

## Members of the Jury

Prof. Dr. ir. Guy Smagghe (Chairman)
Prof. Dr. Saverio Florio
Prof. Dr. Erik Van der Eycken
Prof. Dr. Filip Du Prez
Prof. Dr. Tom Desmet
Prof. Dr. ir. Norbert De Kimpe (Promoter)
Prof. Dr. ir. Matthias D'hooghe (Promoter)

| Promoters: | Prof. Dr. ir. Norbert De Kimpe <br> Department of Sustainable Organic Chemistry and Technology <br> Faculty of Bioscience Engineering, Ghent University |
| :--- | :--- |
|  | Prof. Dr. ir. Matthias D’hooghe <br> Department of Sustainable Organic Chemistry and Technology <br> Faculty of Bioscience Engineering, Ghent University |
| Dean: | Prof. Dr. ir. Guido Van Huylenbroeck |
| Rector: | Prof. Dr. Paul Van Cauwenberge |

Faculty of Bioscience Engineering<br>Department of Sustainable Organic Chemistry and Technology

ir. Karen Mollet

Application of functionalized $\beta$-lactams for the selective construction of new aza- and oxaheterocyclic systems

Dutch translation of the title:

Aanwending van gefunctionaliseerde $\beta$-lactamen voor de selectieve constructie van stikstof- en zuurstofbevattende heterocyclische systemen

ISBN-number: 978-90-5989-609-3

The author and the promoters give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author.

Ghent, May 2013

The author,
The promoters,
ir. Karen Mollet
Prof. Dr. ir. N. De Kimpe
Prof. Dr. ir. M. D'hooghe

## Woord Vooraf

Dit doctoraatswerk bleek een werk van lange adem te zijn, een weg van mooie ups, maar toch ook downs, eigen aan het voltooien van een dergelijke onderneming. Ongetwijfeld clichés die menig doctoraatstudent zich al bedacht heeft. Hierbij wil ik graag even de tijd nemen om een aantal personen te bedanken die een belangrijke rol hebben gespeeld bij het voltooien van dit proefschrift.

Allereerst wens ik mijn promotor Prof. dr. ir. Norbert De Kimpe te bedanken voor alle kansen die hij me heeft geboden. Dankzij zijn kritische en wetenschappelijke bijdrage heb ik mijn interesse voor de organische chemie verder kunnen uitbouwen tot een passie, die niet meer weg te denken is uit mijn professionele leven. De regelmatige peilingen naar nieuwe onderzoeksresultaten en het aanwenden van nieuwe nuttige experimenten hebben zeker hun nut bewezen bij het tot stand brengen van dit doctoraatswerk.

Ook zonder mijn co-promotor Prof. dr. ir. Matthias D’hooghe had ik dit punt waarschijnlijk nooit bereikt. Zijn bereidheid tot het nalezen van manuscripten, projecten, spectra en zoveel meer kende de afgelopen 5 jaar geen grenzen. Hij leerde me dat wat moeilijk en onmogelijk lijkt niet altijd onhaalbaar is, en hij zorgde en zorgt nog steeds voor een uitstekend wetenschappelijk kader waarin naar hartelust onderzoek kan verricht worden. Bedankt Matthias voor de professionele ondersteuning, intensieve en stimulerende begeleiding en de waardevolle en kritische wetenschappelijke input.

I would also like to thank the other members of the examination committee, Prof. dr. ir. Guy Smagghe, Prof. dr. Tom Desmet, Prof. dr. Saverio Florio, Prof. dr. Erik Van der Eycken and Prof. dr. Filip Du Prez for the critical reading of my thesis.

Doctoreren en eenzaamheid zouden hand in hand gaan. Maar dat is, op zijn zachtst uitgedrukt, buiten ons labo gerekend. De aangename werkomgeving, waarin naast het druk in de weer zijn ook altijd tijd en ruimte was voor een babbeltje/lolletje over niet-chemische zaken, zorgde voor een unieke groepsgeest, en vele collega's zijn de afgelopen jaren dan ook in de eerste plaats vrienden geworden. Ik bedank alle collega's hiervoor en wens in het bijzonder mijn jaargenoten Gert, Tamara, Sara, Cedric, Nils en Pieter veel succes met het weldra voltooien van hun doctoraat. De jongere garde wens ik ook heel veel succes, mooie resultaten en veel doorzettingsvermogen.

Mijn grootste supporters wil ik hier uiteraard ook bedanken. In de eerste plaats wens ik mijn lieve ouders van harte te bedanken voor hun onvoorwaardelijke steun, en dit intussen reeds 27 jaar lang. Wat er ook moge gebeuren, hun bereidheid om alles te laten vallen voor hun kinderen kent geen grenzen, zelfs niet nu het aantal Molletjes steeds groter wordt. Wat zou ik zijn zonder jullie mama en
papa?! Daarnaast heeft ook de steun en liefde van mijn grootouders, tweelingszus Lies en broers Bart en Pieter bijgedragen tot wie ik nu ben. Lies en Pieter, alvast heel erg veel succes gewenst bij het finaliseren van jullie doctoraat!

En als laatste, maar absoluut niet in het minste wil ik mijn allerliefste schat bedanken. Karel, de geborgenheid en veiligheid die ik elke dag opnieuw mag voelen is voor mij van onschatbare waarde. We hebben samen reeds een mooie weg afgelegd, en ik ben er zeker van dat er ons een bijzonder mooie toekomst wacht nu onze liefde leven wordt.

Lief klein wondertje, ik zie je nu al doodgraag en ik kijk enorm uit naar jouw komst!

## TABLE OF CONTENTS

1 INTRODUCTION AND GOALS ..... 1
2 LITERATURE OVERVIEW ..... 9
2.1 Ring transformation through N1-C2 bond cleavage ..... 9
2.2 Ring transformation through C3-C4 bond cleavage ..... 18
2.3 Ring transformation through C4-N1 bond cleavage ..... 21
2.4 Conclusion ..... 22
3 RESULTS AND DISCUSSION ..... 25
3.1 Reactivity of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones toward LiAlH $_{4}$ (Paper I) ..... 26
3.1.1 Synthesis of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones ..... 27
3.1.2 Synthesis of 3-aryl-2-(ethylamino)propan-1-ols ..... 29
3.1.2.1 Elucidation of the reaction mechanism ..... 30
3.2 Diastereoselective synthesis of 3,4-disubstituted piperidines through rearrangement of azetidines ..... 35
3.2.1 Synthesis of 3,4-disubstituted 5,5-dimethylpiperidines through rearrangement of 2-(2-bromo-1,1- dimethylethyl)azetidines (Paper II) ..... 35
3.2.1.1 Synthesis of 4-acetoxy- and 4-hydroxy-5,5-dimethylpiperidines ..... 36
3.2.2 Synthesis of 3,4-disubstituted 5,5-dinor-dimethylpiperidines through rearrangement of 2-(2- mesyloxyethyl)azetidines (Paper III, IV and V) ..... 39
3.2.2.1 Synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones ..... 39
3.2.2.2 Synthesis of 2-(2-mesyloxyethyl)azetidines ..... 43
3.2.2.3 Synthesis of 3,4-disubstituted 5,5-dinor-dimethylpiperidines ..... 45
3.2.2.3.1 Synthesis of 4-bromopiperidines ..... 46
3.2.2.3.2 Synthesis of 4-acetoxy- and 4-hydroxypiperidines ..... 47
3.2.2.3.3 Attempts toward the synthesis of 4-fluoropiperidines ..... 48
3.2.2.3.4 Synthesis of 4-(formyloxy)piperidines ..... 54
3.2.2.3.5 Synthesis of piperidin-4-ones through a ring expansion-oxidation protocol ..... 55
3.2.2.3.5.1 Reduction toward 4-hydroxypiperidines ..... 57
3.2.2.3.6 Theoretical rationalization ..... 59
3.2.3 Conclusions ..... 61
3.3 Synthesis of bicyclic tetrahydrofuran-fused $\beta$-lactams and their conversion into methyl cis-3-aminotetrahydrofuran-2-carboxylates (Paper IV)
3.4 Synthesis of 2-hydroxy-1,4-oxazin-3-ones through ring transformation of 3-hydroxy-4-(1,2- dihydroxyethyl)- $\beta$-lactams (Paper VI) ..... 66
3.4.1 Synthesis of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams ..... 67
3.4.2 Synthesis of 2-hydroxy-1,4-oxazin-3-ones ..... 68
3.4.2.1 Theoretical rationalization ..... 75
3.4.3 Reactivity study of 2-hydroxy-1,4-oxazin-3-ones ..... 79
3.4.4 Conclusions ..... 86
3.4.5 Perspectives ..... 86
4 PERSPECTIVES ..... 89
5 EXPERIMENTAL PART ..... 93
5.1 General methods ..... 93
5.2 Synthesis of (E)-N-(alkylidene)amines ..... 94
5.2.1 Synthesis of (E)-N-[3-(tert-butyldimethylsilyloxy)propylidene]amines ..... 94
5.2.2 Synthesis of $(E)$ - $N$-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amines ..... 95
5.3 Synthesis of azetidin-2-ones ..... 96
5.3.1 Synthesis of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones ..... 96
5.3.2 Synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones and $N$-[3-(tert- butyldimethylsilyloxy)prop-1-en-1-yl]acetamides ..... 98
5.3.3 Synthesis of 4-(2-hydroxyethyl)azetidin-2-ones ..... 100
5.3.4 Synthesis of 4-(2-mesyloxyethyl)azetidin-2-ones ..... 101
5.3.5 Synthesis of (3R,4S)-3-benzyloxy-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-ones ..... 102
5.3.6 Synthesis of (3R,4S)-3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]azetidin-2-ones ..... 104
5.4 Synthesis of 1-(1-aryl-2-chloro-3-hydroxypropyl)aziridines ..... 106
5.5 Synthesis of 3-aryl-2-(ethylamino)propan-1-ols ..... 107
5.6 Synthesis of azetidines ..... 109
5.6.1 Synthesis of 2-(2-hydroxyethyl)azetidines ..... 109
5.6.2 Synthesis of 2-(2-mesyloxyethyl)azetidines ..... 110
5.7 Synthesis of piperidines ..... 111
5.7.1 Synthesis of 4-acetoxy-5,5-dimethylpiperidines ..... 111
5.7.2 Synthesis of 4-hydroxy-5,5-dimethylpiperidines ..... 113
5.7.3 Synthesis of 4-bromopiperidines ..... 115
5.7.4 Synthesis of 4-acetoxypiperidines ..... 116
5.7.5 Synthesis of 4-hydroxypiperidines ..... 118
5.7.5.1 Synthesis of 4-hydroxypiperidines via 4-acetoxypiperidines ..... 118
5.7.5.2 Synthesis of 4-hydroxypiperidines via enzymatic reduction of piperidin-4-ones ..... 119
5.7.5.2.1 Synthesis of (4S)-3-benzyloxy-4-hydroxy-1-isopropylpiperidines ..... 119
5.7.5.2.2 Synthesis of (4R)-3-benzyloxy-4-hydroxy-1-isopropylpiperidines ..... 120
5.7.6 Synthesis of 4-(formyloxy)piperidines ..... 120
5.8 Synthesis of 1,2,5,6-tetrahydropyridines ..... 122
5.9 Synthesis of piperidin-4-ones ..... 122
5.10 Synthesis of cis-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones ..... 124
5.11 Synthesis of methyl cis-3-aminotetrahydrofuran-2-carboxylates ..... 125
5.12 Synthesis of 2-hydroxy-1,4-oxazin-3-ones ..... 126
5.13 Synthesis of 2-camphanoyloxy-4-isopropyl-1,4-oxazin-3-one ..... 127
5.14 Synthesis of 1H-pyrazin-2-ones ..... 128
5.15 Synthesis of 2-benzoyloxy-1,4-oxazin-3-ones ..... 129
5.16 Synthesis of 2-benzoyloxymorpholin-3-ones ..... 131
5.17 Synthesis of 2-fluoro-1,4-oxazin-3-ones ..... 133
5.18 Synthesis of 2-benzoyloxy-6-bromo-5-fluoromorpholin-3-ones ..... 134
6 SUMMARY ..... 139
7 SAMENVATTING ..... 149
8 REFERENCES ..... 159

## List of Abbreviations

Boc: tert-butoxycarbonyl

CAN: ceric ammonium nitrate

Cbz: benzyloxycarbonyl

DAST: $\mathrm{N}, \mathrm{N}$-diethylaminosulfur trifluoride

DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene

DCE: 1,2-dichloroethane

DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzoquinone

DMAP: 4-(dimethylamino)pyridine

DMF: dimethylformamide

DMS: dimethylsulfide

DMSO: dimethylsulfoxide
er: enantiomeric ratio
mCPBA: 3-chloroperbenzoic acid

MES: 2-(N-morpholino)ethanesulfonic acid

Morph-DAST: morpholinosulfur trifluoride

Ms: methanesulfonyl

NBS: $N$-bromosuccinimide

PMB: p-methoxybenzyl (4-methoxybenzyl)

PMP: p-methoxyphenyl (4-methoxyphenyl)

TBAF: tetra- $n$-butylammonium fluoride

TBDMS: tert-butyldimethylsilyl

TFA: trifluoroacetic acid

THF: tetrahydrofuran

TMAF: tetramethylammonium fluoride

TMS: trimethylsilyl

Ts: 4-toluenesulfonyl

## 1 Introduction and Goals

Since Fleming's accidental discovery of a penicillin-producing mold in 1928, ${ }^{1}$ eighty years of steady progress has followed, and today the $\beta$-lactam class of antibiotics is one of the most succesful examples of natural product application and chemotherapy. The naturally or (semi)synthetic penicillins, cephalosporins, cephamycins, oxacephems, (carba)penems, monobactams, and nocardicins (Figure 1) all contain the $\beta$-lactam structural subunit and they all function by sequestering the catalytically active serine residue in bacterial penicillin binding proteins, transpeptidases responsible for the crucial cross-linking of peptidoglycan polymers as the final step of the bacterial cell wall synthesis, thus disturbing the integrity of the cell wall, finally leading to cell wall rupture and death. ${ }^{2}$


Figure 1

In light of the rapidly emerging bacterial resistance to $\beta$-lactam antibiotics, caused by their widespread use during the past decades, the preparation and biological evaluation of new types of $\beta$ lactams intended to overcome the defense mechanisms of the bacteria is a major topic in medicinal and pharmaceutical chemistry. ${ }^{2}$

On the other hand, in addition to the key role that $\beta$-lactams have played in the fight against pathogenic bacteria, a renewed interest has been focused on the synthesis of azetidin-2-ones possessing diverse pharmacological activities including cholesterol absorption inhibitory activity, antidiabetic, antitumor, anti-inflammatory, antiparkinsonian, anti-HIV and antimalarial activity. ${ }^{3}$

Besides their biological activity, the importance of $\beta$-lactams as synthetic intermediates has been widely recognized in organic synthesis. Selective bond cleavage of the $\beta$-lactam nucleus coupled with further interesting synthetic transformations renders these fascinating molecules powerful synthetic building blocks. In this way, azetidin-2-ones act as important intermediates toward a wide variety of nitrogen-containing acyclic and heterocyclic target compounds. ${ }^{4}$ In that respect, in previous studies at the Department of Sustainable Organic Chemistry and Technology (UGent), the synthetic potential of 1-, 3- and 4-( $\omega$-haloalkyl)azetidin-2-ones 1a, 1b and 1c has been elaborated in detail, leading to the preparation of different mono- and bicyclic heterocyclic compounds, including aziridines, ${ }^{5,6,7}$ azetidines, ${ }^{7,8,9}$ piperidines, ${ }^{9,10,11}$ pyrrolidines, ${ }^{9,12}$ azepanes, ${ }^{11}$ pyrrolidin-2-ones, ${ }^{13}$ oxolanes, ${ }^{7,14} 1,4$ - and 3,4 -fused bicyclic $\beta$-lactams, ${ }^{11,14,15}$ and bicyclic $\gamma$-lactams (Figure 2). ${ }^{16}$






Ref. 6




Ref. 9


Ref. 9


1c

 ef. 14


$\mathrm{Y}=\mathrm{O}, \mathrm{NR}$

Ref. 11



Ref. 10
Ref. 12












Figure 2

In continuation of the above-illustrated synthetic potential of $\beta$-lactams containing a halogenated side chain (Figure 2) as building blocks in the stereoselective construction of heterocycles, which can serve as lead compounds for the development of new biologically relevant targets, in a first topic of this PhD thesis special attention will be devoted to the reactivity of the unexplored class of halogenated $\beta$-lactams bearing a halogenated side chain. More specifically, as an extension of the previously reported $\mathrm{LiAlH}_{4}$-induced ring contraction of 3-chloro- $\beta$-lactams and 1-(2-chloroethyl)- $\beta$ lactams toward the corresponding 3-(hydroxymethyl)aziridines ${ }^{5}$ and 1-(3-hydroxypropyl)aziridines, ${ }^{6}$ respectively, the aim of this part is to combine both structural features into one system. Thus, the reactivity of 3-chloro-1-( $\omega$-chloroalkyl)azetidin-2-ones 2 toward $\mathrm{LiAlH}_{4}$ will be evaluated, leading to the formation of 1-(3-chloropropyl)-3-(hydroxymethyl)aziridines 3 ( $\mathrm{n}=2$ ) and 1-(2-chloro-3hydroxypropyl)aziridines 5 ( $\mathrm{n}=1$, Scheme 1). Subsequent treatment with a base would then furnish oxazepane-aziridine fused systems 4 and 1-(2-oxiranylmethyl)aziridines 6, respectively (Scheme 1).


## Scheme 1

Substituted six-membered azaheterocycles in general and piperidines in particular are found in a whole variety of natural products and pharmaceutical compounds, and they continue to attract considerable attention due to their diverse and important biological activities. The pivotal position of piperidines is illustrated by the fact that several thousands of piperidine derivatives have been mentioned in clinical or preclinical studies. ${ }^{17}$ The biological importance of this ring system makes short and versatile routes to substituted piperidines of high interest and value. Therefore, a continuous interest exists in the development of new methodologies for the synthesis of biologically active piperidines. ${ }^{18}$ In light of this biological relevance, the synthetic applicability of 2-(2-bromo-1,1dimethylethyl)azetidines 8 toward stereodefined 4-acetoxy- and 4-hydroxypiperidines 10 will be evaluated, as the latter compounds have become increasingly popular as building blocks toward bioactive compounds. Thus, the synthesis of cis-3,4-disubstituted 5,5-dimethylpiperidines 10 will be investigated starting from 4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones 7. Monochloroalane-
mediated reduction of $\beta$-lactams 7 would afford azetidines $\mathbf{8}$, which are susceptible to intramolecular ring closure toward intermediate bicyclic azetidinium salts 9. Subsequent ring opening by the additional nucleophile would then give rise to the formation of the premised piperidines $\mathbf{1 0}$ (Scheme 2). The intermediacy of bicyclic azetidinium ions has previously been proposed in similar rearrangements, ${ }^{9,19}$ and particular attention will be devoted to the study of their viability in this work.


## Scheme 2

However, the synthesis of analogous piperidines 11, in which no 5,5-gem-dimethyl group is present, might open up interesting possibilities for the development of biologically and pharmaceutically relevant compounds as well. To achieve this goal, a different synthetic route will be developed. From a retrosynthetic point of view, the synthesis and subsequent ring enlargement of 2-(2mesyloxyethyl)azetidines 13 via bicyclic azetidinium ions 14 could offer a convenient alternative and an easy access to this new class of 5 -nonsubstituted piperidines 11 . Azetidines 13 will be prepared via 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones 12 , which will then undergo a $\mathrm{AlH}_{2} \mathrm{Cl}$ induced reduction and a TBAF-mediated deprotection toward the corresponding 2-(2hydroxyethyl)azetidines, which will be further converted via functional group transformation of the alcohol moiety to the mesyloxy group (Scheme 3).


## Scheme 3

Next to piperidines, the piperidin-4-one ring also comprises an important structural unit both from a medicinal and a chemical point of view, as piperidin-4-ones are known to possess inter alia CNS stimulant, ${ }^{20}$ antitumor, ${ }^{21}$ analgesic, ${ }^{22}$ and local anaesthetic ${ }^{23}$ activities, and selective modification of the carbonyl moiety can lead to a variety of functionalized piperidines. For these reasons, the onestep ring enlargement of 2-(2-mesyloxyethyl)azetidines 13 toward novel piperidin-4-ones 15 via a ring expansion-oxidation protocol upon heating in DMSO will be examined as an efficient synthetic methodology toward this new class of functionalized piperidin-4-one scaffolds (Scheme 4). Furthermore, in order to demonstrate their synthetic usefulness, both a chemical and an enzymatic reduction of the carbonyl moiety will be investigated to provide a convenient entry into the biologically interesting 4-hydroxylated piperidines 16 (Scheme 4). Special attention will hereby be devoted to stereochemical implications.


Scheme 4

In addition to the generation of monocyclic (aza)heterocyclic target compounds from azetidin-2ones, the $\beta$-lactam skeleton has been extensively used as a template to construct cyclic structures fused to the four-membered ring using the functionalization of the $\beta$-lactam nucleus as a stereocontrolling element. ${ }^{4 \mathrm{~g}, 24}$ In that respect, a new pathway toward 3,4 -fused bicyclic $\beta$-lactams will be developed, involving initial synthesis of 3-benzyloxy-4-(2-mesyloxyethyl)azetidin-2-ones 17, which will undergo hydrogenolysis of the benzyl ether substituent followed by intramolecular
nucleophilic displacement to form 2-oxa-6-azabicyclo[3.2.0]heptan-7-ones 18 (Scheme 5). Further hydrolysis of the amide bond in bicyclic $\beta$-lactams 18 would then give rise to the formation of constrained $\beta$-amino acid derivatives 19 (Scheme 5). $\beta$-Amino acids comprise a valuable class of compounds because of their broad biological and synthetic applicability. ${ }^{25}$ In particular, cyclic $\beta$ amino acids are present in a variety of natural products and are metabolically more stable toward hydrolysis then their $\alpha$-amino counterparts, which is of importance for the preparation of modified peptides. ${ }^{26}$


Scheme 5

In previous studies at the Department of Sustainable Organic Chemistry and Technology (UGent), 2(bromomethyl)aziridines have proven to be valuable synthons for the preparation of a wide variety of nitrogen-containing heterocyclic compounds and acyclic amines such as 4-amino-3pyrrolidinylbutanenitriles, ${ }^{27}$ 2-amino-1-aryloxy-3-methoxypropanes, ${ }^{28}$ cyclopropanecarbonitriles, ${ }^{29} \beta$ fluoro amines, ${ }^{30}$ 2-( $N$-sulfonylimino)azetidines, ${ }^{31}$ pyrrolidin-2-ones, ${ }^{32}$ morpholines, ${ }^{33} \quad 2-(N-$ ethylaminomethyl)aziridines, ${ }^{34}$ piperidines, ${ }^{35}$ thiazolines, ${ }^{36} \delta$-lactams and $\gamma$-lactones. ${ }^{37}$ The fact that both $\beta$-lactams and 2-(bromomethyl)aziridines have been shown amply to be valuable synthons in organic chemistry prompted us to design a strategy for the synthesis of new compounds in which these small ring systems are combined. In this way, initial selective manipulation of the $\beta$-lactam ring and/or the aziridine moiety followed by intramolecular rearrangements involving both structural units could provide a useful entry into a broad range of novel mono-, bi- and tricyclic target compounds. Thus, in a final section of this PhD thesis, $\beta$-lactam-aziridine hybrids 21 will be prepared through imination, bromination and reductive cyclization of $\beta$-lactam aldehydes 20, and will then undergo intramolecular nucleophilic displacement of bromide by the C-3 alkoxide (obtained upon hydrogenolysis of the benzyl ether substituent and subsequent treatment with a base) to yield tricyclic $\beta$-lactams 22 (Scheme 6).


Scheme 6

## 2 Literature Overview

In this chapter, a literature overview of the main synthetic routes dealing with the transformation of functionalized $\beta$-lactams into azaheterocyclic six-membered ring systems by cleavage of the $\beta$-lactam ring through any of the three possibilities, i.e., N1-C2, C3-C4 or C4-N1 bond cleavage, is presented (Figure 3). As the synthesis and synthetic applicability of the azetidin-2-one moiety has been reviewed extensively, ${ }^{4}$ the emphasis in this chapter lies on new literature data published during the period 2005-2012.


Figure 3

### 2.1 Ring transformation through N1-C2 bond cleavage

Two concise, complementary stereocontrolled routes to optically pure orthogonally protected anti,anti-4-amino-3,5-piperidinediols 26 have been described. Key features of the first approach (method $A$ ) include a chemoselective reductive ring opening of the $\beta$-lactam nucleus with $\mathrm{LiBH}_{4}$ to 3-amino-5-hydroxypentanenitriles 24, followed by reductive cyclization of conveniently functionalized $\delta$-mesyloxynitriles 25 with $\mathrm{NaBH}_{4} / \mathrm{NiCl}_{2}$ (Scheme 7). The second approach (method B) involves a $\mathrm{LiAlH}_{4}$-induced reduction of protected anti,anti-4-amino-3,5-dihydroxypiperidin-2-ones, which were easily obtained by chemoselective reduction of the cyano group in $\gamma$-cyano- $\beta$-amino esters 27 and subsequent intramolecular ring closure of the resulting diamino esters (Scheme 7). ${ }^{38}$


## Scheme 7

According to an analogous reaction sequence, $\beta$-lactams have been shown to play a key role in the synthesis of cisapride, a drug used for the treatment of various gastrointestinal disorders. ${ }^{39}$ The synthetic strategy consists of methanolysis of nitro- $\beta$-lactams 28 followed by a Pd-catalyzed reductive cyclization by means of ammonium formate and reduction of the carbonyl moiety upon treatment with borane (Scheme 8). ${ }^{40}$ The construction of the gastroprokinetic agent 32 was achieved in an additional three-step synthesis. ${ }^{41}$


## Scheme 8

An alternative (diastereoselective) approach for the synthesis of piperidine derivatives from $\beta$ lactams has been developed at the Department of Sustainable Organic Chemistry and Technology (Ghent University) and comprises the ring transformation of 3-(3-chloropropyl)- $\beta$-lactams 33, synthesized by treatment of $N$-(arylmethylidene)amines with 5-chloropentanoyl chloride in benzene
in the presence of 2,6 -lutidine..$^{10}$ The synthetic strategy involves a two-step synthesis of trans-2-arylpiperidine-3-carboxylates $\mathbf{3 6}$, compounds of significant interest due to their potential use in the treatment of Alzheimer's disease, ${ }^{42}$ upon subsequent treatment of 3-(3-chloropropyl)- $\beta$-lactams 33 with hydrogen chloride in methanol and triethylamine in dichloromethane (Scheme 9). This reaction has been proposed to proceed through initial nucleophilic ring opening of the protonated $\beta$-lactam 34 by methanol, followed by intramolecular displacement of chloride by the in situ formed free amine 35 upon addition of the base (Scheme 9). ${ }^{10}$ Interestingly, cis-piperidines would be expected, suggesting that epimerization has occurred during this transformation. Furthermore, these trans-2-arylpiperidine-3-carboxylates $\mathbf{3 6}$ were easily converted into their corresponding cis-isomers $\mathbf{3 7}$ by means of hydrazine monohydrate in methanol (Scheme 9). ${ }^{10}$


Scheme 9

Several examples are known in which aryl-substituted $\beta$-lactams are rearranged into functionalized quinolone derivatives, a family of compounds with inter alia broad-spectrum antibiotic, ${ }^{43}$ antidiabetic, ${ }^{44}$ antidepressant, sedative and antiparkinson ${ }^{45}$ properties. For example, 1-arylazetidin-2ones 38, synthesized by a Goldberg-Buchwald-type copper-catalyzed coupling of $N$-unsubstituted azetidin-2-ones with the appropriate aryl halides or using Mitsunobu cyclization processes, ${ }^{46}$ have been treated with triflic acid under mild reaction conditions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, which ensued a smooth Fries rearrangement delivering 2,3-dihydro-4(1H)-quinolinones 44 in good to high yields (71-98\%) (Scheme 10). ${ }^{46}$ This intramolecular Friedel-Crafts acylation is the result of an acid-mediated amide bond cleavage in $\beta$-lactams 38, generating a highly reactive free acylium ion in intermediates 43, which
subsequently undergo an intramolecular electrophilic aromatic substitution (Scheme 10). Recently, this transformation has been used in the synthesis of TRPV1 antagonists as analgesic agents. ${ }^{47}$


Scheme 10

Another method for the construction of dihydroquinolinones from $\beta$-lactams starts with the microwave-assisted transfer hydrogenation of the ortho-nitro group in azetidinones 45, synthesized via the Staudinger reaction, to afford intermediates 46 by using ammonium formate in ethylene glycol. Subsequent in situ intramolecular $\beta$-lactam ring opening provided 4-amino-3,4-dihydroquinolin-2-ones 47 in 74-90\% yield (Scheme 11). ${ }^{48}$


Scheme 11

Isoquinoline-based scaffolds represent an important group of biologically active compounds and are attracting increasing attention in contemporary biomedical research and drug discovery programs. Several members of this group exhibit various pharmacological and biological activities, including potential anticancer properties. ${ }^{49}$ In that respect, recently, the single-step diastereoselective
synthesis of functionalized hexahydroisoquinolinones 52 and tetrahydroisoquinoline-1,3-diones 50 has been realized by intermolecular NaOMe -induced amidolysis of 1-aryl- $\beta$-lactams $48(\mathrm{Z}=\mathrm{OMe})$ and subsequent intramolecular cyclization upon reflux in xylene, and by intramolecular base-induced amidolysis of 1-aryl- $\beta$-lactams $48\left(\mathrm{Z}=\mathrm{NH}_{2}\right)$ with concomitant two-carbon ring enlargement by stirring in MeOH at room temperature, respectively (Scheme 12). ${ }^{50}$


## Scheme 12

Furthermore, it has been observed that treatment of $\beta$-lactams $48\left(\mathrm{Z}=\mathrm{NH}_{2}\right)$ with NaOMe and $\mathrm{I}_{2}$ in methanol at room temperature gave rise to iodinated octahydropyrroloisoquinoline-1,3-diones 54 and 4-[(4-iodophenylamino)arylmethyl]tetrahydroisoquinoline-1,3-diones 56 depending upon the N substituent of the $\beta$-lactam ring. ${ }^{50}$ In the case para-substituted 1-arylazetidin-2-ones $48\left(\mathrm{Z}=\mathrm{NH}_{2}, \mathrm{R}^{1}=\right.$ $\mathrm{Me}, \mathrm{Cl}$ ) were deployed as synthetic precursors, electrophilic addition of molecular iodine across the double bond in the initially formed tetrahydroisoquinoline-1,3-dione derivatives $\mathbf{5 0}$ yielded intermediate iodonium ions 53, which upon intramolecular cyclization afforded the corresponding functionalized tricyclic tetrahydropyrrole derivatives 54 in 49-55 \% yield (Scheme 13). ${ }^{50}$ Interestingly, $N$-phenyl- $\beta$-lactams $48\left(Z=\mathrm{NH}_{2}, \mathrm{R}^{1}=\mathrm{H}\right)$ underwent electrophilic aromatic substitution instead of iodocyclization upon addition of $\mathrm{I}_{2}$, which has been explained considering the initial formation of diketones 55 having a negative charge on the nitrogen atom. In this way, the electron density at the para-position of the phenyl substituent increases, thus favouring aromatic electrophilic substitution
with molecular iodine, resulting in the selective preparation of iodinated tetrahydroisoquinoline-1,3diones 56 in 68-74\% yield after re-aromatization (Scheme 13). ${ }^{50}$


Scheme 13

The synthetic usefulness of $\beta$-lactam to piperidinone transformations has also been demonstrated through the synthesis of dihydroindolizinones. Enynyl $\beta$-lactams 57 have been rearranged into 5,6-dihydro-8H-indolizin-7-ones 64 through a regiospecific Au-catalyzed $\beta$-lactam ring opening and recyclization sequence. The reaction mechanism of this ring expansion has been rationalized by considering an initial 5-exo-dig cyclization of the lactam nitrogen to the metal-activated alkyne moiety, followed by a heterocyclic fragmentation of the amide bond to generate acyl cations 61, which subsequently undergo cyclization to the enamine moiety to afford bicyclic zwitterions 62. Finally, recuperation of the Au-catalyst and subsequent 1,5-hydride migration gives bicyclic pyrroles 64 (Scheme 14)..$^{51}$ This synthetic strategy was further extended by the development of naturally occurring indolizidine alkaloids, as demonstrated by the synthesis of racemic indolizidine 167B 65, an alkaloid isolated from neotropical poison dart frogs (Scheme 14). ${ }^{51}$

$\mathrm{R}^{1}=\mathrm{H}, \mathrm{BnOCH}_{2} \mathrm{CH}_{2}, \mathrm{cHex}, n \mathrm{Pr} ; \mathrm{R}^{2}=\mathrm{H}, \mathrm{Ph}, n \mathrm{Hex} ; \mathrm{R}^{1} \mathrm{R}^{2}=\left(\mathrm{CH}_{2}\right)_{5},\left(\mathrm{CH}_{2}\right)_{6}$;
$\mathrm{R}^{3}=\mathrm{H}, \mathrm{Me}, \mathrm{Et}, \mathrm{Bn}, n \mathrm{Pr} ; \mathrm{R}^{4}=\mathrm{H}, \mathrm{Me}, \mathrm{Et},(\mathrm{Et})_{2}$

## Scheme 14

A one-step approach has been reported for the conversion of 4-acyloxy- $\beta$-lactams 66 into 1,3-oxazin6 -ones $\mathbf{7 0}$ by using acyl chlorides in the presence of DBU (Scheme 15). ${ }^{52}$ After initial acylation of the $\beta$-lactam nitrogen, the acidity of the $\mathrm{H}-3$ proton of the $\beta$-lactam nucleus is enhanced by the electronwithdrawing $N$-acyl group, thus making the $\beta$-lactam carbonyl group more "ketone-like". As a result, the organic base DBU promotes the elimination of the carboxylic acid ( $\mathrm{R}^{1} \mathrm{CO}_{2} \mathrm{H}$ ) across the $\beta$-lactam C3-C4 bond generating highly strained azetinones 68, which rapidly experience a four-centered electrocyclic ring opening to $N$-acylimidoylketenes 69, which in turn provide 1,3-oxazin-6-ones 70 in 40-76\% yield through a six-centered electrocyclic ring closure (Scheme 15). ${ }^{52}$


## Scheme 15

Another example of a two-step ring transformation of $\beta$-lactams into nitrogen- and oxygencontaining six-membered heterocycles, developed at the Department of Sustainable Organic Chemistry and Technology (Ghent University), comprises the synthesis of 1,3-oxazinanes 73 via $\mathrm{LiAlH}_{4}$-promoted reductive ring opening of cis- $\beta$-lactams 71 toward $\gamma$-aminoalcohols 72 , followed by recyclization using formaldehyde in THF (Scheme 16). ${ }^{53}$ The biological importance of these classes of compounds has been demonstrated by evaluation of their in vitro antiplasmodial activity and cytotoxicity, pointing to their promising potential as a novel type of antimalarial agents. ${ }^{53}$

$\mathrm{R}^{1}=i \mathrm{Pr}, n \mathrm{Pr}, \mathrm{Bu}, \mathrm{tBu}, c \mathrm{Hex}, \mathrm{Ph}, \mathrm{Bn}$
$R^{2}=\mathrm{H}, 4-\mathrm{Me}, 3-\mathrm{OMe}, 4-\mathrm{OMe}, 4-\mathrm{Cl}, 2-\mathrm{Br}, 2-\mathrm{F}$
$R^{3}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Bn}$

## Scheme 16

In a single example, racemic 3 -allyl-4-formyl- $\beta$-lactam 74 was treated with $N$-methylhydroxylamine hydrochloride in the presence of triethylamine, which, upon intramolecular protonation of the olefin moiety toward the corresponding zwitterionic bicyclic hemiaminal 76 followed by imination of the latent aldehyde, gave rise to the selective formation of nitrone 78 in $50 \%$ yield (Scheme 17). This nitrone 78 proved to be unstable in chloroform and after one week 1,2-oxazinane-6-one 80 was obtained in quantitative yield through intramolecular ring opening of the $\beta$-lactam nucleus via the N1-C2 bond (Scheme 17). ${ }^{54}$


Scheme 17

Indane-fused dihydropyrimidinones 83 and 85 have been obtained by ring enlargement of 3,4-benzo-6-azabicyclo[3.2.0]heptan-7-one 81, prepared from indene by chlorosulfonyl isocyanate addition, upon melting with imidates or lactim ethers at $150-160^{\circ} \mathrm{C}$ for 8 hours (Scheme 18). The first step in the reaction is the formation of amidine intermediates 82 and 84 , which, after intramolecular transamidation with simultaneous N1-C2 bond fission, rearrange into tri- and tetracycles 83 and 85, respectively (Scheme 18). ${ }^{55}$


Scheme 18

In addition, 1,3-diamine 86, synthesized via N1-C2 bond cleavage of tricyclic $\beta$-lactam $\mathbf{8 1}$, has been treated with 2-formylbenzoic acid or levulinic acid in boiling toluene, which ensued, after initial imination, a smooth two ring-closure sequence delivering indane-fused hexahydropyrimidines 89 and 92 with complete diastereoselectivity in $65 \%$ and $63 \%$ yield, respectively (Scheme 19). ${ }^{55}$ The stereochemical outcome of this overall ring rearrangement has been rationalized assuming the formation of a tautomeric equilibrium between the intermediates 87 and 90 , respectively, in combination with a kinetic control governing the second cyclization step (Scheme 19). ${ }^{55}$


Scheme 19

### 2.2 Ring transformation through C3-C4 bond cleavage

The tandem cycloetherification/ $\beta$-lactam ring cleavage of racemic $\gamma$-olefinic $\alpha$-allenols 93 , prepared from the appropriate 4-oxoazetidine-2-carboxaldehydes via a regiocontrolled indium-mediated Barbier-type carbonyl-allenylation in aqueous medium, ${ }^{56,57}$ in the presence of catalytic iron(III) trichloride in dichloroethane at $80^{\circ} \mathrm{C}$ in a sealed tube has been described to selectively afford allenic morpholinones 97 in good yields (78-85\%) (Scheme 20). ${ }^{57}$ Probably, the hydroxyl-iron complex 94, formed initially through coordination of $\mathrm{FeCl}_{3}$ to the oxygen atom of olefinic allenols 93, considerably increases the acidity of the hydroxyl protons, thus inducing a chemo- and regioselective
intramolecular protonation of the alkene moiety with concomitant 4-exo oxycyclization to yield bicycles 95, which, driven by relief of the strain associated with the four-membered ring, rapidly evolve to intermediates 96 through selective $\beta$-lactam ring cleavage. Finally, demetalation regenerates the iron catalyst and affords morpholinones 97 (Scheme 20). ${ }^{57}$ Alternatively, initial activation by coordination of $\mathrm{FeCl}_{3}$ to the olefinic double bond cannot be excluded.


Scheme 20

As described above, $\beta$-lactams are excellent substrates for the synthesis of functionalized piperidinone derivatives through selective fragmentation of the N1-C2 amide bond of the $\beta$-lactam nucleus followed by ring expansion. Also, $\beta$-lactams have been proven to be suitable building blocks for the ring enlargement toward dihydropyridones, as demonstrated by the thermally induced [1,3]sigmatropic rearrangement with concomitant C3-C4 bond cleavage of 4,4-dienyl- $\beta$-lactams 99, which have been obtained through [2+2]-cyclocondensation of azatrienes 98 with the appropriate ketenes, upon heating in toluene or xylene (Scheme 21). ${ }^{58}$ When the starting $\beta$-lactams 99 have two different vinyl substituents ( $\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}^{3}=\mathrm{H}$ or $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}$ ), the regioselectivity of the rearrangement reaction depends on steric factors and on the electronic demands of the substituents. Whereas in the former case ( $\mathrm{R}^{1}=\mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{CO}_{2} \mathrm{Et} ; \mathrm{R}^{3}=\mathrm{H}$ ) the predominant formation of dihydropyridones 100 can be attributed to the benzylic stabilization of the developing carbenium ion, in the latter case ( $\left.R^{1}=P h, C O_{2} E t ; R^{2}=R^{3}=M e\right)$ steric factors play a predominant role rather than electronic factors, inducing reaction at the monosubstituted diene C-terminus even if the substituent is an electron-withdrawing ethoxycarbonyl group (Scheme 21). ${ }^{58}$


## Scheme 21

A $\beta$-lactam to piperazinone rearrangement has been reported in the synthesis of 1,4diazabicyclo[4.3.0]nonanones 107 from 4-formyl-spiro- $\beta$-lactams 102 by means of a Pd-catalyzed hydrogenation. This ring transformation involves, after initial hydrogenolytic removal of the benzyloxycarbonyl protecting group, a retro-Mannich process, which induces $\beta$-lactam ring opening through selective C3-C4 bond fission, affording intermediate enols 104 (Scheme 22). ${ }^{59}$ Further hydrogenation, nucleophilic addition of the in situ liberated secondary amine to the aldehyde group and elimination finalizes the reaction pathway, generating pyrrolidine-fused pyrazinones $\mathbf{1 0 7}$ in good yields (70-90\%) (Scheme 22). ${ }^{59}$ 1,4-Diazabicyclo[4.3.0]nonanes comprise remarkable structural units encountered in several biologically active products, as demonstrated by their potential use in the treatment of inter alia schizophrenia, depression, memory dysfunction, ${ }^{60}$ filariasis ${ }^{61}$ and angina pectoris. ${ }^{62}$ In that respect, further derivatization of bicyclic piperazinone $107\left[\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}(3,4-\right.$ $\left.\mathrm{Cl}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}$ ], i. e., monochloroalane-mediated reduction of the carbonyl functionality, enabled the synthesis of 1,4-diazabicyclo[4.3.0]nonane 108 (Scheme 22), ${ }^{59}$ a compound claimed for the treatment of central nervous system disorders. ${ }^{63}$

$\mathrm{R}=\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\left(3,4-\mathrm{Cl}_{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}$

Scheme 22

### 2.3 Ring transformation through C4-N1 bond cleavage

The first two-carbon ring expansion of a $\beta$-lactam through cleavage of the C4-N1 bond has been described in the synthesis of 1,3,4,5-tetrasubstituted glutarimides. The presence of a 4hydroxyphenyl substituent at the 4-position in the starting 3-alkylazetidin-2-ones 109 enabled a base-mediated C4-N1 bond fission upon treatment with potassium tert-butoxide in DMF, which induced the formation of the corresponding phenolate anions followed by rearrangement to intermediate quinone methides 110 with simultaneous C4-N1 bond cleavage (Scheme 23). ${ }^{64}$ The latter reactive quinone methides 110 are subsequently quenched by the tert-butyl methyl malonate anion in a Michael-type 1,6-conjugate addition at the benzylic carbon atom and are transformed into glutarimides 113 upon cyclization and removal of the tert-butyl group with trifluoroacetic acid (Scheme 23). The stereochemistry of the ring expansion proved to be dependent on the specific C3substituent of the starting $\beta$-lactams $109 .{ }^{64}$


Scheme 23

Next to the base-catalyzed ring opening of 4-(4-hydroxyphenyl)- $\beta$-lactams, the latter azetidinones are also cleaved under acidic conditions. It has been observed that treatment of $\beta$-lactams 114 with neat trifluoroacetic acid gave rise to the formation of intermediates 115, which upon intramolecular Friedel-Crafts alkylation ensued to recyclize toward 3,4-dihydroquinolin-2-ones 116 in quantitative yields (Scheme 24). ${ }^{65}$ It has to be noted that the 4-(4-hydroxyphenyl) substituent in the starting $\beta$ lactams 114 induces C4-N1 bond cleavage, whereas in the absence of a C4-substituent cleavage of the amide bond occurs upon treatment with trifluoroacetic acid (Scheme 10).


Scheme 24

### 2.4 Conclusion

Despite the $\beta$-lactam skeleton being just a four-membered cyclic amide, it is a useful and versatile building block exhibiting an extremely rich organic chemistry. The selective bond cleavage of the $\beta$ lactam nucleus has proven to have many applications in stereocontrolled synthesis, including the synthesis of azaheterocyclic six-membered ring systems (Figure 4).


Figure 4

In this PhD thesis, the potential of substituted azetidin-2-ones as building blocks for the stereoselective preparation of various functionalized piperidines, piperidinones, oxazin-3-ones, morpholin-3-ones and pyrazinones will be explored with the intention to provide new entries toward biologically interesting scaffolds.

## 3 Results and Discussion

This PhD-thesis is partly based on the following SCI-papers, referred to in the text by the Roman numerals I-VI:
I. Transformation of trans-4-Aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones into 3-Aryl-2-(ethylamino)propan-1-ols via Intermediate 1-(1-Aryl-2-chloro-3-hydroxypropyl)aziridines and trans-2-Aryl-3-(hydroxymethyl)aziridines. Mollet, K.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 2011, 76, 264. (SCI IF 4.45)
II. Synthesis of stereodefined 3,4-disubstituted piperidines through rearrangement of 2-(2-bromo-1,1-dimethylethyl)azetidines. Mollet, K.; Broeckx, L.; D’hooghe, M.; De Kimpe, N. Heterocycles 2012, 84, 431. (SCI IF 1.00)
III. Stereoselective Synthesis of cis-3,4-Disubstituted Piperidines through Ring Transformation of 2-(2-Mesyloxyethyl)azetidines. Mollet, K.; Catak, S.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 2011, 76, 8364. (SCI IF 4.45)
IV. Stereoselective synthesis of bicyclic tetrahydrofuran-fused $\beta$-lactams and their conversion into methyl cis-3-aminotetrahydrofuran-2-carboxylates. Mollet, K.; D’hooghe, M.; De Kimpe, N. Tetrahedron 2012, 68, 10787. (SCI IF 3.03)
V. Synthesis of piperidin-4-ones starting from 2-(2-bromo-1,1-dimethylethyl)azetidines and 2-(2-mesyloxyethyl)azetidines through a ring expansion-oxidation protocol. Mollet, K.; D’hooghe, M.; Broeckx, L.; Danneels, B.; Desmet, T.; De Kimpe, N. Tetrahedron 2013, 69, 2603. (SCI IF 3.03)
VI. Synthesis of 2-Hydroxy-1,4-oxazin-3-ones through Ring Transformation of 3-Hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams and a Study of Their Reactivity. Mollet, K.; Goossens, H.; Piens, N.; Catak, S.; Waroquier, M.; Törnroos, K. W.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. Chem. Eur. J. 2013, 19, 3383. (SCI IF 5.93)

### 3.1 Reactivity of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones toward $\mathrm{LiAlH}_{4}$ (Paper I)

Both halogenated azetidin-2-ones and azetidin-2-ones bearing halogenated side chains are useful starting materials for rearrangements due to their high intrinsic reactivity, which is based on the combination of a strained four-membered ring system, a nucleophilic nitrogen (obtained after further elaboration) and an electrophilic carbon center. In that respect, in previous studies at the Department of Sustainable Organic Chemistry and Technology (Ghent University), intensive research on the synthetic applicability of the mainly unexplored class of 4-(haloalkyl)azetidin-2-ones $\mathbf{1 c}$ has resulted in the efficient and diastereoselective preparation of a wide variety of functionalized azaheterocyclic compounds, including aziridines, ${ }^{7}$ azetidines, ${ }^{7,9}$ piperidines, ${ }^{9,11}$ pyrrolidines, ${ }^{9,12}$ azepanes, ${ }^{11}$ pyrrolidin-2-ones, ${ }^{13}$ oxolanes, ${ }^{7,14} 1,4$ - and 3,4 -fused bicyclic $\beta$-lactams, ${ }^{11,14}$ and bicyclic $\gamma$ lactams (Figure 2). ${ }^{16}$

One of the most straightforward transformations of $\beta$-lactams comprises their reductive ring opening toward $\gamma$-aminoalcohols. ${ }^{6,66}$ The presence of halogenated carbon atoms in these substrates is of synthetic relevance, as this can lead further to rearrangements toward azaheterocyclic compounds. In previous studies at the Department of Sustainable Organic Chemistry and Technology (Ghent University), the applicability of halogen-bearing $\beta$-lactams for the construction of stereodefined aziridines upon treatment with $\mathrm{LiAlH}_{4}$, e.g., the conversion of N -(2-chloroethyl)azetidin-2-ones $\mathbf{1 1 7}$ into 1-(3-hydroxypropyl)aziridines $119^{6}$ and the reductive ring contraction of 3-chloro- $\beta$-lactams $\mathbf{1 2 0}$ into 3-(hydroxymethyl)aziridines $\mathbf{1 2 2}{ }^{5}$, has been demonstrated (Scheme 25). However, up to now, the reactivity of halogenated $\beta$-lactams 2 bearing a halogenated side chain toward $\mathrm{LiAlH}_{4}$ has not been explored in the literature.

$\mathrm{R}^{1}=\mathrm{H}, 4-\mathrm{Cl}, 4-\mathrm{Me}, 4-\mathrm{OMe}, 3-\mathrm{OMe}$
$R^{2}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Bn}$
$L=H, O R$

$\mathrm{R}^{1}=\mathrm{H}, 4-\mathrm{Cl}, 4-\mathrm{OMe}, 2-\mathrm{F}, 2-\mathrm{Cl}, 4-\mathrm{Me}$
$\mathrm{R}^{2}=\mathrm{iPr}, n \mathrm{Pr}, \mathrm{Bu}, \mathrm{Bn}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$
$L=H, O R$

## Scheme 25

The chemistry of 3-chloro- $\beta$-lactams comprises a mainly unexplored field in the literature, although these compounds are very useful substrates for further elaboration due to their unique synthetic properties, e.g., dehalogenation toward 3 -unsubstituted azetidinones ${ }^{67}$ and conversion into different 3 -substituted azetidines. ${ }^{8}$ In addition, also the use of $N$-( $\omega$-haloalkyl)- $\beta$-lactams has been studied to a very limited extent, for example toward the synthesis of 1,4-diazepan-5-ones ${ }^{68}$ and bicyclic $\beta$ lactams. ${ }^{15}$ In this chapter, both structural features were combined into a new type of substrates, i.e., 3-chloro-1-(2-chloroethyl)- $\beta$-lactams, which were evaluated for their reactivity toward $\mathrm{LiAlH}_{4}$. Although other reducing agents such as $\mathrm{LiBEt}_{3} \mathrm{H}$ and $\mathrm{LiBH}_{4}$ could be used, ${ }^{66}$ the choice for $\mathrm{LiAlH}_{4}$ was based on previous experiments conducted at the Department of Sustainable Organic Chemistry and Technology (Ghent University).

### 3.1.1 Synthesis of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones

The synthesis of trans-4-aryl-3-chloro-1-(2-chloroethyl)- $\beta$-lactams 2a-d, in which the two halogen atoms reside in $\beta$-position with respect to the nitrogen atom, was accomplished by Staudinger's ketene-imine cyclocondensation reaction. Thus, treatment of $N$-(arylmethylidene)-(2chloroethyl)amines 124a-d, prepared via imination of benzaldehydes 123a-d in dichloromethane in the presence of $\mathrm{MgSO}_{4}$ and $\mathrm{Et}_{3} \mathrm{~N}$ utilizing one equiv of 2-chloroethylamine hydrochloride, with 1.5 equiv of chloroacetyl chloride and three equiv of 2,6-lutidine in benzene gave the premised trans-4-aryl-3-chloro-1-(2-chloroethyl)- $\beta$-lactams 2a-d in 60-75\% yield (Scheme 26).

In accordance with previous results on $\beta$-lactam synthesis, ${ }^{5 a, 8}$ the latter $\beta$-lactams 2a-d were obtained stereoselectively (cis/trans 3-5/95-97) after a reflux period of 15 hours, and separation of both isomers was performed by means of column chromatography on silica gel. The trans-selectivity could be deduced based on the ${ }^{1} \mathrm{H}$ NMR spectra of $\beta$-lactams $\mathbf{2 a}$-d, as the observed coupling constants between the $3-\mathrm{H}$ and $4-\mathrm{H}$ protons varied between 1.1 and $2.0 \mathrm{~Hz}\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}\right)$, which corresponds well with those reported in the literature for trans- $\beta$-lactams. ${ }^{69}$ It should be noted that dichlorinated $\beta$-lactams $\mathbf{2}$ represent a novel class of substrates suitable for further elaborations.


## Scheme 26

The stereochemical outcome of this Staudinger reaction can be rationalized as follows. Next to different experimental factors, such as the choice of the solvent, base and reaction temperature, ${ }^{70}$ it is well known that the specific ketene substituent plays an important role in the diastereoselectivity of the Staudinger reaction. ${ }^{71}$ When the ketene, in situ generated from an acid chloride in the presence of a base, is substituted with a chloro atom (Moore ketene), $E / Z$-isomerisation across the iminium bond of the zwitterionic intermediate, formed by nucleophilic attack of the imine across the less hindered site of the ketene, followed by conrotatory ring closure will mostly afford the thermodynamically more stable trans- $\beta$-lactams (Figure 5), while electron-donating ketene substituents, e.g., in Bose-Evans ketenes (alkoxy ketenes), generally accelerate the direct conrotatory ring closure, leading to a preference of cis- $\beta$-lactam formation. ${ }^{71}$


## Figure 5

### 3.1.2 Synthesis of 3-aryl-2-(ethylamino)propan-1-ols

The reductive ring opening of azetidin-2-ones by means of $\mathrm{LiAlH}_{4}$ has been described as an efficient approach toward $\beta$ - en $\gamma$-aminoalcohols. ${ }^{5,6,53,66}$ In analogy, trans-4-aryl-3-chloro-1-(2-chloroethyl)- $\beta$ lactams 2a-d were treated with three molar equiv of $\mathrm{LiAlH}_{4}$ in THF under reflux for 48 hours, resulting in full conversion of the starting material. Quite unexpectedly, spectroscopic analysis of the obtained reaction products revealed their molecular structure to be 3-aryl-2-(ethylamino)propan-1-ols 127a-d (Scheme 27).


## Scheme 27

The synthesis of $\beta$-aminoalcohols merits considerable attention since these compounds play an important role in synthetic organic chemistry, for example as auxiliaries and ligands in asymmetric synthesis. ${ }^{72}$ The two heteroatoms allow great flexibility, as one or both can be bound to a Lewis acid, transition metal or achiral starting material. ${ }^{72}$ In addition, a variety of $\beta$-aminoalcohols exhibit various pharmacological properties, and the $\beta$-aminoalcohol moiety is present as a key structural unit in different biologically active compounds. For example, the $\beta$-blockers propranolol $1 \mathbf{2 8}$ and metoprolol 129 are used for treating abnormal heart rhythm, high blood pressure, heart failure and angina (Figure 6). ${ }^{73}$



128
Propranolol


Metoprolol

Figure 6

### 3.1.2.1 Elucidation of the reaction mechanism

In order to elucidate the mechanistic background of this intriguing transformation, $\beta$-lactam 2a was subjected to different reaction conditions, involving variation of the reaction time, reaction temperature, solvent and number of molar equiv of LiAlH 4 . First, trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)- $\beta$-lactam 2a was treated with two molar equiv of lithium aluminium hydride in diethyl ether under reflux for two hours.

This process resulted in 1,2-fission of the amide bond, followed by intramolecular displacement of the chloride at the primary carbon atom by the nucleophilic nitrogen, giving rise to the initially expected 1-[2-chloro-3-hydroxy-1-(4-methylphenyl)]aziridine 5a. Interestingly, next to the latter aziridine 5a, a substantial amount of trans-1-ethyl-3-hydroxymethyl-2-(4-methylphenyl)aziridine 132a was observed in the crude reaction mixture as well (Scheme 28, ratio 5a/132a: 70/30). ${ }^{5}$


## Scheme 28

The unexpected formation of $N$-ethylaziridine 132a can be rationalized in two ways. In a first approach, the nucleophilic nitrogen in intermediate 131a, formed after cleavage of the amide bond
of $\beta$-lactam 2a, displaces the chloride at the secondary carbon atom to afford aziridine 132a in a direct way. Since a primary electrophilic carbon atom is more likely to be attacked than a secondary, this competition could not explain the observed ratio (70/30). Alternatively, the presence of the latter aziridine 132a can be explained by a possible ring transformation of aziridine 5a. Considering the in situ activation of the aziridine moiety by the Lewis acid character of aluminium in chair-like intermediate 134a, aziridine 132a can be formed by hydride-induced ring opening followed by intramolecular substitution of the chloro atom (Scheme 29, Route A). Alternatively, initial displacement of chloride by the nucleophilic aziridine nitrogen to form an $N$-spiro bis-aziridinium intermediate 136a, followed by hydride-induced ring opening toward aziridine 132a cannot be excluded (Scheme 29, Route B).

