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Voorwoord - Foreword

Algemene relativiteit wordt algemeen aanvaard als dé meest succesvolle the-

orie voor de zwaartekracht. Wiskundig wordt deze theorie beschreven door

Einsteins veldvergelijking, een niet-lineaire tensoriële di�erentiaalvergelijk-

ing, afgeleid en op papier gezet door Albert Einstein en voor het eerst

gepubliceerd in (Einstein, 1915).

Oplossingen vinden van deze vergelijkingen is geen eenvoudige taak. Een

heleboel `exacte oplossingen' zijn terug te vinden in het referentieboek Exact

solutions of Einstein's �eld equations (Stephani et al., 2003). Soms worden

ze gezien als zuiver wiskundige objecten, zonder fysische toepassingen. Een

aantal oplossingen heeft nochtans een duidelijke fysische betekenis, zoals de

Schwarzschild en Kerr oplossingen voor zwarte gaten of Friedmanns oplos-

singen voor kosmologie.

In deze thesis gaan we op zoek naar `nieuwe' exacte oplossingen, die aan

bepaalde fysische voorwaarden voldoen.

De integratie van de Newman Tamburino Einstein Maxwelloplossingen werd

uitgevoerd in samenwerking met mijn promotor, Prof. Norbert Van den

Bergh. Ook het probleem van de Petrov type D Kundtoplossingen in aan-

wezigheid van een zuiver stralingsveld hebben we samen aangepakt. Bij

dit laatste kreeg ik ook hulp van Lode Wylleman. De onderwerpen die

voorkomen in de overige hoofdstukken, namelijk het controleren en ver-

beteren van de Newman Tamburino vacuümoplossingen en de Petrov type

D Robinson Trautmanoplossingen in een gealigneerd zuivere stalingsveld,

zijn persoonlijk werk. Dit geldt ook voor de classi�catie van Kundtme-

trieken.
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General relativity is generally accepted to be the most succesful theory of

gravitation. It is mathematically described by the Einstein's �eld equation,

a tensorial equation, which translates into a system of non-linear, coupled

partial di�erential equations when expressed in coordinates or in a frame,

which was derived by Albert Einstein and which was published for the �rst

time in (Einstein, 1915).

Finding solutions of these equations is not an easy task. A lot of `exact

solutions' can be found in the reference book Exact solutions of Einstein's

�eld equations (Stephani et al., 2003). Sometimes these solutions are seen as

purely mathematical objects, without physical applications. However, some

of the solutions do have a clear physical meaning, such as the Schwarzschild

and Kerr solutions for black holes or Friedmann's solutions for cosmology.

In this thesis, we look for `new' exact solutions, that satisfy certain physical

conditions.

The integration of the Newman Tamburino Einstein Maxwell solutions is

joint work with my supervisor, Prof. Norbert Van den Bergh. Also solving

the problem of the Petroc type D Kundt solutions in the presence of an

aligned pure radiation �eld, is something we did together. For the latter

I also got some help from Lode Wylleman. The subjects that are handled

in the remaining chapters, i.e. re-examining and correcting the Newman

Tamburino vacuum solutions and the Petrov type D Robinson Trautman

solutions in an aligned pure radiation �eld, are personal work of the author,

as is also the case for the classi�cation of the Kundt metrics.

Graag wil ik in dit voorwoord een aantal mensen bedanken:

In this foreword, I would also like to thank some people:

Mijn promotor en copromotor Prof. Norbert Van den Bergh en Prof. Frans

Cantrijn, voor hun steun en aanmoedigingen tijdens het werken aan deze

thesis. Norberts enthousiasme was steeds een bron van inspiratie. Ook wan-

neer het op persoonlijk vlak moeilijker ging, kon ik steeds bij hen terecht.
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Het was ook steeds aangenaam om met Norbert samen te werken, samen

brachten we de integratie van de Newman Tamburino Einstein Maxwell en

van de Kundt oplossingen in de aanwezigheid van een zuiver stralingsveld

tot een mooi resultaat.

Voor het oplossen van dit laatste probleem wil ik ook graag Lode Wylleman

bedanken. Zijn bewijs, opgenomen in deze thesis (zie hoofdstuk 5), is een

stuk korter dan mijn oorspronkelijke berekeningen!

I would also like to thank Jan Åman, who revealed to us the secrets of

CLASSI, and who was always willing to help us with the classi�cation of

metrics.

I thank the reading committee for examining this work and for their valuable

comments.

Vrienden en collega's. Om niemand te vergeten, ga ik mij niet aan een

opsomming wagen, maar aan allen die ik in de voorbije jaren heb leren

kennen, en die mijn leven voller en rijker hebben gemaakt: een welgemeende

en dikke merci! In het bijzonder wil ik toch Brian Edgar vermelden. Hoewel

we elkaar niet vaak ontmoetten, waren onze momenten samen toch tegelijk

leerrijk en rustgevend. We zullen je missen, Brian!

Tenslotte wil ik ook mijn ouders en grootouders, broers, zus en vriend be-

danken, omdat ze er steeds zijn als ik hen nodig heb, en ze mij opvangen

wanneer het moeilijker gaat. Wij hebben samen een aantal bewogen jaren

achter de rug. Moeilijke momenten, zoals het verlies van tante Trees en

Femke, mijn gezondheidsproblemen en die van Henri'tje, werden even ver-

geten, of toch verlicht bij de feestelijkheden van het voorbije jaar: de trouw

van Ans en Fre, die van Thomas en Annelies en die van Matthias en Moni

en de geboorte van die twee prachtige kereltjes, Henri en Nathan. Ik weet

dat ik dit niet vaak genoeg zeg of toon, maar ik zie jullie graag en kan jullie

niet genoeg bedanken voor wat jullie voor mij doen.

Liselotte De Groote
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Samenvatting

Einsteins algemene relativiteitstheorie is algemeen aanvaard als zijnde de

meest succesvolle theorie voor de zwaartekracht. Wiskundig wordt deze

theorie beschreven door de veldvergelijkingen

Rab −
1

2
Rgab + Λgab = κ0Tab. (1)

Dit is een tensoriële vergelijking die omgezet wordt in een verzameling niet-

lineaire, gekoppelde partiële di�erentiaalvergelijkingen, wanneer ze wordt

uitgedrukt in coördinaten. Het basisingrediënt hierin is de metrische tensor

gab, waaruit elk ander element kan afgeleid worden. Oplossingen vinden

van deze vergelijkingen is niet eenvoudig. Eigenlijk is om het even welke

metriek een oplossing van (1), zolang er geen voorwaarden opgelegd worden

aan de energie-momenttensor. In dat geval is (1) immers niet meer dan een

de�nitie voor Tab. We zullen dus eerst veronderstellingen koppelen aan Tab.

Bovendien zullen we ook voorwaarden opleggen aan de metriek, vooraleer

we de veldvergelijkingen `oplossen'.

Dit soort veronderstellingen en voorwaarden laat ons toe de oplossingen te

verzamelen, te catalogeren in verschillende klassen. In deze thesis kijken we

enerzijds naar oplossingen uit de Newman Tamburinoklasse, en anderzijds

naar oplossingen die behoren tot de zogenaamde Kundtklasse.

In 1960 publiceerden Robinson en Trautman de algemene oplossing voor de

familie van metrieken met hyperoppervlak orthogonale en bijgevolg niet-

roterende geodetische nul-congruenties, mét expansie maar in de afwezig-

heid van afschuiving (shear) (Robinson and Trautman, 1960).

Newman en Tamburino (1962) poogden deze klasse van oplossingen uit te

breiden door afschuiving toe te laten, in de hoop hiermee een meer algemene
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oplossing te vinden. Eisen dat de afschuiving verschilt van nul, legt echter

extra voorwaarden op aan het systeem, en daardoor kunnen de Robinson

Trautmanoplossingen niet gevonden worden als limietgevallen van de New-

man Tamburino-oplossingen.

Kundt (1961) bestudeerde oplossingen met geodetische nulcongruenties die

niet expanderen, roteren noch afschuiven.

Deze thesis is opgedeeld in zes hoofdstukken: in hoofdstuk één geven we

een korte inleiding met wiskundige achtergrond en woordenschat, die ge-

bruikt zal worden in de rest van de thesis. In het bijzonder worden in dit

hoofdstuk het Newman Penrose (NP) en het Geroch Held Penrose (GHP)

formalisme aangebracht. Verder gaan we hier ook in op het equivalen-

tieprobleem: gegeven twee metrieken in verschillende coördinaten, hoe kan

je besluiten of ze al dan niet lokaal equivalent zijn? Een handig hulpmiddel

hierbij is het classi�catieprogramma CLASSI, geschreven door Jan Åman.

Voorbeelden en toepassingen komen later in de tekst aan bod.

In het tweede hoofdstuk herbekijken we zuivere stralingsoplossingen van

Petrov typeD, die behoren tot de Robinson Trautmanfamilie. Dit probleem

werd oorspronkelijk onderzocht door Frolov en Khlebnicov in 1975. Hun

oplossingen zijn opgedeeld in drie verschillende klassen, A, B en C, waarbij

zowel de A- als B-klasse nog verder opgedeeld zijn (in respectievelijk drie

en vijf subklassen). In hoofdstuk twee van deze thesis merken we enerzijds

op dat de A-klasse eigenlijk overbodig is aangezien de metrieken AI, AII en

AIII gevonden kunnen worden als speciale gevallen van metrieken BI, BII

en BV, respectievelijk, en anderzijds herintegreren we de C-klasse. Deze

laatste is incorrect in het oorspronkelijk artikel, en de verbeterde versie

vindt u terug in het tweede hoofdstuk van dit werk.

Het derde hoofdstuk van deze thesis behandelt ons onderzoek naar New-

man Tamburino-oplossingen in aanwezigheid van een gealigneerd Einstein

Maxwellveld. Dit probleem hebben we volledig opgelost. We tonen ook aan

dat er geen zogenaamd `cilindrische' oplossingen bestaan in de aanwezigheid

van een niet-gealigneerd Einstein Maxwellveld. De uitdaging blijft bestaan

om te kijken naar zogenaamde `sferische' Newman Tamburino-oplossingen

in de aanwezigheid van een niet-gealigneerd Einstein Maxwellveld.
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Het vierde hoofdstuk is gewijd aan vacuümoplossingen uit de Newman Tam-

burinoklasse. Deze oplossingen werden oorspronkelijk gepubliceerd in (New-

man and Tamburino, 1962), maar de aldaar vermelde cilindrische klasse is

niet correct, en bovendien is het ook mogelijk om de (correcte) oplossing

op een elegantere manier op te schrijven. Daarnaast tonen we ook aan

dat de sferische oplossingen op een compactere manier kunnen voorgesteld

worden. Ten slotte tonen we ook het verband aan tussen de cilindrische

Einstein Maxwelloplossingen en de cilindrische vacuümoplossingen.

Vooraleer we onze conclusies geven in hoofdstuk zes, behandelen we eerst

nog Petrov type D zuivere stralingsoplossingen behorend tot de Kundtfami-

lie (hoofdstuk vijf). Ook hier worden nieuwe metrische families voorgesteld.

In dit hoofdstuk vindt u ook de volledige classi�catie van deze lijnelementen;

de CLASSI-input-bestanden zijn gegroepeerd in de appendix.

In hoofdstukken twee tot en met vijf introduceren we eerst het te behandelen

probleem. Nadien zoeken we, m.b.v. het GHP-formalisme, alle spinrotatie-

en boostinvariante eigenschappen, die we vervolgens overzetten naar het

NP-formalisme. Daar herschrijven we de NP Ricci-, Bianchi- en Einstein

Maxwellvergelijkingen alsook de commutatorrelaties als di�erentiaalverge-

lijkingen voor de spincoë�ciënten en tensorcomponenten. Een volgende

stap is het introduceren van geschikte coördinaten en het integreren van de

di�erentiaalvergelijkingen. Gebruik makend van de Cartanvergelijkingen

vinden we zo éénvormen die de klasse van oplossingen beschrijven. Met

behulp hiervan kunnen we een overeenkomstig lijnelement opstellen. Soms

is het mogelijk om deze oplossingen te herschrijven door middel van coördi-

natentransformaties. Dit kan helpen bij het vergelijken van twee metrieken

of bij het vinden van limietgevallen.

