prediction set to the identification 

of novel venom compounds, the venom mass spectra were searched against the newest gene 

set (OGSv3.2) and the initial official gene set (OGSv1.0) [35]. Search parameters and FDRs 

were identical to those described higher (see section 2.4.5). 

 

 

2.6 RESULTS AND DISCUSSION 

2.6.1 Identification of honeybee venom proteins 

Our in-depth analysis revealed an unexpectedly rich composition of the honeybee worker 

venom. The detection of 705 unique tryptic peptides provides biological evidence for 102 

venom proteins and peptides (Table S2.1 and S2.2). This list includes 19 compounds found in 

preceding honeybee venom proteome analyses and 6 additional compounds described in a 

http://www.exocarta.org/
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study of the honeybee venom gland proteome (Tables 2.1 and 2.2). Interestingly, we also 

present the sequence data of three venom enzymes, yet only identified by enzymatic activity 

tests in studies published more than 30 years ago: the glucosidase 2, β-galactosidase and 

group XV PLA2 sequences may represent the enzymes catalyzing the α-glucosidase [4], β-

galactosidase [15] and lysophospholipase [16;17] enzymatic reactions, respectively. In addition, 

this study detected 83 new venom compounds, which was enabled by the combined use of 

the CPLL technology, the high performance mass spectrometric instrument (LC-ESI-FT-ICR-MS) 

and the improved honeybee gene prediction sets [35]. Indeed, the CPLL pretreatment clearly 

decreased the dynamic range of protein concentrations in the venom sample (Figure 2.1). 

PLA2 and melittin contents, comprising 10-12% and 50% of the total venom dry weight 

respectively [24], were diminished in the elution fraction while also a broad range of bands 

appeared which are not visible upon separation of an untreated venom sample. Besides, while 

previous honeybee venom mass spectrometry studies focused on a specific molecular weight 

range ([7]: 950-4000Da; [11]: 750-15000Da; [19-21]: SDS-PAGE gel lacks low molecular weight 

fraction), this study extended its search towards the complete molecular weight range. 

 

Despite the high number of identifications, some of the previously reported honeybee venom 

compounds are missing in this study. The absence of the antigen5-like wasp venom paralogue 

is not surprising as it has only been described as a venom gland transcript in winter bees [18], 

while this study focused on venom of summer bees. Also, four compounds described long ago 

(cardiopep [5], minimine [22], adolapin [6] and β-acetylaminodeoxyglucosidase [15]) are 

missing, as their sequence information has so far not been determined. In addition, small 

peptides, such as tertiapin [13], procamine [12], apidaecin [18] and mast cell degranulating 

peptide (MCDP) [11] are difficult to detect using our approach, although a MCDP tryptic 

peptide (HVIKPHICR) with an ion score of 26 was detected at less stringent search parameters 

(p<0.01 and FDR of 4.05%). Finally, two high molecular weight proteins, hexamerin [20] and 

vitellogenin [43], may be lacking due to venom sample variation (different collection method, 

spatial and/or seasonal venom variation) or technological variation (liquid versus gel-based 

proteomics).  
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Figure 2.1: Electrophoretic separation of a combinatorial peptide ligand library (CPLL)-treated honeybee 

venom sample. CPLL flow-through (=FT) and elution (=EL) samples are separated on a 10% Tris-glycine-SDS-

PAGE gel (A) and a 16.5% Tris-tricine-SDS-PAGE gel (B). Molecular weight regions which are known to 

contain high amounts of PLA2 (*) and melittin (►) are indicated. Molecular weights (in kDa) of the markers 

(Thermo Scientific, Rockford, IL, USA) are indicated in the figure: A) PageRuler Prestained Protein Ladder; B) 

Spectra Multicolor Low Range Protein Ladder.  

 

 

2.6.2 Categorization of venom proteins 

As lowly abundant compounds are enriched by the CPLL pretreatment, we expected that the 

extended venom protein list would contain many compounds which probably have no 

function once they are injected into the victim. These so-called venom trace molecules only 

have a local function in the venom duct or reservoir or are released by leakage of the gland 

tissue [1]. In contrast, toxins are typically highly abundant and are actively secreted by the 

venom glands to contribute to the venom defense or social immunity function. As such, we 

categorized the detected compounds in those two groups (Table 2.1 and Table 2.2) based on 

their predicted subcellular location and protein function. As the CPLL treatment shifts relative 

protein abundances, we were unable to use protein abundance as a distinguishing parameter. 

The subcellular location of each identified compound was predicted by several 

parameters. Many compounds (86/102) contain an N-terminal secretion signal peptide, which 

allows to target proteins to the secretory pathway [endoplasmic reticulum (ER), Golgi complex, 

lysosomes]. Generally, proteins lacking this signal peptide are not actively secreted and were 

therefore assigned to the group of venom trace molecules (Table 2.2). The subcellular location 
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of homologues of well annotated species (fruitfly, mouse and human) and the ‘cellular 

component’ GO-terms were chosen as additional parameters (Table S2.3). In contrast to 

putative toxins which have secreted homologues and assigned GO-terms linked to the 

extracellular space, venom trace molecules are often found in intracellular compartments of 

the secretory pathway. Also, multiple compounds contain a C-terminal ER-retention signal 

(XDEL) which is indicative for ER-retained proteins (Table 2.2). 

To derive a function for all identified compounds, we used different levels of 

information, i.e. known functions of homologues, the ‘molecular function’ and ‘biological 

process’ GO-terms, and the predicted functional domains (Table S2.3). Only compounds with a 

(putative) function in defense or social immunity were assigned to the list of putative toxins 

(Table S2.4). In addition, we searched for venom homologues of other species, found by 

venom gland transcriptome and venom proteome studies (Tables 2.1 and 2.2 and Table S2.5).  

 

This approach allowed us to identify 33 putative toxins and 58 trace molecules, which are 

listed according to their function (Table 2.1) and subcellular location (Table 2.2), respectively. 

At present, no function could be attributed to eleven compounds. They were categorized 

separately (Table 2.3) because they lack functional domains and/or similar annotated 

sequences. 

 

2.6.2.1 Putative toxins 

This study confirmed the presence of multiple toxins found in preceding honeybee 

venom analyses. Toxic functions have been proposed for most of them: phospholipase A2-1, 

melittin, apamin, hyaluronidase, major royal jelly proteins (MRJPs) [44], dipeptidyl peptidase 

IV [45], Api m 6 [46] and CUB serine protease [47]. For others, such as icarapin and secapin, 

the function remains elusive, but we hypothesize that they have a toxic function as they have 

been detected with less sensitive technologies [9;11;18;19] and may therefore be 

moderately/highly abundant. Additionally, for some well-known but functionally non-

characterized honeybee venom compounds we propose a function based on similar venom 

compounds from other species: first, in snake venom, acid phosphatase has been suggested to 

play a role in liberating purines (mainly adenosine). It acts as a multitoxin and potentiates 

venom-induced hypotension and paralysis [48]. Second, the platelet-derived growth factor 

may act similarly to snake venom VEGF-like molecules, which are the most potent vascular 
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Table 2.1. All discovered putative toxins are classified according to their function, and GenBank/Augustus accession numbers (Acc N°) and allergen names (Allergen) 

are shown (derived from http://www.allergen.org/). All of them contain a secretion signal peptide (derived by SignalP). Their finding in preceding honeybee venom 

(HBV) and venom gland (HBV GL) proteomic studies is marked with “X”. Also proteins which exist in the exosome protein database ExoCarta (derived from 

http://www.exocarta.org/) are indicated with “X” (Exosome). In gray, the results are shown of stand alone blasts against a venom sequence database, which reveals 

the existence of similar venom proteins and venom gland transcripts (Evidence) of other species (Species). Type of evidence: P= venom protein; T=venom gland 

transcript; EA= enzymatic activity; U= unknown. Identified putative venom toxins 

      Similar venom compounds 

Name Acc. N° Allergen  HBV HBV GL Exosome Species Evidence Ref. 

Esterases         

  Phospholipase A2-1 gi|58585172 Api m 1 x x     

  Phospholipase A2-2 gi|110758297        

  Group XV phospholipase A2 gi|328791555  x      

  Acid phosphatase 1 gi|301601654 Api m 3 x x x Nasonia vitripennis P [32] 

  Acid phosphatase 2 gi|328790726    x Pteromalus puparum T+EA [53] 

  Acid phosphatase 3 gi|110768981    x Pteromalus puparum T+EA [53] 

  5'-nucleotidase gi|66523706    x Gloydius blomhoffi P [54] 

  Carboxylesterase gi|187281550 Api m 8 x  x Nasonia vitripennis P [32] 

Proteases and peptidases         

  CLIP serine protease gi|66507455     Bombus ignitus P [52] 

  CUB serine protease 1 gi|58585116 Api m 7 x   Apis cerana U gi|146395065 

  CUB serine protease 2 gi|48101366     Nasonia vitripennis T [32] 

  Putative trypsin au9.g8903.t1     Nasonia vitripennis P [32] 

  Serine protease snake gi|328783264        

  Dipeptidyl peptidase IV gi|187281543 Api m 5 x  x Vespula vulgaris P [45] 

  Serine carboxypeptidase  gi|226533687 Api m 9 x x x Crotalus adamanteus T [55] 

  Prolylcarboxypeptidase gi|328778095    x    

  Metalloprotease gi|110748908    x Eulophus pennicornis T [56] 

 

http://www.exocarta.org/
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Table 2.1. Continued 

 

      Similar venom compounds 

Name Acc. N° Allergen  HBV HBV GL Exosome Species Evidence Ref. 

Protease inhibitors         

  Api m 6 gi|94400907 Api m 6 x      

  Serpin 1 gi|328793022    x Crotalus adamanteus T [55] 

  Serpin 2 gi|328791596    x Crotalus adamanteus T [55] 

  Serpin 3 gi|328780925    x Crotalus adamanteus T [55] 

Carbohydrate metabolism 
          Hyaluronidase gi|58585182 Api m 2 x x 

 
Apis cerana  T [57] 

  N-sulfoglucosamine sulfohydrolase gi|328793712 
    

Crotalus adamanteus T [55] 

  Endochitinase gi|66511507 
    

Nasonia vitripennis T [32] 
Growth factors         

  Platelet-derived growth factor gi|328789531  x x x Bitis gabonica gabonica P [58] 

  Imaginal disc growth factor 4 gi|66514614   x  Chelonus inanitus P [59] 

Major royal jelly proteins         

  MRJP8 gi|58585070 Api m 11 x x  Chelonus inanitus P [59] 

  MRJP9 gi|67010041 Api m 11 x   Chelonus inanitus P [59] 

Peptides         

  Melittin gi|58585154 Api m 4 x   Vespula maculifrons T [60] 

  Apamin gi|58585166  x      

  Secapin gi|58585180  x   Vespa velutina nigrithorax U gi|33321084 

Other toxins         

  C-type lectin gi|328792562        

  Icarapin gi|60115688 Api m 10 x x  Apis cerana T [61] 
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permeability factors known and which can facilitate venom spreading [49]. Two other 

enzymes, carboxylesterase and serine carboxypeptidase could play a role in degradation of 

insect neurotransmitters [50] and a wide range of proteins [51], respectively.  

In addition, our study identified 17 new putative toxins. They belong to the classes of 

esterases, proteases, protease inhibitors, carbohydrate-degrading enzymes, growth factors 

and C-type lectins. Their putative functions are presented in Table S2.4. All newly detected 

toxins may allow spreading of the venom and/or cause tissue damage. Despite the diminished 

amounts of the melittin peptide in the CPLL elution (Figure 2.1), no new small peptides were 

discovered. As such, besides melittin (and also MCDP and apidaecin), no additional 

antimicrobial peptides playing a role in social immunity [2;7] were found.  

Interestingly, our study revealed that honeybee venom contains multiple toxins 

belonging to the same protein class: five S1 serine endopeptidases, three acid phosphatases, 

three serpins and two group III PLA2s were identified. Their combination with unique binding 

domains, as is seen in the group of serine proteases (no domain/CUB/CLIP), may allow a 

similar catalytic activity, but each directed towards a specific target. This activity may even be 

directed towards species-specific targets, as similar toxins could have evolved because of the 

biochemical arms race with specific attacker species belonging to the distinct classes of 

arthropods (wasp and robber bees stealing honey) and vertebrates (birds, mice). Moreover, 

the CLIP serine protease showed to be similar to a bumblebee (B. ignitus) CLIP serine protease, 

which was demonstrated to play a distinct role in insects and mammals [52]. Alternatively, 

similar proteins may perform variable catalytic functions due to sequence differences in the 

active site, as is seen in the newly detected acid phosphatases (APH2 and APH3) which contain 

an amino acid substitution in the active site septapeptide compared to APH1 (RHGXKXP → 

RHGXRXP). Consequently, although multiple proteins belong to the same protein class, they 

may act upon a wide range of targets and/or exert different functions, which broadens the 

panel of toxins and allows the honeybees to efficiently defend the hive.  

Multiple honeybee venom toxins show resemblance to toxins found in other 

hymenopteran venoms. As honeybees are closely related to bumblebees and wasps, and as 

their venoms share the same functions, homologues are likely to share similar functions. In 

contrast, venom homologues of parasitoid wasps may serve different functions as their venom 

is not used for defense, but influences the arthropod host’s immunity, physiology, mobility, 

reproductive capacity and behavior to keep them alive and serve as food for their offspring
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[32]. Also multiple snake venom analogs (growth factors [49], hyaluronidases [62], C-type 

lectins [63], serine proteases [64], metalloproteases [65;66], acid phosphatases [48], 

nucleotidases [54;67] and PLA2s [68]) were found, supporting evidence for convergent 

evolution. 

 

2.6.2.2 Venom trace molecules 

Preceding honeybee venom proteome analyses presumably found mostly abundant 

compounds using technologies with a lower sensitivity. Therefore, the C1q-like protein was so 

far the only honeybee venom trace molecule found in a mass spectrometric study [21]. de 

Graaf and coworkers already indicated that further digging in the venom proteome would 

yield additional lowly abundant venom trace molecules [1]. Indeed, more than half of the 

proteins (58/102) identified in this study appears to belong to this category. Their putative 

functions are briefly summarized in Table S2.4.  

We believe that some of them are actively secreted as they may have a local function 

in the venom duct or reservoir, playing a role in maturation (e.g. peptidylglycine α-

hydroxylating monooxygenase) or stabilization (e.g. heat shock proteins) of the secretes. 

Others are secreted by diverse tissues for exerting essential functions in the extracellular 

space (e.g. immunity-related proteins and apolipophorins). However, most of the venom trace 

molecules play roles in secretory pathway processes, such as protein folding, degradation and 

post-translational modification, N-glycan maturation and degradation, and sphingolipid 

metabolism. As several compounds contain an ER-retention signal, their presence in the 

venom may be explained by their unintentional release due to an inefficient retrieval and 

retrograde transport within the secretory pathway of the highly active secreting venom gland 

tissue. Other secretory pathway proteins may remain bound to toxins during their transfer 

through the secretory pathway and may be unintentionally co-secreted. Finally, the release of 

large secretory pathway-localized multiprotein complexes (e.g. the BiP complex) may 

contribute to the high number of detected trace molecules. The identification of few plasma 

membrane compounds in the venom may be explained by the release of their often large 

extracellular domains. 

Remarkably, the venom contains two mitochondrial compounds and 16 compounds 

which lack a secretion signal peptide. First, both the phospholipid hydroperoxide glutathione 

peroxidase (GTPX) and kynurenine-oxoglutarate transaminase 1 (KAT) show the highest
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Table 2.2. All discovered venom trace molecules are classified according to their subcellular localization. GenBank/Augustus accession numbers (Acc N°) are shown. 

The presence of a secretion signal peptide (derived by SignalP), ER-retention signal peptide (ER) and their finding in preceding honeybee venom (HBV) and venom 

gland (HBV GL) proteomic studies is marked with “X”. Also proteins which exist in the exosome protein database ExoCarta (derived from http://www.exocarta.org/) 

are indicated with “X” (EX). In gray, the results are shown of stand alone blasts against a venom sequence database, which reveals the existence of similar venom 

proteins and venom gland transcripts (Ev.) of other species (Species). Type of evidence: P= venom protein; T=venom gland transcript; U= unknown. 

   
  

  
Similar venom compound 

Name Acc. N° SignalP EX ER HBV HBV GL Species Ev. Ref. 

Secreted proteins 
  

  
       C1q-like protein gi|221325614 x x  x 

      Lysozyme c-1  gi|328779578 x x  
       Peptidoglycan-recognition protein SA  gi|254910928 x x  
       Transferrin gi|58585086 x x  
 

x 
     Modular serine protease gi|328780689 x   

  
Nasonia vitripennis P [32] 

  Cathepsin F gi|328788558 x   
  

Crotalus adamanteus T [55] 

  Cathepsin K au9.g225.t1 x   
  

Mesobuthus eupeus U gi|148970410 

  Peptidylglycine α-hydroxylating monooxygenase  gi|328787622 x x  
  

Crotalus adamanteus T [55] 

  Apolipophorins gi|328780886 x x  
     

 
gi|328780884 

 
  

       Dorsal-ventral patterning protein Sog  gi|328791019 x   
       Laminin subunit γ-1  gi|328776171 x x  
     Endoplasmic reticulum 

  
  

       Glucosidase 2, subunit α gi|66500170 x x  x 
 

Crotalus adamanteus T [55] 

  Glucosidase 2, subunit β gi|328789473 x x x 
       Calreticulin gi|66545506 x x x 
  

Nasonia vitripennis T [32] 

  UDP-glucose:glycoprotein glucosyltransferase  gi|328786702 x x x 
       Protein disulfide-isomerase A3 gi|66546657 x x x 
 

x Crotalus adamanteus T [55] 

  Peptidyl-prolyl cis-trans isomerase B gi|335892796 x x  
 

x Crotalus adamanteus T [55] 

  Hsc70-3 gi|229892214 x x x 
 

x Crotalus adamanteus T [55] 

  Hypoxia up-regulated protein 1 (Hsp70) gi|328784616 x x x 
  

Crotalus adamanteus T [55] 

http://www.exocarta.org/
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Table 2.2. Continued 

   
  

  
Similar venom compound 

Name Acc. N° SignalP EX ER HBV HBV GL Species Ev. Ref. 

Endoplasmic reticulum continued 
  

  
       Endoplasmin (Hsp90) gi|110758921 x x x   Crotalus adamanteus T [55] 

  dnaJ/Hsp40/ERdj3 gi|328790510 x x    Crotalus adamanteus T [55] 

  Endoplasmic reticulum lectin 1 gi|328787701 x   
  

Crotalus adamanteus T [55] 

  Protein disulfide-isomerase  gi|328790461 x  x 
  

Crotalus adamanteus T [55] 

  Endoplasmic reticulum resident protein 29 gi|110751310 x  x 
  

Crotalus adamanteus T [55] 

  Endoplasmic reticulum resident protein 44  gi|328777360 x x x 
  

Crotalus adamanteus T [55] 

  Calumenin gi|66509518 x  x 
       Procollagen-lysine,2-oxoglutarate 5-dioxygenase 3 gi|328784759 x x  
       ERGIC-53 gi|328785297 x x  
  

Crotalus adamanteus T [55] 

Golgi complex 
  

  
       α-Mannosidase 2  gi|66514147 x   
       Mannosyl-oligosaccharide α-1,2-mannosidase isoform A  gi|328782017 

 
x  

  
Crotalus adamanteus T [55] 

  Mannosyl-oligosaccharide α-1,2-mannosidase isoform B  gi|328781530 
 

x  
  

Crotalus adamanteus T [55] 

  Glycoprotein 3-α-L-fucosyltransferase A gi|328785366 x x  
       Metallocarboxypeptidase gi|328785691 x x  
  

Crotalus adamanteus T [55] 

  Nucleobindin gi|328789222 x x  
  

Crotalus adamanteus T [55] 

  Calsyntenin-1  gi|328778301 x x  
  

Crotalus adamanteus T [55] 

  Lactosylceramide 4-α-galactosyltransferase gi|328793424 x   
    

 

Lysosomes 
  

  
       α-L-fucosidase gi|328793281 x x  
  

Crotalus adamanteus T [55] 

  β-galactosidase gi|110764149 x x  x 
      Aspartic protease (cathepsin D) gi|66560290 x x  

  
Crotalus adamanteus T [55] 

  γ-interferon-inducible lysosomal thiol reductase gi|328785531 x   
  

Microctonus hyperodae T [69] 

  Glucosylceramidase gi|66511554 x x  
       Proactivator polypeptide gi|328782499 x x  
 

x Crotalus adamanteus T [55] 
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Table 2.2. Continued 

   
  

  
Similar venom compound 

Name Acc. N° SignalP Ex ER HBV HBV GL Species Ev. Ref. 

Plasma membrane proteins 
  

  
       Renin receptor gi|328776891 x x  
  

Crotalus adamanteus T [55] 

  V-ATPase subunit S1 gi|328783393 x   
  

Crotalus adamanteus T [55] 

  Multiple inositol polyphosphate phosphatase gi|328778827 x x  
  

Nasonia vitripennis P [32] 

Mitochondrial proteins 
  

  
       Phospholipid hydroperoxide glutathione peroxidase gi|110756698 x x  
  

Bufo gargarizans U gi|89515096 

  Kynurenine-oxoglutarate transaminase  gi|328789112 
 

  
  

Crotalus adamanteus T [55] 

Proteins without signal peptide 
  

  
       Hsp70Ab gi|229892265 

 
x  

  
Crotalus adamanteus T [55] 

  Hsc70-4 gi|229892210 
 

x  
  

Crotalus adamanteus T [55] 

  Histone H4 gi|328789054 
 

x  
  

Pelinobius muticus T [70] 

  Ras-related protein Rab-1A gi|328784309 
 

x  
  

Crotalus adamanteus T [55] 

  Ras-related protein Rab-11A  gi|328778735 
 

x  
  

Crotalus adamanteus T [55] 

  Actin related protein 1  gi|297591985 
 

x  
  

Crotalus adamanteus T [55] 

  Tubulin β-1 chain  gi|48095525 
 

x  
  

Crotalus adamanteus T [55] 

  Tubulin β-chain-like gi|110762983 
 

x  
  

Crotalus adamanteus T [55] 

  Moesin/ezrin/radixin homolog 1  gi|328784401 
 

x  
  

Crotalus adamanteus T [55] 

  Ubiquitin-60S ribosomal protein L40 gi|110756311  x    Ophiophagus hannah T [71] 

  Elongation factor 1-alpha gi|58585198  x    Crotalus adamanteus T [55] 
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similarity to the Apis cerana cerana [72] and Aedes aegypti [73] mitochondrial homologues, 

respectively. However, other GTPXs and KATs have been found in different subcellular 

compartments. As such, more research is needed to reveal the exact subcellular location of 

these honeybee proteins. Second, most of the compounds without a signal peptide are in a 

way connected to the secretory pathway, which might explain their presence in the venom. In 

contrast, the cytoskeletal proteins are typical cytoplasmic compounds, suggesting that they 

are released by a different process. Although apoptosis of cells of the venom apparatus cell 

lining may contribute to their presence within the venom, we would expect to find a higher 

number of cytoplasmic proteins and even some nuclear compounds. However, all detected 

cytoskeletal proteins have been found in exosomes, which are small membrane vesicles of 

endocytic origin that are secreted in various extracellular fluids, including in the venoms of the 

snake Gloydius blomhoffii blomhoffii [74] and two solitary wasps [75]. As such, we propose 

that the selective, active process of exosome-mediated secretion [76] is responsible for their 

release. Moreover, as about 64% (58/91) of the identified proteins can be found in exosomes 

(Table 2.1 and 2.2), it seems that this represents an important way of secretion in the 

honeybee venom gland. 