Route A


Route B


## Scheme 29

It should be mentioned that non-activated aziridines are generally known to be highly reluctant toward hydride-induced ring opening, ${ }^{74}$ and little information can be found in the literature concerning the corresponding intramolecular versions as in the case of intermediate 134a. Furthermore, although reaction mechanisms consistent with the formation of bicyclic aziridinium salts are known, ${ }^{75}$ the occurence of 1-azoniaspiro[2.2]pentanes 136 as such has not been described in the literature, apart from one paper in which the $N$-spiro bis-aziridinium ion is suggested to be a stable and isolable molecule based on ab initio studies. ${ }^{76}$

In order to prevent hydride-induced ring transformation of aziridine 5a toward aziridine 132a, milder reaction conditions were applied for the reduction of $\beta$-lactam 2a. Thus, treatment of $\beta$-lactam 2a with one molar equiv of $\mathrm{LiAlH}_{4}$ in THF at room temperature for 6-91 hours afforded a mixture of $\gamma$ -
aminoalcohol 137a and aziridine 5a in varying amounts (Scheme 30, Table 1). From a mechanistic point of view, these results can be rationalized considering the conversion of $\beta$-lactam $\mathbf{2 a}$ into aziridine 5a via intermediate $\gamma$-aminoalcohol 137a, as mentioned before. In this way, 1-(1-aryl-2-chloro-3-hydroxypropyl)aziridines $\mathbf{5 a} \mathbf{a} \mathbf{b}$ were isolated in pure form and in good yields after purification by column chromatography on silica gel (Table 2). Interestingly, all four hydrogen atoms of aziridines $5 \mathbf{5}, \mathbf{b}$ were observed as separate doublets of doublets with characteristic aziridine chemical shifts (1.05-2.20 ppm, $\mathrm{CDCl}_{3}$ ). Also, spectroscopic analysis by ${ }^{13} \mathrm{C}$ NMR revealed different $\delta$ values for the two aziridine carbon atoms (25.22-25.28 ppm and 31.62-31.64 ppm, $\mathrm{CDCl}_{3}$ ). These findings are in accordance with analogous results reported in the literature for $C$-unsubstituted aziridines. ${ }^{6,77}$


## Scheme 30

Table 1. Reduction of trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)- $\beta$-lactam 2 a in THF at room temperature

| Number of molar equiv $\mathrm{LiAlH}_{4}$ | Solvent | Temperature | Time | Result |
| :---: | :---: | :---: | :---: | :---: |
| 1 | THF | rt | 6 h | $\mathbf{1 3 7 a} / 5 \mathrm{a}=55 / 45$ |
| 1 | THF | rt | 19 h | $\mathbf{1 3 7 a} / 5 \mathrm{a}=25 / 75$ |
| 1 | THF | rt | 91 h | $\mathbf{1 3 7 a} / 5 \mathrm{a}=13 / 87$ |

Table 2. Transformation of trans-4-aryl-3-chloro-1-(2-chloroethyl)- $\beta$-lactams 2a,b into 1-(1-aryl-2-chloro-3hydroxypropyl)aziridines 5a,b

| Substrate | $\mathbf{R}$ | Reaction conditions | Compound (yield) ${ }^{\mathbf{a}}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 a}$ | $4-\mathrm{Me}$ | 1 molar equiv $\mathrm{LiAlH}, \mathrm{THF}, \mathrm{rt}, 91 \mathrm{~h}$ | $\mathbf{5 a}(40 \%)$ |
| $\mathbf{2 b}$ | H | 1 molar equiv $\mathrm{LiAlH}_{4}, \mathrm{THF}, \mathrm{rt}, 91 \mathrm{~h}$ | $\mathbf{5 b}(55 \%)$ |
| a After purification by column chromatography $\left(\mathrm{SiO}_{2}\right)$. |  |  |  |

In the next stage, different attempts were made to tune the reaction selectivity toward aziridine 132a starting from $\beta$-lactam 2a upon treatment with $\mathrm{LiAlH}_{4}$ (Scheme 31, Table 3). From the presented results, it can be deduced that although complete conversion of aziridine 5 a into aziridine

132a was achieved by establishing more forcing reaction conditions, the inherent reactivity of the intermediate 2-arylaziridine 132a toward $\mathrm{LiAlH}_{4}$ resulted in fast ring opening toward $\beta$-aminoalcohol 127a at higher temperatures. In this transformation, $\mathrm{LiAlH}_{4}$ is responsible for both the activation of the aziridine ring, resulting in a considerable weakening of the $\mathrm{C} 2-\mathrm{N}$ bond due to benzylic stabilisation of the developing carbenium ion, and for the delivery of the nucleophilic hydride which subsequently induces ring opening in a regioselective manner. ${ }^{5 a}$


## Scheme 31

Table 3. Reduction of trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)- $\beta$-lactam 2 a under different reaction conditions

| Entry | Number of molar equiv LiAlH ${ }_{4}$ | Solvent | Temperature | Time | Result | Yield |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | THF | reflux | 2 h | 137a/5a/132a = | 80\% |
|  |  |  |  |  | 45/45/10 |  |
| 2 | 2 | THF | reflux | 2 h | $5 \mathrm{a} / 132 \mathrm{a}=72 / 28$ | 85\% |
| 3 | 2 | THF | rt | 18 h | $5 a / 132 a=67 / 33$ | 81\% |
| 4 | 2 | THF | rt | 20 h | $5 a / 132 a=62 / 38$ | 82\% |
| 5 | 2 | THF | rt | 100 h | $5 a / 132 a=67 / 33$ | 75\% |
| 6 | 2 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 1 h | $5 a / 132 a=73 / 27$ | 68\% |
| 7 | 2 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 2 h | $5 a / 132 a=70 / 30$ | 72\% |
| 8 | 2 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 3 h | $5 a / 132 a=62 / 38$ | 87\% |
| 9 | 2 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 4 h | 5a/132a/127a = | 83\% |
|  |  |  |  |  | 48/33/19 |  |
| 10 | 2 | THF | reflux | 7 h | 132a/127a $=50 / 50$ | 65\% |
| 11 | 3 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 1 h | $5 a / 132 a=71 / 29$ | 69\% |
| 12 | 3 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 5 h | 5a/132a/127a = | 79\% |
|  |  |  |  |  |  |  |
| 13 | 3 | $\mathrm{Et}_{2} \mathrm{O}$ | reflux | 20 h | 132a/127a $=25 / 75$ | 82\% |
| 14 | 3 | THF | reflux | 48 h | 127a | 82\% |
| 15 | 4 | THF | reflux | 1 h | 132a/127a = 58/42 | 73\% |

These detailed experiments finally culminated in a straightforward and efficient synthesis of 3-aryl-2-(ethylamino)propan-1-ols 127a-d from trans-4-aryl-3-chloro-1-(2-chloroethyl)- $\beta$-lactams 2a-d upon treatment with three molar equiv of $\mathrm{LiAlH}_{4}$ in THF under reflux for 48 hours (Table 3, Entry 14) through formation and subsequent conversion of intermediates 131a-d, 133a-d and 138a-d (Scheme 32).


Scheme 32

To provide additional evidence for this reaction mechanism, 3-aryl-2-(ethylamino)propan-1-ols 127a,b were synthesized in excellent yields by reduction of 1-(1-aryl-2-chloro-3hydroxypropyl)aziridines $\mathbf{5 a , b}$ using three molar equiv of $\mathrm{LiAlH}_{4}$ in THF under reflux for 48 hours (Scheme 33).


## Scheme 33

In conclusion, an efficient approach toward novel $\beta$-aminoalcohols is described by means of a $\mathrm{LiAlH}_{4}{ }^{-}$ mediated transformation of 3-chloro-1-(2-chloroethyl)- $\beta$-lactams. It is clear that the presence of two halogenated carbon atoms allows high synthetic flexibility, and selective manipulation of one electrophilic carbon center (followed by intramolecular rearrangements) opens new ways for the synthesis of biologically relevant target structures.

### 3.2 Diastereoselective synthesis of 3,4-disubstituted piperidines through rearrangement of azetidines

As substituted six-membered azaheterocycles are among the most common building blocks in natural products and biologically active compounds, the preparation of piperidine-based organic scaffolds has been widely studied. ${ }^{17,18}$ To date, their synthesis still represents a major challenge in medicinal chemistry, as more and more (complex) piperidine-containing compounds are designed in order to improve the selectivity and reduce the side effects of potential new drugs.

Ring enlargements of small-ring nitrogen heterocycles comprise very useful reactions because they can provide a straightforward and efficient access to different nitrogen-containing target molecules. ${ }^{78}$ These reactions frequently involve strained ring systems in which strain release acts as a driving force for the ring enlargement. In that respect, substituted azetidines have been proven to be suitable starting materials to perform rearrangements toward pyrroles, pyrrolidines, pyrrolidinones, imidazolidinones, isoxazolidines, piperidines, 1,2-oxazines, piperidin-2-ones, 2-iminopiperidines, azepanes and azepan-2-ones. ${ }^{79}$ Moreover, the introduction of a leaving group in one of the substituents of these small-ring heterocycles enables intramolecular transformations toward intermediate bicyclic azetidinium ions, which are subsequently prone to undergo ring opening (mostly implying ring expansion) by the expelled leaving group or by an additional nucleophile. ${ }^{9,12,79 a, 80}$

In the present chapter, the scope and synthetic applicability of the latter methodology is examined toward the preparation of novel piperidines by treatment of functionalized azetidines with different nucleophiles.

### 3.2.1 Synthesis of 3,4-disubstituted 5,5-dimethylpiperidines through rearrangement of 2-(2-bromo-1,1-dimethylethyl)azetidines (Paper II)

In previous studies at the Department of Sustainable Organic Chemistry and Technology (UGent), the diastereoselective ring expansion of 2-(2-bromo-1,1-dimethylethyl)azetidines 8, prepared via monochloroalane reduction of the corresponding $\beta$-lactams 7, toward cis-3,4-disubstituted 5,5dimethylpiperidines 10 upon treatment with $\mathrm{NaOH}, \mathrm{KCN}, \mathrm{NaN}_{3}$ and $\mathrm{Me}_{4} \mathrm{NF}$ has been described, and has been proposed to proceed via trapping of intermediate bicyclic azetidinium ions 9 (Scheme 34). ${ }^{9,19,81}$


## Scheme 34

### 3.2.1.1 Synthesis of 4-acetoxy- and 4-hydroxy-5,5-dimethylpiperidines

To broaden the scope of the above-described nucleophile-induced ring transformation of 2-(2bromoethyl)azetidines 8 toward novel stereodefined piperidines, the feasibility of introducing other nucleophiles than bromide, fluoride, hydroxide, cyanide and azide was evaluated by employing sodium acetate. Thus, treatment of azetidines $8 \mathrm{a}-\mathbf{d}^{19}$ with ten equiv of NaOAc in DMSO at $100{ }^{\circ} \mathrm{C}$ for 18 hours resulted in the selective formation of 4-acetoxy-5,5-dimethylpiperdines 139a-d in good yields (Scheme 35). The relative cis-stereochemistry was demonstrated by the vicinal coupling constants between the protons at $\mathrm{C}-3$ and $\mathrm{C}-4\left(3.0-3.3 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}\right)$, which are in accordance with literature data concerning 3,4-dioxygenated piperidines, ${ }^{82}$ and was rationalized considering the in situ formation and consecutive ring opening of bicyclic azetidinium intermediates 9a-d (Scheme 35). This reaction mechanism is based on the intramolecular displacement of bromide by the nucleophilic nitrogen lone pair of azetidines $\mathbf{8 a - d}$ toward reactive bicyclic intermediates $\mathbf{9 a} \mathbf{- d}$, which are subsequently prone to undergo ring opening by the nucleophilic counterion, i.e., acetate, at the bridgehead carbon atom in a $\mathrm{S}_{\mathrm{N}} 2$ fashion to furnish the thermodynamically more favoured sixmembered piperidines 139a-d (Scheme 35). ${ }^{19}$

The synthetic relevance of these novel 4-acetoxypiperidines 139 a-d was demonstrated by means of their transformation into the biologically important class of 4-hydroxylated piperidines, ${ }^{83}$ producing the corresponding 4-hydroxypiperidines 140a-d upon hydrolysis of the ester moiety by means of three equiv of LiOH in methanol under reflux for 15 hours (Scheme 35).


Scheme 35

Indeed, a vast array of molecules containing the 4-hydroxypiperidine skeleton has been reported in the treatment of arrhythmia, ${ }^{83 \mathrm{c}}$ hypotension, ${ }^{83 \mathrm{~d}}$ tuberculosis, ${ }^{83 \mathrm{~h}}$ and diarrhea, ${ }^{83 \mathrm{i}}$ and others are known as anti-inflammatory agents, ${ }^{83 e}$ CCR1 chemokine receptor antagonists ${ }^{83 f}$ and TNF- $\alpha$ converting enzyme (TACE) inhibitors ${ }^{83 g}$ useful for the treatment of rheumatoid arthritis, multiple sclerosis and Crohn's disease (Figure 7).



141
antihypotensive


TNF- $\alpha$ converting enzyme inhibitors
$\mathrm{R}=\mathrm{H}, 4-\mathrm{F}, 3-\mathrm{F}, 2-\mathrm{F}, 4-\mathrm{Cl}, 3-\mathrm{Cl}$,
2-OMe, $2-\mathrm{CF}_{3}, 4-\mathrm{CN}, 3-\mathrm{CN}, 2-\mathrm{Ph}$

Figure 7

Following a protocol previously developed at the Department of Sustainable Organic Chemistry and Technology (UGent) concerning a one-step ring enlargement of cis-1-allyl-3-benzyloxy-2-(2-bromo-1,1-dimethylethyl)azetidine 8 a into the corresponding 4-hydroxypiperidine 140a by means of sodium hydroxide in DMSO (Scheme 36), ${ }^{9}$ different attempts were made to prepare the latter 4hydroxypiperidines 140b-d selectively through NaOH - and/or $\mathrm{H}_{2} \mathrm{O}$-mediated ring transformation of 2-
(2-bromoethyl)azetidines 8b-d (Scheme 37, Table 4). However, in all cases the competition between hydroxide and bromide to induce ring enlargement resulted in a mixture of 4-hydroxypiperidines 140b-d and 4-bromopiperidines 144b-d in varying ratios (Table 4).


Scheme 36


Scheme 37

Table 4. Attempts toward the synthesis of 4-hydroxy-5,5-dimethylpiperidines 140 b -d via a one-step ring expansion of 2-(2-bromo-1,1-dimethylethyl)azetidines 8b-d

| Substrate | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Reaction conditions | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 8b | $t \mathrm{Bu}$ | Bn | 10 equiv $\mathrm{NaOH}, \mathrm{DMSO}, 10{ }^{\circ} \mathrm{C}, 18 \mathrm{~h}$ | 140b/144b = 29/71 |
| 8 c | iPr | Ph | 10 equiv $\mathrm{NaOH}, \mathrm{DMSO}, 100^{\circ} \mathrm{C}, 18 \mathrm{~h}$ | 140c/144c $=43 / 57$ |
| 8d | cHex | Ph | 10 equiv $\mathrm{NaOH}, \mathrm{DMSO}, 100^{\circ} \mathrm{C}, 18 \mathrm{~h}$ | complex mixture |
| 8 b | $t \mathrm{Bu}$ | Bn | $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}(5 / 1), 80^{\circ} \mathrm{C}, 15 \mathrm{~h}$ | 140b/144b $=71 / 29$ |
| 8 b | $t \mathrm{Bu}$ | Bn | 1 equiv $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}(3 / 1), 8{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}$ | 140b/144b $=63 / 37$ |
| 8 b | $t \mathrm{Bu}$ | Bn | $\mathrm{H}_{2} \mathrm{O} /$ DMSO $(1 / 1), 80^{\circ} \mathrm{C}, 6 \mathrm{~h}$ | 140b/144b $=55 / 45$ |
| 8 C | iPr | Ph | $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}(1 / 1), 8{ }^{\circ} \mathrm{C}, 6 \mathrm{~h}$ | 140c/144c $=20 / 80$ |
| 8d | cHex | Ph | 11 equiv $\mathrm{NaOH}, \mathrm{DMSO}, 8{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ | complex mixture |
| 8d | cHex | Ph | $\mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}(3 / 1), 80^{\circ} \mathrm{C}, 15 \mathrm{~h}$ | complex mixture |
| 8d | cHex | Ph | 1 equiv $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{DMSO}(3 / 1), 8{ }^{\circ} \mathrm{C}, 19 \mathrm{~h}$ | 140b/144b $=17 / 83$ |
| 8d | cHex | Ph | 10.3 equiv $\mathrm{NaOH}, \mathrm{DMSO}, 8{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ | complex mixture |
| 8d | cHex | Ph | 15 equiv $\mathrm{NaOH}(1 \mathrm{M})$, DMSO, $80{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}$ | complex mixture |

As a result, it can be concluded that the two-step synthesis of 4-hydroxypiperidines 140a-d via 4acetoxypiperidines 139a-d comprises an improved alternative in terms of selectivity and efficiency.

In conclusion, 2-(2-bromo-1,1-dimethylethyl)azetidines were proven to be useful starting materials to perform rearrangements toward substituted six-membered azaheterocycles. These reactions presumably involve the intermediacy of 1-azoniabicyclo[2.2.0]hexanes, which are subsequently prone to undergo a nucleophile-induced ring enlargement toward a wide variety of highly functionalized piperidines. In particular, this methodology allowed the development of novel stereodefined 4-hydroxypiperidines, which are of high importance in pharmaceutical chemistry.

### 3.2.2 Synthesis of 3,4-disubstituted 5,5-dinor-dimethylpiperidines through rearrangement of 2-(2-mesyloxyethyl)azetidines (Paper III, IV and V)

In the next part of this work, the synthesis of analogous dinor-dimethylpiperidines 11 was envisaged (Figure 8), as the absence of a 5,5-gem-dimethyl group might have a pronounced influence on the biological profile of this class of compounds. From a retrosynthetic point of view, the synthesis and subsequent ring expansion of 2-(2-mesyloxyethyl)azetidines 13, prepared via mesylation of the corresponding alcohols, could offer a convenient alternative and an easy access to this new class of 5-unsubstituted piperidines 11. The present paragraph will focus on the reactivity of 2-(2mesyloxyethyl)azetidines 13 with regard to different nucleophiles to develop new pathways toward biologically relevant piperidines 11 (Figure 8).

$\mathrm{X}=\mathrm{CN}, \mathrm{N}_{3}, \mathrm{~F}, \mathrm{Br}, \mathrm{OAc}, \mathrm{OH}$


Figure 8

### 3.2.2.1 Synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones

In order to achieve a selective oxidation and to circumvent difficulties associated with the presence of a free hydroxyl group during $\beta$-lactam formation, 1,3-propanediol 145 was first monoprotected as its tert-butyldimethylsilyl ether 146 using a literature protocol, involving silylation of the monosodium salt (obtained upon treatment of diol 145 with one equiv of NaH in THF) with one equiv of tert-butyldimethylsilyl chloride (TBDMSCI) in THF, ${ }^{84}$ and was then oxidized to the corresponding
aldehyde 147 by means of a Swern oxidation using oxalyl chloride, $\mathrm{DMSO}^{2}$ and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 38). ${ }^{85}$ Subsequent imination of 3-(tert-butyldimethylsilyloxy)propanal 147 with one equiv of the corresponding primary amines in dichloromethane in the presence of $\mathrm{MgSO}_{4}$ as a drying agent led to the formation of (E)- $N$-[3-(tert-butyldimethylsilyloxy)propylidene]alkylamines 148a-h in good yields (Scheme 38).


## Scheme 38

Subsequently, in order to evaluate the Staudinger synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones $12, N$-isopropylimine 148 a was selected as a model substrate and was subjected to different reaction conditions, involving variation of the solvent, base, temperature and reaction time (Scheme 39, Table 5). In almost all cases, mixtures of cis-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isopropyl-3-phenoxyazetidin-2-one 12a and N -[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]- $N$-isopropyl-2-phenoxyacetamide 149 a were obtained (12a/149a 25-85/15-75), next to negligible amounts of unidentified side products. Furthermore, different attempts to tune the reaction selectivity toward $\beta$-lactam 12a by applying more harsh reaction conditions were not successful, as the ratio of compounds 12a and 149a remained unaffected independent of the reaction temperature and the temperature of acid chloride addition (Table 5, Entry 6-8).


## Scheme 39

Table 5. Staudinger reaction of $(E)$ - $N$-[3-(tert-butyldimethylsilyloxy)propylidene]isopropylamine 148a under different reaction conditions

| Entry | Solvent | Base | Acid chloride added at | Reaction temperature and time | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\mathrm{C}_{6} \mathrm{H}_{6}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | reflux | reflux, 1 h ; rt, 15 h | 12a/149a = 25/75 |
| 2 | $\mathrm{C}_{6} \mathrm{H}_{6}$ | 2,6-lutidine | reflux | reflux, 15 h | complex mixture |
| 3 | $\mathrm{C}_{6} \mathrm{H}_{6}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | reflux | reflux, 15 h | 12a/149a $=30 / 70$ |
| 4 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{PPh}_{3}$ | $0^{\circ} \mathrm{C}$ | $\mathrm{rt}, 15 \mathrm{~h}$ | complex mixture |
| 5 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | $0^{\circ} \mathrm{C}$ | $\mathrm{rt}, 15 \mathrm{~h}$ | 12a/149a $=83 / 17$ |
| 6 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | $0^{\circ} \mathrm{C}$ | reflux, 15 h | 12a/149a $=80 / 20$ |
| 7 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | reflux | reflux, 15 h | 12a/149a $=81 / 19$ |
| 8 | $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $\mathrm{Et}_{3} \mathrm{~N}$ | reflux | reflux, $1 \mathrm{~h} ; \mathrm{rt}$, | 12a/149a $=85 / 15$ |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |  |  |  |  |

In the next phase, the synthesis of a number of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones 12 was evaluated according to the optimal reaction conditions as described in Table 5, Entry 5. Thus, treatment of $(E)$ - $N$-[3-(tert-butyldimethylsilyloxy)propylidene]alkylamines 148 with 1.3 equiv of phenoxy- or benzyloxyacetyl chloride in dichloromethane in the presence of three equiv of $\mathrm{Et}_{3} \mathrm{~N}$ resulted in the corresponding mixtures of $\beta$-lactams 12 and $N$-acyl enamines 149 (22/78-83/17) after 15 hours at room temperature (Scheme 40, Table 6). It should be noted that the specific $N$ substituent in imines 148 has a pronounced influence on the ratio of $\beta$-lactams 12 and $N$-acyl enamines 149, as the presence of an isobutyl, allyl or benzyl group favors the formation of the corresponding $N$-acyl enamines 149, while an isopropyl group leads to the corresponding $\beta$-lactams 12. The Staudinger synthesis of $\beta$-lactams 12 proceeded in a highly diastereoselective way, which can be attributed to the electron-donating benzyloxy or phenoxy group present in the Boose-Evans ketenes (see paragraph 3.1.1). ${ }^{71}$ As the coupling constant between the protons at C-3 and C-4 in ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$ ) was between 4.1 and 5.2 Hz , the relative stereochemistry of $\beta$-lactams 12 was assigned as cis. ${ }^{69}$ It should be noted that the reported yields are yields obtained after purification by column chromatography on silica gel.


## Scheme 40

Table 6. Synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones 12 and N -[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]acetamides 149

| Substrate | $\mathrm{R}^{1}$ | $\mathrm{R}^{\mathbf{2}}$ | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 148a | $i P r$ | Ph | 12a/149a = 83/17 |
| 148a | iPr | $B n$ | 12b/149b $=75 / 25$ |
| 148b | cHex | $B n$ | 12c/149c $=67 / 33$ |
| 148c | $i \mathrm{Bu}$ | $B n$ | 12d/149d $=40 / 60$ |
| 148d | allyl | $B n$ | 12e/149e $=22 / 78$ |
| 148b | cHex | Ph | 12f/149f = 33/67 |
| 148e | $n \mathrm{Pr}$ | Ph | complex mixture |
| $148 f$ | $n \mathrm{Bu}$ | Bn | complex mixture |
| 148g | Bn | Ph | 12g/149g $=33 / 67$ |
| 148h | Ph | $B n$ | complex mixture |

The presence of $N$-acyl enamines 149 can be explained as follows. Nucleophilic addition of imines 148 across the acid chloride and subsequent $\alpha$-deprotonation with respect to the in situ formed iminium moiety 150 can account for the formation of the observed enamides 149 (Scheme 41). It is known that $N$-(alkylmethylidene)amines are less reactive toward [2+2]-cyclocondensation reactions as compared to $N$-(arylmethylidene)amines, sometimes resulting in the full and selective formation of enamides instead of azetidin-2-ones. ${ }^{10,86}$ The $E$-stereochemistry assigned to the olefinic moiety in enamides 149 is supported by the observed vicinal coupling constants between both olefinic protons ( $J=13.8 \mathrm{~Hz},{ }^{1} \mathrm{H}$ NMR, $\mathrm{CDCl}_{3}$ ).


## Scheme 41

Although the chemistry of $\beta$-lactams has been thoroughly investigated in the past, ${ }^{4}$ very little is known about the synthetic applicability of the latter class of 2-azetidinones 12, pointing at the unexplored nature of this subject. Indeed, $\beta$-lactams 12 hold interesting potential for further elaboration due to the presence of a strained four-membered ring and an oxygenated carbon center in the side chain. Therefore, a thorough investigation was executed to reveal the synthetic applicability of these new $\beta$-lactam scaffolds, which will be presented in the following sections.

### 3.2.2.2 Synthesis of 2-(2-mesyloxyethyl)azetidines

In accordance with the synthesis of 3,4-disubstituted 5,5-dimethylpiperidines from 2-(2-bromo-1,1dimethylethyl)azetidines (see paragraph 3.2.1), a similar strategy was contemplated for the preparation of piperidines from 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones 12a-c. This methodology involves an initial reduction toward the corresponding azetidines in order to enhance the nucleophilicity of the nitrogen atom, followed by the introduction of a leaving group in $\gamma$-position with respect to the azetidine nitrogen. In this way an intramolecular substitution reaction toward bicyclic azetidinium intermediates can take place, which are prone to undergo ring opening by the liberated leaving group or by an additional nucleophile, furnishing the premised piperidine derivatives.

In order to perform a selective reduction of the carbonyl moiety without affecting the fourmembered ring system, $\beta$-lactams 12a-c were treated with monochloroalane ( $\mathrm{AlH}_{2} \mathrm{Cl}$ ), as this method had already been proven to be a suitable method for the synthesis of functionalized azetidines. ${ }^{66 a, 87}$ Also in the present case, reductions of highly functionalized $\beta$-lactams 12a-c were performed successfully in that respect. Thus, 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones 12a-c, obtained in analytically pure form after column chromatography on silica gel, were treated with one
molar equiv of $\mathrm{AlH}_{2} \mathrm{Cl}$, prepared in situ from three molar equiv of $\mathrm{LiAlH}_{4}$ and one equiv of $\mathrm{AlCl}_{3}$, in diethyl ether at $0^{\circ} \mathrm{C}$ for two hours, affording novel 2-(2-hydroxyethyl)azetidines 151a-c in good yields (48-50\%) after deprotection of the silyl ether using 1.1 equiv of tetra-n-butylammonium fluoride (TBAF) in THF (Scheme 42). It has to be noted that in all cases significant amounts of 2-(2hydroxyethyl)azetidines 151a-c (40-85\%) were present in the crude reaction mixtures after monochloroalane reduction of the corresponding $\beta$-lactams 12a-c without subsequent introduction of TBAF. Furthermore, it was necessary to perform an inverse addition by adding $\beta$-lactams 12a-c to one molar equiv of $\mathrm{AlH}_{2} \mathrm{Cl}$ in diethyl ether.


## Scheme 42

The reductive removal of the carbonyl group in $\beta$-lactams 12a-c proceeded with the expected retention of the stereochemistry as defined during the Staudinger synthesis of these $\beta$-lactams. The relative stereochemistry of azetidines 151a-c with regard to the protons at C-2 and C-3 was assigned as cis based on the coupling constants between these protons ( $6.6-7.7 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}$ ), in accordance with literature data. ${ }^{9,75 b, 87}$

In general, azetidines are an important class of azaheterocyclic systems, as the strained fourmembered ring is found in many naturally occurring and synthetic organic compounds with interesting biological and pharmacological properties. ${ }^{88}$ In addition, azetidines have been shown to be excellent building blocks in organic synthesis. ${ }^{79,80,19}$ Also, 2-(2-hydroxyethyl)azetidines 151a-c were expected to furnish a broad scala of reactivities, although little has been reported on the synthesis and reactivity of this type of functionalized azetidines. In this way, the hydroxyl moiety in azetidines 151a-c was activated upon treatment with 1.05 equiv of mesyl chloride $(\mathrm{MsCl})$ in the presence of a base and a catalytic amount of 4-(dimethylamino)pyridine (DMAP) in dichloromethane at $0^{\circ} \mathrm{C}$ for three hours (Scheme 42), in order to provide the dinor-dimethyl analogues of 2-(2-bromo-1,1dimethylethyl)azetidines 8 (see paragraph 3.2.1) as eligible substrates for ring expansion toward novel piperidine derivatives (Figure 9).


8


13

Figure 9

It should be stressed that during workup of the obtained mesylated azetidines 13a-c, careful monitoring of the temperature proved to be very important, as evaporation of the solvent in vacuo at temperatures higher than $25^{\circ} \mathrm{C}$ led to the spontaneous formation of reasonable amounts (4-35\%) of ring-expanded 4-mesyloxypiperidines 152a-c, which can be explained considering the formation and subsequent mesylate-induced ring opening of intermediate 1 -azoniabicyclo[2.2.0]hexanes 14a-c. In addition, small amounts of 2-vinylazetidines 153a-c (3-12\%) were observed as well in the crude reaction mixtures (Scheme 43). It should be mentioned that the transformation of the hydroxyl group in 2-(2-hydroxyethyl)azetidines 151 into other leaving groups, such as a tosylate or a chloride, is expected to result in the formation of analogous ring-expanded piperidines and vinylazetidines due to the high inherent instability of the azetidine-containing substrates.


Scheme 43

### 3.2.2.3 Synthesis of 3,4-disubstituted 5,5-dinor-dimethylpiperidines

In this section, the above-described synthetic methodology concerning the nucleophile-induced ring expansion of 2-(2-bromo-1,1-dimethylethyl)azetidines 8 toward functionalized piperidine derivatives via intermediate 1-azoniabicyclo[2.2.0]hexanes 9 is extended toward the synthesis of their dinordimethyl variants, as, given the broad medicinal relevance of piperidines in general, the absence of a 5,5-gem-dimethyl moiety can modify the related bioactivity due to changes in conformational properties (Figure 10).




11

Figure 10

### 3.2.2.3.1 Synthesis of 4-bromopiperidines

In a first part, treatment of 2-(2-mesyloxyethyl)azetidines 13a-c with two equiv of LiBr in acetonitrile for 15 hours under reflux resulted in the selective formation of 4-bromopiperidines 154a-c in good yields (47-65\%) after column chromatography on silica gel or recrystallization from absolute ethanol (Scheme 44). The cis-stereochemistry of 3-oxygenated 4-bromopiperidines 154a-c was assessed based on the coupling constants between the protons at positions 3 and $4\left(3.6-3.9 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}\right.$, $\mathrm{CDCl}_{3}$ ), which are in accordance with those reported in the literature for cis-vicinal substituted piperidines. ${ }^{82}$ Furthermore, also the fact that dehydrobromination occurred upon treatment of piperidines $\mathbf{1 5 4 a , b}$ with dimsylsodium (four equiv) in DMSO at $150^{\circ} \mathrm{C}$ for 15 h was indicative of a cisrelationship between the C-3 and C-4 substituents, which is required to obtain an anti-elimination (Scheme 44). The obtained cyclic enol ethers 155a,b could be easily hydrolysed to give 1-isopropylpiperidin-3-one 156 by reaction with aq 2 M HCl at $40^{\circ} \mathrm{C}$ for 40 h (Scheme 44). Piperidin-3ones constitute a class of compounds of high biological interest as they are considered as pharmacophores in medicinal sciences and their synthesis is often associated with the preparation of biologically relevant compounds. ${ }^{89}$


Scheme 44

From a mechanistic point of view, the observed cis-stereochemistry of piperidines $154 \mathrm{a}-\mathrm{c}$ can be rationalized considering the in situ formation and consecutive ring opening of bicyclic azetidinium intermediates 14a-c (Scheme 44). This reaction mechanism is based on the intramolecular displacement of the mesyloxy substituent by the nucleophilic nitrogen lone pair of azetidines 13a-c toward reactive bicyclic intermediates 14a-c, which are subsequently prone to undergo ring opening by a nucleophile, i.e., bromide, at the bridgehead carbon atom in an $\mathrm{S}_{\mathrm{N}} 2$ fashion to furnish the thermodynamically more favored six-membered 4-bromopiperidines 154a-c (Scheme 44). An alternative reaction pathway, involving direct nucleophilic substitution of the mesyloxy group by bromide followed by ring expansion via bicyclic azetidinium ions 14a-c should not be excluded. The selective formation of 4-bromopiperidines 154a-c over 4-mesyloxypiperidines 152a-c can be attributed to the considerably stronger nucleophilicity of bromide in acetonitrile as compared to the mesyloxy anion.

Upon detailed spectroscopic analysis, small amounts of 2 -vinylazetidines 153a-c (5-9\%) were observed as well in the crude reaction mixtures, as characteristic azetidine chemical shifts and typical signals for vinylic protons were detected in the ${ }^{1} \mathrm{H}$ NMR spectra of these mixtures ( $\mathrm{CDCl}_{3}$, Table 7).

Table 7. Conversion of 2-(2-mesyloxyethyl)azetidines 13a-c toward 4-bromopiperidines 154a-c

| Substrate | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 13a | iPr | Ph | 153a/154a = 6/94 |
| 13b | iPr | Bn | 153b/154b $=5 / 95$ |
| 13c | cHex | Bn | 153c/154c $=9 / 91$ |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |  |  |

### 3.2.2.3.2 Synthesis of 4-acetoxy- and 4-hydroxypiperidines

The scope of this synthetic methodology was further extended toward other 4-substituted piperidine derivatives. The possibility of introducing other nucleophiles than bromide was first tested through the addition of sodium acetate. Thus, treatment of azetidines 13a-c with two equiv of NaOAc in acetonitrile under reflux for 15 hours resulted in the selective formation of 4 -acetoxypiperidines 157a-c in good yields after purification (Scheme 45). The relative cis-stereochemistry controlled by the Staudinger synthesis of $\beta$-lactams 12a-c was transferred through the reaction sequence, affording cis-piperidines 157a-c in a stereoselective way as demonstrated by the vicinal coupling constants between the protons at $\mathrm{C}-3$ and $\mathrm{C}-4\left(2.9-4.0 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}\right)$, which are in accordance with literature data concerning cis-3,4-dioxygenated piperidines. ${ }^{82}$ Again, small amounts of 2vinylazetidines 153a-c (2-6\%) were present in the crude reaction mixtures as well (Table 8).

Next, the reactivity of 4-acetoxypiperidines 157a-c was evaluated with the intention to provide a convenient entry into the biologically relevant class of 4 -hydroxylated piperidines, ${ }^{83}$ yielding the corresponding 4-hydroxypiperidines 158a-c in 56-70\% yield via methanolysis of the ester moiety upon treatment with two equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol under reflux for one hour (Scheme 45).


Scheme 45

Table 8. Conversion of 2-(2-mesyloxyethyl)azetidines 13a-c toward 4-acetoxypiperidines 157a-c

| Substrate | $\mathbf{R}^{1}$ | $\mathbf{R}^{\mathbf{2}}$ | Result $^{\mathbf{a}}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 3 a}$ | $i \mathrm{Pr}$ | Ph | $\mathbf{B n}$ |
| 13b | $i \operatorname{Pr}$ | Bn | $\mathbf{1 5 3 b} / \mathbf{1 5 7 a}=2 / 98$ |
| 13c | $c \mathrm{Hex}$ | $\mathbf{1 5 3 c} / \mathbf{1 5 7 c}=3 / 97$ |  |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |  |  |

### 3.2.2.3.3 Attempts toward the synthesis of 4-fluoropiperidines

In the pharmaceutical industry, about 20\% of the prescribed pharmaceuticals and 30\% of the leading 30 blockbuster drugs by sales contain a C-F bond, as illustrated by inter alia Lipitor (inhibits cholesterol synthesis), Advair Discus (anti-asthmatic), and Prevacid (antacid/stomach ulcer). ${ }^{90}$ In addition, organofluorine compounds have also achieved significant advances in the area of agrochemistry. ${ }^{91}$ This is mainly due to the fact that the replacement of a hydrogen atom with fluorine often gives rise to drastic changes in biological activity because of the altered electronic distribution and changes in conformational properties. ${ }^{92}$ Consequently, during the last decades, much effort has been devoted to synthesize site-specific fluorinated compounds, and the development of new synthetic approaches and new commercial applications are the subject of intense research in organic chemistry and related disciplines. ${ }^{93}$

In particular, fluorinated azaheterocyclic compounds attract widespread attention, and fluorinecontaining piperidines are important building blocks from a medicinal point of view. ${ }^{93 a-e, 94}$ The numerous patents concerning fluorinated piperidines emphasize the possibility of these compounds as substituents to modulate the activity of different active compounds, such as antidiabetic, ${ }^{95}$ anticancer, ${ }^{96}$ antidepressant, ${ }^{97}$ antibacterial, ${ }^{98}$ anti-inflammatory and immunomodulatory agents ${ }^{99}$ and compounds for the treatment of neurological and psychiatric diseases (Figure 11). ${ }^{100}$


159
antibacterial


160
antidiabetic


161
anti-inflammatory

Figure 11

In light of this biological importance, efforts were made in order to perform a ring enlargement of 2-(2-mesyloxyethyl)azetidines 13a-c as a convenient synthetic approach toward new 4-fluorinated piperidines lacking a 5,5-dimethyl moiety.

In analogy with the previously described ring expansion of 2-(2-bromo-1,1-dimethylethyl)azetidines 8 toward 4-fluoropiperidines, ${ }^{19}$ 2-(2-mesyloxyethyl)azetidine 13a was treated with tetramethylammonium fluoride (TMAF or $\mathrm{Me}_{4} \mathrm{NF}$ ) under different reaction conditions, involving variation of the number of equiv of $\mathrm{Me}_{4} \mathrm{NF}(2,10)$, solvent (DMSO, DMF, $\mathrm{CH}_{3} \mathrm{CN}$ ), temperature ( $35{ }^{\circ} \mathrm{C}$, $60^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$, reflux), reaction time ( $15-48 \mathrm{~h}$ ), and time of TMAF-addition ( $0-3 \mathrm{~h}$ ), inevitable leading to the formation of mixtures of 2-(2-fluoroethyl)azetidine 162a, 4-fluoropiperidine 163a and tetrahydropyridine 155a in varying ratios (40-82/18-60/15-63, Scheme 46, Table 9), next to negligible amounts of 2-vinylazetidine 153a (<8\%).


## Scheme 46

Table 9. Attempts toward the selective synthesis of cis-4-fluoro-1-isopropyl-3-phenoxypiperidine 163a through TMAF-mediated ring expansion of cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13a

| Entry | Number of equiv of $\mathrm{Me}_{4} \mathrm{NF}$ | Solvent | Temperature | $\mathrm{Me}_{4} \mathrm{NF}$ added at | Time after addition | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | DMSO | $100^{\circ} \mathrm{C}$ | 0 h | 18 h | 162a/163a $=80 / 20$ |
| 2 | 2 | DMF | $60^{\circ} \mathrm{C}$ | 0 h | 18 h | 162a/163a $=82 / 18$ |
| 3 | 2 | DMSO | $100^{\circ} \mathrm{C}$ | 0 h | 48 h | 162a/163a $=78 / 22$ |
| 4 | 10 | DMSO | $60^{\circ} \mathrm{C}$ | 0 h | 18 h | 162a/163a $=81 / 19$ |
| 5 | 2 | $\mathrm{CH}_{3} \mathrm{CN}$ | $35^{\circ} \mathrm{C}$ - reflux | $5 \min \left(35^{\circ} \mathrm{C}\right)$ | 15 h (reflux) | $\begin{gathered} 162 a / 163 a / 155 a= \\ 60 / 25 / 15 \end{gathered}$ |
| 6 | 2 | $\mathrm{CH}_{3} \mathrm{CN}$ | $35^{\circ} \mathrm{C}$ - reflux | $30 \mathrm{~min}\left(35^{\circ} \mathrm{C}\right)$ | 15 h (reflux) | $\begin{gathered} 162 a / 163 a / 155 a= \\ 40 / 30 / 30 \end{gathered}$ |
| 7 | 2 | $\mathrm{CH}_{3} \mathrm{CN}$ | $35^{\circ} \mathrm{C}$ - reflux | $1 \mathrm{~h}\left(35^{\circ} \mathrm{C}\right)$ | 15 h (reflux) | 163a/155a $=60 / 40$ |
| 8 | 2 | $\mathrm{CH}_{3} \mathrm{CN}$ | $35^{\circ} \mathrm{C}$ - reflux | $2 \mathrm{~h}\left(35^{\circ} \mathrm{C}\right)$ | 15 h (reflux) | 163a/155a $=45 / 55$ |
| 9 | 2 | $\mathrm{CH}_{3} \mathrm{CN}$ | $35^{\circ} \mathrm{C}$ - reflux | $3 \mathrm{~h}\left(35^{\circ} \mathrm{C}\right)$ | 15 h (reflux) | 163a/155a $=37 / 63$ |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |  |  |  |  |  |

From a mechanistic viewpoint, mesylated azetidine 13a probably undergoes competition between intermolecular $\mathrm{S}_{\mathrm{N}} 2$-substitution at the electrophilic oxygenated carbon center leading to the formation of 2-(2-fluoroethyl)azetidine 162a on the one hand, and intramolecular nucleophilic substitution toward bicyclic azetidinium intermediate 14a, followed by regiospecific ring opening by
the nucleophilic fluoride at the bridgehead carbon atom in an $S_{N} 2$ fashion to yield the premised 4fluoropiperidine 163a on the other (Scheme 46, Table 9, Entry 1-4).

In order to circumvent the formation of 2-(2-fluoroethyl)azetidine 162a, 2-(2-mesyloxyethyl)azetidine 13a was first allowed to rearrange toward bicyclic azetidinium salt 14a by heating in $\mathrm{CH}_{3} \mathrm{CN}$ at $35^{\circ} \mathrm{C}$ without the addition of the fluorine source (Table 9, Entry 5-9). Indeed, as the heating time before $\mathrm{Me}_{4} \mathrm{NF}$-addition was prolonged, the ratio gradually changed in favor of the premised fluorinated piperidine 163a, but ${ }^{1} \mathrm{H}$ NMR analysis revealed that substantial amounts (15-63\%) of cyclic enol ether 155a were present in the crude reaction mixtures as well. The latter observation can be rationalized considering the initial formation of the ring expanded 4-mesyloxypiperidine 152a, followed by the fluoride-induced mesylate elimination toward cyclic enol ether 155a, as the ability of the fluoride anion to act as a base is well known in the literature. ${ }^{101}$ Consequently, this strategy for the selective synthesis of fluorinated piperidines was abandoned.

In a second approach toward the synthesis of fluorinated piperidines, a totally different synthetic route starting from 4-bromopiperidine 154a was contemplated, involving either an initial bromine dislocation induced by the nitrogen lone pair leading to the formation of azetidinium salt 14a followed by a regiospecifically fluoride-mediated ring opening toward 4-fluoropiperidine 163a due to a double Walden inversion (Scheme 47, Route A), or a direct $\mathrm{S}_{\mathrm{N}} 2$-substitution at the brominated carbon atom toward the corresponding trans-derivative 164a (Scheme 47, Route B). Following this rationale, cis-4-bromo-1-isopropyl-3-phenoxypiperidine 154a was initially heated in acetonitrile, DMF or DMSO in the presence of two equiv of tetrabutylammonium fluoride (TBAF or $\mathrm{Bu}_{4} \mathrm{NF}$ ), unfortunately resulting in complete recovery of the starting material (Table 10, Entries 1, 5, 9). Subsequently, extensive efforts using different silver salts $\left(\mathrm{AgBF}_{4}, \mathrm{Ag}_{2} \mathrm{CO}_{3}\right)$ in order to enhance halide dissociation driven by the precipitation of the resulting silver bromide failed, as the starting compound was recovered completely or the formation of rather complex reaction mixtures was observed in which no typical signals for the expected substitution product could be detected, as shown by GC and ${ }^{1} \mathrm{H}$ NMR analysis (Table 10).


## Scheme 47

Table 10. Attempts toward the synthesis of 4-fluoro-1-isopropyl-3-phenoxypiperidine 163a/164a from cis-4-bromo-1-isopropyl-3-phenoxypiperidine 154a

| Entry | Additive | Solvent | Temperature | Time | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | $\mathrm{CH}_{3} \mathrm{CN}$ | reflux | 22 h | no reaction |
| 2 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (5 equiv) | $\mathrm{CH}_{3} \mathrm{CN}$ | rt | 15 h | no reaction |
| 3 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (5 equiv) | $\mathrm{CH}_{3} \mathrm{CN}$ | reflux | 3 h | complex mixture |
| 4 | $\mathrm{AgBF}_{4}$ (5 equiv) | $\mathrm{CH}_{3} \mathrm{CN}$ | reflux | 2 h | complex mixture |
| 5 | - | DMF | $60^{\circ} \mathrm{C}$ | 18 h | no reaction |
| 6 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (5 equiv) | DMF | rt | 15 h | no reaction |
| 7 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (5 equiv) | DMF | $80^{\circ} \mathrm{C}$ | 2 h | complex mixture |
| 8 | $\mathrm{AgBF}_{4}$ (5 equiv) | DMF | $80^{\circ} \mathrm{C}$ | 1.5 h | complex mixture |
| 9 | - | DMSO | $100^{\circ} \mathrm{C}$ | 22 h | no reaction |
| 10 | $\mathrm{AgBF}_{4}$ (5 equiv) | DMSO | rt | 18 h | no reaction |
| 11 | $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ (5 equiv) | DMSO | $60^{\circ} \mathrm{C}$ | 2 h | complex mixture |
| 12 | $\mathrm{AgBF}_{4}$ (5 equiv) | DMSO | $100^{\circ} \mathrm{C}$ | 2 h | complex mixture |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR and/or GC analysis of the crude reaction mixture. |  |  |  |  |  |

Among the broad variety of fluorinating agents used to fulfill the increasing demand for site-selective fluorination of organic compounds, $N, N$-diethylaminosulfur trifluoride (DAST) has emerged as a powerful reagent to convert alcohols into the corresponding monofluorinated target molecules. ${ }^{102}$ This reagent is described to initiate rearrangements through anchimeric assistance of an electronrich group (e.g., in compounds with methoxy, ${ }^{103}$ amino, ${ }^{104}$ oxiranyl, ${ }^{105}$ azido ${ }^{106}$ groups, or with a double bond ${ }^{103 c}$ ) due to the formation of a very good leaving group. In that respect, the selective and efficient ring expansion of cyclic $\alpha$-(hydroxymethyl)amines 165 and 168 toward cyclic $\beta$-fluoro amines 167 and 170 upon treatment with DAST has been reported very recently (Scheme 48). ${ }^{104 \mathrm{~b}}$


Scheme 48

Accordingly, a similar strategy was envisaged for the rearrangement of cyclic 2(hydroxyethyl)azetidines 151 into cyclic $\gamma$-fluoro amines 163. This methodology involves a DASTmediated activation of the hydroxyl functionality in $\gamma$-position with respect to the azetidine nitrogen. Subsequent intramolecular nucleophilic substitution by the nitrogen lone pair in intermediate azetidines 171 toward azetidinium salts 14 can take place, which can finally furnish 4fluoropiperidines 163 through ring opening by fluoride (Scheme 49).


## Scheme 49

In order to achieve this goal, cis-2-(2-hydroxyethyl)-1-isopropyl-3-phenoxyazetidine 151a was selected as a model substrate and treated with 1.5 equiv of DAST in different solvents and at different temperatures (Scheme 50, Table 11). Unfortunately, no formation of the desired 4fluoropiperidine 163a was observed and only complex reaction mixtures were obtained. Consequently, this methodology was abandoned as well.


Scheme 50

Table 11. Attempts toward the selective synthesis of cis-4-fluoro-1-isopropyl-3-phenoxypiperidine 163a through DAST-mediated ring expansion of cis-2-(2-hydroxyethyl)-1-isopropyl-3-phenoxyazetidine 151a

| Solvent | Conditions | Result ${ }^{\mathrm{a}}$ |
| :---: | :---: | :---: |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 1 \mathrm{~h}$ | complex mixture |
| $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 1 \mathrm{~h}$ | complex mixture |
| THF | $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 1 \mathrm{~h}$ | complex mixture |
| acetone | $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 1 \mathrm{~h}$ | complex mixture |
| acetone | $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 1 \mathrm{~h}$ | complex mixture |
| $\mathrm{THF}+3$ equiv $\mathrm{Et}_{3} \mathrm{~N}$ | $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then $\mathrm{rt}, 1 \mathrm{~h}$ | complex mixture |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR and/or GC analysis of the crude reaction mixture. |  |  |

It is clear that the transformation of 2-(2-mesyloxyethyl)azetidines and 2-(2-hydroxyethyl)azetidines into the corresponding 4-fluoropiperidines remains troublesome applying the proposed methodologies. Nevertheless, the TMAF-mediated ring expansion of 2-(2-mesyloxyethyl)azetidines clearly needs further elaboration, as cis-4-fluoro-1-isopropyl-3-phenoxypiperidine 163a was formed in 18-60\% through ring enlargement of cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13a.

### 3.2.2.3.4 Synthesis of 4-(formyloxy)piperidines

In order to further assess their intrinsic reactivity, azetidines 13a-c were heated in DMF at $80^{\circ} \mathrm{C}$ for three hours. Surprisingly, next to small amounts of 2 -vinylazetidines 153a-c (3-7\%, Table 12), azetidines 13a-c were almost exclusively converted into 4-(formyloxy)piperidines 173a-c (Scheme 51). A plausible explanation for this transformation involves the formation of intermediate azetidinium salts 14a-c, followed by nucleophilic ring opening by dimethylformamide at the bridgehead carbon atom. Subsequent hydrolysis of intermediates 172a-c during aqueous workup afforded the corresponding piperidines 173a-c in high yields (53-70\%) after purification by column chromatography on silica gel. Again, the relative cis-stereochemistry obtained during the Staudinger synthesis of $\beta$-lactams 12a-c was retained, thus affording cis-piperidines 173a-c as can be derived from the coupling constants between the protons at $\mathrm{C}-3$ and $\mathrm{C}-4\left(3.9-4.1 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}\right) .{ }^{82}$


## Scheme 51

Table 12. Conversion of 2-(2-mesyloxyethyl)azetidines 13 toward 4-(formyloxy)piperidines 173

| Substrate | $\mathbf{R}^{1}$ | $\mathbf{R}^{2}$ | Result $^{\mathrm{a}}$ |
| :--- | :--- | :--- | :--- |
| 13a | $i \mathrm{Pr}$ | Ph | $\mathbf{1 5 3 a} / \mathbf{1 7 3 a}=5 / 95$ |
| 13b | $i \mathrm{Pr}$ | Bn | $\mathbf{1 5 3 b} / \mathbf{1 7 3 b}=3 / 97$ |
| 13c | $c \mathrm{Hex}$ | Bn | $\mathbf{1 5 3 c} / \mathbf{1 7 3 c}=7 / 93$ |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |  |  |

In addition to the elegant nature of this transformation (no additional reagents required), 4(formyloxy)piperidines thus obtained exhibit interesting structural characteristics, making them suitable substrates for further elaboration. The presence of a formyloxy substituent at the 4-position of the piperidine backbone provides an entry into functionalized piperidines through further modification of the ester functionality.

### 3.2.2.3.5 Synthesis of piperidin-4-ones through a ring expansion-oxidation protocol

Piperidin-4-ones represent an important class of bioactive azaheterocycles attracting a progressive interest due to their observed biological and pharmaceutical properties, such as antiviral, antitumor, ${ }^{21}$ analgesic, ${ }^{22}$ local anaesthetic, ${ }^{23}$ antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities. ${ }^{20}$ Furthermore, piperidin-4-ones have been used as eligible intermediates in the synthesis of a variety of biologically active compounds, including functionalized piperidines, through further modification of the carbonyl moiety. ${ }^{107}$

At the Department of Sustainable Organic Chemistry and Technology (UGent), 2-(2-bromo-1,1dimethylethyl)azetidines 8 have been rearranged into 5,5-dimethylpiperidin-4-ones 174 in high purity upon treatment with five equiv of silver carbonate or silver tetrafluoroborate in DMSO for 18 hours at $100{ }^{\circ} \mathrm{C} .{ }^{19}$ During these transformations, the presence of a silver salt proved to be indispensable. This smooth rearrangement probably proceeded through nucleophilic attack of the nitrogen lone pair onto the electrophilic halogenated carbon atom, affording an intermediate azetidinium salt. Hereby, the exempted bromide was unable to induce ring enlargement toward 4bromopiperidines due to complexation with the silver ion. The necessity of the silver counterion was thus based on trapping of the bromide so that ring transformation toward brominated piperidines was excluded. The intermediate bicyclic azetidinium salts were subsequently converted into piperidin-4-ones 174 upon DMSO-mediated ring enlargement, followed by abstraction of the acidic proton at the oxygenated carbon atom and liberation of dimethylsulfide. ${ }^{19}$


## Scheme 52

In order to broaden the scope of this synthetic transformation, the ring enlargement of 2-(2mesyloxyethyl)azetidines 13a-c via a similar ring expansion-oxidation mechanism was envisaged. In that respect, azetidines 13a-c were stirred in DMSO at $100^{\circ} \mathrm{C}$ for 18 hours in the presence of five equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}{ }^{899}$ resulting in full conversion of the starting material toward the desired piperidin-4ones 15a-c in $43-48 \%$ yield (Scheme 53), together with minor amounts of unidentified side products (8-27\%). However, when wet DMSO was used, in some cases a substantial amount (up to 70\%) of 4hydroxypiperidines 158a-c was obtained along with piperidin-4-ones 15a-c after heating of azetidines 13a-c in DMSO, which might be the result of an incomplete oxidation reaction or direct hydrolysis of the strained intermediates $\mathbf{1 4 a - c}$, probably due to the presence of water in DMSO. Moreover, the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ appeared to be essential, as piperidin-4-ones $\mathbf{1 5 a}$-c were formed in very low yields $(5-8 \%)$ if the reaction was performed in the absence of $\mathrm{K}_{2} \mathrm{CO}_{3}$. In analogy with the above-described reaction mechanism, the initially formed bicyclic azetidinium ions 14a-c undergo a Kornblum-type reaction and are ring opened by DMSO at the bridgehead carbon atom in an $\mathrm{S}_{\mathrm{N}} 2$-type fashion to yield intermediate piperidines 175a-c, which are subsequently transformed into the corresponding piperidin-4-ones 15a-c upon proton abstraction. The preferential formation of piperidin-4-ones 15a-c
over 4-mesyloxypiperidines can be attributed to the relative higher nucleophilicity of DMSO as compared to the mesylate anion, making inactivation of the latter by complexation unnecessary. This stands in contrast with the necessity of a silver salt for the selective ring expansion-oxidation of 2-(2bromoethyl)azetidines 8 toward piperidin-4-ones 174. It should be stressed that this type of transformations is peculiar, as DMSO is known to directly oxidize organic halides and tosylates to the corresponding carbonyl compounds, as demonstrated amply by the Kornblum reaction and its variants. ${ }^{108}$


## Scheme 53

### 3.2.2.3.5.1 Reduction toward 4-hydroxypiperidines

As mentioned before, the 4-hydroxypiperidine moiety comprises a privileged scaffold that is encountered in many bioactive compounds. ${ }^{83}$ In that respect, the reduction of piperidin-4-ones 15a-c was contemplated in the next phase. At first, treatment with two molar equiv of $\mathrm{NaBH}_{4}$ in MeOH was performed, affording the corresponding 4-hydroxypiperidines 158a-c in $73-88 \%$ yield after reflux for two hours (Scheme 54). It should be noted that this $\mathrm{NaBH}_{4}$-mediated reduction of racemic piperidin-4-ones 15a-c toward 4-hydroxypiperidines 158a-c proceeded with complete cis-diastereoselectivity. The relative cis-stereochemistry at positions 3 and 4 is a direct result of the steric approach control, resulting in a preferential equatorial attack of the reducing agent with respect to the sterically hindered six-membered ring. ${ }^{109}$


## Scheme 54

In a second approach, an enzyme-mediated enantioselective reduction of piperidin-4-ones was investigated using alcohol dehydrogenases. The reduction of carbonyl compounds by alcohol dehydrogenases and their cofactors has numerous advantages compared to classical chemical reactions, such as the high level of enantioselectivity and the environmentally benign reaction conditions, and this field of research has gained an increased relevance over the past few years, especially concerning the synthesis of important intermediates for pharmaceuticals and bioactive compounds. ${ }^{110}$ As a selected example, racemic 3-benzyloxy-1-isopropylpiperidin-4-one 15b was treated with a commercially available $S$-specific ${ }^{111}$ or $R$-specific ${ }^{112}$ alcohol dehydrogenase in aqueous MES-buffer [2-( $N$-morpholino)ethanesulfonic acid] at $30^{\circ} \mathrm{C}$ in the presence of NADH. This biocatalytic reduction reaction was performed by colleagues at the Department of Biochemical and Microbial Technology (UGent). In contrast to the chemical reduction process, the merit of this enzymatic approach comprises the $S$ - and $R$-enantioselective reduction of the carbonyl functionality, in each case resulting in the formation of two diastereoisomers (ratio $1 / 1$, based on ${ }^{1} \mathrm{H}$ NMR, Scheme 55). The four enantiomers 176, 177, 178 and 179 were obtained in analytically pure form in 43-49\% yield by separation of the latter diastereoisomeric mixtures through column chromatography on silica gel. In order to establish their enantiomeric ratio, esterification of hydroxypiperidines 176, 177, 178 and 179 was performed utilizing one equivalent of (1S)-(-)-camphanic chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 15 hours in the presence of 0.1 equiv of DMAP [4-(dimethylamino)pyridine] and two equiv of $\mathrm{Et}_{3} \mathrm{~N}$, pointing to a diastereoisomeric ratio of 99.4/0.6, 99.4/0.6, 98.1/1.9 and 97.9/2.1 for piperidines 176, 177, 178 and 179, respectively (based on GC/MS-analysis). Consequently, an enantiomeric ratio of $99.4 / 0.6,99.4 / 0.6,98.1 / 1.9$ and $97.9 / 2.1$ could be assigned to 4hydroxypiperidines 176, 177, 178 and 179 (Scheme 55). The absolute configurations were assigned by comparison of the observed rotation of piperidines $176\left(\alpha_{\mathrm{D}}=+27.7^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 177\left(\alpha_{\mathrm{D}}=+7.6^{\circ}\right.$, $\left.\mathrm{CHCl}_{3}\right), 178\left(\alpha_{\mathrm{D}}=-7.6^{\circ}, \mathrm{CHCl}_{3}\right)$ and $179\left(\alpha_{\mathrm{D}}=-27.7^{\circ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ with optical rotations described in the literature for similar 3,4-dioxygenated piperidines. ${ }^{113}$ Based on these findings, both chemical and enzymatic reductions can be used in a complementary way to effect a diastereoselective or enantioselective synthesis of 4-hydroxypiperidines from piperidin-4-ones, respectively.


Scheme 55

### 3.2.2.3.6 Theoretical rationalization

As described in the previous paragraphs, the reactivity of 2-(2-mesyloxyethyl)azetidines with regard to different nucleophiles was evaluated for the first time, resulting in the stereoselective preparation of a variety of new 4-acetoxy-, 4-hydroxy-, 4-bromo-, and 4-(formyloxy)piperidines. These diastereoselective ring expansions are expected to proceed via transient 1azoniabicyclo[2.2.0]hexanes, which are subsequently prone to undergo an $\mathrm{S}_{\mathrm{N}} 2$-type ring opening at the bridgehead carbon atom to afford the final heterocycles. To assess the feasibility of this process and the relative stability of the intermediates, Density Functional Theory (DFT) calculations were conducted by colleagues at the Center for Molecular Modeling, Ghent University, on both the formation of bicyclic azetidinium ion 14a and its ring opening by acetate, leading to the formation of the corresponding 4-acetoxypiperidine 157a (Scheme 45).

The formation of bicyclic azetidinium intermediate 14a occurs via intramolecular nucleophilic attack of the nitrogen lone pair in azetidine 13a and simultaneous displacement of the mesylate anion as depicted TS1 (Figure 12). Three explicit acetonitrile molecules were used to stabilize the nucleophuge, each interacting with one of the mesylate oxygen atoms through charge-dipole interactions. Subsequently, ring opening of bicyclic intermediate 14a occurs via acetate-mediated nucleophilic attack at the bridgehead carbon atom, as shown in TS2 (Figure 13). Analogously, the incoming acetate anion is stabilized by explicit interactions with two acetonitrile molecules.




14a + Mesylate

Figure 12. Formation of bicyclic azetidinium ion 14a, solvated by explicit acetonitrile molecules (M06-2X/6-311++G(d,p)//B3LYP/6-31+G(d,p)); critical distances in $\AA$



Figure 13. Transition state structure (TS2) for the acetate-induced ring opening of bicyclic azetidinium ion 14a, solvated by explicit acetonitrile molecules (B3LYP/6-31+G(d,p) geometries); critical distances in $\AA$

The relative free energies along the reaction path for the formation and consecutive ring opening of bicyclic intermediate 14a were calculated using two different solvation schemes, namely microsolvation (explicit solvation) and mixed solvation (explicit/implicit solvation). Explicit solvation involves placing discrete solvent molecules around the chemically active species to form a so-called "supermolecule" structure. However, in order to account for possible long-range interactions with the solvent environment, the supermolecule was immersed in a dielectric continuum using two different models (C-PCM and SMD). For all three solvation models, energies were refined using five different DFT methods (Table 13).