Het is ook mogelijk om bovenstaande problemen direct m.b.v. het NP-

formalisme te behandelen. Het voordeel van de tweevoudige aanpak, waar-

bij eerst informatie wordt verzameld via GHP, vooraleer over te gaan naar

NP, is onder andere dat de verzameling vergelijkingen in GHP compacter

is. Daardoor is het eenvoudiger om te besluiten of er al dan niet oplos-

singen bestaan voor het behandelde vraagstuk. Bovendien is het in GHP

niet nodig om rekening te houden met rotatie- en boostvrijheden van het
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systeem. Ook kan men aan de hand van een GHP-analyse snel een besluit

trekken over het aantal onafhankelijke vrije functies dat zal opteden in de

uiteindelijke metriek, dit verhindert het nodeloos zoeken naar coördinaat-

transformaties die misschien een functie zouden kunnen elimineren van het

systeem. Ten slotte is het vaak eenvoudiger om `natuurlijke' opsplitsingen

binnen het probleem te vinden via GHP, in plaats van via NP (bijvoorbeeld

de opsplitsing in sferische en cilindrische klasse voor Newman Tamburino

metrieken).

Alle berekeningen zijn uitgevoerd in Maple (een geregistreerd handelsmerk

van Waterloo Maple Inc.), waarbij voornamelijk gebruik gemaakt werd van

de NP- en GHP-pakketten, geschreven door Norbert Van den Bergh. De

broncode van deze pakketten kan bekomen worden via

http://users.ugent.be/�nvdbergh/rug/gr/
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Summary

Einstein's theory of general relativity is generally accepted to be the most

successful theory of gravitation. It is mathematically described by Einstein's

�eld equation

Rab −
1

2
Rgab + Λgab = κ0Tab, (2)

a tensorial equation, which translates into a system of non-linear, coupled

partial di�erential equations when expressed in coordinates or in a frame.

The main ingredient is the metric tensor gab, from which every other object

can be constructed. Finding solutions of these equations is not an easy task.

In fact any metric is a solution of (2), if no restrictions are imposed on the

energy momentum tensor, since (2) then becomes just a de�nition of Tab.

We will thus �rst make some assumptions about Tab. Furthermore, we will

impose conditions on the metric, before `solving' Einstein's �eld equations.

Based on the imposed assumptions and conditions one can collect the so-

lutions into di�erent classes. In this thesis we examine some solutions that

belong to the set of Newman Tamburino solutions, as well as some solutions

that belong to Kundt's class.

In 1960 Robinson and Trautman published the general solutions for the class

of metrics containing hypersurface orthogonal and thus non-rotating and

geodesic null congruences with non-vanishing divergence but with vanishing

shear (Robinson and Trautman, 1960).

Newman and Tamburino (1962) tried to generalise the Robinson Trautman

metrics by removing the condition of vanishing shear, hoping to �nd a more

general solution. The assumption of non-vanishing shear however, leads

to additional conditions that do not appear in the non-shearing case, thus

preventing the �nding of the Robinson Trautman solutions as a limit case.
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Kundt (1961) has considered the class of metrics containing geodesic null

congruences with vanishing divergence, curl and shear.

This thesis contains six chapters: in chapter one we give a short introduction

with the mathematical background and concepts that will be used in the

thesis. In this chapter we introduce the Newman Penrose (NP-) and the

Geroch Held Penrose (GHP-) formalisms. We also explain the equivalence

problem: given two metrics in di�erent coordinate systems, how can one

decide whether or not they are (locally) equivalent? CLASSI, a classi�cation

program written by Jan Åman, is a useful tool in the answer to this kind

of problems. Explicit examples will be given in later chapters.

In the second chapter we re-examine the Petrov type D pure radiation

solutions of the Robinson Trautman family. These were originally examined

by Frolov and Khlebnikov (1975). Their solutions are subdivided into three

di�erent classes, A, B and C, of which the A- and B-classes are divided

even further into three and �ve subclasses, respectively. In chapter two of

this thesis we remark that the A-class is in fact redundant in the sense that

the A-metrics can be found as special cases of the B-metrics. Furthermore

we explicitly re-integrate the C-class. The latter is incorrect in the original

paper and a corrected version can be found in chapter two.

The third chapter covers our work on Newman Tamburino solutions in the

presence of an aligned Einstein Maxwell �eld. We have completely solved

this problem. We also show that there exist no so-called `cylindrical' solu-

tions in the presence of a non-aligned Einstein Maxwell �eld. Whether or

not there exist `spherical' solutions in the presence of a non-aligned Einstein

Maxwell �eld remains an open question.

Chapter four is dedicated to vacuum solutions of the Newman Tamburino

family. These solutions were published originally in (Newman and Tam-

burino, 1962) but the cylindrical class given there is incorrect and it is

possible to write the correct version of the solution in a much more elegant

way. Even the spherical solutions can be written in a more compact way, as

we will show in this thesis. Finally we will also give the relation between the

cylindrical Einstein Maxwell solutions and the cylindrical vacuum solutions.
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Before we give our conclusions in chapter six, we �rst treat the Petrov type

D pure radiation solutions of the Kundt family (chapter �ve), for which

we present some new metric families. We will also give here a complete

classi�cation of the line elements for this family of solutions. The input

�les for CLASSI can be found in the appendix.

In chapters two to �ve we start with a brief introduction to the problem,

after which we implement the basic assumptions in GHP. This allows us to

extract all spin (or spatial) rotation and boost invariant information, which

we then translate into the NP-formalism. The next step is to rewrite all

NP Ricci, Bianchi and Einstein Maxwell equations and the commutator re-

lations in a suitable form (i.e. di�erential equations for the spin coe�cients

and the tensor components). Afterwards we introduce coordinates and in-

tegrate the di�erential equations we previously obtained. Making use of the

�rst Cartan structure equations, we then �nd the metric one forms, that

correspond to the problem. These one forms lead to the metric line element

in an unambiguous way. Sometimes it is possible to rewrite the solutions

in a more compact way by applying a suitable coordinate transformation.

This may help to �nd relations between metrics that have been published

earlier, or to examine limit cases.

It is also possible to examine the above problems directly using the NP

formalism. One of the advantages of a two-fold approach, where we �rst

gather information through GHP, before going to NP, is that the set of

equations in GHP is more compact. It is then easier to conclude whether or

not there exist solutions to the given problem. Apart from that, there is no

need to take into account the degrees of freedom in boost and rotation of

the frame, when making use of GHP. Also, making a GHP-analysis, one can

easily determine the number of distinguishing free functions that will occur

in the �nal metric. This prevents the search for coordinate transformation

which might eliminate a function of the system. Finally GHP allows one to

�nd the `natural' subclasses of a problem more easily, compared to NP (for

example the splitting in a spherical and cylindrical class of the Newman

Tamburino metrics).

All computations have been done in Maple (a registered trademark of Wa-
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terloo Maple Inc.), where we extensively made use of the NP- and GHP-

packages, written by Norbert Van den Bergh. The source code for those

packages can be retrieved from http://users.ugent.be/�nvdbergh/rug/gr/
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Chapter 1

Introduction

The purpose of this chapter is to de�ne the notation used in this thesis and

to introduce some basic tools. For a more detailed description, we refer to

Stephani et al. (2003), from which we have extracted some parts in order

to make this work self contained.

1.1 Newman Penrose and Geroch Held Penrose

formalisms

A useful tool in the construction of exact solutions is the null tetrad for-

malism due to Newman and Penrose (1962). In this formalism a set of �rst

order di�erential equations has to be solved and Lorentz transformations

can be used to simplify the �eld equations. The equations are written out

explicitly without the use of the index and summation conventions, thus

allowing one to concentrate on individual `scalar' equations with � often

� particular physical or geometric signi�cance. Another interesting advan-

tage of the formalism is that it allows one to extract invariant information

about the gravitational �eld without using coordinates. A modi�ed calcu-

lus, adapted to physical situations in which a pair of real null directions is

naturally selected at each space-time point, was developed by Geroch et al.

(1973). In this GHP-formalism the formulae are even simpler than in the

standard Newman Penrose formalism.

2
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1.1.1 The Newman Penrose formalism

The basic ingredient of the NP-equations is the complex null tetrad {ea} =

(m,m, l,k), with k and l real null vectors and m and its complex conjugate

m complex null vectors, which span the two-spaces orthogonal to k and l.

The orthogonality properties of the vectors are

kala = −mama = −1,

mama = mama = kaka = lala = 0,

kama = kama = lama = lama = 0.

In this notation the metric takes the form

gab = 2m(amb) − 2k(alb) or gab =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 ,
where round brackets are used to denote symmetrisation (for antisymmetri-

sation we will use square brackets, as in (1.14)):

X(ab) ≡
1

2
(Xab +Xba) , X[ab] ≡

1

2
(Xab −Xba) .

In terms of a coordinate basis, a complex null tetrad {ea} and its dual {ωa}
take the form

e1 = mi ∂

∂xi
, e2 = mi ∂

∂xi
, e3 = li

∂

∂xi
, e4 = ki

∂

∂xi
,

ω1 = midx
i, ω2 = midx

i, ω3 = −kidxi, ω4 = −lidxi.

The essential space-time structures that are used in the NP-formalism are

derived, in conjunction with the null tetrad, by use of the (unique Levi

Civita or Christo�el) torsion-free covariant derivative operator ∇a, which
annihilates gab. These are

� the twelve spin coe�cients which are independent complex linear com-

binations of the connection coe�cients (the tetrad components of the

covariant derivatives of the tetrad vectors, see (1.1)),

� the �ve complex tetrad components of the Weyl tensor,
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� the components of the Ricci tensor (incl. its trace).

The standard version of the Einstein equations becomes, in this formalism,

a large number of complex �rst order partial di�erential equations which are

grouped into three di�erent but interacting sets: the �rst Cartan equations,

the Newman Penrose Ricci equations and the Bianchi equations. The �rst

Cartan equations relate the spin coe�cients to the derivatives of the tetrad

components, the Newman Penrose equations describe the relationship of the

curvature tensor to derivatives of the connection (the spin coe�cients) and

the Bianchi equations relate the spin coe�cients to the derivatives of the

curvature tensor components. It is important to note that these equations

are not integrated one set at a time, but rather together, going back and

forth between the sets.

Using the connection coe�cients Γcab, de�ned by

∇bea = Γcabec, (1.1)

we can now introduce the spin coe�cients:

−κ ≡ Γ144 = ka;bm
akb = maDka,

−ρ ≡ Γ142 = ka;bm
amb = maδka,

−σ ≡ Γ141 = ka;bm
amb = maδka,

−τ ≡ Γ143 = ka;bm
alb = ma∆ka,

ν ≡ Γ233 = la;bm
alb = ma∆la,

µ ≡ Γ231 = la;bm
amb = maδla,

λ ≡ Γ232 = la;bm
amb = maδla, (1.2)

π ≡ Γ234 = la;bm
akb = maDla,

−ε ≡ 1

2
(Γ344 − Γ214) =

1

2

(
ka;bl

akb −ma;bm
akb
)

=
1

2
(laDka −maDma) ,

−β ≡ 1

2
(Γ341 − Γ211) =

1

2

(
ka;bl

amb −ma;bm
amb

)
=

1

2
(laδka −maδma) ,

γ ≡ 1

2
(Γ433 − Γ123) =

1

2

(
la;bk

alb −ma;bm
alb
)

=
1

2
(ka∆la −ma∆ma) ,

α ≡ 1

2
(Γ432 − Γ122) =

1

2

(
la;bk

amb −ma;bm
amb

)
=

1

2

(
kaδla −maδma

)
,
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where we have used the notation

D ≡ ka∇a, ∆ ≡ la∇a,

δ ≡ ma∇a, δ ≡ ma∇a,

for the directional derivatives D, ∆, δ, δ.