 

 

Table 2.3. Detected venom proteins with an unknown function. GenBank/Augustus accession numbers (Acc. 

N°) are shown and the presence of a signal peptide (SignalP) and ER-retention signal (ER) is indicated 

with ’X’. 

Name Acc. N° SignalP  ER 

  Unknown function protein 1 gi|110748765 x  

  Unknown function protein 2 gi|328778365 x  

  Unknown function protein 3 gi|48132776 x  

  Unknown function protein 4 gi|66546405 x  

  Unknown function protein 5 gi|328781452 x  

  Unknown function protein 6 gi|66518899 x  

  Unknown function protein 7 gi|328783315 
 

x 

  Unknown function protein 8 gi|328778397 x  

  Unknown function protein 9 gi|328782411 x  

  Unknown function protein 10 gi|110776960 x  

  Unknown function protein 11 gi|328780111   

 



Chapter 2 

96 
 

2.6.3 Annotation of venom genes and contribution of improved gene predictions to the 

identification of new venom proteins 

The honeybee genome, published in 2006, was noted to have a bimodal GC content that 

affected the quality of the assembly in some regions and the annotation had fewer genes in 

the initial gene set (OGSv1.0) than would have been expected based on other species 

sequenced since. With the advent of next-generation sequencing technologies, sequencing 

genomes has changed. Therefore, recently an improved genome assembly and gene 

annotation set (OGSv3.2) for the honeybee has been generated [35]. We could show that the 

OGSv3.2 gene set, which contains about 5000 new genes, delivers a significant contribution to 

our venom proteome research. Searching the venom mass spectra against both the OGSv1.0 

and OGSv3.2 gene sets revealed that the improved OGSv3.2 gene set enabled the detection of 

21 additional peptides supporting 9 new venom protein identifications. Besides, extra tryptic 

peptides were discovered for 7 venom proteins as a result of improved gene predictions 

(Table S2.6).  

The reduced sequencing cost of second generation sequencing methods also implies 

the generation of much more transcript sequences than ever before. These transcript data, 

while short and difficult to assemble into complete transcripts are very useful as evidence 

supporting gene model prediction and annotation [35]. Also most honeybee venom genes are 

fully (76.5%) or partially (19.6%) covered by EST evidence. The combination of EST and 

proteome data allowed to determine their correct gene sequence and all 102 venom genes 

were manually annotated on the improved honeybee genome assembly (Table S2.7).  

The tertiapin peptide, which has been described to be present in the venom already 

many years ago [13], was not found in the present proteomic analysis. However, no genomic 

or transcriptomic evidence for this peptide has been described. We solved this issue as we 

discovered the tertiapin gene by genome mining. The genome improvement project supplies 

both a gene prediction (GB40695, NCBI Gene ID: 100576769) and EST evidence 

(Genbank:HP466647.1). The gene is positioned on chromosome 12, next to the apamin and 

mast cell degranulating peptide venom genes. The three genes are arranged tandemly which 

may point to a joint control of transcription [77]. 

 

2.6.4 Consequences for honeybee venom allergy  

Systemic allergic reactions after a honeybee sting have been reported to occur in 0.8-5% of
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the general population and may be life-threatening [1]. Nowadays, already 12 honeybee 

venom allergens are immunologically characterized (Table 2.1). This mass spectrometric study 

analyzed venom of A. mellifera carnica, a subspecies which is the second most popular among 

beekeepers. Moreover, venom of adult worker honeybees was collected during the summer, 

when they actively forage. As the general human population is mainly stung by these foraging 

individuals, this proteomic study offers an extended list of potential new venom allergens.  

 

 

2.7 CONCLUSIONS 

The combination of improved gene prediction sets, the CPLL approach and FT-ICR MS/MS 

allowed us to explore the hidden honeybee venome. In total, 102 compounds were detected, 

which were categorized according to their putative function and/or subcellular localization. 

The 33 putative toxins belong to the classes of esterases, proteases, protease inhibitors, 

carbohydrate-degrading enzymes, growth factors, MRJPs and antimicrobial peptides. Their 

(predicted) biological function provides insights into the venom toxicity. In addition, our highly 

sensitive approach yielded a long list of lowly abundant venom trace molecules. As preceding 

studies described eleven honeybee venom compounds which remained undetected in this 

analysis, the honeybee venome is now largely extended to 113 compounds. Finally, this study 

offers a long list of potential new venom allergens.  
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2.9 ADDENDUM 

Supplementary tables can be found on the included CD-ROM or can be requested by e-mail 

from matthiasvanvaerenbergh@hotmail.com and Dirk.deGraaf@UGent.be. 

 

Table S2.1: This table presents all significant proteins found by searching the generated 

MS/MS spectra against the Amel_4.5 protein NCBI Refseq and Augustus 9 databases 

mailto:matthiasvanvaerenbergh@hotmail.com
mailto:Dirk.deGraaf@UGent.be
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(Database search). Protein names (Name), accession numbers (Acc. N°), Mascot scores (Score) 

and molecular weight (MW) are shown. Also the percentage of the protein sequence covered 

by assigned peptides (Seq. cov.), the number of assigned peptides (# ass. peptides) and the 

number of unique assigned peptides (# unique ass. peptides) is given. 

 

Table S2.2: Peptide information for each identified protein, including all identified peptide 

sequences (pep_seq), peptide variable modifications (pep_mod), the experimental mass of 

charge observed (m/z) and the charge of the precursor ion (z), the peptide Mascot score 

(pep_score) and its associated probability value (p-value). 

 

Table S2.3: Table showing the enzyme codes, GO-terms (molecular function, cellular 

compounds and biological process) and InterProScan functional domain codes (inferred by 

BLAST2GO) for all identified honeybee venom proteins. 

 

Table S2.4: A brief description of the putative function of all new identified venom compounds 

is presented in the worksheet ‘Functions’, while corresponding references are shown in the 

worksheet ‘References’. 

 

Table S2.5: Similar compounds found in venom proteome/venom gland transcriptome studies 

of other species were searched by stand alone Blast searches with the identified Apis mellifera 

venom queries. The accession number (Acc. N°) and name (Name) of the queries and Blast 

results are shown. Also, the species in which these similar proteins were discovered, the type 

of evidence for their identification (P= venom protein; T=venom gland transcript; EA= 

enzymatic activity; U= unknown) and the references of the published studies are presented. 

Additionally, the blast parameters are included. 

 

Table S2.6: Searching the venom mass spectra against both the OGSv1.0 and OGSv3.2 gene 

sets revealed that the improved OGSv3.2 gene set allowed the detection of 21 additional 

peptides supporting 9 new venom protein identifications (grey). Besides, additional tryptic 

peptides were discovered for 7 venom proteins as a result of improved gene predictions 

(green). 
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Table S2.7 shows all manually annotated honeybee venom genes. Annotation data such as 

species-specific name, gene ID of the initiating sequence and the gene coordinates (scaffold, 

start and end position, positive or negative strand) are presented. Genes were annotated 

using Apollo for the A. mellifera assembly Amel_4.5. Also the existence of EST evidence in 

BeeBase (X= full EST, partial= partial EST, /= no EST) is indicated.  
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Unraveling the venom proteome of the bumblebee (Bombus 

terrestris) by integrating a combinatorial peptide ligand library 

approach with FT-ICR MS  

 

The work presented in Chapter 3 was adapted from the following manuscripts: 

1) M. Van Vaerenbergh, G. Debyser, G. Smagghe, B. Devreese, D. C. de Graaf. Unraveling 

the venom proteome of the bumblebee (Bombus terrestris) by integrating a 

combinatorial peptide ligand library approach with FT-ICR MS. Toxicon, in press. This 

work will be published as a companion paper of the unpublished manuscript of the 

International Bumblebee Genomics Consortium, reporting on the sequencing of the 

genome of two bumblebee species:  

2) International Bumblebee Genomics Consortium. Two bumblebee genomes show the 

route to advanced social living. Unpublished work. 

 

 

3.1 CONTRIBUTIONS 

D. de Graaf and B. Devreese assisted with the study design. M. Van Vaerenbergh executed all 

experiments. G. Debyser gave technical assistance for the LC-ESI-LTQ-FT-ICR-MS experiments 

and setting up Mascot searches. L. De Smet assisted during cutting out gel slices from the SDS-

PAGE gels. K. Morreel calibrated the FT-ICR and LTQ mass analyzers. M. Van Vaerenbergh 

performed all data analysis and gene annotation. Eckart Stolle determined the syntenic 

regions in the honeybee and bumblebee genomes. 

M. Van Vaerenbergh wrote the manuscript reporting on the identification of novel 

bumblebee venom compounds. This manuscript is submitted to Toxicon and will be published 

as a companion paper of the main genome paper from the International Bumblebee Genomics 

Consortium, which will publish the data of the sequencing of the genomes of B. terrestris and 
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B. impatiens. Publication of this companion paper is put on hold by Toxicon until the main 

genome paper will be released. M. Van Vaerenbergh also wrote a section about the 

annotation of B. terrestris venom genes, the search for honeybee venom homologues in the 

bumblebee genomes and homologous venom genes in the genomes of B. terrestris and B. 

impatiens, which will be included in the main genome paper manuscript. All authors of the 

companion paper will also be included in the author list of the main genome paper, known as 

the International Bumblebee Genomics Consortium. The co-authors assisted throughout the 

writing phase of the companion paper and section of the main genome paper. 

 

 

3.2 ABSTRACT 

Within the Apidae, the largest family of bees with over 5600 described species, the honeybee 

is the sole species with a well studied venom proteome. So far, only little research has focused 

on bumblebee venom. Recently, the genome sequence of the European large earth 

bumblebee (Bombus terrestris) became available and this allowed the first in-depth proteomic 

analysis of its venom composition. We identified 57 compounds, with 52 of them never 

described in bumblebee venom. Remarkably, 72% of the detected compounds were found to 

have a honeybee venom homologue, which reflects the similar defensive function of both 

venoms and the high degree of homology between both genomes. However, both venoms 

contain a selection of species-specific toxins, revealing distinct damaging effects that may 

have evolved in response to species-specific attackers. Further, this study extends the list of 

potential venom allergens. The availability of both the honeybee and bumblebee venom 

proteome may help to develop a strategy that solves the current issue of false double 

sensitivity in allergy diagnosis, which is caused by cross-reactivity between both venoms. A 

correct diagnosis is important as it is recommended to perform an immunotherapy with 

venom of the culprit species. 
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3.3 GRAPHICAL ABSTRACT 

 

 

3.4 INTRODUCTION 

Several hymenopteran stinging species are known to cause allergic reactions. As bumblebees 

are not aggressive, the risk of being stung by a bumblebee is very small. However, due to the 

use of bumblebees as pollinators of greenhouse plants, the prevalence of bumblebee venom 

allergy increased, especially in greenhouse workers [1-3]. Furthermore, a significant 

immunological cross-reactivity between bumblebee and honeybee venom is caused by the 

presence of cross-reactive IgE-antibodies which recognize similar protein and carbohydrate 

epitopes. Hence, concurrent sensitization can be found in many patients [4]. 

Knowledge of the venom composition of multiple hymenopteran species may 

contribute to an improved allergy diagnosis and treatment by immunotherapy. Venom 

immunotherapy (VIT) is preferably executed using venom of the culprit species, but 

sometimes the decision which life-saving immunotherapy should be started is difficult to make. 

Indeed, patients often fail to identify the stinging insect species and the modern whole-

venom-based immunodiagnostics not always brings relief due to cross-reactivity or double 

sensitivity [4]. Component-resolved diagnosis using differential species-specific venom 

allergens may solve this issue by the detection of species-specific IgE antibodies in patient’s 
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serum [5]. However, well studied venom proteomes and allergen repertoires are a 

prerequisite for the development of such diagnostic tools. 

 

Within the Apidae, the largest family of bees with over 5600 described species [6], the 

honeybee is the sole species with a well-studied venom protein composition [7]. So far, only 

few research studies have focused on bumblebee venom. Using enzymatic activity tests, both 

highly abundant proteins [phospholipase A2 (PLA2) and casein hydrolyzing protease] and minor 

components (hyaluronidase and acid phosphatase) were detected in the venom of the 

European large earth bumblebee, Bombus terrestris [2]. The PLA2 and casein hydrolyzing 

protease are recognized by IgE antibodies and are known as the allergens Bom t 1 and Bom t 4, 

respectively [2]. Recently, a venom serine protease [8] and a Kunitz-type serine protease 

inhibitor [9] were identified, which affect the victim’s hemostatic system via the venom serine 

protease inhibitor-mediated antifibrinolytic activity and venom serine protease-mediated 

fibrin(ogen)olytic activities [9]. In addition, two venom bombolitins have been described, 

which constitute the highest abundant compounds in bumblebee venom ([10]; GenBank: 

ADY75782.1). Venom proteomes of few other bumblebee species (B. ignitus, B. 

pennsylvanicus, B. lapidarius, B. hypocrita sapporoensis and B. ardens ardens) have been 

investigated, identifying PLA2s [2;11], serine proteases [2;12;13], bombolitins [14-16], a mast 

cell degranulating peptide [17] and a Kunitz-type serine protease inhibitor [18;19].  

Most preceding research relied on single compound-oriented, time-consuming and low 

sensitive techniques such as bio-assays and chemical sequencing via Edman degradation, 

identifying only a few, primarily highly abundant, compounds. Novel mass spectrometry-based 

studies often apply bottom-up shotgun approaches. So far, B. lapidarius is the only bumblebee 

species from which MS data on its venom proteins are available. ESI-MS resulted in the 

detection of 24 compounds and the three major compounds were identified as three 

bombolitins using a combination of tandem MS with Edman degradation [16]. However, this 

study was hampered by the lack of a well annotated genome which is a prerequisite for 

further completing the list of venom proteins [20], as the mass spectra can then be searched 

against the available protein predictions. We previously reported that the use of high 

performing mass spectrometry technologies can result in a comprehensive identification of 

the venom components, as was shown for the parasitoid wasp Nasonia vitripennis and the 

honeybee Apis mellifera [7;21]. We have demonstrated that additional lowly abundant 
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compounds were accessed by reducing the dynamic range of protein concentrations in venom 

samples by incubation with a combinatorial hexapeptide ligand library (CPLL) [7]. The recent 

genome publication of the bumblebee B. terrestris [22] paved the way for a similar approach 

for analyzing the venom composition of this species. 

The present study explored the worker venom proteome of the large earth bumblebee 

(B. terrestris) by high resolution mass spectrometry analysis (LC-ESI-LTQ-FT-ICR MS/MS). As 

PAGE separation of B. terrestris venom proteins revealed several highly abundant venom 

compounds [20] which may hamper the detection of lowly abundant compounds in a mass 

spectrometry experiment, CPLL pretreatment of the venom sample has been conducted. 

Venom compounds were identified by searching MS/MS spectra against B. terrestris genome 

protein prediction sets [22]. Functions of the identified compounds were predicted using 

bioinformatics. Finally, all venom genes were annotated on the B. terrestris genome assembly 

[22]. 

 

 

3.5 MATERIALS AND METHODS 

3.5.1 Venom collection 

Worker bumblebees (Bombus terrestris) were collected from three commercially available 

nests (Biobest Co., Belgium). Pure venom was collected as was previously described for 

honeybees [23]. Venom of 75 bumblebees was pooled to a protein concentration of 69.54 

mg/ml, determined by Bradford protein assay (Thermo Scientific Pierce, Hudson, NH, USA). 

 

3.5.2 Mass spectrometric analysis 

Unless otherwise indicated, all experiments were conducted as described in a preceding 

honeybee venom proteome study [7]. The dynamic range of protein concentrations in the 

bumblebee venom sample was compressed by a CPLL approach (ProteoMiner protein 

enrichment small-capacity kit, Bio-Rad Laboratories, Hercules, CA, USA). Approximately 100 µg 

and 70 µg of the CPLL-flow-through and eluted protein fractions, respectively, were separated 

on a 10% Tris-glycine-SDS-PAGE gel. In addition, 25 µg of CPLL flow-through proteins and 30 µg 

of CPLL elution proteins were separated on a 16.5% Tris-tricine-SDS-PAGE gel. After Coomassie 

staining, proteins were in-gel reduced and alkylated. All flow-through and elution protein 

bands larger than 40 kDa were cut out of the 10% glycine gel, while those smaller than 40 kDa 
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were cut out of the 16.5% tricine gel. Also gel parts without any visible protein bands were 

excised and analyzed. After in-gel tryptic digestion, tryptic peptides were extracted from the 

gel and analyzed by LC-ESI-LTQ-FT-ICR MS/MS. MS/MS data were searched using the Mascot 

v2.3 database search engine (Matrix Science, London, UK) against two protein databases of 

the newly released Bter_1.0 genome [22]: the Augustus5 (https://www.hgsc.bcm.edu/ftp-

archive/Bterrestris/Bumblebee_B_ter_GenePredictions/AUGUSTUS/; database contains 30976 

sequences and 34153612 residuals) and the Bter_1.0 NCBI Refseq database 

(ftp://ftp.ncbi.nih.gov/genomes/Bombus_terrestris/protein/; database contains 10577 

sequences and 5951597 residuals), added with characterized B. terrestris venom sequences: 

phospholipase A2 (Genbank: P82971.1), serine protease (GenBank: ADY75780.1), bombolitin 1 

(GenBank: ADY75781.1) and bombolitin 2 (GenBank: ADY75782.1). To determine false 

discovery rates (FDR) for the identity threshold, an automatic decoy database search was 

conducted. Setting the significance threshold at 0.0016 led to a FDR of 0.99% for the 

Augustus5 search and 0.53% for the Bter_1.0 NCBI Refseq search. Searches were executed 

with carbamidomethylation of cysteines as a fixed modification and oxidation of methionines 

as a variable modification. One tryptic miscleavage was permitted and peptide mass tolerance 

and MS/MS tolerance were set to 10 ppm and 0.3 Da, respectively. Precursor peptide charge 

state was set to 2+ and 3+. 

 

3.5.3 Criteria for positive identifications 

We defined positive protein identifications as queries detected by at least two unique, bold 

and red (significant and top ranking) peptides from the Mascot output with an ion score ≥30. 

In addition, the discovery of small peptides was enabled by allowing queries with a sequence 

coverage higher than 10% due to the detection of only one, bold and red (significant and top 

ranking) peptide with an ion score ≥30. All protein identifications were merged in one list and 

all double identifiers were removed. 

 

3.5.4 Sequence analysis and gene annotation 

A bioinformatics analysis of identified compounds was executed. As not all sequences are 

correct in prediction datasets, we tried to determine the correct protein sequence for each 

identification by searching for B. terrestris EST data and homologues of well-annotated species 

(Drosophila melanogaster, Mus musculus and Homo sapiens). B. terrestris EST sequences were 

https://www.hgsc.bcm.edu/ftp-archive/Bterrestris/Bumblebee_B_ter_GenePredictions/AUGUSTUS/
https://www.hgsc.bcm.edu/ftp-archive/Bterrestris/Bumblebee_B_ter_GenePredictions/AUGUSTUS/
ftp://ftp.ncbi.nih.gov/genomes/Bombus_terrestris/protein/
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searched by Blasts of each prediction against the Bter_1.0 genome scaffolds on Beebase [24], 

while homologues were searched against the Uniprot database using the Blast algorithm [25]. 

A database containing all correct(ed) sequences was constructed and was used for performing 

bioinformatics analyses: the presence of secretion signal peptides, protein domains, protease 

and protease inhibitor families and GO-terms, and the existence of similar proteins in 

exosomes and venoms of other species were determined as previously described [7]. All 

venom genes were manually annotated on the B. terrestris genome assembly using Apollo for 

the B. terrestris assembly Bter_1.0 [22]. 

 

 

3.6 RESULTS AND DISCUSSION 

3.6.1 Identification and categorization of venom proteins 

This study presents the first in-depth proteomic analysis of the venom of workers of the large 

earth bumblebee. It revealed 519 unique tryptic peptides (Table S3.1 and S3.2) providing 

biological evidence for 57 venom proteins and peptides. All venom genes were manually 

annotated on the B. terrestris genome assembly. B. terrestris EST data, generated by next-

generation sequencing methods by the International Bumblebee Genomics Consortium, 

support most annotations: 71.9% of the venom proteins have full EST evidence, while 22.8% 

have partial EST evidence (Table S3.3) [22]. Forty-one of the detected proteins show high 

sequence similarity to one of the compounds previously identified from honeybee venom 

(Table 3.1). The 16 other venom compounds seem to be specific to bumblebee (Table 3.2). 

 

3.6.1.1 Bumblebee venom proteins with similarity to honeybee venom proteins 

In a preceding study, honeybee venom compounds were categorized in the groups of putative 

toxins and venom trace molecules by prediction of their biological function and subcellular 

location [7]. Due to the high sequence similarity between bumblebee and honeybee venom 

homologues, we hypothesize that they share similar functions and subcellular locations. The 

identified putative toxins mainly contribute to the defense or social immunity function of the 

complete venom. They belong to the classes of esterases, proteases, protease inhibitors, 

carbohydrate-degrading enzymes, growth factors, major royal jelly proteins (MRJP) and 

antimicrobial peptides. As lowly abundant compounds are enriched by the CPLL pretreatment 

(Figure 3.1), a subgroup of identified proteins was found which probably have no function 
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once they are injected into the victim. These venom trace molecules possibly execute a local 

function in the venom duct or reservoir or are released by leakage of the gland tissue. They 

were listed according to their subcellular location (Table 3.1). 