Compared to non-solvated gas-phase results [relative free energy of TS1 in gas-phase $=136.6 \mathrm{~kJ} / \mathrm{mol}$, BMK/6-311++G(d,p)//B3LYP/6-31+G(d,p)], explicit solvation lowers barriers by an average of 15
$\mathrm{kJ} / \mathrm{mol}$ by means of stabilizing the forming charge through intermolecular interactions. Results for both mixed solvation models, i.e., C-PCM and SMD, indicate that implicit solvation lowers the barriers by an additional $20 \mathrm{~kJ} / \mathrm{mol}$, bringing the barrier for the formation of bicyclic intermediate 14a down to ${ }^{\sim} 100 \mathrm{~kJ} / \mathrm{mol}$ (Table 13). These results indicate that the formation of intermediate 14 a is a feasible process and, furthermore, its stability is comparable to that of the starting azetidine 13a. Nucleophilic ring opening (TS2) of bicyclic azetidinium ion 14a occurs readily, as illustrated in the small barriers and highly exergonic nature of this reaction step (Table 13).

Table 13. Relative Gibbs free energies ( $\mathrm{kJ} / \mathrm{mol}, 298 \mathrm{~K}$ and 1 atm ) for the formation and consecutive nucleophilic ring opening of bicyclic azetidinium intermediate $14 a^{a-c}$

|  |  | Formation of intermediate 14a |  |  | Ring opening of intermediate 14a |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 13a | TS1 | $\begin{gathered} 14 a+ \\ \text { mesylate } \end{gathered}$ | $\begin{gathered} 14 a+ \\ \text { acetate } \end{gathered}$ | TS2 | 157a |
| Explicit solvation | B3LYP | 0.0 | 123.2 | 26.1 | 0.0 | 37.6 | -141.1 |
|  | BMK | 0.0 | 124.8 | 1.4 | 0.0 | 60.4 | -120.3 |
|  | M06-2X | 0.0 | 121.1 | 6.8 | 0.0 | 52.8 | -142.6 |
|  | CAM-B3LYP | 0.0 | 127.2 | 17.3 | 0.0 | 47.6 | -141.4 |
|  | $\omega$ B97X-D | 0.0 | 111.2 | -1.8 | 0.0 | 57.6 | -118.6 |
| Explicit/implicit solvation with C-PCM | B3LYP | 0.0 | 104.3 | 3.4 | 0.0 | 43.8 | -134.9 |
|  | BMK | 0.0 | 105.9 | -21.4 | 0.0 | 65.4 | -114.7 |
|  | M06-2X | 0.0 | 102.3 | -16.9 | 0.0 | 58.5 | -135.3 |
|  | CAM-B3LYP | 0.0 | 108.1 | -5.7 | 0.0 | 53.1 | -135.3 |
|  | $\omega$ B97X-D | 0.0 | 92.2 | -25.0 | 0.0 | 63.3 | -111.9 |
| Explicit/implicit solvation with SMD | B3LYP | 0.0 | 103.3 | -2.7 | 0.0 | 45.1 | -135.3 |
|  | BMK | 0.0 | 105.5 | -26.8 | 0.0 | 66.2 | -116.1 |
|  | M06-2X | 0.0 | 102.2 | -22.1 | 0.0 | 59.2 | -136.8 |
|  | CAM-B3LYP | 0.0 | 107.3 | -11.6 | 0.0 | 54.2 | -136.2 |
|  | $\omega$ B97X-D | 0.0 | 91.8 | -30.4 | 0.0 | 64.2 | -113.1 |

${ }^{a}$ B3LYP/6-31+G(d,p) optimized structures. ${ }^{\text {b }}$ Single point energy calculations at all levels of theory with 6$311++G(d, p)$ basis set. ${ }^{\text {c }}$ Implicit solvation in acetonitrile, $\varepsilon=36.6$.

### 3.2.3 Conclusions

In summary, next to their established reactivity toward the synthesis of 4-bromo-, 4-cyano-, 4-azido-, 4-fluoro-, and 4-oxo-5,5-dimethylpiperidines, 2-(2-bromo-1,1-dimethylethyl)azetidines were proven to be useful starting materials to perform rearrangements toward 4-acetoxy- and 4hydroxypiperidines as well. Furthermore, the reactivity of 2-(2-mesyloxyethyl)azetidines, lacking a gem-dimethyl group, toward different nucleophiles was evaluated for the first time, pointing to a useful transformation of the former into the class of cis-3,4-disubstituted 5,5-dinordimethylpiperidines, resulting in the stereoselective preparation of a variety of new 4-acetoxy-, 4-hydroxy-, 4-bromo-, 4-formyloxy-, and 4-oxopiperidines in moderate to high yields. This approach constitutes a convenient alternative for the preparation of the former class of 5,5dimethylpiperidines and 5,5-dimethylpiperidin-4-ones, as the corresponding 5,5-dinor-dimethyl
variants provide interesting opportunities within the field of drug development, which can be of high importance in pharmaceutical and medicinal chemistry. In addition, the synthetic applicability of the latter 5,5-dinor-dimethylpiperidin-4-ones was demonstrated by means of both a chemical and an enzymatic reduction. Whereas the $\mathrm{NaBH}_{4}$-induced reduction is characterized by a cisdiastereoselectivity, the alcohol dehydrogenase-mediated reductions proceeded with $S$ - or $R$ enantioselectivity at the carbonyl functionality.

During these reactions, transient 1-azoniabicyclo[2.2.0]hexanes were prone to undergo an $\mathrm{S}_{\mathrm{N}} 2$-type ring opening at the bridgehead carbon atom to afford the final azaheterocycles in a stereoselective way. The cis-diastereoselectivity is thus controlled by the Staudinger synthesis of the starting $\beta$ lactams and the $\mathrm{S}_{\mathrm{N}} 2$-ring opening of the intermediate bicyclic azetidinium ions.

In addition to the experimental results, the intermediacy of transient 1-azoniabicyclo[2.2.0]hexanes in these transformations was further validated by means of high-level computational analysis. These results show that the bicyclic intermediate could be localized on the potential energy surface as a stable species.

### 3.3 Synthesis of bicyclic tetrahydrofuran-fused $\boldsymbol{\beta}$-lactams and their conversion into methyl cis-3-aminotetrahydrofuran-2carboxylates (Paper IV)

In addition to the generation of different biologically interesting nitrogen-containing (heterocyclic) systems from azetidin-2-one derivatives by selective bond cleavage and rearrangements, ${ }^{4}$ as demonstrated in the previous paragraphs, the azetidin-2-one skeleton has also been extensively used as a template to construct cyclic structures fused to the four-membered ring using the functionalization of the $\beta$-lactam nucleus as a stereocontrolling element. ${ }^{4 g, 24}$ Among them, 3,4-fused ( $C$-fused) bicyclic $\beta$-lactams have received much less attention as compared to their celebrated $N$ fused analogues. ${ }^{4 g, 14,24,114}$ However, in many cases the resistance to $\beta$-lactam antibiotics can be attributed to a high level of expression of class $C \beta$-lactamases, which are reported to be selectively inhibited by 3,4-bridged monobactam derivatives, as some $\beta$-lactams $C$-fused with a cyclopentene, ${ }^{115}$ pyrrolidine ${ }^{116}$ or thiazolidine ${ }^{117}$ ring have been found to possess promising $\beta$-lactamase inhibitory activities. In addition, recently, bicyclic $\beta$-lactams $C$-fused with carbocycles and a carbohydrate unit have been reported to exhibit promising activities against malaria, ${ }^{118 \mathrm{a}}$ leishmaniasis ${ }^{118 b}$ and several types of cancer. ${ }^{118 c}$

Although the tetrahydrofuran motif is ubiquitous as a structural feature in bioactive natural and synthetic molecules, ${ }^{119}$ relatively few methods are available for the construction of tetrahydrofuranbased $\beta$-lactams. ${ }^{114 \mathrm{a}-\mathrm{i}}$ For example, the transition metal-catalyzed heterocyclization of azetidin-2-onetethered $\gamma$-allenols ${ }^{114 a, 114 c}$ and $\gamma$-alkynols ${ }^{114 d}$ and the Ag-mediated intramolecular 1,3-dipolar cycloaddition of oxo- $N$-propargylamides ${ }^{114 b}$ comprise regiocontrolled routes to $\beta$-lactams bearing an oxygen-containing 3,4-fused five-membered ring system. Very recently, chlorinated tetrahydrofuro[3,2-c]azetidin-2-ones have been prepared by a copper(I)-catalyzed atom transfer radical cyclization. ${ }^{114 e}$ The radical-mediated ring closure of 3-benzyloxy-4-ethynylazetidin-2-ones has been described toward the corresponding $C$-fused bicyclic cis- $\beta$-lactams, ${ }^{114 \mathrm{~g}}$ and a cis-4-(2-fluorophenyl)-3-hydroxy- $\beta$-lactam was transformed into a tricyclic $\beta$-lactam via an $\left(\eta^{6}\right.$ arene)tricarbonylchromium (0) complex through a number of reaction steps. ${ }^{114 \mathrm{f}}$

In view of the continuous quest for new lead compounds in the pharmaceutical industry, the synthesis of new (cyclic) $\beta$-amino acid derivatives comprises an important research field in modern organic chemistry. The selective synthesis of $\beta$-amino acids ${ }^{120}$ has been the subject of tremendous effort principally due to their important biological activities ${ }^{121}$ as for example enzyme inhibitors or $\alpha$ amino acid surrogates in the construction of peptides possessing unique conformational properties ( $\beta$-peptides). ${ }^{122}$ Furthermore, cyclic $\beta$-amino acids in which the amino group and the acid functionality are vicinally attached to an aliphatic ring system represent an important challenge due to their biological utility. ${ }^{123}$ Cispentacin $180,{ }^{124}$ an antifungal agent against various Candida strains and a subunit of the natural antibiotic amipurimycin, ${ }^{125}$ comprises a relevant example and has attracted considerable attention to these five-membered $\beta$-amino acids (Figure 14). ${ }^{126}$ Their oxaheterocyclic analogues, i.e., tetrahydrofurancarbocyclic acid derivatives, vicinally substituted with an amino group, are known to possess antimycotic activities. ${ }^{127}$ Consequently, the synthesis of oxolane $\beta$-amino acid derivatives such as 181 constitutes a relevant challenge in organic chemistry (Figure 14).


180
cispentacin


181

Figure 14

At the Department of Sustainable Organic Chemistry and Technology (UGent), cis-3-benzyloxy-4-(2-bromo-1,1-dimethylethyl)- $\beta$-lactams 7 have been transformed into cis-4,4-dimethyl-2-oxa-6-
azabicyclo[3.2.0]heptan-7-ones 182, which served as eligible intermediates for the preparation of cis-3-amino-4,4-dimethyletrahydrofuran-2-carboxylates 183 via acidic methanolysis (Figure 15). ${ }^{14}$ In line with paragraph 3.2 and in continuation of the interest in the use of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones 12 as versatile synthons, the present chapter focuses on the synthesis of cis-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones 18 and cis-3-aminotetrahydrofuran-2carboxylates 19, thus providing an easy access to the 4,4-dinor-dimethyl variants as valuable templates in medicinal chemistry (Figure 15).


Figure 15

Thus, the potential of 3-benzyloxy- $\beta$-lactams $\mathbf{1 2 b}, \mathbf{c}$ as selected synthons in the synthesis of bicyclic azetidin-2-ones was investigated. Deprotection of the silyl ether in $\beta$-lactams $\mathbf{1 2 b}, \mathbf{c}$ using 1.1 equiv of tetra-n-butylammonium fluoride (TBAF) in THF, followed by treatment with 1.05 equiv of mesyl chloride ( MsCl ) in the presence of a base ( 1.1 equiv of $E t_{3} \mathrm{~N}$ ) and a catalytic amount of 4(dimethylamino)pyridine (DMAP) in dichloromethane at $0{ }^{\circ} \mathrm{C}$ for three hours furnished the corresponding cis-3-benzyloxy-4-(2-mesyloxyethyl)azetidin-2-ones 17a,b in 86-89\% yield (Scheme 56). The latter $\beta$-lactams hold interesting potential for further elaboration due to the presence of a strained four-membered ring and a leaving group in one of the side chains.

Subsequently, hydrogenolysis of the benzyl ether substituent of the latter cis-3-benzyloxy-4-(2-mesyloxyethyl)azetidin-2-ones $\mathbf{1 7 a}$,b using $20 \%(w / w)$ palladium on activated carbon in methanol at room temperature for 60 hours afforded the corresponding cis-3-hydroxy- $\beta$-lactams in high purity (> $90 \%,{ }^{1} \mathrm{H} N \mathrm{NR}$ ), which were used as such for further elaboration. Indeed, the latter 3-hydroxy- $\beta$ lactams were subjected to ring closure via intramolecular substitution of the mesyloxy functionality upon treatment with one equiv of NaH in THF under reflux for 15 hours, yielding the premised new cis-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones 18a,b in high yields (52-62\%) after purification by column chromatography on silica gel. The cis-stereochemistry of bicyclic $\beta$-lactams $\mathbf{1 8} \mathbf{a}, \mathbf{b}$, which is a direct consequence of the relative stereochemistry defined during the Staudinger synthesis of the starting
$\beta$-lactams 12b,c, was unambiguously assigned based on the coupling constants between the protons at C-1 and C-5 ( $3.3 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}$ ), pointing to a cis-configuration of the bicyclic framework. ${ }^{14,114 \mathrm{~g}}$ It has to be mentioned that this comprises the first synthesis of $\beta$-lactams $C$-fused with an unsubstituted tetrahydrofuran unit, in which the oxygen atom is connected to the C-3 $\beta$-lactam carbon atom.

As mentioned before, (cyclic) $\beta$-amino acids are important constituents of biologically active natural products and pharmaceutical agents. ${ }^{121,122,123}$ In addition, oligomers of $\beta$-amino acids, for example $\beta$ peptides, have attracted considerable attention as useful peptidomimetics because of their proteolytic stability relative to natural $\alpha$-peptides and their propensity to adopt stable secondary structures. ${ }^{122}$ Since the use of $\beta$-lactams as synthons for the synthesis of $\beta$-amino acids with a predetermined stereochemistry is well known in the literature, ${ }^{4 h, 128}$ hydrolysis of the amide functionality in bicyclic- $\beta$-lactams can lead to the selective formation of (hetero)cyclic $\beta$-amino acids. In that respect, the reactivity of bicyclic $\beta$-lactams 18a,b toward methanolic hydrogen chloride was evaluated with the intention to develop an efficient and straightforward route toward the class of 3-aminotetrahydrofuran-2-carboxylates 19a,b. Treatment of $\beta$-lactams 18a,b with five equiv of HCl in $\mathrm{MeOH}(3 \mathrm{M})$ under reflux for 24 hours resulted in the selective formation of novel methyl cis-3-aminotetrahydrofuran-2-carboxylates $\mathbf{1 9 a , b}$ in good yields and purity (Scheme 56). The observed coupling constants between the protons at C-2 and C-3 in $\beta$-amino esters $\mathbf{1 9 a} \mathbf{a} \mathbf{b}\left(5.5-6.6 \mathrm{~Hz},{ }^{1} \mathrm{H} \mathrm{NMR}\right.$, $\mathrm{CDCl}_{3}$ ) were in good accordance with those reported for their 4,4-dimethyl variants. ${ }^{14}$ In this way, the transfer of the stereochemical information, introduced by the stereoselective Staudinger synthesis of $\beta$-lactams 12b,c, through the reaction pathway enables the selective preparation of cis-3-aminotetrahydrofuran-2-carboxylates 19a,b.


Scheme 56

# 3.4 Synthesis of 2-hydroxy-1,4-oxazin-3-ones through ring transformation of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$ lactams (Paper VI) 

Within the general objective of this thesis to synthesize new nitrogen-containing (a)cyclic target compounds based on novel fragmentations and rearrangements of the $\beta$-lactam ring, the fusion of the $\beta$-lactam ring and a second strained small-ring heterocycle in one chemical entity might give rise to the development of novel classes of highly reactive compounds. The interest in these fused bicyclic compounds stems from the combination of different reactive ring systems, which can (after initial selective manipulation) interact intramolecularly with each other, thus leading to the preparation of novel mono-, bi- and tricyclic target compounds.

Next to $\beta$-lactams, aziridines display an uncommon combination of reactivity and synthetic utility as well. ${ }^{129}$ In particular, 2-(bromomethyl)aziridines are frequently deployed as versatile synthetic intermediates for the regio- and stereoselective preparation of a variety of (a)cyclic amines, including $\beta$-fluoro amines, piperidines, thiazolines, $\delta$-lactams and $\gamma$-lactones. ${ }^{27-37}$

In view of the expertise at the Department of Sustainable Organic Chemistry and Technology (UGent) regarding the synthetic potential of both functionalized $\beta$-lactams and 2-(bromomethyl)aziridines, the introduction of the reactive [2-(bromomethyl)aziridin-1-ylmethyl] substituent at the 4-position in $\beta$-lactams 187 via imination and subsequent reductive ring formation of 4 -formyl- $\beta$-lactams 185, synthesized starting from (R)-glyceraldehyde acetonide, was investigated (Scheme 57). $\beta$-Lactam hybrids 187 comprise an unexplored class of compounds with high synthetic potential due to the presence of a reactive $\beta$-lactam ring, a strained aziridine moiety and a halogenated electrophilic carbon atom. In this way, initially, a synthetic concept was devised based on intramolecular nucleophilic displacement of bromide in $\beta$-lactams 187 by the $\mathrm{C}-3$ alkoxide (obtained upon treatment with a base) to provide a convenient entry into the interesting class of tricyclic $\beta$-lactams $\mathbf{2 2}$ (Scheme 57). Indeed, due to increased bacterial resistance, the discovery of tricyclic $\beta$-lactam antibiotics ('trinems') and $\beta$-lactamase inhibitors ${ }^{130}$ has triggered a renewed interest in the preparation and biological evaluation of new polycyclic $\beta$-lactam systems in an attempt to move away from the classical structures. For example, Sanfetrinem 188 shows a broad-spectrum antibacterial activity against inter alia Streptococcus pneumoniae, Acinetobacter calcoaceticus, Staphylococcus aureus, Haemophilus influenzae and Moraxella catarrhalis, ${ }^{130 h, i}$ and LK-157 189 exhibits inhibitory activity against a variety of class $A$ and class $C \beta$-lactamases (Figure 16). ${ }^{130 \mathrm{~g}}$ In that respect, as in the case of their bicyclic analogues, the construction of 3,4 -fused tricyclic $\beta$-lactams comprises an interesting
challenge as an alternative for their 1,4-fused counterparts, both from a synthetic and biological viewpoint, as very little information regarding this type of potential antibacterials and/or $\beta$ lactamase inhibitors can be found in the literature.


Scheme 57


Figure 16

In order to evaluate the synthesis of 4-[2-(bromomethyl)aziridin-1-ylmethyl]-3-hydroxy- $\beta$-lactams 187 and their reactivity toward oxazepane-tethered tricyclic $\beta$-lactams 22, the synthesis of 4-formyl-3-hydroxyazetidin-2-ones 185 was envisaged.

### 3.4.1 Synthesis of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\boldsymbol{\beta}$-lactams

The synthesis of the starting $\beta$-lactams 193a-f was performed by means of a two-step literature procedure. ${ }^{15,131}$ Thus, (R)-glyceraldehyde acetonide 190 was condensed with different primary amines in dichloromethane in the presence of $\mathrm{MgSO}_{4}$ as drying agent, and the resulting chiral imines 191a-f were used as substrates in the Staudinger synthesis of $\beta$-lactams 192a-f. Therefore, imines 191a-f were treated with benzyloxyacetyl chloride in dichloromethane in the presence of triethylamine to afford the corresponding optically active $\beta$-lactams 192a-f in 43-81\% yield and with high diastereomeric excess (Scheme 58, Table 14). The cis-diastereoselectivity could be deduced from the ${ }^{1} \mathrm{H}$ NMR spectra of $\beta$-lactams 192a-f, as the coupling constants between the $3-\mathrm{H}$ and $4-\mathrm{H}$ protons on the $\beta$-lactam ring varied between 4.8 and $5.0 \mathrm{~Hz}\left({ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CDCl}_{3}\right)$, which correspond well with those reported in the literature for cis- $\beta$-lactams. ${ }^{69}$ Subsequently, the latter azetidin-2-ones 192a-f could be easily converted into the premised chiral 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 193a-f by consecutive hydrolysis in THF/ $\mathrm{H}_{2} \mathrm{O}(1 / 1)$ using one equiv of $p$-toluenesulfonic acid under reflux for four hours and hydrogenolysis of the benzyl ether moiety by using $20 \%$ (w/w) palladium on
activated carbon in methanol at room temperature for 18 hours, yielding $\beta$-lactams 193a-f in 63-93\% yield after column chromatography $\left(\mathrm{SiO}_{2}\right)$ or recrystallization from EtOAc/hexane (30/1).



## Scheme 58

Table 14. Synthesis of imines 191a-f, 3-benzyloxy- $\beta$-lactams 192a-f and 3-hydroxy- $\beta$-lactams 193a-f

| $\mathbf{R}$ | Compound 191 (yield) | Compound 192 (yield) $^{\mathbf{a}}$ | dr (192) ${ }^{\mathbf{b}}$ | Compound 193 (yield) $^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $i \mathrm{Pr}$ | 191a (93\%) | 192a (81\%) | $91 / 9$ | 193a (83\%) |
| $i \mathrm{Bu}$ | 191b (94\%) | 192b (50\%) | $92.5 / 7.5$ | 193b (74\%) |
| $n \mathrm{Bu}$ | 191c (95\%) | 192c (43\%) | $92.5 / 7.5$ | 193c (63\%) |
| $c \mathrm{Hex}$ | 191d (90\%) | 192d (65\%) | $93.5 / 6.5$ | 193d (88\%) |
| $n P r$ | 191e (92\%) | 192e (70\%) | $95 / 5$ | 193e (68\%) |
| $i P e n t ~$ | 191f (85\%) | 192f (50\%) | $94 / 6$ | 193f (93\%) |
| ${ }^{\text {a }}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}\right)$ or recrystallization. ${ }^{\text {b }}$ Determined by ${ }^{1} \mathrm{H}$ NMR and GC. |  |  |  |  |

### 3.4.2 Synthesis of 2-hydroxy-1,4-oxazin-3-ones

In the next stage, the reactivity of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 193a-f with regard to the oxidant sodium periodate $\left(\mathrm{NaIO}_{4}\right)$ was investigated as a potential entry into the synthetically useful class of 4 -formyl- $\beta$-lactams, ${ }^{15,131}$ which are known to be attractive synthons for further elaboration. Indeed, a significant interest has been focused on the synthesis and reactivity of 4-formyl- $\beta$-lactams as viable intermediates in (medicinal) organic synthesis, as illustrated by their use in the asymmetric synthesis of bi- and polycyclic $\beta$-lactams, different kinds of heterocycles, alkaloids, non proteinogenic $\alpha$ - and $\beta$-amino acids, amino sugars, taxoids, and complex natural products like biotin and sphingosines. ${ }^{54,130 e, 132}$ In analogy, 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 193a-f were treated with two equiv of $\mathrm{NaIO}_{4}$ in a two-phase system of saturated aqueous sodium bicarbonate and dichloromethane $(1 / 15)$ at room temperature for two hours, but the expected 4-formyl-3-hydroxy- $\beta$-lactams 185 were not detected. Nonetheless, full and selective substrate conversion
occurred, and detailed spectroscopic analysis finally revealed the molecular structure of the obtained reaction products to be exclusively 2-hydroxy-1,4-oxazin-3-ones 194a-e, which were isolated in good yields (69-94\%, Scheme 59). Only in the case of an $n$-propyl unit as the $N$-substituent, a complex reaction mixture was obtained. This remarkable reactivity stands in sharp contrast with the known $\mathrm{NaIO}_{4}$-mediated oxidation of 3 -alkoxy- and 3-phenoxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams, which exclusively leads to the corresponding 4-formyl- $\beta$-lactam derivatives under the same reaction conditions. ${ }^{15,131}$


## Scheme 59

From a mechanistic point of view, the formation of the latter 2-hydroxy-1,4-oxazin-3-ones 194 can be rationalized considering the initial oxidation of the starting 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$ lactams 193 toward the corresponding 4-formyl- $\beta$-lactams 185, which proved to be unstable under the given reaction conditions. Considering the presence of an electron-donating hydroxyl functionality at C-3, a subsequent C3-C4 bond cleavage in $\beta$-lactams 185 toward intermediates 195/196 is facilitated, whether or not periodate-promoted through activation of the aldehyde. Finally, ring closure of the latter intermediates 196 results in the selective formation of 2-hydroxy-1,4-oxazin-3-ones 194 (Scheme 60).

In an attempt to further assess the intrinsic reactivity of 4-formyl- $\beta$-lactams 185, 3-benzyloxy-4-formyl-1-isopropyl- $\beta$-lactam ${ }^{15}$ was subjected to hydrogenolysis (one bar $\mathrm{H}_{2}$ ) as a possible entry into the corresponding 4 -formyl-3-hydroxy- $\beta$-lactam 185a. However, as could be anticipated, the substrate was overreduced to provide the 3-hydroxy-4-(hydroxymethyl)azetidin-2-one system instead. Subsequent Swern oxidation of the primary alcohol using oxalyl chloride, DMSO , and $\mathrm{Et}_{3} \mathrm{~N}$ gave rise to the exclusive formation of 2-hydroxy-1,4-oxazin-3-one 194a and no traces of the desired 4-formyl-3-hydroxy- $\beta$-lactam 185a could be found in the reaction mixture, pointing to the high intrinsic reactivity of 4-formyl-3-hydroxy- $\beta$-lactams 185 as probably the main driving force governing this new ring-expansion reaction. The presence of periodate is apparently not essential to effect this rearrangement, although it might have a propitious influence by coordinating to the carbonyl moiety
in intermediates 185. As mentioned before, it should be stressed that this ring-expansion reaction is not compatible with $\beta$-lactam substrates bearing an alkoxy or phenoxy group at the $\mathrm{C}-3$ position.


## Scheme 60

According to this reaction mechanism, the observed ring expansion of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 193 toward 2-hydroxy-1,4-oxazin-3-ones 194 should proceed with loss of chirality, which was supported experimentally by measurement of the optical rotation of 4-cyclohexyl-2-hydroxy-1,4-oxazin-3-one 194 d ( $\alpha_{\mathrm{D}}=0.0^{\circ}, \mathrm{c}=1.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). By the way, the stereocenter of the hemiacetal is also subject to lability in terms of stereochemical integrity. In addition, esterification of 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194a with one equiv of (1S)-(-)-camphanic chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ for two hours in the presence of three equiv of triethylamine afforded the corresponding 2-camphanoyloxy-4-isopropyl-1,4-oxazin-3-one 198 as a mixture of two diastereoisomers in a ratio of 54/46 (based on ${ }^{1} \mathrm{H}$ NMR and GC analysis), pointing to the racemic character of 2-hydroxy-1,4-oxazin-3-ones 194 (Scheme 61).


194a


198 (33\%) dr 54/46

## Scheme 61

Albeit starting from different substrates and triggered by different reaction conditions, two other approaches involving ring enlargement of appropriate $\beta$-lactam derivatives toward morpholinone scaffolds have been reported in the literature. The first method involves a $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$-promoted
carbenium ion rearrangement of 4-acyl- $\beta$-lactams 199 bearing an acetal functionality at the C-3 carbon, yielding the corresponding 1,4-oxazin-2,3-diones 204 in good yields (75-95\%). ${ }^{133}$ Two possible reaction pathways, involving initial coordination of tin to the carbonyl moiety in $\beta$-lactams 200 followed by a C3-C4 bond cleavage due to the enhanced reactivity of the double bond and the ability of the acetal functionality to stabilize the emerging carbenium ion in intermediates 201 (Method A) and dicoordination of tin at the acetal functionality in $\beta$-lactams 199 to yield intermediates 203, which subsequently evolve through a concerted or stepwise six-electron rearrangement (Method B), may account for the observed reactivity (Scheme 62). ${ }^{133}$


## Scheme 62

The second approach comprises a single-step molecular iodine-catalyzed rearrangement of 3-alkoxy-4-formyl- $\beta$-lactams 20 into monocyclic $\gamma$-lactams 205 upon treatment with allylic and propargylic trimethylsilanes, inevitable leading to 2-alkoxy-1,4-oxazin-3-ones 207 as minor constituents (4-9\%), except for the reaction of 4-formyl-3-methoxy-1-(4-methoxybenzyl)azetidin-2-one $20\left(R^{1}=P M B, R^{2}=\right.$ Me) with allyltrimethylsilane ( $\mathrm{R}=\mathrm{H}$ ) which gave rise to the corresponding morpholinone 207 in $66 \%$ yield (Scheme 63). ${ }^{134}$


## Scheme 63

Although a similar reaction mechanism was proposed (Scheme 64), the achiral outcome observed in the above-described ring expansion of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 193 toward the corresponding 2-hydroxy-1,4-oxazin-3-ones 194 contradicts with the reported formation of optically pure 2-alkoxy-1,4-oxazin-3-ones 207 as minor constituents in the molecular iodine-catalyzed rearrangement of chiral 3-alkoxy-4-formyl- $\beta$-lactams 20 (Scheme 63). ${ }^{134}$ In the latter case, although not discussed in the original paper, the chiral outcome could be explained by the partial carbenium ion character of the Zwitterionic intermediates 209 controlling the subsequent intramolecular nucleophilic attack to occur from the same side from which the initial $\beta$-lactam C3-C4 bond was cleaved (Scheme 64). A similar stereochemical control ("memory effect") has been described in the literature for reactions of carbenium ions in which the latter "remember" how they were formed before taking part in the second step. ${ }^{135}$ In our case, however, the hydroxyl group in intermediates 195, formed after C3-C4 bond cleavage of the intermediate 4 -formyl- $\beta$-lactams 185, can induce prototropy toward intermediates 196. Since these intermediates 196 possess a planar configuration due the presence of a polycentric molecular orbital (PCMO) spread over the entire molecule, there is no stereocontrol during the subsequent intramolecular nucleophilic attack, resulting in the formation of racemic 2-hydroxy-1,4-oxazin-3-ones 194 (Scheme 60).


Scheme 64

Although a less expensive, achiral approach toward 2-hydroxy-1,4-oxazin-3-ones 194 starting from the oxidation of the commercially available racemic solketal ${ }^{136}$ can be developed applying the same reaction sequence as mentioned above, the use of optically pure ( $R$ )-glyceraldehyde acetonide 190 provided some additional mechanistic insights into this unexpected transformation.

Whereas in these two reported routes 4 -acyl- and 4 -formyl- $\beta$-lactams 199 and 20 have been prepared as the substrates to perform the ring enlargement, in the above-described ring enlargement a different type of starting compounds, i.e., 3 -hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 193, served as substrates for the ring rearrangement.

Subsequently, with the intention to support the proposed mechanistic rationale, the synthesis of the aza-analogues of the former 2-hydroxy-1,4-oxazin-3-ones 194 was envisaged. Thus, treatment of the latter compounds 194a-c with 12 equiv of $\mathrm{NH}_{4} \mathrm{OAc}$ and ten equiv of HOAc in ethyl acetate furnished the corresponding $1 H$-pyrazin-2-ones 211a-c in $30-51 \%$ yield after a reflux period of 24 hours (Scheme 65 , the synthesis of $1 H$-pyrazin-2-ones 211b,c was performed by a colleague ${ }^{137}$ ). ${ }^{138}$ This transformation suggests a reaction mechanism in which acetic acid-mediated hydrolysis of the hemiacetal in 2-hydroxy-1,4-oxazin-3-ones 194 gives rise to the selective formation of dialdehydes 197, which are subsequently transformed into the corresponding diimines 213 and enamino imines 214 through the action of ammonium acetate. Finally, ring closure followed by the elimination of ammonia results in the selective formation of 1 H -pyrazin-2-ones 211 (Scheme 65, Route A). However, alternative reaction pathways should not be excluded. For example, initial elimination of water followed by the addition of ammonia can account for the formation of 2-amino-1,4-oxazin-3-
ones 217, which subsequently undergo an acetic acid-mediated ring opening toward the corresponding intermediates 218/219. Finally, ring closure and elimination of water give rise to the formation of 1H-pyrazin-2-ones 211 (Scheme 65, Route B).


## Scheme 65

In order to confirm the formation of $1 H$-pyrazin-2-ones 211, an independent synthesis was performed. Alkylation of 1 H-pyrazin-2-one 221 by means of 1.1 equiv of isobutyl bromide and two equiv of potassium carbonate in acetonitrile under reflux afforded the expected 1 -isobutyl- 1 H -pyrazin-2-one 211b in $28 \%$ yield (Scheme 66), ${ }^{139}$ which was identical to the compound obtained from 1-isobutyl-2-hydroxy-1,4-oxazin-3-one 194b (Scheme 65).


## Scheme 66

### 3.4.2.1 Theoretical rationalization

As mentioned before, the above-described four- to six-membered ring-expansion reaction is only compatible for substrates bearing a hydroxyl group at the C-3 position, and not for substrates bearing a alkoxy or phenoxy group, as 3-alkoxy- and 3-phenoxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams 222 ( $\mathrm{R}=\mathrm{Me}, \mathrm{Bn}, \mathrm{Ph}$ ) are known to be oxidized to the corresponding 4-formyl- $\beta$-lactam derivatives 20 under the same reaction conditions without subsequent rearrangement into six-membered heterocycles (Scheme 67). ${ }^{15,131}$ In order to shed light on this remarkable difference in reactivity and to provide additional insights into the mechanism (Scheme 60) and the factors governing this new ring-expansion reaction, Density Functional Theory calculations were conducted by colleagues at the Center for Molecular Modeling, Ghent University.


The first step in the proposed transformation of $\beta$-lactams 185 toward oxazin-3-ones 194 comprises the ring opening of the $\beta$-lactam nucleus (Scheme 60, $\mathrm{R}=\mathrm{Me}$ ). This ring opening could give rise to an unstable zwitterionic species 195, which is easily converted to intermediate 196 by proton transfer. However, a concerted reaction mechanism in which $\beta$-lactam 185 is directly converted to intermediate 196 was found more plausible. Indeed, the Gibbs free energy of activation ( $\Delta G^{\ddagger}$ ) for the $\beta$-lactam ring opening involving a simultaneous proton transfer is $35.6 \mathrm{~kJ} / \mathrm{mol}$ lower in energy than that for the formation of the zwitterionic intermediate 195 (Figure 17, TS(185-196) and TS(185-195), respectively). The subsequent ring closure of intermediate 196 toward oxazin-3-one 194, which also involves a simultaneous proton transfer, has a relatively high Gibbs free energy of activation ( $\Delta G^{\ddagger}=$ $145.6 \mathrm{~kJ} / \mathrm{mol}$ ), indicating that this model might be inappropriate to represent the system. Finally, a concerted reaction mechanism in which $\beta$-lactam 185 is directly converted to oxazin-3-one 194 by simultaneous ring opening and ring closure was considered. The Gibbs free energy of activation for this conversion was found to be higher than that for the conversion of $\beta$-lactam 185 to intermediate 196 or zwitterionic intermediate 195 and therefore seems very unlikely.


Figure 17. Gibbs free energy profile for the ring transformation of 4-formyl-3-hydroxy- $\beta$-lactams 185 to 2-hydroxy-1,4-oxazin-3-ones 194, without assistance of a second $\beta$-lactam (M06-2X/6-31+G(d,p)//B3LYP/6$31+G(d, p), \varepsilon=8.93$; free energies in $\mathrm{kJ} / \mathrm{mol}$ at 298 K and 1 atm )

This ring transformation is not observed for $\beta$-lactam substrates bearing an alkoxy or phenoxy group instead of a hydroxyl group at the C-3 position. For comparative purposes, the hypothetical ring transformation of 4-formyl-3-methoxy- $\beta$-lactam 20 to 2-methoxy-1,4-oxazin-3-one 224 was investigated as well (Figure 18). The reaction mechanism with the ring opening of the starting $\beta$ lactam 20 to an unstable zwitterionic species 223 has a free energy of activation of $138.4 \mathrm{~kJ} / \mathrm{mol}$, which is higher than that for compound 185 (Figure 17). Moreover, if this relatively high Gibbs free energy of activation would be overcome, the formed very unstable species $\mathbf{2 2 3}$ will readily go back to $\beta$-lactam 20 instead reacting further to the oxazin-3-one $224\left(\Delta G^{\ddagger}=0.9 \mathrm{~kJ} / \mathrm{mol}\right.$ and $105.4 \mathrm{~kJ} / \mathrm{mol}$, respectively). Furthermore, the concerted reaction mechanism in which $\beta$-lactam 20 is directly converted to oxazin-3-one 224 has a high Gibbs free energy of activation ( $\Delta G^{\ddagger}=167.0 \mathrm{~kJ} / \mathrm{mol}$ ).


Figure 18. Gibbs free energy profile for the ring transformation of 4-formyl-3-methoxy- $\beta$-lactams 20 to 2 -methoxy-1,4-oxazin-3-ones 224 (M06-2X/6-31+G(d,p)//B3LYP/6-31+G(d,p), $\varepsilon=8.93$; free energies in kJ/mol at 298K and 1 atm)

To make the model more realistic, a second $\beta$-lactam was added to the system. All barriers were brought down by $\beta$-lactam assistance (Figure 19). In case of proton transfer, the hydroxyl group of the second $\beta$-lactam acts as a proton conduit, accepting the proton from the first $\beta$-lactam and donating its own. If no proton transfer takes place, the second $\beta$-lactam stabilizes transition states and reactants due to intermolecular H-bonds. The reaction mechanism proposed for compound 185, ring opening to intermediate 196 and subsequent ring closure toward oxazin-3-one 194 with simultaneous proton transfer in both steps, was found to be most plausible. Indeed, the Gibbs free energy of activation for the $\beta$-lactam ring opening with a simultaneous proton transfer is lower in energy than that for the ring opening with formation of the zwitterionic intermediate 195 and for the simultaneous ring opening and ring closure $\left(\Delta G^{\ddagger}=91.1,120.1\right.$ and $140.3 \mathrm{~kJ} / \mathrm{mol}$ for $\operatorname{TS}(\mathbf{1 8 5 - 1 9 6})+\mathrm{B}$, TS(185-195)+B and TS(185-194)+B, respectively). Moreover, the Gibbs free energy of activation for the subsequent ring closure of intermediate 196 with simultaneous proton transfer was brought down significantly $\left(\Delta G^{\ddagger}=145.6 \mathrm{~kJ} / \mathrm{mol}\right.$ for $\operatorname{TS}(196-194)$ and $84.1 \mathrm{~kJ} / \mathrm{mol}$ for $\operatorname{TS}(196-194)+B$, Figure 17 and Figure 19, respectively), demonstrating the need for the assistance of a second $\beta$-lactam for the reaction to proceed.


Figure 19. Gibbs free energy profile for the ring transformation of 4-formyl-3-hydroxy- $\beta$-lactams 185 to 2-hydroxy-1,4-oxazin-3-ones 194, with assistance of a second $\beta$-lactam (M06-2X/6-31+G(d,p)//B3LYP/6$31+G(d, p), \varepsilon=8.93$; free energies in $\mathrm{kJ} / \mathrm{mol}$ at 298 K and 1 atm )

Thus, the transformation of 4-formyl-3-hydroxy- $\beta$-lactams 185 into 2-hydroxy-1,4-oxazin-3-ones 194 is facilitated by the proton transfer of the hydroxyl group and the assistance of the hydroxyl group of a second $\beta$-lactam. Both mechanisms are not feasible for $\beta$-lactam substrates bearing an alkoxy or phenoxy group.

2-Hydroxy-1,4-oxazin-3-ones 194 exhibit a number of interesting structural characteristics, making them suitable substrates for further elaboration. For example, the presence of a double bond in the oxazin-3-one backbone provides an entry into highly substituted monocyclic morpholinone derivatives upon treatment with electrophilic species. Additionally, the double bond can be deployed in intermolecular cycloaddition reactions leading to bicyclic morpholinones, and the free hydroxyl group can be used in coupling reactions with biologically relevant pharmacophores.

In order to show the capacity of the above-described method to prepare a broad array of oxazin-3ones and morpholin-3-ones bearing chemical diversity, several functionalities in 2-hydroxy-1,4-oxazin-3-ones 194 were selectively manipulated, which will be discussed in the next section.

### 3.4.3 Reactivity study of 2-hydroxy-1,4-oxazin-3-ones

In a first approach, the hydroxyl group in the latter heterocycles 194a-d was protected upon treatment with three equiv of benzoylchloride in dichloromethane in the presence of three equiv of triethylamine, furnishing the corresponding 2-benzoyloxy-1,4-oxazin-3-ones 225a-d after two hours at $0{ }^{\circ} \mathrm{C}$ (Scheme 68, Table 15, the synthesis of 2-benzoyloxy-1,4-oxazin-3-ones 225b, $\mathbf{c}$ was performed by a colleague ${ }^{137}$ ). As morpholine chemistry is of significant importance because of the occurence of these scaffolds in a large number of biologically active compounds useful in different therapeutical areas, ${ }^{140}$ the search for new, functionalized morpholine derivatives remains a relevant issue in medicinal chemistry. In particular, morpholin-3-one derivatives ${ }^{141}$ have attracted considerable interest owing to their biological and pharmacological activity, as they comprise key features in HIVprotease inhibitors, ${ }^{142}$ non-peptide ligands with high affinity and selectivity for tachykinin receptors, ${ }^{143}$ cornea permeable calpain inhibitors exhibiting anticataract properties, ${ }^{144}$ A549 lung cancer cell inhibitors, ${ }^{145}$ and potassium channel openers useful in the treatment of urinary incontinence (Figure 20). ${ }^{146}$ In that respect, the attention was turned to the catalytic hydrogenation of the double bond in 2-benzoyloxy-1,4-oxazin-3-ones 225a-d to provide an entry to the morpholin-3-one framework. Thus, the latter compounds 225a-d were converted into the corresponding 2-benzoyloxymorpholin-3-ones 226a-d in high yields (69-89\%) and purity upon treatment with 20\% (w/w) palladium on activated carbon in methanol at room temperature for 18 hours while applying five bar of hydrogen gas (Scheme 68, Table 15, the synthesis of 2-benzoyloxymorpholin-3-ones 226b,c was performed by a colleague ${ }^{137}$ ).


Scheme 68

Table 15. Synthesis of 2-benzoyloxy-1,4-oxazin-3-ones 225a-d and 2-benzoyloxymorpholin-3-ones 226a-d

| $\mathbf{R}$ | Compound 225 (yield) $^{\mathbf{a}}$ | Compound 226 (yield) $^{\mathbf{a}}$ |
| :---: | :---: | :---: |
| $i \mathrm{Pr}$ | 225a (45\%) | 226a (69\%) |
| $i \mathrm{Bu}$ | 225b (64\%) | 226b (79\%) |
| $n \mathrm{Bu}$ | 225c (93\%) | 226c (82\%) |
| $c H e x$ | 225d (34\%) | 226d (89\%) |

${ }^{a}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}\right)$ or recrystallization from $\mathrm{EtOAc} /$ hexane $(30 / 1)$.


HIV-protease inhibitors $\mathrm{R}^{1}=$ allyl; $\mathrm{R}^{2}=\mathrm{H}$
$R=\mathrm{C}_{6} \mathrm{H}_{5}, 3$-indolyl $R^{1} R^{2}=\left(\mathrm{CH}_{2}\right)_{5}$

cornea permeable calpain inhibitors
$\mathrm{R}^{1}=\mathrm{Bu}, \mathrm{Pr}, \mathrm{Bn}$
$R^{2}=\mathrm{Ph}, \mathrm{Bn}, 2$-naphthyl, 4- $\mathrm{HOC}_{6} \mathrm{H}_{5}$,
4-MeOC $6 \mathrm{H}_{5}, 4-\mathrm{BuOC}_{6} \mathrm{H}_{5}$


230
A549 lung cancer cell inhibitors

$$
\begin{gathered}
\mathrm{R}^{1}=\mathrm{Cl}, \mathrm{NO}_{2} \\
\mathrm{R}^{2}=\mathrm{H}, \mathrm{Cl}, \mathrm{OMe}
\end{gathered}
$$



231
potassium channel openers
$R=\mathrm{COC}_{6} \mathrm{H}_{5}, \mathrm{CF}_{3}, \mathrm{SO}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}$

Figure 20

As mentioned before, the incorporation of fluorine in organic compounds can tune their physicochemical characteristics due to the unique physical, chemical and biological properties of fluorine as a substituent. ${ }^{92}$ In that respect, it became of interest to verify whether the use of appropriate fluorinating agents could introduce fluorine in a site-selective manner in the above synthesized heterocyclic compounds. In a first attempt, selective deoxyfluorination of 2-hydroxy-1,4-oxazin-3-ones 194a-d was effected in the presence of two equiv of Morph-DAST in dichloromethane, resulting in a complete conversion toward 2-fluoro-1,4-oxazin-3-ones 232a-d in 78-94\% yield (Scheme 69, the synthesis of 2-fluoro-1,4-oxazin-3-ones $\mathbf{2 3 2 b}, \mathbf{c}$ was performed by a colleague ${ }^{137}$ ). The presence of a monofluorinated carbon center was unambiguously assigned based on the coupling constants between the proton and the fluoro atom at C-2, as the observed J-values of 52.7$53.7 \mathrm{~Hz}\left({ }^{1} \mathrm{H} \mathrm{NMR},{ }^{19} \mathrm{~F} \mathrm{NMR}, \mathrm{CDCl}_{3}\right)$ correspond well with those reported in the literature ( $50-57 \mathrm{~Hz},{ }^{1} \mathrm{H}$

NMR, $\left.\mathrm{CDCl}_{3}\right){ }^{147}$ Also, the ${ }^{13} \mathrm{C}$ NMR spectra revealed a coupling between the carbon and the fluorine at the C2-position, characterized by J-values between 233.1 and $234.2 \mathrm{~Hz}\left({ }^{13} \mathrm{C} N \mathrm{NR}, \mathrm{CDCl}_{3}\right)$. These results are in good accordance with ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CDCl}_{3}\right)$ reported in the literature for compounds bearing similar structural subunits. ${ }^{147 b, 148}$


## Scheme 69

In another strategy to introduce fluorine, 2-benzoyloxy-1,4-oxazin-3-ones 225a-d were smoothly bromofluorinated with 2.5 equiv of triethylamine trihydrofluoride ( $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ ) and 1.5 equiv of N bromosuccinimide (NBS) in dichloromethane at room temperature for 24 hours, resulting in the regiospecific formation of a diastereomeric mixture of 2-benzoyloxy-6-bromo-5-fluoromorpholin-3ones 234a-d and 235a-d through anti addition across the C-C double bond (234/235 = 67-80/20-33, Scheme 70, Table 16, the synthesis of 2-benzoyloxy-6-bromo-5-fluoromorpholin-3-ones 234b,c and 235 b,c was performed by a colleague ${ }^{137}$ ).


Scheme 70

Table 16. Synthesis of 2-benzoyloxy-6-bromo-5-fluoromorpholin-3-ones 234a-d and 235a-d

| R | Ratio 234/235 ${ }^{\text {a }}$ | Compound 234 (yield) ${ }^{\text {b }}$ |
| :---: | :---: | :---: |
| iPr | 75/25 | 234a (63\%) |
| iBu | 80/20 | 234b (33\%) |
| $n \mathrm{Bu}$ | 80/20 | 234c (42\%) |
| cHex | 67/33 | 234d (67\%) |
| ${ }^{a}$ Based on ${ }^{1} \mathrm{H}$ NMR and/or GC of the crude reaction mixture. ${ }^{b}$ After purification by column chromatography $\left(\mathrm{SiO}_{2}\right)$ or recrystallization from EtOAc/hexane (30/1). |  |  |

Detailed spectroscopic analysis of the obtained reaction mixtures revealed that the $\mathrm{Br}^{+}$-initiated electrophilic addition across the double bond of 2-benzoyloxy-1,4-oxazin-3-ones $\mathbf{2 2 5}$ proceeded with complete regioselectivity, which was determined based on the experimental coupling pattern in the ${ }^{13} \mathrm{C}$ NMR spectra (Scheme 71), as one carbonyl carbon appeared as a singlet while the other clearly coupled with fluorine and appeared as a doublet with a coupling constant between 3.4 Hz and 3.5 Hz $\left({ }^{13} \mathrm{CNMR}, \mathrm{CDCl}_{3}\right)$. Since these values are in good agreement with ${ }^{3} J_{\mathrm{F}-\mathrm{C}=0}$-coupling constants of 0-3.4 Hz $\left({ }^{13} \mathrm{C} \mathrm{NMR}, \mathrm{CDCl}_{3}\right)$ reported in the literature for $\mathrm{C}(=\mathrm{O}) \mathrm{NCHF}$-systems, ${ }^{149}$ and no ${ }^{4} \mathrm{~J}_{\mathrm{F}-\mathrm{C}=0-},{ }^{5} \mathrm{~J}_{\mathrm{F}-\mathrm{C}=0^{-}}$and ${ }^{6} \mathrm{~J}_{\mathrm{F}-}$ $\mathrm{C}=0$-coupling pattern is described for compounds bearing analogous structural subunits, ${ }^{149 a-c, 150}$ the regiospecificity was unambiguously assigned (Scheme 71), pointing to the $N$-acyliminium ion character of the intermediates $\mathbf{2 3 3}$ during the bromofluorination.


234/235


236

## Scheme 71

With the intention to provide additional experimental evidence for the above-mentioned regiospecificity and to exclude the formation of regioisomers $\mathbf{2 3 6}$, nucleophilic halide substitution via $N$-acyliminium intermediates through treatment of the diastereomeric reaction mixtures with external nucleophiles was envisaged. This reaction would involve the dislocation of the nitrogen lone pair, followed by halide dissociation leading to the formation of $N$-acyliminium ions, which are subsequently susceptible to intermolecular trapping by the additional nucleophile resulting in the
formation of new 2,5,6-trisubstituted 1,4-oxazin-3-one derivatives. As (cyclic) brominated amides are known to readily undergo substitution reactions via $N$-acyliminium intermediates ${ }^{151}$ and fluoride is generally recognized as a poor leaving group, nucleophilic substitution via N -acyliminium ions is expected to occur only for 2-benzoyloxy-5-bromo-6-fluoromorpholin-3-ones 236. Following this rationale, the diastereomeric reaction mixture obtained after bromofluorination of 2-benzoyloxy-1,4-oxazin-3-one 225a was treated with potassium cyanide under different reaction conditions (Table 17, Entry 1-7). However, even in the presence of a silver salt, all attempts resulted in recovery of the starting material or formation of complex reaction mixtures in which no typical signals for the expected substitution products could be detected.

Alternatively, in order to accomplish the afore-mentioned goal, a bromine-lithium exchange reaction ${ }^{152}$ was contemplated upon treatment with $n \mathrm{BuLi}$ and subsequent quenching with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, again resulting in the formation of a complex reaction mixture (Table 17, Entry 8).

Finally, according to a literature procedure concerning the Zn -mediated radical dehalogenation of organic compounds, ${ }^{153}$ the diastereomeric reaction mixture obtained after bromofluorination of 2-benzoyloxy-1,4-oxazin-3-one 225a was treated with two equiv of Zn in acetic acid at room temperature for 22 hours, unfortunately resulting in both debromination and defluorination toward 2-benzoyloxy-1,4-oxazin-3-one 225a in 80\% yield (Table 17, Entry 9).

Table 17. Attempted conversion of the diastereomeric reaction mixture obtained after bromofluorination of 2-benzoyloxy-1,4-oxazin-3-one 225a

| Entry | Substrate | Reaction conditions | Result ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 1 | 234a/235a or 236a | 2 equiv KCN, $\mathrm{CH}_{3} \mathrm{CN}$, rt, 18 h | no reaction |
| 2 | 234a/235a or 236a | 2 equiv KCN, $\mathrm{CH}_{3} \mathrm{CN}, \Delta, 6 \mathrm{~h}$ | no reaction |
| 3 | 234a/235a or 236a | 2 equiv KCN, DMSO, $80{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | complex mixture |
| 4 | 234a/235a or 236a | 1) 5 equiv $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, \mathrm{rt}, 1 \mathrm{~h}$ | no reaction |
|  |  | 2) 2 equiv KCN, DMSO, rt, 18 h |  |
| 5 | 234a/235a or 236a | 1) 5 equiv $\mathrm{Ag}_{2} \mathrm{CO}_{3}, \mathrm{DMSO}, 60^{\circ} \mathrm{C}, 1 \mathrm{~h}$ | complex mixture |
|  |  | 2) 2 equiv $\mathrm{KCN}, \mathrm{DMSO}, 60^{\circ} \mathrm{C}, 3 \mathrm{~h}$ |  |
| 6 | 234a/235a or 236a | 1 equiv $\mathrm{AgBF}_{4}, 3$ equiv KCN, DMSO, rt, 18 h | no reaction |
| 7 | 234a/235a or 236a | 1 equiv $\mathrm{AgBF}_{4}, 3$ equiv $\mathrm{KCN}, \mathrm{DMSO}, 60^{\circ} \mathrm{C}, 2 \mathrm{~h}$ | complex mixture |
| 8 | 234a/235a or 236a | 1) 1 equiv $n$ BuLi, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$ | complex mixture |
|  |  | 2) sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 20 \mathrm{~h}$ |  |
| 9 | 234a/235a or 236a | 2 equiv $\mathrm{Zn}, \mathrm{HOAc}$, rt, 22 h | 1,4-oxazin-3-one 225a |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |  |  |

Intensive efforts were thus devoted to experimentally confirm the assigned regiospecificity, but no conclusive support could be achieved without further investigation. Furthermore, no irrefutable proof could be obtained concerning the diastereoselectivity of the bromofluorination reaction based on spectral analysis of the obtained reaction products (Scheme 70). Finally, the full configuration of 2-benzoyloxy-6-bromo-5-fluoromorpholin-3-ones 234 was established by single crystal X-ray analysis of 2-benzoyloxy-6-bromo-5-fluoro-4-isopropylmorpholin-3-one 234a (Figure 21), providing irrefutable proof for the formation of cis-2-benzoyloxy-6-bromomorpholin-3-ones $\mathbf{2 3 4}$ as the major diastereoisomers.


Figure 21. X-Ray crystallographic analysis of compound 234a
On the other hand, a direct epoxidation of the double bond in 2-benzoyloxy-1,4-oxazin-3-one 225d with 3-chloroperbenzoic acid ( $m$ CPBA) was examined as a possible entry into morpholinone-fused bicyclic systems. For this purpose, upon treatment with 1.05 equiv of $m \mathrm{CPBA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature or under reflux, either the starting 1,4-oxazin-3-one 225d or complex reaction mixtures were obtained (Scheme 72, Table 18), probably because multiple side reactions, such as incomplete epoxidation and oxidation of the acetal moiety ${ }^{154}$ can occur.


Scheme 72

Table 18. Reaction of 2-benzoyloxy-4-cyclohexyl-1,4-oxazin-3-one 225d with mCPBA

| Reaction conditions | Result ${ }^{\text {a }}$ |
| :---: | :---: |
| 1.05 equiv $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 18 \mathrm{~h}$ | no reaction |
| 1.05 equiv $m \mathrm{hPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 48 \mathrm{~h}$ | no reaction |
| 1.05 equiv $m \mathrm{hCBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 2 \mathrm{~h}$ | no reaction |
| 1.05 equiv $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \Delta, 7 \mathrm{~h}$ | complex mixture |
| ${ }^{\text {a }}$ Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |

After this unsuccessfull attempt, an indirect expoxidation of the double bond by preparation of the corresponding halohydrins as valuable precursors was contemplated. However, all attempts to selectively prepare bromohydrin 238d by treatment of 1,4-oxazin-3-one 225d with 1 equiv of N bromosuccinimide (NBS) in water/THF (1/1) gave complex reaction mixtures (Scheme 73).


## Scheme 73

A final objective of the present study comprised the transformation of 2-benzoyloxy-1,4-oxazin-3ones 225 toward the corresponding 6-hydroxymorpholin-3-ones by a $\mathrm{BH}_{3} \cdot$ THF-mediated hydroboration-oxidation protocol. Unfortunately, all attempts to perform a net addition of water at the double bond of 2-benzoyloxy-4-cyclohexyl-1,4-oxazin-3-one 225d applying this methodology resulted in complete recovery of the starting oxazin-3-one 225d or the formation of rather complex reaction mixtures (Scheme 74, Table 19), which can probably be attributed to the propensity of borane in THF to induce the reductive cleavage of acetals. ${ }^{155}$


Scheme 74

Table 19. Hydroboration of 2-benzoyloxy-4-cyclohexyl-1,4-oxazin-3-one 225d

| Reaction conditions | Result $^{\text {a }}$ |
| :---: | :---: |
| 2) 1 equiv $\mathrm{NaOH}(3 \mathrm{M}), 3$ equiv $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%), \mathrm{THF}, \mathrm{rt}, 4 \mathrm{~h}$ | no reaction |
| 1) 1.1 equiv $\mathrm{BH}_{3} \cdot \mathrm{THF}(1 \mathrm{M}), \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}$ to $\Delta, 5 \mathrm{~h}$ | complex mixture |
| 2) 2 equiv $\mathrm{NaOH}(3 \mathrm{MHF}), 3$ equiv $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%), \mathrm{THF}, \mathrm{rt}, 1 \mathrm{~h}$ to $\Delta, 3 \mathrm{~h}$ |  |
| a Based on ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture. |  |

### 3.4.4 Conclusions

In conclusion, 2-hydroxy-1,4-oxazin-3-ones were prepared through ring transformation of the corresponding 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams involving an unexpected C3-C4 bond cleavage of the $\beta$-lactam nucleus in the intermediate 4 -formyl-3-hydroxy- $\beta$-lactams, followed by a ring expansion. This peculiar transformation stands in sharp contrast with the known $\mathrm{NalO}_{4}$-mediated oxidation of 3 -alkoxy- and 3-phenoxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams, which exclusively leads to the corresponding 4 -formyl- $\beta$-lactams without a subsequent ring enlargement. Furthermore, the synthetic applicability of these novel oxazin-3-one derivatives was demonstrated by means of their transformation into the classes of substituted oxazin-3-ones, morpholin-3-ones, and pyrazinones. This comprises the first full and selective conversion of $\beta$-lactam scaffolds into 1,4 -oxazin- 3 -ones in high yields and purity.

### 3.4.5 Perspectives

From the above-described unexpected ring-expanion reaction, it is clear that, in order to achieve the selective synthesis of 4-[2-(bromomethyl)aziridin-1-ylmethyl]-3-hydroxy- $\beta$-lactams $\mathbf{1 8 7}$ (Scheme 57), the elaboration of alternative hydroxyl protecting groups is highly recommended.