In the present notation the commutators [ea, eb] = Dc
abec, with Dc

ab =

−2Γc[ab], are given explicitly as follows:

(∆D−D∆) = (γ + γ)D + (ε+ ε)∆− (τ + π)δ − (τ + π)δ, (1.3)

(δD−Dδ) = (α+ β − π)D + κ∆− σδ − (ρ+ ε− ε)δ, (1.4)

(δ∆−∆δ) = −νD + (τ − α− β)∆ + λδ + (µ− γ + γ)δ, (1.5)(
δδ − δδ

)
= (µ− µ)D + (ρ− ρ)∆− (α− β)δ − (β − α)δ. (1.6)

We will also introduce the connection one forms Γab ≡ Γabcω
c (Γ(ab) = 0),

which enable us to write the exterior derivative of the basis one forms

dωa = ωai,jdx
j ∧ dxi = ωai;jdx

j ∧ dxi = Γabcω
b ∧ ωc

in the compact form

dωa = −Γab ∧ ωb, (1.7)

due to Cartan (the �rst Cartan equations).

It is interesting to note how the spin coe�cients transform under tetrad

transformations. If the null direction k is �xed, the (special) Lorentz trans-

formations preserving this direction

k′ = k, m′ = m +Bk, l′ = l +Bm +Bm +BBk, (1.8)

and

k′ = Ak, m′ = eiθm, l′ = A−1l,

transform the spin coe�cients as follows:

κ′ = κ, τ ′ = τ +Bσ +Bρ+BBκ,

ρ′ = ρ+Bκ, α′ = α+B(ε+ ρ) +B
2
κ,

σ′ = σ +Bκ, β′ = β +Bσ +Bε+BBκ,

ε′ = ε+Bκ, π′ = π + 2Bε+B
2
κ+ DB, (1.9)
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γ′ = γ +Bα+B(τ + β) +BB(ρ+ ε) +B
2
σ +B

2
Bκ,

λ′ = λ+B(π + 2α) +B
2
(ρ+ 2ε) +B

3
κ+BDB + δB,

µ′ = µ+ 2Bβ +Bπ +B
2
σ + 2BBε+B

2
Bκ+BDB + δB,

ν ′ = ν +B(2γ + µ) +Bλ+B
2
(τ + 2β) +BB(π + 2α) +B

3
σ

+ B
2
B(ρ+ 2ε) +B

3
Bκ+ ∆B +BδB +BδB +BBDB,

and

κ′ = A2eiθκ, ν ′ = A−2e−iθν, ε′ = A

[
ε+

1

2
D (lnA+ iθ)

]
,

ρ′ = Aρ, µ′ = A−1µ, β′ = eiθ

[
β +

1

2
δ (lnA+ iθ)

]
,

σ′ = Ae2iθσ, λ′ = A−1e−2iθλ, γ′ = A−1

[
γ +

1

2
∆ (lnA+ iθ)

]
,

τ ′ = eiθτ, π′ = e−iθπ, α′ = e−iθ

[
α+

1

2
δ (lnA+ iθ)

]
. (1.10)

These transformations are called null rotations with complex parameter

B, and boosts and (spin or spatial) rotations with parameters A and θ,

respectively.

To obtain the full six-parameter group of (special) Lorentz transformations,

we should also mention the null rotations that leave l �xed. For a complex

parameter E, these null rotations transform the null tetrad as follows:

l′ = l, m′ = m + El, k′ = k + Em + Em + EEl. (1.11)

At this point, we will introduce the Riemann tensor (also `curvature tensor'),

R = Rabcdea ⊗ ωb ⊗ ωc ⊗ ωd. It is a tensor of type (1, 3), mapping an

ordered set (σ; u,v,w) of a one form σ and three vectors u, v, w into the

real number

σau
bvcwdRabcd = σa

(
ua;cd − ua;dc

)
wcvd,

ua;cd being short hand for (∇d∇cu)a.

As the components σa, wc, vd can be chosen arbitrarily, we arrive at the

Ricci identity

ua;cd − ua;dc = ubRabcd.
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We will also introduce the tetrad components of the traceless Ricci tensor

(Sab ≡ Rab − gabR/4) and the Weyl tensor.

The tetrad components of the Riemann tensor can be expressed in terms of

the connection coe�cients by

Rabcd = Γabd|c − Γabc|d + ΓebdΓ
a
ec − ΓebcΓ

a
ed −De

cdΓ
a
be, (1.12)

which is equivalent to the second Cartan equation

dΓab + Γac ∧ Γcb =
1

2
Rabcdω

c ∧ ωd. (1.13)

The components (1.12) of the Riemann tensor satisfy the symmetry rela-

tions

Rabcd = Rcdab, Rabcd = −Rabdc, Ra[bcd] = 0. (1.14)

The covariant derivatives of the Riemann tensor obey the Bianchi identities

Rab[cd;e] = 0. (1.15)

By contraction we obtain the identities

Rabcd;a + 2Rb[c;d] = 0,

where the components Rbd of the Ricci tensor are de�ned by Rbd ≡ Rabad.

According to Einstein's general theory of relativity, the curvature of space-

time is related to the distribution of matter. Speci�cally, components of the

Ricci tensor are algebraically related to the local energy-momentum tensor

Tab by Einstein's �eld equations

Rab −
1

2
Rgab + Λgab = κ0Tab, (1.16)

in which Λ is the cosmological constant. This can also be rewritten in terms

of the Einstein tensor Gab = Rab − 1
2Rgab. The Einstein equations (1.16)

together with the Bianchi identities (1.15) imply the relation

κ0T
ab
;b =

(
Rab − 1

2
Rgab

)
;b

= 0.

The relationship between the Riemann tensor, the Weyl tensor Cabcd and

the Ricci tensor is given by

Rabcd = Cabcd +
1

2
(gacSbd + gbdSac − gadSbc − gbcSad) +

R

12
gabcd, (1.17)
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where we have used the following abbreviations:

Sab ≡ Rab −
1

4
Rgab, R ≡ Raa, gabcd = 2(gadgbc − gacgbd).

R and Sab denote the trace and the traceless part of the Ricci tensor Rab,

respectively.

The decomposition (1.17) de�nes the completely traceless Weyl curvature

(Weyl conformal tensor) Cabcd, which represents the part of Rabcd not point-

wise determined by local matter; it is often referred to as gravitational ra-

diation. Cabcd has the same symmetries (1.14) as the Riemann tensor, and

it satis�es the trace-free property

Cabad = 0. (1.18)

These identities reduce the number of independent components of Cabcd to

ten. The components of the Weyl curvature are expressed by the �ve com-

plex scalars Ψ0, Ψ1, ..., Ψ4. The Ricci tensor components will be addressed

as Φij , i, j = 0, 1, 2 and R, of which Φ00, Φ11, Φ22 and R are real valued, and

where (Φ01, Φ10), (Φ02, Φ20) and (Φ12, Φ21) are complex valued conjugate

pairs:

Ψ0 ≡ Cabcdkambkcmd, Φ00 ≡
Sab
2
kakb = Φ00 =

R44

2
, (1.19)

Ψ1 ≡ Cabcdkalbkcmd, Φ01 ≡
Sab
2
kamb = Φ10 =

R41

2
, (1.20)

Ψ2 ≡ −Cabcdkamblcmd, Φ02 ≡
Sab
2
mamb = Φ20 =

R11

2
, (1.21)

Ψ3 ≡ Cabcdlakblcmd, Φ11 ≡
Sab
4

(kalb +mamb) =
R43 +R12

4
, (1.22)

Ψ4 ≡ Cabcdlamblcmd, Φ12 ≡
Sab
2
lamb = Φ21 =

R31

2
, (1.23)

Φ22 ≡
Sab
2
lalb = Φ22 =

R33

2
. (1.24)

The Ψ2-component can also be written in a di�erent (but due to (1.18)

equivalent) form

Ψ2 ≡
1

2
Cabcdk

alb
(
kcld −mcmd

)
.
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Geometrically the Ψi-components can be interpreted (in vacuum space-

times) as components of gravitational radiation (Pirani, 1957):

Ψ0 : transverse component propagating in the l−direction,

Ψ1 : longitudinal component in the l−direction,

Ψ2 : so called Coulomb component,

Ψ3 : longitudinal component in the k−direction,

Ψ4 : transverse component propagating in the k−direction.

The Weyl and Ricci components obey the following transformation laws

under null rotations about k and under boosts and rotations (Carmeli,

1977; Stephani et al., 2003):

Ψ′0 = Ψ0,

Ψ′1 = Ψ1 +BΨ0,

Ψ′2 = Ψ2 + 2BΨ1 +B
2
Ψ0,

Ψ′3 = Ψ3 + 3BΨ2 + 3B
2
Ψ1 +B

3
Ψ0,

Ψ′4 = Ψ4 + 4BΨ3 + 6B
2
Ψ2 + 4B

3
Ψ1 +B

4
Ψ0,

Φ′00 = Φ00,

Φ′01 = Φ01 +BΦ00,

Φ′02 = Φ02 + 2BΦ01 +B2Φ00,

Φ′11 = Φ11 +BΦ01 +BΦ10 +BBΦ00,

Φ′12 = Φ12 + 2BΦ11 +B2Φ10 +BΦ02 + 2BBΦ01 +B2BΦ00,

Φ′22 = Φ22 + 2
(
BΦ12 +BΦ21

)
+B

2
Φ02 +B2Φ20 + 4BBΦ11

+ 2BB
(
BΦ01 +BΦ10

)
+B2B

2
Φ00,

and

Ψ′0 = A2e2iθΨ0, Φ′00 = A2Φ00,

Ψ′1 = AeiθΨ1, Φ′01 = AeiθΦ01,

Ψ′2 = Ψ2, Φ′11 = Φ11,

Ψ′3 = A−1e−iθΨ3, Φ′12 = A−1eiθΦ12,

Ψ′4 = A−2e−2iθΨ4, Φ′22 = A−2Φ22,

Φ′02 = e2iθΦ02.
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Under null rotations about l (1.11) Ψ0,...,Ψ4 transform as

Ψ′4 = Ψ4,

Ψ′3 = Ψ3 + EΨ4,

Ψ′2 = Ψ2 + 2EΨ3 + E2Ψ4,

Ψ′1 = Ψ1 + 3EΨ2 + 3E2Ψ3 + E3Ψ4,

Ψ′0 = Ψ0 + 4EΨ1 + 6E2Ψ2 + 4E3Ψ3 + E4Ψ4.

We now have all the necessary information to write down the �rst Cartan

equations (1.7), the Ricci equations (1.13) and the Bianchi identities (1.15)

in their explicit forms.

Let us start with the �rst Cartan equations. In terms of the basis one forms

and the spin coe�cients, they read

dω1 = (α− β)ω1 ∧ ω2 − λω2 ∧ ω3 + σω2 ∧ ω4 + (γ − γ − µ)ω1 ∧ ω3

+ (ε− ε+ ρ)ω1 ∧ ω4 + (τ + π)ω3 ∧ ω4,

dω2 = (β − α)ω1 ∧ ω2 − λω1 ∧ ω3 + σω1 ∧ ω4 + (γ − γ − µ)ω2 ∧ ω3

+ (ε− ε+ ρ)ω2 ∧ ω4 + (π + τ)ω3 ∧ ω4,

dω3 = (ρ− ρ)ω1 ∧ ω2 + (β + α− τ)ω1 ∧ ω3 + (β + α− τ)ω2 ∧ ω3

− κω1 ∧ ω4 − κω2 ∧ ω4 − (ε+ ε)ω3 ∧ ω4,

dω4 = (µ− µ)ω1 ∧ ω2 + ν ω1 ∧ ω3 + ν ω2 ∧ ω3 − (γ + γ)ω3 ∧ ω4

+ (π − α− β)ω1 ∧ ω4 + (π − α− β)ω2 ∧ ω4.