 

Figure 3.1: Electrophoretic separation of a combinatorial peptide ligand library (CPLL)-treated bumblebee 

venom sample. CPLL flow-through (=FT) and elution (=EL) samples are separated on a 10% Tris-glycine-SDS-

PAGE gel (A) and a 16.5% Tris-tricine-SDS-PAGE gel (B). Molecular weights (kDa) of the marker proteins (M; 

Thermo Scientific, Rockford, IL, USA) are indicated in the figure: A) PageRuler Prestained Protein Ladder; B) 

Spectra Multicolor Low Range Protein Ladder. 

 

Five of the identified toxins were already described in preceding B. terrestris venom studies. 

First, bombolitin 1 is a small 18 amino acid peptide with antimicrobial activity [10]. It is a 

highly abundant venom compound and shows structural and biological properties similar to 

honeybee venom melittin. In addition, this study presents full sequence data of four 

bumblebee venom enzymes, which were hitherto only poorly characterized. The first two 

described components, hyaluronidase and acid phosphatase were only identified by 

enzymatic activity tests [2], while proteomic identifications and sequence information were 

lacking. Additionally, we also provide corrected sequences of the B. terrestris venom allergens 

Bom t 1 (PLA2) and Bom t 4 (casein hydrolyzing protease). The PLA2-1 (au5.g6472.t1) derived 

from the genome sequence shows very high sequence identity (91%) to the previously 

available Bom t 1 sequence ([2]; UniProt: P82971.1). BeeBase tblastn searches of both 

sequences against the B. terrestris genome returned the same gene as the best Blast hit. 

However, a higher Blast score was shown with the Augustus5 PLA2-1 prediction and also EST 

data (GenBank: FN616117.1) support the new sequence. Indeed, the Bom t 1 sequence was 
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exclusively determined by chemical sequence analysis using Edman degradation of its 

proteolytic peptide fragments [2], which may be prone to errors. Second, for Bom t 4, only the 

20 N-terminal amino acid sequence was available until present ([2]; UniProt: P0CH88.1). We 

found that this fragment is exclusively present within the serine protease 1 prediction. As such, 

this FTMS analysis also revealed the complete Bom t 4 sequence.    

 

For some (classes of) venom toxins, differences between honeybee and bumblebee venom 

were noticed. First, in addition to PLA2-1, a second bumblebee venom PLA2 (PLA2-2) was found 

for the first time. Both PLA2s share 61% sequence identity and are arranged in tandem in the 

genome [22]. Therefore, they probably result from a gene duplication event. In contrast, the 

two group III PLA2s found in honeybee venom [7] share only 45% sequence identity and are 

positioned on different chromosomes [26]. Moreover, both bumblebee PLA2s appear to show 

highest sequence similarity to the honeybee PLA2-1 allergen (Table 3.1). 

Second, our proteomic analysis revealed the presence of multiple serine proteases. 

Five of these, serine proteases 1 to 5, show high mutual similarity and all are similar to the 

honeybee venom CLIP serine protease (Table 3.1). Additionally, a sixth serine protease was 

described to be present in B. terrestris venom [8], but remained undetected in our analysis. 

This may be caused by venom sample variation (different collection method, spatial and/or 

seasonal venom variation) or due to its removal during washing procedures of the protein 

enrichment protocol. The six protease genes appear to be positioned in tandem within the B. 

terrestris genome [22] and may have evolved by gene duplication from a common ancestor. In 

contrast, the venom CLIP serine protease is the only protease gene present within the 

syntenic region of the honeybee genome [26]. Remarkably, only two of the bumblebee 

proteases, serine protease 3 and 6, retained the CLIP domain.  

Third, compared to honeybee venom, a lower number of acid phosphatases, CUB 

serine proteases and MRJPs were found within the bumblebee venom. In the honeybee 

genome, nine MRJP genes reside in a gene cluster, but only MRJP 8 and 9 are detected in the 

venom [7;23;27]. The B. terrestris genomic information contains only a single-copy MRJP gene, 

and our study demonstrates that this compound is one of the venom constituents. Due to its 

expression by the hypopharyngeal glands, it has been suggested to play a role in food 

digestion or modification [28]. Its presence within honeybee and bumblebee venom may also 

suggest a toxic function.  
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Table 3.1. All identified bumblebee venom compounds with sequence similarity to honeybee venom components are shown. Sequences were categorized in a 

group of putative toxins and venom trace molecules, and further according to their putative function and subcellular location. GenBank/Augustus accession 

numbers (Acc N°) and allergen names (Allergen, derived from http://www.allergen.org/) are presented and their finding in preceding Bombus terrestris venom 

proteomic studies (BtV) is marked with “X”. In gray, the corresponding honeybee venom sequences with the highest sequence similarity (Sim. in %) and their 

allergen names can be found. 

        Apis mellifera venom protein 

Name Acc. N° Allergen BtV Sim. (%) Name Acc. N° Allergen 

A. Putative Toxins               

Esterases 
   

        

  Phospholipase A2-1 au5.g6472.t1 Bom t 1 x 45   Phospholipase A2-1 gi|58585172 Api m 1 

  Phospholipase A2-2 gi|340723911 
  

48   Phospholipase A2-1 gi|58585172 Api m 1 

  Acid phosphatase au5.g1511.t1 
 

x 67   Acid phosphatase 1 gi|301601654 Api m 3 

  Carboxylesterase  gi|340712251 
  

69   Carboxylesterase gi|187281550 Api m 8 

Proteases and peptidases 
   

        

  Serine protease 1 gi|340713088 Bom t 4 x 58   CLIP serine protease gi|66507455   

  Serine protease 2 gi|340713090 
  

58   CLIP serine protease gi|66507455   

  (CLIP) serine protease 3  gi|340713092 
  

56   CLIP serine protease gi|66507455   

  Serine protease 4  gi|340713094 
  

53   CLIP serine protease gi|66507455   

  Serine protease 5 gi|340713099 
  

53   CLIP serine protease gi|66507455   

  CUB serine protease gi|340728251 
  

49   CUB serine protease 1 gi|58585116 Api m 7 

  Dipeptidyl peptidase IV gi|340721615 
  

75   Dipeptidyl peptidase IV gi|187281543 Api m 5 

  Serine carboxypeptidase  gi|340723441 
  

80   Serine carboxypeptidase  gi|226533687 Api m 9 

  Prolylcarboxypeptidase gi|340710015 
  

81   Prolylcarboxypeptidase gi|328778095   

Protease inhibitors 
   

        

  Serpin 1 gi|340721561 
  

61   Serpin 1 gi|328793022   

  Serpin 2 gi|340708853 
  

65   Serpin 2 gi|328791596   

  Serpin 3 gi|340728533 
  

54   Serpin 1 gi|328793022   
 

http://www.allergen.org/
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Table 3.1. Continued 

        Apis mellifera venom protein 

Name Acc. N° Allergen BtV Sim. (%) Name Acc. N° Allergen 

Carbohydrate metabolism 
         Hyaluronidase gi|340724556 

 
x 75   Hyaluronidase gi|58585182 Api m 2 

  N-sulfoglucosamine sulfohydrolase gi|340721513 
  

89   N-sulfoglucosamine sulfohydrolase gi|328793712   

Growth factors 
   

        

  Platelet-derived growth factor gi|340710875 
  

47   Platelet-derived growth factor gi|328789531   

Major royal jelly proteins 
   

        

  Major royal jelly protein gi|340716434 
  

55   MRJP9 gi|67010041 Api m 11 

Peptides 
   

        

  Bombolitin 1 gi|325071353 
 

x 39  Melittin gi|58585154  Api m 4 

Other toxins 
   

        

  Icarapin gi|340715455 
  

68   Icarapin gi|60115688 Api m 10 

  Antigen 5-like protein gi|340727156 
  

49   Antigen 5-like gi|328784851   

B. Trace molecules               

Secreted proteins 
   

        
  Peptidylglycine α-hydroxylating 
monooxygenase  

gi|340712968   85   Peptidylglycine α-hydroxylating 
monooxygenase  

gi|328787622   

  Cathepsin F au5.g2529.t1 
  

80   Cathepsin F gi|328788558   

  Lysozyme c-1  gi|340723421 
  

78   Lysozyme c-1  gi|328779578   

  Apolipophorins gi|340717708 
  

69   Apolipophorins gi|328780884   

    
    gi|328780886   

  Vitellogenin au5.g1998.t1 
  

51   Vitellogenin gi|58585104 Api m 12 

Endoplasmic reticulum 
   

        

  Peptidyl-prolyl cis-trans isomerase B gi|340716651 
  

90   Peptidyl-prolyl cis-trans isomerase B gi|335892796   

  Glucosidase 2, subunit α gi|340709031 
  

89   Glucosidase 2, subunit α gi|66500170   

  Calreticulin gi|340729835 
  

93   Calreticulin gi|66545506   
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Table 3.1. Continued 

        Apis mellifera venom protein 

Name Acc. N° Allergen BtV Sim. (%) Name Acc. N° Allergen 

Golgi complex 
         Glycoprotein 3-α-L-fucosyltransferase A gi|340712422 

  
92   Glycoprotein 3-α-L-fucosyltransferase A gi|328785366   

  α-Mannosidase 2  gi|340729800 
  

97   α-Mannosidase 2  gi|66514147   

Lysosomes 
   

        

  Proactivator polypeptide gi|340712613 
  

76   Proactivator polypeptide gi|328782499   

  α-L-fucosidase gi|340716134 
  

78   α-L-fucosidase gi|328793281   

  Glucosylceramidase gi|340729189 
  

62   Glucosylceramidase gi|66511554   

  Aspartic protease (cathepsin D) gi|340729556 
  

87   Aspartic protease (cathepsin D) gi|66560290   

Plasma membrane proteins 
   

        

  Renin receptor gi|340718491 
  

87   Renin receptor gi|328776891   
  Multiple inositol polyphosphate 
phosphatase 

gi|340725135   30   Multiple inositol polyphosphate 
phosphatase 

gi|239787860   

Mitochondrial proteins 
   

        
  Phospholipid hydroperoxide glutathione 
peroxidase gi|340714042 

  
77 

  Phospholipid hydroperoxide glutathione 
peroxidase gi|110756698   

Proteins without signal peptide 
   

        

  Actin gi|340711865 
  

97   Actin related protein 1  gi|297591985   
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Fourth, our analysis revealed a low number of antimicrobial peptides within bumblebee 

venom. Only bombolitin 1 contains antimicrobial properties [10]. A second B. terrestris venom 

bombolitin is available in GenBank (ADY75782.1) and a higher number of venom bombolitins 

has been described in other bumblebee species [14;16]. However, in contrast to the B. 

impatiens genome which contains two in tandem positioned bombolitin genes, no additional 

bombolitin genes could be found within the B. terrestris genome [22]. This may be the result 

of an assembly issue, possibly caused by the existence of multiple closely related genes in 

tandem positioned in the genome. Furthermore, no homologues of the honeybee venom 

antimicrobial peptides apidaecin [29] and mast cell degranulating peptide (MCDP) [7;30] were 

found in the bumblebee venom by mass spectrometric means, although, based on sequence 

identity and/or presence within syntenic regions, putative homologues genes [apidaecin 

(GeneID: 100649867); MCDP (GeneID: 100644816 and 100644936)] were found to be present 

in the genome. The same approach allowed to identify four additional honeybee venom 

homologous genes in the B. terrestris genome, although these were also absent in our 

bumblebee venom proteome analysis (Table S3.4) [22]. In contrast, apamin and tertiapin, two 

neurotoxic honeybee venom peptides [29;30], were not found in the determined syntenic 

region [22]. Therefore, these genes may be absent from the bumblebee genome. Alternatively, 

as MCDP, apamin and tertiapin are closely related genes which are positioned in tandem 

within the honeybee genome, the syntenic region in the B. terrestris genome assembly may 

have been misassembled [22].  

Finally, several proteins described to be present in honeybee venom were missing in the 

study which applied an identical technological approach for unraveling the honeybee venom 

proteome [7]. The current study identified two bumblebee venom homologues of these 

missing honeybee venom compounds. First, the absence of the antigen 5-like (Ag5-like) 

protein in the venom of summer honeybees was not surprising as it is probably exclusively 

expressed by the honeybee venom glands during the winter months [31]. Also, highly 

abundant paralogues have been identified in wasp and ant venoms [31]. In contrast to 

bumblebees and wasps, honeybee workers stay alive during the winter, which may result in 

differences of the venom composition of summer and winter bees. Unfortunately, the 

function of the venom Ag5s is unknown, which makes this variation in expression difficult to 

interpret. Second, vitellogenin is described as a high molecular weight honeybee venom 

allergen [32] and was now also found in bumblebee venom. 
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3.6.1.2 Bumblebee-specific venom compounds 

We also categorized the 16 bumblebee-specific compounds in the groups of putative toxins 

and venom trace molecules (Table 3.2), which was done by the same approach as described 

for categorization of the identified honeybee venom compounds [7]. This led to the 

identification of six putative toxins and eight trace molecules. A brief description of their 

putative functions can be found in Table S3.3. Results of GO-term searches and of searches for 

venom homologues from other species can be found in Tables S3.4 and S3.5, respectively.  

Both the classical secretory pathway and the exosome-based secretory pathway appeared 

to be important for protein secretion in the honeybee venom glands [7]. The absence of an N-

terminal secretion signal peptide in three of the identified bumblebee venom compounds 

indicates that their secretion does not involve the classical secretory pathway. While actin and 

catalase can be secreted by exosomes ([7] and Table 3.2), glucose dehydrogenase (GLD) was 

not found in the current version of ExoCarta, an exosome content database. Also the Nasonia 

vitripennis GLD venom homologue lacks a signal peptide. 

At present, the attribution of a function of two compounds is impossible. Basic sequence 

analysis of unknown function protein 1 (UFP1) has revealed no predicted functional domains 

or GO-terms. However, it is related to a fruit fly protein (UniProt: Q7KVT8; 42% sequence 

identity), which is required for its development beyond first instar. Additionally, it shows low 

similarity (20% sequence identity) to one of the major proteins of the venom reservoir of the 

parasitoid wasp Microctonus hyperodae, which is suggested to be a tyrosine kinase [33]. No 

functional domains, GO-terms or venom homologues were found to elucidate the biological 

function of UFP2.  

 

3.6.2 Comparison of the honeybee and bumblebee venom composition 

Honeybees and bumblebees both belong to the Apidae family but have diverged about 100 

million years ago [34]. The implementation of an identical proteomic approach [7] allowed to 

compare the venom composition of both species. These venoms appear to be similar, as 72% 

of the detected bumblebee venom compounds proved to have a honeybee venom homologue. 

Also, a similar number of putative toxins was found (29 bumblebee toxins versus 33 honeybee 

toxins) and most belong to identical functional classes (Table 3.1). Moreover, honeybee 

venom homologues exist for 70% (23/29) of the detected bumblebee toxins. The presence of 

toxins with similar activities may be explained by the high degree of homology between both
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Table 3.2. The identified bumblebee-specific compounds were categorized in a group of putative toxins and venom trace molecules, and further according to their 

putative function and subcellular location. The presence of a secretion signal peptide (derived by SignalP) and their presence in exosomes (Ex, derived from 

http://www.exocarta.org/) are indicated with “X”. In gray, the results are shown of stand alone Blasts against a venom sequence database, which reveals the 

existence of similar venom proteins and venom gland transcripts (Ev.) of other species (Species). Type of evidence: P= venom protein; T=venom gland transcript. 

        Similar venom compound 

Name Acc. N° SignalP  Ex Species Ev. Ref. 

A. Putative toxins         

    Chitinase gi|340721438 x 

 

  

    Glucose dehydrogenase gi|340714301 

  

Nasonia vitripennis P [20] 

  Plancitoxin gi|340711594 x 

 

Crotalus adamanteus T [35] 

  Serine protease K12H4.7 gi|340715980 x 

 

  

    Metalloproteinase inhibitor gi|340725794 x 

 

  

    C3 and PZP-like α-2-macroglobulin domain-containing protein gi|340712509 x x Crotalus adamanteus T [35] 

B. Trace molecules         

  Secreted proteins 

   

  

    Trehalase  gi|340724978 x x Pimpla hypochondriaca T [36] 

  Prolyl 3-hydroxylase gi|340708955 x x   

  Secretory pathway proteins 

   

  

    Aldose 1-epimerase  gi|340722542 x x   

    Glutaminyl-peptide cyclotransferase gi|340716459 x x Hottentotta judaicus T [37] 

  α-N-acetylgalactosaminidase  gi|340722731 x 

 

Crotalus adamanteus T [35] 

  β-hexosaminidase subunit β gi|340718728 x 

 

  

    β-mannosidase gi|340713893 x 

 

  

    Catalase  gi|340714922 

 

x 

   Proteins with an unknown function 

        Unknown function protein 1 gi|340712339 x / Microctonus hyperodae P [33] 

  Unknown function protein 2 gi|340721301 x / 

    

http://www.exocarta.org/
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genomes [34] and the need for similar defensive actions of both venoms. Honeybee and 

bumblebee stings cause local tissue damage, which induces death in other insects and pain 

and inflammation in higher organisms [20]. Their venoms contain typical (Hymenoptera) 

venom constituents, such as phospholipases A2, proteases, acid phosphatases, hyaluronidases, 

protease inhibitors, growth factors and MRJPs, which contribute to the venom’s toxic actions 

[7]. Further, these venoms appear to have 18 venom trace molecules in common. Some have a 

relevant function in the venom duct or reservoir for maturation of secretory proteins (e.g. 

peptidylglycine α-hydroxylating monooxygenase), while others are secreted by a broad range 

of tissues as they have an essential function within the extracellular space (e.g. immune 

system proteins, anti-oxidant enzymes, apolipophorin) [7]. However, most shared trace 

molecules are typical secretory pathway proteins, which may be unintentionally released due 

to an inefficient recycling in the venom gland tissue. 

 

Both venoms also contain some species-specific characteristics. The bumblebee venom seems 

to have a lower complexity due to a smaller number of identified compounds: 57 bumblebee 

compounds versus 102 honeybee compounds. However, this difference is mainly evoked by a 

different number of venom trace molecules and proteins with an unknown function. 

Additionally, as mentioned above, variation between both groups of toxins can be noticed and 

both venoms contain a selection of species-specific toxins, which may point to distinct 

damaging effects. Therefore, these species may have undergone evolutionary adaptations in 

response to species-specific attackers. Indeed, although no data have been reported for B. 

terrestris, intraperitoneal injection of venom of the bumblebee B. impatiens (LD50= 7.2 mg/kg) 

in mice showed that it is about half as lethal to vertebrates as honeybee venom (3.5 mg/kg) 

[28]. Moreover, honeybees and bumblebees differ in their defensive behavior. Compared to 

honeybees, bumblebees rarely sting humans, which supports the lower activity of bumblebee 

venom towards vertebrates. Differences in protein abundance among homologues may 

further increase functional diversity of both venoms. Unfortunately, this parameter 

information could not be analyzed as it is influenced by the protein enrichment strategy that 

removes mainly abundant proteins in a non-linear fashion.  

The application of venom on the body surface as a way of protection against pathogens 

has been suggested for multiple Hymenopteran species [38]. Remarkably, in contrast to 

honeybee venom, only few bumblebee venom antimicrobial peptides were found. However, 
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the social structure of honeybee and bumblebee colonies differs. In contrast to bumblebees 

which build a new colony every year, honeybees inhabit the hive for multiple years and also 

regulate the hive temperature during winter months. Additionally, bumblebees form colonies 

which are much less extensive than those of honeybees. Therefore, bumblebees may be less 

exposed to pathogens, which may explain the reduced need for a large repertoire of 

antimicrobial peptides. However, as small peptides are difficult to detect using our approach, 

future studies are needed to confirm this hypothesis.  

 

3.6.3 Consequences for Hymenoptera venom allergy diagnosis 

Although several stinging Apidae species can cause allergic reactions, only the venom of the 

honeybee has been properly characterized. This resulted in the identification of 12 allergens 

(derived from http://www.allergen.org/). In contrast, besides the allergens from B. terrestris, 

only two allergens of one other bumblebee species, the North-American bumblebee B. 

pennsylvanicus, have been characterized. Although these allergens from both species are 

similar, they contain different IgE reactive epitopes [2]. Also others reported that differences 

in IgE-binding between venoms of both species exist [39]. Further research is needed to 

determine whether this diversity in venom composition is also true for the other 250 

bumblebee species [40]. At this moment, our high performance approach to analyze the 

venom composition is applicable to only one other bumblebee species. Besides B. terrestris, B. 

impatiens is the only species with an available genome sequence [22]. Using BLAST searches of 

each of the 57 identified B. terrestris venom proteins against the B. impatiens Refseq database, 

highly similar B. impatiens protein sequences were identified (Table S3.8) [22]. 

The unraveled venom proteomes of the honeybee and large earth bumblebee may 

contribute to an improved Hymenoptera venom allergy diagnosis and treatment. 

Hymenopteran venoms contain similar proteins and carbohydrates, which results in cross-

reactivity. Several studies reported a high degree of cross-reactivity between honeybee and 

bumblebee venom [41]. This is supported by this study with the identification of many 

homologues with often high sequence identity (Table 3.1). Moreover, except for Api m 6, all 

characterized honeybee venom allergens appear to have a bumblebee venom homologue 

(Table 3.1), which represent putative bumblebee venom allergens. 

Due to the reported high cross-reactivity between both venoms, for many years honeybee 

venom was used to treat patients sensitized to bumblebee venom [41]. However, treatment 

http://www.allergen.org/
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by VIT in some patients failed [41], indicating the existence of species-specific venom epitopes. 

Indeed, this study shows that many honeybee- and bumblebee-specific venom compounds 

can be found. Additionally, in some cases sequence identity between homologues is limited, 

leading to distinct linear and/or conformational epitopes. For example, very little of the 

protein surface of the PLA2 allergens from honeybee (Api m 1) and bumblebee (Bom t 1) 

venom is conserved [2]. Therefore, further research should characterize the relevant allergens. 

The use of species-specific venom allergens in component-resolved diagnosis may solve the 

issue of false double sensitivity in diagnostic tests, which is caused by cross-reactivity. A 

correct diagnosis is important as it is recommended that VIT is performed using venom of the 

culprit species. 

 

 

3.7 CONCLUSIONS 

This study unraveled the venom proteome of the bumblebee, Bombus terrestris, by 

integrating a combinatorial peptide ligand library approach with FTMS. In total, 57 venom 

compounds were found, which could be categorized according to their putative functions. In 

preceding research, honeybee venom has been analyzed by an identical approach. Many 

honeybee and bumblebee venom homologues were found, which may be explained by their 

similar defensive function and the high degree of homology between both genomes. Besides, 

this bumblebee species is increasingly used for pollination in greenhouses. Therefore, 

greenhouse workers are more exposed to bumblebee stings and often develop venom allergy. 