In the literature, the synthesis of azetidin-2,3-diones by Swern oxidation of the corresponding 3-hydroxy- $\beta$-lactams is known. ${ }^{156}$ In this way, 3-hydroxy-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-ones 240, obtained by hydrogenation of 3-benzyloxy- $\beta$-lactams 192, could be transformed into the corresponding azetidin-2,3-diones 241, ${ }^{156}$ which might be eligible substrates for further elaboration toward 4-iminoazetidin-2,3-diones 243 upon consecutive treatment with p-toluenesulfonic acid, sodium periodate and 2,3-dibromopropylamine hydrobromide (Scheme 75). The latter $\beta$-lactams $\mathbf{2 4 3}$ can be further functionalized via $\mathrm{NaBH}_{4}$-induced reduction, allowing the synthesis of a wide variety of the premised 4-[2-(bromomethyl)aziridin-1-ylmethyl]-3-hydroxy- $\beta$-lactams 187, as $\mathrm{NaBH}_{4}$ is reported to selectively reduce the carbonyl group at C-3 in azetidin-2,3-diones ( $\mathrm{R}=$ alkyl, Scheme 75 ). ${ }^{157}$

Alternatively, the coupling of 3-hydroxy- $\beta$-lactams 240 with $p$-methoxybenzylchloride ( PMBCI ) can be investigated as a possible entry into the corresponding 4-[2-(bromomethyl)aziridin-1-ylmethyl]-3-(4-methoxybenzyloxy)- $\beta$-lactams 245. Finally, deprotection with 2,3-dichloro-5,6-dicyano-1,4benzoquinone (DDQ) or ceric ammonium nitrate (CAN) can lead to the formation of the synthetically interesting $\beta$-lactam hybrids 187 (Scheme 75).


Scheme 75

## 4 Perspectives

As mentioned before, the selective synthesis of $\beta$-lactam-tethered 2-(bromomethyl)aziridines comprises a challenging topic as these synthons are expected to possess a broad synthetic potential, which can be attributed to the presence of two small-ring azaheterocycles and a brominated carbon atom. In that regard, a reactivity study toward functionalized azaheterocycles could provide a valuable and fruitfull research area.

Imination and $\mathrm{NaBH}_{4}$-mediated reductive cyclization of 4 -formyl- $\beta$-lactams $\mathbf{2 0}$ can lead to the formation of 4-[2-(bromomethyl)aziridin-1-ylmethyl]- $\beta$-lactams 21, which might be eligible substrates for further elaboration toward nitrogen-containing heterocycles (Scheme 76).


Scheme 76

In this PhD thesis, the synthetic usefulness of 2-(2-bromo-1,1-dimethylethyl)azetidines and 2-(2mesyloxyethyl)azetidines was demonstrated by the preparation of a wide variety of functionalized piperidines via intermediate bicyclic azetidinium salts. Based on the same methodology, the construction of piperazines $\mathbf{2 4 8}$ from azetidines $\mathbf{2 4 6}$ can be envisaged, involving an intramolecular nucleophilic substitution reaction toward tricyclic azetidinium intermediates 247, which are subsequently prone to undergo regioselective ring opening by the liberated leaving group or the additional nucleophile (Scheme 77). Furthermore, direct access to analogous monocyclic piperazines 251 via $\mathrm{LiAlH}_{4}$-induced rearrangement of $\beta$-lactam-tethered aziridines 249, which might be obtained by nucleophilic substitution of the starting compounds 21, can be investigated (Scheme 77). During this transformation, $\mathrm{LiAlH}_{4}$ is responsible for both $\beta$-lactam amide bond cleavage and the in situ activation of the aziridine moiety. It should be mentioned that a vast array of molecules containing the piperazine skeleton has been reported as antipsychotics, ${ }^{158}$ antidepressants, ${ }^{159}$ antihistamines, ${ }^{160}$ and antianginals, ${ }^{161}$ and others are known for the treatment of inter alia HIV, ${ }^{162}$ and neuropathic pain. ${ }^{163}$


21


246


247


248


249


250

251
$\mathrm{Nu}=\mathrm{OR}, \mathrm{NRR}$ ', SR, F, Br

## Scheme 77

Alternatively, this reactivity study can be extended to the chiral synthesis of the unexplored class of 3-chloro-4-formyl- $\beta$-lactams 252 as potential synthons for 4-[2-(bromomethyl)aziridin-1-ylmethyl]-3-chloro- $\beta$-lactams 253 (Scheme 78).


Scheme 78

In light of the continuous quest for new $\beta$-lactam antibiotics and $\beta$-lactamase inhibitors, efforts can be directed toward the deployment of $\beta$-lactam hybrids 253 in the synthesis of bi- and tricyclic systems containing medium-sized rings fused to the $\beta$-lactam nucleus. In that respect, introduction of a hydroxymethyl or aminomethyl moiety in $\beta$-lactams $\mathbf{2 5 4}$ or $\mathbf{2 5 7}$ can be studied as a suitable method for the formation of new oxazepane- or diazepane-fused tricyclic $\beta$-lactams 255 or 258 upon intramolecular cyclization. The latter can be further functionalized via nucleophile-induced aziridine ring opening, allowing the synthesis of a wide range of new $C$-fused bicyclic $\beta$-lactams 256 and 259 (Scheme 79). Oxazepanes and diazepanes are key structural features in many biologically active compounds, as illustrated by their use in the treatment of neurological and psychiatric diseases, ${ }^{164}$ including epilepsy, Parkinson disease, and depression, ${ }^{165}$ and by their reported anticancer, ${ }^{166}$ antiHIV, ${ }^{167}$ inotropic, ${ }^{168}$ and antihypertensive ${ }^{169}$ activity.


## 5 Experimental Part

### 5.1 General methods

Diethyl ether, tetrahydrofuran and toluene were distilled from sodium benzophenone ketyl or sodium, while dichloromethane was distilled from calcium hydride prior to use. Commercially available solvents and reagents were purchased from Sigma-Aldrich or Acros and used as such without further purification unless stated otherwise.

The purification of reaction mixtures was performed by column chromatography using a glass column filled with silica gel (Acros, particle size $0.035-0.070 \mathrm{~mm}$, pore diameter ca. 6 nm ). Solvent systems were determined via initial TLC analysis on glass plates, coated with silica gel (Merck, Kieselgel 60F 254 , precoated 0.25 mm ) using UV light or coloring with a potassium permanganate solution as detection methods.

High resolution ${ }^{1} \mathrm{H}$ NMR ( 300 MHz ) and ${ }^{13} \mathrm{C}$ NMR spectra ( 75 MHz ) were recorded on a Jeol Eclipse FT 300 NMR spectrometer at room temperature. Peak assignments were obtained with the aid of DEPT, HSQC and/or 2D-COSY experiments. The compounds were diluted in a deuterated solvent, while tetramethylsilane (TMS) was used as an internal standard.

IR spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR spectrometer. All compounds were analyzed in neat form with an ATR (Attenuated Total Reflectance) accessory.

Low resolution mass spectra were recorded via direct injection on an Agilent 1100 Series LC/MSD type SL mass spectrometer with Electron Spray Ionisation Geometry (ESI 70 eV ) and using a Mass Selective Detector (quadrupole).

Gas chromatography analysis was performed on an Agilent 6890 Series. The column was of the type Alltech EC-5 with a film thickness of $0.25 \mu \mathrm{~m}$ (length 30.0 m , i.d. $250 \mu \mathrm{~m}$ ) with He as carrier gas. The GC was connected to a FID detector ( $\mathrm{H}_{2}$ gas).

Melting points of crystalline compounds were measured using a Büchi B-540 apparatus.

Elemental analyses were obtained by means of a Perkin-Elmer 2400 Series II apparatus.

High resolution electro spray (ES) mass spectra were obtained with an Agilent Technologies 6210 Series Time-of-Flight.

Optical rotations were taken with an JASCO P-2000 series polarimeter.

### 5.2 Synthesis of ( $\boldsymbol{E}$ )- $N$-(alkylidene)amines

All imines were obtained in high purity ( $>95 \%$ based on ${ }^{1} \mathrm{H} N M R$ ) and were used as such in the next reaction step due to their hydrolytic instability (no HRMS data could be obtained).

### 5.2.1 Synthesis of (E)-N-[3-(tert-butyldimethylsilyloxy)propylidene]amines

As a representative example, the synthesis of (E)- N-[3-(tertbutyldimethylsilyloxy)propylidene]isopropylamine 148a is described. To a solution of 3-(tertbutyldimethylsilyloxy)propanal $147\left(1.88 \mathrm{~g}, 10 \mathrm{mmol}, 1\right.$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 40 mL ) were added $\mathrm{MgSO}_{4}$ ( $2.40 \mathrm{~g}, 20 \mathrm{mmol}, 2$ equiv) and isopropylamine ( $0.59 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv). After stirring for 2 hours at room temperature, $\mathrm{MgSO}_{4}$ was removed by filtration. After evaporation of the solvent in vacuo, (E)-N-[3-(tert-butyldimethylsilyloxy)propylidene]isopropylamine 148a was obtained in 70\% yield.

## (E)-N-[3-(tert-Butyldimethylsilyloxy)propylidene]isopropylamine 148a

Yellow oil. Yield $70 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.79\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.05$

$\left(6 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.34\left(2 \mathrm{H}, \mathrm{q}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right) ; 3.19$ (1H, septet, $\left.J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.73\left(2 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.63(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C} \quad \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta \quad-5.4 \quad\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 18.2 \quad\left(\mathrm{SiC}_{\text {quat }}\right) ; 24.1$ (( $\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 25.9\left(\mathrm{SiC}\left(\underline{\mathrm{C}}_{3}\right)_{3}\right) ; 38.9\left(\underline{\mathrm{CH}}_{2} \mathrm{C}=\mathrm{N}\right) ; 60.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 61.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; $160.1(\mathrm{C}=\mathrm{N})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{N}}=1666 ; \mathrm{v}_{\max }=2956,2856,1253,1097,834,774,733 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ (\%) 229 ( ${ }^{+}, 1$ ), 214 (10), 172 (100), 142 (14), 130 (35), 100 (32), 73 (18), 59 (9), 43(10).
(E)-N-[3-(tert-Butyldimethylsilyloxy)propylidene]cyclohexylamine 148b

Yellow oil. Yield 75\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.09-$
 1.37, 1.40-1.53, 1.61-1.66 and 1.71-1.82 (10H, $\left.4 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.44(2 \mathrm{H}, \mathrm{q}$, $\left.J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right) ; 2.88-2.98(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}) ; 3.83\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$; $7.74(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-5.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 18.3$ $\left(\mathrm{SiC}_{\text {quat }}\right) ; 24.9,25.2$ and $25.7\left(3 \times \mathrm{CH}_{2}\right) ; 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 34.4$ and $36.3(2 \times$ $\left.\mathrm{CH}_{2}\right)$; $39.2\left(\mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right)$; $60.7\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $69.9(\mathrm{CHN})$; $160.5(\mathrm{C}=\mathrm{N}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{N}}=1667 ; \mathrm{v}_{\max }=2927$, 2854, 1450, 1253, 1097, 834, 774. MS (70 eV): m/z (\%) 270 ( $\mathrm{M}^{+}+1,100$ ).

## (E)-N-[3-(tert-Butyldimethylsilyloxy)propylidene]isobutylamine 148c

Yellow oil. Yield 68\%. ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 0.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 0.89$
 and $0.90\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.90(1 \mathrm{H}$, nonet, $J=6.8 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.47\left(2 \mathrm{H}, \mathrm{q}, J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{N}\right) ; 3.19\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.85$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right) ; 7.61(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta$-5.4 $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 18.3\left(\mathrm{SiC}_{\text {quat }}\right) ; 20.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 29.0\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{H}\right) ; 38.9$ $\left(\underline{C H}_{2} \mathrm{C}=\mathrm{N}\right) ; 60.6\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 69.6\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 163.6(\mathrm{C}=\mathrm{N})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{N}}=1671 ; \mathrm{v}_{\max }=2954,1471,1254$, 1097, 834, 774. MS (70 eV): m/z (\%) 244 ( $\mathrm{M}^{+}+1,100$ ).

### 5.2.2 Synthesis of $(E)-N-[((4 S)-2,2-d i m e t h y l-1,3-d i o x o l a n-4-$

## yl)methylidene]amines

The synthesis of $(E)$ - $N$-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amines 191 was analogous to the synthesis of $(E)-N$-[3-(tert-butyldimethylsilyloxy)propylidene]amines 148 (Section 5.2.1), using ( $R$ )-glyceraldehyde acetonide 190 as the starting material.

## (E)-N-Isobutyl-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amine 191b

Yellow oil. Yield 94\%. $[\alpha]_{\mathrm{D}}=+60.9^{\circ}\left(c=1.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90$ and $0.91(2 \times$ $\left.3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.41$ and $1.46\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.91(1 \mathrm{H}$, nonet, $J$ $\left.=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.19-3.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.92$ and $4.21(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), \mathrm{J}=8.4$, $6.3,6.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 4.58(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.3,6.1,5.4 \mathrm{~Hz}, \mathrm{CHO}) ; 7.61(1 \mathrm{H}, \mathrm{d}, J=5.4$ $\mathrm{Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 20.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.3$ and $26.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$; $29.0\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{H}\right) ; 67.2\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $68.9\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; $76.8(\mathrm{CHO}) ; 109.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 162.9(\mathrm{HC}=\mathrm{N})$. IR $\left(A T R, \mathrm{~cm}^{-1}\right): v_{\mathrm{C}=\mathrm{N}}=1674 ; \mathrm{v}_{\max }=2956,1468,1370,1213,1062,846 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ $186\left(\mathrm{M}^{+}+1,100\right)$.

## (E)-N-Butyl-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amine 191c

Yellow oil. Yield $95 \%$. $[\alpha]_{D}=+61.3^{\circ}\left(c=2.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.32\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.40$ and $1.46\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$; $1.59\left(2 \mathrm{H}\right.$, pentet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.42\left(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.91$ and 4.20 $(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=8.5,6.5,6.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 4.57(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.5,6.2,5.5 \mathrm{~Hz}$, $\mathrm{CHO}) ; 7.63(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, \mathrm{J}=5.5,1.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 13.6$ $\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right) ; 20.1\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right) ; 25.2$ and $26.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 32.4\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 60.5\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 67.1$ $\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $76.8(\mathrm{CHO})$; $109.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$; $162.5(\mathrm{HC}=\mathrm{N})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{C}=\mathrm{N}}=1673$; $v_{\max }=$ 2932, 1457, 1213, 1061, 844. MS (70 eV): m/z (\%) 186 ( $\mathrm{M}^{+}+1,100$ ).

## (E)-N-Cyclohexyl-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amine 191d

Colourless oil. Yield $90 \% .[\alpha]_{\mathrm{D}}=+55.4^{\circ}\left(c=1.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.13-1.51(5 \mathrm{H}$, $\left.\mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right)$; 1.40 and $1.46\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.59-1.80\left(5 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right)$; 2.97-3.07 $\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.88$ and $4.20(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=8.3,6.3,6.3 \mathrm{~Hz}$, (HCH)O); $4.55(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.3,6.3,5.7 \mathrm{~Hz}, \mathrm{CHO}) ; 7.65(1 \mathrm{H}, \mathrm{d}, J=5.7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right)$ : $\delta 24.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 25.2,25.3,26.2,33.7$ and 33.9 $\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 67.1\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 68.8\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 76.8(\mathrm{CHO}) ; 109.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 160.4$ $(\mathrm{HC}=\mathrm{N}) . I R\left(A T R, \mathrm{~cm}^{-1}\right): v_{\mathrm{C}=\mathrm{N}}=1672 ; \mathrm{v}_{\max }=2928,1450,1371,1212,1060,843 . \mathrm{MS}(70$ $\mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 212\left(\mathrm{M}^{+}+1,100\right)$.
(E)-N-[((4S)-2,2-Dimethyl-1,3-dioxolan-4-yl)methylidene]propylamine 191e

Colourless oil. Yield $92 \% .[\alpha]_{D}=+70.7^{\circ}\left(c=1.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.41$ and $1.46\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.63(2 \mathrm{H}$, sextet, $J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.39\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.92$ and $4.20(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=8.2,6.5$, $6.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 4.57(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.5,6.4,5.5 \mathrm{~Hz}, \mathrm{CHO}) ; 7.63(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, J=5.5$, $1.3 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 11.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 23.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 25.3$ and $26.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 62.6\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 67.2\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 76.8(\mathrm{CHO}) ; 109.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 162.7(\mathrm{HC}=\mathrm{N})$. IR $\left(A T R, \mathrm{~cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{N}}=1673 ; \mathrm{v}_{\max }=2934,1456,1371,1213,1061,844 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ $172\left(\mathrm{M}^{+}+1,100\right)$.

## (E)-N-Isopentyl-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amine 191f

Colourless oil. Yield $85 \% .[\alpha]_{\mathrm{D}}=+69.7^{\circ}\left(c=1.61, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.40$ and $1.46\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.48(2 \mathrm{H}, \mathrm{q}, J=7.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 1.61\left(1 \mathrm{H}\right.$, nonet, $\left.J=7.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.43\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.91$ and $4.20(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=8.0,6.9,6.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 4.56(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=6.9$, $6.4,5.2 \mathrm{~Hz}, \mathrm{CHO}) ; 7.64(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ $22.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.3\left(\underline{\mathrm{C}}_{3} \mathrm{CCH}_{3}\right) ; 25.6\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 26.3\left(\mathrm{CH}_{3} \mathrm{CCH}_{3}\right) ; 39.4\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$; $59.0\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 67.2\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $76.8(\mathrm{CHO}) ; 109.8\left(\mathrm{CH}_{3} \mathrm{CCH}_{3}\right) ; 162.5(\mathrm{HC=N}) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$ : $v_{C=N}=1673 ; v_{\max }=2955,1468,1370,1213,1062,848 . M S(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 200$ $\left(M^{+}+1,100\right)$.

### 5.3 Synthesis of azetidin-2-ones

### 5.3.1 Synthesis of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones

As a representative example, the synthesis of trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)azetidin-2-one $\mathbf{2 a}$ is described. To a solution of $N$-(4-methylphenylmethylidene)-(2chloroethyl)amine 124a ( $1.82 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in dry benzene ( 50 mL ) was added 2,6-lutidine ( $3.21 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv), and the resulting mixture was heated under reflux. Immediately thereafter, chloroacetyl chloride ( $1.69 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) was added dropwise to the boiling
mixture, followed by a reflux period of 15 hours. Afterwards, the resulting suspension was filtered in order to remove 2,6-lutidine hydrochloride, after which the filtrate was washed with an aqueous solution of $1 \mathrm{M} \mathrm{HCl}(2 \times 15 \mathrm{~mL})$. The organic phase was dried over $\mathrm{MgSO}_{4}$, followed by removal of the drying agent and evaporation of the solvent in vacuo. Purification by means of column chromatography on silica gel (hexane/EtOAc 6/1) afforded pure trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)azetidin-2-one 2 a in $75 \%$ yield.

## Trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)azetidin-2-one 2a

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 6/1). Yield 75\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 2.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$;
 $3.20(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=14.6,7.4,5.2 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 3.51-3.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.84(1 \mathrm{H}, \mathrm{d}$ $\times \mathrm{d} \times \mathrm{d}, J=14.6,6.1,5.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 4.54$ and $4.70(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=1.6 \mathrm{~Hz}, \mathrm{CHCl}$ and CHN); 7.20-7.28 (4H, m, CH arom). ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.2\left(\mathrm{CH}_{3}\right) ; 41.3$ $\left(\mathrm{CH}_{2} \mathrm{Cl}\right) ; 42.7\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 63.3$ and $66.9(\mathrm{CHCl}$ and CHN$)$; 126.7 and $130.0\left(4 \times \mathrm{HC}_{\text {arom }}\right)$; 131.6 and $139.8\left(2 \times C_{\text {arom,quat }}\right) ; 164.1(C=O)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): v_{C=0}=1767 ; v_{\max }=1675$, 1395, 821, 756. MS (70 eV): m/z (\%) 258/60/2 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}$ : C $55.83, \mathrm{H}$ 5.08, N 5.43. Found: C 55.70, H 5.46, N 5.47.

## Trans-3-chloro-1-(2-chloroethyl)-4-phenylazetidin-2-one 2b

Yellow crystals. Mp $50.8^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.15$ (hexane/EtOAc 6/1). Yield $60 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$
 $3.21(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=14.7,7.6,5.1 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 3.52-3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.86(1 \mathrm{H}$, $\mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=14.7,6.1,5.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 4.56$ and $4.74(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=1.7 \mathrm{~Hz}, \mathrm{CHCl}$ and CHN); 7.32-7.35 and 7.41-7.48 ( 2 H and $3 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right): \delta 41.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right) ; 42.9\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 63.3$ and $66.9(\mathrm{CHCl}$ and CHN$) ; 126.9,129.5$ and $129.8\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 134.7\left(\mathrm{C}_{\text {arom,quat }}\right) ; 164.1(\mathrm{C}=0)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1765$; $\mathrm{v}_{\max }=$ 1676, 1395, 738, 698. MS (70 eV): m/z (\%) 244/6/8 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}: \mathrm{C} 54.12$, H 4.54, N 5.74. Found: C 53.91, H 4.64, N 5.48.

Trans-3-chloro-1-(2-chloroethyl)-4-(4-chlorophenyl)azetidin-2-one 2c

Yellow crystals. Mp $55.3^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.12$ (hexane/EtOAc 6/1). Yield $69 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$


Cl $3.19(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=14.7,7.7,4.7 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 3.54-3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.87(1 \mathrm{H}$, $\mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=14.7,5.8,4.7 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 4.53$ and $4.74(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{CHCl}$ and CHN); 7.28-7.36 and 7.41-7.46 ( $2 \times 2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 41.4\left(\mathrm{CH}_{2} \mathrm{Cl}\right) ; 42.8\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 63.3$ and $66.5(\mathrm{CHCl}$ and CHN$) ; 128.1$ and 129.6 ( $4 \times \mathrm{HC}_{\text {arom }}$ ); 133.2 and 135.7 ( $2 \times \mathrm{C}_{\text {arom,quat }}$ ); 163.8 (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1768$; $v_{\max }=1676,1394,1090,828,770 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ no $\mathrm{M}^{+} ; 172\left(\mathrm{M}^{+}-3 \times \mathrm{Cl}, 100\right)$,
137, 102, 101, 75. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{3} \mathrm{NO}$ : C 47.43, H 3.62, N 5.03. Found: C $47.21, \mathrm{H} 3.77, \mathrm{~N}$ 5.13 .

## Trans-3-chloro-1-(2-chloroethyl)-4-(3-methoxyphenyl)azetidin-2-one 2d


#### Abstract

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.15$ (hexane/EtOAc 6/1). Yield $66 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 3.24(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}$  $=14.4,7.6,5.4 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{N})$; $3.54-3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.81-3.90(1 \mathrm{H}, \mathrm{m}$, (HCH)N); $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 4.56$ and $4.70(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{CHCl}$ and CHN); 6.85-6.96 and $7.33-7.38\left(3 \mathrm{H}\right.$ and $\left.1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 41.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right) ; 43.0\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 55.5\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 63.3$ and $66.7(\mathrm{CHCl}$ and CHN$)$;  ( $\mathrm{C}=0$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1768 ; \mathrm{v}_{\max }=1676,1394,1261,1039,779,735,695 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ 274/6/8 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ : C 52.57, H 4.78, N 5.11. Found: C 52.36, H 4.97, N 5.03.


### 5.3.2 Synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones and $N$-[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]acetamides

As a representative example, the synthesis of cis-3-benzyloxy-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isobutylazetidin-2-one 12d and 2-benzyloxy- $N$-[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]-Nisobutylacetamide 149d is described. To an ice-cooled solution of (E)-N-[3-(tertbutyldimethylsilyloxy)propylidene]isobutylamine 148 c ( $2.43 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) and triethylamine ( $3.04 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL}$ ) was added dropwise a solution of benzyloxyacetyl chloride ( $2.40 \mathrm{~g}, 13 \mathrm{mmol}, 1.3$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After stirring for 15 hours at room temperature, the reaction mixture was poured into water $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\times 25 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent afforded cis-3-benzyloxy-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isobutylazetidin-2-one 12d and 2-benzyloxy- N -[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]-N-isobutylacetamide 149d, which were further purified in $5 \%$ and $66 \%$ yield, respectively, by column chromatography on silica gel (hexane/EtOAc 12/1).

## Cis-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isopropyl-3-phenoxyazetidin-2-one 12a

Yellow crystals. Mp $57.2^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.14$ (hexane/EtOAc 6/1). Yield $47 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
 0.02 and $0.04\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.29$ and $1.34\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.95-2.12\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}\right)$; 3.60-3.68 and 3.71-3.78 ( $2 \times 1 \mathrm{H}, 2 \times \mathrm{m}$, (HCH)O); $3.85(1 \mathrm{H}$, septet, $J=6.8$ $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{H} \mathrm{~N}\right) ; 4.13\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=8.8,4.1,4.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH} \underline{H}\right) ; 5.16$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{CHO}) ; 6.96-7.11$ and $7.26-7.32\left(5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-5.42$ and $-5.37\left(2 \times \mathrm{SiCH}_{3}\right) ; 18.2\left(\mathrm{SiC}_{\text {quat }}\right) ; 20.1$ and $21.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 25.9$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 32.7\left(\underline{C H}_{2} \mathrm{CHN}\right) ; 44.6\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}}\right) ; 54.3\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right) ; 59.7\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 79.7(\mathrm{CHO}) ; 115.6,122.0$ and $129.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 157.8\left(\mathrm{OC}_{\text {arom,quat }}\right) ; 165.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1754 ; \mathrm{v}_{\max }=2954,2929$, 2857, 1238, 1085, 836, 774, 752. MS (70 eV): m/z (\%) $364\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}$ : C 66.07, H 9.15, N 3.85. Found: C 65.87, H 9.37, N 4.18.

## Cis-3-benzyloxy-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isopropylazetidin-2-one 12b

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 6/1). Yield $35 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-0.07$ and $-0.06(2 \times$
 $\left.3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.20$ and $1.24(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}$ $\left.=6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; 1.91-1.97 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right) ; 3.58-3.81(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH} \underline{\mathrm{N}}$ ); $3.88(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.8,4.7,4.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CHN}\right) ; 4.52(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{CHO}) ; 4.65$ and $4.87(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=$ $11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.23-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta-5.4$ and $-5.3\left(2 \times \mathrm{SiCH}_{3}\right) ; 18.3\left(\mathrm{SiC}_{\text {quat }}\right) ; 20.1$ and 21.8 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 25.9\left(\mathrm{SiC}\left(\underline{\mathrm{C}}_{3}\right)_{3}\right) ; 32.6\left(\underline{\mathrm{C}}_{2} \mathrm{CHN}\right) ; 44.2\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}}\right) ; 53.9\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right) ; 59.9\left(\mathrm{CH}_{2} \underline{\mathrm{C}}_{2} \mathrm{O}\right) ; 72.6$ ( $\mathrm{OCH}_{2} \mathrm{Ph}$ ); 80.6 ( CHO ); 127.8, 128.1 and 128.4 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 137.5 ( $\mathrm{C}_{\text {arom,quat }}$ ); 167.3 ( $\mathrm{C}=\mathrm{O}$ ). IR (ATR, $\mathrm{cm}^{-}$ $\left.{ }^{1}\right): v_{C=0}=1747 ; v_{\max }=2929,1651,1252,1096,833,775,734,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 378\left(\mathrm{M}^{+}+1\right.$, 100). HRMS (ESI) Calcd. for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{NO}_{3} \mathrm{Si} 378.2464[\mathrm{M}+\mathrm{H}]^{+}$, found 378.2463 .

## Cis-3-benzyloxy-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-cyclohexylazetidin-2-one 12c

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.11$ (hexane/EtOAc 9/1). Yield $55 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.00$ and 0.01 (2
 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.86\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.04-1.30,1.34-1.47,1.52-$ 1.60 and 1.69-2.02 (12H, $4 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.32-3.42$ $\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.58-3.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 3.87(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=$ $8.7,4.5,4.0 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHN}$ ); $4.52(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{CHO}) ; 4.65$ and $4.87(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{HCH}}) \mathrm{Ph}) ; 7.26-7.32\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta-5.4$ and $-5.3\left(2 \times \mathrm{SiCH}_{3}\right) ; 18.3\left(\mathrm{SiC}_{\text {quat }}\right) ; 25.2$, 25.25 and $25.33\left(3 \times \mathrm{CH}_{2}\right) ; 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 30.5$ and $31.9\left(2 \times \mathrm{CH}_{2}\right) ; 32.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 52.1\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{C}} \mathrm{HN}\right)$; $54.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHN}\right) ; 59.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; $72.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$; $80.6(\mathrm{CHO}) ; 127.8,128.37$ and 128.39 ( 5 x $\left.\mathrm{HC}_{\text {arom }}\right) ; 137.5$ ( $\mathrm{C}_{\text {arom,quat }}$ ); $167.3(\mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=\mathrm{o}}=1746 ; \mathrm{v}_{\max }=2929,1254,1095,1056,832$, 812, 775, 734, 697. MS (70 eV): m/z (\%) $418\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{NO}_{3} \mathrm{Si} 418.2777$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 418.2788.

## Cis-3-benzyloxy-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isobutylazetidin-2-one 12d

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.05$ (hexane/EtOAc 12/1). Yield $5 \%$. ${ }^{1} \mathrm{H} N M R\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.04(6 \mathrm{H}, \mathrm{s}$,
 $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{3}\right) ; 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 0.92$ ( $3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{3}$ ); 1.82-2.00 $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; 2.83 and $3.19(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=14.1,8.3,6.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.64-$ $3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; $3.88(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=7.0,5.4,5.2 \mathrm{~Hz}, \mathrm{CHN})$; $4.66(1 \mathrm{H}, \mathrm{d}, J=5.2 \mathrm{~Hz}, \mathrm{CHO})$; 4.69 and $4.90(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.6 \mathrm{~Hz}$, $\mathrm{O}(\underline{\mathrm{H}} \mathrm{CH}) \mathrm{Ph}) ; 7.29-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta-5.3\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 18.4\left(\mathrm{SiC}_{\text {quat }}\right)$; 20.3 and $20.5\left(\underline{C H}_{3} \mathrm{CHCH}_{3}\right) ; 26.0\left(\mathrm{SiC}\left(\underline{\mathrm{CH}}_{3}\right)_{3}\right) ; 27.3\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 31.5\left(\mathrm{CH}_{2} \mathrm{CHN}\right) ; 48.0\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 55.5(\mathrm{CHN})$; $60.0\left(\mathrm{CH}_{2} \underline{\mathrm{C}}_{2} \mathrm{O}\right) ; 72.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 81.3(\mathrm{CHO}) ; 127.9$ and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.5\left(\mathrm{C}_{\text {arom,quat }}\right) ; 168.3$ (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1750$; $\mathrm{v}_{\max }=2955,1254,1098,1054,833,776,732 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ $392\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si} 392.2621[\mathrm{M}+\mathrm{H}]^{+}$, found 392.2632.

## 2-Benzyloxy-N-[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]-N-isobutylacetamide 149d

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.07$ (hexane/EtOAc 12/1). Yield $66 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06(6 \mathrm{H}, \mathrm{s}$,
 $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.90\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 0.90\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ 2.01-2.10 (1H, m, ( $\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.51\left(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.19(2 \mathrm{H}, \mathrm{d}$, $\left.J=5.3 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{O}\right) ; 4.29$ and $4.62\left(2 \times 2 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{O}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CO}\right)$; $5.15\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=13.8,5.3,5.3 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CHCH}_{2}\right) ; 6.70(1 \mathrm{H}, \mathrm{d}, J=$ $\left.13.8 \mathrm{~Hz}, \underline{\mathrm{HC}}=\mathrm{CHCH}_{2}\right) ; 7.28-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta-5.2\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 18.3\left(\mathrm{SiC}_{\text {quat }}\right) ; 20.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.9\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ $26.0\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{H}\right) ; 49.6\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 62.1\left(\mathrm{CHCH}_{2} \mathrm{O}\right)$; 69.0 and $73.0\left(\mathrm{PhCH}_{2} \mathrm{O}\right.$ and $\left.\underline{\mathrm{C}}_{2} \mathrm{CO}\right) ; 110.9\left(\mathrm{HC}=\underline{\mathrm{C}} \mathrm{HCH}_{2}\right)$; $127.6\left(\mathrm{HC}=\mathrm{CHCH}_{2}\right) ; 127.8,128.0$ and $128.3\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.3\left(\mathrm{C}_{\text {arom,quat }}\right) ; 168.0(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right)$ : $\mathrm{v}_{\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{o}}=1686,1649 ; \mathrm{v}_{\max }=2929,1251,1108,1061,834,775,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 392\left(\mathrm{M}^{+}+1\right.$, 100). HRMS (ESI) Calcd. for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{NO}_{3} \mathrm{Si} 392.2621[\mathrm{M}+\mathrm{H}]^{+}$, found 392.2634.

### 5.3.3 Synthesis of 4-(2-hydroxyethyl)azetidin-2-ones

As a representative example, the synthesis of cis-3-benzyloxy-4-(2-hydroxyethyl)-1-isopropylazetidin-2-one 184a is described. To an ice-cooled solution of cis-3-benzyloxy-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isopropylazetidin-2-one $\mathbf{1 2 b}(0.76 \mathrm{~g}, 2 \mathrm{mmol}, 1$ equiv) in tetrahydrofuran ( 20 mL ) was added tetra- $n$-butylammonium fluoride ( $0.08 \mathrm{~g}, 2.2 \mathrm{mmol}, 1.1$ equiv), and the resulting solution was stirred at room temperature for 5 hours. Subsequently, the reaction mixture was poured into brine ( 20 mL ) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, after which the organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$, followed by removal of the drying agent and evaporation of the solvent in vacuo. Purification by means of column chromatography on silica gel (hexane/EtOAc 1/1) gave pure cis-3-benzyloxy-4-(2-hydroxyethyl)-1-isopropylazetidin-2-one 184a in 49\% yield.

## Cis-3-benzyloxy-4-(2-hydroxyethyl)-1-isopropylazetidin-2-one 184a

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.49$ (hexane/EtOAc 1/1). Yield 49\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.24$ and $1.28(2 \times$
 $\left.3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.96-2.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}\right) ; 2.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $5.0 \mathrm{~Hz}, \mathrm{OH}) ; 3.64-3.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{H} N\right) ; 3.91(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=$ 9.2, $4.7,4.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHN}$ ); $4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{CHO}) ; 4.73$ and $4.99(2 \times$ $1 \mathrm{H}, 2 \times \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.28-7.40\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right): \delta 20.2$ and $21.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 32.3\left(\underline{\mathrm{CH}}_{2} \mathrm{CHN}\right) ; 44.3$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; $55.3\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$; $59.4\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; $72.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 80.5(\mathrm{CHO})$; 128.05, 128.12 and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.0\left(\mathrm{C}_{\text {arom,quat }}\right) ; 167.2(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1726 ; \mathrm{v}_{\mathrm{OH}}=$ 3418; $v_{\max }=2930,1340,1024,732,698 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 264\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} 264.1600[\mathrm{M}+\mathrm{H}]^{+}$, found 264.1598.

## Cis-3-benzyloxy-1-cyclohexyl-4-(2-hydroxyethyl)azetidin-2-one 184b

White crystals. Mp $70.0{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.18$ (hexane/EtOAc $1 / 1$ ). Yield $60 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
 1.06-1.48, 1.52-1.65 and 1.73-1.95 $\left(4 \mathrm{H}, 2 \mathrm{H}\right.$ and $\left.4 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 1.97-$ $2.15\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.37(1 \mathrm{H}, \mathrm{d}, J=2.8 \mathrm{~Hz}, \mathrm{OH}) ; 3.36-3.46(1 \mathrm{H}, \mathrm{m}$, $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}$ ) ; 3.63-3.77 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{OH}\right) ; 3.91(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.1,4.7,4.4 \mathrm{~Hz}$, CHOCHN $) ; 4.61(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{CHO}) ; 4.72$ and $4.98(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.6$ $\mathrm{Hz}, \mathrm{O}(\underline{\mathrm{H}} \mathrm{C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.29-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 25.25, 25.28, 25.4, 30.6 and $32.0\left(\left(\underline{\mathrm{CH}}_{2}\right)_{5} \mathrm{CHN}\right)$; $32.3\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 52.2$ ( $\left.\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CH}} \mathrm{HN}\right) ; 55.4(\mathrm{CHOCHN}) ; 59.4\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 72.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 80.5(\mathrm{CHO}) ; 128.06,128.12$ and 128.6 (5 x $\left.\mathrm{HC}_{\text {arom }}\right) ; 137.0\left(\mathrm{C}_{\text {arom, quat }}\right) ; 167.1$ (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=\mathrm{O}}=1735 ; \mathrm{v}_{\mathrm{OH}}=3238 ; \mathrm{v}_{\max }=2932,1454,1252$, 1065, 890, 833, 770, 735, 698. MS (70 eV): m/z (\%) $304\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C}$ 71.26, H 8.31, N 4.62. Found: C 71.13, H 8.50, N 4.63.

### 5.3.4 Synthesis of 4-(2-mesyloxyethyl)azetidin-2-ones

As a representative example, the synthesis of cis-3-benzyloxy-1-isopropyl-4-(2-mesyloxyethyl)azetidin-2-one 17a is described. To an ice-cooled solution of cis-3-benzyloxy-4-(2-hydroxyethyl)-1-isopropylazetidin-2-one 184a ( 1.52 g , 5 mmol , 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 30 mL ) was added 4-(dimethylamino)pyridine ( $0.06 \mathrm{~g}, 0.5 \mathrm{mmol}, 0.1$ equiv), $\mathrm{Et}_{3} \mathrm{~N}$ ( $0.56 \mathrm{~g}, 5.5 \mathrm{mmol}, 1.1$ equiv) and mesyl chloride ( $0.60 \mathrm{~g}, 5.25 \mathrm{mmol}, 1.05$ equiv), after which the mixture was stirred for 3 hours at $0{ }^{\circ} \mathrm{C}$. Afterwards, the reaction mixture was washed with brine ( $2 \times 30 \mathrm{~mL}$ ) and a saturated $\mathrm{NaHCO}_{3}$ solution ( $2 \times 30 \mathrm{~mL}$ ). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$, after which the organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$, followed by removal of the drying agent and evaporation of the solvent in vacuo.

Azetidin-2-ones 17 were obtained in high purity ( $>95 \%$ based on ${ }^{1} \mathrm{H} N \mathrm{NR}$ ) and were used as such in the next reaction step.

## Cis-3-benzyloxy-1-isopropyl-4-(2-mesyloxyethyl)azetidin-2-one 17a

Yellow oil. Yield $89 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.23$ and $1.27\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$;
 2.14-2.23 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHN}$ ); $2.93\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 3.80(1 \mathrm{H}$, septet, $J=6.3$ $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}}\right) ; 3.91\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.5,4.6,4.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{C} \underline{H} N\right) ; 4.24-4.37$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSO}_{2}\right) ; 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}, \mathrm{CHO}) ; 4.68$ and $4.93(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}$, $J=11.8 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H}} \mathrm{C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.28-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 20.2$ and $21.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 29.6\left(\underline{\mathrm{CH}_{2}} \mathrm{CHN}\right) ; 37.2\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 44.4$ (( $\left.\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}) ; ~} 53.1\left(\mathrm{CH}_{2} \mathrm{CHN}\right) ; 66.9\left(\mathrm{CH}_{2} \mathrm{OSO}_{2}\right) ; 73.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 80.6(\mathrm{CHO}) ;$ 128.1, 128.2 and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; 137.2 ( $\mathrm{C}_{\text {arom,quat }}$ ); $167.0(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{c}=0}=1741$; $\mathrm{v}_{\max }=$ 2974, 1351, 1172, 959, 732, 699. MS (70 eV): m/z (\%) 342 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S} 342.1375[\mathrm{M}+\mathrm{H}]^{+}$, found 342.1381.

## Cis-3-benzyloxy-1-cyclohexyl-4-(2-mesyloxyethyl)azetidin-2-one 17b

Yellow oil. Yield $86 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.08-1.46,1.51-1.66$ and 1.75-1.93 $(4 \mathrm{H}, 2 \mathrm{H}$ and 4 H ,
 $\left.3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.11-2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 2.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 3.37-$ $3.47\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \underline{\mathrm{H} N}\right) ; 3.92(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.8,4.7,4.4 \mathrm{~Hz}, \mathrm{CHOCHN})$; 4.26-4.38 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSO}_{2}$ ); $4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{CHO}) ; 4.68$ and $4.95(2 \times$ $1 \mathrm{H}, 2 \times \mathrm{d}, J=11.5 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{HC}} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.28-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right): \delta 25.2,25.3,29.6,30.6$ and $32.0\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 37.2\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 52.2 \quad\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 53.3 \quad(\mathrm{CHOCHN}) ; 67.0$ $\left(\mathrm{CH}_{2} \mathrm{OSO}_{2}\right) ; 72.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 80.7(\mathrm{CHO}) ; 128.0,128.1$ and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; $137.2\left(\mathrm{C}_{\text {arom,quat }}\right) ; 166.9(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{o}}=1740 ; \mathrm{v}_{\max }=2932,1352,1172,960,733,699 . \mathrm{MS}$ (70 eV): m/z (\%) $382\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{5} 382.1688[\mathrm{M}+\mathrm{H}]^{+}$, found 382.1695.

### 5.3.5 Synthesis of (3R,4S)-3-benzyloxy-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-ones

The synthesis of (3R,4S)-3-benzyloxy-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-ones 192 was analogous to the synthesis of cis-4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones $\mathbf{1 2}$ and $N$-[3-(tert-butyldimethylsilyloxy)prop-1-en-1-yl]acetamides 149 (Section 5.3.2), using (E)- $N$-[((4S)-2,2-dimethyl-1,3-dioxolan-4-yl)methylidene]amines 191 as the starting material.
(3R,4S)-3-Benzyloxy-1-isopropyl-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-one 192a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.12$ (hexane/EtOAc 6/1). Yield 81\%. $[\alpha]_{\mathrm{D}}=+102.8^{\circ}\left(c=0.97, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.29\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.34$ and $1.44(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 3.62(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.2,6.1 \mathrm{~Hz}, \mathrm{CHO}(\underline{\mathrm{HCH}}) \mathrm{O}) ; 3.69(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ $8.8,5.0 \mathrm{~Hz}, \mathrm{CHOCH} N) ; 3.92\left(1 \mathrm{H}\right.$, septet, $\left.J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 4.16-4.30(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CHO}(\mathrm{HCH}) \mathrm{O}$ and $\left.\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 4.54(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.64$ and $4.92(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{H}) \mathrm{Ph}) ; 7.28-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right): \delta 19.5$ and $21.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.2$ and 26.8 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 44.4\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 59.8(\mathrm{CHOCHN}) ; 66.9\left(\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 72.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 77.2\left(\underline{\mathrm{CHOCH}}{ }_{2} \mathrm{O}\right) ; 79.6$ (COCHO); $109.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 127.8,128.0$ and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.1$ ( $\left.\mathrm{C}_{\text {arom,quat }}\right) ; 166.8$ (C=O). IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1747 ; \mathrm{v}_{\max }=2981,1370,1209,1064,1024,852,698 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 320\left(\mathrm{M}^{+}+1\right.$, 100). HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4} 320.1862[\mathrm{M}+\mathrm{H}]^{+}$, found 320.1867.

## (3R,4S)-3-Benzyloxy-1-isobutyl-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-one 192b

White crystals. Mp $103.5^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.22$ (hexane/EtOAc 6/1). Yield $50 \% .[\alpha]_{\mathrm{D}}=+96.9^{\circ}\left(c=0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.88$ and $0.93(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=7.2 \mathrm{~Hz}$,

 $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.33$ and $1.42\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.92-2.09\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; 3.07 and $3.23(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=13.6,8.3,6.3 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.63(1 \mathrm{H}, \mathrm{d} \times$ $\mathrm{d}, J=8.8,6.3 \mathrm{~Hz}, \mathrm{CHO}(\underline{\mathrm{HCH}}) \mathrm{O}) ; 3.66(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.8,5.0 \mathrm{~Hz}, \mathrm{CHN}) ; 4.15$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.8,6.3 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{HCH}) \mathrm{O}) ; 4.32(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, J=8.8,6.3 \mathrm{~Hz}$, $\left.\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.64$ and $4.92(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=$
 $25.1\left(\mathrm{CH}_{3} \mathrm{CCH}_{3}\right) ; 26.8$ and $27.0\left(\mathrm{CH}_{3} \mathrm{CCH}_{3}\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right)$; $48.7\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 60.8(\mathrm{CHN}) ; 66.7\left(\mathrm{CHOCH}_{2} \mathrm{O}\right)$; $72.6\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 77.2\left(\underline{\mathrm{C}} \mathrm{HOCH}_{2} \mathrm{O}\right) ; 80.3(\mathrm{COCHO}) ; 109.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 127.7,127.9$ and $128.4\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; $137.2\left(\mathrm{C}_{\text {arom,quat }}\right) ; 167.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1737 ; \mathrm{v}_{\max }=2959,1370,1209,1156,1060,858$, 698. $\mathrm{MS}(70 \mathrm{eV})$ : $\mathrm{m} / \mathrm{z}(\%) 334\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}: \mathrm{C} 68.44, \mathrm{H} 8.16, \mathrm{~N} 4.20$. Found: C 68.70, H 8.10, N 4.32.

## (3R,4S)-3-Benzyloxy-1-butyl-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-one 192c

Light-brown crystals. Mp $98.8^{\circ} \mathrm{C}$. Recrystallization from absolute EtOH. Yield 43\%. $[\alpha]_{\mathrm{D}}=+96.7^{\circ}(c=$ $0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.92\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$;
 $1.32\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.33$ and $1.43\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$; 1.47-1.66 (2H, m, $\left.\underline{H}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.21(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, \mathrm{J}=13.8,7.0 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{N}) ; 3.44$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, J=13.8,7.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.63(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.2,6.5 \mathrm{~Hz}$, $\mathrm{CHO}(\underline{\mathrm{HCH}}) \mathrm{O}) ; 3.64(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.8,4.9 \mathrm{~Hz}, \mathrm{CHN}) ; 4.15(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.2$, $6.5 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{HCH}) \mathrm{O}) ; 4.31\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, J=8.8,6.5 \mathrm{~Hz}, \mathrm{CHOCH}_{2} \mathrm{O}\right) ; 4.59(1 \mathrm{H}, \mathrm{d}, J=4.9 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.63$ and $4.91(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.6 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C H}) \mathrm{Ph}) ; 7.29-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right)$ : $\delta 13.7\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right) ; 20.2\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 25.2$ and $26.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 29.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 41.0\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 60.4$ $(\mathrm{CHN}) ; 66.9\left(\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 72.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 77.2\left(\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 80.3(\mathrm{COCHO}) ; 109.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 127.9,128.1$ and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.1\left(\mathrm{C}_{\text {arom,quat }}\right) ; 167.7(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1729 ; \mathrm{v}_{\max }=2955,1372$, 1210, 1153, 1072, 1044, 854, 734, 698. MS (70 eV): m/z (\%) $334\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{4}$ : C 68.44, H 8.16, N 4.20. Found: C 68.60, H 7.94, N 4.25.
(3R,4S)-3-Benzyloxy-1-cyclohexyl-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-one 192d

White crystals. Mp $99.8^{\circ} \mathrm{C}$. Recrystallization from absolute EtOH. Yield 65\%. $[\alpha]_{D}=+109.9^{\circ}(c=0.95$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08-1.51\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 1.34$ and
 $1.44\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.60-1.88\left(7 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.44-3.56(1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.62(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.4,6.0 \mathrm{~Hz}, \mathrm{CHO}(\underline{\mathrm{H} C H}) \mathrm{O}) ; 3.69(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ $8.5,4.8 \mathrm{~Hz}, \mathrm{CHOC} \underline{H} N) ; 4.18(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=8.4,6.3 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{HCH}) \mathrm{O}) ; 4.20-$ $4.29\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH}_{2} \mathrm{O}\right)$; $4.53(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.63$ and $4.92(2 \times$ $1 \mathrm{H}, 2 \times \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.28-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.16\left(\mathrm{C}_{3} \mathrm{CCH}_{3}\right) ; 25.21$ and $25.4\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 26.8$ $\left(\mathrm{CH}_{3} \mathrm{C}_{\mathrm{CH}}^{3}\right)$; 29.8 and $31.1\left(\left(\underline{\mathrm{CH}}_{2}\right)_{5} \mathrm{CHN}\right) ; 52.4\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 60.0(\mathrm{CHO} \underline{\mathrm{CHN}}) ; 67.0\left(\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 72.8$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 77.2\left(\underline{\mathrm{C}} \mathrm{HOCH}_{2} \mathrm{O}\right) ; 79.6(\mathrm{COCHO}) ; 109.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 127.8,128.0$ and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.1$ ( $C_{\text {arom,quat }}$ ); $167.0(\mathrm{C}=0)$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=\mathrm{o}}=1724 ; \mathrm{v}_{\max }=2938,1214,1154,1059,860,696 . \mathrm{MS}(70$ eV ): m/z (\%) $360\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{4}$ : C 70.17, H 8.13, N 3.90. Found: C 70.07, H 7.85, N 3.86.

## (3R,4S)-3-Benzyloxy-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]-1-propylazetidin-2-one 192e

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.12$ (hexane/EtOAc 6/1). Yield $70 \%$. $[\alpha]_{\mathrm{D}}=+95.1^{\circ}\left(c=0.95, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.34$ and $1.43(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.50-1.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.15-3.24$ and $3.34-3.43(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}$, $(\mathrm{HCH}) \mathrm{N}) ; 3.63(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=8.8,6.1 \mathrm{~Hz}, \mathrm{CHO}(\underline{\mathrm{HCH}}) \mathrm{O}) ; 3.65(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ $8.8,5.0 \mathrm{~Hz}, \mathrm{CHN}$ ); 4.15 ( $1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.8,6.1 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{HCH}) \mathrm{O}) ; 4.31(1 \mathrm{H}, \mathrm{d} \times$ $\left.\mathrm{t}, J=8.8,6.1 \mathrm{~Hz}, \mathrm{CHOCH}_{2} \mathrm{O}\right) ; 4.60(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.64$ and 4.92 $(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{H}) \mathrm{Ph}) ; 7.27-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 11.5$ $\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right) ; 20.8\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right) ; 25.1$ and $26.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 42.8\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 60.4(\mathrm{CHN}) ; 66.8\left(\mathrm{CHOCH}_{2} \mathrm{O}\right) ; 72.7$ $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 77.2\left(\mathrm{C}_{\mathrm{HOCH}}^{2} \mathrm{O}\right) ; 80.4(\mathrm{COCHO}) ; 109.3\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right) ; 127.7,127.9$ and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.2$ ( $C_{\text {arom, quat }}$ ); $167.4(\mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1751 ; \mathrm{v}_{\max }=2934,1371,1210,1153,1064,850,698 . \mathrm{MS}$ ( 70 eV ): m/z (\%) $320\left(\mathrm{M}^{+}+1,100\right.$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4} 320.1862[\mathrm{M}+\mathrm{H}]^{+}$, found 320.1869.
(3R,4S)-3-Benzyloxy-1-isopentyl-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-one 192f

White crystals. $\mathrm{Mp} 93.9^{\circ} \mathrm{C}$. Recrystallization from absolute EtOH. Yield $50 \%$. $\left.\alpha\right]_{\mathrm{D}}=+106.6^{\circ}(c=0.92$,
 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.91\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.34$ and $1.43\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{s},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right) ; 1.39-1.58\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; $3.21(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=14.3,6.7,6.7 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{N}) ; 3.48(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=$ 14.3, 7.0, 7.0 Hz, (HCH)N); 3.62-3.66 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CHN}$ and $\mathrm{CHO}(\underline{\mathrm{HCH}}) \mathrm{O}) ; 4.15$ ( $1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=7.7,7.7 \mathrm{~Hz}, \mathrm{CHO}(\mathrm{HCH}) \mathrm{O}) ; 4.31(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=7.7,7.6,7.6$ $\left.\mathrm{Hz}, \mathrm{CHOCH}_{2} \mathrm{O}\right) ; 4.58(1 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.63$ and $4.91(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}$, $J=11.6 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.30-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 22.3$ and 22.5 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.2\left(\mathrm{CH}_{3} \mathrm{CCH}_{3}\right) ; 25.9\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 26.9\left(\mathrm{CH}_{3} \mathrm{CCH}_{3}\right) ; 36.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 39.6\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 60.2(\mathrm{CHN})$; $66.9\left(\mathrm{CHOCH}_{2} \mathrm{O}\right)$; $72.9\left(\mathrm{O}_{\mathrm{CH}}^{2} 2 \mathrm{Ph}\right) ; 77.2\left(\underline{\left.\mathrm{CHOCH}_{2} \mathrm{O}\right)}\right.$; $80.2(\mathrm{CO} \underline{\mathrm{CHO}}) ; 109.6\left(\mathrm{CH}_{3} \underline{\mathrm{CCH}}_{3}\right) ; 127.9,128.1$ and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.1\left(\mathrm{C}_{\text {arom,quat }}\right) ; 167.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1727 ; \mathrm{v}_{\max }=2958,1370,1235$, 1210, 1152, 1074, 853, 733, 698. MS (70 eV): m/z (\%) $348\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{4}$ : C 69.14, H 8.41, N 4.03. Found: C 69.16, H 8.44, N 4.01 .

### 5.3.6 Synthesis of (3R,4S)-3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]azetidin-2ones

As a representative example, the synthesis of (3R,4S)-3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-isopropylazetidin-2-one 193a is described. To a solution of (3R,4S)-3-benzyloxy-1-isopropyl-4-[(4S)-2,2-dimethyl-1,3-dioxolan-4-yl]azetidin-2-one 192a ( $3.19 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in THF/ $\mathrm{H}_{2} \mathrm{O}(1 / 1,100$ mL ) was added $p \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.72 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in a single portion. After a reflux period of 4 hours, the resulting reaction mixture was allowed to cool to room temperature and was then neutralized with solid $\mathrm{NaHCO}_{3}$. The mixture was extracted with EtOAc ( $3 \times 40 \mathrm{~mL}$ ), the combined organic layers was dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was removed under reduced pressure. In the next step, palladium on activated carbon ( $20 \% \mathrm{w} / \mathrm{w}$ ) was added to a solution of the latter diol ( $2.79 \mathrm{~g}, 10$ mmol, 1 equiv) in methanol ( 60 mL ) and the resulting mixture was placed in a Parr apparatus. The
inside of the Parr apparatus was then degassed and filled with hydrogen gas, after which the mixture was stirred for 18 hours at room temperature while applying 5 bar of hydrogen gas. Filtration of the heterogeneous mixture through Celite ${ }^{\circledR}$ and evaporation of the solvent in vacuo afforded crude (3R,4S)-3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-isopropylazetidin-2-one 193a, which was purified by means of recrystallization from EtOAc/hexane (30/1).

## (3R,4S)-3-Hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-isopropylazetidin-2-one 193a

White crystals. Mp $85.0^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $83 \%$. $[\alpha]_{\mathrm{D}}=+171.5^{\circ}(c=$ $0.78, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 1.16$ and $1.23(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.7$
 $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.29-3.36(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 3.46-3.60(3 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{OH}, \mathrm{CHOCHN}$, $\left.\mathrm{CH}_{2} \mathrm{CHO}\right) ; 3.66\left(1 \mathrm{H}\right.$, septet, $J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2}(\underline{\mathrm{H}}) ; 4.53(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=7.7,4.4 \mathrm{~Hz}$, COCHO); $4.57\left(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.77\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOH}\right) ; 5.91(1 \mathrm{H}$,
$\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{COCHO} \underline{\mathrm{H}}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 20.5$ and 21.8 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 45.2\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 59.6(\mathrm{CHOCHN}) ; 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 72.5\left(\mathrm{CH}_{2} \underline{\mathrm{C}} \mathrm{HO}\right) ; 74.5(\mathrm{COCHO}) 169.0(\mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ) : $\mathrm{v}_{\text {OH }}=3237 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}}=1706 ; \mathrm{v}_{\max }=1401,1226,1087,814,708 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 190$ $\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{4}$ : C 50.78, H 7.99, N 7.40 . Found: C 51.00, H 7.91, N 7.53 .

## (3R,4S)-3-Hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-isobutylazetidin-2-one 193b

White crystals. Mp $98.3^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield 74\%. $[\alpha]_{\mathrm{D}}=+152.8^{\circ}(c=$ $0.93, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 0.76$ and $0.82(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=7.1$
 $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.94\left(1 \mathrm{H}\right.$, nonet, $\left.J=7.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.98$ and $3.01(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times$ d), $J=13.6,7.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.28-3.36(1 \mathrm{H}, \mathrm{m},(\underline{H} \mathrm{CH}) \mathrm{OH}) ; 3.46(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=$ $11.0,5.7,3.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{OH}) ; 3.51(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.3,5.0 \mathrm{~Hz}, \mathrm{CHN}) ; 3.60-3.68(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHO}$ ); $4.56\left(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.65(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=7.7,5.0 \mathrm{~Hz}, \mathrm{COCHO})$; $4.75\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOH}\right) ; 5.92(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{COCHO} \underline{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ : $\delta 20.5$ and $20.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 26.8\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 49.0\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 59.8(\mathrm{CHN}) ; 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 72.7\left(\mathrm{CH}_{2} \underline{\mathrm{CHO}}\right)$; 75.0 (COCHO), 169.8 (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $v_{\mathrm{OH}}=3284 ; v_{\mathrm{C}=0}=1712 ; \mathrm{v}_{\max }=2951,1425,1166,1082$, 996, 831. $\mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 204\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4}$ : C 53.19, H 8.43, N 6.89. Found: C 53.37, H 8.13, N 6.49 .

## (3R,4S)-1-Butyl-3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]azetidin-2-one 193c

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.06$ (EtOAc). Yield $63 \% .[\alpha]_{\mathrm{D}}=+185.6^{\circ}(c=0.72, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ : $\mathrm{H} \mathrm{H} \stackrel{\mathrm{OH}}{\equiv} \mathrm{OH} \delta 0.84\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.12-1.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.47(2 \mathrm{H}$, pentet, $\mathrm{J}=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$; 3.05-3.16 (1H, m, ( $\mathrm{H} C \mathrm{CH}$ )N); 3.22-3.37 ( $2 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{N}$ and $(\underline{H C H}) \mathrm{OH}) ; 3.46(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=11.1,5.5,3.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{OH}) ; 3.50(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ 8.6, 4.7 Hz, CHN); 3.59-3.67 (1H, m, CH2CHO); $4.60\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.61$ ( $1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=7.6,4.7 \mathrm{~Hz}, \mathrm{COCHO}$ ); $4.80\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOH}\right) ; 5.93(1 \mathrm{H}, \mathrm{d}, J$ $=7.6 \mathrm{~Hz}, \mathrm{COCHOH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 20.1\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 29.5$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right)$; $40.9\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; $59.4(\mathrm{CHN}) ; 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; $72.7\left(\mathrm{CH}_{2} \underline{\mathrm{CHO}}\right) ; 75.0(\mathrm{COCHO}), 169.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OH}}=3330 ; \mathrm{v}_{\mathrm{C}=0}=1719 ; \mathrm{v}_{\max }=2955,1372,1210,1153,1044,854,734,698 . \mathrm{MS}(70 \mathrm{eV})$ : $\mathrm{m} / \mathrm{z}(\%) 204\left(\mathrm{M}^{+}+1,100\right)$. $\mathrm{HRMS}(E S I)$ Calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{4} 204.1236[\mathrm{M}+\mathrm{H}]^{+}$, found 204.1232.