The Ricci identities, often called the Newman Penrose equations, are given
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by:

Dρ− δ̄κ = ρ2 + σ σ̄ + (ε+ ε̄) ρ− κ̄τ −
(
3α+ β̄ − π

)
κ+ Φ00, (1.25)

Dσ − δκ = (ρ+ ρ̄)σ + (3 ε− ε̄)σ − (τ − π̄ + ᾱ+ 3β)κ+ Ψ0, (1.26)

Dτ −∆κ = (τ + π̄)ρ+ (τ̄ + π)σ + (ε− ε̄)τ − (3γ + γ̄)κ+ Ψ1 + Φ01,

(1.27)

Dα− δ̄ε = (ρ+ ε̄− 2ε)α+ β σ̄ − β̄ε− κλ− κ̄γ + (ε+ ρ)π + Φ10, (1.28)

Dβ − δε = (α+ π)σ + (ρ̄− ε̄)β − (µ+ γ)κ+ (π̄ − ᾱ) ε+ Ψ1, (1.29)

Dγ −∆ε = (τ + π̄)α+ (τ̄ + π)β − (ε+ ε̄) γ − (γ + γ̄) ε+ τ π − ν κ

+ Ψ2 −
R

24
+ Φ11, (1.30)

Dλ− δ̄π = ρ λ+ σ̄µ+ π2 +
(
α− β̄

)
π − ν κ̄+ (ε̄− 3 ε)λ+ Φ20, (1.31)

Dµ− δπ = ρ̄µ+ σ λ+ π π̄ − (ε+ ε̄)µ− (ᾱ− β)π − ν κ+ Ψ2 +
R

12
, (1.32)

Dν −∆π = (τ̄ + π)µ+ (τ + π̄)λ+ (γ − γ̄)π − (3ε+ ε̄)ν + Ψ3 + Φ21,

(1.33)

∆λ− δ̄ν = (γ̄ − 3 γ − µ− µ̄)λ+
(
3α+ β̄ + π − τ̄

)
ν −Ψ4, (1.34)

δρ− δ̄σ = (ᾱ+ β)ρ− (3α− β̄)σ + (ρ− ρ̄)τ + (µ− µ̄)κ−Ψ1 + Φ01,

(1.35)

δα− δ̄β = µρ− σ λ+ α ᾱ+ β β̄ − 2αβ + (ρ− ρ̄) γ + (µ− µ̄) ε−Ψ2

+
R

24
+ Φ11, (1.36)

δλ− δ̄µ = (ρ− ρ̄)ν + (µ− µ̄)π + (α+ β̄)µ+ (ᾱ− 3β)λ−Ψ3 + Φ21,

(1.37)

δν −∆µ = µ2 + λ λ̄+ (γ + γ̄)µ− ν̄π + (τ − ᾱ− 3β) ν + Φ22, (1.38)

δγ −∆β = (τ − ᾱ− 2β)γ + µτ − σ ν − ε ν̄ + (γ̄ + µ)β + αλ̄+ Φ12,

(1.39)

δτ −∆σ = µσ + λ̄ρ+ (τ − ᾱ+ β) τ − (3 γ − γ̄)σ − κ ν̄ + Φ02, (1.40)

∆ρ− δ̄τ = −ρ µ̄− σ λ+ (γ + γ̄)ρ− (τ̄ + α− β̄)τ + ν κ−Ψ2 −
R

12
,

(1.41)

∆α− δ̄γ = (ε+ ρ) ν − (τ + β)λ+ (γ̄ − µ̄)α+
(
β̄ − τ̄

)
γ −Ψ3. (1.42)

The remaining set of equations to be satis�ed are the Bianchi identities
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Rab[cd;e] = 0. In the Newman Penrose formalism these equations read

δ̄Ψ0 −DΨ1 + DΦ01 − δΦ00 = (4α− π) Ψ0 − 2 (2ρ+ ε) Ψ1 + 3κΨ2

+ (π̄ − 2ᾱ− 2β) Φ00 + 2 (ε+ ρ̄) Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02, (1.43)

∆Ψ0 − δΨ1 + DΦ02 − δΦ01 = (4γ − µ) Ψ0 − 2 (2τ + β) Ψ1 + 3σΨ2

− λ̄Φ00 + 2 (π̄ − β) Φ01 + 2σΦ11 + (2ε− 2ε̄+ ρ̄) Φ02 − 2κΦ12, (1.44)

3 δ̄Ψ1 − 3 DΨ2 + 2 DΦ11 − 2 δΦ10 + δ̄Φ01 −∆Φ00 = 3λΨ0 − 9 ρΨ2

+ 6 (α− π) Ψ1 + 6κΨ3 + (µ̄− 2µ− 2 γ − 2 γ̄) Φ00 + 2σΦ20 − σ̄Φ02

+ (2α+ 2π + 2τ̄) Φ01 + 2 (τ − 2ᾱ+ π̄) Φ10 + 2 (2ρ̄− ρ) Φ11

− 2 κ̄Φ12 − 2κΦ21, (1.45)

3 ∆Ψ1 − 3 δΨ2 + 2 DΦ12 − 2 δΦ11 + δ̄Φ02 −∆Φ01 = 6 (γ − µ) Ψ1

+ 3 νΨ0 − 9 τ Ψ2 + 6σΨ3 − ν̄Φ00 + 2 (µ̄− µ− γ) Φ01 − 2 λ̄Φ10

+ 2 (τ + 2 π̄) Φ11 +
(
2α+ 2π + τ̄ − 2 β̄

)
Φ02 + (2 ρ̄− 2 ρ− 4 ε̄) Φ12

+ 2σΦ21 − 2κΦ22, (1.46)

3 δ̄Ψ2 − 3 DΨ3 + DΦ21 − δΦ20 + 2 δ̄Φ11 − 2 ∆Φ10 = 6λΨ1 − 9πΨ2

+ 6 (ε− ρ) Ψ3 + 3κΨ4 − 2 ν Φ00 + 2 (µ̄− µ− 2 γ̄) Φ10

+ (2π + 4τ̄) Φ11 + (2β + 2τ + π̄ − 2ᾱ) Φ20 − 2σ̄Φ12 + 2 (ρ̄− ρ− ε) Φ21

− κ̄Φ22 + 2λΦ01, (1.47)

3∆Ψ2 − 3δΨ3 + DΦ22 − δΦ21 + 2δ̄Φ12 − 2∆Φ11 = 6νΨ1

− 9µΨ2 + 6 (β − τ) Ψ3 + 3σΨ4 − 2ν Φ01 − 2ν̄Φ10 + 2 (2µ̄− µ) Φ11

+ 2λΦ02 − λ̄Φ20 + 2
(
π + τ̄ − 2 β̄

)
Φ12 + 2 (β + τ + π̄) Φ21

+ (ρ̄− 2 ε− 2 ε̄− 2 ρ) Φ22, (1.48)

δ̄Ψ3 −DΨ4 + δ̄Φ21 −∆Φ20 = 3λΨ2 − 2 (α+ 2π) Ψ3 − 2 ν Φ10 − σ̄Φ22

+ (4ε− ρ) Ψ4 + 2λΦ11 + (2γ − 2 γ̄ + µ̄) Φ20 + 2 (τ̄ − α) Φ21, (1.49)
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∆Ψ3 − δΨ4 + δ̄Φ22 −∆Φ21 = 3νΨ2 − 2 (γ + 2µ) Ψ3 − 2 ν Φ11 − ν̄Φ20

+ (4β − τ) Ψ4 + 2λΦ12 + 2 (γ + µ̄) Φ21 +
(
τ̄ − 2β̄ − 2α

)
Φ22, (1.50)

DΦ11 − δΦ10 − δ̄Φ01 + ∆Φ00 +
1

8
DR = σ̄Φ02 + σΦ20 − κ̄Φ12 − κΦ21

(2 γ − µ+ 2 γ̄ − µ̄) Φ00 + (π − 2α− 2 τ̄) Φ01 + (π̄ − 2 ᾱ− 2 τ) Φ10

+ 2 (ρ+ ρ̄) Φ11, (1.51)

DΦ12 − δΦ11 − δ̄Φ02 + ∆Φ01 +
1

8
δR = (2γ − µ− 2µ̄) Φ01

+ ν̄ Φ00 − λ̄Φ10 + 2 (π̄ − τ) Φ11 +
(
π + 2 β̄ − 2α− τ̄

)
Φ02

+ (2 ρ+ ρ̄− 2 ε̄) Φ12 + σΦ21 − κΦ22, (1.52)

DΦ22 − δΦ21 − δ̄Φ12 + ∆Φ11 +
1

8
∆R = ν Φ01 + ν̄ Φ10

− 2 (µ+ µ̄) Φ11 − λΦ02 − λ̄Φ20 +
(
2π − τ̄ + 2β̄

)
Φ12

+ (2β − τ + 2π̄) Φ21 + (ρ+ ρ̄− 2 ε− 2 ε̄) Φ22. (1.53)

If one considers the presence of a Maxwell �eld, also the Maxwell equations

have to be taken into account. In the Newman Penrose formalism these are

given by

DΦ1 − δΦ0 = (π − 2α)Φ0 + 2ρΦ1 − κΦ2, (1.54)

DΦ2 − δΦ1 = −λΦ0 + 2πΦ1 + (ρ− 2ε)Φ2, (1.55)

δΦ1 −∆Φ0 = (µ− 2γ)Φ0 + 2τΦ1 − σΦ2, (1.56)

δΦ2 −∆Φ1 = −νΦ0 + 2µΦ1 + (τ − 2β)Φ2, (1.57)

where we have used the notation

Φ0 ≡ Fabk
amb,

Φ1 ≡ 1

2
Fab(k

alb +mamb),

Φ2 ≡ Fabm
alb,

for the tetrad components of the electromagnetic �eld tensor.
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Under null rotations about k, and under boosts and rotations these com-

ponents transform as follows:

Φ′0 = Φ0, Φ′0 = AeiθΦ0,

Φ′1 = Φ1 +BΦ0, Φ′1 = Φ1,

Φ′2 = Φ2 + 2BΦ1 +B
2
Φ0, Φ′2 = A−1e−iθΦ2.

The Ricci tensor components of a Maxwell �eld are given by

Φab = κ0ΦaΦb, a, b = 0, 1, 2,

where κ0 is Einstein's gravitational constant. Taking into account the di�er-

ential equations for Φ0,Φ1,Φ2, obtained from the Maxwell equations, three

of the Bianchi equations (1.51, 1.52 and 1.53) become identities.

We now give a brief discussion of the physical meaning of some of the quan-

tities (1.2) and (1.19a − 1.24b), which will be used in the remainder of

this thesis (see also Carmeli (1977); Stewart (1991); Gri�ths and Podolsky

(2009)). This signi�cance becomes apparent when we consider the propa-

gation of the basis vectors along k or l.

Before going into details, �rst note that the relations (1.2) are equivalent

with

ka;b = −(γ + γ)kakb − (ε+ ε)kalb + (α+ β)kamb + (α+ β)kamb

+ τmakb + κmalb − σmamb − ρmamb

+ τmakb + κmalb − σmamb − ρmamb,

la;b = (γ + γ)lakb + (ε+ ε)lalb − (α+ β)lamb − (α+ β)lamb

− νmakb − πmalb + λmamb + µmamb

− νmakb − πmalb + λmamb + µmamb,

ma;b = (γ − γ)makb + (ε− ε)malb + (α− β)mamb + (β − α)mamb

− νkakb − πkalb + µkamb + λkamb

+ τ lakb + κlalb − ρlamb − σlamb.

We will use these relations to deduce some of the expressions below.
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First we will introduce some important concepts. Given a vector �eld u, an

integral curve of u is a curve γ such that at each point p on γ the tangent

vector �eld is up. A set of integral curves is a congruence. Furthermore if

u satis�es

∇uu = f(t)u, (1.58)

then the integral curves of u are called geodesics. One can always �nd a

parameter s such that (1.58) can be rewritten as ∇uu = 0 (a�ne parametri-

sation). In a local coordinate system the equation of the geodesic is then

given by

ẍi + Γikmẋ
kẋm = 0, where ẋ = dx/ds. (1.59)

Changing to t = t(s) results in(
x′′i + Γikmx

′kx′m
)
ṫ2 = −ẗx′i, where x′ = dx/dt.

Thus the standard form (1.59) of the equation is preserved i� ẗ = 0, i.e.

t = as+ b, a, b constants. A parameter which produces the standard form

for the geodesic equation is an a�ne parameter. Finally, we introduce the

concept of a connecting vector : let u be the tangent vector to a congruence

of curves, then any vector z such that [u, z] = 0 is called a connecting vector

of the congruence.

It is often convenient to analyse the gravitational �eld in a local region

in terms of the behavior of some privileged congruences of curves passing

through this region; in particular, in terms of their expansion, rotation (or

twist) and shear. Consider a beam of light rays, represented by a congruence

of null geodesics γ with tangent vector k and connecting vector z: [k, z] = 0.