This study presents a list of potential new venom allergens. The availability of both the 

honeybee and bumblebee venom proteome may allow to develop a strategy that solves the 

current issue of false double sensitivity in allergy diagnosis, which is caused by cross-reactivity 

between both venoms. 
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3.9 ADDENDUM 

Supplementary tables can be found on the included CD-ROM or can be requested by e-mail 

from matthiasvanvaerenbergh@hotmail.com and Dirk.deGraaf@UGent.be. 

 

Table S3.1: This table presents all significant proteins found by searching the generated 

MS/MS spectra against the Bter_1.0 protein NCBI Refseq and Augustus5 databases (Database 

search). Protein names (Name), accession numbers (Acc. N°), Mascot scores (Score) and 

molecular weight (MW) are shown. Also the percentage of protein sequence covered by 

assigned peptides (Seq. cov.), the number of assigned peptides (# ass. peptides) and the 

number of unique assigned peptides (# unique ass. peptides) is given. 

 

Table S3.2: Peptide information for each protein identification, including all identified peptide 

sequences (pep_seq), peptide variable modifications (pep_mod), the observed experimental 

mass-to-charge (m/z) and the charge of the precursor ion (z), the peptide mascot score 

(pep_score) and its associated probability value (p-value).  

 

Table S3.3: This table presents the EST data and genome positions of all 57 annotated genes 

found in the B. terrestris venom proteome analysis. Genes were annotated using Apollo for 

the B. terrestris assembly Bter_1.0. EST evidence in Beebase (X= full EST, partial= partial EST, 

/= no EST), gene ID of the initiating sequence and genome positions (scaffold, start and end 

position, positive or negative strand) are shown. 

 

Table S3.4: Although being described in preceding B. terrestris or A. mellifera venom research, 

several proteins were not found in the present bumblebee venom proteome analysis. Table S4 

presents the list with genome positions (scaffold, start and end position, positive or negative 

strand) of these annotated (potential) venom genes. 

 

Table S3.5: A brief description of the putative function of the identified bumblebee-specific 

venom compounds is presented in the worksheet ‘Functions’, while corresponding references 

are shown in the worksheet ‘References’. 

mailto:matthiasvanvaerenbergh@hotmail.com
mailto:Dirk.deGraaf@UGent.be


Chapter 3 

122 
 

Table S3.6: Table showing the enzyme codes, GO-terms (molecular function, cellular 

compounds and biological process) and InterProScan functional domain codes (inferred by 

BLAST2GO) for all identified bumblebee venom proteins. 

 

Table S3.7: Similar compounds found in venom proteome/venom gland transcriptome studies 

of other species were searched by stand alone Blasts with the identified Bombus terrestris 

venom queries. The accession number (Acc. N°) and name (Name) of the queries and Blast 

results are shown. Also, the species in which these similar proteins were discovered, the type 

of evidence for their identification (P= venom protein; T=venom gland transcript; EA= 

enzymatic activity; U= unknown) and the references of the published studies are presented. 

Additionally, the Blast parameters are included. 

 

Table S3.8: Result of BLASTS of identified B. terrestris venom proteins against the B. impatiens 

Refseq database. Also, B. impatiens genome positions are presented for the six venom serine 

protease genes, showing that these are positioned at the ends of scaffolds. 
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IgE recognition of novel chimeric isoforms of the honeybee (Apis 

mellifera) venom allergen Api m 10 evaluated by protein array 

technology 

 

The work presented in Chapter 4 was adapted from the following manuscript: 

M. Van Vaerenbergh, L. De Smet, S. Blank, E. Spillner, D. Ebo, B. Devreese, T. Jakob, D. C. de 

Graaf. IgE recognition of novel chimeric isoforms of the honeybee (Apis mellifera) venom 
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4.2 ABSTRACT 

The major allergen Api m 10 is an interesting candidate for increasing sensitivity of honeybee 

venom allergy component-resolved diagnosis. However, preceding studies provided 

indications for Api m 10 protein heterogeneity and this presently unexplored complexity 

may have implications for immunodiagnostics. In the present study, reverse transcription 

PCR revealed the expression of at least nine additional transcript isoforms by the honeybee 

venom glands. Two distinct mechanisms are responsible for the generation of these isoforms: 

while the previously known variant 2 is produced by an alternative splicing event, novel 

identified isoforms are intragenic chimeric transcripts. To the best of our knowledge, this is 

the first report of the identification of chimeric transcripts generated by the honeybee. Also, 

by a retrospective proteomic analysis we found some evidence for the presence of several of 

these isoforms in the venom proteome. Additionally, we explored the effect of Api m 10 

protein heterogeneity on IgE reactivity by the colorimetric protein array technology. This 

revealed that the observed heterogeneity may have important consequences for honeybee 

venom allergy diagnosis, immunotherapy and allergic responses, as IgE recognition appears 

to be both isoform- and patient-specific. In addition to variant 2, which was previously 

demonstrated to be a good biomarker for Api m 10 IgE recognition, two other Api m 10 

variants were found to have the potential to increase the sensitivity of component-resolved 

diagnosis, although this was not the case in our set of analyzed sera. 

 

 

4.3 INTRODUCTION 

Allergic reactions as a consequence of honeybee stings are often observed, especially in 

beekeepers and their relatives who come close to the hives and are frequently stung [1]. 

Honeybee venom allergy is mediated by IgE antibodies specific to protein allergens present 

within the venom. The protein composition of honeybee venom is highly complex, with at 

least 113 identified proteins and peptides [2]. The complexity is even increased by different 

glycosylation patterns and protein heterogeneity (phospholipase A2 [3;4]; Api m 6 [5;6]). 

Within the order of Hymenoptera, honeybee venom provides the best immunologically 

characterized model: 12 allergens have been reported (http://www.allergen.org/). One of 

these allergens is icarapin, designated as Api m 10 in the IUIS nomenclature. Api m 10 is a 

highly interesting allergen, as it is clinically relevant but underrepresented in therapeutic 
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extracts [7]. In addition, as two alternatively spliced Api m 10 transcripts have been 

identified [5], protein heterogeneity may make this picture even more complex. Preceding 

analyses revealed that both variant 1 [5] and variant 2 [7] are IgE-binding and that their 

allergenicity is independent of cross-reactive carbohydrate determinants (CCDs). Indeed, 

both non-glycosylated variant 2 and variant 2 containing glycan structures devoid of the CCD 

hallmark α-1,3-core fucose residues exhibited IgE reactivity with approximately 50% of 

honeybee venom-sensitized patients [7]. Also IgE recognition of the non-glycosylated 

bacterial recombinant variant 1 has previously been reported [5]. 

 

Upon 2D-gel separation of pure venom, four protein spots were identified as icarapin [3]. 

However, the difference in theoretical molecular weight (MW) between the two 

characterized splice variants is small (0.3 kDa) and cannot account for the observed MW 

differences between these protein spots. Indeed, two icarapin spots from the higher MW 

region of the gel differ by about 3 kDa and these may correspond to different glycoforms of 

variant 1 and/or 2. Curiously, the MW of two other icarapin spots is about 30 kDa lower. This 

observation strongly suggests that additional Api m 10 isoforms exist, which could have 

immunological consequences. For other allergens, protein heterogeneity has been reported 

to be immunologically relevant. For example, the birch genome contains at least 7 pollen-

expressed genes that encode distinct Bet v 1 isoforms with varying IgE reactivity [8;9]. 

Therefore, this study focused on the identification of (potential) additional Api m 10 

isoforms and the impact of Api m 10 protein heterogeneity on IgE recognition. 

 

 

4.4 MATERIALS AND METHODS 

4.4.1 Venom gland RNA isolation and cDNA synthesis 

Approximately 100 honeybee (Apis mellifera carnica) venom glands were dissected under 

anesthesia by chilling and were transferred to RNAlater (Ambion, Austin, TX, USA). RNA was 

extracted using the RNeasy Mini Kit (Qiagen, Valencia, CA, USA) following the protocol for 

purification of total RNA from animal cells using spin technology. Subsequently, cDNA was 

synthesized using the RevertAid™ H Minus First Strand cDNA synthesis kit (Fermentas, St 

Leon-Roti, Germany). 
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4.4.2 Screening of icarapin transcript heterogeneity 

Reverse transcriptase-PCRs (RT-PCRs) were carried out as described before [10]. Primers for 

amplification of the mature (without secretory signal sequence) icarapin sequence were 

developed, allowing ligation-independent cloning by a 5’ incorporated sequence (in italics): 

forward primer 5’-GACGACGACAAGATGTTCCCTGGTGCACACGATG-3’ and reverse primer 5’-

GAGGAGAAGCCCGGTCAAGCAGTTAATACATCTCCT-3’. RT-PCR-amplification products were 

electrophoretically separated on a 2% agarose gel over a 25 cm distance. The complete 

length of the gel lane was divided in ten gel pieces and separate DNA extractions were 

performed by the Genejet gel extraction kit (Fermentas, St Leon-Roti, Germany). 

Subsequently, RT-PCR fragments were cloned in the pIEx-7 Ek/LIC vector according to the 

instructions of the Ek/LIC cloning kit (Novagen, Madison, WI, USA). For each cloning reaction, 

plasmid DNA was extracted [11] from eight different colonies. Agarose gel electrophoresis of 

restriction digests allowed the selection of different transcripts. Plasmid DNA was purified by 

the Miniprep protocol (Fermentas, St Leon-Roti, Germany) and DNA sequencing was 

performed as described previously [10]. Sequences were analyzed by multiple sequence 

alignment (ClustalW2; [12]). Putative N- or O-linked glycosylation sites were determined 

with NetNGlyc 1.0 (http://www.cbs.dtu.dk/services/NetNGlyc/) and NetOGlyc 3.1 

(http://www.cbs.dtu.dk/services/NetOGlyc/). 

 

4.4.3 Proteomics 

Several of our prior studies reported on proteomic analyzes of honeybee venom [2;3;13]. 

Here, we reanalyzed the generated MS/MS data by searching against the honeybee protein 

RefSeq database extended with all translated icarapin isoform sequences to identify isoform-

specific tryptic peptides. Identical search parameters were used as those previously 

described [2;3;13]. 

 

4.4.4 Synthetic peptide production and recombinant production  

Isoforms smaller than 50 amino acids were synthetically produced (Genscript, Piscataway, NJ, 

USA) at HPLC purities higher than 70%. Mass spectrometry peak analysis was done to 

analyze peptide quality.  

Synthetic production of some of these isoforms was impossible due to technical 

limitations. These isoforms and isoforms larger than 50 amino acids were produced by 

http://www.cbs.dtu.dk/services/NetNGlyc/
http://www.cbs.dtu.dk/services/NetOGlyc/
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bacterial recombinant expression. Icarapin variant 2 was expressed and purified using the 

IMPACT protocol (New England Biolabs, Beverly, MA, USA) as previously described [7]. All 

other icarapin variants and uterocalin were cloned, sequenced and expressed using the pET 

system (Invitrogen, Carlsbad, CA, USA) [10]. They were overproduced in E. coli as His-tagged 

fusion proteins and purified by immobilized metal chelate affinity chromatography on Ni-

NTA beads (adapted protocol from [13]). When native purification yielded insufficient 

amounts of soluble protein after bacterial pellet sonication, denaturing purifications were 

applied. Purified proteins were dialyzed to PBS and sample purity was evaluated by 

Coomassie staining of SDS-PAGE gels. Protein integrity was checked by Western blots 

visualizing His-tagged recombinants using an anti-His antibody [13]. Protein concentration 

was determined by a Bradford protein assay (Thermo-Scientific, Rockford, IL, USA). Proteins 

were diluted to a final concentration of 1 mg/ml, except variant 1 had a final concentration 

of 0.2 mg/ml as it was insoluble at higher concentrations. 

 

4.4.5 Patients’ sera 

Sera from honeybee venom allergic patients were collected to test Api m 10 isoform IgE 

reactivity (Table S4.1). The diagnosis of honeybee venom allergy was based on the history of 

systemic allergic bee sting, positive skin test and sIgE to honeybee venom (≥ 0.35 kU/L, 

ImmunoCAP i1, Thermo Fisher Scientific, Uppsala, Sweden), as recently described [14]. Api m 

10-specific IgE titers were determined by ImmunoCAP FEIA tests (Thermo Fisher Scientific, 

Uppsala, Sweden) with rApi m 10 variant 2, recombinantly produced in Sf9 insect cells [7]. 

Also serum total IgE titers and IgE titers for CCDs, serum tryptase and honeybee venom 

allergens Api m 1, Api m 4, Api m 5 were defined (Table S4.1). Additionally, negative control 

sera obtained from wasp-stung individuals without sting reaction and/or with negative 

honeybee venom IgE results were collected. All patients had given their informed written 

consent to draw a serum sample, and all experiments applying human sera were approved 

by the local ethics committee. 

 

4.4.6 Protein array spotting and development 

Synthetic peptides were dissolved at 0.1 mM in 0.01M phosphate buffer pH 7.4 with 50mM 

NaCl and recombinants were dissolved at 0.5 mg/ml in 0.01M phosphate buffer pH 7.4. 

Peptides and proteins were printed on nitrocellulose-coated glass slides (Sartorius, 
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Gottingen, Germany) in duplicate, which was conducted by Innobiochips (IBL, Lille, France). 

Besides the Api m 10 isoforms, an irrelevant control protein (uterocalin or BSA) was spotted. 

Additionally, two proteins to assess the quality of biochip development and spot 

normalization were spotted: protein G binds all goat-IgG and Goat Anti-Mouse (GAM) binds 

all antibodies from mouse.  

Arrays were developed in a 16-well hybridization cassette (Arrayit). A protocol for 

human serum IgE recognition was developed: arrays were saturated for 1 hour at room 

temperature (RT) with 150 µl of saturation buffer (PBS-BSA 1%-Tween20 0.05%). Incubation 

with 50 µl of two-fold diluted (with saturation buffer) serum samples was performed 

overnight at 4 °C. Subsequently, arrays were incubated for 1 hour at RT with 100 µl of a 

secondary polyclonal HRP-linked goat-IgG anti-human IgE (2 µg/ml in saturation buffer) 

(Acris Antibodies, Hiddenhausen, Germany). Finally, 50 µl of TMB (3,3’,5,5’-

tetramethylbenzidine) solution (Calbiochem, La Jolla, CA) was added which generates a 

stable precipitate at the reaction site. Arrays were washed three times for 5 minutes with 

washing buffer (PBS-Tween20 0.05%) between all consecutive steps. After development, 

arrays were air-dried and scanned using the Spotware colorimetric array scanner (obtained 

from European Biotech Network, Dolembreux, Belgium) at a scan gain of 0.9 and a scan 

resolution of 5 µm (Spotware 1.1 software). ImageJ was used to adjust image size to a 1000 

pixel width. The resulting image is quantified using Mapix (Innopsis, Carbonne, France). 

 

4.4.7 Data analysis 

For each spot, the local median background intensity is subtracted from the median spot 

intensity. Only spots with signal to noise ratios greater than a minimum threshold of two 

were included in the analysis. Normalization between arrays was done using protein G and 

the average of spot duplicates was calculated. The average spot intensity per protein on 

control arrays developed with sera of honeybee non-allergic patients was subtracted from 

the average spot intensity per protein on the arrays developed with sera from honeybee 

allergic patients. Next, for each array a cut-off value was calculated as the average of the 

intensity of the irrelevant control protein plus three times the standard deviation (SD) (Table 

S4.2). SDs were calculated as follows: ((SD of the control protein)² + (SD of the control 

protein spots on the negative control arrays)²)^1/2. 
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4.5 RESULTS AND DISCUSSION 

4.5.1 Icarapin transcript heterogeneity 

Mature icarapin transcripts were amplified from venom gland tissue by reverse transcription 

(RT)-PCR. Analysis of generated amplicons revealed at least ten fragments with distinct 

nucleotide lengths (Figure 4.1). Sequence analysis of seventeen cloned RT-PCR fragments, 

identified eleven different variants. Variants are named variant 1 to variant 11. All cloned 

nucleotide sequences (and their GenBank numbers) and protein sequences are shown in 

Figure S4.1 and S4.2, respectively. 

 

The icarapin gene is positioned on chromosome LG1 (GeneID: 503505) and consists of 4 

exons. Sequence alignment of all variants to the genome indicates the existence of a single 

genomic locus only (Figure S4.3). Two distinct mechanisms seem to be responsible for the 

generation of these variants. First, the splice sites of variant 1 conform to the general 

canonical GT-AG splicing rule [15]. Variant 1 and variant 2 differ by only 12 base pairs due to 

the presence of an alternative splice acceptor site in exon 3 and also this splicing is 

 

Figure 4.1: A) Reverse transcriptase-PCR on honeybee venom gland tissue reveals multiple Api m 10 

isoform transcripts. L= GeneRuler 1 kb DNA ladder (Fermentas); I= icarapin amplicons. B) Api m 10 

isoforms were printed as synthetic constructs or recombinants to determine their immunological 

relevance by protein array technology. A developed array with serum of patient 1 (see Table 4.1) is shown. 

Numbers represent spotted Api m 10 variants 1 until 11. Also a negative control protein (UC) and two 

positive control proteins [purified native honeybee venom allergens Api m 1 and Api m 4 (Sigma-Aldrich, 

St. Louis, MO)] were included. Additionally, protein G (ProtG) and Goat Anti-Mouse (GAM) allow to assess 

the quality of biochip development and spot normalization. 
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consistent with the GT-AG rule. In contrast, the nine newly detected variants are so-called 

chimeric transcripts, which are distinct from conventionally spliced mRNA isoforms as they 

are produced by joining exons from two or more different gene transcripts. Instead of splice 

sites, short homologous sequences (SHSs) are found at the junction sites of the source 

sequence. The icarapin gene contains multiple distinct SHSs in exon 2, which are joined to 

SHSs from exon 3 or exon 4 (Figure 4.2 and Figure S4.3). SHSs are 5-9 base pairs in length. In 

four variants, this process generates frame shifts and premature stop codons, leading to C-

terminally truncated variants. While mature variant 1 consists of 204 amino acids, variants 8 

to 11 are severely truncated with lengths of 41, 25, 19 and 12 amino acids. Protein sequence 

alignments of all variants are shown in Figure 4.3.  

 

 

Figure 4.2: Schematic figure showing the exon structure of sequenced icarapin amplicons (named icarapin 

variant 1 to 11). Different exons are shown as colored boxes. Distinct short homologous sequences (SHSs) 

are found at the junction sites of the chimeric transcripts (orange boxes). Red boxes present alternative 

stop codons, which generate C-terminally truncated variants. The full coding sequence lengths are shown: 

number of nucleotides (nt), number of amino acids (AA). 

 

To the best of our knowledge, we here report the first identification of chimeric 

transcripts generated by the honeybee. Although thousands of chimeric transcripts have 

been reported in fruit fly, mouse and human [16], evidence at the protein level is still scarce. 
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In humans, the few characterized chimeric proteins are associated with cancer, although 

some also appear to be expressed at low levels under normal physiological circumstances 

[17;18]. Their physiological role remains elusive but they certainly boost the complexity of 

the proteome [18]. As until now neither function nor enzymatic activity of icarapin could be 

determined, the impact of this heterogeneity on its function/activity is impossible to 

establish. However, as the sequence length of some isoforms is severely reduced, we 

hypothesize that some of them are loss-of-function mutants. 

 

4.5.2 Proteomics 

The specific and unambiguous identification of the icarapin protein isoforms in honeybee 

venom requires the detection of the isoform-specific junction peptides by bottom-up 

proteomics [18]. Searching honeybee venom MS/MS data from preceding research [2;3;13] 

against a database containing all translated icarapin isoform sequences identified multiple 

tryptic peptides (Figure 4.3). Unfortunately, the differentiation can only be based on a 

limited number of peptides. For instance, there is only a single difference between the 

theoretical set of tryptic peptides of variants 1 and 2. Moreover this peptide is larger than 50 

amino acids, which typically gives poor signal intensity in MALDI peptide mass fingerprinting. 

Consequently, no isoform-specific peptides were found. 

 

However, we found some evidence for the presence of a number of isoform proteins within 

the venom. Indeed, in a preceding study [3], venom proteins were separated using 2D-gel 

electrophoresis and icarapin tryptic peptides were identified in four spots. Two tryptic 

peptides (KNVDTVLVLPSIER and VREQMAGILSR) were detected in two high molecular weight 

spots (spot 8 and 9), which we suggest to be different glycosylation forms of variant 1 and/or 

variant 2. In contrast, only one icarapin tryptic peptide was found in two low molecular 

weight spots (spots 19 and 20). These spots are located at a relative low molecular weight (± 

8 kDa) and therefore cannot represent full-size variant 1 and/or variant 2. This suggests that 

they correspond to some of the newly identified icarapin chimers, although protein 

degradation of the larger variants cannot be excluded. The VREQMAGILSR peptide, a variant 

1 and variant 2 specific peptide (Figure 4.3), was not detected in these spots. The only 

identified tryptic peptide (KNVDTVLVLPSIER) is part of variant 1 and 2 and three of the newly 

identified chimers: variants 3 to 5. The theoretical pI/MW of variant 5 correlates best to the
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observed pI/MW of both spots. 

Proteomic evidence for the smallest isoforms (isoform 9-11) can hardly be obtained 

using our approach, as detectable tryptic peptides are not generated. Moreover, due to the 

poor resolution in classical SDS-PAGE separation they are not visualized on a 2D-gel. Besides, 

due to the process of nonsense-mediated mRNA decay, these smallest isoforms may not be 

expressed [20]. 

 

 

Figure 4.3: Protein sequence alignments of icarapin isoforms generated without (A) and with (B) frame 

shifts. (A) Yellow boxes show all identified tryptic peptides by searching honeybee venom MS/MS data 

from preceding research [2;3;13] against the RefSeq honeybee protein database extended with all 

translated icarapin isoform sequences. The experimentally determined antigenic site serine of the mouse 

IgE epitope from the venom icarapin of the Asian honeybee (A. cerana) [19] is indicated by an arrow. (B) 

Isoform-specific sequences are indicated in gray.  