## (3R,4S)-1-Cyclohexyl-3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]azetidin-2-one 193d

White crystals. Mp $101.3^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield 88\%. $[\alpha]_{D}=+218.3^{\circ}$ (c $=0.62, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right): \delta 0.97-1.22$ and 1.49-1.85 (3H and
 $\left.7 \mathrm{H}, 2 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.19-3.28\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.32(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=11.3,5.8$ $\mathrm{Hz},(\underline{\mathrm{H} C H}) \mathrm{OH}) ; 3.44-3.61(3 \mathrm{H}, \mathrm{m}$, (HCH$) \mathrm{OH}, \mathrm{CHOC} \underline{H} N$ and $\left.\mathrm{CH}_{2} \mathrm{C} \underline{\mathrm{HO}}\right)$; $4.52(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}$ $=7.7,5.0 \mathrm{~Hz}, \mathrm{COCHO}) ; 4.58\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.76(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{CHO} \underline{H}$ ); $5.91(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{COCHOH}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ): $\delta$ 25.3, 25.6, 25.7, 30.5 and 31.2 (( $\left.\left.\underline{\mathrm{CH}}_{2}\right)_{5} \mathrm{CHN}\right) ; 53.3$ (( $\left.\left.\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 59.4$ (CHOCHN); 63.7 $\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; $72.6\left(\mathrm{CH}_{2} \underline{\mathrm{CHO}}\right)$; $74.4(\mathrm{COCHO})$; $169.0(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $\mathrm{v}_{\mathrm{OH}}=3197 ; \mathrm{v}_{\mathrm{C}=0}=1704 ; \mathrm{v}_{\max }=$ 2933, 1450, 1150, 1055, 699, 674. MS (70 eV): m/z (\%) $230\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{4}$ : C 57.62, H 8.35, N 6.11. Found: C 57.34, H 8.15, N 5.98.

## (3R,4S)-3-Hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-propylazetidin-2-one 193e

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.08$ (EtOAc). Yield $68 \% .[\alpha]_{\mathrm{D}}=+229.6^{\circ}(c=0.55, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ : HO $\mathrm{H} \mathrm{H} \stackrel{\mathrm{OH}}{\equiv} \mathrm{OH} \delta 0.79\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.40-1.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.04-3.12$ and 3.15$3.26(2 \times 1 \mathrm{H}, 2 \times \mathrm{m},(\mathrm{HCH}) \mathrm{N}) ; 3.27-3.36(1 \mathrm{H}, \mathrm{m},(\underline{H C H}) \mathrm{OH}) ; 3.47(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=$ $11.0,5.5,3.3 \mathrm{~Hz}$ ( HCH ) OH ); $3.50(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=8.3,4.7 \mathrm{~Hz}, \mathrm{CHN}$ ); 3.59-3.67 (1H, m, $\mathrm{CH}_{2} \mathrm{CHO}$ ); $4.57\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right) ; 4.62(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=7.7,4.7 \mathrm{~Hz}, \mathrm{COCHO})$; $4.77\left(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHOH}\right) ; 5.92(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{COCHOH}) .{ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right)$ : ठ $11.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 20.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 43.1\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 59.4(\mathrm{CHN}) ; 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 72.6\left(\mathrm{CH}_{2} \mathrm{CHO}\right) ; 75.0(\mathrm{COCHO}) ;$ $169.7(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\text {OH }}=3319 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}}=1719 ; \mathrm{v}_{\max }=2935,1419,1070,1026 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ (\%) $190\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{4} 190.1079[\mathrm{M}+\mathrm{H}]^{+}$, found 190.1077.

## (3R,4S)-3-Hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-isopentylazetidin-2-one 193f

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.07$ (EtOAc). Yield 93\%. $[\alpha]_{\mathrm{D}}=+163.9^{\circ}(c=0.52, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 0.90\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; 1.43-1.59 (3H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$ and
 $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.10(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=14.2,6.9,6.9 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 3.57(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=$ 14.2, 7.5, $7.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.65-3.82\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHN}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right) ; 4.02-4.06(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHO}$ ); $4.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{COCHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 22.1$ and $22.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 25.8\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 35.7\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 40.2\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 59.4(\mathrm{CHN}) ; 64.1$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right)$; $71.7\left(\mathrm{CH}_{2} \mathrm{CHO}\right)$; $74.6(\mathrm{COCHO}) ; 170.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3326$; $\mathrm{v}_{\mathrm{C}=0}=1720 ; \mathrm{v}_{\max }=2955,1420,1072,1034 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 218\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}_{4} 218.1392[\mathrm{M}+\mathrm{H}]^{+}$, found 218.1390.

### 5.4 Synthesis of 1-(1-aryl-2-chloro-3-hydroxypropyl)aziridines

As a representative example, the synthesis of anti-1-[2-chloro-3-hydroxy-1-(4methylphenyl)propyl]aziridine $5 a$ is described. To an ice-cooled solution of trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)azetidin-2-one $\mathbf{2 a}(2.07 \mathrm{~g}, 8 \mathrm{mmol}, 1$ equiv) in THF ( 50 mL ) was added $\mathrm{LiAlH}_{4}(0.30 \mathrm{~g}, 8 \mathrm{mmol}, 1$ molar equiv) in small portions. Subsequently, the resulting suspension was stirred at room temperature for 91 hours, after which water ( 10 mL ) was added cautiously at $0^{\circ} \mathrm{C}$ in
order to neutralize the excess of $\mathrm{LiAlH}_{4}$. Afterwards, the mixture was filtered through Celite ${ }^{\circledR}$, and the filtrate was dried over $\mathrm{MgSO}_{4}$. Removal of the drying agent through filtration and evaporation of the solvent in vacuo afforded anti-1-[2-chloro-3-hydroxy-1-(4-methylphenyl)propyl]-aziridine 5a, which was purified in $40 \%$ yield by column chromatography on silica gel (hexane/EtOAc 3/2).

## Anti-1-[2-chloro-3-hydroxy-1-(4-methylphenyl)propyl]aziridine 5a

White crystals. Mp $68.7^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.06$ (hexane/EtOAc 3/2). Yield $40 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.05$
 $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=6.5,4.4 \mathrm{~Hz},(\underline{H C H}) \mathrm{N}) ; 1.76(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=5.7,4.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 1.80$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=6.5,4.1 \mathrm{~Hz},(\underline{H C H}) \mathrm{N}) ; 2.18(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=5.7,4.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 2.36$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; 3.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{CHN}) ; 3.77-3.84(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{H} C H}) \mathrm{OH}) ; 4.08(1 \mathrm{H}$, $\mathrm{d}, J=12.7 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{OH}) ; 4.16-4.22(2 \mathrm{H}, \mathrm{m}, \mathrm{CHCl}$ and OH$) ; 7.18$ and $7.28(2 \times 2 \mathrm{H}$, $\left.2 \times \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.2\left(\mathrm{CH}_{3}\right) ; 25.2$ and $31.6\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; 63.8$ $\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 66.1(\mathrm{CHCl}) ; 76.9(\mathrm{CHN}) ; 127.7$ and 129.2 ( $4 \times \mathrm{HC}_{\text {arom }}$ ); 136.5 and 137.8 ( $2 \times \mathrm{C}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\text {он }}=3188 ; \mathrm{v}_{\max }=2898,1312,1258,1048,1008,856,811,690 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ 226/8 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{CINO}$ : C 63.85, H 7.14, N 6.21 . Found: C 63.62, H 7.54, N 6.41 .

## Anti-1-(2-chloro-3-hydroxy-1-phenylpropyl)aziridine 5b

White crystals. Mp $73.5^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 3/2). Yield 55\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.06$
 $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=6.9,4.6 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{N}) ; 1.77(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=5.7,4.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 1.81$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=6.9,4.4 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 2.20(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=5.7,4.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.03$ $(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CHN}) ; 3.80-3.84(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 4.05-4.14(2 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{OH}$ and OH$) ; 4.22(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=6.4,3.5 \mathrm{~Hz}, \mathrm{CHCl}) ; 7.29-7.42\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 25.3$ and $31.6\left(2 \times \mathrm{CH}_{2} \mathrm{~N}\right) ; 63.7\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 66.0(\mathrm{CHCl}) ; 77.1(\mathrm{CHN}) ; 127.8$, 128.0, $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 139.5\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3322 ; \mathrm{v}_{\max }=2869,1453,1257,1047,1029$, 756, 700. MS (70 eV): m/z (\%) 212/4 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}$ : C 62.41, H 6.67, N 6.62. Found: C 62.31, H 6.96, N 6.38.

### 5.5 Synthesis of 3-aryl-2-(ethylamino)propan-1-ols

As a representative example, the synthesis of 2-( $N$-ethylamino)-3-(4-methylphenyl)propan-1-ol 127a is described. To an ice-cooled solution of trans-3-chloro-1-(2-chloroethyl)-4-(4-methylphenyl)azetidin-2-one 2a ( $0.52 \mathrm{~g}, 2 \mathrm{mmol}$, 1 equiv) in THF ( 30 mL ) was added $\mathrm{LiAlH}_{4}(0.23 \mathrm{~g}, 6$ mmol, 3 molar equiv) in small portions. Subsequently, the resulting suspension was heated under reflux for 48 hours, after which water ( 5 mL ) was added cautiously at $0^{\circ} \mathrm{C}$ in order to neutralize the excess of $\mathrm{LiAlH}_{4}$. Afterwards, the mixture was filtered through Celite ${ }^{\circledR}$, and the filtrate was dried over $\mathrm{MgSO}_{4}$. Removal of the drying agent through filtration and evaporation of the solvent in vacuo
afforded 2-(N-ethylamino)-3-(4-methylphenyl)propan-1-ol 127a, which was purified in $61 \%$ yield by recrystallization from EtOAc/hexane (30/1).

## 2-(N-Ethylamino)-3-(4-methylphenyl)propan-1-ol 127a

White crystals. Mp $102.3^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $61 \%{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.05\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.80(2 \mathrm{H}, \mathrm{s}$ (broad), OH and NH$)$; $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}_{\text {quat }} \mathrm{CH}_{3}\right) ; 2.59-2.78\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right) ; 2.84-2.92(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHN}) ; 3.29$ and $3.60(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=10.5,5.5,3.9 \mathrm{~Hz},(\underline{\mathrm{H}} \underline{\mathrm{H}}) \mathrm{OH}) ; 7.06$ and $7.11\left(2 \times 2 \mathrm{H}, 2 \times \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.6\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $21.0\left(\mathrm{C}_{\text {quat }} \underline{\mathrm{CH}}_{3}\right) ; 37.7\left(\underline{\mathrm{CH}}_{2} \mathrm{C}_{\text {quat }}\right) ; 41.2\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right) ; 60.0(\mathrm{CHN}) ; 62.4\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 129.0$ and $129.3\left(4 \times \mathrm{HC}_{\text {arom }}\right)$; 135.5 and $135.9\left(2 \times C_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): v_{\text {OH,NH }}=3254 ; v_{\max }=2821,1445,1121,1074,1038,947$, 931, 802. MS (70 eV): m/z (\%) 194 ( $\mathrm{M}^{+}+1$ 100). Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C} 74.57, \mathrm{H} 9.91, \mathrm{~N} 7.25$. Found: C 74.24, H 10.26, N 7.09.

## 3-(4-Chlorophenyl)-2-(N-ethylamino)propan-1-ol 127c

White crystals. Mp $101.3^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $65 \%{ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.87(2 \mathrm{H}, \mathrm{s}(\mathrm{broad}), \mathrm{OH}$ and NH$)$; 2.59-2.79 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right) ; 2.83-2.91(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}) ; 3.28$ and 3.59 $(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=10.6,5.2,3.9 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 7.12$ and $7.27(2 \times 2 \mathrm{H}, 2 \times \mathrm{d}$, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 37.4\left(\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}\right)$; $41.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 60.0(\mathrm{CHN}) ; 62.2\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 128.7$ and $130.5\left(4 \times \mathrm{HC}_{\text {arom }}\right) ; 132.2$ and $137.1\left(2 \times \mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}, \mathrm{NH}}=3268 ; \mathrm{v}_{\max }=2888,1482,1114,1099,838,802 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 214 / 6$ $\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{CINO}$ : C 61.82, H 7.55, N 6.55. Found: C 61.72, H 7.43, N 6.50 .

## 2-(N-Ethylamino)-3-(3-methoxyphenyl)propan-1-ol 127d

White crystals. Mp $101.6^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $68 \%{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.06\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 2.01$ ( 2 H s (broad), OH and
 NH ); 2.57-2.81 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\mathrm{CH}_{2} \mathrm{C}_{\text {quat }}$ ); 2.88-2.95 (1H, m, CHN); 3.32 and $3.61(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=10.5,5.5,3.8 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 3.80(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3} \mathrm{O}$ ); 6.73-6.79 and 7.19-7.25 (3H and $1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 15.5\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right) ; 38.1\left(\underline{\mathrm{CH}}_{2} \mathrm{C}_{\text {quat }}\right) ; 41.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 55.1\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 60.1(\mathrm{CHN}) ; 62.5(\mathrm{CH} 2 \mathrm{OH})$; 111.7, 115.0, 121.6, $129.6\left(4 \times \mathrm{HC}_{\text {arom }}\right)$; $140.3\left(\mathrm{CH}_{2} \underline{\mathrm{C}}_{\text {quat }}\right) ; 159.8\left(\mathrm{OC}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $\mathrm{v}_{\mathrm{OH}, \mathrm{NH}}=$ $3272 ; v_{\max }=2805,1586,1488,1252,1152,1030,797,779,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 210\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2}$ : C 68.87, H 9.15, N 6.69. Found: C 69.01, H 9.23, N 6.50.

### 5.6 Synthesis of azetidines

### 5.6.1 Synthesis of 2-(2-hydroxyethyl)azetidines

As a representative example, the synthesis of cis-2-(2-hydroxyethyl)-1-isopropyl-3-phenoxyazetidine 151a is described. To a solution of aluminium(III) chloride ( $1.07 \mathrm{~g}, 8 \mathrm{mmol}, 1$ equiv) in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}$ (30 mL ) was added carefully lithium aluminium hydride ( $0.91 \mathrm{~g}, 24 \mathrm{mmol}, 3$ molar equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 hour. Subsequently, a solution of cis-4-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isopropyl-3-phenoxyazetidin-2-one 12a ( $2.91 \mathrm{~g}, 8 \mathrm{mmol}, 1$ equiv) in dry $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added slowly, and after the addition was complete, the reaction mixture was stirred for 2 hours at $0{ }^{\circ} \mathrm{C}$, after which water ( 10 mL ) was added cautiously at $0^{\circ} \mathrm{C}$ in order to neutralize the excess of $\mathrm{LiAlH}_{4}$. Afterwards, the reaction mixture was filtered and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 25 \mathrm{~mL}$ ). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent afforded a mixture of cis-2-[2-(tert-butyldimethylsilyloxy)ethyl]-1-isopropyl-3-phenoxyazetidine and cis-2-(2-hydroxyethyl)-1-isopropyl-3-phenoxyazetidine 151a. In the next step, TBAF ( $2.30 \mathrm{~g}, 8.8 \mathrm{mmol}, 1.1$ equiv) was added to an ice-cooled solution of the latter reaction mixture in THF ( 30 mL ), and the resulting solution was stirred at room temperature for 5 hours. Subsequently, the reaction mixture was poured into brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$, after which the organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$, followed by removal of the drying agent and evaporation of the solvent in vacuo. Purification by means of column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5\right)$ afforded pure cis-2-(2-hydroxyethyl)-1-isopropyl-3-phenoxyazetidine 151a in 48\% yield.

## Cis-2-(2-hydroxyethyl)-1-isopropyl-3-phenoxyazetidine 151a

White crystals. $\mathrm{Mp} 70.2{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.10\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5\right)$. Yield $48 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$
 0.96 and $1.07\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.83-1.92$ and 2.18-2.35 (2 $\times 1 \mathrm{H}, 2 \times \mathrm{m},(\underline{\mathrm{H} C \underline{H}}) \mathrm{CHN}) ; 2.56\left(1 \mathrm{H}\right.$, septet, $\left.\mathrm{J}=6.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.28(1 \mathrm{H}, \mathrm{d} \times$ $\mathrm{d}, J=9.9,7.7 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{N}) ; 3.62(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.9,2.9,1.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N})$; 3.70-3.79 (2H, m, ( $\underline{H} C H$ ) OH and $\mathrm{CH}_{2} \mathrm{CHN}$ ); $4.07(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.7,8.1,2.9$ $\mathrm{Hz},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 4.91(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=7.7,7.7,2.9 \mathrm{~Hz}, \mathrm{CHOPh}) ; 6.76-6.79$, 6.936.98 and $\left.7.23-7.29\left(5 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz} \mathrm{CDCl} 3,\right): \delta 20.1$ and $21.0\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 32.2$ $\left(\underline{C H}_{2} \mathrm{CHN}\right) ; 56.7\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 57.7\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}}\right) ; 60.8\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 66.0\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right) ; 68.8(\mathrm{CHO}) ; 114.9,121.1$ and 129.5 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 157.2 ( $\mathrm{OC}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\text {OH }}=3360 ; \mathrm{v}_{\max }=2966,2932,1587,1495,1239$, 1116, 690. MS (70 eV): m/z (\%) 236 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$ : C 71.46, H 8.99, N 5.95. Found: C 71.72, H 9.31, N 5.88.

## Cis-3-benzyloxy-2-(2-hydroxyethyl)-1-isopropylazetidine 151b

White crystals. $\mathrm{Mp} 76.3^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.10\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5\right)$. Yield $49 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
 0.93 and $1.01\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.76-1.85$ and 2.15-2.27 $(2 \times 1 \mathrm{H}, 2 \times \mathrm{m},(\underline{\mathrm{H} C} \underline{H}) \mathrm{CHN}) ; 2.47\left(1 \mathrm{H}\right.$, septet, $\left.J=6.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.04(1 \mathrm{H}$, $d \times d, J=9.4,6.6 \mathrm{~Hz},(\underline{H C H}) \mathrm{N}) ; 3.49-3.63\left(2 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{N}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CHN}\right) ; 3.72$ (1H, d $\times \mathrm{d} \times \mathrm{d}, J=10.4,5.1,4.3 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 3.91(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=10.4$, $10.2,3.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{OH}) ; 4.25(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.6,6.6,2.8 \mathrm{~Hz}, \mathrm{CHO}) ; 4.39$ and $4.58(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.8 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.28-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 20.2$ and $21.1\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 32.5\left(\underline{\mathrm{CH}}_{2} \mathrm{CHN}\right) ; 56.3\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; 57.6 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 60.8\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 67.0\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right)$; $70.5(\mathrm{CHO}) ; 70.9\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 127.8,128.4$ and 128.4 (5 x $\left.\mathrm{HC}_{\text {arom }}\right) ; 137.7\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\text {он }}=3380 ; \mathrm{v}_{\max }=2963,1454,1351,1198,1119,1056,1028$, 733. $\mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 250\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{C} 72.25, \mathrm{H} 9.30, \mathrm{~N} 5.62$. Found: C 72.17, H 9.44, N 5.61.

## Cis-3-benzyloxy-1-cyclohexyl-2-(2-hydroxyethyl)azetidine 151c

White crystals. Mp $93.3^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (25/1). Yield 50\%. ${ }^{1} \mathrm{H}$ NMR (300
 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.88-1.28$ and 1.61-1.80 ( 5 H and $6 \mathrm{H}, 2 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.(\underline{\mathrm{HCH}}) \mathrm{CH}_{2} \mathrm{O}\right) ; 2.05-2.15\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.17-2.26\left(1 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{CH}_{2} \mathrm{O}\right)$; 3.02 and $3.55(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=9.5,6.5,2.8 \mathrm{~Hz},(\underline{H C H}) \mathrm{N}) ; 3.57-3.59(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHN}\right) ; 3.71$ and $3.92(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d} \times \mathrm{d}), J=10.3,10.2,5.1$, $5.1,3.1 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{OH}) ; 4.26(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.6,6.5,2.8 \mathrm{~Hz}, \mathrm{CHO}) ; 4.38$ and $4.58\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \mathrm{C}(\underline{)}) \mathrm{Ph}) ; 7.28-7.37\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}\right.$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 24.7,24.8,25.9,30.4$ and $31.5\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right)$; $32.7\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{O}\right) ; 56.1\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; $61.0\left(\mathrm{CH}_{2} \mathrm{OH}\right) ; 66.3\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 66.9\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right) ; 71.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$; $71.1(\mathrm{CHO}) ; 127.8,128.48$ and $128.49\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.8\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3147 ; \mathrm{v}_{\max }=$ 2929, 2854, 1355, 1182, 1116, 1046, 1017, 736, 698. MS (70 eV): m/z (\%) 290 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{2}$ : C 74.70, H 9.40, N 4.84. Found: C 74.52, H 9.54, N 4.84.

### 5.6.2 Synthesis of 2-(2-mesyloxyethyl)azetidines

The synthesis of 2-(2-mesyloxyethyl)azetidines 13 was analogous to the synthesis of 4-(2-mesyloxyethyl)azetidin-2-ones 17 (Section 5.3.4), using 2-(2-hydroxyethyl)azetidines 151 as the starting material.

Due to the high intrinsic reactivity of azetidines $\mathbf{1 3}$, no accurate HRMS data could be obtained.

## Cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13a

Colourless oil. Yield $90 \%{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.93$ and $1.03(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.1 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.01-2.12(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{H} C H}) \mathrm{CHN}) ; 2.44-2.65\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{H} \mathrm{~N}\right.$ and ( HCH ) CHN); $2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 3.19(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=9.4,6.1 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{N})$; $3.50(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.4,1.9,1.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.63(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=10.1$, 6.3, 3.4 Hz, CH2CHN); 4.25-4.40 (2H, m, CH2O); $4.83(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.3$, $6.1,1.9 \mathrm{~Hz}, \mathrm{CHOPh}) ; 6.76-6.79,6.88-7.03$ and $7.23-7.34\left(5 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 20.0$ and $21.1\left(\left(\underline{\mathrm{CH}}_{3}\right)_{2} \mathrm{CHN}\right) ; 30.2\left(\underline{\mathrm{C}}_{2} \mathrm{CHN}\right) ; 37.3\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 56.8$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; $57.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; $64.0\left(\mathrm{CH}_{2} \mathrm{CHN}\right)$; $67.8\left(\mathrm{CH}_{2} \mathrm{O}\right)$; $68.0(\mathrm{CHO}) ; 115.1$, 121.3 and 129.7 (5 x $\left.\mathrm{HC}_{\text {arom }}\right) ; 157.1\left(\mathrm{OC}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\max }=2966,2939,2872,1492,1352,1234,1171,967,930$, 754, 692. MS (70 eV): m/z (\%) 314 ( $\mathrm{M}^{+}+1,100$ ).

## Cis-3-benzyloxy-1-isopropyl-2-(2-mesyloxyethyl)azetidine 13b

Colourless oil. Yield 88\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.93$ and $0.98(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.90-2.01(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{HCH}}) \mathrm{CHN}) ; 2.38-2.53\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{\mathrm{HN}}\right.$ and $(\mathrm{HCH}) \mathrm{CHN}) ; 2.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 2.93-3.01(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 3.35-3.55(2 \mathrm{H}$, m , ( HCH ) N and $\mathrm{CH}_{2} \mathrm{CH}$ N); $4.15(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.0,6.0,1.7 \mathrm{~Hz}, \mathrm{CHO}$ ); 4.21$4.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; 4.36 and $4.61(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph})$; 7.28-7.37 (5H, m, CH arom). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 20.1$ and 21.2 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 30.1\left(\mathrm{CH}_{2} \mathrm{CHN}\right) ; 37.1\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 56.5\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 57.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; $64.4\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right) ; 68.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; $69.6(\mathrm{CHO}) ; 70.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 127.76,127.83$ and $128.4\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; $138.0\left(C_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $v_{\max }=2964,2931,2855,1352,1172,960,925,813,735,698 . \mathrm{MS}(70$ $\mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 328\left(\mathrm{M}^{+}+1,100\right)$.

## Cis-3-benzyloxy-1-cyclohexyl-2-(2-mesyloxyethyl)azetidine 13c

Yellow oil. Yield $85 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.99-1.25$ and $1.59-1.74(6 \mathrm{H}$ and $4 \mathrm{H}, 2 \times \mathrm{m}$,
 $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 1.90-2.01$ and 2.03-2.13 ( $\left.2 \times 1 \mathrm{H}, 2 \times \mathrm{m},(\underline{\mathrm{H} C H}) \mathrm{CH}_{2} \mathrm{O}\right) ; 2.41-2.53$ (1H, m, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{SO}_{3}\right) ; 2.94-2.98(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{HCH}}) \mathrm{N}) ; 3.44-$ $3.51\left(2 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{N}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CHN}\right) ; 4.16(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=6.1,6.1,1.1$ $\mathrm{Hz}, \mathrm{CHO}) ; 4.21-4.35\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; 4.36 and $4.61(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.9$ $\mathrm{Hz}, \mathrm{O}(\underline{\mathrm{H}} \mathrm{CH}) \mathrm{Ph}) ; 7.28-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 24.6, 24.7, 25.8, 30.1 and $30.2\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right)$; $31.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)$; $37.1\left(\mathrm{CH}_{3} \mathrm{SO}_{3}\right)$; $56.2\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; $64.3\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{O}\right)$; $66.4\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right)$; $68.4\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \underline{\mathrm{CHN}}\right)$; $70.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right)$; $70.9(\mathrm{CHO})$; 127.8, 127.9 and 128.4 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 138.0 ( $\mathrm{C}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\max }=3029,2927,2853,1350$, 1172, 969, 921, 812, 734, 699. MS (70 eV): m/z (\%) 368 ( $\mathrm{M}^{+}+1,100$ ).

### 5.7 Synthesis of piperidines

### 5.7.1 Synthesis of 4-acetoxy-5,5-dimethylpiperidines

As a representative example, the synthesis of cis-4-acetoxy-1-isopropyl-5,5-dimethyl-3phenoxypiperidine 139c is described. To a solution of cis-2-(2-bromo-1,1-dimethylethyl)-1-isopropyl-

3-phenoxyazetidine 8c ( $3.26 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in DMSO ( 50 mL ) was added $\mathrm{NaOAc}(8.20 \mathrm{~g}, 100$ mmol, 10 equiv) at room temperature. After stirring at $100^{\circ} \mathrm{C}$ for 18 hours, the reaction mixture was poured into water $(40 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. Afterwards, the organic phase was washed intensively with brine $(4 \times 30 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent afforded cis-4-acetoxy-1-isopropyl-5,5-dimethyl-3-phenoxypiperidine 139c, which was further purified in $62 \%$ yield by column chromatography on silica gel (hexane/EtOAc 14/1).

## Cis-4-acetoxy-1-allyl-3-benzyloxy-5,5-dimethylpiperidine 139a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.08$ (hexane/EtOAc 10/1). Yield $64 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.88$ and 1.07 (2 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 2.06\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{HCH}}) \mathrm{C}_{\text {quat }}\right) ; 2.11(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right)$; 2.22-2.26 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right.$ and $\left.\mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}\right) ; 2.76-2.78(1 \mathrm{H}, \mathrm{m}$, $\mathrm{N}(\mathrm{HCH}) \mathrm{CHO}) ; 2.95$ and $3.04(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=13.8,6.3,6.1 \mathrm{~Hz}$, $\left.\mathrm{N}(\underline{\mathrm{H}} \mathrm{C} \underline{H}) \mathrm{CH}=\mathrm{CH}_{2}\right) ; 3.80(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=10.5,4.7,3.0 \mathrm{~Hz}, \mathrm{C} \underline{H} \mathrm{OBn}) ; 4.43$ and 4.65 $(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 5.10-5.20\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHOC}=\mathrm{O}\right.$ and $\left.\mathrm{CH}_{2}=\mathrm{CH}\right)$, $5.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right)$; 7.23-7.36 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right)$ : $\delta 21.0\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) ; 24.4$ and $24.9\left(\mathrm{C}\left(\underline{\mathrm{CH}}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 35.2\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 53.3\left(\mathrm{~N} \mathrm{NH}_{2} \mathrm{CHO}\right)$; $59.9\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 61.4\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; 70.8 \quad\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 73.0(\underline{\mathrm{CHOBn}) ; 7} 73.6$ $(\underline{\mathrm{C}} \mathrm{HOC}=\mathrm{O}) ; 117.5\left(\underline{(C H}_{2}=\mathrm{CH}\right) ; 127.6,127.8$ and $128.4\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 135.6\left(\mathrm{CH}_{2}=\underline{\mathrm{C}} \mathrm{H}\right) ; 138.5$ ( $\left.\mathrm{C}_{\text {arom,quat }}\right)$; $170.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1739 ; \mathrm{v}_{\max }=2955,1371,1236,1117,1091,1018,735,698 . \mathrm{MS}$ (70eV): m/z (\%) 318 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3}$ : C 71.89, H 8.57, N 4.41. Found: C 72.08, H 8.43, N 4.29.

## Cis-4-acetoxy-3-benzyloxy-1-tert-butyl-5,5-dimethylpiperidine 139b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.11$ (hexane/EtOAc 6/1). Yield $71 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 1.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 2.11(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) ; 2.18\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.0 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{H} C H}) \mathrm{C}_{\text {quat }}\right) ; 2.28-2.32\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right.$ and $\mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}) ; 2.87-2.95(1 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CHO}) ; 3.72(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=10.4$, $4.7,3.0 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{H} O B n}) ; 4.40$ and $4.66(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 5.09(1 \mathrm{H}$, $\mathrm{s}($ broad ), $\mathrm{CHOC}=0)$; $7.28-7.36\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ $21.1\left(\underline{\mathrm{C}} \mathrm{H}_{3} \mathrm{C}=\mathrm{O}\right)$; 24.4 and $24.8\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 26.6\left(\mathrm{C}\left(\underline{\mathrm{CH}}_{3}\right)_{3}\right) ; 35.1\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 46.4$ $\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 53.0\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 53.3\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 70.9\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 73.9(\mathrm{CHOC}=\mathrm{O}) ; 74.4$ ( CHOBn ); 127.6, 127.9 and $128.4\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; $138.6\left(\mathrm{C}_{\text {arom,quat }}\right) ; 170.7(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $\mathrm{v}_{\mathrm{C}=0}=$ 1737; $v_{\max }=2968,1370,1239,1223,1208,1100,980,735,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 334\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{3}$ : C 72.04, H 9.37, N 4.20 . Found: C 71.83, H 9.65, N 4.12.

## Cis-4-acetoxy-1-isopropyl-5,5-dimethyl-3-phenoxypiperidine 139c

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.09$ (hexane/EtOAc 14/1). Yield $62 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 1.01\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 2.09$
 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) ; 2.14$ and $2.34\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.3 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{H}} \mathrm{CH}) \mathrm{C}_{\text {quat }}\right) ; 2.61(1 \mathrm{H}, \mathrm{d}$ $\times \mathrm{d}, \mathrm{J}=10.2,10.0 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{H} C H}) \mathrm{CHO}) ; 2.72-2.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CHO}\right.$ and $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $4.60(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=10.0,4.5,3.2 \mathrm{~Hz}, \mathrm{CHOPh}) ; 5.05$ ( $1 \mathrm{H}, \mathrm{s}($ broad $), \mathrm{CHOC=O}$ ); 6.81-6.95 and 7.21-7.28 (5H, $2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 17.8$ and $18.4\left(\mathrm{NCH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 20.9\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) ; 23.8$ and $24.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 35.3\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ;$ 48.7 ( $\mathrm{NCH}_{2} \mathrm{CHO}$ ); 54.2 ( $\left.\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 55.1$ ( $\left.\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 72.8$ ( CHOPh ); 75.1 (CHOC=O); 116.1, 121.2 and 129.5 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 157.8 ( $\mathrm{OC}_{\text {arom,quat }}$ ); 170.5 (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=$ $1742 ; v_{\max }=2963,1598,1493,1372,1226,1166,1050,1036,752 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 306\left(\mathrm{M}^{+}+1\right.$, 100). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{3}$ : C 70.79, $\mathrm{H} 8.91, \mathrm{~N} 4.59$. Found: C 70.62, H 9.14, N 4.77 .

## Cis-4-acetoxy-1-cyclohexyl-5,5-dimethyl-3-phenoxypiperidine 139d

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.20$ (hexane/EtOAc 19/1). Yield $72 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.91$ and 1.13 (2 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 1.16-1.31,1.55-1.65$ and $1.68-1.87(10 \mathrm{H}, 3 \times \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right) ; 2.19\left(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{H} C H}) \mathrm{C}_{\text {quat }}\right) ; 2.27-2.38$ $\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.42\left(1 \mathrm{H}, \mathrm{d}, J=11.3 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right) ; 2.68$ and $2.87(2 \times 1 \mathrm{H}, 2$ $\times(\mathrm{d} \times \mathrm{d}), J=10.2,9.7,4.1 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{H} C} \underline{H}) \mathrm{CHO}) ; 4.59(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.7,4.1,3.3 \mathrm{~Hz}$, CHOPh); $5.04(1 \mathrm{H}, \mathrm{s}$ (broad), $\mathrm{CHOC}=\mathrm{O}) ; 6.79-6.97$ and 7.15-7.29 $\left(5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.9\left(\underline{\mathrm{C}} \mathrm{H}_{3} \mathrm{C}=\mathrm{O}\right) ; 23.8$ and $24.8\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 25.9$, 26.0, 26.4, 28.6 and $29.1\left(\left(\underline{\mathrm{CH}}_{2}\right)_{5} \mathrm{CHN}\right) ; 35.4\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 49.1\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 56.0\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right)$; $63.4\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{C}} \mathrm{HN}\right)$; $72.9(\underline{\mathrm{C}} \mathrm{HOPh}) ; 75.2(\underline{\mathrm{C}} \mathrm{HOC}=\mathrm{O})$; 116.1, 121.2 and 129.5 ( 5 x $\mathrm{HC}_{\text {arom }}$ ); 157.8 ( $\mathrm{OC}_{\text {arom,quat }}$ ); 170.5 ( $\mathrm{C}=\mathrm{O}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1744 ; \mathrm{v}_{\max }=2929,2853,1599,1493$, $1373,1243,1051 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 346\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{3}: \mathrm{C} 73.01, \mathrm{H} 9.04, \mathrm{~N}$ 4.05. Found: C 72.83, H 9.39, N 4.26 .

### 5.7.2 Synthesis of 4-hydroxy-5,5-dimethylpiperidines

As a representative example, the synthesis of cis-4-hydroxy-1-isopropyl-5,5-dimethyl-3phenoxypiperidine $\mathbf{1 4 0}$ c is described. To a solution of cis-4-acetoxy-1-isopropyl-5,5-dimethyl-3phenoxypiperidine 139 c ( $3.05 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in methanol ( 50 mL ) was added LiOH $\cdot \mathrm{H}_{2} \mathrm{O}(1.26 \mathrm{~g}$, $30 \mathrm{mmol}, 3$ equiv). After a reflux period of 15 hours, the solvent was removed in vacuo and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(1 \times 30 \mathrm{~mL})$ and water $(2 \times 30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent in vacuo afforded cis-4-hydroxy-1-isopropyl-5,5-dimethyl-3-phenoxypiperidine 140c, which was further purified in $86 \%$ yield by column chromatography on silica gel (hexane/EtOAc 9/1).

## Cis-1-allyl-3-benzyloxy-4-hydroxy-5,5-dimethylpiperidine 140a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.05$ (hexane/EtOAc 6/1). Yield 62\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.00$ ( $6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 2.14\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 2.23-2.35(1 \mathrm{H}, \mathrm{m}, \mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}) ; 2.72(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}$,
 $J=9.4,4.5 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CHO}) ; 2.93$ and $3.02(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=13.8,5.9,5.7$ $\left.\mathrm{Hz}, \mathrm{N}(\underline{\mathrm{H}} \mathrm{C} \underline{\mathrm{H}}) \mathrm{CH}=\mathrm{CH}_{2}\right) ; 3.53(1 \mathrm{H}, \mathrm{s}($ broad $), \mathrm{CHOH}) ; 3.80(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=10.1,4.5$, $3.2 \mathrm{~Hz}, \mathrm{CHOBn}) ; 4.58\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right) ; 5.10-5.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\mathrm{CH}\right) ; 5.81(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2}=\mathrm{CH}$ ); 7.27-7.38 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.2$ and 24.8 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; \quad 35.3 \quad\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \quad 51.8 \quad\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; \quad 59.1 \quad\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; \quad 61.3$ $\left(\mathrm{NCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) ; 70.5\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 72.8(\mathrm{CHOH}) ; 74.8(\underline{\mathrm{CHOBn}}) ; 117.2\left(\underline{\mathrm{CH}}_{2}=\mathrm{CH}\right) ; 127.5$, 127.7 and $128.3\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 135.5\left(\mathrm{CH}_{2}=\mathrm{CH}\right) ; 138.1$ ( $\mathrm{C}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OH}}=3558 ; \mathrm{v}_{\max }=2949$, 2809, 1112, 1072, 988, 917, 735, 697. MS (70 eV): m/z (\%) 276 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{2}$ : C 74.14, H 9.15, N 5.09. Found: C 74.01, H 9.32, N 4.93.

## Cis-3-benzyloxy-1-tert-butyl-4-hydroxy-5,5-dimethylpiperidine 140b

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 4/1). Yield $66 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.97$ and $0.99(2 \times$
 $\left.3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 1.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 2.19$ and $2.27(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=$ $\left.11.0 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right) ; 2.26-2.42$ and $2.77-2.88(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}) ; 3.51$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{CHOH}) ; 3.69-3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOBn}) ; 4.56$ and $4.58(2 \times 1 \mathrm{H}, 2 \times$ $\mathrm{d}, J=11.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 7.25-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right)$ : $\delta 24.3$ and $24.9\left(\mathrm{C}\left(\underline{\mathrm{CH}}_{3}\right)\left(\underline{( }_{3}\right)\right) ; 26.5\left(\mathrm{C}\left(\underline{\mathrm{CH}_{3}}\right)_{3}\right) ; 35.4\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 45.0$ $\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 52.4\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 53.5\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right) ; 70.8\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 73.2(\mathrm{CHOH}) ; 76.2$ (ㄷHOBn); 127.8, 127.9 and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 138.3$ ( $\mathrm{C}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OH}}=3404 ; \mathrm{v}_{\max }=2966$, 2928, 2867, 1363, 1098, 1070, 1027, 734, 697. MS (70 eV): m/z (\%) 292 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{2}$ : C 74.18, H 10.03, N 4.81. Found: C 74.44, H 10.29, N 4.62.

## Cis-4-hydroxy-1-isopropyl-5,5-dimethyl-3-phenoxypiperidine 140c

White crystals. Mp $82.5^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.11$ (hexane/EtOAc 9/1). Yield $86 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.99$
 and $1.00\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{NCH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 1.02$ and $1.08(2 \times 3 \mathrm{H}, 2 \times \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 2.07$ and $2.41\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.1 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right) ; 2.24(1 \mathrm{H}$, s(broad), OH ); $2.61(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=10.2,9.8 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{HCH}}) \mathrm{CHO}) ; 2.67-2.83(2 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\left.\mathrm{N}(\mathrm{HC} \underline{H}) \mathrm{CHO}\right) ; 3.62(1 \mathrm{H}, \mathrm{d}, J=3.0 \mathrm{~Hz}, \mathrm{CHOH}) ; 4.58(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=$ $9.8,4.6,3.0 \mathrm{~Hz}, \mathrm{CHOPh}) ; 6.87-7.00$ and $7.27-7.32\left(5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.5$ and $18.6\left(\mathrm{NCH}\left(\underline{\mathrm{CH}}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 24.1$ and $24.8\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3}\right)\left(\underline{\mathrm{CH}_{3}}\right)\right) ; 35.5\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 47.3$
 x HC arom $)$; 157.2 ( $\mathrm{OC}_{\text {arom, quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\text {OH }}=3197 ; \mathrm{v}_{\max }=2958$ 1596, 1496, 1237, 1174, 981, 749. MS (70 eV): m/z (\%) $264\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}$ : C 72.96, H 9.57, N 5.32. Found: C 72.94, H 9.77, N 5.27.

## Cis-1-cyclohexyl-4-hydroxy-5,5-dimethyl-3-phenoxypiperidine 140d

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.19$ (hexane/EtOAc 14/1). Yield $71 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.01$ and 1.08 (2
 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{CH}_{3}\right) ; 1.12-1.29,1.56-1.63$ and $1.68-1.81\left(10 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right)$; $2.11\left(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{HCH}}) \mathrm{C}_{\text {quat }}\right) ; 2.20-2.34\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \underline{\mathrm{HN}}\right) ; 2.49(1 \mathrm{H}, \mathrm{d}, J=$ $\left.11.0 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{C}_{\text {quat }}\right) ; 2.68$ and $2.80(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=10.2,9.9,4.4 \mathrm{~Hz}$, $\mathrm{N}(\underline{\mathrm{H} C H}) \mathrm{CHO}) ; 3.61(1 \mathrm{H}, \mathrm{d}, J=2.6 \mathrm{~Hz}, \mathrm{CHOH}) ; 4.56(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.9,4.4,2.6 \mathrm{~Hz}$, CHOPh); 6.92-6.98, 7.24-7.30 (5H, $2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 24.1$ and $24.8\left(\mathrm{C}\left(\underline{\mathrm{CH}}_{3}\right)\left(\mathrm{CH}_{3}\right)\right) ; 26.0,26.1,26.4,29.3$ and $29.7\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 35.6\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $47.7\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.8\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 63.5\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 74.1(\mathrm{CHOH}) ; 74.7$ ( $\left.\underline{\mathrm{C} H O P h}\right)$; 116.2, 121.5 and $129.6\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; $157.2\left(\mathrm{OC}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3589 ; \mathrm{v}_{\max }=2926,2853$, 1599, 1493, 1235, 1040, 982, 751. MS (70 eV): m/z (\%) 304 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{2}$ : C 75.21, H 9.63, N 4.62. Found: C 75.36, H 9.82, N 4.77 .

### 5.7.3 Synthesis of 4-bromopiperidines

As a representative example, the synthesis of cis-4-bromo-1-isopropyl-3-phenoxypiperidine 154 a is described. To a solution of cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13a (1.72 g, 5.5 mmol, 1 equiv) in acetonitrile ( 30 mL ) was added $\mathrm{LiBr}(0.96 \mathrm{~g}, 11 \mathrm{mmol}, 2$ equiv) at room temperature. After a reflux period of 15 hours, the solvent was removed in vacuo, and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 30 \mathrm{~mL})$ and water $(2 \times 30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent in vacuo afforded cis-4-bromo-1-isopropyl-3-phenoxypiperidine 154a, which was further purified in $47 \%$ yield by column chromatography on silica gel (hexane/ EtOAc 9/1).

## Cis-4-bromo-1-isopropyl-3-phenoxypiperidine 154a

Light-yellow oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 9/1). Yield $47 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.06(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
 $\left.6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.17-2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.60(1 \mathrm{H}, \mathrm{d} \times \mathrm{t}, \mathrm{J}=11.4,4.0 \mathrm{~Hz}$, $\left.\mathrm{N}(\underline{\mathrm{H} C H}) \mathrm{CH}_{2}\right) ; 2.70-2.89\left(4 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CH}_{2}, \mathrm{NCH}_{2} \mathrm{CHO}\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{\mathrm{HN}}\right) ; 4.31(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}$ $\times \mathrm{d}, J=8.5,4.0,3.7 \mathrm{~Hz}, \mathrm{CHO}) ; 4.64(1 \mathrm{H}, \mathrm{d}($ broad $), J=3.7 \mathrm{~Hz}, \mathrm{CHBr}) ; 6.96-7.01$ and 7.28-7.33 $\left(5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 18.1$ and $18.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; $32.8\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 43.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 48.1\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 53.5(\mathrm{CHBr}) ; 54.5\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{HN}\right)$; $74.8(\mathrm{CHO})$; 117.0, 121.9 and $129.6\left(5 \times \mathrm{HC}_{\text {arom }}\right)$; $156.9\left(\mathrm{OC}_{\text {arom,quat }}\right) . \operatorname{IR}\left(A T R, \mathrm{~cm}^{-1}\right)$ : $v_{\max }=2964,2828$, 2360, 1587, 1492, 1237, 1168, 1059, 752, 690. MS (70 eV): m/z (\%) 298/300 ( ${ }^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{BrNO} 298.0807[\mathrm{M}+\mathrm{H}]^{+}$, found 298.0797.

## Cis-3-benzyloxy-4-bromo-1-isopropylpiperidine 154b

White crystals. Mp $79.9{ }^{\circ} \mathrm{C}$. Recrystallization from absolute EtOH. Yield $62 \%$. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 1.03$ and $1.04\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.02-2.21(2 \mathrm{H}, \mathrm{m}$,
 $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.52-2.69\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NCH}_{2}\right) ; 2.76\left(1 \mathrm{H}\right.$, septet, $\left.J=6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; $3.47(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.3,3.9,3.9 \mathrm{~Hz}, \mathrm{CHO}) ; 4.52(1 \mathrm{H}, \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C H}) \mathrm{Ph})$; 4.62 (1H, s(broad), CHBr); 4.69 ( $1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.9 \mathrm{~Hz}, \mathrm{O}(\mathrm{HCH}) \mathrm{Ph}$ ); 7.28-7.40 ( $5 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 18.2$ and $18.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 32.7$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 44.0$ and $48.6\left(2 \times \mathrm{NCH}_{2}\right) ; 54.5$ and $54.7\left(\mathrm{CHBr}\right.$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 70.4$ $\left(\mathrm{OCH}_{2}\right) ; 75.2(\mathrm{CHO}) ; 127.9,128.0$ and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 138.0\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\text {max }}=3400$, 3028, 2962, 2824, 1165, 1134, 1116, 1094, 1023, 1004, 750, 697. MS (70 eV): m/z (\%) 312/314 ( $\mathrm{M}^{+}+1$, 100). Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrNO}: \mathrm{C} 57.70, \mathrm{H} 7.10, \mathrm{~N} 4.49$. Found: C 58.10, H 7.34, N 4.48.

## Cis-3-benzyloxy-4-bromo-1-cyclohexylpiperidine 154c

White crystals. Mp $76.6^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.06$ (hexane/EtOAc 4/1). Yield $65 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$
 1.05-1.25, 1.60-1.65 and 1.78-1.80 (10H, $\left.3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.01-2.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.27-2.37(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}) ; 2.54-2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{N}(\underline{\mathrm{H} C H}) \mathrm{CH}_{2}\right) ; 2.66-2.78(3 \mathrm{H}$, $\mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CH}_{2}$ and $\left.\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 3.46(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.3,3.9,3.6 \mathrm{~Hz}, \mathrm{CHO}) ; 4.53$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{HCH}}) \mathrm{Ph}) ; 4.62(1 \mathrm{H}, \mathrm{d}($ broad $), J=3.6 \mathrm{~Hz}, \mathrm{CHBr}) ; 4.68(1 \mathrm{H}, \mathrm{d}, J$ $=12.1 \mathrm{~Hz}, \mathrm{O}(\mathrm{HCH}) \mathrm{Ph}) ; 7.28-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 26.1, 26.4, 28.7 and $29.0\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 32.9\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 44.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 49.1$ $\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.8(\mathrm{CHBr}) ; 63.8(\mathrm{CHN}) ; 70.3\left(\mathrm{OCH}_{2}\right) ; 75.3(\mathrm{CHO}) ; 127.8,128.0$ and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 138.1\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): v_{\max }=3062,3030,2926,2852,1451,1202,1116$, 1099, 1026, 948, 734, 696. MS (70 eV): m/z (\%) 352/354 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BrNO}$ : C 61.36, H 7.44, N 3.98. Found: C 61.57, H 7.77, N 4.10.

### 5.7.4 Synthesis of 4-acetoxypiperidines

As a representative example, the synthesis of cis-4-acetoxy-1-isopropyl-3-phenoxypiperidine 157a is described. To a solution of cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13 a ( $3.13 \mathrm{~g}, 10$ mmol, 1 equiv) in acetonitrile ( 50 mL ) was added $\mathrm{NaOAc}(1.64 \mathrm{~g}, 20 \mathrm{mmol}, 2$ equiv) at room temperature. After a reflux period of 15 hours, the solvent was removed in vacuo and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 30 \mathrm{~mL})$ and water $(2 \times 30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 25 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent in vacuo afforded cis-4-acetoxy-1-isopropyl-3-phenoxypiperidine 157a, which was further purified in $63 \%$ yield by column chromatography on silica gel (hexane/EtOAc 2/1).

## Cis-4-acetoxy-1-isopropyl-3-phenoxypiperidine 157a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.09$ (hexane/EtOAc 2/1). Yield $63 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.04(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
 $\left.6.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.76-1.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}(\underline{\mathrm{HCH}})\right) ; 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 1.98-2.14$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}(\mathrm{HCH})\right) ; 2.51-2.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.77-2.89\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{\mathrm{H} N}\right.$ and $\mathrm{NCH}_{2} \mathrm{CHO}$ ); $4.49(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=5.9,5.9,2.9 \mathrm{~Hz}, \mathrm{CHOPh}) ; 5.18-5.20(1 \mathrm{H}, \mathrm{m}$, CHOCO); 6.91-6.98 and 7.23-7.29 ( $5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 17.8 and $18.6\left(\left(\underline{C H}_{3}\right)_{2} \mathrm{CHN}\right) ; 21.2\left(\underline{\mathrm{C}}_{3} \mathrm{CO}\right) ; 28.4\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 44.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 48.1$ ( $\left.\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.3\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{HN}\right) ; 69.5(\underline{\mathrm{CHOCO}}) ; 74.2(\underline{\mathrm{CHOPh}) ; ~ 116.6, ~} 121.4$ and 129.5 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 157.8 ( $\mathrm{OC}_{\text {arom,quat }}$ ); 170.5 (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1736 ; \mathrm{v}_{\max }=2964,1492,1234,1176$, 1047, 752, 692. MS (70 eV): m/z (\%) 278 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3} 278.1756$ [ $\mathrm{M}+$ $\mathrm{H}]^{+}$, found 278.1755.

## Cis-4-acetoxy-3-benzyloxy-1-isopropylpiperidine 157b

Light-yellow oil. $\mathrm{R}_{\mathrm{f}}=0.05$ (hexane/EtOAc 2/1). Yield 55\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.03$ and 1.04 $\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.66-1.77$ and $1.91-2.00(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}$,
 $\mathrm{NCH}_{2}(\underline{\mathrm{HCH}})$ ); $2.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.44-2.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.57-2.66(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH} \underline{2}_{2} \mathrm{CHO}\right) ; 2.77\left(1 \mathrm{H}\right.$, septet, $\left.J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{H} \mathrm{~N}\right) ; 3.61(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.1$, $\left.3.9,3.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHO}\right) ; 4.52$ and $4.65(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{HC}} \underline{\mathrm{H}}) \mathrm{Ph}) ; 5.26$ ( $1 \mathrm{H}, \mathrm{s}$ (broad), CHOCO ); 7.28-7.39 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 18.0$ and $18.6\left(\left(\underline{C H}_{3}\right)_{2} \mathrm{CHN}\right) ; 21.4\left(\underline{\mathrm{CH}}_{3} \mathrm{CO}\right) ; 28.6\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 44.1\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 48.7$ $\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.5\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{HN}\right)$; $68.5(\underline{\mathrm{C}} \mathrm{HOCO}) ; 71.0\left(\mathrm{OCH}_{2}\right) ; 74.9\left(\mathrm{NCH}_{2} \underline{\mathrm{CHO}}\right)$; 127.7, 127.9 and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 138.4\left(\mathrm{C}_{\text {arom,quat }}\right) ; 170.7(\mathrm{C}=\mathrm{O})$. $\mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1735 ; \mathrm{v}_{\max }=$ 2963, 1369, 1241, 1092, 967, 736, 698. MS (70 eV): m/z (\%) 292 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} 292.1913[\mathrm{M}+\mathrm{H}]^{+}$, found 292.1916.

## Cis-4-acetoxy-3-benzyloxy-1-cyclohexylpiperidine 157c

Attempts to purify this compound failed. Spectral data are based on ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the crude reaction mixture (purity of 157c: $\sim 85 \%$ ), and no HRMS analysis was performed.

Colourless oil. Yield $66 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.05-1.33,1.57-1.65$ and $1.70-1.84(4 \mathrm{H}, 1 \mathrm{H}$ and $\mathrm{O} 6 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.\mathrm{NCH}_{2}(\underline{\mathrm{HCH}})\right) ; 1.88-1.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}(\mathrm{HCH})\right) ; 2.10(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right) ; 2.29-2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}) ; 2.53-2.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.64-2.73(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHO}\right) ; 3.60\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.4,4.0,4.0 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHO}\right.$ ); 4.52 and 4.64 $(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=12.1 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{HC}}(\underline{H}) \mathrm{Ph}) ; 5.25(1 \mathrm{H}, \mathrm{s}($ broad $), \mathrm{CHOCO}) ; 7.23-7.36$ ( $\left.5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 21.4\left(\mathrm{CH}_{3} \mathrm{CO}\right) ; 22.7,26.1,26.4$ and $28.6\left(4 \times \mathrm{CH}_{2}\right) ; 29.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 31.7\left(\mathrm{CH}_{2}\right) ; 44.4\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 49.1\left(\mathrm{NCH}_{2} \mathrm{CHO}\right)$; 63.7 (CHN); 68.5 ( CHOCO ); $70.9\left(\mathrm{OCH}_{2}\right) ; 74.9\left(\mathrm{NCH}_{2} \underline{\mathrm{CHO}) ; ~ 127.7, ~} 127.9\right.$ and 128.4 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 138.4 ( $\mathrm{C}_{\text {arom,quat }}$ ); $170.7(\mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1737$; $\mathrm{v}_{\max }=$ 2926, 1371, 1240, 1093, 1021, 735, 698. MS (70 eV): m/z (\%) 332 ( $\mathrm{M}^{+}+1,100$ ).

### 5.7.5 Synthesis of 4-hydroxypiperidines

### 5.7.5.1 Synthesis of 4-hydroxypiperidines via 4-acetoxypiperidines

As a representative example, the synthesis of cis-4-hydroxy-1-isopropyl-3-phenoxypiperidine 158a is described. To a solution of cis-4-acetoxy-1-isopropyl-3-phenoxypiperidine 157a (1.66 g, $6 \mathrm{mmol}, 1$ equiv) in methanol ( 40 mL ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.66 \mathrm{~g}, 12 \mathrm{mmol}, 2$ equiv). After a reflux period of 1 hour, the solvent was removed in vacuo, and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(1 \times 30 \mathrm{~mL})$ and water $(2 \times 30 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 25 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent in vacuo afforded cis-4-hydroxy-1-isopropyl-3phenoxypiperidine 158a, which was further purified in $56 \%$ yield by column chromatography on silica gel (hexane/EtOAc 1/2).

## Cis-4-hydroxy-1-isopropyl-3-phenoxypiperidine 158a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.05$ (hexane/EtOAc 1/2). Yield $56 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.04(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.\mathrm{OH} \quad 6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; 1.77-1.88 and 1.94-2.03 ( $2 \times 1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{NCH}_{2}(\underline{\mathrm{H} C} \underline{H})$ ); 2.48-2.70 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH} \underline{H}_{2} \mathrm{CH}_{2}, \mathrm{~N}(\underline{\mathrm{HCH}}) \mathrm{CHO}\right.$ and OH$) ; 2.75-2.85(2 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CHO}$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 4.11-4.15(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}) ; 4.43(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.0,4.4,3.1 \mathrm{~Hz}$, $\mathrm{NCH}_{2} \mathrm{CHO}$ ); 6.95-7.00 and 7.26-7.33 (5H, $2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 18.0$ and $18.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 30.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 43.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 46.6$ $\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.5\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{HN}\right) ; 66.4(\mathrm{CHOH}) ; 76.1(\underline{\mathrm{CHOPh}}) ; 116.3,121.6$ and 129.7 ( $\left.5 \times \mathrm{HC}_{\text {arom }}\right) ; 157.2$ ( $\mathrm{OC}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\text {OH }}=3406 ; \mathrm{v}_{\max }=2964,1596,1493,1239,1173,965,752,730,691 \mathrm{MS}$ (70 eV): m/z (\%) $236\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NO}_{2} 236.1651[\mathrm{M}+\mathrm{H}]^{+}$, found 236.1653.

## Cis-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 158b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.03$ (hexane/EtOAc 1/3). Yield $70 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.02$ and 1.04 (2 $\left.\mathrm{OH} \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.63-1.74$ and $1.86-1.95(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}$, $\mathrm{NCH}_{2}(\underline{\mathrm{H} C H})$ ); $2.34(1 \mathrm{H}, \mathrm{s}($ broad $), \mathrm{OH}) ; 2.39-2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CH}_{2}\right) ; 2.49-2.64(3 \mathrm{H}$, $\mathrm{m}, \mathrm{N}(\mathrm{HC} \underline{H}) \mathrm{CH}_{2}$ and $\left.\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 2.76\left(1 \mathrm{H}\right.$, septet, $\left.J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{\mathrm{HN}}\right) ; 3.58(1 \mathrm{H}, \mathrm{d}$ $\left.\times \mathrm{d} \times \mathrm{d}, J=8.5,4.1,4.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHO}\right) ; 3.98(1 \mathrm{H}, \mathrm{s}($ broad $), \mathrm{C} \underline{\mathrm{H} O H}) ; 4.58$ and $4.63(2$ $\times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{\mathrm{H}}) \mathrm{Ph}) ; 7.28-7.38\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 18.0$ and $18.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 30.5\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 43.3\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 47.4\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.5$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 66.1(\mathrm{CHOH}) ; 70.8\left(\mathrm{OCH}_{2}\right) ; 76.9\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 127.86,127.91$ and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 138.3$ ( $C_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OH}}=3445 ; \mathrm{v}_{\max }=2963,1384,1175,1091,963,735,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}$ (\%) $250\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2} 250.1807[\mathrm{M}+\mathrm{H}]^{+}$, found 250.1812.

## Cis-3-benzyloxy-1-cyclohexyl-4-hydroxypiperidine 158c

Attempts to purify this compound failed. Spectral data are based on ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the crude reaction mixture (purity of 158c: ~80\%), and no HRMS analysis was performed.

Colourless oil. Yield $60 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.05-1.29,1.53-1.73$ and 1.74-1.92 $(5 \mathrm{H}, 1 \mathrm{H}$ and
 $6 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.28-2.38(1 \mathrm{H}, \mathrm{m}, \mathrm{CHN}) ; 2.44-2.51(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{N}(\underline{\mathrm{H} C H}) \mathrm{CH}_{2}\right) ; 2.56-2.71\left(3 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 3.58(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=$ $8.5,4.1,4.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CHO}$ ); 3.97 ( $1 \mathrm{H}, \mathrm{s}($ broad), CHOH ); 4.57 and $4.62(2 \times 1 \mathrm{H}, 2 \times$ $\mathrm{d}, \mathrm{J}=11.8 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C} \underline{H}) \mathrm{Ph}) ; 7.25-7.35\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 26.1,26.2,26.4,28.5$ and $29.1\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 30.6\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 43.7$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 47.7\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 63.9(\mathrm{CHN}) ; 66.1(\mathrm{CHOH}) ; 70.8\left(\mathrm{OCH}_{2}\right) ; 76.8$ ( $\mathrm{NCH}_{2} \mathrm{CHO}$ ); 127.8, 127.9 and 128.6 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 138.3 ( $\mathrm{C}_{\text {arom,quat }}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $v_{\text {OH }}=3428 ; v_{\max }=2925,2852,1451,1091,1074,966,734,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 290\left(\mathrm{M}^{+}+1,100\right)$.