Assume Dka = 0, so that γ is a�nely parametrised. Suppose that at a point

p on γ the connecting vector is orthogonal to γ, i.e. kaza = 0. Then

D (kaza) = kaDza = ka∇kza = ka∇zka =
1

2
∇z (kaka) = 0.

Thus z is everywhere orthogonal to γ. Since z is real and orthogonal to k,

there exist a real u and complex z such that

za = uka + zma + zma.
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Compute Dza = ∇kz
a = ∇zk

a = uDka + zδka + zδka, where Dka = 0.

Making use of the de�nitions of the spin coe�cients ρ = −maδka and

σ = −maδka (1.2), we �nd that

Dz = −ρz − σz.

The interpretation of z = x+ iy is as follows: consider the projection of za

onto the spacelike two-plane spanned by ma, ma. Suppose that σ = 0 while

ρ = θ is real:

Dx = −θx, Dy = −θy.

This is an isotropic magni�cation (expansion) at a rate −θ. Next suppose
that σ = 0 while ρ is imaginary (ρ = −iω):

Dx = −ωy, Dy = ωx,

which corresponds to a rotation with angular velocity ω. Finally consider

the case where ρ = 0 and σ is real, then

Dx = −σx, Dy = σy,

which represents a volume preserving shear at a rate σ with principal axes

along the x and y axes. For a complex valued σ = |σ| exp iψ the argument

ψ/2 denotes the orientation of the shear.

Now, since Dz = −ρz − σz is a linear equation, the general case is a su-

perposition of these e�ects. The projection of the connecting vectors of the

congruence onto an orthogonal spacelike two-surface is expanded, rotated

and sheared. The complex divergence ρ = θ + iω and the shear σ are also

known as the optical parameters.

Note that the spin coe�cient κ is related to k by

ka;bk
b = −κm̄a − κ̄ma + (ε+ ε̄)ka.

If κ = 0, k is tangent to a geodesic. By a change in scale ka → φka, ε + ε̄

can be made zero.

The quantity τ describes how the direction of k changes as we move in the

direction l, as follows from the equation

ka;bl
b = −τm̄a − τ̄ma + (γ + γ̄)ka.
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However, since τ transforms as τ ′ = τ + Bσ + Bρ + BBκ under the null

rotation (1.8), which keeps k �xed, this interpretation is only well de�ned

for a non-expanding, non-twisting and shear-free geodesic null congruence

(i.e. for Kundt space-times). Again one can make γ+ γ̄ zero by the change

ka → φka.

The interpretation of the spin coe�cients ν, µ, λ, π is analogous, respec-

tively, to that of κ, −ρ, −σ, τ , the di�erence being that the congruence

used is given by l instead of k (i.e. where k and l, and m and m are both

interchanged).

If k is taken tangent to a geodesic congruence and we propagate the tetrad

parallelly along this congruence, then

κ = π = ε = 0.

If in addition to being tangent to geodesics, k is hypersurface orthogonal

(i.e. proportional to a gradient �eld), we have

ρ = ρ̄,

and if k is equal to a gradient �eld, then

ρ = ρ̄, τ = ᾱ+ β.

We end this paragraph by explaining how the components Ψi, i = 0, .., 4,

of the Weyl tensor can be used to classify gravitational �elds. If the Weyl

tensor vanishes, i.e. if Cabcd = 0, a space-time is said to be conformally �at.

Otherwise, the gravitational �elds can be classi�ed according to the num-

ber of their distinct principal null directions. This is the so-called Petrov

classi�cation.

A null vector k is aligned with a principal null direction of the gravitational

�eld if it satis�es

k[aCf ]gh[ikb]k
gkh = 0.

If k is a member of the null tetrad de�ned before, then this is equivalent

to the statement that Ψ0 = 0. There are at most four such null vectors.

To determine these, we apply the inverse of the null rotation (1.11) to an
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arbitrary complex null tetrad (m′,m′, l′,k′). Hereby, the null vector k′ can

be transformed into any other real null vector, except l′. The component

Ψ0 of the Weyl tensor then transforms as

Ψ0 = Ψ′0 − 4EΨ′1 + 6E2Ψ′2 − 4E3Ψ′3 + E4Ψ′4.

The condition for k to be a principal null direction, i.e. Ψ0 = 0, is then

equivalent to the existence of a root E, such that

Ψ′0 − 4EΨ′1 + 6E2Ψ′2 − 4E3Ψ′3 + E4Ψ′4 = 0.

Since this is a quartic expression in E, there are four (complex) roots, that

need not be distinct. Each root corresponds to a principal null direction

and the multiplicity of each principal null direction is the same as the cor-

responding root. For a principal null direction k of multiplicity 1, 2, 3 or 4,

it can be shown (Jordan et al., 1961; Petrov, 1954; Géhéniau, 1957; Penrose

and Rindler, 1986) that, respectively

k[aCf ]gh[ikb]k
gkh = 0⇔ Ψ0 = 0, Ψ1 6= 0,

Cfgh[ikb]k
gkh = 0⇔ Ψ0 = Ψ1 = 0, Ψ2 6= 0,

Cfgh[ikb]k
h = 0⇔ Ψ0 = Ψ1 = Ψ2 = 0, Ψ3 6= 0,

Cfghik
h = 0⇔ Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0, Ψ4 6= 0.

If a space-time admits four distinct principal null directions (pnds), it is

said to be algebraically general, or of type I, otherwise it is algebraically

special. The di�erent algebraic types can be summarised as follows:

� type I : four distinct pnds,

� type II : one pnd of multiplicity 2, others distinct,

� type D : two distinct pnds of multiplicity 2,

� type III : one pnd of multiplicity 3, other distinct,

� type N : one pnd of multiplicity 4,

� type O : conformally �at.
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If the basis vector k is aligned with principal null directions, Ψ0 = 0. If

it is aligned with the repeated principal null direction of an algebraically

special space-time, then Ψ0 = Ψ1 = 0. If k and l are both aligned with the

two repeated principal null directions of a type D space-time, then the only

non-vanishing component of the Weyl tensor is Ψ2.

A theorem (for vacuum space-times), relating some geometrical properties

of null congruences to the algebraic properties of the Weyl tensor, can be

stated as follows (Goldberg and Sachs, 1962):

Theorem A vacuum metric is algebraically special if and only if it contains

a shear-free geodesic null congruence:

κ = 0 = σ ⇔ Ψ0 = 0 = Ψ1.

1.1.2 The Geroch Held Penrose formalism

A modi�ed calculus, the GHP-formalism, was developed by Geroch et al.

(1973). This formalism is especially adapted to physical situations in which

a pair of real null directions is naturally picked out at each space-time point.

This version of the spin coe�cient method leads to even simpler formulae

than the standard Newman Penrose technique.

The two-parameter subgroup of the Lorentz group preserving the two pre-

ferred null directions (boosts and spatial rotations), a�ects the complex null

tetrad (m, m, l, k) as follows:

k −→ Ak, l −→ A−1l, m −→ eiθm; A = CC, eiθ = CC
−1
. (1.60)

A scalar η which undergoes the transformation

η −→ CpC
q
η

is called a weighted scalar of type (p,q). The components of the Weyl and

Ricci tensors, the spin coe�cients κ, λ, µ, ν, π, ρ, σ, τ , and the tetrad
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components of the electromagnetic �eld tensor are weighted scalars of types

Ψ0 : (4, 0), Ψ1 : (2, 0), Ψ2 : (0, 0), Ψ3 : (−2, 0), Ψ4 : (−4, 0),

Φ00 : (2, 2), Φ01 : (2, 0), Φ10 : (0, 2), Φ02 : (2,−2), Φ20 : (−2, 2),

Φ11 : (0, 0), Φ12 : (0,−2), Φ21 : (−2, 0), Φ22 : (−2,−2),

κ : (3, 1), λ : (−3, 1), µ : (−1,−1), ν : (−3,−1),

π : (−1, 1), ρ : (1, 1), σ : (3,−1), τ : (1,−1),

Φ0 : (2, 0), Φ1 : (0, 0), Φ2 : (−2, 0).

The spin coe�cients α, β, γ and ε transform, under the tetrad change

(1.60), according to inhomogeneous laws ((1.10) containing derivatives of

C). These spin coe�cients do not appear directly in the modi�ed equations,

but they enter the new derivative operators acting on weighted scalars η of

type (p, q):

Þη ≡ (D− pε− qε)η, Þ′η ≡ (∆− pγ − qγ)η,

ðη ≡ (δ − pβ − qα)η, ð′η ≡ (δ − pα− qβ)η.

The above operators Þ and ð (`thorn' and `edth') respectively map a scalar

of type (p, q) into scalars of types (p+ 1, q+ 1) and (p+ 1, q− 1). In conse-

quence the GHP-form of the Newman Penrose Ricci, Bianchi and Maxwell

equations can be obtained by putting α, β, γ and ε equal to zero in the

NP-equations (1.25-1.42), (1.43-1.53) and (1.54-1.57), while replacing D by

Þ, ∆ by Þ′, and δ and δ by ð and ð′, respectively. The equations involving
derivatives of α, β, γ and ε (i.e. equations (1.28-1.30), (1.36), (1.39) and

(1.42)) should be removed from the system. As an example, we will look

at the Maxwell equation (1.54): if we switch from NP to GHP, we have to

substitute D by Þ+ pε+ qε, and δ by ð′+ p̃α+ q̃β, for D acting on a (p, q)-

and δ acting on a (p̃, q̃)-weighted quantity, respectively. As Φ0 is of weight

(2, 0) and Φ1 of weight (0, 0), we obtain from (1.54)

DΦ1︸︷︷︸
ÞΦ1

− δΦ0︸︷︷︸
ð′Φ0+2αΦ0

= (π − 2α) Φ0 + 2ρΦ1 − κΦ2,

that

ÞΦ1 − ð′Φ0 = πΦ0 + ρΦ1 − κΦ2.
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This shows one can just put α equal to zero in (1.54) and replace the NP

derivation operators by their GHP-`equivalent'.

For completeness, we also give here the explicit form of the commutator

relations in GHP. Acting on a (p, q)-weighted quantity η, we �nd[
ð′, ð

]
η = (µ− µ)Þη + (ρ− ρ)Þ′η + p

(
ρµ− σλ−Ψ2 + Φ11 +

R

24

)
η

− q

(
ρµ− σλ−Ψ2 + Φ11 +

R

24

)
η, (1.61)[

ð,Þ′
]
η = τÞ′η − ν Þη + µ ðη + λ ð′η + q

(
ρν − τλ−Ψ3

)
η

+ p (σν − µτ − Φ12) η, (1.62)

[ð,Þ ] η = κÞ′η − π Þη − ρðη − σ ð′η + p (πσ − µκ+ Ψ1) η

+ q
(
ρπ − λκ+ Φ01

)
η, (1.63)[

Þ′,Þ
]
η = −(τ + π)ðη − (τ + π)ð′η + p

(
τπ − κν + Ψ2 + Φ11 −

R

24

)
η

+ q

(
τπ − νκ+ Ψ2 + Φ11 −

R

24

)
η. (1.64)

As an explicit example, we will look at (1.61). Starting from the corre-

sponding NP-commutator [δ, δ] acting on a (p, q)-weighted quantity η, we

have that

δδη − δδη = (µ− µ)Dη + (ρ− ρ)∆η − (α− β)δη − (β − α)δη. (1.65)

The left hand side of this equation can be rewritten as follows (introducing

GHP-derivative operators):

δ [ðη + pβη + qαη]− δ
[
ð′η + pαη + qβη

]
.

Notice that ðη is of weight (p+1, q−1), whereas ð′η is of weight (p−1, q+1)

and that both α and β are not well-weighted quantities. We therefore obtain

in the next step that the left hand side of (1.65) can also be written as

ð′ðη − ðð′η + (α− β)ðη − (α− β)ð′η − p
(
δα− δβ

)
η + q

(
δα− δβ

)
η.