Protein sequence alignment of isoforms without frame-shifts 
 

ICA_var1        FPGAHDEDSKEERKNVDTVLVLPSIERDQMMAATFDFPSLSFEDSDEGSNWNWNTLLRPN 60 

ICA_var2        FPGAHDEDSKEERKNVDTVLVLPSIERDQMMAATFDFPSLSFEDSDEGSNWNWNTLLRPN 60 

ICA_var3        FPGAHDEDSKEERKNVDTVLVLPSIERDQMMA---------------------------- 32 

ICA_var6        FPGAHD------------------------------------------------------ 6 

ICA_var7        FPGAHDEDSKEER----------------------------------------------- 13 

ICA_var4        FPGAHDEDSKEERKNVDTVLVLPSIERDQMMAATFDFPSLSFED---------------- 44 

ICA_var5        FPGAHDEDSKEERKNVDTVLVLPSIERDQMMAATFDFPSLSFED---------------- 44 

                ******                                                       

 

ICA_var1        FLDGWYQTLQSAISAHMKKVREQMAGILSRIPEQGVVNWNKIPEGANTTSTTKIIDGHVV 120 

ICA_var2        FLDGWYQTLQT----HMKKVREQMAGILSRIPEQGVVNWNKIPEGANTTSTTKIIDGHVV 116 

ICA_var3        -------------------------GILSRIPEQGVVNWNKIPEGANTTSTTKIIDGHVV 67 

ICA_var6        ------------------------------------------------------------ 

ICA_var7        ------------------------------------------------------------ 

ICA_var4        ------------------------------------------------------------ 

ICA_var5        ------------------------------------------------------------ 

                                                                             

 

ICA_var1        TINETTYTDGSDDYSTLIRVRVIDVRPQNETILTTVSSEADSDVTTLPTLIGKNETSTQS 180 

ICA_var2        TINETTYTDGSDDYSTLIRVRVIDVRPQNETILTTVSSEADSDVTTLPTLIGKNETSTQS 176 
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ICA_var7        ----------------------------------------------------KNETSTQS 21 
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ICA_var7        SRSVESVEDFDNEIPKNQGDVLTA 45 

ICA_var4        SRSVESVEDFDNEIPKNQGDVLTA 87 

ICA_var5        ---------FDNEIPKNQGDVLTA 59 

                         *************** 
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4.5.3 Testing Api m 10 isoform IgE reactivity 

We additionally explored the effect of Api m 10 protein heterogeneity on IgE reactivity by 

protein array technology. A selection of sera of honeybee venom allergic patients was pre-

screened with ImmunoCAP FEIA for the presence of IgE reactivity to variant 2 recombinantly 

produced using the Sf9 insect cell line. As this cell line produces glycans which are not 

recognized by IgEs, so lacking α-1,3-core fucoses (CCDs) [21], this allowed to assess if these 

sera possess IgEs binding to the protein backbone of variant 2. For spotting on the array, all 

11 variants were produced as synthetic peptides or bacterial recombinant proteins (Figure 

S4.4) which lack glycosylations. Therefore, serum IgEs specific for CCDs are unable to bind 

the spotted variants, which otherwise would disturb our analysis focusing on IgE recognition 

of distinct Api m 10 isoform protein backbones. 

As unambiguous protein evidence for a number of Api m 10 isoforms was not 

obtained, the complete panel of isoforms was evaluated. Variants were printed on 

nitrocellulose-coated glass slides (Figure 4.1). In contrast to other immunoassays, the 

applied protein array technology is a multiplex assay, which allows testing a broad protein 

panel with minute amounts of serum [22]. However, although colorimetric arrays have to be 

fully validated, they are believed to be equivalent to other immunoassays [23]. Indeed, it 

was shown that they can reliably detect allergen-specific IgE below 0.35 kU/I, the current 

WHO standard cut-off for sensitization [22]. Other advantages are its sensitivity, 

reproducibility, rapidity and simplicity. In addition, in contrast to fluorescent detection, the 

colorimetric detection allows to perform experiments on cost-effective instrumentation [23].  

 

In the first array experiment, IgE reactivity of the Api m 10 isoforms was analyzed using 18 

sera of variant 2-sensitized patients (Table S4.1). ImmunoCAP IgE reactivity of variant 2 was 

confirmed using the protein array technology in sixteen out of eighteen patients (Table 4.1). 

In contrast to the array-spotted non-glycosylated variant 2, Api m 10 IgE titers were 

determined by ImmunoCAP tests using glycosylated, CCD-free variant 2. A preceding study 

reported a similar IgE reactivity of non-glycosylated and glycosylated (without CCD) variant 2 

[7]. However, the present study shows that two patients with rather low ImmunoCAP titers 

for glycosylated (without CCDs) variant 2 lacked IgE recognition of the non-glycosylated 

protein. This may indicate that the absence of multiple carbohydrates (variant 2 contains 2 

N-linked glycosylation sites) may have altered the protein conformation and specific



Chapter 4 

136 
 

Table 4.1. This table presents the result of the first protein array experiment, conducted with variant 2-sensitized sera (ImmunoCAP Api m 10 IgE titers > 0.35 kU/l). 

For each serum sample, IgE recognition of the spotted recombinant and synthetic Api m 10 variants is shown: x=recognition; 0=no recognition. 

 ImmunoCAP Results protein array experiment 

Patients Api m10 Recombinants Synthetic peptides 

N°  kU/l Class ICA_VAR1 ICA_VAR2 ICA_VAR3 ICA_VAR4 ICA_VAR5 ICA_VAR7 ICA_VAR6 ICA_VAR8 ICA_VAR9 ICA_VAR10 ICA_VAR11 

1 14.90 3 x x x x x 0 x 0 0 0 0 

2 11.20 3 x x x x 0 x x 0 0 0 0 

3 10.60 3 x x x x x 0 x 0 0 0 0 

4 8.88 3 x x x x 0 0 x 0 0 0 0 

5 8.31 3 x x x x x x x 0 0 0 0 

6 7.17 3 x x x x x 0 x x 0 0 0 

7 4.41 3 x x x x x x x 0 0 0 0 

8 3.39 2 0 x x x x 0 0 0 0 0 0 

9 3.05 2 x x x x 0 0 x 0 0 0 0 

10 3.03 2 x x x x x 0 x x 0 0 0 

11 2.84 2 0 x x x 0 x x 0 0 0 0 

12 1.79 2 0 x x x x x 0 0 0 0 0 

13 1.40 2 0 x x x 0 0 0 0 0 0 0 

14 0.94 2 x x x x 0 0 x x 0 0 0 

15 0.84 2 x x x 0 0 0 0 0 0 0 0 

16 0.60 1 x 0 0 0 0 0 0 0 0 0 0 

17 0.59 1 x 0 0 0 0 x 0 0 0 0 0 

18 0.58 1 x x x 0 0 0 0 x 0 0 0 

N° of positive sera  14 16 16 14 8 6 11 4 0 0 0 
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conformational epitopes. Alternatively, as both sera have rather low Api m 10-specific IgE 

titers in ImmunoCAP, the sensitivity of our array system may be lower than that of the 

ImmunoCAP system. 

IgE recognition was found to be both isoform- and patient-specific (Table 4.1). In 

general, three groups of isoforms can be distinguished. Variants 1 to 4 are IgE recognized by 

most of the sera, variants 5 to 8 are recognized by less than half of the sera, and variants 9 to 

11 are recognized by none of the sera. Unfortunately, unambiguous proteomic evidence for 

the presence of the novel identified variants in the venom is lacking. Therefore, we give two 

explanations for the observed differences in IgE reactivity between isoforms.  

First, in case only the alternative splice variants 1 and 2 are present in the venom, the 

IgE recognition of several other variants may be explained by their conserved N- and C-

terminal regions (Figure 4.3). These regions may contain linear or even conformational IgE 

epitopes identical to those of variant 2. Consequently, in addition to variant 2, other variants 

will be IgE recognized by the selection of sera showing IgE reactivity to variant 2. One of 

these conserved epitopes may correspond to the mouse IgE epitope of the venom icarapin 

of the Asian honeybee (A. cerana) [19], which is highly similar to variant 1. The 

experimentally determined antigenic site serine is present at the C-terminal region, and is 

also present in the A. mellifera icarapin variants 1 to 4 and 6 and 7 (Figure 4.3), which 

explains their IgE reactivity in the array experiment. The observed IgE recognition of variant 

5, which lacks this antigenic site serine, may indicate that additional epitopes exist, which 

are conserved between variant 2 and 5. The smallest variants, variant 9, 10 and 11 (resp. 25, 

19 and 12 AA), have only limited sequence identity with variant 2 due to frame shifts. This 

may explain why they are not recognized.  

Second, besides variants 1 and 2, additional variants may be present in the venom. 

Variant 8 is recognized by 4 patients (Table 4.1). The N-terminal region of variant 8 and the 

unrecognized variant 10 are identical (Figure 4.3). Therefore, this experiment suggests that 

variant 8 contains a unique IgE epitope within the variant-specific region. This unique IgE 

epitope supports its presence in the venom. The lack of IgE recognition of the small variants 

9 to 11 by all sera indicates that they have a low antigenicity or that these small peptides are 

not expressed. Variants 1 to 7 may have common IgE epitopes as their N- and C-terminal 

regions are conserved (Figure 4.3). In addition, as each variant lacks a different internal 

region, these variants have a different conformation and possibly variant-specific
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Table 4.2. This table presents partial results of the second protein array experiment, conducted with variant 2-non-sensitized sera. Only the results are shown of 

arrays analyzed with sera containing ImmunoCAP Api m 10 IgE titers between 0.1 and 0.35 kU/l. Besides, 14 sera with ImmunoCAP Api m 10 IgE titers below 0.1 

kU/l recognized none of the variants (results not shown). For each serum sample, IgE recognition of the spotted recombinant and synthetic Api m 10 variants is 

shown: x=recognition; 0=no recognition. 

 ImmunoCAP Results protein array experiment 

Patients Api m10  Recombinants Synthetic peptides 

N°  kU/l Class ICA_VAR1 ICA_VAR2 ICA_VAR3 ICA_VAR4 ICA_VAR5 ICA_VAR7 ICA_VAR6 ICA_VAR8 ICA_VAR9 ICA_VAR10 ICA_VAR11 

1 0.34 0 0 0 x x 0 0 0 0 0 0 0 

2 0.29 0 0 0 0 0 0 0 0 0 0 0 0 

3 0.27 0 0 0 0 0 0 0 0 0 0 0 0 

4 0.27 0 0 0 0 x 0 0 0 0 0 0 0 

5 0.26 0 0 x 0 0 0 0 0 0 0 0 0 

6 0.26 0 0 0 0 0 0 0 0 0 0 0 0 

7 0.24 0 0 0 0 0 0 0 0 0 0 0 0 

8 0.23 0 0 0 0 0 0 0 0 0 0 0 0 

9 0.23 0 0 0 0 0 0 0 0 0 0 0 0 

10 0.22 0 0 0 0 x 0 0 0 0 0 0 0 

11 0.20 0 0 0 0 0 0 0 0 0 0 0 0 

12 0.18 0 0 0 0 0 0 0 0 0 0 0 0 

13 0.18 0 0 0 0 x 0 0 0 0 0 0 0 

14 0.17 0 0 0 0 0 0 0 0 0 0 0 0 

15 0.12 0 0 0 0 0 0 0 0 0 0 0 0 

N° of positive sera 0 1 1 4 0 0 0 0 0 0 0 
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conformational IgE epitopes. Analyzing the IgE reactivity of these variants with sera of 

honeybee venom allergic patients without variant 2-specific IgE should reveal if they possess 

variant-specific IgE epitopes, which also confirms that they are present in the venom. 

Therefore, a second array experiment was conducted. 

 

In the first array experiment, analyses were executed with sera having variant 2-specific IgE 

levels higher than 0.35 kU/l, which suggests sensitization to variant 2. However, the 

ImmunoCAP system allows linear detection down to 0.1 kU/l, although the cut-off for 

sensitization is maintained at 0.35 kU/l. In the second array experiment, IgE reactivity of the 

Api m 10 variants was analyzed using 15 sera with variant 2-specific IgE titers between 0.10 

and 0.35 kU/l, and 14 sera with variant 2-specific IgE titers lower than 0.10 kU/l (Table S4.1). 

This experiment shows that variant 3 and 4 are IgE recognized by respectively 1 and 4 of the 

variant 2-non sensitized sera. Non-specific IgE binding due to elevated total IgE 

concentrations has not influenced the obtained result (see Table S4.1 for total IgE titers). 

These sera belong to the group with variant 2-specific IgE titers between 0.10 and 0.35 kU/l 

(Table 4.2), while the sera with IgE titers lower than 0.10 kU/l recognized any variants. This 

observation indicates that a selection of patients possesses variant 3- and 4-specific IgEs 

directed towards unique epitopes not present in variant 2 or other variants. Therefore, 

variant 3 and 4 should be present in the venom.  

 

4.5.4 Clinical and diagnostic consequences 

In honeybee venom, allergen heterogeneity has only been described for Api m 6, for which 

four allelic protein isoforms have been described differing in their primary structure at the 

amino and carboxy terminus by a maximum of six amino acids. However, immunoblot 

analyzes revealed no isoform-specific IgE [6]. In contrast, our study shows that Api m 10 

variants are recognized differently by patient IgE, an observation which has been described 

for several major allergens derived from different sources [24]. However, the biological 

mechanism at the level of effector cell activation triggered by interactions between 

individual IgEs and different isoallergens remains mostly unresolved [25]. 

 

Nowadays, rApi m 1 is the only honeybee venom allergen commercially available for 

component-resolved diagnosis (CRD) of honeybee venom allergy [26]. However, due to the 
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moderate rApi m 1 sensitization within the population of honeybee venom allergic patients, 

additional venom allergens should be used to increase sensitivity [27]. Api m 10 is an 

interesting candidate as it exhibits IgE reactivity with about half of the allergic patients [7]. 

This study shows that the observed Api m 10 protein heterogeneity may have important 

consequences for diagnostic tests as IgE recognition is both isoform- and patient-specific. 

Variant 2 was previously demonstrated to be a good biomarker for Api m 10 IgE recognition 

[7], which was confirmed by the present study. In addition, our study found that variant 3 

and especially variant 4 may be of particular relevance for the diagnosis of honeybee venom 

allergy in those patients that are allergic to honeybee venom but who do not react to variant 

2. However, since all of the analyzed variant 2 non-reactive sera displaying IgE reactivity to 

variant 3 and variant 4 also showed IgE reactivity to Api m 1 (Table S4.1), these Api m 10 

variants did not increase sensitivity of CRD.  

 

 

4.6 CONCLUSIONS 

Already more than 100 compounds have previously been found within honeybee venom [2]. 

The successful identification of nine new icarapin chimeric transcripts produced by the 

honeybee venom glands and the indirect evidence for their presence in the venom 

proteome, shows that the venom complexity has not yet been fully unraveled. As neither the 

function nor the activity of this compound is known, the impact of this heterogeneity on its 

function remains elusive. However, this study demonstrates that Api m 10 protein 

heterogeneity may have important consequences for honeybee venom allergy diagnosis, 

immunotherapy and allergic responses, as it was shown that IgE recognition is both isoform- 

and patient-specific. In addition to variant 2, two variants were found to have the potential 

to increase the sensitivity of component-resolved diagnosis, although this was not the case 

in our set of analyzed sera.  
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4.8 ADDENDUM 

Supplementary figures and tables can be found on the included CD-ROM or can be 

requested by e-mail from matthiasvanvaerenbergh@hotmail.com and 

Dirk.deGraaf@UGent.be. 

 

Figure S4.1 presents the nucleotide sequences and the GenBank accession numbers of 

sequenced mature icarapin clones from honeybee venom glands. Alternative stop codons 

producing C-terminally truncated icarapin peptides are indicated in red. 

 

Figure S4.2 presents all translated protein sequences of sequenced mature icarapin clones 

from honeybee venom glands. 

 

Figure S4.3 shows the alignment of detected icarapin variants against the icarapin gene 

structure (Gene ID: 503505) on chromosome 1. Exons are shown in green, while introns are 

not colored. Intron 5’GT donor and 3’AG acceptor splice sites, conform to the general 

canonical GT-AG splicing rule, are presented in purple. For the chimeric transcripts, yellow 

boxes show short homologous sequences found at the junction sites of the source sequence. 

 

Figure S4.4 shows the isoform sequences produced as synthetic constructs and as 

prokaryotic recombinants. His-tags are shown in red.  

 

Table S4.1 includes the serum IgE titers determined by ImmunoCAP. Spreadsheets ‘First 

experiment’ and ‘Second experiment’ present the IgE titers of the sera used in the first and 

second array experiment respectively. Total IgE titers and specific IgE titers for honeybee 

venom, Api m 1, Api m 4, Api m 5, Api m 10, cross-reactive carbohydrates (CCDs) and serum 

tryptase were determined by ImmunoCAP. 

 

mailto:matthiasvanvaerenbergh@hotmail.com
mailto:Dirk.deGraaf@UGent.be
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Table S4.2: Spot intensity values of the developed protein arrays per experiment (see 

spreadsheets ‘First experiment’ and ‘Second experiment’). For each spot, the local 

background intensity was subtracted from spot intensity. Spots with signal to noise ratios 

lower than a minimum threshold of 2 are indicated as ‘/’. Spot intensities of duplicates were 

averaged, normalized, and average spot intensities of control arrays developed with sera of 

non-honeybee venom allergic patients were subtracted per variant. For each array a cut-off 

value was calculated. Positive IgE reactivity is shown as bold intensity values.  
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C1q-like protein and PVF1 from honeybee venom show IgE 

reactivity but do not activate basophils 

 

The work presented in Chapter 5 was adapted from the following manuscript: 

M. Van Vaerenbergh†, S. Blank†, F. I. Bantleon, L. De Smet, D. C. de Graaf, E. Spillner, T. Jakob. 

C1q-like protein and PVF1 from honeybee venom show IgE reactivity but do not activate 

basophils. Unpublished work. 

† These authors shared first authorship 

 

 

5.1 CONTRIBUTIONS 

T. Jakob, E. Spillner, S. Blank and D. de Graaf assisted with the study design. Several people 

contributed to the technical work of this manuscript. S. Blank developed primers for cloning 

of C1q and PVF1. M. Van Vaerenbergh performed the cloning, analyzed the Pvf1 transcript 

heterogeneity and conducted mass spectrometry searches. During a 6 week internship of M. 

Van Vaerenbergh at the Institute of Biochemistry and Molecular Biology (Hamburg 

University, Germany), he learned to perform insect cell expressions and protein purification 

with the help of F. I. Bantleon and S. Blank. During this internship, C1q and PVF1 were 

produced and purified. Upon his return, M. Van Vaerenbergh introduced the acquired 

techniques in the Laboratory of Zoophysiology and also produced C1q and PVF1. L. De Smet, 

assisted with the protein purification. Purified proteins produced in Hamburg and Ghent 

were used for performing ELISAs (technical work and data analysis executed by S. Blank) and 

basophil activation tests (technical work and data analysis executed by T. Jakob). T. Jacob 

conducted the ImmunoCAPs for pre-screening of honeybee venom allergic patients and 

provided the sera. M. Van Vaerenbergh wrote the article, except for sections 5.3.6, 5.3.7 and 

5.4.3 which were written by T. Jakob. Figure 5.4 and Figure 5.5 were kindly provided by S. 

Blank and T. Jakob, respectively. 
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5.2 ABSTRACT 

The honeybee venom composition and allergenic properties of individual compounds have 

been extensively investigated, which resulted in the identification of 12 allergens. However, 

additional allergens may exist as several venom compounds reported in literature remain 

immunologically uncharacterized. A preceding study showed that C1q lacked IgE reactivity in 

a preliminary experiment, while the allergenic properties of PVF1 have never been studied. 

The present study revealed that at least three PVF1 alternative splice variants are produced 

by the honeybee venom glands. Both C1q and the largest PVF1 variant were produced in a 

baculovirus-based insect cell expression system, which allows the production of 

glycoproteins without cross-reactive carbohydrate determinants interfering with the 

identification of proteinous IgE epitopes. In a population of 72 honeybee venom allergic 

patients, about 1/3 showed IgE reactivity to C1q and 1/4 to PVF1. In addition, we could 

demonstrate that a panel of honeybee venom-specific allergens in combination with C1q 

and PVF1 allows to increase the current sensitivity of the Api m 1-based component-resolved 

diagnosis of honeybee venom allergy to more than 95%. Remarkably, both compounds lack 

the potential to activate basophils, which requires further investigation. 

 

 

5.3 INTRODUCTION 

In Hymenoptera venom allergic patients, systemic reactions to stings have been recognized 

as a potentially fatal condition mediated by IgE antibodies. A detailed characterization of the 

venom and assessment of allergic potential of venom compounds is a prerequisite for 

understanding the molecular mechanisms of Hymenoptera venom allergy and improving 

efficacy of diagnosis and venom immunotherapy (VIT). Many venom components may 

contribute to the allergic sensitization, allergic symptoms and success of VIT [1]. In addition, 

component resolved diagnosis (CRD), using an adequate panel of species-specific allergenic 

compounds, can lead to an increased sensitivity and a better discrimination between 

different allergies than diagnostic tests using complete extracts [2;3]. Within the 

Hymenoptera, honeybee (Apis mellifera) venom provides the best immunologically 

characterized model. So far, 12 venom allergens have been identified 

(http://www.allergen.org/Allergen.aspx). This list consists of mainly highly and moderately 

abundant venom compounds. Indeed, most of the recently characterized allergens were 

http://www.allergen.org/Allergen.aspx
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detected in the venom proteome by applying mass spectrometry of protein bands/spots 

visible on SDS-PAGE-or 2D-gels [1;4-7], an approach which lacks sensitivity to detect (very) 

lowly abundant proteins [8]. However, a recent in-depth venom proteome study showed 

that honeybee venom has a higher complexity than previously thought, as it successfully 

identified 83 novel venom compounds by enriching the (very) lowly abundant protein 

fraction [8]. Therefore, many more allergen candidates remain to be immunologically 

characterized. 

One of the lowly abundant honeybee venom proteins is a C1q-like protein (C1q), 

which was found in two studies exploring the venom proteome [8;9]. A preliminary test 

using prokaryotically produced recombinant C1q failed to demonstrate IgE recognition by 5 

sera from patients with a documented severe honeybee or wasp venom allergy [9]. 

However, as the folding of the bacterial recombinant may differ from the natural 

counterpart and as only very few sera were tested, conclusions from this study have to be 

taken with care and further research should determine the allergenic nature of this 

compound.  

 

Additionally, several proteins known to be present in honeybee venom for several years 

have never been immunologically characterized. One of these compounds, PVF1, is a protein 

containing a platelet-derived growth factor domain, which was initially identified in 

honeybee venom in 2005 [6]. Its presence in honeybee venom was recently confirmed [8], 

while it was also identified within the venom gland tissue proteome [10]. The PVF1 spot 

density from 2D-gel separated venom [6] indicates that it is a venom compound of moderate 

abundance. However, recent studies showed that several moderately abundant honeybee 

venom proteins are clinically relevant allergens [1;4;5]. Therefore, the immunological 

characterization of PVF1 should reveal if it represents an at present unknown honeybee 

venom allergen.  