### 5.7.5.2 Synthesis of 4-hydroxypiperidines via enzymatic reduction of piperidin-4ones

### 5.7.5.2.1 Synthesis of (4S)-3-benzyloxy-4-hydroxy-1-isopropylpiperidines

3-Benzyloxy-1-isopropylpiperidin-4-one 15b (250 mg, 50 mM ), NADH (71 mg, 5 mM ), isopropylalcohol ( 1 mL ) and an S-specific alcohol dehydrogenase ${ }^{111}(100 \mathrm{mg})$ were dissolved in MESbuffer ( $19 \mathrm{~mL}, 50 \mathrm{mM}, \mathrm{pH} 6.5$ ). The mixture was incubated overnight in a thermoshaker (Eppendorf) at 300 rpm and $30{ }^{\circ} \mathrm{C}$, yielding ( $3 S, 4 \mathrm{~S}$ )-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 176 and ( $3 R, 4 \mathrm{~S}$ )-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 177 in quantitative yield (ratio $1 / 1$, based on ${ }^{1} \mathrm{H} N M R$ ).

## (3S,4S)-3-Benzyloxy-4-hydroxy-1-isopropylpiperidine 176

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.04$ (hexane/EtOAc 1/3). Yield 45\%. $[\alpha]_{\mathrm{D}}=+27.7^{\circ}\left(c=1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ). ee $=98.8 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.03\left(6 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.59(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d} \times$
 $\mathrm{d}, \mathrm{J}=17.2,11.2,5.9,3.6 \mathrm{~Hz}, \mathrm{NCH}_{2}(\underline{\mathrm{HCH}})$ ); 1.94-2.05 (2H, m, NCH$(\mathrm{HCH})$ and $\mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}) ; 2.20\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=11.2,10.7 \mathrm{~Hz}, \mathrm{~N}(\underline{\mathrm{HCH}}) \mathrm{CH}_{2}\right) ; 2.74-2.85(2 \mathrm{H}, \mathrm{m}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}$ and $\left.\mathrm{N}(\mathrm{HCH}) \mathrm{CH}_{2}\right) ; 3.11(1 \mathrm{H}, \mathrm{d}($ broad), $J=11.0 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CHO}) ; 3.35-$ $3.49\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CHO}\right.$ and CHOH$) ; 4.56$ and $4.70(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}$, ( HCH )O); 7.30-7.37 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 18.2$ and 18.4 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 31.5\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 46.6\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 50.8\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.4\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}}\right) ; 72.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right) ; 73.2$ and $81.5(\mathrm{CHOH}$ and CHOPh$) ; 127.9$ and $128.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 138.5\left(\mathrm{C}_{\text {arom,quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $\mathrm{v}_{\mathrm{OH}}=3445$; $v_{\max }=2963,1384,1175,1091,963,735,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 250\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{2} 250.1807[\mathrm{M}+\mathrm{H}]^{+}$, found 250.1812.

## (3R,4S)-3-Benzyloxy-4-hydroxy-1-isopropylpiperidine 177



Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.03$ (hexane/EtOAc 1/3). Yield 43\%. $[\alpha]_{\mathrm{D}}=+7.6^{\circ}(c=0.95$, $\left.\mathrm{CHCl}_{3}\right)$. ee $=98.8 \%$. The spectral data of $(3 R, 4 S)$-3-benzyloxy-4-hydroxy-1isopropylpiperidine 177 were judged to be identical to those for cis-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 158b (Section 5.7.5.1).

### 5.7.5.2.2 Synthesis of (4R)-3-benzyloxy-4-hydroxy-1-isopropylpiperidines

The synthesis of (4R)-3-benzyloxy-4-hydroxy-1-isopropylpiperidines 178 and 179 was analogous to the synthesis of (4S)-3-benzyloxy-4-hydroxy-1-isopropylpiperidines 176 and 177 using an $R$-specific alcohol dehydrogenase, ${ }^{112}$ yielding ( $3 S, 4 R$ )-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 178 and $(3 R, 4 R)$-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 179 in quantitative yield (ratio $1 / 1$, based on ${ }^{1} \mathrm{H}$ NMR).

## (3S,4R)-3-Benzyloxy-4-hydroxy-1-isopropylpiperidine 178


(3R,4R)-3-Benzyloxy-4-hydroxy-1-isopropylpiperidine 179


Colourless oil. $R_{f}=0.04$ (hexane/EtOAc 1/3). Yield 44\%. $[\alpha]_{D}=-27.7^{\circ}$ (c = 0.97, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). ee $=95.8 \%$. The spectral data of ( $3 R, 4 R$ )-3-benzyloxy-4-hydroxy-1isopropylpiperidine 179 were judged to be identical to those for ( $3 S, 4 S$ )-3-benzyloxy-4-hydroxy-1-isopropylpiperidine 176 (Section 5.7.5.2.1).

### 5.7.6 Synthesis of 4-(formyloxy)piperidines

As a representative example, the synthesis of cis-4-formyloxy-1-isopropyl-3-phenoxypiperidine 173a is described. A solution of cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13a ( $0.31 \mathrm{~g}, 1$ $\mathrm{mmol}, 1$ equiv) in DMF ( 15 mL ) was heated at $80^{\circ} \mathrm{C}$ for 3 hours. Subsequently, the reaction mixture was poured into water $(15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. Afterwards, the organic phase
was washed intensively with brine $(4 \times 20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent in vacuo afforded cis-4-formyloxy-1-isopropyl-3-phenoxypiperidine 173a, which was further purified in $53 \%$ yield by column chromatography on silica gel (hexane/EtOAc 2/1).

## Cis-4-formyloxy-1-isopropyl-3-phenoxypiperidine 173a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.07$ (hexane/EtOAc 2/1). Yield $53 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.04(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.6.1 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.82-1.93$ and 2.04-2.13 $\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{NCH}_{2}(\underline{\mathrm{H} C} \underline{H})\right) ; 2.57-2.60$
 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.70-2.87\left(3 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{\mathrm{HN}}\right.$ and $\left.\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 4.49(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}$, $J=8.4,4.0,4.0 \mathrm{~Hz}, \mathrm{CHOPh}) ; 5.34-5.36(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOC}=\mathrm{O}) ; ~ 6.90-6.99$ and 7.24-7.31 $\left(5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) ; 8.14(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{O}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.9$ and 18.4 ( $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 28.7\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 43.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 47.7\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; 69.2 ( $\mathbf{C H O C}=\mathrm{O}$ ); 74.0 ( $\underline{\mathrm{CHOPh}) ; ~ 116.3, ~} 121.6$ and 129.6 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 157.3 and $160.5\left(\mathrm{OC}_{\text {arom,quat }}\right.$ and $\left.\mathrm{C}=\mathrm{O}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1721 ; \mathrm{v}_{\max }=2964,1492,1238$, 1166, 752, 692. MS (70 eV): m/z (\%) 264 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} 264.1600$ [M + $\mathrm{H}^{+}$, found 264.1602.

## Cis-3-benzyloxy-4-formyloxy-1-isopropylpiperidine 173b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.06$ (hexane/EtOAc 1/2). Yield $68 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.03$ and 1.04 (2
 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.71-1.82$ and $1.94-2.02(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}$, $\mathrm{NCH}_{2}(\underline{\mathrm{H}} \mathrm{C} \underline{\mathrm{H}})$ ); 2.45-2.63 (3H, m, $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\left.\mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}\right) ; 2.68-2.72(1 \mathrm{H}, \mathrm{m}$, $\mathrm{N}(\mathrm{HCH}) \mathrm{CHO}) ; 2.79\left(1 \mathrm{H}\right.$, septet, $\left.J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.64(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=9.1$, $\left.4.1,4.1 \mathrm{~Hz}, \mathrm{NCH}_{2} \underline{\mathrm{C}} \mathrm{HO}\right) ; 4.54$ and $4.66(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=11.9 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{H} C H}) \mathrm{Ph}) ; 5.38$ (1H, s(broad), $\mathrm{CHOC}=0$ ); 7.24-7.39 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ); $8.15(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{O}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 18.0$ and $18.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 28.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 43.6$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 48.4\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 68.4(\underline{\mathrm{CHOC}=0}) ; 71.1\left(\mathrm{OCH}_{2}\right) ; 74.8\left(\mathrm{NCH}_{2} \underline{\mathrm{CHO}}\right) ; 127.9$, 128.0 and 128.5 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 138.1 ( $\mathrm{C}_{\text {arom,quat }}$ ); 160.7 (C=O). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1720 ; \mathrm{v}_{\max }=2963$, 1170, 1090, 736, 698. MS (70 eV): m/z (\%) $278\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3} 278.1756$ [ $\mathrm{M}+\mathrm{H}]^{+}$, found 278.1770.

## Cis-3-benzyloxy-1-cyclohexyl-4-(formyloxy)piperidine 173c

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.06$ (hexane/EtOAc 4/1). Yield $70 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.05-1.28$, 1.591.66 and 1.73-1.83 $\left(6 \mathrm{H}, 1 \mathrm{H}\right.$ and $4 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.\mathrm{NCH}_{2}(\underline{\mathrm{HCH}})\right) ; 1.92-2.01$
 (1H, m, NCH $2(\mathrm{HCH})$ ); 2.29-2.38 (1H, m, CHN); 2.54-2.60 (2H, m, NCH $\mathrm{N}_{2} \mathrm{CH}_{2}$ ); 2.63$2.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH} \underline{2}_{2} \mathrm{CHO}\right)$; $3.62\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=9.0,3.9,3.9 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{C} \underline{\mathrm{HO}}\right.$ ); 4.54 and $4.64(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, \mathrm{O}(\underline{\mathrm{HC}} \underline{\mathrm{H}}) \mathrm{Ph}) ; 5.36(1 \mathrm{H}, \mathrm{s}($ broad $), \mathrm{CHOC}=\mathrm{O})$; 7.28-7.36 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ); $8.14(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{O}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 26.09, 26.13, 26.4, 28.6 and $28.9\left(\left(\underline{C H}_{2}\right)_{5} \mathrm{CHN}\right) ; 29.1\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 44.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right)$; $48.9\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 63.8(\mathrm{CHN}) ; 68.6(\underline{\mathrm{C}} \mathrm{HOC}=\mathrm{O}) ; 71.0\left(\mathrm{OCH}_{2}\right) ; 74.9\left(\mathrm{NCH}_{2} \underline{\mathrm{CHO}}\right)$; 127.8, 127.9 and 128.5 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 138.2 ( $\mathrm{C}_{\text {arom,quat }}$ ); 160.8 ( $\mathrm{C}=\mathrm{O}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0}=1724 ; \mathrm{v}_{\max }=2926,1452,1177,1099,734,696 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 318\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{3} 318.2069[\mathrm{M}+\mathrm{H}]^{+}$, found 318.2077.

### 5.8 Synthesis of 1,2,5,6-tetrahydropyridines

As a representative example, the synthesis of 1-isopropyl-3-phenoxy-1,2,5,6-tetrahydropyridine 155a is described. To a solution of cis-4-bromo-1-isopropyl-3-phenoxypiperidine 154 a ( $2.98 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in DMSO ( 50 mL ) was added $\mathrm{NaH}(1.6 \mathrm{~g}, 40 \mathrm{mmol}, 4$ equiv, $60 \%$ dispersion in mineral oil), after which the resulting suspension was stirred for 15 hours at $150^{\circ} \mathrm{C}$. Subsequently, the reaction mixture was poured into water $(40 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. Afterwards, the organic phase was washed intensively with brine $(4 \times 30 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent afforded 1-isopropyl-3-phenoxy-1,2,5,6-tetrahydropyridine 155a, which was further purified in 56\% yield by column chromatography on silica gel (hexane/EtOAc 2/1).

## 1-Isopropyl-3-phenoxy-1,2,5,6-tetrahydropyridine 155a

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.08$ (hexane/EtOAc 2/1). Yield $56 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.11(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4$
 $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.16-2.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.60\left(2 \mathrm{H},{ }^{\sim} \mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.82$ $\left(1 \mathrm{H}\right.$, septet, $\left.J=6.4 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.17\left(2 \mathrm{H}, \mathrm{s}(\right.$ broad $\left.), \mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 4.91-4.94(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C}=\mathrm{CH}$ ); 7.03-7.10 and 7.29-7.34 ( $5 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 75 \mathrm{MHz}$, ref $=\mathrm{CDCl}_{3}$ ): $\delta$ $18.6 \quad\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 24.4 \quad\left(\mathrm{NCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 45.9 \quad\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 48.9 \quad\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 54.0$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 102.7(\mathrm{C}=\underline{\mathrm{CH}}) ; 119.5,123.3$ and $129.6\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 152.1$ and $155.9\left(2 \times \mathrm{OC}_{\text {quat }}\right)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{C}}=1685$; $\mathrm{v}_{\max }=2964,1590,1489,1220,1176,753,693 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 218\left(\mathrm{M}^{+}+1\right.$, 100). HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO} 218.1545[\mathrm{M}+\mathrm{H}]^{+}$, found 218.1548.

## 3-Benzyloxy-1-isopropyl-1,2,5,6-tetrahydropyridine 155b

Light-brown oil. $\mathrm{R}_{\mathrm{f}}=0.04$ (hexane/EtOAc 2/1). Yield $60 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08$ and 1.09
 $\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.16-2.23\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.56(2 \mathrm{H}, \sim \mathrm{t}, \mathrm{J}=$ $\left.5.5 \mathrm{~Hz}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 2.77\left(1 \mathrm{H}\right.$, septet, $\left.J=6.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.08(2 \mathrm{H}, \mathrm{s}($ broad $)$, $\left.\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 4.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2}\right) ; 4.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}) ; 7.27-7.39(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 18.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 24.5\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 46.4$ ( $\mathrm{NCH}_{2} \mathrm{CH}_{2}$ ); $49.9\left(\mathrm{NCH}_{2} \mathrm{C}_{\text {quat }}\right) ; 54.0\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{HN}\right) ; 69.0\left(\mathrm{OCH}_{2}\right) ; 92.6(\mathrm{C}=\underline{\mathrm{C}} \mathrm{H}) ; 127.7$, 127.9 and $128.5\left(5 \times \mathrm{HC}_{\text {arom }}\right) ; 137.4$ ( $\left.\mathrm{C}_{\text {arom,quat }}\right) ; 153.2\left(\mathrm{OC}_{\text {quat }}\right) . \operatorname{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{C}}=$ 1677; $v_{\max }=2963,1217,1183,1016,797,734,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 232\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO} 232.1701\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 232.1700.

### 5.9 Synthesis of piperidin-4-ones

As a representative example, the synthesis of 1-isopropyl-3-phenoxypiperidin-4-one 15a is described. To a solution of cis-1-isopropyl-2-(2-mesyloxyethyl)-3-phenoxyazetidine 13 a ( $3.15 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in DMSO ( 40 mL ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}\left(6.90 \mathrm{~g}, 50 \mathrm{mmol}, 5\right.$ equiv). After stirring at $100{ }^{\circ} \mathrm{C}$ for 18 hours, the reaction mixture was poured into water $(40 \mathrm{~mL})$ and extracted with diethyl ether ( $3 \times 50$
mL ). Afterwards, the organic phase was washed intensively with brine ( $4 \times 40 \mathrm{~mL}$ ). Drying $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent, and removal of the solvent afforded 1-isopropyl-3-phenoxypiperidin-4one 15a, which was further purified in $43 \%$ yield by column chromatography on silica gel (hexane/EtOAc 1/1).

## 1-Isopropyl-3-phenoxypiperidin-4-one 15a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 1/1). Yield $43 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.09(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.6.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 2.52-2.70$ and $3.06-3.13\left(4 \mathrm{H}\right.$ and $1 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$ and $\mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}) ; 3.00\left(1 \mathrm{H}\right.$, septet, $\left.J=6.5 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C} \underline{H N}\right) ; 3.42(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=10.8$, $6.3,2.9 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CHO}) ; 4.83(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=10.3,6.3 \mathrm{~Hz}, \mathrm{CHO}) ; 6.85-6.91,6.94-7.00$ and 7.23-7.31 $\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 18.4$ and $18.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 41.0$ and $49.0\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 53.9\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 54.0\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right)$; 79.2 (CHO); 115.5, 121.6 and 129.6 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 157.7 ( $\mathrm{C}_{\text {arom,quat }}$ ); 205.6 ( $\mathrm{C}=\mathrm{O}$ ). IR $\left(A T R, \mathrm{~cm}^{-1}\right): v_{\mathrm{C}=0}=1733 ; \mathrm{v}_{\max }=2966,1588,1493,1241,1174,907,751 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 234$ $\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2} 234.1494[\mathrm{M}+\mathrm{H}]^{+}$, found 234.1496.

## 3-Benzyloxy-1-isopropylpiperidin-4-one 15b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.06$ (hexane/EtOAc 1/1). Yield $45 \%$. $^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.00(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}$ ); 2.36-2.51 and 2.82-2.98 ( 4 H and $2 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$, $\mathrm{N}(\underline{\mathrm{HCH}}) \mathrm{CHO}$ and $\left.\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{HN}}\right)$; $3.19(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=10.7,6.3,2.8 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CHO})$; $4.00(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=10.2,6.3 \mathrm{~Hz}, \mathrm{CHO})$; 4.49 and $4.84(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=12.1 \mathrm{~Hz}$, (HCH)O); 7.21-7.36 ( $5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 18.38$ and $18.42\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 40.9$ and $48.8\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 54.0\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CHN}) ; ~} 54.4\left(\mathrm{NCH}_{2} \mathrm{CHO}\right)\right.$; $72.4\left(\mathrm{OCH}_{2}\right) ; 80.1(\mathrm{CHO}) ; 127.9,128.0$ and 128.5 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 137.9 ( $\mathrm{C}_{\text {arom,quat }}$ ); $208.0(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1727 ; \mathrm{v}_{\max }=2965,1455,1121,1104,1018,736,697 . \mathrm{MS}(70 \mathrm{eV}):$ $\mathrm{m} / \mathrm{z}(\%) 248\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2} 248.1651[\mathrm{M}+\mathrm{H}]^{+}$, found 248.1653.

## 3-Benzyloxy-1-cyclohexylpiperidin-4-one 15c

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.04$ (hexane/EtOAc 4/1). Yield $48 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ 1.19-1.31, 1.621.66 and $1.78-1.81\left(5 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.4 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 2.40-2.64(5 \mathrm{H}, \mathrm{m}$,
 $\mathrm{N}(\underline{\mathrm{H} C H}) \mathrm{CHO}, \mathrm{N}(\underline{\mathrm{H} C H}) \mathrm{CH}_{2}$ and $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \underline{\mathrm{HN}}\right) ; 3.03-3.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{N}(\mathrm{HCH}) \mathrm{CH}_{2}\right) ; 3.29(1 \mathrm{H}$, $\mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.0,6.5,2.8 \mathrm{~Hz}, \mathrm{~N}(\mathrm{HCH}) \mathrm{CHO}) ; 4.03(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=10.2,6.5 \mathrm{~Hz}, \mathrm{CHO})$; 4.53 and $4.87(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=12.1 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 7.27-7.39\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 26.0,26.2,29.0$ and $29.1\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 41.0$ $\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 49.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right) ; 54.9\left(\mathrm{NCH}_{2} \mathrm{CHO}\right) ; 62.9\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{C}} \mathrm{HN}\right) ; 72.2\left(\mathrm{OCH}_{2}\right) ; 80.2$ (CHO); 127.7, 127.8 and 128.4 ( $5 \times \mathrm{HC}_{\text {arom }}$ ); 138.0 ( $\mathrm{C}_{\text {arom,quat }}$ ); 207.6 (C=O). IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1727 ; \mathrm{v}_{\max }=2926,1451,1149,1100,734,697 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 288\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{2} 288.1964[\mathrm{M}+\mathrm{H}]^{+}$, found 288.1965.

### 5.10 Synthesis of cis-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones

As a representative example, the synthesis of cis-6-isopropyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-one 18a is described. Palladium on activated carbon ( $20 \% \mathrm{w} / \mathrm{w}$ ) was added to a solution of cis-3-benzyloxy-1-isopropyl-4-(2-mesyloxyethyl)azetidin-2-one 17 ( $1.54 \mathrm{~g}, 4.5 \mathrm{mmol}, 1$ equiv) in methanol $(30 \mathrm{~mL})$, and the resulting mixture was placed in a Parr apparatus. The inside of the Parr apparatus was then degassed and filled with hydrogen gas, after which the mixture was stirred for 60 hours at room temperature while applying 5 bar of hydrogen gas. Filtration of the heterogeneous mixture through Celite ${ }^{\circledR}$ and evaporation of the solvent in vacuo afforded cis-3-hydroxy-1-isopropyl-4-(2-mesyloxyethyl)azetidin-2-one in high purity (> $90 \%,{ }^{1} \mathrm{H} N \mathrm{NR}$ ), which was used as such in the next reaction step. To an ice-cold solution of the latter $\beta$-lactam ( $1.18 \mathrm{~g}, 4.5 \mathrm{mmol}, 1$ equiv) in tetrahydrofuran ( 30 mL ) was added sodium hydride ( $0.18 \mathrm{~g}, 4.5 \mathrm{mmol}, 1$ equiv, $60 \%$ dispersion in mineral oil), after which the mixture was heated under reflux for 15 hours. The reaction mixture was poured into brine $(1 \times 30 \mathrm{~mL})$ and extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$, after which the organic fraction was dried $\left(\mathrm{MgSO}_{4}\right)$, followed by removal of the drying agent and evaporation of the solvent in vacuo. Purification by means of column chromatography on silica gel (hexane/EtOAc $1 / 1$ ) afforded pure cis-6-isopropyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-one 18a in $52 \%$ yield.

## Cis-6-isopropyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-one 18a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 1/1). Yield $52 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.26$ and 1.28 (2
 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.60-1.73(1 \mathrm{H}, \mathrm{m},(\underline{\mathrm{HCH}}) \mathrm{CHN}) ; 2.07(1 \mathrm{H}, \sim(\mathrm{d} \times \mathrm{d}), J=$ $13.8,5.0 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{CHN}) ; 3.86-3.98\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right.$ and $\left.(\underline{\mathrm{HCH}}) \mathrm{O}\right) ; 4.20-4.29(2 \mathrm{H}, \mathrm{m}$, ( HCH ) O and $\mathrm{CH}_{2} \mathrm{C} \underline{\mathrm{H} N}$ ); $5.03(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 20.4$ and $21.9\left(\left(\mathrm{C}_{3}\right)_{2} \mathrm{CHN}\right) ; 29.7\left(\mathrm{C}_{2} \mathrm{CHN}\right) ; 43.9\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{HN}\right) ; 56.9\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right) ; 67.2\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 85.7$ (CHO); $165.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{O}}=1732 ; \mathrm{v}_{\max }=2974,1390,1230,1099,922,772$. MS (70 eV): m/z (\%) $156\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{2} 156.1025[\mathrm{M}+\mathrm{H}]^{+}$, found 156.1020.

## Cis-6-cyclohexyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-one 18b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.05$ (hexane/EtOAc 3/1). Yield $62 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.09-1.98(11 \mathrm{H}$,
 $\mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.\mathrm{OCH}_{2}(\underline{\mathrm{HCH}})\right) ; 2.06\left(1 \mathrm{H}, \sim(\mathrm{d} \times \mathrm{d}), \mathrm{J}=13.5,4.7 \mathrm{~Hz}, \mathrm{OCH}_{2}(\mathrm{HCH})\right) ; 3.48-$ $3.58\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.89(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.6,9.3,5.0 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{O}) ; 4.20-4.28$ $(2 \mathrm{H}, \mathrm{m},(\mathrm{HCH}) \mathrm{O}$ and $\left.\mathrm{CHOC} \underline{H} \mathrm{~N}) ; 5.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.3 \mathrm{~Hz}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(75MHz,CDCl}_{3}\right)$ : $\delta 25.0,25.1,25.3,29.8,30.8$ and $32.2\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right.$ and $\left.\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2}\right) ; 51.7\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{C}} \mathrm{HN}\right)$; 57.2 (CHOCHN); $67.1\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 85.8(\mathrm{CHO}) ; 165.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1736 ; \mathrm{v}_{\max }$ $=2930,1391,1085,924 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 196\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2}$ $196.1338\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 196.1335.

### 5.11 Synthesis of methyl cis-3-aminotetrahydrofuran-2carboxylates

As a representative example, the synthesis of methyl cis-3-(isopropylamino)tetrahydrofuran-2carboxylate 19a is described. To a solution of cis-6-isopropyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-one 18a ( $0.38 \mathrm{~g}, 2.44 \mathrm{mmol}, 1$ equiv) in methanol ( 20 mL ) was added a solution of HCl in $\mathrm{MeOH}(3 \mathrm{M}, 4.1$ mL ), followed by a reflux period of 24 hours. Afterwards, methanol was removed in vacuo, followed by the addition of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and triethylamine ( $0.49 \mathrm{~g}, 4.88 \mathrm{mmol}, 2$ equiv). Subsequently, the resulting mixture was heated under reflux for 4 hours, after which the solvent was removed under reduced pressure. Addition of dry diethyl ether, filtration of the precipitated triethylamine hydrochloride, drying of the filtrate $\left(\mathrm{MgSO}_{4}\right)$, filtration of the drying agent and removal of the solvent in vacuo yielded methyl cis-3-(isopropylamino)tetrahydrofuran-2-carboxylate 19a, which was further purified in $66 \%$ yield by means of column chromatography on silica gel (hexane/EtOAc 4/1).

## Methyl cis-3-(isopropylamino)tetrahydrofuran-2-carboxylate 19a

Light-yellow oil. $\mathrm{R}_{\mathrm{f}}=0.08$ (hexane/EtOAc 4/1). Yield $66 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.00$ and 1.04
 $\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 1.83-1.95$ and $2.10-2.21(2 \times 1 \mathrm{H}, 2 \times \mathrm{m}$, ( $\underline{\mathrm{HCH}}$ ) CHN ); $2.83\left(1 \mathrm{H}\right.$, septet, $\left.J=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 3.67\left(1 \mathrm{H}, \sim \mathrm{q}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CHN}\right)$; $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.92(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=8.3,8.3,7.5 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{O}) ; 4.18(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times$ $\mathrm{d}, J=8.3,8.3,5.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 4.47(1 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 23.1$ and $23.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 32.6\left(\mathrm{CH}_{2} \mathrm{CHN}\right) ; 47.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHN}\right) ; 51.7\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 58.4\left(\mathrm{CH}_{2} \underline{\mathrm{CHN}}\right)$; $67.7\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 80.4(\mathrm{CHO}) ; 171.9(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{O}}=1742 ; \mathrm{v}_{\max }=2959,1437,1204,1174,1094$, 752. $\mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 188\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{NO}_{3} 188.1287[\mathrm{M}+\mathrm{H}]^{+}$, found 188.1289.

## Methyl cis-3-(cyclohexylamino)tetrahydrofuran-2-carboxylate 19b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.07$ (hexane/EtOAc 6/1). Yield $70 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96-1.30,1.57-$ 1.61 and 1.68-1.94 (5H, 1 H and $5 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}$ and $\left.\mathrm{OCH}_{2}(\underline{\mathrm{HCH}})\right) ; 2.09-2.19$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}(\mathrm{HCH})\right) ; 2.40-2.49\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{C} \underline{H} \mathrm{~N}\right) ; 3.73(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=10.3$, $5.5,5.4 \mathrm{~Hz}, \mathrm{CHOCHN}) ; 3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.91$ and $4.18\left(2 \times 1 \mathrm{H}, 2 \times{ }^{\sim} \mathrm{q}, J=7.5 \mathrm{~Hz}\right.$, ( $\underline{\mathrm{H} C} \mathrm{C}$ ) O ); $4.46(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{CHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.9,25.0$, 26.2, 32.7, 33.6 and $34.2\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right.$ and $\left.\mathrm{OCH}_{2} \mathrm{CH}_{2}\right) ; 51.5\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 55.1\left(\mathrm{CH}_{3} \mathrm{O}\right) ; 58.0(\mathrm{CHOCHN})$; $67.6\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 80.6(\mathrm{CHO}) ; 171.8(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=0}=1742 ; \mathrm{v}_{\max }=2925,1448,1202,1179,1096$, 730. MS (70 eV): m/z (\%) $228\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3} 228.1600[\mathrm{M}+\mathrm{H}]^{+}$, found 228.1603.

### 5.12 Synthesis of 2-hydroxy-1,4-oxazin-3-ones

As a representative example, the synthesis of 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194a is described. Saturated aqueous sodium hydrogen carbonate $(2 \mathrm{~mL})$ was added to a solution of $(3 R, 4 S)$ -3-hydroxy-4-[(1S)-1,2-dihydroxyethyl]-1-isopropylazetidin-2-one 193a (1.89 g, $10 \mathrm{mmol}, 1$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 30 mL ). Solid sodium periodate ( 4.28 g , 20 mmol , 2 equiv) was added over a 10 min . period with vigorous stirring, and the reaction was allowed to proceed for 2 hours at room temperature. The solid was removed by filtration and the filtrate was washed with water ( 25 mL ), after which the organic fraction was dried over $\mathrm{MgSO}_{4}$, followed by removal of the drying agent by filtration. Removal of the solvent in vacuo yielded 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194a, which was further purified in $69 \%$ yield by means of column chromatography on silica gel (hexane/EtOAc 1/1).

## 2-Hydroxy-4-isopropyl-1,4-oxazin-3-one 194a

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.32$ (hexane/EtOAc 1/1). Yield $69 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.22$ and $1.24(2 \times$
 $\left.3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 4.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{OH}) ; 4.74(1 \mathrm{H}$, septet, $\mathrm{J}=6.6 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 5.41(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{OCHO}) ; 5.78$ and $6.24(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.1 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 19.9$ and $20.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; $44.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 90.6(\mathrm{OCHO})$; 104.8 and $128.3(\mathrm{HC=CH}) ; 160.6(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3288 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1671,1642$; $v_{\max }=1406,1213,1069,1027,955,699 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 158\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}_{3} 158.0817\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 158.0819.

## 2-Hydroxy-4-isobutyl-1,4-oxazin-3-one 194b

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.41$ (hexane/EtOAc 1/1). Yield $73 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.92$ and $0.93(2 \times$
 $\left.3 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.00\left(1 \mathrm{H}\right.$, nonet, $\left.J=7.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.31$ and $3.37(2 \times$ $1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), J=13.5,7.2,7.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 4.72(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{OH}) ; 5.47(1 \mathrm{H}, \mathrm{d}, J=$ $4.7 \mathrm{~Hz}, \mathrm{OCHO})$; 5.69 and $6.18(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=4.1 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 19.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 27.6\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 53.1\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 90.6(\mathrm{OCHO}) ; 110.6$ and 127.3 $(\mathrm{HC}=\mathrm{CH}) ; 161.5(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3288 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1672,1649 ; \mathrm{v}_{\max }=2961$, 1389, 1283, 1028, 959, 729. MS (70 eV): m/z (\%) $172\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3}$ $172.0974[\mathrm{M}+\mathrm{H}]^{+}$, found 172.0971.

## 4-Butyl-2-hydroxy-1,4-oxazin-3-one 194c

Yellow crystals. Mp $85.5^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.24$ (hexane/EtOAc 1/1). Yield $75 \%{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $\mathrm{HO} \quad 0.93\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.34\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.59(2 \mathrm{H}$, pentet, J $\left.=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 3.44$ and $3.60(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{t}), \mathrm{J}=13.7,7.2 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 5.55$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; 5.70$ and $6.19(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 13.8\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{3}\right) ; 19.8\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right) ; 30.2\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 45.9\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 90.6(\mathrm{OCHO})$; 110.2 and $127.7(\mathrm{HC=CH}) ; 161.2(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3301 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1672,1650$; $v_{\max }=2959,1432,1030,959,728 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 172\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{3} 172.0974[\mathrm{M}+\mathrm{H}]^{+}$, found 172.0965.

## 4-Cyclohexyl-2-hydroxy-1,4-oxazin-3-one 194d

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.43$ (hexane/EtOAc 1/1). Yield $94 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.05-1.22,1.33-1.48$
 and 1.68-1.88 $\left(1 \mathrm{H}, 4 \mathrm{H}\right.$ and $\left.5 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 4.25-4.41\left(2 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right.$ and OH$)$; $5.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO})$; 5.81 and $6.21(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 25.3,25.5,30.2$ and $30.9\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 52.2\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 90.6(\mathrm{OCHO}) ; 105.7$ and $127.9(\mathrm{HC}=\mathrm{CH}) ; 160.7(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $\mathrm{v}_{\mathrm{OH}}=3297 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{c}}=1671,1646 ; \mathrm{v}_{\max }=$ 2931, 1409, 1196, 1026, 957, 728. MS (70 eV): m/z (\%) 198 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{NO}_{3} 198.1130[\mathrm{M}+\mathrm{H}]^{+}$, found 198.1132.

## 2-Hydroxy-4-isopentyl-1,4-oxazin-3-one 194e

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.35$ (hexane/EtOAc 1/1). Yield $70 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.94(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
 $\left.6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.43-1.53\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 1.55-1.68\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.45-3.62$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{OH}) ; 5.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}, \mathrm{OCHO}) ; 5.71$ and 6.19 $(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 22.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; $25.7\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 36.8\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 44.4\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 90.6(\mathrm{OCHO}) ; 109.9$ and $127.7(\mathrm{HC}=\mathrm{CH})$; $161.1(\mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OH}}=3300 ; \mathrm{v}_{\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1671,1649 ; \mathrm{v}_{\max }=2956,1429,1263$, 1035, 953, 726. MS (70 eV): m/z (\%) $186\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{3}$ $186.1130[\mathrm{M}+\mathrm{H}]^{+}$, found 186.1132.

### 5.13 Synthesis of 2-camphanoyloxy-4-isopropyl-1,4-oxazin-3-one

To a solution of 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194 a ( $1.57 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) and (1S)-(-)camphanic chloride ( $2.17 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in dry dichloromethane ( 50 mL ) was added triethylamine ( $3.04 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv) dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 2 hours, after which the reaction mixture was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with a $10 \%$ aq. HCl solution $(2 \times 20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, removal of the drying agent by filtration and evaporation of the solvent in vacuo afforded crude 2-camphanoyloxy-4-
isopropyl-1,4-oxazin-3-one 198, which was further purified as a diastereoisomeric mixture by means of recrystallization.

White crystals. Mp $141.0^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield 33\%. ${ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.95,0.97,1.03,1.04$ and $1.11\left(4 \times 3 \mathrm{H}\right.$ and $\left.6 \mathrm{H}, 5 \times \mathrm{s}, 6 \times \mathrm{C}_{\text {quat }} \mathrm{CH}_{3}\right)$; 1.23, 1.25 and $1.27\left(6 \mathrm{H}, 3 \mathrm{H}\right.$ and $\left.3 \mathrm{H}, 3 \times \mathrm{d}, J=6.6 \mathrm{~Hz}, 2 \times\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.64-1.75$, 1.88-1.98, 2.01-2.10 and 2.37-2.47 $\left(4 \times 2 \mathrm{H}, 4 \times \mathrm{m}, 4 \times \mathrm{CH}_{2}\right) ; 4,80(2 \mathrm{H}$, septet, $J=$ $\left.6.6 \mathrm{~Hz}, 2 \times\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 5.87,5.89,6.20$ and $6.22(4 \times 1 \mathrm{H}, 4 \times \mathrm{d}, J=4.4 \mathrm{~Hz}, 2 \times$ $\mathrm{HC}=\mathrm{CH}) ; 6.59$ and $6.61(2 \times 1 \mathrm{H}, 2 \times \mathrm{s}, 2 \times \mathrm{OCHO}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 9.7, 16.59, 16.62 and $16.7\left(6 \times \mathrm{C}_{\text {quat }} \mathrm{CH}_{3}\right) ; 20.0,20.51$ and $20.54\left(2 \times\left(\underline{\left(\mathrm{CH}_{3}\right)}\right)_{2} \mathrm{CH}\right)$; 29.0, 30.5 and $30.7\left(4 \times \mathrm{CH}_{2}\right) ; 44.7$ and $44.8\left(2 \times\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 54.7,54.8,54.9(4 \times$ $\left.\underline{\mathrm{C}}_{\text {quat }} \mathrm{CH}_{3}\right)$; 88.9 and $89.0(2 \times \mathrm{OCHO})$; 90.66 and $90.75\left(2 \times \mathrm{C}_{\text {quat }} \mathrm{O}\right) ; 105.8,126.9$ and $127.0(2 \times \mathrm{HC}=\mathrm{CH})$; 156.3, 166.0, 166.1 and $178.0(6 \times \mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1785,1764,1747 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1682$, $1666 ; v_{\max }=2956,2043,1432,1267,1223,1174,1099,1078,1052,986,960,926,740 . \mathrm{MS}(70 \mathrm{eV})$ : $\mathrm{m} / \mathrm{z}(\%) 337\left(\mathrm{M}^{+}, 64\right), 308(43), 140(48), 128(57), 125(100), 98(40), 97(56), 83$ (96).

### 5.14 Synthesis of $\mathbf{1 H}$-pyrazin-2-ones

As a representative example, the synthesis of 1-isopropyl-1H-pyrazin-2-one 211a is described. To a solution of 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194 a ( $15.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv) in EtOAc (1.0 mL ) was added $\mathrm{NH}_{4} \mathrm{OAc}(92.4 \mathrm{mg}$, $1.2 \mathrm{mmol}, 12$ equiv) and $\mathrm{HOAc}(1.0 \mathrm{~mL})$. After a reflux period of 24 hours, the resulting reaction mixture was neutralized with solid $\mathrm{NaHCO}_{3}$, after which EtOAc ( 10 mL ) was added. Subsequently, the reaction mixture was washed with a saturated solution of $\mathrm{NaHCO}_{3}(10$ mL ) and brine ( 5 mL ). Drying $\left(\mathrm{MgSO}_{4}\right)$, removal of the drying agent by filtration and evaporation of the solvent in vacuo afforded crude 1-isopropyl-1H-pyrazin-2-one 211a, which was further purified in $45 \%$ yield by means of recrystallization from EtOAc/hexane (30/1).

## 1-Isopropyl-1H-pyrazin-2-one 211a

White crystals. Mp $85.2^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield 45\%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.38\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 5.13\left(1 \mathrm{H}\right.$, septet, $\left.J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 7.15$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=4.4,1.1 \mathrm{~Hz}, \mathrm{HC}=\mathrm{NCH}) ; 7.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{NCHCH}) ; 8.14(1 \mathrm{H}, \mathrm{d}, J=1.1$ $\mathrm{Hz}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 21.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 46.9\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 124.0$
 1651, 1590; $v_{\max }=2978,1490,1450,1251,1225,1188,1105,799 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 139\left(\mathrm{M}^{+}+1\right.$, 100). HRMS (ESI) Calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O} 139.0871[\mathrm{M}+\mathrm{H}]^{+}$, found 139.0870 .

## 1-Isobutyl-1H-pyrazin-2-one 211b

Orange oil. $\mathrm{R}_{\mathrm{f}}=0.20$ (hexane/EtOAc 1/1). Yield 51\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.88(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2$ $\left.\mathrm{Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.10\left(1 \mathrm{H}\right.$, nonet, $\left.J=7.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.64\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~N}\right) ; 7.00$ ( $1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=4.4,1.1 \mathrm{~Hz}, \mathrm{HC}=\mathrm{NCH})$; $7.23\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NCH}\right) ; 8.07(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 19.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 27.7\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}} \mathrm{H}\right) ; 56.7\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 123.5$ ( $\mathrm{CH}_{2} \mathrm{NCH}$ ); $129.2(\mathrm{HC=NCH}) ; 149.8(\mathrm{HC}=\mathrm{N}) ; 156.4(\mathrm{C}=\mathrm{O}) . \mathrm{IR}\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{o}, \mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}}=1649$, 1590; $v_{\max }=2961,1496,1454,1142,1102,800 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 153\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O} 153.1028[\mathrm{M}+\mathrm{H}]^{+}$, found 153.1027.

## 1-Butyl-1H-pyrazin-2-one 211c

Orange oil. $\mathrm{R}_{\mathrm{f}}=0.15$ (hexane/EtOAc 1/1). Yield $30 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right) ; 1.33-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.69-1.79\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$,
 $\left.\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 7.12(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=4.4,1.1 \mathrm{~Hz}, \mathrm{HC}=\mathrm{NC} \underline{H}) ; 7.32\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{NCH}\right)$; $8.14(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 13.7\left(\mathrm{CH}_{3}\right) ; 19.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 30.7$ $\left(\underline{\mathrm{CH}_{2}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 49.3\left(\underline{\mathrm{CH}}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 123.8\left(\mathrm{CH}_{2} \mathrm{NCH}\right) ; 128.7(\mathrm{HC}=\mathrm{NCH}) ; 149.7(\mathrm{HC}=\mathrm{N}) ; 156.3$ ( $\mathrm{C}=\mathrm{O}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{C}}=1649,1590 ; \mathrm{v}_{\max }=2958,1496,1457,1190,1140,1102$, 799, 623. MS (70eV): m/z (\%) $153\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O} 153.1028$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 153.1027.

### 5.15 Synthesis of 2-benzoyloxy-1,4-oxazin-3-ones

As a representative example, the synthesis of 2-benzoyloxy-4-isopropyl-1,4-oxazin-3-one 225a is described. To a solution of 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194 a ( $1.57 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) and benzoyl chloride ( $4.22 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv) in dry dichloromethane ( 50 mL ) was added triethylamine ( $3.04 \mathrm{~g}, 30 \mathrm{mmol}, 3$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at the same temperature for 2 hours, after which the reaction mixture was quenched with a saturated solution of $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with a $10 \%$ aq. HCl solution $(2 \times 20 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$. Drying $\left(\mathrm{MgSO}_{4}\right)$, removal of the drying agent by filtration and evaporation of the solvent in vacuo afforded crude 2-benzoyloxy-4-isopropyl-1,4-oxazin-3-one 225a, which was further purified in $45 \%$ yield by means of recrystallization from EtOAc/hexane (30/1).

## 2-Benzoyloxy-4-isopropyl-1,4-oxazin-3-one 225a

White crystals. Mp $99.3^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield 45\%. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.26$ and $1.32\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 4.89(1 \mathrm{H}$, septet, $J=$
 $\left.6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 5.90$ and $6.23(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) ; 6.72(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OCHO}) ; 7.42-7.47,7.56-7.62$ and $8.00-8.03\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right): \delta 20.2$ and $20.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 44.6\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 88.9$ (OCHO); 105.5 and $127.4(\mathrm{HC=CH}) ; 128.6\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 129.0\left(\mathrm{C}_{\text {arom,quat }}\right) ; 130.2$ and $133.8(3 \times$ $\left.\mathrm{HC}_{\text {arom }}\right) ; 157.0$ and $164.8(2 \times \mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1731 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1679$, $1664 ; v_{\max }=1429,1261,1215,1052,987,945,702 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 261\left(\mathrm{M}^{+}, 3\right)$, 156 (10), 140 (3), 105 (100), 98 (3), 77 (17). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{4}$ : C 64.36, H 5.79, N 5.36. Found: C 64.40, H 5.58, N 5.48.

## 2-Benzoyloxy-4-isobutyl-1,4-oxazin-3-one 225b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.11$ (hexane/EtOAc 19/1). Yield 64\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.96(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.6.6 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.98-2.12\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.37$ and $3.48(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d}), \mathrm{J}$ $=13.4,7.7,7.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 5.86$ and $6.18(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) ; 6.79$ ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}$ ); 7.37-7.42, 7.52-7.57 and 7.98-8.08 ( $2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 19.7$ and $19.8\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 27.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 53.1$ $\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 88.7(\mathrm{OCHO}) ; 111.2$ and $126.4(\mathrm{HC}=\mathrm{CH}) ; 128.6$ and $130.0\left(4 \times \mathrm{HC}_{\text {arom }}\right)$; $133.5\left(\mathrm{C}_{\text {arom,quat }}\right) ; 133.8\left(\mathrm{HC}_{\text {arom }}\right) ; 157.8$ and $164.6(2 \times \mathrm{C}=\mathrm{O})$. IR $\left(\mathrm{ATR}, \mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OC}=0}=$ $1734 ; v_{\mathrm{NC}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1687 ; \mathrm{v}_{\max }=2960,1451,1427,1256,1246,1207,1079,1052$, 1024, 987, 947, 733, 707, 686. MS (70eV): m/z (\%) 275 ( $\mathrm{M}^{+}, 8$ ), 246 (4), 170 (12), 154 (4), 122 (4), 106 (7), 105 (100), 77 (15).

## 2-Benzoyloxy-4-butyl-1,4-oxazin-3-one 225c

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.09$ (hexane/EtOAc 19/1). Yield $93 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.96(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; $1.39\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $1.65(2 \mathrm{H}$, pentet, $J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.53-3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 5.84$ and $6.19(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, \mathrm{J}=4.4$ $\mathrm{Hz}, \mathrm{HC=CH}) ; 6.74(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; 7.40-7.45,7.55-7.60$ and $8.00-8.03(2 \mathrm{H}, 1 \mathrm{H}$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 13.8\left(\mathrm{CH}_{3}\right) ; 19.8\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 30.2$ $\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 45.9\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 88.7(\mathrm{OCHO}) ; 110.7$ and $126.8(\mathrm{HC}=\mathrm{CH}) ; 128.6$ ( $2 \times \mathrm{HC}_{\text {arom }}$ ); $128.9\left(\mathrm{C}_{\text {arom,quat }}\right) ; 130.1\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 133.9\left(\mathrm{HC}_{\text {arom }}\right) ; 157.6$ and 164.8 (2 $\times \mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1734 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1686 ; \mathrm{v}_{\max }=2959,1451,1427,1246$, 1079, 1051, 1023, 986, 945, 707, 686. MS (70eV): m/z (\%) 275 ( $\mathrm{M}^{+}, 6$ ), 246 (2), 170 (10), 154 (3), 122 (3), 106 (7), 105 (100), 77 (13).

## 2-Benzoyloxy-4-cyclohexyl-1,4-oxazin-3-one 225d

White crystals. Mp $94.6^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield 34\%. ${ }^{1} \mathrm{H}$ NMR (300
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08-1.25,1.35-1.58$ and $1.70-1.93(1 \mathrm{H}, 4 \mathrm{H}$ and $5 \mathrm{H}, 3 \times \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 4.42-4.53\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 5.92$ and $6.20(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.4 \mathrm{~Hz}$, $\mathrm{HC}=\mathrm{CH}) ; 6.72(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; 7.42-7.47,7.56-7.62$ and $8.00-8.03(2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times$ $\left.\mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right): \delta 25.3,25.5,30.4$ and $31.0\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right)$; $52.3\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right)$; $88.9(\mathrm{OCHO}) ; 106.4$ and $127.0(\mathrm{HC=CH}) ; 128.6\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 128.9$ ( $C_{\text {arom,quat }}$ ); 130.1 and $133.8\left(3 \times \mathrm{HC}_{\text {arom }}\right) ; 157.1$ and $164.8(2 \times \mathrm{C}=0)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right)$ : $v_{\mathrm{OC}=\mathrm{O}}=1783 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}, \mathrm{C}=\mathrm{C}}=1727,1687 ; \mathrm{v}_{\max }=1450,1209,1173,1014,986,871,702$, 670. MS (70 eV): m/z (\%) 301 ( ${ }^{+}, 10$ ), 272 (5), 196 (15), 105 (100), 77 (15), 55 (5). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4}$ : C 67.76, H 6.36, N 4.65. Found: C 67.82, H 6.15, N 4.38.

### 5.16 Synthesis of 2-benzoyloxymorpholin-3-ones

As a representative example, the synthesis of 2-benzoyloxy-4-isopropylmorpholin-3-one 226a is described. Palladium on activated carbon ( $20 \% \mathrm{w} / \mathrm{w}$ ) was added to a solution of 2-benzoyloxy-4-isopropyl-1,4-oxazin-3-one 225a ( $2.61 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in methanol ( 60 mL ) and the resulting mixture was placed in a Parr apparatus. The inside of the Parr apparatus was then degassed and filled with hydrogen gas, after which the mixture was stirred for 18 hours at room temperature while applying 5 bar of hydrogen gas. Filtration of the heterogeneous mixture through Celite ${ }^{\circledR}$ and evaporation of the solvent in vacuo afforded crude 2-benzoyloxy-4-isopropylmorpholin-3-one 226a, which was purified in $69 \%$ yield by means of recrystallization from EtOAc/hexane (30/1).

## 2-Benzoyloxy-4-isopropylmorpholin-3-one 226a

White crystals. Mp $124.2{ }^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $69 \%{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.20$ and $1.22\left(2 \times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.23(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}$,
 $J=12.3,3.2,1.4 \mathrm{~Hz},(\underline{H C H}) \mathrm{N}) ; 3.53(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=12.3,11.9,4.8 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.98$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.8,4.8,1.4 \mathrm{~Hz},(\underline{\mathrm{H} C H}) \mathrm{O}) ; 4.20(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.8,11.9,3.2 \mathrm{~Hz}$, ( HCH ) O ); $4.90\left(1 \mathrm{H}\right.$, septet, $\left.J=6.7 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; 7.42-7.47,7.56-$ 7.61 and $8.07-8.10\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 19.0 and $19.4\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 39.2\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 44.4\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 59.7\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 89.2(\mathrm{CHO})$; $128.5\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 129.5\left(\mathrm{C}_{\text {arom,quat }}\right) ; 130.2\left(2 \times \mathrm{HC}_{\text {arom }}\right)$ and $133.6\left(\mathrm{HC}_{\text {arom }}\right) ; 162.1$ and $165.4(2 \times C=O)$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): v_{\mathrm{OC}=\mathrm{O}}=1719 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1654 ; \mathrm{v}_{\max }=2927,1475,1263,1210,1178,1138$, 1081, 1062, 1024, 995, 961, 908, 712, 684. MS (70eV): m/z (\%) 264 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4} 264.1236[\mathrm{M}+\mathrm{H}]^{+}$, found 264.1233.

## 2-Benzoyloxy-4-isobutylmorpholin-3-one 226b

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.18$ (hexane/EtOAc 3/1). Yield $79 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.82$ and $0.84(2 \times$ $\left.3 \mathrm{H}, 2 \times \mathrm{d}, J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 1.92\left(1 \mathrm{H}\right.$, nonet, $\left.J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.12(1 \mathrm{H}, \mathrm{d} \times$ d, $J=12.4,2.5 \mathrm{~Hz},\left(\mathrm{CH}_{2}(\underline{\mathrm{H} C H}) \mathrm{N}\right) ; 3.18\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CHCH}_{2} \mathrm{~N}\right) ; 3.55(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times$ d, $J=12.4,12.0,3.9 \mathrm{~Hz},\left(\mathrm{CH}_{2}(\mathrm{HCH}) \mathrm{N}\right) ; 3.80(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=12.0,3.9 \mathrm{~Hz},(\underline{H C H}) \mathrm{O})$; 4.14 (1H, d $\times \mathrm{d} \times \mathrm{d}, J=12.0,12.0,2.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 6.33(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; 7.22-7.33$, 7.37-7.47 and 7.86-7.96 $\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right)$ : $\delta 19.9$ and $20.1\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 26.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 46.4\left(\mathrm{CH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right) ; 54.0$ $\left(\mathrm{CHCH}_{2} \mathrm{~N}\right) ; 59.3\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 89.0(\mathrm{CHO}) ; 128.5\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 129.3\left(\mathrm{C}_{\text {arom,quat }}\right) ; 130.0(2 \times$ $\left.\mathrm{HC}_{\text {arom }}\right) ; 133.6\left(\mathrm{HC}_{\text {arom }}\right) ; 163.1$ and $165.2(2 \times \mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OC}=\mathrm{o}}=1727$; $\mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1669 ; \mathrm{v}_{\max }=2960,1451,1259,1152,1082,1063,1024,1012,955,907,709,687 . \mathrm{MS}(70 \mathrm{eV}):$ $\mathrm{m} / \mathrm{z}(\%) 278\left(\mathrm{M}^{+}+1,100\right)$. HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4} 278.1392[\mathrm{M}+\mathrm{H}]^{+}$, found 278.1391.

## 2-Benzoyloxy-4-butylmorpholin-3-one 226c

Yellow oil. $\mathrm{R}_{\mathrm{f}}=0.30$ (hexane/EtOAc 3/1). Yield $82 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3$
 $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right) ; 1.36\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.50-1.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.23$ $\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=12.4,2.6 \mathrm{~Hz}, \mathrm{OCH}_{2}(\underline{\mathrm{HCH}}) \mathrm{N}\right) ; 3.36-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 3.68$ $\left(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=12.4,12.0,4.0 \mathrm{~Hz},\left(\mathrm{OCH}_{2}(\mathrm{HCH}) \mathrm{N}\right) ; 3.91(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=11.8,4.0\right.$ $\mathrm{Hz},(\underline{\mathrm{HCH}}) \mathrm{O}) ; 4.24(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=12.0,11.8,2.6 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{O}) ; 6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$; 7.39-7.44, 7.53-7.58 and 8.05-8.08 ( $2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right)$ : $\delta 13.8\left(\mathrm{CH}_{3}\right) ; 20.0 \quad\left(\mathrm{C}_{2} \mathrm{CH}_{3}\right) ; 28.9 \quad\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 45.8$ $\left(\mathrm{OCH}_{2} \underline{\mathrm{CH}}_{2} \mathrm{~N}\right)$; $46.7\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right)$; $59.3\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 89.0(\mathrm{CHO}) ; 128.5\left(2 \times \mathrm{HC}_{\text {arom }}\right)$; $129.4\left(\mathrm{C}_{\text {arom,quat }}\right) ; 130.1\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 133.6\left(\mathrm{HC}_{\text {arom }}\right) ; 162.6$ and $165.2(2 \times \mathrm{C}=\mathrm{O})$. IR $\left(A T R, \mathrm{~cm}^{-1}\right): v_{\mathrm{OC}=\mathrm{O}}=1728 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1667 ; \mathrm{v}_{\max }=2931,1451,1258,1151,1082,1063,1024,947,881$, 710, 687. MS (70eV): m/z (\%) 278 ( $\mathrm{M}^{+}+1,100$ ). HRMS (ESI) Calcd. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4} 278.1392[\mathrm{M}+\mathrm{H}]^{+}$, found 278.1392.

## 2-Benzoyloxy-4-cyclohexyImorpholin-3-one 226d

Light-yellow crystals. $\mathrm{Mp} 96.1^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.63$ (EtOAc). Yield $89 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.05-1.19$, 1.34-1.54 and 1.69-1.90 (1H, 4 H and $\left.5 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 3.26(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=$
 $12.4,3.3,1.6 \mathrm{~Hz},(\underline{H C H}) \mathrm{N}) ; 3.54(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, \mathrm{J}=12.4,11.9,4.4 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 3.96$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.9,4.4,1.6 \mathrm{~Hz},(\underline{\mathrm{HCH}}) \mathrm{O}) ; 4.20(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=11.9,11.9,3.3 \mathrm{~Hz}$, (HCH)O); 4.41-4.52 (1H, m, ( $\left.\left.\mathrm{CH}_{2}\right)_{5} \mathrm{CH} \mathrm{H}\right)$; $6.39(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; 7.42-7.47,7.55-7.61$ and 8.07-8.11 $\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 25.5,25.6$, 29.5 and $29.6\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 40.4\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 52.6\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 59.8\left(\mathrm{CH}_{2} \mathrm{O}\right) ; 89.3(\mathrm{OCHO})$; $128.5\left(2 \times \mathrm{HC}_{\text {arom }}\right) ; 129.5\left(\mathrm{C}_{\text {arom,quat }}\right) ; 130.1$ and $133.6\left(3 \times \mathrm{HC}_{\text {arom }}\right) ; 162.2$ and 165.4 (2 $\times \mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1724 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1649 ; \mathrm{v}_{\max }=2924,1398,1251,1079,888$, 688. $\mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 304\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C} 67.31, \mathrm{H}$ $6.98, \mathrm{~N} 4.62$. Found: C 67.56, H 6.89, N 4.78.

### 5.17 Synthesis of 2-fluoro-1,4-oxazin-3-ones

As a representative example, the synthesis of 2-fluoro-4-isopropyl-1,4-oxazin-3-one 232a is described. To a solution of 2-hydroxy-4-isopropyl-1,4-oxazin-3-one 194 a ( $1.57 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in dry dichloromethane ( 50 mL ) at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere was added Morph-DAST ( 3.50 g , $20 \mathrm{mmol}, 2$ equiv) dropwise. The resulting mixture was allowed to warm to room temperature and was further stirred for 5 hours. A saturated solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ was carefully dropped to the mixture and the mixture was stirred for 15 min . The organic layer was separated and washed with water ( 25 mL ) and brine ( 25 mL ), after which the organic fraction was dried over $\mathrm{MgSO}_{4}$, followed by removal of the drying agent by filtration. After evaporation of the solvent in vacuo, the crude reaction mixture was purified by means of column chromatography on silica gel (hexane/EtOAc 9/1), affording pure 2-fluoro-4-isopropyl-1,4-oxazin-3-one 228a in $87 \%$ yield.

## 2-Fluoro-4-isopropyl-1,4-oxazin-3-one 232a

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.10$ (hexane/EtOAc 9/1). Yield $87 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.23$ and 1.27 (2 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{d}, J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 4.80\left(1 \mathrm{H}\right.$, septet, $\left.J=6.8 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 5.90(1 \mathrm{H}, \mathrm{d}, J=52.7$
 $\mathrm{Hz}, \mathrm{CHF}) ; 5.92$ and $6.27(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-$ 127.92 (d, $J=52.7 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 19.9$ and 20.6 (( $\left.\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; 44.7 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 102.0(\mathrm{~d}, \mathrm{~J}=234.2 \mathrm{~Hz}, \mathrm{CHF}) ; 105.8$ and $126.5(\mathrm{HC}=\mathrm{CH}) ; 156.0(\mathrm{~d}, \mathrm{~J}=32.3 \mathrm{~Hz}$, $\mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0, \mathrm{C}=\mathrm{c}}=1685,1664 ; \mathrm{v}_{\max }=2980,1424,1223,1073,985,951,769$, 699. MS (70eV): m/z (\%) 159 ( $\mathrm{M}^{+}, 83$ ), 117 (100), 88 (37), 69 (43), 43 (17), 41 (25), 40 (11).

## 2-Fluoro-4-isobutyl-1,4-oxazin-3-one 232b

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.24$ (hexane/EtOAc 9/1). Yield 78\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.94(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$
 $\left.7.0 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.02\left(1 \mathrm{H}\right.$, nonet, $\left.J=7.0 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.38(2 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=7.0,1.1 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right) ; 5.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \underline{\mathrm{HC}}=\mathrm{CH}) ; 5.91(1 \mathrm{H}, \mathrm{d}, J=52.7 \mathrm{~Hz}, \mathrm{CHF}) ; 6.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4$ $\mathrm{Hz}, \mathrm{HC}=\mathrm{CH}$ ). ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-127.69$ ( $\mathrm{d}, \mathrm{J}=52.7 \mathrm{~Hz}, \mathrm{CHF}$ ). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right)$ : $\delta 19.80$ and 19,84 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 27.7\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{C}}\right) ; 53.3\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 102.0(\mathrm{~d}, \mathrm{~J}=$ $234.2 \mathrm{~Hz}, \mathrm{CHF}) ; 111.4$ and $125.6(\mathrm{HC}=\mathrm{CH}) ; 156.8(\mathrm{~d}, \mathrm{~J}=32.3 \mathrm{~Hz}, \mathrm{C}=0)$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=0, \mathrm{C}=\mathrm{c}}=1686 ; \mathrm{v}_{\max }=2963,1426,1285,1211,1072,989,954,727 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 173\left(\mathrm{M}^{+}, 61\right)$, 130 (13), 117 (100), 102 (52), 69 (16), 57 (13), 41 (20).