If we replace the NP-derivative operators δ, δ, ∆ and D by their GHP-

equivalent in the right hand side of (1.65), we obtain

(µ− µ) [Þη + pεη + qεη] + (ρ− ρ) [Þ′η + pγη + qγη]

−(α− β)
[
ð′η + pαη + qβη

]
− (β − α) [ðη + pβη + qαη] .
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Equating the two previous expressions and taking into account (1.36), we

see that indeed[
ð′, ð

]
η = (µ− µ)Þη + (ρ− ρ)Þ′η + p

(
ρµ− σλ−Ψ2 + Φ11 +

R

24

)
η

− q

(
ρµ− σλ−Ψ2 + Φ11 +

R

24

)
η.

The other commutators can be found in a similar way.

1.2 Equivalence of metrics; CLASSI

As shown in the previous sections, one can always choose a tetrad, and also

coordinates, in many di�erent ways. This freedom often results in a di�er-

ent form for the same metric. It is not always easy to decide whether or not

two metrics are actually equivalent, meaning they describe the same grav-

itational �eld in two di�erent coordinate systems. Therefore a coordinate

invariant classi�cation scheme is extremely important.

CLASSI, a computer program performing such a classi�cation, following the

algorithm by Karlhede (1980), has been implemented (Åman and Karlhede,

1980, 1981), using the computer algebra system SHEEP of Frick (1977). The

result of this classi�cation is a complete description of the geometry. This

reduces the problem of deciding whether or not two metrics are equivalent,

to the problem of deciding whether a set of algebraic equations has a solution

or not.

The equivalence problem has a long history; indeed it was the motivation

for Christo�el's introduction of his famous symbols. Useful reviews of the

history of the problem, and its solution, are given in (Karlhede, 1980; Ehlers,

1981; MacCallum, 1983a). The problem can be stated as follows: given two

line elements

ds2 = gabdx
adxb,

ds2 = g′abdx
′adx′b,

in coordinates xc and x′c respectively, when does there exist a coordinate

transformation x′a = x′a(xb) such that

gab(x
c) =

∂x′d

∂xa
∂x′e

∂xb
g′de(x

′c),
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i.e. such that the two geometries are locally equivalent?

The answer turns out to be that there is no completely algorithmic proce-

dure, but that it is possible to reduce the problem to that of the consistency

of a set of algebraic (as opposed to di�erential) equations involving com-

ponents of the Riemann tensor and its covariant derivatives (strictly, this

applies only to metrics with appropriate di�erentiability conditions and only

at their `regular' points (Ehlers, 1981), but these conditions are usually sat-

is�ed in applications). The reason this is not algorithmic is that the last

step, the solution of a general set of algebraic equations, is not. It should

be noted that in general one needs components of tensors in a geometrically

preferred frame (so called Cartan invariants), and not just scalar (polyno-

mial) invariants.

The basic idea behind the procedure is that if a certain quantity Q is invari-

antly de�ned, and is expressed as f(xa) and h(x′b) in the two coordinate

systems, then the metrics can only be the same if

Q = f(xa) = h(x′b),

and one has to �nd a set of quantities Q, for which the equality in the two

metrics is su�cient to guarantee local equivalence of the metrics. The exis-

tence of such a method goes back to Christo�el. Working in four dimensions,

he showed that this might involve the calculation of the twentieth covariant

derivative of the Riemann tensor, which is clearly impractical. The �rst

step towards a more practical formulation was Cartan's use of tetrad meth-

ods. He showed that the number of derivatives was reduced to ten at most.

In a certain sense, Cartan's method is a special case of his technique for

determining the equivalence of sets of di�erential forms on manifolds under

appropriate transformation groups. Next Brans (1965) set out some prac-

tical ideas on how to implement Cartan's procedure. The most important

idea is to separate the tetrad and coordinate variables and handle them

di�erently. At this point the possibility of a practical computing method

became apparent and Frick et al. built SHEEP. The theory of the problem

was then further re�ned by Karlhede (1980).

His method is based on Cartan's method, but it contained some new ideas

on implementation which were quite vital in bringing the calculations down
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to a scale the computer could handle. Brans's idea of separate handling of

the tetrad rotations and the space-time coordinates is implemented by �xing

the tetrad frame at each stage of di�erentiation of the Riemann tensor by

aligning it as far as possible with invariantly de�ned directions picked out

by the tensors already calculated. Karlhede pointed out that the Petrov

classi�cation of the Weyl tensor implied that the frame was �xed up to

at most a two-parameter family of transformations, except in the case of

conformally �at metrics. Hence he was able to show that no more than the

seventh derivative was required in general.

Karlhede's procedure was implemented in SHEEP by Åman, Karlhede, Joly

and MacCallum (1990). Having solved the basic problem improvements

were sought, mainly directed at extracting from the characterising quantities

more of the invariant properties.

A particularly intriguing point is the question of the least upper bound on

the number of derivatives required. Karlhede's limit of seven was low enough

to encourage construction of the computer implementation. Recently it has

been shown that this bound is sharp (Milson and Pelavas, 2008, 2009).

Other examples can be found in (Wylleman, 2008, 2010).

The procedure for the equivalence problem can be stated as follows: put

q = 0. Choose a constant frame metric ηij and calculate the components of

the Riemann tensor Rabcd.

� Calculate Rq, the set of components of the Riemann tensor and its

derivatives up to the qth.

� Find the isotropies of Rq, the Lorentz transformations which do not

alter the components of Rq. These form the group Hq.

� Rotate the frame, up to Hq, so that Rq takes a canonical form.

� Determine the number tq of functionally independent elements which

are now present in Rq as functions of the space-time coordinates.

� If tq = tq−1 and dimHq = dimHq−1, let N = q and go to the next

step. If not, increase q by 1 and go to the �rst step.
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� At this point we know all the invariants of the space and can determine

the dimension and structure of the isometry and isotropy groups. For

a space-time of dimension n, the isotropy group has dimension s equal

to that of HN and the isometry group has dimension n+ s− tN . To
compare the space with another one, we �rst compare tq and Hq: the

two spaces can only be isomorphic if these are the same for each q.

If they are the same, then one has to check the consistency of the

algebraic equations derived by equating corresponding components of

RN .

Using CLASSI many of these steps are being performed automatically.

The step by step method using CLASSI works as follows: �rst construct

a metric �le. This can be done in various ways (one example is given in

chapter 5). It is important here to identify real and complex coordinates.

The metric can then be inserted using its tetrad vectors (one forms), or

its co- or contravariant null vectors. In this �le, one can also de�ne sub-

stitutions, and it is here that one writes down the dyad transformations,

necessary to obtain a standard tetrad for CLASSI. These transformations

can be inserted in the following ways:

null rotation 1 $ z $ or 1 $ 0 $ z, ω ∈ C
0 $ 1 $ ω $ 1 $

boost B $ 0 $ B ∈ R
0 $ B−1$

spin rotation eiθ $ 0 $ θ ∈ R
0 $ e−iθ $

Once the metric �le is ready, it can be loaded in CLASSI. A step by step

procedure allows one to check if the tetrad is still in a standard form.

`(CLASSIFY0)' returns the Petrov type of the metric, in addition to its

Ricci spinor, curvature scalar and number of independent functions at that

point. If the metric is still in its standard form (CLASSI will tell so), one

can proceed to the next step `(CLASSIFY1)', which returns the �rst sym-

metrised derivatives of Ψi, Φij , etc. If, for a certain step, the metric is not
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in its standard form, one should �rst go back to the metric �le, apply the

appropriate dyad transformations, reload the metric in CLASSI and start

over from the �rst step.

During the entire procedure, CLASSI will ask whether or not certain ex-

pressions (Jacobians) can be zero. This results in subcases, that should be

examined separately.

It is not necessary to follow the step by step procedure if the metric is in

its standard form. It is su�cient then, to just `(CLASSIFY)' the metric,

which automatically performs the step by step procedure, explained above.

One can then also ask for the `(CLASSISUM)' result, which returns a very

compact classi�cation of the metric: a one line summary of the form ABC

D E FGHIJKLM, where the �rst seven symbols have the following meaning:

A : trace-free Ricci tensor E : dim. isotropy group

B : ricciscalar Λ F : number of boosts still allowed

C : Petrov type G : number of functionally

D : dim. isometry group independent elements

As an example, consider a CLASSISUM output line that reads r1D 1 0 00-

-12--. This corresponds to a pure radiation metric with Ricci scalar equal

to one, of Petrov type D, with a one-dimensional isometry group and for

which the dimension of the remaining isotropy group is zero. 00-- speci�es

the isotropy groups H0 and H1 and 12-- gives the number of functionally

independent functions found up to this order of di�erentiation.





Chapter 2

Aligned Petrov type D pure

radiation solutions of the

Robinson Trautman family

2.1 Introduction

Around 1960 Robinson and Trautman investigated a large and physically

important family of exact solutions, which are now known as `Robinson

Trautman solutions'. They are de�ned geometrically by the property that

they admit a geodesic, non-twisting and shear-free but expanding null con-

gruence. Apart from various classes of pure radiation space-times, this

family also includes the Schwarzschild and Reissner Nordström black holes,

the C-metric which represents accelerating black holes, the Vaidya solution

with pure radiation, photon rockets and their non-rotating generalisations.

As shown in the original work of Robinson and Trautman (1960), see also

Stephani et al. (2003, Chapter 28), the general metric for an Einstein space

with the geometric properties de�ned above can be written in the form

ds2 = −2 dudr − 2Hdu2 + 2
r2

P 2
dζdζ, (2.1)

where

2H ≡ 2P 2(logP ),ζζ − 2r(logP ),u −
2m

r
− Λr2

3
, (2.2)

28
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in which Λ is the cosmological constant. This metric contains two functions,

P = P (u, ζ, ζ) and m = m(u). The coordinates employed in (2.1) are

adapted to the assumed geometry which admits a geodesic, shear-free, non-

twisting and expanding null congruence, generated by k = ∂r. Speci�cally,

r is an a�ne parameter along the principal null congruence, u is a retarded

time coordinate and ζ is a complex spatial stereographic type coordinate.

Using the null tetrad k = ∂r, l = ∂u − H∂r, m = (P/r)∂ζ , the non-zero

components of the Weyl tensor are

Ψ2 = −m
r3
,

Ψ3 = −P
r2

(
P 2 (logP ),ζζ

)
,ζ
,

Ψ4 =
1

r2

[
P 2
(
P 2 (logP ),ζζ

)
,ζ

]
,ζ

− 1

r

[
P 2 (logP ),uζ

]
,ζ
.

Generally, the metric (2.1) with (2.2) admits a Ricci tensor component

Φ22 =
1

r2P

(
P 4P,ζζζζ − P

3P,ζζP,ζζ + 3mP,u − Pm,u

)
(2.3)

in addition to the above mentioned Weyl tensor components and the cos-

mological constant. This corresponds to the presence of an aligned pure

radiation �eld (i.e. a �ow of matter of zero rest mass, propagating along

the repeated principal null direction), with energy momentum tensor of

the form Tab = φkakb, where φ ≡ Φ22/(4π) is the radiation density. For

pure radiation with cosmological constant Einstein's �eld equation implies

4Λ = R.From (2.3) it is obvious that one obtains a vacuum solution if P

and m satisfy

P 4P,ζζζζ − P
3P,ζζP,ζζ + 3mP,u − Pm,u = 0.

Frolov and Khlebnikov (1975) investigated non-rotating aligned pure radia-

tion metrics of Petrov typeD, with cosmological constant. Using the double

principal null vectors k and l to construct the null tetrad, their solutions

are divided in three classes: A, B or C, according to whether π = ν = 0,

π = 0 6= ν or π 6= 0, respectively. If both spin coe�cients, π and ν, are
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zero, the metric was written in one of three di�erent forms:

Metric AI

ds2 =

(
−1 +

2m

r
+ 2Λr2

)
du2 − 2dudr + r2

(
dx2 + sin2 xdy2

)
, (2.4)

Metric AII

ds2 =

(
1 +

2m

r
+ 2Λr2

)
du2 − 2dudr + r2

(
dx2 + sinh2xdy2

)
, (2.5)

Metric AIII

ds2 =

(
0 +

2m

r
+ 2Λr2

)
du2 − 2dudr + r2

(
dx2 + x2dy2

)
, (2.6)

where Λ is the cosmological constant, and where m = m(u) is an arbitrary

function of u.