 

In this study, the allergenicity of C1q and PVF1 has been addressed. Recombinant production 

of both proteins was performed by baculovirus-mediated infection of Sf9 insect cells. This 

expression system is the preferred choice to produce honeybee venom compounds for 

immunological characterization, as recombinants will carry the natural insect-specific post-

translational modifications (PTM), such as glycosylations and disulfide bridges. PTMs can 
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influence the protein conformation and therefore also the formation or accessibility of 

peptide epitopes, which is crucial when analyzing IgE reactivity of individual compounds. In 

the preceding preliminary analysis which indicated that C1q is not IgE recognized [9], the C1q 

recombinant was produced in a prokaryotic expression system, which lacks the capacity to 

add the natural insect-specific PTMs. Therefore, in the present study we decided to produce 

C1q in the Sf9 insect cell line. Moreover, Sf9 cells produce authentic glycosylations while 

circumventing α-1,3-core fucose addition, which is the hallmark for cross-reactive 

carbohydrate determinants (CCDs) [11]. Therefore this system allows to produce 

recombinants with a conformation closely resembling the natural counterpart, but without 

-1,3-core fucose residues which interfere with the identification of proteinous epitopes 

[11]. Sensitization to both compounds in a large population of honeybee venom allergic 

patients was analyzed via allergen-specific IgE measurement. In addition, the quantification 

of basophil activation evoked by these compounds is determined by basophil activation 

tests. 

 

 

5.4 MATERIALS AND METHODS 

5.4.1 Screening of PVF1 transcript heterogeneity 

RNA isolation from honeybee venom gland tissue, cDNA synthesis and RT-PCR were 

executed as described before [9]. DNA elongation in PCR was adapted to 1 min at 72 °C. 

Primers were developed for amplification of the mature (without secretory signal sequence) 

PVF1 sequence (GenBank: XM_392204.4). Additionally, they allow ligation-independent 

cloning by a 5’ incorporated sequence (in italics): forward primer 5’-

GACGACGACAAGATGCAACTCGAGGATACCAGATAC-3’ and reverse primer 5’-

GAGGAGAAGCCCGGTTATTCTGGATCTGGTTTAGGT-3’. Subcloning for sequencing was done in 

the pIEx-7 Ek/LIC vector according to the instructions of the Ek/LIC cloning kit (Novagen, 

Madison, WI, USA).Plasmid DNA was extracted [12] from 24 different colonies and agarose 

gel electrophoresis of restriction digests allowed the selection of different transcripts. 

Plasmid DNA was purified by the Miniprep protocol (Fermentas, St Leon-Roti, Germany) and 

DNA sequencing was performed as described previously [9]. Sequences were analyzed by 

multiple sequence alignment (ClustalW2 [13]). 

 

http://www.ncbi.nlm.nih.gov/nuccore/328789530
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5.4.2 Proteomic evidence 

PVF1 was successfully identified in the honeybee venom proteome by a profound preceding 

mass spectrometric analysis [8]. Searching the generated MS/MS data against the honeybee 

RefSeq database extended with all translated PVF1 variant sequences was performed to 

identify isoform-specific tryptic peptides. Identical search parameters were used as those 

previously described [8]. 

 

5.4.3 Cloning and expression in Sf9 insect cells 

The subcloned mature C1q (GenBank: NM_001144839.1; cloning described previously [9]) 

and PVF1 cDNA was used for secondary amplification of the coding region using Platinum 

Taq polymerase (Invitrogen, Carlsbad, CA, USA). The primers 5’-

GATCTCTAGAGGGATCGAGGGAAGGGCTATACCGGATCCACCAAATTC-3‘ and 5’-

GATCGCGGCCGCTTATATTTTAGCAATTCTGTATCCAGAG-3‘ were used for C1q amplification. 

The PCR product was subcloned via XbaI and NotI into the digested baculovirus transfer 

vector pAcGP67B (BD Pharmingen, Heidelberg, Germany), which was modified by addition of 

an N-terminal 10-fold His-tag, V5 epitope as well as a XbaI restriction site [4]. A C-terminal 

V5 epitope and a 10-fold His-tag was fused to the PVF1 sequence by two consecutive PCR 

reactions using an identical 5’-GATCGGATCCCAACTCGAGGATACCAGATACC-3‘ forward 

primer, but distinct reverse primers: 5’-

GTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACCTTCTGGATCTGGTTTAGGTTTTCTTC

-3‘ and 5’-

GATCCTGCAGTCAATGGTGATGGTGATGGTGATGGTGATGATGACCGGTACGCGTAGAATCGAGAC

CGAGGAG-3‘ for the first and second PCR respectively. The final PCR product was subcloned 

via BamHI and PstI into the non-modified pAcGP67B vector. Expression of C1q and PVF1 in 

baculovirus-infected insect cells was executed as previously described [4]. 

 

5.4.4 Protein purification 

The supernatant of baculovirus-infected cells was collected, adjusted to pH 8, centrifuged at 

4000 x g for 5 min and applied to a nickel-sepharose matrix (1 ml HisTrap FF column, GE 

Healthcare, Freiburg, Germany). The column was washed with phosphate buffered saline 

(PBS) pH 8.0 (100 mM NaCl, 40 mM Na2HPO4, 10 mM NaH2PO4 4H2O) and the recombinant 

protein was eluted from the matrix using PBS pH 8.0 containing 300 mM imidazole. Proteins 
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were dialyzed to PBS pH 8.0 and purification was confirmed by Coomassie Brilliant Blue R-

250 staining of an SDS-PAGE separated protein sample. Western blotting and anti-His 

staining of His-tagged recombinant proteins was performed as described previously [8]. 

 

5.4.5 Immunoreactivity of patient sera with recombinant proteins 

For assessment of specific IgE immunoreactivity of human sera in ELISA, 384 well microtiter 

plates (Greiner, Frickenhausen, Germany) were coated with purified recombinant proteins 

(20 µg/mL) at 4°C overnight and blocked with 40 mg/mL milk powder in PBS. Thereafter, 

human sera was diluted 1:2 with PBS and incubated in a final volume of 20 µL for 4 h at 

room temperature. After washing four times with PBS, bound IgE were detected with a 

monoclonal AP-conjugated anti-human IgE antibody (BD Pharmingen, Heidelberg, Germany) 

diluted 1:1000. After washing four times with PBS, 50 µL of substrate solution (5 mg/mL 4-

nitrophenylphosphate; AppliChem, Darmstadt, Germany) per well was added. The plates 

were read at 405 nm. The lower end functional cut-off indicated as lines was calculated as 

the mean of the negative controls plus two standard deviations. 

 

5.4.6 Basophil activation test 

In vitro basophil activation was determined by flow cytometry using the FlowCAST Assay, 

(BÜHLMANN Laboratories AG, Schönenbuch, Switzerland) as recently described [5]. Anti-

FcεRI antibody and stimulation buffer served as positive and negative control, respectively. 

PVF1 and C1q were diluted in stimulation buffer and tested in a range of 0.01 to 1000 ng/ml. 

Native purified Api m 1 (Latoxan, Valence, France) was used at concentration ranging from 1 

– 300 ng/ml. Flow cytometry was performed on a FACSCanto (Becton-Dicksinson, Heidelberg, 

Germany) using FACS Diva Software for measurement and FlowJo Software (Tree Star Inc, 

Ashland, OR, USA) for data analysis. In each assay a minimum of 500 basophils were 

assessed. Upregulation of the activation marker CD63 was calculated as the percentage of 

CD63+ cells of total basophils (CCR3+ SSClow). 

 

5.4.7 Sera and blood 

Sera from 72 patients with anaphylactic reactions to honeybee stings were analyzed. 

Diagnosis of honeybee venom allergy was based on a combination of patient’s history of an 

anaphylactic sting reaction, a positive skin test and positive IgE to honeybee venom 
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(ImmunoCAP i1), as recently described [14]. As defined by the inclusion criteria, all honeybee 

venom allergic patients displayed IgE to honeybee venom (≥0.35 kUA/L) and 39 also tested 

positive to wasp venom (ImmunoCAP i3) (Table S5.1). Also serum total IgE titers and IgE 

titers for CCDs, serum tryptase, honeybee venom allergens (Api m 1, Api m 2, Api m 3, Api m 

4, Api m 5, Api m 10) and wasp venom allergens (Ves v 5 and Ves v 1) were defined (Table 

S5.1). 

 

 

5.5 RESULTS AND DISCUSSION 

5.5.1 PVF1 heterogeneity 

Mature Pvf1 transcripts were amplified from honeybee venom gland tissue by reverse 

transcription-PCR. All cloned nucleotide sequences and their GenBank numbers are shown in 

Figure S5.1A. Sequence analysis of generated Pvf1 amplicons revealed the existence of at 

least three variants (Figure S5.1B). The obtained nucleotide sequence of variant 1 matched 

with the GenBank record XM_392204.4, representing the predicted Pvf1 mRNA sequence. 

Only one nucleotide substitution was found between the cloned fragment and the predicted 

NCBI sequence (Figure S5.1C), but the sequences are identical at the protein level (Figure 

S5.1D). Compared to variant 1, variant 2 lacks only a four-nucleotides sequence, while 

variant 3 contains an additional 82-nucleotide internal sequence. Besides, five nucleotide 

substitutions were found (Figure S5.1B), with three of them introducing an amino acid 

substitution (Figure 5.1). Alignment of these variants to the genome shows that all are 

generated by alternative splicing of the same gene (Figure S5.2). The Pvf1 gene is positioned 

on chromosome LG2 and consists of six exons (GeneID: 408666). Three alternative 5’ donor 

sites are present within exon 5: while variant 1 and variant 3 use an alternative canonical GT 

splice donor, variant 2 uses a non-canonical GC splice donor. BeeBase Blasts confirmed the 

existence of these Pvf1 transcripts and their expression by honeybee tissues. A complete 

variant 1 (GenBank: gi|308418987) and variant 3 (GenBank: gi|308392023) EST was found in 

a brain/ovary and abdomen database, respectively. In contrast, only a partial variant 2 

(GenBank: gi|10276753) EST is available from a honeybee antennae database.  

 

Next, we tried to obtain proteomic evidence for the presence of specific variants within 

honeybee venom. Translation of the variant 1 transcript generates a protein of 292 amino 

http://www.ncbi.nlm.nih.gov/nuccore/328789530
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=408666
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acids. In contrast, due to the alternative splice events, variant 2 and variant 3 use alternative 

stop codons, which generates C-terminally truncated variants with lengths of 272 and 249 

amino acids respectively (Figure 5.2, Figure S5.1E). As the C-terminal sequence of these 

variants differs, we searched for variant-specific tryptic peptides from within this region 

using honeybee venom MS/MS data from preceding research (Figure 5.1). This analysis 

identified the ETQECSTGFYFDQNSCR peptide which is found in the C-terminal region of both 

variant 1 and variant 3, but not variant 2. Unfortunately, we were unable to detect 

additional distinguishing peptides.  

 

 

Figure 5.1: Protein sequence alignment of the PVF1 variants. Amino acid substitutions are indicated in 

red. All tryptic peptides are shown, which have been identified by searching honeybee venom MS/MS 

data from preceding research [8] against the RefSeq honeybee protein database extended with the three 

translated PVF1 isoform sequences (yellow). The typical eight cysteines of the central platelet-derived and 

vascular endothelial growth factor domain are indicated in boxes. 

 

PVF1 belongs to the PDGF/VEGF (platelet-derived growth factor/vascular endothelial growth 

factor) family. While in vertebrates two networks, PDGF/PDGFR (PDGF receptor) and 

VEGF/VEGFR (VEGF receptor), have evolved, invertebrates possess a single PVF/PVR 

(PDGF/VEGF-like factors/PVF receptor-related) network [15]. In the fruit fly Drosophila 

melanogaster, three Pvf genes were found (Pvf1, Pvf2 and Pvf3 with GeneIDs: 32876; 33994; 

 

variant3        QLEDTRYPDQRIVFPDRGRETANPALEGGPSGGGIGELAKSIQLAKKISSINSRDDFLKL 60 

variant1        QLEDTRYPDQRIVFPDRGRETANPALEGGPSGGGIGELAKSIQLAKKISSINSRDDFLKL 60 

variant2        QLEDTRYPDRRIVFPDRGRETANPALEGGPSGGGIGELAKSIQLAKKISSINSRDDFLKL 60 

                *********:************************************************** 

 

variant3        VKDVPKDISFFSSSSRMGETERSNAERPNQALCMPELQTVPLLENEPPVIYYPTCTRIKR 120 

variant1        VKDVPKDISFFSSSSRMGETERSNAERPNQALCMPELQTVPLLENEPSVIYYPTCTRIKR 120 

variant2        VKDVPKDISFFSSSSRMGETERSNAERPNQALCMPELQTVPLLENEPSVIYYPTCTRIKR 120 

                ***********************************************.************ 

 

variant3        CGGCCTHSLLSCQPTATEIRNFEILVTILESSGKLKYQGKRIVPIEEHTQCTCDCKIKET 180 

variant1        CGGCCTHSLLSCQPTATEIRNFEILVTILESSGKLKYQGKRIVPIEEHTQCTCDCKIKET 180 

variant2        CGGCCTHSLLSCQPTATEIRNFEILVTILESSGKLKYQGKRIVPIEEHTQCTCDCKIKET 180 

                ************************************************************ 

 

variant3        DCNKKQSYVPEECTCACNNVDEQKKCNESNIKMWHPDLCSCFCRETQECSTGFYFDQNSC 240 

variant1        DCNKKQSYVPEECTCACNNVDEQKKCNESNIKMWHPDLCSCFCRETQECSTGFYFDQNSC 240 

variant2        DCNKKQSYVPEECTCACNNVDEQRKCNESNIKMWHPDLCSCFCRETQECSTGFYFDQNSY 240 

                ***********************:***********************************  

 

variant3        RCERN-----------NKDL-------------------------------- 249 

variant1        RCLQVPLSRTWFTSTKGSDYRFGQTQRPDNVPPVIIALDSDDPRRKPKPDPE 292 

variant2        ----------------ACKYRY---LEHGLHPQKVLIIDSDKHKDQIMYHR- 272 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=32876
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33994
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33995), which are ligands for a single PDGF/VEGF receptor [16]. The Pvf genes have distinct 

expression patterns in the fruit fly embryo [17] and execute different functions during 

development (reviewed in [15]). Honeybee venom PVF1 shows highest similarity to the fruit 

fly PVF1. Also two splice variants of the fruit fly PVF1 have been described, but in contrast to 

the honeybee homologue these differ at their N-termini [16]. Alternative splicing of PVF1 

transcripts in both species doesn’t interfere with the central PDGF/VEGF domain, which 

includes the typical eight conserved cysteines important for dimerization and functional 

activity (Figure 5.1 and 5.2) [18]. Honeybee venom PVF1 was suggested to have acquired a 

new function similar to snake venom VEGF-like compounds which can facilitate venom 

spreading by increasing vascular permeability [8]. Two additional gene predictions 

containing a PDGF/VEGF domain were found in the honeybee genome, while these 

compounds were detected in none of the honeybee venom proteome analyses. These gene 

predictions (GeneIDs: 100577397 and 100579031) are positioned on different chromosomes 

and both show highest sequence resemblance to fruit fly Pvf3. While fruit fly Pvf2 and Pvf3 

were suggested to be generated by a recent gene duplication due to their close proximity in 

the genome [16], no additional Pvf gene was found within the honeybee genome adjacent to 

both Pvf3-resembling genes. 

 

 

Figure 5.2: Schematic figure showing the intron-exon structure of sequenced Pvf1 amplicons, named 

variant 1 to 3. Different exons are shown as colored boxes, while introns are presented as lines. Both are 

drawn to scale. Red boxes present alternative stop codons, which generate C-terminally truncated 

variants. The full coding sequence lengths are shown: number of nucleotides (nt), number of amino acids 

(AA). 

 

5.5.2 Recombinant production of C1q and PVF1 

To assess immunoreactivity of C1q and PVF1, both mature proteins were produced as 

recombinants by baculovirus-mediated infection of Sf9 (Spodoptera frugiperda) insect cells. 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=33995
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=100577397
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=100579031
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As variant 1 is the largest PVF1 protein variant and as a tryptic peptide from its C-terminal 

region was detected in the venom proteome, it was selected for immunological 

characterization. Both C1q and PVF1 proteins were obtained as secreted, soluble proteins, 

which were purified (Figure 5.3). Coomassie and/or anti-His staining of both SDS-PAGE 

separated proteins revealed a double protein band pattern in the region corresponding to 

their theoretical MW. This double protein band pattern indicates that a fraction of 

glycosylated (highest band) and non-glycosylated (lowest band) protein is produced. Indeed, 

according to the NetNGlyc Prediction server both compounds contain one predicted N-

linked glycosylation site. Additionally, Sf9 insect cells are known to produce glycosylated 

proteins [11]. However, their produced carbohydrate structures are devoid of α-1,3-core 

fucosylations, also known as cross-reactive carbohydrate determinants (CCDs). As CCDs are 

recognized by IgEs, this cell line is an excellent choice for determination of immunoreactivity 

to proteinous epitopes exclusively [4]. 

 

 

Figure 5.3: SDS-PAGE and Western blot analysis of C1q (panel A) and PVF1 (panel B) proteins 

recombinantly produced in Sf9 insect cells. Proteins are visualized by Coomassie blue staining and anti-

His epitope antibody. Mature C1q has a theoretical molecular weight (MW) of 15 kDa, while PVF1 variant 

has a MW of approximately 33 kDa. Fusion tags increased the size of the protein 3 kDa in the gel and blot. 

A double protein band pattern is visualized which indicates that a fraction of glycosylated (highest band) 

and non-glycosylated (lowest band) protein is produced. 
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5.5.3 Serum specific IgE reactivity of C1q and PVF1 recombinants 

IgE recognition of C1q and PVF1 was tested by ELISA using 72 sera of honeybee venom 

allergic patients. Specific IgE reactivity to C1q was observed in 24 (33.3%) sera, while 19 

(26.3%) sera recognized PVF1 (Figure 5.4; Table S5.1). In addition, six and seven sera showed 

minor reactivity with C1q and PVF1, respectively. As their reactivity is only slightly above the 

cut-off, this might represent only background binding. In contrast to a preceding preliminary 

study which demonstrated the lack of IgE recognition of a non-glycosylated, prokaryotic 

produced C1q [9], this study revealed IgE reactivity of the glycosylated, insect cell-produced 

C1q protein. However, as the present study revealed IgE reactivity in only 1/3 of the 72 

analyzed sera, the three sera of honeybee venom allergic patients used in the preliminary 

study were insufficient to detect IgE reactivity. Additionally, the preliminary study analyzed 

IgE reactivity of two wasp allergic patients, but these did not recognize the honeybee venom 

C1q recombinant. Further studies should confirm if cross-reactivity between honeybee and 

wasp venom C1q is lacking or if a C1q-like protein is absent from wasp venom. IgE binding of 

PVF1 may also have been reported in a previous immunoblot study [19]. Indeed, two 

patients showed weak IgE recognition to a 54 kDa protein with an N-terminal XXAERPNQAS 

sequence. However, this sequence is not present within the honeybee RefSeq protein 

database, while the AERPNQAL sequence can be found exclusively within all variant 

sequences of PVF1. Further processing of the mature PVF1 protein may position this 

sequence in an N-terminal position. Additionally, as the mature PVF1 variants have much 

lower molecular weights (32.9, 31 and 28.1 kDa) than the reported 54 kDa band, protein 

dimer formation or interaction with other venom proteins may allow detection of PVF1 in 

the 54 kDa molecular weight region.  

 

In many European countries, the European honeybee (A. mellifera) and wasps (V. vulgaris) 

are the most prevalent stinging insects. As many patients fail to identify or name the species 

that stung and as a correct allergy diagnosis is required for the initiation of an appropriate 

immunotherapy, several research studies have recently focused on their differential allergy 

diagnosis by component-resolved diagnosis (CRD) [20-22]. CRD relies on quantification of 

sIgE antibodies to single components, which can help to distinguish between a true double 

sensitisation and cross-sensitization to several unrelated allergen sources. Using the 

combination of Ves v 1 and Ves v 5, between 92% and 96% of the wasp allergic patients can 



Chapter 5 

156 
 

 

Figure 5.4: IgE immunoreactivity of individual honeybee venom-sensitized patient sera with 

recombinant C1q and PVF1. The IgE reactivity was assessed by ELISA with 72 sera of honeybee venom-

sensitized patients. The lower end functional cut-off of the ELISA is represented by a solid line. (A) 

Schematic presentation of the optical density values (OD405) of C1q, PVF1 and a control for each serum 

sample. Serum numbers correlate to the numbers found in table S5.1. (B) Scatter chart of the OD405 

values of C1q and PVF1 for all sera. 
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be diagnosed [23-25]. In contrast, rApi m 1 is the only honeybee venom allergen 

commercially available for CRD of honeybee venom allergy [26]. Due to the moderate rApi m 

1 sensitization within the population of honeybee venom allergic patients [23;24;27-29], 

additional venom allergens should be used to increase sensitivity [3]. The panel of 72 sera of 

honeybee venom allergic patients used for our ELISA analyses was pre-screened by 

ImmunoCAP tests for IgE reactivity towards four honeybee venom-specific allergens, Api m 

1, Api m 3, Api m 4 and Api m 10, and two honeybee-wasp cross-reactive allergens, Api m 2 

and Api m 5. In total, nine sera lacked IgE reactivity to all of the honeybee venom-specific 

allergens, which indicates that CRD using these four allergens would not detect 12.5% of the 

honeybee venom allergic patients. Interestingly, our ELISA experiment demonstrated that 

five of these sera showed IgE reactivity to C1q and two to PVF1, including one serum sample 

showing IgE reactivity to both compounds (Table S5.1). Therefore, the panel of honeybee 

venom-specific allergens in combination with C1q and PVF1 allows to increase the current 

sensitivity of the Api m 1-based CRD for honeybee venom allergy to more than 95%. None of 

these patients showed IgE reactivity to wasp venom, demonstrating that the observed 

reactivity is not due to putatively existing cross-reactive IgEs directed towards possible C1q 

and PVF1 wasp venom homologs. Future proteomics studies focusing on wasp venoms 

should reveal if these contain C1q and PVF1 homologs.  