## 4-Butyl-2-fluoro-1,4-oxazin-3-one 232c

Light-yellow oil. $\mathrm{R}_{\mathrm{f}}=0.20$ (hexane/EtOAc 9/1). Yield 94\%. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.\mathrm{F} \quad \mathrm{O} \quad 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ; 1.35\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.56-1.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 3.48-$ $3.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 5.85(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \underline{\mathrm{H} C=C H}) ; 5.90(1 \mathrm{H}, \mathrm{d}, J=52.8 \mathrm{~Hz}, \mathrm{CHF})$; $6.23(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{HC}=\mathrm{CH}) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-127.57(\mathrm{~d}, \mathrm{~J}=52.8 \mathrm{~Hz}, \mathrm{CHF})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta 13.7\left(\mathrm{CH}_{3}\right) ; 19.7\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 30.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 45.9$ $\left(\underline{C H}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 102.0(\mathrm{~d}, \mathrm{~J}=234.2 \mathrm{~Hz}, \mathrm{CHF}) ; 110.9$ and $125.8(\mathrm{HC}=\mathrm{CH}) ; 156.5(\mathrm{~d}, \mathrm{~J}=32.3$ $\mathrm{Hz}, \mathrm{C}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{C}=\mathrm{o}, \mathrm{c}=\mathrm{c}}=1686 ; \mathrm{v}_{\max }=2960,1427,1071,987,955,728 . \mathrm{MS}$ ( 70 eV ): m/z (\%) 173 ( $\mathrm{M}^{+}, 99$ ), 144 (52), 131 (17), 130 (27), 124 (24), 117 (100), 102 (57), 88 (17), 69 (33), 57 (19), 41 (35).

## 4-Cyclohexyl-2-fluoro-1,4-oxazin-3-one 232d

Yellow crystals. $\mathrm{Mp} 91.2{ }^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}}=0.51$ (hexane/EtOAc 1/1). Yield $90 \%{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$
 1.05-1.20, 1.34-1.51 and 1.68-1.89 (1H, 4 H and $\left.5 \mathrm{H}, 3 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 4.34-4.45(1 \mathrm{H}, \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 5.90(1 \mathrm{H}, \mathrm{d}, J=53.7 \mathrm{~Hz}, \mathrm{CHF}) ; 5.93$ and $6.24(2 \times 1 \mathrm{H}, 2 \times \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{HC=CH})$. ${ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-127.83(\mathrm{~d}, \mathrm{~J}=53.7 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta$ 25.2, 25.4, 25.5, 30.2 and $30.9\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 52.3\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\underline{C H}}\right) ; 102.0(\mathrm{~d}, \mathrm{~J}=233.1 \mathrm{~Hz}, \mathrm{CHF})$; 106.6 and $126.1(\mathrm{HC=CH}) ; 156.0(\mathrm{~d}, J=32.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{C}=\mathrm{o}, \mathrm{C}=\mathrm{c}}=1684,1662$; $v_{\max }=2932,1421,1205,1075,987,956,728 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 200\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{FNO}_{2}$ : C 60.29, $\mathrm{H} 7.08, \mathrm{~N} 7.03$. Found: $\mathrm{C} 60.50, \mathrm{H} 6.99, \mathrm{~N} 7.08$.

### 5.18 Synthesis of 2-benzoyloxy-6-bromo-5-fluoromorpholin-3-ones

As a representative example, the synthesis of 2-benzoyloxy-6-bromo-5-fluoro-4-isopropylmorpholin-3-one 234a and 235a is described. To a solution of 2-benzoyloxy-4-isopropyl-1,4-oxazin-3-one 225a ( $2.61 \mathrm{~g}, 10 \mathrm{mmol}, 1$ equiv) in dry dichloromethane ( 50 mL ) was added $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}(4.03 \mathrm{~g}, 25 \mathrm{mmol}, 2.5$ equiv) at $0^{\circ} \mathrm{C}$. Subsequently, $N$-bromosuccinimide ( $3.67 \mathrm{~g}, 15 \mathrm{mmol}, 1.5$ equiv) was added at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at room temperature for 24 hours. Afterwards, the mixture was poured in aq. $0.5 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and extraction was performed with dichloromethane ( $3 \times 50 \mathrm{~mL}$ ). The combined organic layers were washed with aq. $1 \mathrm{M} \mathrm{NaOH}(2 \times 50 \mathrm{~mL})$ and brine ( 50 mL ). After drying with $\mathrm{MgSO}_{4}$ and filtration of the drying agent, the solvent was evaporated in vacuo, affording a diastereoisomeric mixture of 2-benzoyloxy-6-bromo-5-fluoro-4-isopropylmorpholin-3-one 234a and 235a, which were separated by means of recrystallization from EtOAc/hexane (30/1).

## 2-Benzoyloxy-6-bromo-5-fluoro-4-isopropylmorpholin-3-one 234a (major diastereoisomer)

White crystals. Mp $122.8^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $63 \% .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.31\left(3 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=6.7,1.4 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{3}\right) ; 1.33(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \mathrm{CHCH}_{3}\right) ; 4.84\left(1 \mathrm{H}\right.$, septet $\left.\times \mathrm{d}, J=6.7,1.2 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{CHCH}_{3}\right) ; 5.72(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ $56.8,1.5 \mathrm{~Hz}, \mathrm{CHF}) ; 6.38(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=5.1,1.5 \mathrm{~Hz}, \mathrm{CHBr}) ; 6.69$ ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}$ ); 7.437.48, 7.57-7.63 and 8.10-8.13 ( $2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{( } 282 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta-118.95(\mathrm{~d} \times \mathrm{d}, J=56.8,5.1 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 19.5 and $20.6\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 45.9\left(\mathrm{~d}, J=2.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 75.0(\mathrm{~d}, J=33.4 \mathrm{~Hz}, \mathrm{CHBr})$; 85.8 (OCHO); 91.5 (d, J = $210.0 \mathrm{~Hz}, \mathrm{CHF}$ ); 128.6, 130.4 and $134.0\left(\mathrm{HC}_{\text {arom }}\right.$, $\left.C_{\text {arom,quat }}\right) ; 161.2\left(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, \mathrm{NC}=0\right.$ ); $164.7(\mathrm{OC=O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1735 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1690 ; \mathrm{v}_{\max }=$ 2978, 2600, 2494, 1474, 1450, 1396, 1384, 1266, 1226, 1172, 1143, 1105, 1079, 1062, 1036, 973, 945, 807, 708. MS (70eV): m/z (\%) 360/2 ( $\mathrm{M}^{+}+1,100$ ). Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{BrFNO}_{4}$ : C 46.69, H 4.20, N 3.89. Found: C 46.89, H 4.66, N 4.45 .

## 2-Benzoyloxy-6-bromo-5-fluoro-4-isopropylmorpholin-3-one 235a (minor diastereoisomer)

Colourless oil. Filtrate after recrystallization from EtOAc/hexane (30/1). Yield $16 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right): \delta 1.28-1.35\left(6 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 4.82(1 \mathrm{H}$, septet $\times \mathrm{d}, \mathrm{J}=6.6,1.5 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 5.68(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=57.4,1.3 \mathrm{~Hz}, \mathrm{CHF}) ; 6.44(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}, \mathrm{OCHO})$; $6.46(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=4.5,1.3 \mathrm{~Hz}, \mathrm{CHBr}) ; 7.38-7.48,7.57-7.63$ and $8.08-8.13(2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-116.94(\mathrm{~d} \times \mathrm{d}, J=57.4,4.5$ $\mathrm{Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $=\mathrm{CDCl}_{3}$ ): $\delta 19.3$ and $20.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 46.0(\mathrm{~d}, \mathrm{~J}=$ $\left.2.3 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 78.0(\mathrm{~d}, J=35.7 \mathrm{~Hz}, \mathrm{CHBr}) ; 87.4(\mathrm{OCHO}) ; 91.2(\mathrm{~d}, J=211.1 \mathrm{~Hz}$, CHF); 128.2 ( $\mathrm{C}_{\text {arom,quat }}$ ); $128.6,130.4$ and 134.2 ( $\mathrm{HC}_{\text {arom }}$ ); $161.8(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}$, $\mathrm{NC}=\mathrm{O}) ; 164.3(\mathrm{OC}=\mathrm{O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1736 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1691 ; \mathrm{v}_{\max }=2980,1451,1263,1225,1144$, $1105,1078,1058,1024,970,944,706$. MS (70eV): m/z (\%) 360/2 ( ${ }^{+}+1,100$ ).

## 2-Benzoyloxy-6-bromo-5-fluoro-4-isobutylmorpholin-3-one 234b (major diastereoisomer)

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.14$ (hexane/EtOAc 19/1). Yield $33 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.04(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.7.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.03-2.17\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.29$ and $3.64(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d} \times$
 d), J = 13.9, 7.2, 1.2 Hz, (HCH)N); 5.68 ( $1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=57.7,1.4 \mathrm{~Hz}, \mathrm{CHF}$ ); 6.34 ( 1 H , $\mathrm{d} \times \mathrm{d}, J=5.3,1.4 \mathrm{~Hz}, \mathrm{CHBr}) ; 6.70(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; 7.44-7.49,7.58-7.64$ and $8.10-$ $8.13\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-122.75(\mathrm{~d} \times \mathrm{d}, \mathrm{J}$ $=57.7,5.3 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref $\left.=\mathrm{CDCl}_{3}\right)$ : $\delta 20.1$ and $20.2\left((\underline{\mathrm{CH}})_{2} \mathrm{CH}\right)$; $27.5\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right)$; $53.3\left(\mathrm{CH}_{2} \mathrm{~N}\right)$; $74.2(\mathrm{~d}, \mathrm{~J}=33.5 \mathrm{~Hz}, \mathrm{CHBr}) ; 85.9(\mathrm{OCHO}) ; 95.7(\mathrm{~d}, \mathrm{~J}=$ $212.3 \mathrm{~Hz}, \mathrm{CHF}$ ); 128.6, 130.5 and 134.0 ( $\mathrm{HC}_{\text {arom, }} \mathrm{C}_{\text {arom,quat }}$ ); 161.9 (d, $J=3.5 \mathrm{~Hz}$, $\mathrm{NC}=\mathrm{O})$; $164.6(\mathrm{OC}=\mathrm{O})$. IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1736 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1704 ; \mathrm{v}_{\max }=2964$, 1467, 1374, 1257, 1222, 1152, 1091, 1060, 1017, 965, 908, 728, 708. MS (70eV): m/z (\%) 374/6 $\left(\mathrm{M}^{+}+1,100\right)$.

## 2-Benzoyloxy-6-bromo-5-fluoro-4-isobutylmorpholin-3-one 235b (minor diastereoisomer)

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.14$ (hexane/EtOAc 19/1). Yield $12 \% .{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.01$ and 1.04 (2
 $\left.\times 3 \mathrm{H}, 2 \times \mathrm{d}, J=7.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 2.08\left(1 \mathrm{H}\right.$, nonet, $\left.J=7.2 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 3.29$ and $3.65(2 \times 1 \mathrm{H}, 2 \times(\mathrm{d} \times \mathrm{d} \times \mathrm{d}), J=13.9,7.2,1.5 \mathrm{~Hz},(\mathrm{HCH}) \mathrm{N}) ; 5.62(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ 58.0, 1.2 Hz, CHF); 6.43 (1H, d $\times \mathrm{d}, J=5.4,1.2 \mathrm{~Hz}, \mathrm{CHBr}) ; 6.47(1 \mathrm{H}, \mathrm{d}, J=1.2 \mathrm{~Hz}$, $\mathrm{OCHO}) ; 7.44-7.49,7.59-7.64$ and $8.08-8.13\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{19} \mathrm{~F}$ NMR ( $282 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-121.17(\mathrm{~d} \times \mathrm{d}, J=58.0,5.4 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $\left.=\mathrm{CDCl}_{3}\right)$ : $\delta 20.07$ and $20.13\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\right) ; 27.3\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathrm{CH}}\right) ; 53.1\left(\mathrm{CH}_{2} \mathrm{~N}\right) ; 77.3$ (d, J $=32.3 \mathrm{~Hz}, \mathrm{CHBr}) ; 87.4(\mathrm{OCHO}) ; 95.5(\mathrm{~d}, J=212.3 \mathrm{~Hz}, \mathrm{CHF}) ; 128.2$ ( $\mathrm{C}_{\text {arom,quat }}$ ); 128.7, 130.5 and 134.2 ( $\mathrm{HC}_{\text {arom }}$ ); 162.8 (d, J=3.5 Hz, NC=O); 164.3 (OC=O). IR (ATR, $\mathrm{cm}^{-}$ $\left.{ }^{1}\right): v_{\mathrm{OC}=\mathrm{O}}=1744 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1705 ; \mathrm{v}_{\max }=2963,1468,1377,1257,1225,1155,1110,1078,1060,1024,972$, 707. MS (70eV): m/z (\%) 374/6 ( $\mathrm{M}^{+}+1,100$ ).

## 2-Benzoyloxy-6-bromo-4-butyl-5-fluoromorpholin-3-one 234c (major diastereoisomer)

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.12$ (hexane/EtOAc 19/1). Yield $42 \%$. ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 0.98(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$
 $\left.7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; $1.44\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.61-1.81\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; 3.44-3.54 and 3.71-3.81 $\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{m},\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 5.67(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=57.9\right.$, 1.1 Hz, CHF); 6.33 ( $1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=5.4,1.1 \mathrm{~Hz}, \mathrm{CHBr}$ ); 6.68 ( $1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}$ ); 7.44-7.49, 7.58-7.64 and $8.10-8.14\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}(282 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta-122.55(\mathrm{~d} \times \mathrm{d}, J=57.9,5.4 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ $13.8\left(\mathrm{CH}_{3}\right) ; 20.0\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 29.6\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 46.3\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 74.3(\mathrm{~d}, \mathrm{~J}=32.3$ $\mathrm{Hz}, \mathrm{CHBr}) ; 85.8(\mathrm{OCHO}) ; 95.5(\mathrm{~d}, \mathrm{~J}=212.3 \mathrm{~Hz}, \mathrm{CHF}) ; 128.6,130.5$ and 134.0 ( $\mathrm{HC}_{\text {arom, }}, \mathrm{C}_{\text {arom,quat }}$ ); 161.5 ( $\mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{NC}=\mathrm{O}$ ); 164.6 ( $\mathrm{OC}=\mathrm{O}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=0}$ $=1736 ; v_{\mathrm{NC}=\mathrm{O}}=1702 ; \mathrm{v}_{\max }=2959,1452,1380,1247,1148,1093,1059,1017,964,706,686 . \mathrm{MS}$ (70eV): m/z (\%) 374/6 ( $\mathrm{M}^{+}+1,100$ ).

## 2-Benzoyloxy-6-bromo-4-butyl-5-fluoromorpholin-3-one 235c (minor diastereoisomer)

Colourless oil. $\mathrm{R}_{\mathrm{f}}=0.12$ (hexane/EtOAc 19/1). Yield $13 \% .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$; $1.42\left(2 \mathrm{H}\right.$, sextet, $\left.J=7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.64-1.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; 3.39-3.53 and 3.72-3.82 $\left(2 \times 1 \mathrm{H}, 2 \times \mathrm{m},\left(\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 5.61(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=58.2\right.$, $1.1 \mathrm{~Hz}, \mathrm{CHF}) ; 6.42(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=5.7,1.1 \mathrm{~Hz}, \mathrm{CHBr}) ; 6.44(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{OCHO})$; 7.43-7.48, 7.58-7.64 and 8.08-8.13 ( $2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{19} \mathrm{~F}$ NMR ( 282 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-120.66(\mathrm{~d} \times \mathrm{d}, \mathrm{J}=58.2,5.7 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C} \mathrm{NMR}(75 \mathrm{MHz}$, ref $=$ $\left.\mathrm{CDCl}_{3}\right): \delta 13.8\left(\mathrm{CH}_{3}\right) ; 19.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 29.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 46.1\left(\underline{\mathrm{CH}_{2}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}\right) ; 77.4$ (d, J = 34.6 Hz, CHBr); 87.3 (OCHO); 95.4 (d, J = $213.5 \mathrm{~Hz}, \mathrm{CHF}$ ); 128.2 (Carom,quat); $128.7,130.5$ and 134.2 ( $\mathrm{HC}_{\text {arom }}$ ); 162.4 ( $\mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{NC}=\mathrm{O}$ ); 164.3 ( $\mathrm{OC}=\mathrm{O}$ ). IR $\left(A T R, \mathrm{~cm}^{-1}\right): v_{\mathrm{OC}=\mathrm{O}}=1743 ; \mathrm{v}_{\mathrm{NC}=\mathrm{O}}=1702 ; \mathrm{v}_{\max }=2960,1453,1378,1248,1225,1110,1059,1024,953$, 908, 730, 705. MS (70eV): m/z (\%) 374/6 ( $\mathrm{M}^{+}+1,100$ ).

## 2-Benzoyloxy-6-bromo-4-cyclohexyl-5-fluoromorpholin-3-one 234d (major diastereoisomer)

White crystals. Mp $101.5^{\circ} \mathrm{C}$. Recrystallization from EtOAc/hexane (30/1). Yield $67 \%{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.08-1.25,1.34-1.54,1.69-1.75$ and $1.86-1.99(1 \mathrm{H}, 4 \mathrm{H}, 1 \mathrm{H}$ and 4 H , $\left.4 \times \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 4.41-4.50\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 5.73(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=57.3,1.3 \mathrm{~Hz}$, CHF); $6.36(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=4.7,1.3 \mathrm{~Hz}, \mathrm{CHBr}) ; 6.69(1 \mathrm{H}, \mathrm{s}, \mathrm{OCHO}) ; 7.43-7.48,7.58-$ 7.63 and $8.10-8.13\left(2 \mathrm{H}, 1 \mathrm{H}\right.$ and $\left.2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-$ $117.86(\mathrm{~d} \times \mathrm{d}, J=57.3,4.7 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C}$ NMR ( 75 MHz , ref = $\mathrm{CDCl}_{3}$ ): $\delta 25.4,25.5$, 25.8, 30.0 and $31.0\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 53.4\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right)$; 75.0 (d, J = $\left.33.4 \mathrm{~Hz}, \mathrm{CHBr}\right)$; 85.9 (OCHO); 91.8 (d, J = $211.2 \mathrm{~Hz}, \mathrm{CHF}$ ); 128.6, 130.4, 134.0 ( $\mathrm{HC}_{\text {arom, }} \mathrm{C}_{\text {arom,quat }}$ ); 161.2 ( $\mathrm{d}, \mathrm{J}=3.4 \mathrm{~Hz}, \mathrm{NC}=0$ ); 164.7 ( $\mathrm{OC=O}$ ). IR (ATR, $\mathrm{cm}^{-1}$ ): $\mathrm{v}_{\mathrm{OC}=\mathrm{O}}=1736$; $\mathrm{v}_{\mathrm{NC}=\mathrm{O}}=$ 1681; $v_{\max }=2936,1452,1247,1090,987,708 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%) 400 / 2\left(\mathrm{M}^{+}+1,100\right)$. Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrFNO}_{4}$ : C 51.01, H 4.78, N 3.50. Found: C 51.13, H 4.78, N 3.45.

## 2-Benzoyloxy-6-bromo-4-cyclohexyl-5-fluoromorpholin-3-one 235d (minor diastereoisomer)

Spectral data based on ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of the crude reaction mixture.
${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.08-1.23,1.34-1.54,1.70-1.74$ and $1.86-1.99(1 \mathrm{H}, 4 \mathrm{H}, 1 \mathrm{H}$ and $4 \mathrm{H}, 4 \times \mathrm{m}$, $\left.\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 4.37-4.51\left(1 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 5.69(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, \mathrm{J}=56.7,1.1 \mathrm{~Hz}, \mathrm{CHF})$; $6.43(1 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{OCHO}) ; 6.45(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=4.9,1.1 \mathrm{~Hz}, \mathrm{CHBr}) ; 7.43-7.49$, 7.58-7.64 and 8.08-8.14 ( $2 \mathrm{H}, 1 \mathrm{H}$ and $2 \mathrm{H}, 3 \times \mathrm{m}, \mathrm{CH}_{\text {arom }}$ ). ${ }^{19} \mathrm{~F} \mathrm{NMR}(282 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ): $\delta-115.96(\mathrm{~d} \times \mathrm{d}, J=56.7,4.9 \mathrm{~Hz}, \mathrm{CHF}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}\right.$, ref $\left.=\mathrm{CDCl}_{3}\right): \delta$ 25.4, 25.5, 25.8, 29.8 and $31.1\left(\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CHN}\right) ; 53.5\left(\left(\mathrm{CH}_{2}\right)_{5} \underline{\mathrm{CHN}}\right) ; 77.9(\mathrm{~d}, \mathrm{~J}=35.8 \mathrm{~Hz}$, $\mathrm{CHBr}) ; 87.4$ ( OCHO ); 91.5 (d, $J=212.3 \mathrm{~Hz}, \mathrm{CHF}$ ); 128.3 ( $\mathrm{C}_{\text {arom,quat }}$ ); 128.6, 130.4, $134.2\left(\mathrm{HC}_{\text {arom }}\right) ; 161.8(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, \mathrm{NC}=\mathrm{O}) ; 164.4(\mathrm{OC=O})$. IR (ATR, $\left.\mathrm{cm}^{-1}\right): \mathrm{v}_{\mathrm{OC}=\mathrm{O}}=$ $1736 ; v_{\mathrm{NC}=\mathrm{O}}=1681 ; \mathrm{v}_{\max }=2936,1452,1247,1090,987,708 . \mathrm{MS}(70 \mathrm{eV}): \mathrm{m} / \mathrm{z}(\%)$ $400 / 2\left(\mathrm{M}^{+}+1,100\right)$.

## 6 Summary

$\beta$-Lactams comprise a very interesting class of compounds both from a biological and a chemical point of view. Besides their well-known significance as antibacterial agents in the treatment of bacterial infections and microbial diseases, a renewed interest has been focused on the synthesis and selective functionalization of $\beta$-lactams possessing diverse pharmacological properties such as cholesterol absorption inhibitory activity, antidiabetic, anti-HIV, antiviral, antiparkinsonian, and antiinflammatory activity. In addition to their indisputable importance as bioactive agents, $\beta$-lactams have also been widely recognized as excellent and versatile building blocks in organic chemistry for further elaboration toward a variety of nitrogen-containing acyclic and heterocyclic target compounds by exploiting the strain energy associated with the four-membered ring system. Indeed, selective bond cleavage of the $\beta$-lactam nucleus followed by further intruiging synthetic transformations renders these compounds powerful synthetic building blocks (this had led to the introduction of the term " $\beta$-lactam synthon method"). In that respect, the synthesis and synthetic applicability of four classes of $\beta$-lactams, i.e., 3-chloro-1-(2-chloroethyl)azetidin-2-ones i, 4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones ii, 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones iii and 3-hydroxy-4-(1,2-dihydroxyethyl)azetidin-2-ones iv, were accomplished in this PhD thesis, resulting in the selective synthesis of a variety of valuable new structures with diverse potential applications.


In a first approach, trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones i, prepared via Staudinger reaction between $N$-(arylmethylidene)-(2-chloroethyl)amines and chloroacetyl chloride, were selectively transformed into novel 3-aryl-2-(ethylamino)propan-1-ols xi in 61-70\% yield upon treatment with three molar equiv of $\mathrm{LiAlH}_{4}$ in THF under reflux for 48 hours. $\beta$-Aminoalcohols are applied extensively in organic chemistry as building blocks in designing natural and biologically active substances, and their chiral versions are also used in asymmetric synthesis. In order to elucidate the mechanistic background of this intriguing transformation, different experiments were conducted involving variation of the reaction time, reaction temperature, solvent and number of molar equiv of $\mathrm{LiAlH}_{4}$, thus revealing the intermediacy of $\gamma$-aminoalcohols $\mathbf{v}$, 1-(1-aryl-2-chloro-3-
hydroxypropyl)aziridines $\mathbf{v i}$ and trans-2-aryl-1-ethyl-3-(hydroxymethyl)aziridines $\mathbf{x}$. From a mechanistic point of view, these results were rationalized considering an initial hydride-induced 1,2fission of the amide bond in the starting $\beta$-lactams $\mathbf{i}$, followed by intramolecular displacement of the chloride at the primary carbon atom by the nucleophilic nitrogen, furnishing 1-(2-chloro-3hydroxypropyl)aziridines vi, which subsequently underwent a hydride-mediated rearrangement toward 1-ethyl-3-(hydroxymethyl)aziridines $\mathbf{x}$. The latter peculiar transformation was explained considering the intramolacular activation of the aziridine moiety in chair-like intermediates vii by the Lewis acid character of aluminium, resulting in aziridine ring opening and consecutive nucleophilic attack at the chlorinated carbon atom. Alternatively, initial intramolecular displacement of chloride by the nucleophilic nitrogen lone pair in aziridines viii toward reactive $N$-spiro bis-aziridinium intermediates ix, followed by hydride-induced ring opening could not be excluded. Finally, regioselective transfer of hydride to the C-2 carbon atom of aziridines $\mathbf{x}$ resulted in the formation of 3-aryl-2-(ethylamino)propan-1-ols xi.


In addition, reductive ring contraction of 3-chloro-1-(2-chloroethyl)azetidin-2-ones ia,b toward 1-(2-chloro-3-hydroxypropyl)aziridines via,b was achieved utilizing one molar equiv of $\mathrm{LiAlH}_{4}$ at room temperature.


The piperidine ring comprises an important structural unit in natural products and biologically active agents, and a broad variety of drugs accommodating this skeleton in their structure are on the market. Furthermore, azetidines are frequently deployed as versatile synthetic intermediates for the preparation of a variety of (a)cyclic amines via regio- and stereoselective transformations. In that respect, as an extension of the previously reported ring expansion toward 4-bromo-, 4-cyano-, 4-azido-, and 4-fluoro-5,5-dimethylpiperidines, 2-(2-bromo-1,1-dimethylethyl)azetidines xii, prepared via monochloroalane reduction of the corresponding $\beta$-lactams, were used as building blocks for the stereoselective synthesis of novel 4-acetoxy-5,5-dimethylpiperidines xiv via transient 1azoniabicyclo[2.2.0]hexanes xiii. Eventually, 4-acetoxypiperidines xiv were hydrolyzed toward the corresponding 4-hydroxypiperidines $\mathbf{x v}$, which are valuable target compounds as a vast array of molecules containing the 4-hydroxypiperidine skeleton has been used in the treatment of inter alia arrhythmia, hypotension, tuberculosis, diarrhea, rheumatoid arthritis, multiple sclerosis and Crohn's disease.


xiia-d
xiva ( $R^{1}=$ allyl, $R^{2}=B n, 64 \%$ )
xivb $\left(R^{1}=t B u, R^{2}=B n, 71 \%\right)$
xivc $\left(R^{1}=i P r, R^{2}=P h, 62 \%\right)$
xivd $\left(R^{1}=c H e x, R^{2}=P h, 72 \%\right)$
xva ( $R^{1}=$ allyl, $R^{2}=B n, 62 \%$ )
xvb ( $\left.R^{1}=t B u, R^{2}=B n, 66 \%\right)$
xvc $\left(R^{1}=i \operatorname{Pr}, R^{2}=\operatorname{Ph}, 86 \%\right)$
xvd $\left(\mathrm{R}^{1}=\mathrm{cHex}, \mathrm{R}^{2}=\mathrm{Ph}, 71 \%\right)$


xiiia-d

In a third part of this work, the synthesis of the dinor-dimethyl analogues of the aforementioned 5,5dimethylpiperidines was investigated, as, given the broad medicinal relevance of piperidines in general, the absence of a 5,5-gem-dimethyl group might modify the related bioactivity due to changes in conformational and stereochemical properties. In order to achieve this goal, special attention was devoted to the diastereoselective Staudinger synthesis of 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-ones iii from (E)-N-[3-(tertbutyldimethylsilyloxy) propylidene]amines xvi, inevitable leading to the formation of mixtures of $\beta$ lactams iii and $N$-acyl enamines xvii (22/78-83/17). Because of the combination of a strained fourmembered ring system, a nucleophilic nitrogen lone pair (after elaboration) and an electrophilic center in the side chain, $\beta$-lactams iii, which were isolated in pure form by column chromatography on silica gel, proved to be eligible substrates for further elaboration toward a variety of azaheterocyclic compounds as they were converted in 2-(2-mesyloxyethyl)azetidines xix upon consecutive monochloroalane reduction, TBAF-mediated deprotection, and mesylation. In this way, mesylated azetidines xix were prepared in high yields and purity as the dinor-dimethyl variants of brominated azetidines xii.



In the next phase, the reactivity of 2-(2-mesyloxyethyl)azetidines xix toward different nucleophiles was evaluated for the first time, resulting in the stereoselective ring enlargement toward a variety of 4-acetoxy- xxiii, 4-hydroxy- xxiv, 4-bromo- $\mathbf{x x}$ and 4-(formyloxy)piperidines $\mathbf{x x v}$ through regioselective $\mathrm{S}_{\mathrm{N}} 2$ ring opening of intermediate 1-azoniabicyclo[2.2.0]hexanes xxvi. It has to be
mentioned that in all cases small amounts of 2 -vinylazetidines (2-9\%) were observed in the crude reaction mixtures as well. This approach constitutes a convenient alternative for the abovementioned preparation of 3,4-disubstituted 5,5-dimethylpiperidines, providing an easy access to the 5,5-dinor-dimethyl analogues as valuable templates in medicinal chemistry. Furthermore, a new entry into the piperidin-3-one scaffold is provided through dehydrobromination of 4-bromo-3-(phenoxy- or benzyloxy)piperidines $\mathbf{x x}$ followed by acid hydrolysis. In addition to the experimental results, the intermediacy of transient 1-azoniabicyclo[2.2.0]hexanes xxvi in these four- to sixmembered ring expansion reactions was further verified by means of high-level computational analysis (performed at the Centre for Molecular Modeling, UGent).


Attempts toward the selective synthesis of 4-fluoro-5,5-dinor-dimethylpiperidines failed under the applied reaction conditions and clearly needs further elaboration.

In a fourth part of this work, the intrinsic reactivity of 2-(2-mesyloxyethyl)azetidines xix upon heating in DMSO in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ was envisaged, resulting in the selective formation of piperidin-4-
ones xxviii via DMSO-mediated regioselective ring opening of bicyclic azetidinium intermediates xxvi. From a biological point of view, piperidin-4-ones represent an important class of azaheterocycles exhibiting antiviral, antitumor, analgesic, local anaesthetic, antimicrobial, bactericidal, fungicidal, herbicidal, insecticidal, antihistaminic, anti-inflammatory, anticancer, CNS stimulant and depressant activities. In addition, the synthetic applicability of the latter 5,5-dinor-dimethylpiperidin-4-ones xxviii was demonstrated by means of both a chemical and an enzymatic reduction. Whereas the $\mathrm{NaBH}_{4}$-induced reduction is characterized by a cis-diastereoselectivity, the alcohol dehydrogenasemediated reductions proceeded with $S$ - or $R$-enantioselectivity at the carbonyl functionality.


Next, the synthesis of novel unconventional 3,4-fused ( $C$-fused) bicyclic $\beta$-lactams as potential antimicrobial agents and/or $\beta$-lactamase inhibitors was studied. 3-Benzyloxy-4-(2-mesyloxyethyl)- $\beta$ lactams iii were transformed into novel cis-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones xxxii in 52-62\% overall yield through hydrogenolysis and subsequent intramolecular nucleophilic substitution by means of sodium hydride addition. Conversion of the latter bicyclic $\beta$-lactams xxxii into cis-3-aminotetrahydrofuran-2-carboxylates xxxiii was accomplished in 66-70\% yield by means of acidic methanolysis. $\beta$-Amino acids comprise a valuable class of compounds because of their broad
biological and synthetic applicability. In particular, cyclic $\beta$-amino acids are present in a variety of natural products, and $\beta$-peptides form much more stable secondary structures than their $\alpha$-peptidic natural counterparts. This approach comprises a valuable alternative for the known preparation of 4,4-dimethyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-ones and 3-amino-4,4-dimethyletrahydrofuran-2carboxylates, thus furnishing their dinor-dimethyl analogues.


In a final part of this PhD thesis, the reactivity of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams iv, prepared through consecutive acidic hydrolysis of the acetal functionality and hydrogenolysis of the benzylether substituent in $\beta$-lactams xxxvi, with regard to the oxidant sodium periodate was evaluated for the first time, unexpectedly resulting in the exclusive formation of novel 2-hydroxy-1,4-oxazin-3-ones xxxvii, most probably via a C3-C4 bond cleavage of the intermediate 4-formyl-3-hydroxy- $\beta$-lactams followed by ring enlargement. This transformation is indeed peculiar, as 3 -alkoxyand 3-phenoxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams are known to be oxidized to the corresponding 4-formyl- $\beta$-lactam derivatives under the same reaction conditions without subsequent rearrangement into six-membered heterocycles. In addition to the experimental results, the rationale of this novel ring-expansion reaction was further validated by means of theoretical calculations performed at the Centre for Molecular Modeling (UGent).



xxxvia ( $\mathrm{R}=\mathrm{iPr}, 81 \%$ )
xxxvib ( $\mathrm{R}=1 \mathrm{Bu}, 50 \%$ )
xxxvic ( $\mathrm{R}=n \mathrm{Bu}, 43 \%$ )
xxxvb ( $\mathrm{R}=1 \mathrm{Bu}, 94 \%$ )
xxxvid ( $\mathrm{R}=\mathrm{cHex}, 65 \%$ )
xxxvc $(R=n B u, 95 \%)$
xxxvd $(R=c H e x, 90 \%)$
xxxvie ( $\mathrm{R}=n \mathrm{Pr}, 70 \%$ )
xxxve ( $\mathrm{R}=n \mathrm{Pr}, 92 \%$ )
xxxvif ( $\mathrm{R}=\mathrm{Pent}$, $50 \%$ )


In order to show the capacity of this new ring-expanion reaction to prepare a broad array of sixmembered heterocycles bearing chemical diversity, 2-hydroxy-1,4-oxazin-3-ones xxxvii were used as building blocks for the selective synthesis of novel heterocyclic compounds. 2-Hydroxy-1,4-oxazin-3ones xxxvii were converted into novel 2-benzoyloxy-1,4-oxazin-3-ones xxxix via protection of the hydroxyl moiety upon treatment with benzoylchloride. The latter heterocycles xxxix were then used as eligible substrates for the synthesis of 2-benzoyloxymorpholin-3-ones xxxx in 69-89\% yield. Morpholin-3-ones comprise a very interesting class of compounds as they are for example used as cornea permeable calpain inhibitors exhibiting anticataract properties, potassium channel openers useful in the treatment of urinary incontinence, and non-peptide ligands with high affinity and selectivity for tachykinin receptors. Furthermore, with the intention to incorporate fluorine in a siteselective manner, 2-hydroxy-1,4-oxazin-3-ones xxxvii were employed as substrates for the construction of 2-fluoro-1,4-oxazin-3-ones xxxxi and 2-benzoyloxy-6-bromo-5-fluoromorpholin-3ones xxxxii and xxxxiii upon treatment with Morph-DAST and triethylamine trihydrofluoride, respectively. Finally, 2-hydroxy-1,4-oxazin-3-ones xxxvii smoothly rearranged into $1 H$-pyrazin-2-ones xxxviii in $30-51 \%$ yield using $\mathrm{NH}_{4} \mathrm{OAc}$ and HOAc in ethyl acetate.

xxxixa ( $\mathrm{R}=\operatorname{Pr}, 45 \%$ )
xxxixb ( $\mathrm{R}=\mathrm{Bu}, 64 \%$ )
$\mathbf{x x x i x c}(\mathrm{R}=n \mathrm{Bu}, 93 \%)$
xxxixd ( $\mathrm{R}=\mathrm{cHex}, 34 \%$ )

xxxxa ( $\mathrm{R}=\mathrm{iPr}, 69 \%$ )
$\mathbf{x x x x b}(R=/ B u, 79 \%)$
xxxxc ( $\mathrm{R}=n \mathrm{Bu}, 82 \%$ )
xxxxd ( $\mathrm{R}=\mathrm{cHex}, 89 \%$ )

xxxviiia ( $\mathrm{R}=\mathbb{R} \mathrm{Pr}, 45 \%$ )
xxxviiib ( $\mathrm{R}=\mathrm{B} \mathrm{Bu}, 51 \%$ )
xxxviiic ( $\mathrm{R}=n \mathrm{Bu}, 30 \%$ )



xxxxia ( $\mathrm{R}=\operatorname{IPr}$, 87\%) xxxxib ( $\mathrm{R}=1 \mathrm{Bu}, 78 \%$ )
xxxxic ( $\mathrm{R}=\mathrm{nBu}, 94 \%$ )
xxxxid ( $\mathrm{R}=\mathrm{cHex}, 90 \%$ )

xxxxii/xxxxiii
67-80/20-33
xxxxiia ( $\mathrm{R}=\mathrm{Pr}, 63 \%$, $d r>99 / 1$ )
xxxxiiiia-d
xxxxiib ( $\mathrm{R}=\mathrm{B} \mathrm{Bu}, 33 \%$, $d r>99 / 1$ )
xxxxiic ( $\mathrm{R}=n \mathrm{Bu}, 42 \%$, $d r>99 / 1$ )
xxxxiid ( $\mathrm{R}=\mathrm{cHex}, 67 \%$, dr >99/1)

In this PhD thesis, the high synthetic potential of diversely functionalized azetidin-2-ones as synthons in organic chemistry has been illustrated by means of their elaboration toward a vast number of novel acyclic and cyclic nitrogen-containing compounds, including $\beta$-aminoalcohols, aziridines, azetidines, piperidines, piperidin-4-ones, oxazin-3-ones, morpholin-3-ones, pyrazinones, cyclic $\beta$ amino acids and bicyclic $\beta$-lactams. It is clear that, although the $\beta$-lactam nucleus has been extensively studied in the past, the impressive variety of transformations which can be derived from this system renders $\beta$-lactam chemistry a very intriguing and promising area of research for the synthesis of different types of novel (azaheterocyclic) compounds.

## 7 Samenvatting

$\beta$-Lactamen vormen een zeer interessante klasse van verbindingen, zowel vanuit een biologisch als vanuit een chemisch standpunt. Zo vormen $\beta$-lactamen gegeerde targets in de geneeskunde wegens hun uitgesproken antibiotische eigenschappen en het klassieke probleem van resistentievorming. Bovendien vertonen verschillende $\beta$-lactamen andere belangrijke biologische eigenschappen; ze worden bijvoorbeeld gebruikt als cholesterolabsorptie-inhibitoren en ontstekingsremmers en bij de behandeling van onder meer diabetes, HIV, en parkinson. Naast hun waarde als biologisch actieve verbindingen worden $\beta$-lactamen algemeen beschouwd als uitstekende bouwstenen in de organische chemie voor verdere omzetting tot een brede waaier aan stikstofhoudende acyclische en heterocyclische verbindingen door gebruik te maken van de spanningsenergie geassocieerd met de vierringstructuur. Selectieve splitsing van één der bindingen van de $\beta$-lactamkern gevolgd door verdere interessante synthetische omzettingen maakt deze verbindingen krachtige synthetische bouwstenen (dit heeft geleid tot de introductie van de term " $\beta$-lactam synthon method"). Vanuit dit standpunt werden in dit doctoraatsonderzoek de synthese en transformatie van vier klassen van $\beta$ lactamen, namelijk 3-chloor-1-(2-chloorethyl)azetidin-2-onen i, 4-(2-broom-1,1-dimethylethyl)azetidin-2-onen ii, 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-onen iii en 3-hydroxy-4-(1,2-dihydroxyethyl)azetidin-2-onen iv, voltooid, resulterend in de selectieve synthese van verscheidene waardevolle nieuwe verbindingen met diverse potentiële toepassingen.


In een eerste luik werden trans-4-aryl-3-chloor-1-(2-chloorethyl)- $\beta$-lactamen $\mathbf{i}$, bereid via Staudingerreactie tussen $N$-(arylmethylideen)-(2-chloorethyl)aminen en chlooracetylchloride, selectief omgezet tot nieuwe 3-aryl-2-(ethylamino)propan-1-olen xi in 61-70\% rendement door behandeling met drie molaire equiv $\mathrm{LiAlH}_{4}$ in THF onder reflux voor 48 uur. $\beta$-Aminoalcoholen worden veelvuldig ingezet in de organische chemie als synthons in de bereiding van natuurproducten en biologisch actieve stoffen, en chirale $\beta$-aminoalcoholen worden ook gebruikt in katalytische asymmetrische synthese. Om de mechanistische achtergrond van deze intrigerende transformatie op te helderen werden verschillende experimenten uitgevoerd door variatie van de reactietijd,
reactietemperatuur, solvent en aantal molaire equiv $\mathrm{LiAlH}_{4}$, aldus wijzend op de tussenkomst van intermediaire $\gamma$-aminoalcoholen $\mathbf{v}$, 1-(1-aryl-2-chloor-3-hydroxypropyl)aziridinen vi en trans-2-aryl-1-ethyl-3-(hydroxymethyl)aziridinen $\mathbf{x}$ in het reactiemechanisme. Vanuit mechanistisch oogpunt werd een initiële hydride-geïnduceerde splitsing van de amidebinding in $\beta$-lactamen $\mathbf{i}$ gevolgd door intramoleculaire substitutie van chloride door aanval van het nucleofiele stikstofatoom op het primair gechloreerd koolstofatoom, hetgeen aanleiding gaf tot de selectieve vorming van 1-(2-chloor-3-hydroxypropyl)aziridinen vi, dewelke vervolgens via een hydride-geïnduceerde omlegging werden omgezet in 1-ethyl-3-(hydroxymethyl)aziridinen $\mathbf{x}$. Deze opmerkelijke transformatie werd verklaard aan de hand van intramoleculaire activatie van de aziridinering door het Lewiszuur karakter van aluminium ter vorming van stoelvormintermediairen vii, uiteindelijk resulterend in aziridine ringopening en daaropvolgende nucleofiele aanval op het secundair gechloreerd koolstofatoom. Als alternatieve route kan een initiële intramoleculaire substitutie van chloride door het vrij elektronenpaar van stikstof in aziridinen viii aanleiding geven tot de vorming van reactieve $N$-spiro-bis-aziridiniumintermediaten ix, dewelke vervolgens een hydride-geïnduceerde ringopening ondergaan. Uiteindelijk werden 3-aryl-2-(ethylamino)propan-1-olen xi bekomen via regioselectieve hydride-transfer.


Daarnaast werden 1-(2-chloor-3-hydroxypropyl)aziridines via,b selectief gevormd in 40-50\% rendement na behandeling van 3-chloor-1-(2-chloorethyl)azetidin-2-ones ia,b met één equiv $\mathrm{LiAlH}_{4}$ bij kamertemperatuur.


De piperidinering vormt een belangrijke structurele eenheid in natuurproducten en biologisch actieve agentia, en een grote variëteit aan geneesmiddelen bevatten deze bouwsteen in hun structuur. Daarnaast worden azetidinen vaak aangewend als veelvuldige precursoren in de synthese van (a)cyclische aminen, via regio- en stereoselectieve transformaties. In dat opzicht werden, als uitbreiding op de eerder bestudeerde ringexpansie tot 4-broom-, 4-cyaan-, 4-azide- en 4-fluor-5,5dimethylpiperidinen, 2-(2-broom-1,1-dimethylethyl)azetidinen xii, bereid uit de overeenkomstige $\beta$ lactamen via monochlooralaanreductie, ingezet als synthetische bouwstenen voor de stereoselectieve synthese van nieuwe biologisch relevante 4-acetoxy-5,5-dimethylpiperidinen xiv via transiente 1-azoniabicyclo[2.2.0]hexanen xiii. Uiteindelijk werden 4-acetoxypiperidinen xiv gehydrolyseerd tot de overeenkomstige 4-hydroxypiperidinen $\mathbf{x v}$, dewelke als waardevolle structurele eenheden worden gebruikt in de behandeling van onder meer hartritmestoornissen, hypotensie, tuberculose, diarree, reumatoïde artritis, multiple sclerose, en de ziekte van Crohn.


xiia-d

> xiva $\left(R^{1}=\operatorname{allyl}, R^{2}=B n, 64 \%\right)$
> xivb $\left(R^{1}=t B u, R^{2}=B n, 71 \%\right)$
> xivc $\left(R^{1}=I P r, R^{2}=P h, 62 \%\right)$
> xivd $\left(R^{1}=c H e x, R^{2}=P h, 72 \%\right)$
xva ( $R^{1}=$ allyl, $R^{2}=B n, 62 \%$ )
xvb ( $\left.R^{1}=t B u, R^{2}=B n, 66 \%\right)$
$\operatorname{xvc}\left(R^{1}=i \operatorname{Pr}, R^{2}=P h, 86 \%\right)$
$\operatorname{xvd}\left(\mathrm{R}^{1}=\mathrm{cHex}, \mathrm{R}^{2}=\mathrm{Ph}, 71 \%\right)$

$\qquad$

In een derde luik van dit werk werd bijzondere aandacht besteed aan de stereoselectieve bereiding van de overeenkomstige dinor-dimethylanaloga van bovenvermelde 5,5-dimethylpiperidinen, daar, gezien de belangrijke biologische eigenschappen van de piperidinering, de afwezigheid van een 5,5dimethylgroep een grote invloed kan uitoefenen op de bioactiviteit ten gevolge van wijzigingen in conformationele en stereochemische eigenschappen. Teneinde deze doelstelling te realiseren werden nieuwe methodologieën ontwikkeld voor de diastereoselectieve Staudingersynthese van 4-[2-(tert-butyldimethylsilyloxy)ethyl]azetidin-2-onen iii uitgaande van (E)-N-[3-(tertbutyldimethylsilyloxy)propylidene]aminen $\mathbf{x v i}$, hetgeen onvermijdelijk resulteerde in de vorming van mengsels van $\beta$-lactamen iii en $N$-acylenaminen xvii (22/78-83/17). Omwille van de aanwezigheid van een gespannen vierringstructur, een nucleofiel stikstofatoom (na omzetting) en een elektrofiel centrum in de zijketen, bleken $\beta$-lactamen iii, dewelke werden geïsoleerd via kolomchromatografie op silicagel, uitstekende substraten te zijn voor verdere omzetting tot andere azaheterocyclische verbindingen waaronder 2-(2-mesyloxyethyl)azetidinen xix via opeenvolgende reductie met monochlooralaan, ontscherming met TBAF en mesylering. Op deze manier werden gemesyleerde azetidinen xix aangemaakt in hoge rendementen en zuiverheid als de dinor-dimethylvarianten van gebromineerde azetidinen xii.


xixa $\left(R^{1}=i \operatorname{Pr}, R^{2}=P h, 90 \%\right)$
$\mathbf{x i x b}\left(R^{1}=\operatorname{Pr}, R^{2}=B n, 88 \%\right)$
xixc $\left(R^{1}=c\right.$ Hex, $\left.R^{2}=B n, 85 \%\right)$
1.05 equiv MsCl
1.1 equiv $\mathrm{Et}_{3} \mathrm{~N}$
0.1 equiv DMAP
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{O}^{\circ} \mathrm{C}, 3 \mathrm{~h}$

xviiia ( $\left.R^{1}=i \operatorname{Pr}, R^{2}=\operatorname{Ph}, 48 \%\right)$
xviiib $\left(R^{1}=\operatorname{Pr}, R^{2}=B n, 49 \%\right)$
xviiic $\left(R^{1}=c\right.$ Hex, $\left.R^{2}=B n, 50 \%\right)$

Vervolgens werd het reactiviteitsprofiel van 2-(2-mesyloxyethyl)azetidinen xix ten opzichte van verschillende nucleofielen in detail bestudeerd teneinde inzicht te verwerven in hun synthetisch potentieel, hetgeen resulteerde in de stereoselectieve ringexpansie tot biologisch interessante 4-
acetoxy- xxiii, 4-hydroxy- xxiv, 4-broom- xx en 4-(formyloxy)piperidinen $\mathbf{x x v}$ via regioselectieve $\mathrm{S}_{\mathrm{N}} 2$ ringopening van intermediaire bicyclische azetidiniumionen xxvi. Hierbij dient opgemerkt te worden dat in alle gevallen kleine hoeveelheden van de overeenkomstige 2 -vinylazetidinen (2-9\%) aanwezig waren in de reactiemengsels. Deze benadering vormt een waardig alternatief voor de aanwezigheid van de gem-dimethylgroep in de hierboven onderzochte 3,4-digesubstitueerde 5,5dimethylpiperidinen, en vormt aldus een efficiënte toegang tot de 5,5-dinor-dimethylanaloga als waardevolle templates in de medicinale chemie. Bovendien werd een nieuwe toetreding tot de interessante klasse der piperidin-3-onen uitgewerkt via dehydrobrominering van 4-bromo-3-(phenoxy- or benzyloxy)piperidinen $\mathbf{x x}$ gevolgd door zure hydrolyse. Deze experimentele resultaten werden onderbouwd met theoretische berekeningen (uitgevoerd aan het centrum voor Moleculaire Modellering, UGent), hetgeen de aanwezigheid van bicyclische azetidiniumionen xxvi in de ringexpansie van azetidinen xix tot piperidinen $\mathbf{x x}$ xxiii en $\mathbf{x x v}$ ondersteunde.


Pogingen tot de selectieve synthese van 4-fluor-5,5-dinor-dimethylpiperidinen faalden echter onder de gebruikte reactieomstandigheden en vergen duidelijk verder onderzoek.

In een vierde deel van dit werk werd, als uitbreiding op de eerder bestudeerde ringexpansie-oxidatie van 2-(broomethyl)azetidinen xii, de intrinsieke reactiviteit van 2-(2-mesyloxyethyl)azetidinen xix ten aanzien van verwarmen in DMSO in aanwezigheid van $\mathrm{K}_{2} \mathrm{CO}_{3}$ onderzocht, hetgeen aanleiding gaf tot de selectieve vorming van piperidin-4-onen xxviii via DMSO-geïnduceerde regioselectieve ringopening van bicyclische azetidiniumintermediairen xxvi. Vanuit biologisch oogpunt vormen piperidin-4-onen een belangrijke klasse van azaheterocyclische verbindingen met onder meer antivirale, antitumor, pijnstillende, antimicrobiële, fungicidale, herbicidale, en ontstekingsremmende activiteiten. Bovendien werd het synthetisch nut van deze 5,5-dinor-dimethylpiperidin-4-onen xxviii aangetoond door middel van zowel een chemische als een enzymatische reductie van 3-benzyloxy-1-isopropylpiperidin-4-on xxviiib. Daar waar de $\mathrm{NaBH}_{4}$-geïnduceerde reductie werd gekenmerkt door een cis-diastereoselectiviteit, verliep de alcohol dehydrogenase-geïnduceerde reductie met een $S$ - of $R$-enantioselectiviteit ter hoogte van de carbonylfunctionaliteit.


In een volgende fase werd de aanmaak van nieuwe niet-conventionele bicyclische $\beta$-lactamen als potentieel antimicrobiële verbindingen en/of $\beta$-lactamase-inhibitoren beoogd. 3-Benzyloxy-4-(2-mesyloxyethyl)- $\beta$-lactamen iii werden omgezet tot nieuwe cis-2-oxa-6-azabicyclo[3.2.0]heptan-7onen xxxii in 52-62\% totaalrendement via hydrogenolyse gevolgd door intramoleculaire nucleofiele substitutie door additie van NaH . Via zure methanolyse werden de gesynthetiseerde bicyclische verbindingen xxxii vervolgens omgezet tot de overeenkomstige cis-3-aminotetrahydrofuran-2carboxylaten xxxiii in $66-70 \%$ rendement. $\beta$-Aminozuren vormen een zeer waardevolle klasse van verbindingen, die zowel van synthetisch als biologisch nut zijn. Meer specifiek zijn cyclische $\beta$ aminozuren als basisskelet aanwezig in een brede waaier aan natuurproducten, en $\beta$-peptiden vormen stabielere secundaire structuren in vergelijking met hun $\alpha$-peptide natuurlijke tegenhangers. Deze benadering vormt een waardig alternatief voor de gekende synthese van 4,4-dimethyl-2-oxa-6-azabicyclo[3.2.0]heptan-7-onen en 3-amino-4,4-dimethyletrahydrofuran-2-carboxylaten, resulterend in de efficiënte bereiding van de overeenkomstige dinor-dimethylanaloga.


xxxiiia ( $\mathrm{R}^{1}=\mathbb{P r}, 66 \%$ )
xxxiiiib ( $\mathrm{R}^{1}=c \mathrm{Hex}, 70 \%$ )


In een laatste deel van deze thesis werd de reactiviteit van 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$ lactamen iv, bereid via zure hydrolyse van de acetaaleenheid gevolgd door hydrogenolyse van de benzylethersubstituent in $\beta$-lactamen xxxvi, ten opzichte van het oxidant natriumperiodaat voor het eerst uitgebreid geëvalueerd, hetgeen onverwacht aanleiding gaf tot de exclusieve vorming van nieuwe 2-hydroxy-1,4-oxazin-3-onen xxxvii, meest waarschijnlijk via splitsing van de C3-C4-binding in intermediaire 4-formyl-3-hydroxy- $\beta$-lactamen gevolgd door ringexpansie. Deze transformatie is inderdaad merkwaardig gezien 3-alkoxy- en 3-fenoxy-4-(1,2-dihydroxyethyl)- $\beta$-lactamen onder identieke omstandigheden worden omgezet tot de overeenkomstige 4-formyl- $\beta$-lactamderivaten zonder verdere omleggingen. Deze resultaten werden onderbouwd met theoretische berekeningen (uitgevoerd aan het centrum voor Moleculaire Modellering, UGent).




Vervolgens werden de gesynthetiseerde 2-hydroxy-1,4-oxazin-3-onen xxxvii aan een uitgebreide reactiviteitsstudie onderworpen met het oog op de selectieve aanmaak van heterocyclische targets, waarbij verschillende strategieën op hun haalbaarheid werden getest. Vooreerst werden 2-hydroxy-1,4-oxazin-3-onen xxxvii gebruikt als geschikte substraten voor de bereiding van nieuwe 2-benzoyloxy-1,4-oxazin-3-onen xxxix via bescherming van de hydroxylgroep door behandeling met benzoylchloride. Deze gesynthetiseerde heterocyclische verbindingen xxxix werden dan ingezet in de synthese van 2-benzoyloxymorfolin-3-onen xxxx in 69-89\% rendement. Morfolin-3-onen vertonen interessante biologische eigenschappen; zo staan ze onder meer in de belangstelling als hoornvlies doorlatende calpaïne-remmers met anticatarct eigenschappen, kaliumkanaal openers bruikbaar in de behandeling van urine-incontinentie, en niet-peptide liganden met hoge affiniteit en selectiviteit voor tachykinine receptoren. Met het oog op het inbouwen van fluor op een plaatsspecifieke wijze werden 2-hydroxy-1,4-oxazin-3-onen xxxvii behandeld met Morf-DAST en triethylamine trihydrofluoride voor de selectieve constructie van respectievelijk 2-fluor-1,4-oxazin-3-onen xxxxi en 2-benzoyloxy-6-broom-5-fluormorpholin-3-onen xxxxii en xxxxiii. Ten slotte werden 2-hydroxy-1,4-oxazin-3-onen xxxvii ingezet in de eenstapssynthese van $1 H$-pyrazin-2-onen xxxviii in $30-51 \%$ rendement via behandeling met $\mathrm{NH}_{4} \mathrm{OAc}$ en HOAc in ethylacetaat.


xxxviiia ( $\mathrm{R}=i \operatorname{Pr}, 45 \%$ )
xxxviiib ( $\mathrm{R}=\mathrm{i} \mathrm{Bu}, 51 \%$ )
xxxviiic ( $\mathrm{R}=n \mathrm{Bu}, 30 \%$ )

xxxviia-d
xxxxia ( $\mathrm{R}=\operatorname{Pr}, 87 \%$ ) xxxxib ( $\mathrm{R}=1 \mathrm{Bu}, 78 \%$ ) xxxxic ( $\mathrm{R}=n \mathrm{Bu}, 94 \%$ ) xxxxid ( $\mathrm{R}=\mathrm{cHex}, 90 \%$ )

xxxxii/:xxxxiii
67-80/20-33
xxxxiia $(\mathrm{R}=i \mathrm{Pr}, 63 \%, d r>99 / 1)$
xxxxiiia-d
xxxxiib ( $\mathrm{R}=\mathrm{B} \mathrm{Bu}, 33 \%$, $d r>99 / 1$ )
xxxxiic $(\mathrm{R}=n \mathrm{Bu}, 42 \%, d r>99 / 1)$
xxxxiid ( $\mathrm{R}=\mathrm{cHex}, 67 \%$, $d r>99 / 1$ )

In deze doctoraatsthesis werd het synthetisch potentieel van divers gefunctionaliseerde azetidinonen als nieuwe synthons in de organische chemie geïllustreerd aan de hand van hun omzettingen tot een groot aantal nieuwe acyclische en cyclische stikstofbevattende verbindingen, inclusief $\beta$ aminoalcoholen, aziridinen, azetidinen, piperidinen, piperidin-4-onen, oxazin-3-onen, morfolin-3onen, pyrazinonen, cyclische $\beta$-aminozuren en bicyclische $\beta$-lactamen. Het is duidelijk dat, ondanks het feit dat de $\beta$-lactamkern reeds uitgebreid werd bestudeerd in het verleden, de $\beta$-lactamchemie nog steeds een zeer intrigerend en veelbelovend onderzoeksdomein vormt voor de aanmaak van nieuwe (a)cyclische targets omwille van de indrukwekkende verscheidenheid aan mogelijke transformaties.