If π = 0 but ν 6= 0, the metric can take one of �ve di�erent forms:

Metric BI

ds2 =

[
−1 + 2ar cosx+ r2(f2 + g2 sin2 x) +

2m

r
+ 2Λr2

]
du2 − 2dudr

− 2r2fdudx− 2r2g sin2 xdudy + r2dx2 + r2 sin2 xdy2, (2.7)

f = −a sinx+ b sin y + c cos y,

g = b cotanx cos y − c cotanx sin y,

Metric BII

ds2 =

[
1 + 2arcoshx+ r2(f2 + g2sinh2x) +

2m

r
+ 2Λr2

]
du2 − 2dudr

− 2r2fdudx− 2r2g sinh2xdudy + r2dx2 + r2sinh2xdy2, (2.8)

f = −a sinhx+ b sin y + c cos y,

g = b cotanhx cos y − c cotanhx sin y,

Metric BIII

ds2 =

[
1 + 2arsinhx+ r2(f2 + g2cosh2x) +

2m

r
+ 2Λr2

]
du2 − 2dudr

− 2r2fdudx− 2r2g cosh2xdudy + r2dx2 + r2cosh2xdy2, (2.9)
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f = −acoshx− bey − ce−y,

g = b tanhxey − c tanhxe−y,

Metric BIV

ds2 =

[
1 + 2arex + r2(f2 + g2e2x) +

2m

r
+ 2Λr2

]
du2 − 2dudr

− 2r2fdudx− 2r2ge2xdudy + r2dx2 + r2e2xdy2, (2.10)

f = aex − 2by,

g = b(y2 − e−2x),

Metric BV

ds2 =

[
2r(
√

2x− a) + r2(f2 + g2) +
2m

r
+ 2Λr2

]
du2 − 2dudr

− 2r2fdudx− 2r2gdudy + r2dx2 + r2dy2, (2.11)

f =
1√
2

(
y2 − x2

)
+ ax− by,

g = ay + bx−
√

2xy,

where a = a(u), b = b(u), c = c(u) and m = m(u) are arbitrary func-

tions of u. The only non-vanishing component of the Weyl tensor is Ψ2 =

−m(u)/r3, while the only non-zero component of the Ricci tensor in the

B-class is given by

Φ22 =
1

r2

(
3m(u)p(u, x)− dm

du

)
,

with p(u, x) = a(u) cosx, a(u)coshx, a(u)sinhx, a(u) expx or a(u) −
√

2x

for subclasses I, II, III, IV or V, respectively.

For the remaining case π 6= 0, the metric in the original paper (Frolov and

Khlebnikov, 1975) reads

ds2 = −
(

6mx+ rf ′c4 − 2r
ċ

c
− 2m

r
− r2f2c6 − 2Λr2

)
du2 − 2dudr

− r2

c
dudx+

r2

f2c2
dx2 +

r2f2

c2
dy2, (2.12)
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where c = c(u) is an arbitrary function of u, ′ and ˙ denote di�erentiation

with respect to x and u, respectively, and where

f = f(x) =
(
−2mx3 + ax+ b

)1/2
a, b ∈ R. (2.13)

Note that in the above metrics we have used the opposite signature to that

of Frolov and Khlebnicov.

Some remarks have to be made, when looking at the above results. First of

all, it is obvious that metric AI is a special case of metric BI: by substituting

a(u) = b(u) = c(u) = 0 in (2.7), one obtains (2.4). In the same way, one can

�nd metric AII (2.5) as a special case of metric BII (2.8). It is even possible

to �nd metric AIII as a special case of metric BV: in (2.11) �rst put the

functions a(u) and b(u) equal to zero (note that f and g do not vanish in this

case). Next apply the coordinate transformation y −→ xy. The following

step is to scale the coordinates r, x and u and the function m(u) by a

constant factor 1/c, c, c and 1/c3, respectively. Putting c equal to zero in the

resulting metric, applying the coordinate transformation x −→ x/(1+y2)1/2

and introducing a new coordinate ỹ satisfying dỹ = dy/(1 + y2), we obtain

(2.6). We can thus conclude that the entire A-family is a subfamily of the B-

class. In (Stephani et al., 2003) the A- and B-class are written in equations

(28.71a) and (28.71b) with (28.73).

Secondly, and more importantly, note that the metric for the C-class (2.12)

above is not a solution of the Einstein �eld equations. In the original paper,

the directional derivatives for every metric are given by

δ = ξ1∂u + ω∂r + ξ3∂x + ξ4∂y,

∆ = X1∂u + U∂r +X3∂x +X4∂y,

D = ∂r,

where, for the C-class, the coe�cients ξj , Xj , ω and U are given by

ξ1 = 0, ξ3 = − fc√
2r
, ξ4 = − ic√

2rf
,

X1 = 1, X3 = 0, X4 = 0,

ω =
rf√

2
, U = −3mx− rf ′c4

2
+
rċ

c
+
m

r
+
r2f2c6

2
+ Λr2,
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with f de�ned in (2.13). This, however, does not correspond to a solution

of the Einstein �eld equations. The correct coe�cients should have been

ω =
krf√

2
,

U = −3mxc2 −
r
(
f2
)′
kc

2
+
rċ

c
+
mc3

rk
+
r2f2k2

2
+ Λr2,

where k = k(u) is a new arbitrary function of u and with ξj , Xj as above.

In these coordinates, the non-vanishing components of the Weyl and the

Ricci tensor are

R = 4Λ, Φ22 =
mc3k̇

r2k2
and Ψ2 = −mc

3

r3k
.

Notice that, if k is constant, Φ22 is zero.

It is now possible to make c = c(u) equal to one, by a coordinate transfor-

mation r −→ rc and by next absorbing a factor c(u) in du, thus eliminating

one of the two arbitrary functions of u (as could be expected, from the GHP-

analysis, see below). It is also possible, by a scaling of x and y to make

the constant m equal to one. The result (for zero cosmological constant) is

then equivalent to (28.74) in (Stephani et al., 2003).

In the remainder of this chapter, we will �rst demonstrate how to come to

the above result for the class C. The way to handle and integrate the A- and

B-class of metrics is then very similar1. It is always possible to start directly

from the general Robinson Trautman solution (2.1), but we prefer not to

do so. Instead, we will �rst perform calculations in the GHP-formalism, in

order to extract all possible rotation and boost invariant properties, after

which we translate this information into the NP-formalism. This then allows

us to integrate the system, and to come to a (family of) line element(s) for

the given problem. Also, the calculations in GHP help us to determine the

number of independent free functions to be expected in the �nal result.

2.2 Geroch Held Penrose analysis C-class

In this section, we will handle the metric for the C-class: a Petrov type D,

non-twisting, aligned pure radiation metric for which the spin coe�cient
1The GHP-analysis for the B-class (⊃ A-class) is given in section 2.4.
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π is non-zero in the null tetrad constructed with the double principal null

direction. The basic assumptions for aligned type D pure radiation are

Ψi = 0, i 6= 2 and Φij = 0, (i, j) 6= (2, 2). So the only non-zero components

of the Weyl and Ricci tensor are R, Ψ2 and Φ22. Bianchi equations (1.43)

and (1.44) then show that the system is geodesic and shear-free: κ = σ = 0,

and by (1.49) also λ = 0. For the moment, we do not assume the solutions

to be non-twisting. We will prove that this is a consequence of the initial

conditions. The remaining Bianchi equations can be rewritten as follows:

ðΨ2 = 3τΨ2, ðΦ22 = τΦ22 + 3νΨ2,

ð′Ψ2 = −3πΨ2, ð′Φ22 = τΦ22 + 3νΨ2,

Þ′Ψ2 = −ρΦ22 − 3µΨ2,

ÞΨ2 = 3ρΨ2, ÞΦ22 = (ρ+ ρ)Φ22,

whereas the GHP Ricci equations read

ð′π = −π2, ðρ = τ(ρ− ρ),

ð′µ = π(µ− µ) + ν(ρ− ρ), Þρ = ρ2,

Þµ = Ψ2 + ðπ + ρµ+ ππ +
Λ

3
,

ðν = Þ′µ+ µ2 + τν + νπ + Φ22, ðτ = τ2,

ð′ν = ν(τ − π), ð′τ = Þ′ρ+
Λ

3
+ ρµ+ ττ + Ψ2,

Þν = Þ′π + µ(τ + π), Þτ = ρ(τ + π).

Making use of these expressions for the directional derivatives of the spin

coe�cients, Weyl and Ricci tensor components, more information can be

extracted from the commutator relations. From [ð′,Þ]Ψ2, we obtain

Þπ = −ð′ρ,

whereas [Þ′,Þ]Ψ2, [ð,Þ′]Ψ2 and [ð′,Þ′]Ψ2 respectively yield

ðπ = −Þ′ρ−Ψ2 − ρµ−
Λ

3
− ττ − ρΦ22(ρ− ρ)

3Ψ2
,

Þ′τ = −ðµ− νρ(Ψ2 −Ψ2)

Ψ2
+
τΦ22(2ρ+ ρ)

3Ψ2
,

Þ′π =
Φ22ð′ρ

3Ψ2
− µ(π + τ) + ν(ρ− ρ) +

πΦ22ρ

Ψ2
.
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Before continuing, �rst note that

νΨ2

πΦ22

is (0, 0)-weighted. Making use of the expressions for ð′Ψ2, ð′Φ22, ð′π and

ð′ν, we can prove, by taking the ð′-derivative of

νΨ2 + cπΦ22 = 0, (2.14)

where c is a constant, that (2.14) can only be valid for c = 1. To prove that

this expression indeed must hold, we look at [ð′,Þ]π and [ð′,Þ′]π. From the

former we �nd an expression for ð′ð′ρ

ð′ð′ρ = −3πð′ρ, (2.15)

which we can use to simplify the latter:

(5πΦ22 − 3νΨ2)ð′ρ
3Ψ2

+
4ρπ (πΦ22 + νΨ2)

Ψ2
= 0. (2.16)

It is obvious that we can rewrite (2.16) as an expression for ð′ρ:

ð′ρ =
12ρπ (πΦ22 + νΨ2)

3νΨ2 − 5πΦ22
.

Herewith (2.15) becomes

24π2ρ (πΦ22 + νΨ2) (21νΨ2 + πΦ22)

(3νΨ2 − 5πΦ22)2 = 0

showing that (2.14), with c = 1, must hold (except if π = 0, which is

handled in cases A and B). It follows that ν = −πΦ22

Ψ2
6= 0.

From the derivatives of (2.14) we �nd expressions for Þ′µ and Þ′ν:

Þ′µ =
Φ22Þ′ρ

Ψ2
+
ρΦ2

22(ρ− ρ)

3Ψ2
2

+

(
Λ

3
+ ρµ+ ττ

)
Φ22

Ψ2

− µ2 − 3τν +
νν
(
3Ψ2 −Ψ2

)
Φ22

,

Þ′ν =
νÞ′Φ22

Φ22
+ (τµ− ν (ρ− 3ρ))

Φ22

Ψ2
+ 2µν.
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We are now ready to prove that ρ has to be real. Assuming for a moment

that ρ is not real, we can �nd an expression for Þ′ρ from [ð,Þ]π and [Þ′,Þ]ρ:

Þ′ρ = −Λ

6
− ττ − ρΨ2 − 2ρΨ2 + ρΨ2

2(ρ− ρ)
.

The latter would allow us to solve [ð′,Þ′]ρ for τ :

τ =
π (ρ− 2ρ)

ρ
.

Substituting these expressions for τ and Þ′ρ in [Þ′,Þ]π leads to

4πΦ22 (ρ− ρ)2

3Ψ2
= 0,

a contradiction.

Next, we calculate [ð′, ð]Φ22, from which we eliminate ν by (2.14):

4Φ22

(
Ψ2 −Ψ2

)
= 0,

so also Ψ2 is real. Taking the derivatives of Ψ2 − Ψ2 = 0, and again

eliminating ν by (2.14), we �nd that µ is real and that τ = −π.

The only remaining information comes from [ð,Þ′]π, which yields an ex-

pression for Þ′Þ′ρ:

Þ′Þ′ρ = −2µÞ′ρ− 2ρΦ22 (ππ −Ψ2)

Ψ2
− µΛ

3
− 2µ (ππ −Ψ2) .