 

5.5.4 Basophil activation 

The capacity of recombinant C1q and PVF1 to activate basophils was addressed in bee 

venom allergic patients (n=7) that displayed positive IgE reactivity to C1q (n=4, OD range 

0.702 – 1.236) and/or PVF1 (n=5, OD range 0.733 – 2.567) in the ELISA. In none of the 

patients C1q or PVF1 induced significant basophil activation when tested over a broad range 

of 0.01 to 1000 ng/ml. In contrast, stimulation with Api m 1 induced a dose dependent 

basophil activation in those patients that displayed sIgE reactivity to Api m 1 (Figure 5.5). The 

lack of basophil activation by C1q and PVF1 in all patients, suggests that both proteins 

harbour only one IgE epitope and are thus unable to cross link the FcRI on basophils. 

Alternatively, the relative IgE reactivity to each of the proteins is too low to be detected by 

the basophil activation test. Finally, both proteins could exert inhibitory functions on 

basophil activation that neutralizes the activation signal provided by FcRI crosslinking. 

Further studies will have to address these issues.  
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Figure 5.5: Basophil activation tests with recombinant C1q and PVF1. Human basophils from 4 

exemplary honeybee venom-sensitized patients that displayed positive IgE reactivity to C1q and/or PVF1 

were exposed to serial dilutions of recombinant C1q (filled triangles) and PVF1 (open rhombus) over a 

broad range of 0.01 to 1000 ng/ml. Api m 1 was used as an established reference allergen (open circles) at 

concentrations ranging from 1 – 300 ng/ml. Additionally, stimulation with anti-FcεRI antibody (filled 

squares) and plain stimulation buffer (filled rhombus) is shown. Activation is shown as percentage of 

CD63+ cells. 

 

 

5.6 CONCLUSIONS 

This study successfully identified three alternative splice variants of PVF1, which were found 

to be expressed by the venom glands using an RT-PCR-based approach. The baculovirus-

based insect cell expression system showed to be appropriate for the recombinant 

production of the honeybee venom glycoproteins C1q and PVF1. A minor group of honeybee 

venom allergic patients showed serum IgE reactivity to these compounds. We could 
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demonstrate that, in combination with other honeybee venom-specific allergens, both 

compounds can significantly improve sensitivity of the current Api m 1-based CRD for 

honeybee venom allergy. However, both compounds are unable to activate basophils, 

rendering their relevance in the context of allergy questionable. This remarkable observation 

requires further investigation. 
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5.8 ADDENDUM 

Supplementary figures and tables can be found on the included CD-ROM or can be 

requested by e-mail from matthiasvanvaerenbergh@hotmail.com and 

Dirk.deGraaf@UGent.be. 

 

Figure S5.1: A) This panel presents the nucleotide sequences and the GenBank accession 

numbers of sequenced mature Pvf1 amplicons, generated by reverse transcription-PCR on 

honeybee venom gland tissue. B) Sequence alignment of Pvf1 nucleotide sequences 

(inferred by ClustalW2). Nucleotide substitutions are indicated in red. C) The obtained 

nucleotide sequence of mature variant 1 matched with the GenBank record XM_392204.4, 

representing the predicted honeybee Pvf1 mRNA sequence. Only one nucleotide 

substitution was found between the cloned fragment and the predicted NCBI sequence 

(indicated in red). D) Amino acid sequence alignment of the obtained mature PVF1 variant 1 

sequence with the GenBank honeybee PVF1 sequence (XP_392204.2). E) This panel presents 

the translated mature PVF1 variant sequences. 

 

Figure S5.2 shows the alignment of detected Pvf1 variants against the Pvf1 gene structure 

(GeneID: 408666) on chromosome LG2. Intron 5’GT donor and 3’AG acceptor splice sites 

conform to the general canonical GT-AG splicing rule are presented in purple. The three 

mailto:matthiasvanvaerenbergh@hotmail.com
mailto:Dirk.deGraaf@UGent.be
http://www.ncbi.nlm.nih.gov/nuccore/328789530
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene&cmd=Retrieve&dopt=full_report&list_uids=408666
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alternative 5’ donor sites present within exon 5 are shown in green. Alternative stop codons 

are indicated in red. 

 

Table S5.1 presents the ImmunoCAP data and ELISA results of the 72 sera of honeybee 

venom allergic patients. Specific IgE levels (in kU/l) for honeybee venom, Api m 1, Api m 2, 

Api m 3, Api m 4, Api m 5, Api m 10, wasp venom, Ves v 5, Ves v 1 and cross-reactive 

carbohydrate determinants (CCD) were determined using ImmunoCAP. In addition, total 

serum IgE, serum tryptase levels and anamnesis (B: honeybee venom; W: wasp venom; BB: 

bumblebee venom; NC: not clear) are included. The ELISA optical densities measured at 405 

nm (OD405) are given for C1q, PVF1 and a control (buffer). Values indicated in red are the 

double of the control value, while values in yellow are clearly above the cut-off, but not the 

double of the control value. Values coloured in green are only slightly above the cut-off, 

which may be caused by background binding.  
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1. THE HONEYBEE AND BUMBLEBEE VENOM PROTEOME 

By integrating genome, transcriptome and proteome information, this PhD work obtained 

in-depth insights in the complexity of the honeybee and bumblebee venom composition. 

Our proteomic studies revealed the presence of more than 100 honeybee (Chapter 1 and 2) 

and 57 bumblebee venom (Chapter 3) compounds. Both venoms contain approximately 30 

(putative) toxins which indicates that they have a rather low complexity compared to many 

cone snail, scorpion and spider venoms. These species have massive numbers of toxins, 

numbering in the tens of thousands, which are typically short peptides evolved by large-

scale gene duplications [1]. This level of complexity has not been observed in any 

hymenopteran species. Honeybee and bumblebee venom contains many typical venom 

constituents. Indeed, in contrast to the extensive diversity of venomous organisms, the 

number of different protein scaffolds is restricted [2]. Throughout evolution, at least 14 

protein types have been convergently recruited into the venom by two or more venomous 

lineages (Table 1). The identification of a C-type lectin in honeybee venom (Chapter 2) adds a 

new class of convergently recruited proteins to the group of insect sting toxins (Table 1). 

Moreover, many of the same protein families have also been convergently recruited for use 

in the hematophagous gland secretions of invertebrates (e.g. fleas, leeches, kissing bugs, 

mosquitoes, and ticks) and vertebrates (e.g. vampire bats) [2]. The high proportion of 

convergently recruited protein families suggests that there are structural and/or functional 

constraints that make a protein suitable for recruitment as a toxin. Toxins typically contain a 

secretory protein ancestor, functionally versatile protein ancestors with a fundamentally 

conserved basal activity, extensive disulfide cross-links, stable molecular scaffolds, and once 

recruited, adaptive evolution generates novel toxins by gene duplication [2]. Gene 

annotation revealed that also several identified honeybee and bumblebee venom genes 

have been generated by gene duplications (Chapter 2 and 3). Honeybee venom acid 

phosphatase 1 and 3 are tandemly positioned on chromosome 5, MRJP8 and MRJP9 on 

chromosome 11, and MCDP, apamin and tertiapin on chromosome 12, while the bumblebee 
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venom genes PLA2-1 and PLA2-2 are tandemly positioned on chromosome 13 and the six 

serine protease genes on chromosome 4. Additional toxin genes can increase expression 

levels in the glands and result in higher toxin doses. Newly created genes may also obtain 

different levels of potency, functions, or complementary specificities [2]. Besides the 

convergence of recruited proteins to serve as toxins, convergence of activities can be found 

between different venoms. For example, honeybee venom apamin is a neurotoxin blocking 

potassium channels, an activity which is also executed by cone snail conotoxins, snake 

venom dendrotoxins, spider venom atracotoxins and cnidaria kunitz-type protease inhibitors 

[2]. 

 

Table 1: Convergently recruited venom proteins. Abbreviations used: AVIT: AVIT/Colipase/Prokineticin 

proteins; CAP: CRISP (cysteine rich secretory proteins), antigen 5 (Ag5) and pathogenesis-related (PR-1) 

proteins; Chi: chitinase; Cys: cystatin; Def: defensin; Hya: hyaluronidase; Kun: kunitz; lec: lectin; Lip: 

lipocalin; Nat: natriuretic peptide; PS1: peptidase S1; PLA2: phospholipase A2;Sm-D: sphingomyelinase; 

SPRY: SPRY/Concavalin A–Like lectins. Table adapted from [2]. 

 

 

This PhD work analyzed the honeybee and bumblebee venom proteome using an identical 

technological approach, which allowed to compare both venom compositions (Chapter 2 

and 3). Honeybees and bumblebees have diverged already 77-95 million years ago [3]. 

Nevertheless, 72% of the detected bumblebee venom compounds proved to have a 

honeybee venom homologue which reflects the similar defensive function of both venoms 

and the high degree of homology between both genomes. Previously, the venom of another 

hymenopteran species, Nasonia vitripennis, was explored by shotgun proteomics [4]. Sixty 
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compounds were found in the venom of this ectoparasitoid wasp. Honeybee, bumblebee 

and Nasonia venom appear to have only one venom homologue in common: DPP IV. This 

high diversity in venom composition between Nasonia and both bees is due to a different 

venom function and their long evolutionary divergence (honeybee and Nasonia have 

diverged about 190 million years ago; [5]). DPP IV has also been found in the venom of 

Vespula vulgaris and multiple snake species. A phylogenetic analysis based on these venom 

DPP IV sequences shows the honeybee and bumblebee as closest relatives (Figure 1). 

 

 

Figure 1: Phylogenetic tree based on venom dipeptidyl peptidase IV sequences, generated by maximum 

parsimony. Numbers indicate parsimony bootstrap scores for the branch. 

 

Over the years, multiple complementary proteomic approaches have been applied to 

explore the honeybee worker venom proteome. Peiren and coworkers [6] and de Graaf and 

coworkers [7] separated honeybee venom proteins by 2D-PAGE and analyzed excised spots 

by MALDI-TOF/TOF and Q-TRAP LC-MS/MS. Besides six well-known honeybee venom 

compounds, four novel compounds were identified. However, these studies revealed that 

the conducted gel-based proteomics strategy faces several limitations. This PhD work 

applied two novel approaches to gain deeper insights in the honeybee venom composition. 

First, the venom was separated by HPLC and protein fractions were analyzed by MALDI-

TOF/TOF (Chapter 1). This analysis confirmed the presence of nine honeybee venom 

compounds, including two peptides which remained undetected in the preceding gel-based 

studies due to their low molecular weight. In addition, a novel venom peptide with 
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antimicrobial properties, called apidaecin, was found. In contrast, the presence of several 

compounds found in gel-based studies, such as MRJP9, PVF1 and C1q, could not be 

confirmed by this approach (Figure 2). The second proteomic study conducted during this 

PhD was much more sensitive, as lowly abundant compounds were enriched by the 

ProteoMiner technology (Chapter 2). Moreover, no other mass analyzer matches the 

resolved power and mass accuracy of the applied FT-ICR technology, with the exception of 

the Orbitrap technology [8;9]. Both mass analyzers measure m/z values as frequencies, 

which can be obtained more accurately than any other experimental parameter. This 

approach allowed a 10-fold increase in the number of indentified compounds compared to 

the preceding approaches. In total, 102 venom compounds were found, including 83 newly 

discovered proteins. All compounds from the previously mentioned analyses were found, 

except MCDP (although found at less stringent search parameters) and apidaecin (Figure 2).  

In addition, only very recently, the venom composition of the Africanized honeybees 

and two European subspecies, A. m. ligustica and A. m. carnica, has been studied applying a 

shotgun LC-MS/MS analysis incorporating the Orbitrap mass analyzer [10]. In total, 51 

proteins were found with 42 being common to all three subspecies. This study identified 43 

compounds in the venom of A. m. carnica, the subspecies which was also studied in our 

proteomic analyses. Remarkably, 8 venom compounds were found which were not detected 

in our proteomics studies (Figure 2). These include the venom peptide tertiapin, which has 

previously been found by Edman degradation sequencing of the chromatographically 

purified peptide [11], and odorant binding protein 14, which has previously been found in a 

MS analysis of the venom gland tissue [12]. Also, 6 novel compounds are described including 

MRJP2, MRJP3, a chymotrypsin inhibitor, multiple coagulation factor deficiency protein 2 

homolog and two proteins with an unknown function. Several factors may explain this 

observed variation, including technological (venom collection method, proteomic approach, 

search parameters) and biological (geographical, seasonal, age-related variation in venom 

composition) factors. It is especially peculiar that besides MRJP8 and MRJP9 no other MRJP 

proteins have been detected in our proteomic analyses, while this study also reports on the 

detection of MRJP2 and MRJP3. An approximately equal number of tryptic peptides 

matching with MRJP8 was detected in the venoms of the three subspecies, which may 

indicate that this MRJP is equally abundant in the venoms of the three subspecies. The same 

observation has been made for MRJP9. In contrast, a high number of peptides matching with 
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MRJP2 and MRJP3 were found in the venom of the Africanized honeybees, while only 1 or 2 

peptides were found in the venoms of European subspecies. Therefore, MRJP2 and MRJP3 

may be much lower abundant in the venoms of the European subspecies. Moreover, MRJP1 

and MRJP5 were exclusively found in the Africanized subspecies. As the MRJPs 1 to 5 are 

major compounds of the secreted royal jelly which is provided by nurses as food to the 

larvae and queen [13], their function in the venom requires further investigation. 

Contamination of the venom samples cannot be ruled out. In contrast, MRJP8 and MRJP9 

were found to be the most ancient members of the MRJP protein family, which lack the later 

evolved repetitive regions suggested to have a nutritious function. Therefore, both MRJPs 

may possess the original but yet unknown pre-royal jelly function [12]. 

 

 

Figure 2: Overview of the number of honeybee (A. mellifera carnica) venom compounds identified in four 

different studies. A: CPLL + 1D-PAGE + LC-ESI-LTQ-FT-ICR-MS/MS (Chapter 2); B: shotgun Orbitrap-LC 

MS/MS [10]; C: HPLC + MALDI-TOF/TOF (Chapter 1); D: 2D-PAGE + MALDI-TOF/TOF [6;7]. 

 

The low sensitivity proteomic approaches (2D-PAGE or HPLC followed by MALDI-TOF/TOF) 

mainly identified highly and moderately abundant compounds. Most of these compounds 

are toxins, contributing to the defence and social immunity functions of the venom. Now, 

the novel high sensitivity approaches (sample pre-treatment by CPLL, Fourier transform-

based MS) enabled to dig deeper in the complex honeybee venom proteome than ever 

before. The group of newly identified compounds includes several potential toxins. However, 

as their biological function was only predicted based on the experimentally determined 
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function of homologues, and the finding of GO-terms, functional domains and venom 

homologues, their function should be further experimentally investigated. In addition, these 

highly sensitive approaches identified many low and extremely lowly abundant compounds, 

which are called venom trace molecules as they serve no toxic functions. These include a 

group of common secretory proteins exerting essential functions in the extracellular space, 

e.g. immunity-related proteins and apolipophorins. However, most trace molecules are 

typical secretory pathway proteins being unintentionally released due to an inefficient 

retrieval and retrograde transport within the secretory pathway of the highly active 

secreting venom gland tissue. 

 

Many research studies have focused on unravelling the honeybee venom proteome. 

Nevertheless, many unanswered questions remain. For example, prediction databases often 

miss peptide sequences as their determination from a genetic structure is very difficult [14]. 

As our mass spectrometry experiments applied a database search approach, in addition to 

melittin, apamin, MCDP, secapin and tertiapin, multiple unknown peptides may be present 

in the venom. Indeed, several venom peptides have been isolated in the 1970’s and 80’s by 

chromatographic means, e.g. minimine [15], cardiopep [16] and adolapin [17] but amino acid 

sequences are still lacking. Future studies should apply peptidomics, characterizing peptides 

by MS-driven de novo peptide sequencing [14], to explore the venom peptidome. Also the 

variation in the venom content has only been scarcely investigated. Within a single hive in 

Brazil, seasonal variation in the PLA2 and melittin venom levels has been demonstrated, 

which did not correlate to climatic factors [18]. In addition, our finding that transcription of 

the Ag5-like gene by the venom glands is restricted to winter bees may be indicative for 

qualitative seasonal variation in the venom composition (Chapter 1). However, a proteomic 

study of the winter bee venom has not yet been conducted. Variation in the venom 

composition between the physiologically distinct summer and winter bees can be expected. 

In the moderate climate zone, summer bees actively forage and live about six weeks, while 

winter bees live up to six months and stay within the hive to generate heat to keep the hive 

warm. Also in-depth insights in age-, caste-, colony-related and geographical variability are 

lacking. During this PhD work, the venom of the queen was submitted to SDS-PAGE and pre-

treated using the ProteoMiner technology (Figure 3). Queen SDS-PAGE patterns clearly differ 

from those of honeybee workers. An identical mass spectrometry analysis as that applied for 
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the honeybee worker venom should provide insights in this caste-related variability. Besides 

qualitative variation, also quantitative variability in venom composition may be present. A 

variety of techniques for differential quantification are available, such as iTRAQ™ (Isobaric 

Tags for Relative and Absolute Quantitation), DIGE (Differential Gel Electrophoresis) and 

spectral counting [19]. For absolute quantification of a particular protein compound, 

standard curves and AQUA™ peptides can be used. During this PhD work, no quantitative 

data have been generated as the CPLL sample-pre-treatment shifts relative protein 

abundances.  

 

 

Figure 3: SDS-PAGE pattern of worker (W) and queen (Q) honeybee venom proteins. Queen venom was 

treated by the ProteoMiner technology. Flow-through (FT), wash (WA) and elution (EL) of this pre-

treatment are shown. 

 

The honeybee was the first hymenopteran species which genome was sequenced (2006; 

[20]). Later, also the genomes of three Nasonia species (2010; [5]) and seven ant species 

(2010-2011; [21-26]) have been sequenced. While the honeybee and N. vitripennis genomes 

were sequenced by Sanger sequencing methods, other genomes were sequenced using 

next-generation sequencing approaches. Next-generation sequencing has dramatically 

reduced costs in producing high-quality draft genomes. Therefore, several additional 

hymenopteran genomes were recently sequenced and many more will follow in the (near) 

future. Recently, re-sequencing the honeybee genome improved the genome assembly and 

allowed to increase the gene set by about 50% [27]. In addition, the genomes of the 

bumblebees B. terrestris and B. impatiens were sequenced [28]. In the near future, two 

other honeybee species, A. dorsata and A. florea, will be added to the list of hymenopteran 
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species with a sequenced genome. Moreover, since March 2011, the i5k initiative was 

announced, which will aim to sequence the genomes of 5000 insects and other arthropods. 

At present, more than 800 species have been nominated, including 276 Hymenoptera, and 

58 genomes have already been sequenced (http://arthropodgenomes.org/wiki/i5K). Also 

multiple stinging bees, wasps and ants are nominated. As the available gene prediction sets 

facilitate the identification of venom proteins in mass spectrometry studies, sequencing the 

genomes of additional venomous hymenopterans will give a boost to the venom proteome 

research. 

 

 

2. HYMENOPTERA VENOM ALLERGY 

This PhD work identified several novel honeybee venom allergen candidates. Although PVF1 

and C1q IgE reactivity was demonstrated with sera of honeybee venom allergic patients in 

ELISA, both compounds were unable to activate basophils in basophil activation tests (BAT) 

(Chapter 5). Consequently, both compounds cannot be incorporated in the official IUIS list of 

allergens as this requires both IgE recognition and in vitro cell activation or positive reactions 

in skin tests. Additional experiments are required to further elucidate the nature of this 

discrepancy between both tests. First, the specificity of IgE binding in the ELISA assay can be 

controlled by pre-incubating the serum samples with the protein, which should reduce IgE 

reactivity in the ELISA assay. Second, there may be several reasons for negative results in 

BATs. In case both compounds contain only one IgE epitope, ELISAs show a positive signal, 

while basophils may not be activated as this requires cross-linking of the FcεRI receptors on 

the basophil cell surface. However, it has been demonstrated that many allergens possess 

only one IgE epitope, but due to homodimerization on cell surface-bound antibodies they 

are able to activate basophils [29]. Dimerization would be very common and essential for 

many allergens. PVF1 proteins are reported in literature to be homodimers [30]. Also the 

honeybee venom PVF1 sequence contains the typical eight cysteines involved in 

dimerization. Non-denaturing SDS-PAGE separation should reveal if also the PVF1 

recombinant exists in dimeric form, however this is often concentration- and/or pH-

dependent. Alternatively, relative IgE reactivity to each of the proteins is too low to be 

detected by the BAT or both proteins may exert inhibitory functions on basophil activation 

http://arthropodgenomes.org/wiki/i5K
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that neutralize the activation signal provided by FcεRI cross-linking. The latter can be tested 

by adding the proteins to activated basophils in BATs.  

 Also testing the IgE reactivity of several novel Api m 10 protein variants by protein 

array technology identified two novel allergen candidates (Chapter 4). The experiment 

revealed that variant 3 and 4 are present in the venom and that they may possess unique IgE 

epitopes. Therefore, the allergenicity of these variants should be further examined using 

BATs. 

 

Component-resolved diagnosis (CRD) becomes an important approach for distinguishing 

between different Hymenoptera venom allergies. This PhD work provides insights in the 

honeybee and bumblebee venom proteome, and in antigenicity of several honeybee venom 

compounds, which is the fundament to further improve CRD for Hymenoptera venom allergy. 

First, an Ag5-like gene was found to be solely expressed by the honeybee venom glands 

during the winter months when bees stay inside the hive (Chapter 1). In addition, we 

demonstrated that it was absent in the venom during the summer months when bees 

actively forage and come in contact with humans (Chapter 2). Also phospholipase A1 was 

found to be absent from honeybee venom (Chapter 2). Both phospholipase A1 and antigen 5 

proteins are major allergens of the venom of many wasp and ant species. Therefore, the 

absence of similar allergens in honeybee venom allows to distinguish between honeybee 

and wasp/ant venom allergy using CRD. Our findings are in favor of the currently applied 

CRD which aims to allow a differential diagnosis between venom allergies caused by the 

honeybee, A. mellifera, and wasp, V. vulgaris, as these are the most prevalent stinging 

insects in many European countries. The wasp-specific venom allergens Ves v 1 and Ves v 5, 

which correspond to the phospholipase A1 and antigen 5 proteins respectively, and the 

honeybee-specific venom allergen Api m 1 are currently commercially available to establish 

a correct diagnosis. However, while Ves v 1 and Ves v 5 allow to diagnose between 92 and 96% 

of the wasp venom allergic patients [31-33], CRD for honeybee venom allergy solely based 

on Api m 1 lacks sensitivity [31;32;34-36]. Several studies have shown that adding additional 

honeybee venom allergens can increase sensitivity of CRD for honeybee venom allergy. 