## 8 References

${ }^{1}$ Fleming, A. Br. J. Exp. Path. 1929, 10, 226.
${ }^{2}$ (a) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395; (b) Testero, S. A.; Fisher, J. F.; Mobashery, S. B-Lactam Antiobiotics. Wiley, Burger's Med. Chem. Drug Dis. Dev. 2010.
${ }^{3}$ Mehta, P. D.; Sengar, N. P. S.; Pathak, A. K. Eur. J. Med. Chem. 2010, 45, 5541 and references cited herein.
${ }^{4}$ (a) Ojima, I. Acc. Chem. Res. 1995, 28, 383; (b) Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377; (c) Alcaide, B.; Almendros, P. Synlett 2002, 381; (d) Singh, G. S. Tetrahedron 2003, 59, 7631; (e) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Rev. 2007, 107, 4437; (f) Deshmukh, A. R. A. S.; Bhawal, B. M.; Krishnaswamy, D.; Govande, V. V.; Shinkre, B. A.; Jayanthi, A. Curr. Med. Chem. 2004, 11, 1889; (g) Alcaide, B.; Almendros, P. Curr. Med. Chem. 2004, 11, 1921; (h) Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Curr. Med. Chem. 2004, 11, 1837.
${ }^{5}$ (a) D’hooghe, M.; Mollet, K.; Dekeukeleire, S.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 607; (b) D’hooghe, M.; Vandekerckhove, S.; Mollet, K.; Vervisch, K.; Dekeukeleire, S.; Lehoucq, L.; Lategan, C.; Smith, P. J.; Chibale, K.; De Kimpe, N. Beilstein J. Org. Chem. 2011, 7, 1745.
${ }^{6}$ D’hooghe, M.; Dekeukeleire, S.; De Kimpe, N. Org. Biomol. Chem. 2008, 6, 1190.
${ }^{7}$ Van Brabandt, W.; Dejaegher, Y.; Van Landeghem, R.; De Kimpe, N. Org. Lett. 2006, 8, 1101.
${ }^{8}$ Van Driessche, B.; Van Brabandt, W.; D’hooghe, M.; Dejaegher, Y.; De Kimpe, N. Tetrahedron 2006, 62, 6882.
${ }^{9}$ Van Brabandt, W.; Van Landeghem, R.; De Kimpe, N. Org. Lett. 2006, 8, 1105.
${ }^{10}$ D'hooghe, M.; Dejaegher, Y.; De Kimpe, N. Tetrahedron 2008, 64, 4575.
${ }^{11}$ Leemans, E.; D’hooghe, M.; Dejaegher, Y.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2008, 73, 1422.
${ }^{12}$ Dekeukeleire, S.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2010, 75, 5934.
${ }^{13}$ Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2005, 70, 3369.
${ }^{14}$ Leemans, E.; D’hooghe, M.; Dejaegher, Y.; Törnroos, K. W.; De Kimpe, N. Eur. J. Org. Chem. 2010, 352.
${ }^{15}$ Van Brabandt, W.; Vanwalleghem, M.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 2006, 71, 7083.
${ }^{16}$ Dekeukeleire, S.; D’hooghe, M.; De Kimpe, N. J. Org. Chem. 2009, 74, 1644.
${ }^{17}$ Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679.
${ }^{18}$ For reviews on the synthesis of piperidines, see: (a) Buffat, M. G. P. Tetrahedron 2004, 60, 1701; (b) Felpin, F.-X.; Lebreton, J. Eur. J. Org. Chem. 2003, 3693; (c) Weintraub, P. M.; Sabol, J. S.; Kane, J. M.;

Borcherding, D. R. Tetrahedron 2003, 59, 2953; (d) Laschat, S.; Dickner, T. Synthesis 2000, 1781; (e) Bailey, P. D.; Millwood, P. A.; Smith, P. D. Chem. Commun. 1998, 633.
${ }^{19}$ Broeckx, L. Master thesis 2009, Faculty of Bioscience Engineering, Ghent University.
${ }^{20}$ (a) Mobio, I. G.; Soldatenkov, A. T.; Fedorov, V. O.; Ageev, E. A.; Sergeeva, N. D.; Lin, S.; Stashenko, E. E.; Prostakov, N. S.; Andreeva, E. I. Khim. Farm. Zh 1989, 23, 421; (b) Katritzky, A. R.; Fan, W. J. Org. Chem. 1990, 55, 3205 and references cited herein; (c) Ganellin, C. R.; Spickett, R. G. W. J. Med. Chem. 1965, 8, 619.
${ }^{21}$ (a) El-Subbagh, H. I.; Abu-Zaid, S. M.; Mahran, M. A.; Badria, F. A.; Al-Obaid, A. M. J. Med. Chem. 2000, 43, 2915; (b) Girgis, A. S. Eur. J. Med. Chem. 2009, 44, 1257; (c) Kalai, T.; Kuppusamy, M. L.; Balog, M.; Selvendiran, K.; Rivera, B. K.; Kuppusamy, P.; Hideg, K. J. Med. Chem. 2011, 54, 5414. ${ }^{22}$ Jerom, B. R.; Spencer, K. H. Eur. Pat. AppI. 1988, EP 277794.
${ }^{23}$ (a) Perumal, R. V.; Adiraj, M.; Pandiyan, P. S. Indian Drugs 2001, 38, 156; (b) Hagenbach, R. E.; Gysin, H. Experientia 1952, 8, 184.
${ }^{24}$ Alcaide, B.; Almendros, P. Curr. Org. Chem. 2002, 6, 245.
${ }^{25}$ (a) Juaristi, E. (Ed.), Enantioselective Synthesis of B-Amino Acids, Wiley-VCH, New York, 1997; (b) Abdel-Magid, A. F.; Cohen, J. H.; Maryanoff, C. A. Curr. Med. Chem. 1999, 6, 955; (c) Ng, J. S.; Topgi, R. S. Curr. Opin. Drug Discovery Dev. 1998, 1, 314.
${ }^{26}$ (a) Kiss, L.; Forró, E.; Martinek, T. A.; Bernáth, G.; De Kimpe, N.; Fülöp, F. Tetrahedron 2008, 64, 5036; (b) Forró, E.; Fülöp, F. Mini-Rev. Org. Chem. 2004, 1, 93; (c) Palkó, M.; Kiss, L.; Fülöp, F. Curr. Med. Chem. 2005, 12, 3063.
${ }^{27}$ D’hooghe, M.; Van Speybroeck, V.; Van Nieuwenhove, A.; Waroquier, M.; De Kimpe, N. J. Org. Chem. 2007, 72, 4733.
${ }^{28}$ D’hooghe, M.; Waterinckx, A.; Vanlangendonck, T.; De Kimpe, N. Tetrahedron 2006, 62, 2295.
${ }^{29}$ (a) Mangelinckx, S.; D’hooghe, M.; Peeters, S.; De Kimpe, N. Synthesis 2009, 7, 1105; (b) D’hooghe, M.; Mangelinckx, S.; Persyn, E.; Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2006, 71, 4232.
${ }^{30}$ D’hooghe, M.; De Kimpe, N. Synlett 2006, 13, 2089.
${ }^{31}$ De Kimpe, N.; De Smaele, D.; Szakonyi, Z. J. Org. Chem. 1997, 62, 2448.
${ }^{32}$ D’hooghe, M.; Van Nieuwenhove, A.; Van Brabandt, W.; Rottiers, M.; De Kimpe, N. Tetrahedron 2007, 64, 1064
${ }^{33}$ (a) D’hooghe, M.; Vanlangendonck, T.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2006, 71, 4678;
(b) Stankovic, S.; D’hooghe, M.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 4266.
${ }^{34}$ D’hooghe, M.; De Kimpe, N. Chem. Commun. 2007, 1275.
${ }^{35}$ Vervisch, K.; D’hooghe, M.; Törnroos, K. W.; De Kimpe, N. J. Org. Chem. 2010, 75, 7734.
${ }^{36}$ D'hooghe, M.; Waterinckx, A.; De Kimpe, N. J. Org. Chem. 2005, 70, 227.
${ }^{37}$ Vervisch, K.; D’hooghe, M.; Rutjes, F. P. J. T.; De Kimpe, N. Org. Lett. 2012, 14, 106.
${ }^{38}$ Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P. J. Org. Chem. 2007, 72, 7980.
${ }^{39}$ (a) Gray, N. M.; Young, J. W. WO Patent 01111, 1994; Chem. Abstr. 1994, 121, 907; (b) Gray, N. M.; Young, J. W. WO Patent 01112, 1994; Chem. Abstr. 1994, 120, 183029; (c) Schuurkes, J. A. J.; Van Nueten, J. M.; Van Deale, P. G. H.; Reyntjens, A. J.; Janseen, P. A. J. J. Pharmacol. Exp. Ther. 1985, 234, 775.
${ }^{40}$ Shirode, N. M.; Likhite, A. P.; Gumaste, V. K.; Deshmukh, A. R. A. S. Tetrahedron 2008, 64, 7191.
${ }^{41}$ Van Daele, G. H. P.; De Bruyn, M. F. L.; Sommen, F. M.; Janssen, M.; Van Nueten, J. M.; Schuurkes, J. A. J.; Niemegeers, C. J. E.; Leysen, J. E. Drug Dev. Res. 1986, 8, 225.
${ }^{42}$ Hannam, J. C.; Kulagowski, J. J.; Madin, A.; Ridgill, M. P.; Seward, E. M. PCT Int. Appl. 2006, WO 2006043064 A1; Chem. Abstr. 2006, 144, 432693.
${ }^{43}$ Wagman, A. S.; Wentland, M. P. In Comprehensive Medicinal Chemistry II; Taylor, J. B., Triggle, D. J., Eds.; Elsevier: Amsterdam, 2006, 7, 567-596.
${ }^{44}$ Birch, A. M.; Kenny, P. W.; Oikonomakos, N. G.; Otterbein, L.; Schofield, P.; Whittamore, P. R. O.; Whalley, D. P. Bioorg. Med. Chem. Lett. 2007, 17, 394.
${ }^{45}$ Pai, N. R.; Dubhashi, D. S.; Pusalkar, D. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 124.
${ }^{46}$ Lange, J.; Bissember, A. C.; Banwell, M. G.; Cade, I. A. Aust. J. Chem. 2011, 64, 454.
${ }^{47}$ Schmidt, R. G.; Bayburt, E. K.; Latshaw, S. P.; Koenig, J. R.; Daanen, J. F.; McDonald, H. A.; Bianchi, B. R.; Zhong, C.; Joshi, S.; Honore, P.; Marsh, K. C.; Lee, C.-H.; Faltynek, C. R.; Gomtsyan, A. Bioorg. Med. Chem. Lett. 2011, 21, 1338.
${ }^{48}$ Shirode, N. M.; Kulkarni, K. C.; Gumaste, V. K.; Deshmukh, A. R. A. S. Arkivoc 2005, i, 53.
${ }^{49}$ Bhadra, K.; Kumar, G. S. Med. Res. Rev. 2011, 31, 821.
${ }^{50}$ Raj, R.; Mehra, V.; Singh, P.; Kumar, V.; Bhargava, G.; Mahajan, M. P.; Handa, S.; Slaughter, L. M. Eur. J. Org. Chem. 2011, 2697.
${ }^{51}$ Peng, Y.; Yu, M.; Zhang, L. Org. Lett. 2008, 10, 5187.
${ }^{52}$ Alajarín, M.; Vidal, A.; Sánchez-Andrada, P.; Tovar, F.; Ochoa, G. Org. Lett. 2000, 2, 965.
${ }^{53}$ D’hooghe, M.; Dekeukeleire, S.; Mollet, K.; Lategan, C.; Smith, P. J.; Chibale, K.; De Kimpe, N. J. Med. Chem. 2009, 52, 4058.
${ }^{54}$ Alcaide, B.; Sáez, E. Eur. J. Org. Chem. 2005, 1680.
${ }^{55}$ Palkó, M.; Dervarics, M.; Fülöp, F. Arkivoc 2005, vi, 416.
${ }^{56}$ Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C.; Torres, M. R. Chem. Eur. J. 2006, 12, 1539.
${ }^{57}$ Alcaide, B.; Almendros, P.; del Campo, T. M. Chem. Eur. J. 2008, 14, 7756.
${ }^{58}$ Kobayashi, S.; Semba, T.; Takahashi, T.; Yoshida, S.; Dai, K.; Otani, T.; Saito, T. Tetrahedron 2009, 65, 920.
${ }^{59}$ Macías, A.; Alonso, E.; del Pozo, C.; González, J. Tetrahedron Lett. 2004, 45, 4657.
${ }^{60}$ Isaac, M.; Slassi, A.; Xin, T.; MacLean, N.; Wilson, J.; McCallum, K.; Wang, H.; Demchyshyn, L. Bioorg. Med. Chem. Lett. 2000, 10, 1719.
${ }^{61}$ Shukla, U. K.; Channa, J. M.; Sharma, S.; Anan, N.; Chatterjee, R. K.; Sen, A. B. Indian J. Chem. 1983, 664.
${ }^{62}$ Nazarova, L. S.; Rozonov, Y. B.; Likhosherstov, A. M.; Morozova, T. V.; Skoldinov, A. P.; Kaverina, N. V.; Markin, V. A. Khim. Farm. Zh. 1985, 12, 811.
${ }^{63}$ (a) De Costa, B. R.; Domínguez, C.; He, X. S.; Williams, W.; Radesca, L.; Bowen, W. J. J. Med. Chem. 1992, 35, 4334; (b) De Costa, B. R.; He, X. S.; Linders, J. T. M.; Domínguez, C.; Gu, Z. Q.; Williams, W.; Bowen, W. J. Med. Chem. 1993, 36, 2311.
${ }^{64}$ Cabell, L. A.; McMurray, J. S. Tetrahedron Lett. 2002, 43, 2491.
${ }^{65}$ Mandal, P. K.; Cabell, L. A.; McMurray, J. S. Tetrahedron Lett. 2005, 46, 3715.
${ }^{66}$ (a) Ojima, I.; Zhao, M.; Yamato, T.; Nakahashi, K.; Yamashita, M.; Abe, R. J. Org. Chem. 1991, 56, 5263; (b) Alcaide, B.; Aly, M. F.; Sierra, M. A. Tetrahedron Lett. 1995, 36, 3401; (c) Speeter, M. E.; Maroney, W. H. J. Am. Chem. Soc. 1954, 76, 5810; (d) Sammes, P. G.; Smith, S. J. Chem. Soc., Chem. Commun. 1983, 682.
${ }^{67}$ Bandini, E.; Favi, G.; Martelli, G.; Panunzio, M.; Piersanti, G. Org. Lett. 2000, 2, 1077.
${ }^{68}$ (a) Begley, M. J.; Crombie, L.; Haigh, D.; Jones, R. C. F.; Osborne, S.; Webster, R. A. B. J. Chem. Soc., Perkin Trans. 1 1993, 2027; (b) Crombie, L.; Jones, R. C. F.; Osborne, S.; Mat-Zin, A. R. J. Chem. Soc., Chem. Commun. 1983, 959.
${ }^{69}$ (a) Barrow, K. D.; Spotswood, T. M. Tetrahedron Lett. 1965, 6, 3325; (b) Decazes, J.; Luche, J. L.; Kagan, H. B. Tetrahedron Lett. 1970, 11, 3361.
${ }^{70}$ Li, B.; Wang, Y.; Du, D.-M.; Xu, J. J. Org. Chem. 2007, 72, 990.
${ }^{71}$ Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem. Soc. 2006, 128, 6060.
${ }^{72}$ (a) Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M. Chem. Rev. 2000, 100, 2159; (b) Rechavi, D.; Lemaire, M. Chem. Rev. 2002, 102, 3467; (c) Lait, S. M.; Rankic, D. A.; Keay, B. A. Chem. Rev. 2007, 107, 767; (d) Sutcliffe, O. B.; Bryce, M. R. Tetrahedron: Asymmetry 2003, 14, 2297; (e) Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835; (f) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.
${ }^{73}$ (a) Hansteen, V.; Moinichen, E.; Lorentsen, E.; Andersen, A.; Strom, O.; Soiland, K.; Dyrbekk, D.; Refsum, A. M.; Tromsdal, A.; Knudsen, K.; Eika, C.; Bakken, J.; Smith, P.; Hoff, P. I. Brit. Med. J. 1982, 284, 155; (b) Narimatsu, S.; Arai, T.; Watanabe, T.; Masubuchi, Y.; Horie, T.; Suzuki, T.; Ishikawa, T.; Tsutsui, M.; Kumagai, Y.; Cho, A. K. Chem. Res. Toxicol. 1997, 10, 289; (c) Aubriot, S.; Nicolle, E.; Lattier, M.; Morel, C.; Cao, W.; Daniel, K. W.; Collins, S.; Leclerc, G.; Faure, P. Bioorg. Med. Chem. Lett. 2002, 12, 209; (d) Dasbiswas, A.; Shinde, S.; Dasbiswas, D. J. Indian Med. Assoc. 2008, 106, 259.
${ }^{74}$ For a few examples, see: (a) Pierre, J. L.; Handel, H.; Baret, P. Tetrahedron 1974, 30, 3213; (b) Baret, P.; Bourgeois, P. M.; Gey, C.; Pierre, J. L. Tetrahedron 1979, 35, 189; (c) Stanković, S.; D’hooghe, M.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 4266 and references cited herein.
${ }^{75}$ (a) D’hooghe, M.; Dekeukeleire, S.; Leemans, E.; De Kimpe, N. Pure Appl. Chem. 2010, 82, 1749; (b) Durrat, F.; Sanchez, M. V.; Couty, F.; Evano, G.; Marrot, J. Eur. J. Org. Chem. 2008, 19, 3286; (c) Graham, A.; Wadsworth, A. H.; Thornton-Petta, M.; Rayner, C. M. Chem. Commun. 2001, 11, 966; (d) Abbaspour Tehrani, K.; Van Syngel, K.; Boelens, M.; Contreras, J.; De Kimpe, N.; Knight, D.W. Tetrahedron Lett. 2000, 41, 2507.
${ }^{76}$ Martinez, A.; Elguero, J.; Mo, O.; Yanez, M. J. Mol. Struct. 1994, 115, 45.
${ }^{77}$ Kim, H. Y.; Talukdar, A.; Cushman, M. Org. Lett. 2006, 8, 1085.
${ }^{78}$ Hesse, M. Ring enlargements in Organic Chemistry, 1991.
${ }^{79}$ (a) Couty, F.; Durrat, F.; Evano, G. Targets in Heterocyclic Systems 2005, 9, 186; (b) Couty, F.; Evano, G. Synlett 2009, 19, 3053; (c) Couty, F.; Durrat, F.; Evano, G.; Marrot, J. Eur. J. Org. Chem. 2006, 4214; (d) Bott, T. M.; Vanecko, J. A.; West, F. G. J. Org. Chem. 2009, 74, 2832.
${ }^{80}$ (a) Couty, F.; Durrat, F.; Prim, D. Tetrahedron Lett. 2003, 44, 5209; (b) Durrat, F.; Sanchez, M. V.; Couty, F.; Evano, G.; Marrot, J. Eur. J. Org. Chem. 2008, 3286.
${ }^{81}$ Part of this work is published in Paper II.
${ }^{82}$ (a) Furneaux, R. H.; Gainsford, G. J.; Mason, J. M.; Tyler, P. C. Tetrahedron 1997, 53, 245; (b) Bartali, L.; Casini, A.; Guarna, A.; Occhiato, E. G.; Scarpi, D. Eur. J. Org. Chem. 2010, 5831.
${ }^{83}$ (a) Aiello, A.; Fattorusso, E.; Giordano, A.; Menna, M.; Müller, W. E. G.; Perovic-Ottstadt, S.; Schröder, H. C. Bioorg. Med. Chem. 2007, 15, 5877; (b) Ho, B.; Zabriskie, T. M. Bioorg. Med. Chem. Lett. 1998, 8, 739; (c) Yamamoto, I.; Itoh, M.; Yamasaki, F.; Miyazaki, Y.; Ogawa, S. Int. Pat. Appl. 2000, WO 2000061557 A1; (d) Taylor, C. R. Jr.; Stauffer, H. F. Jr. US Pat. Appl. 1985, US 4508724 A; (e) Geronikaki, A.; Hadjipavlou-Litina, D.; Chatziopoulos, C.; Soloupis, G. Molecules 2003, 8, 472; (f) Hesselgesser, J.; Ng, H. P.; Liang, M.; Zheng, W.; May, K.; Bauman, J. G.; Monahan, S.; Islam, I.; Wei, G. P.; Ghannam, A.; Taub, D. D.; Rosser, M.; Snider, R. M.; Morrissey, M. M.; Perez, H. D.; Horuk, R. J. Biol. Chem. 1998, 273, 15687; (g) Letavic, M. A.; Axt, M. Z.; Barberia, J. T.; Carty, T. J.; Danley, D. E.;

Geoghegan, K. F.; Halim, N. S.; Hoth, L. R.; Kamath, A. V.; Laird, E. R.; Lopresti-Morrow, L. L.; McClure, K. F.; Mitchell, P. G.; Natarajan, V.; Noe, M. C.; Pandit, J.; Reeves, L.; Schulte, G. K.; Snow, S. L.; Sweeney, F. J.; Tan, D. H.; Yu, C. H. Bioorg. Med. Chem. Lett. 2002, 12, 1387; (h) Sun, D.; Scherman, M. S.; Jones, V.; Hurdle, J. G.; Woolhiser, L. K.; Knudson, S. E.; Lenaerts, A. J.; Slayden, R. A.; McNeil, M. R.; Lee, R. E. Bioorg. Med. Chem. 2009, 17, 3588; (i) Ulrich, S.; Wurthmann, C.; Brosz, M.; Meyer, F. P. Clin. Pharmacokinet. 1998, 34, 227.
${ }^{84}$ McDougal, P. G.; Rico, J. G.; Oh, Y. I.; Condon, B. D. J. Org. Chem. 1986, 51, 3388.
${ }^{85}$ Pearson, W. H.; Kropf, J. E.; Choy, A. L.; Lee, I. Y.; Kampf, J. W. J. Org. Chem. 2007, 72, 4135.
${ }^{86}$ (a) Dekeukeleire, S.; D’hooghe, M.; Müller, C.; Vogt, D.; De Kimpe, N. New. J. Chem. 2010, 34, 1079; (b) Coantic, S.; Mouysset, D.; Mignani, S.; Tabart, M.; Stella, L. Tetrahedron 2007, 63, 3205.
${ }^{87}$ Alcaide, B.; Almendros, P.; Aragoncillo, C.; Salgado, N. R. J. Org. Chem. 1999, 64, 9596.
${ }^{88}$ (a) De Kimpe, N. In Comprehensive Heterocyclic Chemistry II, 1996, 1B, 507; (b) Cromwell, N. H.; Philips, B. Chem. Rev. 1979, 79, 331; (c) Moore, J. A.; Ayers, R. S. Chemistry of Heterocyclic compounds-Small Ring Heterocycles, 1983, 2, 1; (d) Evans, G. B.; Fumeaux, R. H.; Greatrex, B.; Murkin, A. S.; Schramm, V. L.; Tyler, P. C. J. Med. Chem. 2008, 51, 948; (e) Ikee, Y.; Hashimoto, K.; Nakashima, M.; Hayashi, K.; Sano, S.; Shiro, M.; Nagao, Y. Bioorg. Med. Chem. Lett. 2007, 17, 942; (f) Provins, L.; Christophe, B.; Danhaive, P.; Dulieu, J.; Gillard, M.; Quéré, L.; Stebbins, K. Bioorg. Med. Chem. Lett. 2007, 17, 3077; (g) Kolocouris, N.; Zoidis, G.; Foscolos, G. B.; Fytas, G.; Prathalingham, S. R.; Kelly, J. M.; Naesens, L.; De Clercq, E. Bioorg. Med. Chem. Lett. 2007, 17, 4358; (h) Yeh, C.-H.; Wu, S.-J.; Tsai, Y.-F.; Chen, H.-Y.; Lin, C.-Y. Plant Science 2007, 172, 1124.
${ }^{89}$ (a) Dang, Z.; Yang, Y.; Ji, R.; Zhang, S. Bioorg. Med. Chem. Lett. 2007, 17, 4523; (b) Koech, P. K.; Krische, M. J. Tetrahedron 2006, 62, 10594; (c) Smith, N. D.; Hayashida, J.; Rawal, V. H. Org. Lett. 2005, 7, 4309; (d) Ashton, W. T.; Sisco, R. M.; Dong, H.; Lyons, K. A.; He, H.; Doss, G. A.; Leiting, B.; Patel, R. A.; Wu, J. K.; Marsilio, F.; Thornberry, N. A.; Weber, A. E. Bioorg. Med. Chem. Lett. 2005, 15, 2253; (e) Emmett, G. C.; Cain, G. A.; Estrella, M. J.; Holler, E. R.; Piecara, J. S.; Blum, A. M.; Mical, A. J.; Teleha, C. A.; Wacker, D. A. Synthesis 2005, 92; (f) De Kimpe, N.; Boelens, M.; Contreras, J. Tetrahedron Lett. 1996, 37, 3171; (g) D’hooghe, M.; Baele, J.; Contreras, J.; Boelens, M.; De Kimpe, N. Tetrahedron Lett. 2008, 49, 6039; (h) Surmont, R.; Verniest, G.; De Groot, A.; Thuring, J. W.; De Kimpe, N. Adv. Synth. Catal. 2010, 352, 2751.
${ }^{90}$ O'Hagan, D. J. Fluorine Chem. 2010, 131, 1071.
${ }^{91}$ Tressaud, A. In Fluorine and the Environment: Agrochemicals, Archaeology, Green Chemistry and Water; Elsevier: Amsterdam, 2006.
${ }^{92}$ (a) O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308; (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
${ }^{93}$ (a) Verniest, G.; Surmont, R.; Van Hende, E.; Deweweire, A.; De Kimpe, N. J. Org. Chem. 2008, 73, 5458; (b) Van Hende, E.; Verniest, G.; Thuring, J. W.; Macdonald, G.; Deroose, F.; De Kimpe, N. Synlett 2009, 11, 1765; (c) Surmont, R.; Verniest, G.; Deweweire, A.; Thuring, J. W.; Macdonald, G.; Deroose, F.; De Kimpe, N. Synlett 2009, 12, 1933; (d) Surmont, R.; Verniest, G.; Thuring, J. W.; Macdonald, G.; Deroose, F.; De Kimpe, N. J. Org. Chem. 2010, 75, 929; (e) Surmont, R.; Verniest, G.; Thuring, J. W.; ten Holte, P.; Deroose, F.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 4514; (f) Piron, K.; Verniest, G.; Van Hende, E.; De Kimpe, N. Arkivoc 2012, v, 6; (g) Surmont, R.; Verniest, G.; De Kimpe, N. Org. Lett. 2010, 12, 4648; (h) Surmont, R.; Verniest, G.; De Kimpe, N. Org. Lett. 2009, 11, 2920.
${ }^{94}$ (a) Moens, M.; Verniest, G.; De Schrijver, M.; ten Holte, P.; Thuring, J. W.; Deroose, F.; De Kimpe, N. Tetrahedron 2012, 68, 9284; (b) Verniest, G.; Piron, K.; Van Hende, E.; Thuring, J. W.; Macdonald, G.; Deroose, F.; De Kimpe, N. Org. Biomol. Chem. 2010, 8, 2509.
${ }^{95}$ So, S.-S.; Karplus, M. J. Comput. Aided Mol. Des. 2001, 15, 613.
${ }^{96}$ Foote, K. M.; Theoclitou, M.-E.; Thomas, A. P.; Buttar, D. PCT Int. AppI. WO/2008/075068, 2008.
${ }^{97}$ Maurel, J. L.; Autin, J.-M.; Funes, P.; Newman-Tancredi, A.; Colpaert, F.; Vacher, B. J. Med. Chem. 2007, 50, 5024.
${ }^{98}$ (a) Deshpande, P. K.; Sindkhedkar, M. D.; Phansalkar, M. S.; Yeole, R. D.; Gupte, S. V.; Chugh, Y.; Shetty, N.; Bhagwat, S. S.; De Souza, N. J.; Patel, M. V. PCT Int. Appl. WO/2005/054234, 2005; (b) Blizzard, T. A.; Chen, H.; Gude, C.; Hermes, J. D.; Imbriglio, J. E.; Kim, S.; Wu, J. Y.; Ha, S.; Mortko, C. J.; Mangion, I.; Rivera, N.; Ruck, R. T.; Shevlin, M. PCT Int. Appl. WO/2009/091856, 2009.
${ }^{99}$ (a) Friary, R. J.; Kozlowski, J. A.; Shankar, B. B.; Wong, M. K. C.; Zhou, G.; Lavey, B. J.; Shih, N.-Y.; Tong, L.; Chen, L.; Shu, Y. PCT Int. Appl. WO/2003/042174, 2003; (b) Edwards, P. J.; Martina, S. L. X.; Andrews, M. J. I.; Bar, G. L. J.; Allart, B.; Burritt, A.; Tao, X.; Kroll, F. E. K. PCT Int. Appl. WO/2008/065199, 2008; (c) Aebi, J.; Binggeli, A.; Green, L.; Hartmann, G.; Maerki, H. P.; Mattei, P. US Pat. Appl. US/2011/0092698, 2011.
${ }^{100}$ (a) Yang, Z.-Q.; Barrow, J. C.; Shipe, W. D.; Schlegel, K. S.; Shu, Y.; Yang, F. V.; Lindsley, C. W.; Rittle, K. E.; Bock, M. G.; Hartman, G. D.; Uebele, V. N.; Nus, C. E.; Fox, S. V.; Kraus, R. L.; Doran, S. M.; Connolly, T. M.; Tang, C.; Ballard, J. E.; Kuo, Y.; Adarayan, E. D.; Prueksaritanont, T.; Bunting, P. B.; Woltmann, R. F.; Magee, M. M.; Koblan, K. S.; Renger, J. J. Med. Chem. 2008, 51, 6471; (b) Peng, H.; Cuervo, J. H.; Ishchenko, A.; Kumaravel, G.; Lee, W.-C.; Lugovskoy, A.; Talreja, T.; Taveras, A. G.; Xin, Z. PCT Int. Appl. WO/2010/138901, 2010.
${ }^{101}$ Clark, J. H. Chem. Rev. 1980, 80, 429.
${ }^{102}$ Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561.
${ }^{103}$ (a) Borrachero-Moya, P.; Cabrera-Escribano, F.; Gómez-Guillén, M.; Madrid-Diaz, F. Tetrahedron Lett. 1997, 38, 1231; (b) Borrachero, P.; Cabrera-Escribano, F.; Carmona, A. T.; Gómez-Guillén, M. Tetrahedron: Asymmetry 2000, 11, 2927; (c) Canova, S.; Bellosta, V.; Mignani, S.; Bigot, A.; Cossy, J. Org. Lett. 2006, 8, 2091.
${ }^{104}$ (a) Déchamps, I.; Pardo, D. G.; Cossy, J. Eur. J. Org. Chem. 2007, 4224; (b) Anxionnat, B.; Robert, B.; George, P.; Ricci, G.; Perrin, M.-A.; Pardo, D. G.; Cossy, J. J. Org. Chem. 2012, 77, 6087; (c) Déchamps, I.; Pardo, D. G.; Cossy, J. Synlett 2007, 263; (d) Drouillat, B.; Couty, F.; David, O.; Evano, G.; Marrot, J. Synlett 2008, 1345.
${ }^{105}$ Lakshmipathi, P.; Grée, D.; Grée, R. Org. Lett. 2002, 4, 451.
106 Vera-Ayoso, Y.; Borrachero, P.; Cabrera-Escribano, F.; Carmona, A. T.; Gómez-Guillén, M. Tetrahedron: Asymmetry 2004, 15, 429.
${ }^{107}$ Prostakov, N. S.; Gaivoronskaya, L. A. Russ. Chem. Rev. 1978, 47, 859.
${ }^{108}$ (a) Kornblum, N.; Jones, W. J.; Anderson, G. J. J. Am. Chem. Soc. 1959, 81, 4113; (b) AlvarezManzaneda, E.; Chahboun, R.; Cabrera, E.; Alvarez, E.; Alvarez-Manzaneda, R.; Lachkar, M.; Messouri, I. Tetrahedron Lett. 2007, 48, 989; (c) Villemin, D.; Hammadi, M. Synth. Commun. 1995, 25, 3145; (d) Dave, P.; Byun, H. S.; Engel, R. Synth. Commun. 1986, 16, 1343.
${ }^{109}$ (a) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part A: Structure and Mechanisms. Springer Science + Business Media: New York, 2007; (b) Wigfield, D. C. Tetrahedron 1979, 35, 449.
${ }^{10}$ (a) Schrittwieser, J. H.; Sattler, J.; Resch, V.; Mutti, F. G.; Kroutil, W. Curr. Opin. Chem. Biol. 2011, 15, 249; (b) Fischer, T.; Pietruszka, J. Top. Curr. Chem. 2010, 297, 1; (c) Matsuda, T.; Yamanaka, R.; Nakamura, K. Tetrahedron: Asymmetry 2009, 20, 513; (d) Moore, J. C.; Pollard, D. J.; Kosjek, B.; Devine, P. N. Acc. Chem. Res. 2007, 40, 1412; (e) de Wildeman, S. M. A.; Sonke, T.; Schoemaker, H. E.; May, O. Acc. Chem. Res. 2007, 40, 1260; (f) Kroutil, W.; Mang, H.; Edegger, K.; Faber, K. Curr. Opin. Chem. Biol. 2004, 8, 120.
${ }^{111}$ Evozyme ADH 030 from Evocatal (Germany).
${ }^{112}$ Evozyme ADH 200 from Evocatal (Germany).
${ }^{113}$ (a) Lim, S. M.; Hill, N.; Myers, A. G. J. Am. Chem. Soc. 2009, 131, 5763; (b) Alanine, A.; Buettelmann, B.; Heitz Neidhart, M.-P.; Jaeschke, G.; Pinard, E.; Wyler, R. Int. Pat. Appl. 2001, WO 2001081309 A2; (c) Kubota, D.; Ishikawa, M.; Ishikawa, M.; Yahata, N.; Murakami, S.; Fujishima, K.; Kitakaze, M.; Ajito, K. Bioorg. Med. Chem. 2006, 14, 4158; (d) Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron 2008, 64, 6675
${ }^{114}$ (a) Alcaide, B.; Almendros, P.; del Campo, T. M. Angew. Chem. Int. Ed. 2007, 46, 6684; (b) Zhang, Z.; Zhang, Q.; Ni, Z.; Liu, Q. Chem. Commun. 2010, 46, 1269; (c) Alcaide, B.; Almendros, P.; del Campo, T. M.; Soriano, E.; Marco-Contelles, J. L. Chem. Eur. J. 2009, 15, 1901; (d) Alcaide, B.; Almendros, P.; del Campo, T. M.; Carrascosa, R. Eur. J. Org. Chem. 2010, 4912; (e) Ram, R. N.; Kumar, N.; Singh, N. J. Org. Chem. 2010, 75, 7408; (f) Del Buttero, P.; Molteni, G.; Papagni, A.; Pilati, T. Tetrahedron: Asymmetry 2005, 16, 971; (g) Alcaide, B.; Rodríguez-Campos, I. M.; Rodríguez-López, J.; RodríguezVicente, A. J. Org. Chem. 1999, 64, 5377; (h) Alcaide, B.; Almendros, P.; Luna, A.; Torres, M.R. Org. Biomol. Chem. 2008, 6, 1635; (i) Sánta, Z.; Nagy, J.; Nyitrai, J. Tetrahedron: Asymmetry 2006, 17, 3111; (j) He, M.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 418; (k) Gómez-Gallego, M.; Manchenõ, M. J.; Sierra, M. A. Tetrahedron 2000, 56, 5743.
${ }^{115}$ Singh, R.; Cooper, R. D. G. Tetrahedron 1994, 50, 12049.
${ }^{116}$ (a) Heinze-Krauss, I.; Angehrn, P.; Charnas, R. L.; Gubernator, K.; Gutknecht, E.-M.; Hubschwerlen, C.; Kania, M.; Oefner, C.; Page, M. G. P.; Sogabe, S.; Specklin, J.-L.; Winkler, F. J. Med. Chem. 1998, 41, 3961; (b) Hubschwerlen, C.; Charnas, R.; Heinze, I.; Gubernator, K. US Patent US 6,566,355 B1, 2003.
${ }^{117}$ Ren, X.-F.; Konaklieva, M. I.; Shi, H.; Dickey, S.; Lim, D. V.; Gonzalez, J.; Turos, E. J. Org. Chem. 1998, 63, 8898.
${ }^{118}$ (a) Nivsarkar, M.; Thavaselvam, D.; Prasanna, S.; Sharma, M.; Kaushik, M. P. Bioorg. Med. Chem. Lett. 2005, 15, 1371; (b) Ruhela, D.; Chatterjee, P.; Vishwakarma, R. A. Org. Biomol. Chem. 2005, 3, 1043; (c) Hogan, P. C.; Corey, E. J. J. Am. Chem. Soc. 2005, 127, 15386.
${ }^{19}$ (a) Saleem, M.; Kim, H. J.; Ali, M. S.; Lee, Y. S. Nat. Prod. Rep. 2005, 22, 696; (b) Paquette, L. A. Chemtracts 2002, 15, 345.
${ }^{120}$ For reviews, see: (a) Cole, D. C. Tetrahedron 1994, 50, 9517; (b) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58, 7991.
${ }^{121}$ (a) von Nussbaum, F.; Spiteller, P. Highlights in Bioorganic Chemistry; Schmuck, C.; Wennemers, H.; Eds.; Wiley-VCH: Weinheim, 2004; (b) Shimamoto, K.; Shigeri, Y.; Yasuda-Kamatani, Y.; Lebrun, B.; Yumoto, N.; Nakajima, T. Bioorg. Med. Chem. Lett. 2000, 10, 2407.
${ }^{122}$ (a) Lelais, G.; Seebach, D. Biopolymers (Peptide Science) 2004, 76, 206; (b) Gademann, K.; Hintermann, T.; Schreiber, J. V. Curr. Med. Chem. 1999, 6, 905; (c) Fülop, F.; Martinek, T. A.; Toth, G. K. Chem. Soc. Rev. 2006, 35, 323.
${ }^{123}$ (a) Kuhl, A.; Hahn, M. G.; Dumić, M.; Mittendorf, J. Amino Acids 2005, 29, 89; (b) Miller, J. A.; Nguyen, S. T. Mini-Rev. Org. Chem. 2005, 2, 39.
${ }^{124}$ Tomatsu, K.; Oki, T.; Hirano, M.; Numamta, K.; Kamei, H. J. Antibiot. 1989, 42, 1756.
${ }^{125}$ Goto, T.; Toya, Y.; Ohgi, T.; Kondo, T. Tetrahedron Lett. 1982, 23, 1271.
${ }^{126}$ Benedek, G.; Palkó, M.; Wéber, E.; Martinek, T. A.; Forró, E.; Fülöp, F. Eur. J. Org. Chem. 2008, 3724.
${ }^{127}$ (a) Kunisch, F.; Mittendorf, J.; Plempel, M. Eur. Pat. Appl. 1993, EP 538688 A1; Chem. Abstr. 1993, 119, 139065; (b) Basak, R. K.; Dharuman, S.; Vankar, Y. D. Tetrahedron Lett. 2012, 53, 4283; (c) Mittendorf, J.; Kunisch, F.; Matzke, M.; Militzer, H.-C.; Schmidt, A.; Schönfeld, W. Bioorg. Med. Chem. Lett. 2003, 13, 433; (d) Bunnage, M. E.; Davies, S. G.; Roberts, P. M.; Smith, A. D.; Withey, J. M. Org. Biomol. Chem. 2004, 2, 2763.
${ }^{128}$ Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 12, 1813.
${ }^{129}$ (a) Watson, I. D. G.; Yu, L.; Yudin, A. K. Acc. Chem. Res. 2006, 39, 194; (b) Fantauzzi, S.; Gallo, E.; Caselli, A.; Piangiolino, C.; Ragaini, F.; Re, N.; Cenini, S. Chem. Eur. J. 2009, 15, 1241; (c) Tsang, D. S.; Yang, S.; Alphonse, F.-A.; Yudin, A. K. Chem. Eur. J. 2008, 14, 886; (d) Pellissier, H. Tetrahedron 2010, 66, 1509; (e) Kametani, T.; Honda, T. Adv. Heterocycl. Chem. 1986, 39, 181.
${ }^{130}$ For selected examples, see: (a) Kanno, O.; Kawamoto, I. Tetrahedron 2000, 56, 5639; (b) Hanessian, S.; Reddy, B. Tetrahedron 1999, 55, 3427; (c) Biondi, S.; Pecunioso, A.; Busi, F.; Contini, S. A.; Donati, D.; Maffeis, M.; Pizzi, D. A.; Rossi, L.; Rossi, T.; Sabbatini, F. M. Tetrahedron 2000, 56, 5649; (d) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Gómez-Campillos, G. Eur. J. Org. Chem. 2011, 364; (e) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. J. Org. Chem. 2007, 72, 1604; (f) Del Buttero, P.; Molteni, G.; Papagni, A.; Pilati, T. Tetrahedron 2003, 59, 5259; (g) Paukner, S.; Hesse, L.; Preželj, A.; Šolmajer, T.; Urleb, U. Antimicrob. Agents Chemother. 2009, 53, 505; (h) Wise, R.; Andrews, J. M.; Brenwald, N. Antimicrob. Agents Chemother. 1996, 40, 1248; (i) Tamura, S.; Miyazaki, S.; Tateda, K.; Ohno, A.; Ishii, Y.; Matsumoto, T.; Furuya, N.; Yamaguchi, K. Antimicrob. Agents Chemother. 1998, 42, 1858.
${ }^{131}$ (a) Alcaide, B.; Aly, M. F.; Rodriguez, C.; Rodriguez-Vicente, A. J. Org. Chem. 2000, 65, 3453; (b) Grigg, R.; Thornton-Pett, M.; Xu, J.; Xu, L.-H. Tetrahedron 1999, 55, 13841.
${ }^{132}$ (a) Alcaide, B.; Almendros, P. Chem. Soc. Rev. 2001, 30, 226; (b) Alcaide, B.; Pardo, C.; Saez, E. Synlett 2002, 85; (c) Alcaide, B.; Almendros, P.; Pardo, C.; Rodriguez-Ranera, C.; Rodriguez-Vicente, A. J. Org. Chem. 2003, 68, 3106; (d) Alcaide, B.; Almendros, P.; Rodríguez-Acebes, R. J. Org. Chem. 2005, 70, 2713; (e) Alcaide, B.; Almendros, P.; Pardo, C.; Rodriguez-Ranera, C.; Rodriguez-Vicente, A. Chem. Asian J. 2009, 4, 1604.
${ }^{133}$ Alcaide, B.; Martín-Cantalejo, Y.; Rodríguez-López, J.; Sierra, M. A. J. Org. Chem. 1993, 58, 4767.
${ }^{134}$ Alcaide, B.; Almendros, P.; Cabrero, G.; Callejo, R.; Ruiz, M. P.; Arnó, M.; Domingo, L. R. Adv. Synth. Catal. 2010, 352, 1688.
${ }^{135}$ (a) Berson, J. A.; Gajewski, J. J.; Donald, D. S. J. Am. Chem. Soc. 1969, 91, 5550; (b) Berson, J. A.; Poonian, M. S.; Libbey, W. J. J. Am. Chem. Soc. 1969, 91, 5567; (c) Berson, J. A.; Donald, D. S.; Libbey, W. J. J. Am. Chem. Soc. 1969, 91, 5580; (d) Berson, J. A.; Wege, D.; Clarke, G. M.; Bergman, R. G. J. Am. Chem. Soc. 1969, 91, 5594; (e) Berson, J. A.; Bergman, R. G.; Clarke, G. M.; Wege, D. J. Am. Chem. Soc. 1969, 91, 5601; (f) Berson, J. A.; Luibrand, R. T.; Kundu, N. G.; Morris, D. G. J. Am. Chem. Soc. 1971, 93, 3075; (g) Collins, J. C.; Glover, I. T.; Eckart, M. D.; Raaen, V. F.; Benjamin, B. M.; Benjaminov, B. S. J. Am. Chem. Soc. 1972, 94, 899; (h) Collins, C. J. Chem. Soc. Rev. 1975, 4, 251; (i) Kirmse, W.; Guenther, B.-R. J. Am. Chem. Soc. 1978, 100, 3619; (j) Van Brabandt, W.; De Kimpe, N. J. Org. Chem. 2005, 70, 8717.
${ }^{136}$ (a) Krief, A.; Froidbise, A. Tetrahedron 2004, 60, 7637; (b) Hong, J. H.; Oh, C.-H.; Cho, J.-H. Tetrahedron 2003, 59, 6103; (c) Mendgen, T.; Scholz, T.; Klein, C. D. Bioorg. Med. Chem. Lett. 2010, 20, 5757.
${ }^{137}$ Piens, N. Master thesis 2012, Faculty of Bioscience Engineering, Ghent University.
${ }^{138}$ Wang, H.-F.; Li, P.; Cui, H.-F.; Wang, X.-W.; Zhang, J.-K.; Liu, W.; Zhao, G. Tetrahedron 2011, 67, 1774.
${ }^{139}$ Aubert, C.; Betschmann, P.; Eichberg, M. J.; Gandon, V.; Heckrodt, T. J.; Lehmann, J.; Malacria, M.; Masjost, B.; Paredes, E.; Vollhardt, K. P. C.; Whitener, G. D. Chem. Eur. J. 2007, 13, 7443.
${ }^{140}$ Wijtmans, R.; Vink, M. K. S.; Schoemaker, H. E.; Van Delft, F. L.; Blaauw, R. H.; Rutjes, F. P. J. T. Synthesis 2004, 641.
${ }^{141}$ Trstenjak, U.; Ilaš, J.; Kikelj, D. Synthesis 2012, 44, 3551.
${ }^{142}$ Kazmierski, W. M.; Furfine, E.; Spaltenstein, A.; Wright, L. L. Bioorg. Med. Chem. Lett. 2006, 16, 5226.
${ }^{143}$ Horwell, D. C.; Morrell, A. I.; Roberts, E. Bioorg. Med. Chem. Lett. 1996, 6, 165.
${ }^{144}$ Nakamura, M.; Miyashita, H.; Yamaguchi, M.; Shirasaki, Y.; Nakamura, Y.; Inoue, J. Bioorg. Med. Chem. 2003, 11, 5449.
${ }^{145}$ He, Q.; Zhu, X.; Shi, M.; Zhao, B.; Zhao, J.; Zhang, S.; Miao, J. Bioorg. Med. Chem. 2007, 15, 3889. ${ }^{146}$ Liang, P.-H.; Hsin, L.-W.; Cheng, C.-Y. Bioorg. Med. Chem. 2002, 10, 3267.
${ }^{147}$ (a) Maslennikov, I. G.; Eremin, K. I. Russ. J. Gen. Chem. 2011, 81, 1741; (b) Furin, G. G.; Pressman, L. S.; Pokrovsky, L. M.; Krysin, A. P.; Chi, K.-W. J. Fluorine Chem. 2000, 106, 13.
${ }^{148}$ Ciocoiu, C. C.; Ravna, A. W.; Sylte, I.; Rustan, A. C.; Hansen, T. V. Bioorg. Med. Chem. 2011, 19, 6982.
${ }^{149}$ (a) Cao, Y.; Suzuki, K.; Tajima, T.; Fuchigami, T. Tetrahedron 2005, 61, 6854; (b) Yamamoto, T.; Suzuki, Y.; Ito, E.; Tokunaga, E.; Shibata, N. Org. Lett. 2011, 13, 470; (c) Reddy, D. S.; Shibata, N.;

Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. Angew. Chem. Int. Ed. 2008, 47, 164; (d) Fang, Y.-Q.; Bio, M. M.; Hansen, K. B.; Potter, M. S.; Clausen, A. J. Am. Chem. Soc. 2010, 132, 15525; (e) Yin, B.; Wang, L.; Inagi, S.; Fuchigami, T. Tetrahedron 2010, 66, 6820; (f) Bailey, P. D.; Boa, A. N.; Clayson, J. Tetrahedron 2009, 65, 1724; (g) Mohar, B.; Baudoux, J.; Plaquevent, J.-C.; Cahard, D. Angew. Chem. Int. Ed. 2001, 40, 4214; (h) Man, H.-W.; Corral, L. G.; Stirling, D. I.; Muller, G. W. Bioorg. Med. Chem. Lett. 2003, 13, 3415.
${ }^{150}$ (a) van Oosten, E. M.; Gerken, M.; Hazendonk, P.; Shank, R.; Houle, S.; Wilson, A. A.; Vasdev, N. Tetrahedron Lett. 2011, 52, 4114; (b) Hartman, M. C. T.; Coward, J. K. J. Am. Chem. Soc. 2002, 124, 10036; (c) Giuffredi, G. T.; Bernet, B.; Gouverneur, V. Eur. J. Org. Chem. 2011, 3825; (d) Jüschke, R.; Häsel, P.; Sartori, P. J. Fluorine Chem. 1998, 90, 77.
${ }^{151}$ (a) Alphonse, F.-A.; Routier, S.; Coudert, G.; Mérour, J.-Y. Heterocyles 2001, 55, 925; (b) Easton, C. J.; Pitt, M. J. Tetrahedron Lett. 1990, 31, 3471; (c) Kawasaki, T.; Ogawa, A.; Terashima, R.; Saheki, T.; Ban, N.; Sekiguchi, H.; Sakaguchi, K.; Sakamoto, M. J. Org. Chem. 2005, 70, 2957.
${ }^{152}$ Dejaegher, Y.; Denolf, B.; Stevens, C. V.; De Kimpe, N. Synthesis 2005, 193.
${ }^{153}$ De Blieck, A.; Stevens, C. V. Synlett 2011, 1748.
${ }^{154}$ Kim, J. Y.; Rhee, H.; Kim, M. J. Korean Chem. Soc. 2002, 46, 479.
${ }^{155}$ Fleming, B.; Bolker, H. I. Can. J. Chem. 1974, 52, 888.
${ }^{56}$ (a) Alcaide, B.; Almendros, P.; del Campo, T. M.; Rodríguez-Acebes, R. Tetrahedron Lett. 2004, 45, 6429; (b) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Callejo, R.; Ruiz, M. P.; Torres, M. R. Eur. J. Org. Chem. 2012, 2359; (c) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Rodríguez-Acebes, R. J. Org. Chem. 2001, 66, 5208.
${ }^{157}$ (a) Palomo, C.; Aizpurua, J. M.; Miranda, J. I.; Mielgo, A.; Odriozola, J. M. Tetrahedron Lett. 1993, 34, 6325; (b) Palomo, C.; Arrieta, A.; Cossio, F. P.; Aizpurua, J. M.; Mielgo, A.; Aurrekoetxea, N. Tetrahedron Lett. 1990, 31, 6429.
${ }^{158}$ Smid, P.; Coolen, H. K. A. C.; Keizer, H. G.; Van Hes, R.; De Moes, J.-P.; Den Hartog, A. P.; Stork, B.; Plekkenpol, R. H.; Niemann, L. C.; Stroomer, C. N. J.; Tulp, M. T. M.; Van Stuivenberg, H. H.; McCreary, A. C.; Hesselink, M. B.; Herremans, A. H. J.; Kruse, C. G. J. Med. Chem. 2005, 48, 6855.
${ }^{159}$ Prashanth, M. K.; Revanasiddappa, H. D.; Rai, K. M. L.; Veeresh, B. Bioorg. Med. Chem. Lett. 2012, 22, 7065.
${ }^{160}$ Venkat Narsaiah, A.; Narsimha, P. Med. Chem. Res. 2012, 21, 538.
${ }^{161}$ Keating, G. M. Drugs 2008, 68, 2483.
${ }^{162}$ Dong, M.-X.; Lu, L.; Li, H.; Wang, X.; Lu, H.; Jiang, S.; Dai, Q.-Y. Bioorg. Med. Chem. Lett. 2012, 22, 3284.
${ }^{163}$ Chen, Y.; Wang, G.; Xu, X.; Liu, B.-F.; Li, J.; Zhang, G. Molecules 2011, 16, 5785.
${ }^{164}$ Baxter, C. A.; Cleator, E.; Krska, S. W.; Sheen, F.; Stewart, G.; Strotman, N.; Wallace, D. J.; Wright, T. PCT Int. Appl. 2012, WO2012148553.
${ }^{165}$ Cho, Y. S.; Min, S. J.; Bae, A. N.; Lee, J. G.; Lim, H. W.; Choi, G. H.; Seo, S. H.; Song, C. M.; Ku, S. J. Repub. Korean Kongkae Taeho Kongbo 2012, KR2012097288.
${ }^{166}$ (a) Tong, Y.; Penning, T. D.; Florjancic, A. S.; Miyashiro, J.; Woods, K. W. US Pat. Appl. 2012, US20120220572; (b) Rice, K. PCT Int. Appl. 2012, WO2012074869.
${ }^{167}$ Regueiro-Ren, A.; Liu, Z.; Swidorski, J.; Sin, N.; Venables, B. L.; Sit, S.-Y.; Chen, Y.; Chen, J.; Meanwell, N. A. PCT Int. Appl. 2012, WO2012106190.
${ }^{168}$ Wu, Y.; Ma, L.-X.; Niu, T.-W.; Cui, X.; Piao, H.-R. Bioorg. Med. Chem. Lett. 2012, 22, 4229.
${ }^{169}$ Protter, A. A.; Chakravarty, S. PCT Int. AppI. 2012, WO2012112961.

## Curriculum Vitae

## Personalia

Karen Mollet<br>${ }^{\circ}$ Gent, 13 april 1986

Gontrodestraat 147
9050 Gentbrugge
0479/48.15.21
karen.mollet@UGent.be; karenmollet@gmail.com

## Education

1998-2004: Don Boscocollege, Zwijnaarde<br>Science-Mathematics<br>2004-2009: Ghent University<br>Bio-engineer in Chemistry (Highest Distinction)<br>Thesis: 'Application of azetidin-2-ones for the stereoselective synthesis of 4-aryl-1,3-oxazinanes and 2-aryl-3-(hydroxymethyl)aziridines'<br>Promoters: Prof. Dr. ir. Norbert De Kimpe<br>Prof. Dr. ir. Matthias D'hooghe

## Scientific career

2009-2013: Aspirant of the Research Foundation-Flanders (FWO-Vlaanderen)
Department of Sustainable Organic Chemistry and Technology
Faculty of Bioscience Engineering
Ghent University
Subject of this PhD-thesis: 'Application of functionalized $\beta$-lactams for the selective construction of new aza- and oxaheterocyclic systems'

Promoters: Prof. Dr. ir. Norbert De Kimpe Prof. Dr. ir. Matthias D’hooghe

## Publications in International Journals with Peer-Review (denominated "a1" in Belgium)

- D’hooghe, M.; Dekeukeleire, S.; Mollet, K.; Lategan, C.; Smith, P. J.; Chibale, K.; De Kimpe, N. Synthesis of novel 2-alkoxy-3-amino-3-arylpropan-1-ols and 5-alkoxy-4-aryl-1,3-oxazinanes with antimalarial activity. J. Med. Chem. 2009, 52, 4058.
- D’hooghe, M.; Mollet, K.; Dekeukeleire, S.; De Kimpe, N. Stereoselective synthesis of transand cis-2-aryl-3-(hydroxymethyl)aziridines through transformation of 4-aryl-3-chloro- $\beta$ lactams and study of their ring opening. Org. Biomol. Chem. 2010, 8, 607.
- Mollet, K.; D’hooghe, M.; De Kimpe, N. Transformation of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones into 3-aryl-2-(ethylamino)propan-1-ols via intermediate 1-(1-aryl-2-chloro-3-hydroxypropyl)aziridines and trans-2-aryl-3-(hydroxymethyl)aziridines. J. Org. Chem. 2011, 76, 264.
- Mollet, K.; Catak, S.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. Stereoselective synthesis of cis-3,4-disubstituted piperidines through ring transformation of 2-(2-mesyloxyethyl)azetidines. J. Org. Chem. 2011, 76, 8364.
- Mollet, K.; Broeckx, L.; D’hooghe, M.; De Kimpe, N. Synthesis of stereodefined 3,4disubstituted piperidines through rearrangement of 2-(2-bromo-1,1dimethylethyl)azetidines. Heterocycles 2012, 84, 431.
- D’hooghe, M.; Vandekerckhove, S.; Mollet, K.; Vervisch, K.; Dekeukeleire, S.; Lehoucq, L.; Lategan, C.; Smith, P. J.; Chibale, K.; De Kimpe, N. Synthesis of 2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and evaluation of their antimalarial activity. Beilstein J. Org. Chem. 2011, 7, 1745.
- Mollet, K.; D’hooghe, M.; De Kimpe, N. Stereoselective synthesis of bicyclic tetrahydrofuranfused $\beta$-lactams and their conversion into methyl cis-3-aminotetrahydrofuran-2-carboxylates. Tetrahedron 2012, 68, 10787.
- D’hooghe, M.; Mollet, K.; De Vreese, R.; Jonckers, T.; Dams, G.; De Kimpe, N. Design, synthesis and antiviral evaluation of purine- $\beta$-lactam and purine-aminopropanol hybrids. J. Med. Chem. 2012, 55, 5637.
- Mollet, K.; Goossens, H.; Piens, N.; Catak, S.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. Synthesis of 2-hydroxy-1,4-oxazin-3-ones through ring transformation of 3-hydroxy-4-(1,2-dihydroxyethyl)- $\beta$-lactams and a study of their reactivity. Chem. Eur. J. 2013, 19, 3383.
- Mollet, K.; D’hooghe, M.; De Kimpe, N. Synthesis of six-membered azaheterocyclic compounds by means of the $\beta$-lactam synthon method. Mini-Rev. Org. Chem. 2013, 10, 1.
- Singh, G. S.; Mollet, K.; D’hooghe, M.; De Kimpe, N. Epihalohydrins in organic synthesis. Chem. Rev. 2013, 113, 1441.
- Mollet, K.; D’hooghe, M.; Broeckx, L.; Danneels, B.; Desmet, T.; De Kimpe, N. Synthesis of piperidin-4-ones starting from 2-(2-bromo-1,1-dimethylethyl)azetidines and 2-(2mesyloxyethyl)azetidines through a ring expansion-oxidation protocol. Tetrahedron 2013, 69, 2603.


## Active Participation at Conferences

- Mollet, K.; D’hooghe, M.; Dekeukeleire, S.; De Kimpe, N. Stereoselective synthesis of transand cis-2-aryl-3-(hydroxymethyl)aziridines through transformation of 4-aryl-3-chloro- $\beta$ lactams and study of their ring opening (poster). The $13^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting P37. (December 3-4, 2009, Spa)
- Mollet, K.; D’hooghe, M.; De Kimpe, N. Stereoselective synthesis of 2-aryl-3(hydroxymethyl)aziridines from 4-aryl-3-chloro- $\beta$-lactams and study of their ring opening (poster). BOSS XII $12^{\text {th }}$ Belgian Organic Synthesis Symposium P122. (July 11-16, 2010, Namur)
- Mollet, K.; D'hooghe, M.; De Kimpe, N. Transformation of trans-4-aryl-3-chloro-1-(2-chloroethyl)azetidin-2-ones into 3-aryl-2-(ethylamino)propan-1-ols via 1-(1-aryl-2-chloro-3hydroxypropyl)aziridines and trans-2-aryl-3-(hydroxymethyl)aziridines (poster). The $14^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting P41. (December 2-3, 2010, Spa)
- Mollet, K.; Catak, S.; Waroquier, M.; Van Speybroeck, V.; D’hooghe, M.; De Kimpe, N. Stereoselective synthesis of cis-3,4-disubstituted piperidines through ring transformation of 2-(2-mesyloxyethyl)azetidines (poster). The $15^{\text {th }}$ Sigma-Aldrich Organic Synthesis Meeting P37. (December 1-2, 2011, Spa)
- Mollet, K.; D’hooghe, M.; De Kimpe, N. Ring enlargement of 2-(2-bromo-1,1dimethylethyl)azetidines and 2-(2-mesyloxyethyl)azetidines towards cis-3,4-disubstituted piperidines (oral communication). Chemistry Conference for Young Scientists 2012 P165. (March 1-2, 2012, Blankenberge)
- Mollet, K.; D’hooghe, M.; De Kimpe, N. Stereoselective synthesis of cis-3,4-disubstituted piperidines through ring transformation of 2-(2-bromo-1,1-dimethylethyl)azetidines and 2-(2mesyloxyethyl)azetidines (oral communication). $12^{\text {th }}$ Eurasia Conference on Chemical Sciences P52. (April 16-21, 2012, Dassai Bay, Corfu, Greece)