Sturm and co-workers [35] described that ImmunoCAP assays with rApi m 1, rApi m 2 and 

nApi m 4 diagnosed honeybee venom allergy in 82.5% of the patients (n=40). Hofmann and 

co-workers [32] found that the combination of the same allergens led to a positive result in 
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89% of the patients in a larger study population (n=82). In addition, a brand new study [37] 

describes that the use of six honeybee venom allergens (rApi m 1, rApi m 2, rApi m 3, nApi m 

4, rApi m 5, rApi m 10) increases diagnostic sensitivity to 94.4% in a population of 144 

honeybee venom allergic patients. However, as Api m 2 and Api m 5 have cross-reactive 

homologues in the wasp venom, including both allergens decreases specificity of CRD. This 

study also reports that in case only the honeybee venom-specific allergens Api m 1, Api m 3, 

Api m 4 or Api m 10 were used, positive results were obtained in 89.6% of the honeybee 

venom allergic patients. Therefore, research should further focus on the identification of 

novel honeybee venom-specific allergens which provide both sufficient sensitivity for CRD of 

honeybee venom allergy and sufficient specificity to distinguish honeybee and wasp venom 

allergy. This PhD work showed that C1q and PVF1 were IgE recognized by respectively 24 and 

19 out of 72 sera of honeybee venom allergic patients (Chapter 5). About 40% of the 

analyzed sera of honeybee venom allergic patients lacked IgE reactivity to rApi m 1. 

Sensitivity was increased to 87.5% using four honeybee venom-specific allergens, rApi m 1, 

rApi m 3, nApi m 4 and rApi m 10. We demonstrated that also adding C1q and PVF1 can 

further increase CRD sensitivity with 8.3%, reaching a sensitivity above 95%. Further studies 

should reveal if wasp venom contains cross-reactive C1q and PVF1 homologs.  

In addition, this PhD work investigated the effects of Api m 10 protein heterogeneity 

on IgE recognition. As about 50% of the honeybee venom allergic patients shows IgE 

reactivity towards the immunologically characterized Api m 10 variant 2, this allergen is 

important for increasing CRD sensitivity. Our array-based experiment showed that Api m 10 

protein heterogeneity has important consequences for diagnostic tests, as IgE recognition is 

both isoform- and patient-specific (Chapter 4). Variant 2 was previously demonstrated to be 

a good biomarker for Api m 10 IgE recognition [38], which was confirmed by the present 

study. In addition, we found that two additional variants, variant 3 and especially variant 4, 

may be of particular relevance for the diagnosis of honeybee venom allergy in those patients 

that are allergic to honeybee venom but who do not react to variant 2. However, since all of 

the analyzed variant 2 non-reactive sera displaying IgE reactivity to variant 3 and variant 4 

also showed IgE reactivity to Api m 1, these Api m 10 variants did not increase the sensitivity 

of CRD.  

Finally, this PhD work offers a long list of potential new honeybee venom allergens 

which can even further increase CRD sensitivity. However, the presently used insect cell 
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expression system is labor-intensive and time-consuming, making it impossible to produce 

all novel compounds as recombinants for immunological characterization. Unfortunately, at 

present no efficient high-throughput insect cell expression system exists, which enables the 

production of a high number of high quality venom proteins. Therefore, an efficient pre-

screening strategy should be developed to select a group of expected venom allergens, 

which can then be produced to experimentally determine IgE reactivity and basophil 

activation. Several bioinformatics approaches have been developed to predict allergens. 

AlgPred (http://www.imtech.res.in/raghava/algpred/index.html) has integrated these 

approaches to predict allergenic proteins with high accuracy. However, according to this 

software, none of the experimentally confirmed honeybee venom allergens are predicted to 

be allergens. Therefore, we conclude that allergen prediction software is presently 

unreliable for selecting potential novel venom allergens. A second strategy is the use of 

immunoblots to screen for novel IgE recognized compounds. In a preliminary experiment, a 

CPLL-treated honeybee venom sample was separated by 1D-SDS-PAGE, blotted and 

incubated with three sera of honeybee venom allergic patients without CCD reactivity 

(Figure 4). As a CPLL-treated venom sample was also separated by SDS-PAGE in our mass 

spectrometry study (Chapter 2), we were able to identify which proteins are present within 

the IgE detected bands. Unfortunately, a broad list of proteins was identified in each of the 

IgE-detected bands, including multiple already known allergens. This makes it impossible to 

conclude if unknown allergens contribute to the observed IgE recognition. Moreover, many 

enriched proteins from the CPLL elution fraction have a similar molecular weight of 40 kDa 

(Figure 4). Over 30 venom compounds were found in this IgE recognized band, including 

most allergens. Therefore, the CPLL elution fraction should be separated by 2D 

electrophoresis, separating proteins with an identical MW by isoelectric point. IgE 

recognition can then be tested by immunoblotting using a well-selected set of sera of 

honeybee venom allergic patients. Interesting sera would be those with high IgE titers to 

honeybee venom, but low IgE titers for already known honeybee venom allergens. As many 

venom compounds carry CCDs, also CCD-specific IgE titers should be absent. A 2D-gel run in 

duplicate allows to cut out spots for protein identification by mass spectrometry. 

 

So far, only the venom extract of the bumblebee B. terrestris is commercially available for 

allergy diagnosis. Due to the reported high cross-reactivity between honeybee and

http://www.imtech.res.in/raghava/algpred/index.html


General discussion 

174 
 

 

Figure 4: Immunoblots of combinatorial peptide ligand library (CPLL)-treated honeybee venom with sera 

of three honeybee venom allergic patients. FT= flow-through fraction of the CPLL, EL= elution fraction of 

the CPLL. Molecular weights of the markers are presented. ImmunoCAP IgE titers of sera can be found in 

Table S1. 

 

bumblebee venoms, a diagnostic test with high specificity should be developed which allows

to distinguish between both venom allergies. However, as so far only very few insights in the

panel of cross-reactive and species-specific honeybee and bumblebee venom allergens have 

been obtained, it is currently impossible to develop a diagnostic test which allows to make 

this distinction. Our proteomic analyses revealed bumblebee venom homologues for all 

honeybee venom allergens (Chapter 3), except for Api m 6 (not found in the B. terrestris 

venom proteome although a putative homologue is found in its genome). It would be 

interesting to see if these compounds also represent important bumblebee venom allergens. 

Vice versa, further research should reveal if the CLIP serine protease from honeybee venom 

has allergenic properties, as it is homologous to the Bom t 4 allergen. However, as only very 

few sera of bumblebee venom allergic patients are available for research purposes, 

thoroughly analyzing the allergenic properties of individual bumblebee venom compounds 

will be difficult to complete. Therefore, an immunoblot study with 2D-separated bumblebee 

venom and few available sera of bumblebee venom allergic patients may make it possible to 

get insights in the bumblebee venom allergen repertoire. Later, further studies may unravel 

the nature of the immunological cross-reactivity between honeybee and bumblebee venom. 

 



General discussion 

175 
 

Genomes of several stinging hymenopterans will become available in the future, which will 

enable to explore the venom proteomes of these species. This information will eventually 

provide deeper insights in the venom allergen repertoire and allow to increase the efficacy 

of allergy diagnosis. As only few patients recognize the hymenopteran species that stung, 

diagnostic tests should be developed which allow to distinguish between allergies to venoms 

of different species present in a specific geographical region. Compared to singleplex test, 

multiplex tests allow to simultaneously analyze IgE reactivity towards a broad panel of 

species-specific allergens using only a limited amount of serum. Therefore, the protein array 

technology may play an important role in the future allergy diagnosis. 

 

 

3. ADDENDUM 

The supplementary table can be found on the included CD-ROM or can be requested by e-

mail from matthiasvanvaerenbergh@hotmail.com and Dirk.deGraaf@UGent.be. 

 

Table S1 presents ImmunoCAP IgE titers of three sera of honeybee venom allergic patients 

used in the preliminary immunoblot experiment (see Figure 4). 
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Honeybees and bumblebees defend the hive against predators and external threats using 

venom, which contains several toxic compounds that cause death in other insects or inflict 

pain in higher organisms. Besides, in man, early exposure to bee venom evokes IgG1, IgG2 

and to a lesser extent IgG4 antibody responses, whereas long-term exposure often found in 

beekeepers drives the immunity to an IgG4 type of humoral response. Allergy to a bee sting 

is mediated by IgE antibodies and, so far, 12 honeybee and 2 bumblebee venom allergens 

have been listed by the International Union of Immunological Societies 

(http://www.allergen.org/Allergen.aspx).  

 

This PhD thesis consists of two main parts. The first part focused on further unraveling the 

venom composition of the honeybee (A. mellifera) and bumblebee (B. terrestris). Several gel-

based proteomics studies conducted in the past suggested the existence of unknown venom 

compounds in the honeybee venom proteome. Also a genome mining study conducted in 

2006 identified multiple novel genes encoding for putative venom constituents. Moreover, 

recently the honeybee genome was re-sequenced using next-generation sequencing 

technologies and improved gene prediction sets became available which may include novel 

venom genes. Therefore, this PhD work tried to obtain deeper insights in the honeybee 

worker venom composition by integrating genome, transcriptome and proteome 

information. 

 To overcome the issues of gel-based proteomics, this PhD work analyzed the 

honeybee worker venom composition by liquid chromatography-mass spectrometry. This 

analysis confirmed the presence of nine honeybee venom compounds, including two 

peptides which remained undetected in preceding gel-based studies due to their low 

molecular weight. In addition, a novel venom peptide with antimicrobial properties, called 

apidaecin, was found. In the second proteomic study, the honeybee venom proteome was 

investigated using a combinatorial peptide ligand library sample pretreatment to enrich for 

minor components, followed by shotgun LC-FT-ICR MS analysis. This strategy revealed an 
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unexpectedly rich venom composition: in total 102 proteins and peptides were found, with 

83 of them never described in bee venom samples before. 

Also genome and venom gland transcriptome data were used during this PhD to 

obtain insights in the honeybee venom composition. Genome mining revealed a list of 

compounds with resemblance to known insect allergens or venom toxins, one of which 

showed homology to proteins of the antigen 5 (Ag5)/Sol i 3 cluster. We also demonstrated 

that the honeybee Ag5-like gene is expressed by the venom gland tissue of winter bees but 

not of summer bees. Further proteomic experiments should confirm the presence of the 

Ag5-like protein in the venom of winter bees. In addition, this PhD work obtained evidence 

for transcript heterogeneity of known venom compounds, as three alternative splice variants 

of PVF1 and 9 novel chimeric variants of icarapin were found to be expressed by the venom 

glands. To the best of our knowledge, this is the first report of the identification of chimeric 

transcripts generated by the honeybee. 

So far, only little research has focused on bumblebee venom. Recently, the genome 

sequence of the European large earth bumblebee (Bombus terrestris) became available and 

this allowed the first in-depth proteomic analysis of its venom composition. We identified 57 

compounds, with 52 of them never described in bumblebee venom. Remarkably, 72% of the 

detected compounds were found to have a honeybee venom homologue, which reflects the 

similar defensive function of both venoms and the high degree of homology between both 

genomes. However, both venoms contain a selection of species-specific toxins, revealing 

distinct damaging effects that may have evolved in response to species-specific attackers. 

 

The second part of this PhD work involved the immunological implications of the venom 

proteome. A first analysis revealed the lack of IgG4 recognition of both apidaecin and Ag5-

like protein by beekeepers’ sera. In case of the antimicrobial peptide apidaecin, a low 

immunogenicity can be explained by its short length. For the Ag5-like protein, its restricted 

expression in winter time certainly lowers the exposure to this venom compound 

significantly, as beekeepers are then hardly stung. Second, this PhD work identified several 

novel honeybee venom allergen candidates. Our ELISA assay showed that C1q and PVF1 are 

IgE recognized by respectively 1/3 and 1/4 of the honeybee venom allergic patients. 

However, both compounds were unable to activate basophils in basophil activation tests, 

which requires further investigation. Also, a protein array experiment showed that IgE 
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recognition of a panel of icarapin isoforms is both isoform- and patient-specific. Moreover, 

two novel icarapin isoforms represent interesting allergen candidates as they may possess 

unique IgE epitopes. Therefore, their allergenicity needs to be further investigated.  

In addition, this PhD thesis provides insights which aid to further improve 

component-resolved diagnosis (CRD) for Hymenoptera venom allergy. Our proteomic 

analysis confirmed that phospholipase A1 (PLA1) and Ag5 proteins are absent from the 

venom of honeybees during summer months. As both are major allergens of the venom of 

many wasp and ant species, our findings are in favor of the currently applied CRD which aims 

to allow a differential diagnosis between honeybee (A. mellifera) and wasp (V. vulgaris) 

venom allergy, the most prevalent stinging insects in many European countries. The wasp-

specific venom allergens Ves v 1 and Ves v 5, which correspond to the phospholipase A1 and 

antigen 5 proteins respectively, and the honeybee-specific venom allergen Api m 1 are 

currently used to establish a correct diagnosis. However, while Ves v 1 and Ves v 5 allow to 

diagnose more than 95% of the wasp venom allergic patients, CRD for honeybee venom 

allergy solely based on Api m 1 lacks sensitivity. Our findings indicate that adding C1q and 

PVF1 to a panel of honeybee venom-specific allergens (Api m 1, Api m 3, Api m 4 and Api m 

10) can increase CRD sensitivity with 8.3%, reaching a sensitivity above 95%. In addition, our 

novel insights in the honeybee venom proteome offer a long list of potential new honeybee 

venom allergens which can increase CRD sensitivity even further. Finally, our in-depth 

proteomic analysis of the bumblebee venom composition is the fundament for unraveling its 

allergen repertoire and the immunological cross-reactivity between honeybee and 

bumblebee venom. This may allow to develop a CRD strategy to distinguish between 

honeybee and bumblebee venom allergy. 
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Het gif van de honingbij en de hommel is samengesteld uit verschillende toxische 

componenten. Deze zijn dodelijk voor andere insecten en induceren pijn in hogere 

organismen, wat hen toelaat om zichzelf en de kast te beschermen tegen ongenode gasten. 

Hiernaast veroorzaakt een steek bij sommige personen een IgG1, IgG2 en in mindere mate 

IgG4 immuunrespons. Bij personen die frequent worden gestoken, zoals imkers, evolueert 

dit vaak naar een IgG4 humorale respons. Hiernaast kan zich ook een allergie ontwikkelen 

die wordt gemedieerd door IgE herkenning van specifieke gifallergenen. Momenteel worden 

12 honingbij en 2 hommel gifallergenen erkend door de ‘International Union of 

Immunological Societies’ (http://www.allergen.org/Allergen.aspx). 

 

Deze thesis is opgedeeld in twee delen. In het eerste deel werd getracht de gifsamenstelling 

van de honingbij (A. mellifera) en aardhommel (B. terrestris) verder te ontrafelen. In het 

verleden werden reeds verschillende proteoomstudies uitgevoerd gebaseerd op 2D-PAGE en 

deze wezen op de aanwezigheid van ongekende gifcomponenten in het honingbij 

gifproteoom. Ook bij een honingbij ‘genoom-mining’ studie die reeds werd uitgevoerd in 

2006 werden verschillende nieuwe genen gevonden die mogelijks coderen voor 

gifcomponenten. Bovendien werd recent het genoom van de honingbij opnieuw 

gesequeneerd via next-generation sequencing en werden nieuwe verbeterde genpredictie 

datasets beschikbaar gesteld die mogelijks nieuwe gifgenen bevatten. Aldus werd in deze 

thesis getracht diepere inzichten te verkrijgen in de gifsamenstelling van de honingbij 

werkster door integratie van informatie afkomstig van het genoom, transcriptoom en 

proteoom. 

 Om de tekortkomingen van proteoomstudies gebaseerd op 2D-PAGE te omzeilen, 

werd de gifsamenstelling van de honingbij werkster geanalyseerd via 

vloeistofchromatografie-massaspectrometrie. Deze analyse bevestigde de aanwezigheid van 

9 honingbij gifcomponenten, inclusief 2 peptiden die door hun laag moleculair gewicht niet 

werden gedetecteerd in voorgaande 2D-PAGE-gebaseerde proteoomstudies. Bovendien 
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werd apidaecine, een peptide met antimicrobiële eigenschappen, voor het eerst 

gedetecteerd in het gif. In de tweede proteoomstudie werd het gifstaal behandeld met een 

bibliotheek van combinatoriële peptide liganden die toelaat laag abundante componenten 

aan te rijken, waarna een ‘shotgun’ LC-FT-ICR massaspectrometrie analyse werd uitgevoerd. 

Deze strategie onthulde een rijke gifsamenstelling: in totaal werden 102 proteïnen en 

peptiden geïdentificeerd, waarvan er 83 componenten nog nooit werden beschreven in 

bijengif. 

 Ook werden genoom- en gifklier transcriptoomdata gebruikt om inzichten te 

verwerven in de gifsamenstelling van de honingbij. Via ‘genome mining’ werd een aantal 

componenten gevonden die gelijkenissen vertonen met gekende insect allergenen of gif 

toxines. Eén hiervan vertoont homologie met proteïnen van de antigen 5 (Ag5)/Sol i 3 cluster. 

We toonden aan dat het honingbij Ag5-like gen wordt geëxpresseerd door de gifklieren van 

winterbijen, maar niet door die van zomerbijen. Bijkomend proteoomonderzoek moet de 

aanwezigheid van het Ag5-like proteïne in het gif van winterbijen bevestigen. Deze thesis 

identificeerde ook nieuwe transcript varianten van verschillende gekende bijengif 

componenten: zowel 3 alternatief gesplicete PVF1 varianten als 9 chimerische icarapine 

varianten worden geproduceerd door de gifklier. Deze thesis beschrijft voor het eerst de 

identificatie van chimerische varianten geproduceerd door de honingbij. 

 Totnogtoe werd het gif van de hommel slechts in beperkte mate onderzocht. Recent 

werd echter het genoom van de Europese aardhommel (Bombus terrestris) gesequeneerd en 

dit liet toe de gifsamenstelling via een diepgaande proteoomanalyse te onderzoeken. We 

identificeerden 57 componenten, waarvan er 52 nooit werden beschreven in hommelgif. 72% 

van de gedetecteerde proteïnen en peptiden bleken een homoloog te hebben in het gif van 

de honingbij, wat kan worden verklaard door de sterk vergelijkbare functie van beide giffen 

en de hoge homologie van beide genomen. Beide giffen bevatten echter een selectie van 

species-specifieke toxines wat wijst op een verschillende werking van beide giffen, mogelijks 

geëvolueerd in respons op species-specifieke vijanden.  

 

In het tweede deel van deze thesis werd het immunologisch belang van het gifproteoom 

onderzocht. Een eerste analyse toonde aan dat zowel apidaecine als het Ag5-like proteïne 

niet worden herkend door serum-IgG4 antilichamen van imkers immuun tegen bijengif. In 

het geval van apidaecine kan dit mogelijks worden verklaard door een lage immunogeniciteit 
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van dit klein peptide, terwijl het Ag5-like proteïne enkel blijkt te worden geëxpresseerd 

tijdens de wintermaanden wanneer imkers nauwelijks worden gestoken waardoor geen 

immuunrespons wordt opgebouwd tegenover deze component. Ten tweede werden 

verschillende nieuwe kandidaat gifallergenen geïdentificeerd. Via een ELISA assay toonden 

we IgE herkenning aan van C1q en PVF1 door respectievelijk 1/3 en 1/4 van de bijengif 

allergische patiënten. Beide componenten bleken echter niet in staat om basofielen te 

activeren in basofiel activatie tests, wat verder moet worden onderzocht. Ook bleek uit een 

protein array experiment dat IgE herkenning van 11 icarapine isovormen zowel isovorm- als 

patiënt-specifiek is. Bovendien zijn twee van deze icarapine isovormen interessante 

kandidaat allergenen, aangezien ze mogelijks unieke IgE epitopen bevatten. Aldus moet hun 

allergeniciteit verder worden onderzocht. 

Deze thesis verstrekt ook inzichten die kunnen bijdragen aan een hogere efficiëntie 

van de ‘component-resolved diagnose’ (CRD) voor Hymenoptera gifallergie. Onze 

proteoomanalyse bevestigde dat phospholipase A1 (PLA1) en Ag5 proteïnen niet voorkomen 

in het gif van honingbijen tijden de zomermaanden. Aangezien beide componenten 

belangrijke allergenen zijn in het gif van wespen en mieren, laat dit toe om via CRD een 

onderscheid te maken tussen allergieën veroorzaakt door bijengif dan wel wespen- of 

mierengif. Onze bevindingen ondersteunen de CRD die hedendaags wordt toegepast om een 

onderscheid te maken tussen gifallergieën veroorzaakt door de honingbij (A. mellifera) en 

wesp (V. vulgaris), die verantwoordelijk zijn voor het merendeel van de Hymenoptera steken 

doorheen Europa. De wesp-specifieke gifallergenen Ves v 1 en Ves v 5, respectievelijk PLA1 

en Ag5, en het honingbij-specifiek gifallergeen Api m 1 worden hedendaags gebruikt om een 

correcte diagnose te stellen. Via de combinatie van Ves v 1 en Ves v 5 kan een wespengif 

allergie worden vastgesteld in meer dan 95% van de wespengif allergische patiënten. De 

sensitiviteit van CRD voor honingbij gifallergie enkel gebruik makend van Api m 1 is 

momenteel echter ontoereikend. Via deze thesis kon worden aangetoond dat deze 

sensitiviteit kan toenemen met 8.3% door het toevoegen van C1q en PVF1 aan een selectie 

van bijengif-specifieke allergenen (Api m 1, Api m 3, Api m 4, Api m 10). Bovendien wordt via 

de combinatie van deze 6 gifcomponenten een sensitiviteit van meer dan 95% bereikt. 

Hiernaast werd via ons bijengif proteoomonderzoek een lange lijst met nieuwe potentiële 

gifallergenen gegenereerd die de CRD sensitiviteit verder kunnen verhogen. Ten slotte vormt 

onze diepgaande analyse van het hommelgif proteoom de basis voor een verdere 
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ontrafeling van het hommelgif allergeen repertoire en de immunologische kruisreactiviteit 

tussen bijengif en hommelgif. Verder kan dit toelaten een CRD strategie te ontwikkelen die 

toelaat het onderscheid te maken tussen allergieën veroorzaakt door bijengif en hommelgif. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 



 

 
 



 

 
 



 

 
 

 