Expressions for ðÞ′ρ, ð′Þ′ρ and ÞÞ′ρ can be obtained from applying the

appropriate commutators to ρ.

As we can use Þ′ρ as a new variable, of which we know all directional

derivatives, we expect to see only one free function appearing in the metric,

as the single unknown function in the GHP-analysis is Þ′Φ22.

2.3 Newman Penrose analysis C-class

In order to obtain an explicit expression for the metric line element, we

�rst recapitulate some of the invariant information obtained in the previous

section:
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� basic assumptions: all Ψi and Φij equal to zero, except Ψ2 and Φ22,

� geodesity, shear-freeness and λ = 0,

� the fact that ρ, µ and Ψ2 are real,

� the expressions for τ = −π and ν = −πΦ22

Ψ2
.

As we assume π to be non-zero, we can �x the rotation by making π > 0

(i.e. we make π real and strictly positive). From (1.27) it then follows that ε

is real, so a boost with parameter A satisfying 2ε+ D lnA = 0 exists, which

makes ε = 0. If we add the condition δA = −β−α−π (δA = −β−α−π), we
see, by (1.27 − 1.29), (1.31 − 1.32), (1.36) and the commutator relations

(1.4) and (1.6), that this boost can also make β = −π − α. From the

imaginary part of (1.31 + 1.32), it then follows that also α is real, whereas

the imaginary part of (1.33) implies γ = γ.

The next step in our calculations is to rewrite the NP Bianchi equations:

δΨ2 = −3πΨ2, δΦ22 = −2πΦ22, (2.17)

δΨ2 = −3πΨ2, δΦ22 = −2πΦ22,

∆Ψ2 = −ρΦ22 − 3µΨ2,

DΨ2 = 3ρΨ2, DΦ22 = 2ρΦ22.

The NP Ricci equations can be written as follows:

δµ = πµ, ∆µ =
2πΦ22 (π + 2α)

Ψ2
− µ2 − 2γµ− Φ22,

δπ = −2π(π + α), ∆π =
ρπΦ22

Ψ2
,

δρ = −ρπ, ∆ρ = 2π(π + 2α) + ρ(2γ − µ)−Ψ2 −
Λ

3
,

δγ = −πµ, ∆α = −ρπΦ22

Ψ2
− µ(α+ π), (2.18)

Dπ = 0, Dµ = µρ− 2π(π + 2α) + Ψ2 +
Λ

3
,

Dα = ρ(α+ π), Dρ = ρ2,

Dγ = Ψ2 − π2 − Λ

6



Chapter 2. Aligned type D pure rad. RT metrics 38

and

δα = −δα+ 4α2 + 3π2 + 6πα+ µρ−Ψ2 +
Λ

6
. (2.19)

Applying the commutators to ρ leads to an expression for δα, by which

(2.19) becomes an identity:

δα =
3π2

2
+ 3πα+

Λ

12
+ 2α2 +

µρ

2
− Ψ2

2
.

No other information can be obtained from the set of NP-equations (Bianchi,

Ricci and commutator equations).

In the next step, we look at the �rst Cartan equations, which give us a clue

to what the one forms, corresponding to this problem, may look like. These

equations read:

dω1 = ρω1 ∧ ω4 − µω1 ∧ ω3 + (π + 2α)ω1 ∧ ω2, (2.20)

dω2 = ρω2 ∧ ω4 − µω2 ∧ ω3 − (π + 2α)ω1 ∧ ω2,

dω3 = 0,

dω4 = 2π(ω1 + ω2) ∧ ω4 − 2γ ω3 ∧ ω4 − πΦ22

Ψ2
(ω1 + ω2) ∧ ω3.

As ω3 is exact, we can introduce a coordinate u such that ω3 = du. We

will not make use of the fact that ω1 and ω2 are hypersurface orthogonal,

but prefer to write

ω1 = Hdu+ V dr + Pdx+ iQdy,

where H, V , P and Q are complex valued functions of (u, r, x, y). Further-

more, we will use −1/ρ as coordinate r. From the directional derivatives of

ρ and

dρ = δρω1 + δρω2 + ∆ρω3 + Dρω4,

we �nd

ω4 =

[(
Ψ2 − 2π2 − 4πα+

Λ

3

)
r2 +

(
2γ − µ− (H +H)π

)
r

]
du

+
[
1− (V + V )πr

]
dr − πr

[(
P + P

)
dx+ i

(
Q−Q

)
dy
]
.
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It is obvious that we can choose the x- and y-coordinate in such a way that

V = 0. There is still the following coordinate freedom:

x −→ g1(u, x, y)x̃+ g2(u, x, y),

y −→ g3(u, x, y)ỹ + g4(u, x, y).

Substituting the above expressions for the one forms in equation (2.20) we

get[
Py − i

(
Qx + 4(π + α)<(QP )

)]
dx ∧ dy +Hydu ∧ dy −Hxdx ∧ du

−
[
Qu −Q

(
2γ − 2π(π + 2α)r + (Ψ2 +

Λ

3
)r

)
+ 4(π + α)<(HQ)

]
idu ∧ dy

+

[
Pu − P

(
2γ − 2π(π + 2α)r + (Ψ2 +

Λ

3
)r

)
− 4(π + α)<(HP )

]
dx ∧ du

− H −Hrr

r
du ∧ dr − P − Prr

r
dx ∧ dr − Q−Qrr

r
i dy ∧ dr = 0, (2.21)

from which we see that P , Q and H are of the form f(u, x, y)r, so a trans-

formation of x and y can be used to make both P and Q real. To see this,

we will write

P = (P0 + iP̃0)r, Q = (Q0 + iQ̃0)r, H = (H1 + iH2)r,

where P0, P̃0, Q0, Q̃0, H1 and H2 are real functions of (u, x, y) only. Replac-

ing x by x+g2(u, x, y) in ω1 (the calculations for ω2 and ω4 are equivalent),

we �nd that

ω1

r
=

(
H1 + iH2 + (P0 + iP̃0)g2u

)
du+ (P0 + iP̃0)(1 + g2x)dx

+
(

iQ0 − Q̃0 + (P0 + iP̃0)g2y

)
dy.

If we choose the (real) function g2(u, x, y) such that ∂g2/∂y = Q̃0/P0, this

shows that we can make Q real (we will also replace H1 by H1 − (P0g2u),

H2 by H2 − (P̃0g2u) etc.). Next we replace y by y + g4(u, x, y):

ω1

r
= (H1 + i(H2 +Q0g4u)) du+

(
P0 + i(P̃0 +Q0g4x)

)
dx+iQ0(1+g4y)dy,

where we choose the real function g4 such that ∂g4/∂x = −P̃0/Q0. This

makes P real. We replace H2 by H2 − Q0g4u and Q0 by Q0/(1 + g4y) to

obtain

ω1 = (H1 + iH2) rdu+ P0rdx+ iQ0rdy.
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The remaining coordinate freedom is now given by

x −→ g1(u, x)x̃+ g2(u, x),

y −→ g3(u, y)ỹ + g4(u, y).

From (2.21) it also follows that P0 and H1 are independent of y. Further-

more, we see that

α = −π − Q0x

4P0Q0r
, (2.22)

γ = −
(
π2 +

Ψ2

2
+

Λ

6

)
r − H2y −Q0u

2Q0
− Q0x(π +H1)

2Q0P0
.

Substitution hereof in (2.21) leads to

P0u =
H1xQ0 −H1Q0x

Q0
+

(Q0u −H2y)P0

Q0
, (2.23)

and

H2x = 0.

From the latter we see that H2 can be written in the form

H2 = H2(u, y).

As H1 and P0 are independent of y and H2 is independent of x, a trans-

formation x −→ xf(u, x) can be used to make H1 equal to zero, and by a

similar transformation y −→ yg(u, y), we can make H2 equal to zero.

No more information can be obtained from the �rst Cartan equations. The

next step is to look at the directional derivatives of the spin coe�cients

and of Ψ2 and Φ22. The operators dual to the one forms we have just

constructed are given by

δ = πr∂r +
1

2P0r
∂x −

i

2Q0r
∂y,

∆ = ∂u − r
[
2γ − µ− 2πr (π + 2α) +

(
Ψ2 +

Λ

3

)
r

]
∂r, (2.24)

D = ∂r. (2.25)
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First, we will use the D-operator (2.25) and the expressions obtained from

the NP-equations, to determine the r-dependence of the spin coe�cients

and of Ψ2 and Φ22 (we will use a 0-index to denote quantities independent

of r). It follows that

Ψ2 =
ψ0

r3
,

Φ22 =
φ0

r2
,

π = π0,

µ =
µ0

r
− ψ0

r2
+

(
π2

0 +
Λ

6

)
r +

π0

P0Q0

∂Q0

∂x
.

Applying the δ-operator to ψ0(u, x, y)/r3 and φ0(u, x, y)/r2, and comparing

the result with the expressions for δΨ2 and δΦ22 (i.e. (2.17a and b)), we

�nd that both ψ0 and φ0 are functions of the coordinate u only. From the

directional derivatives of π, we see that π0 = π1Q0, where π1 = π1(u, y) has

to satisfy
1

π1

∂π1

∂y
= − 1

Q0

∂Q0

∂y
(2.26)

and
1

π1

∂π1

∂u
= − 1

Q0

∂Q0

∂u
− φ0

ψ0
. (2.27)

Next, we apply the ∆-operator (2.24) to (2.22), and compare the result with

expression (2.18b). This leads to

∂2Q0

∂u∂x
=

1

P0

∂Q0

∂x

∂P0

∂u
.

We will use this expression, together with (2.23) and (2.26), to simplify

the expressions for δγ and δγ. This leads to two more second order partial

di�erential equations for Q0:

∂2Q0

∂x2
=

1

P0

∂Q0

∂x

∂P0

∂x
+ 4P 2

0Q0µ0, (2.28)

∂2Q0

∂x∂y
=

1

Q0

∂Q0

∂x

∂Q0

∂y
. (2.29)

Making use of the above expressions for Q0xx and Q0xy, as well as of the

expression (2.26), we can rewrite the real part of δµ as

∂µ0

∂x
= −6π1Q0P0ψ0, (2.30)
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whereas its imaginary part tells us that µ0 is independent of y.

Next, we rewrite ∆Ψ2 and ∆µ:

φ0 =
dψ0

du
+

3ψ0

Q0

∂Q0

∂u
, (2.31)

1

µ0

∂µ0

∂u
= − 2

Q0

∂Q0

∂u
.

At this point, we have rewritten all the NP-equations as partial di�erential

equations in the variables P0, Q0, π1, µ0, ψ0 and φ0. Let us now solve these

equations, where, from now on, we will add the coordinate dependence of

the functions.

From (2.29) we see that Q0 is of the form Q0(u, x, y) = Q1(u, x)Q2(u, y).

This allows us to solve (2.26): π1(u, y) = p(u)/Q2(u, y). The solution for

Q1(u, x) can be found from (2.30):

Q1(u, x) = − 1

6p(u)ψ0(u)P0(u, x)

∂µ0(u, x)

∂x
.

As φ0 is a function of u only, it is clear from (2.31) that we can write Q2

as Q2(u, y) = q1(u) times a function of y, which we absorb in dy. Then, we

use (2.27) to eliminate dψ0(u)/du from (2.23):

∂2µ0(u, x)

∂u∂x
= − 2

P0(u, x)

∂P0(u, x)

∂u

∂µ0(u, x)

∂x
. (2.32)

Substitution of this in (2.27) leads to

1

ψ0(u)

dψ0(u)

du
=

1

q1(u)

dq1(u)

du
− 1

p(u)

dp(u)

du
− 4

P0(u, x)

∂P0(u, x)

∂u
. (2.33)

It is then obvious that we can write P0 as P0(u, x) = p1(u)p2(x). Hence we

can easily solve (2.32) for µ0(u, x):

µ0(u, x) =
m1(u) +m2(x)

p1(u)2
,

after which (2.33) and (2.28) lead to

q1(u) = c1ψ0(u)p(u)p1(u)4,

m1(u) = c2
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and

p2(x) =
3s√

12m2(x)3 + 36c2m2(x)2 − 18c3 + 18c4m2(x)

dm2(x)

dx
,

where c1,...,c4 are arbitrary real constants and where s = ±1. If we now use

m2(x) + c2 as coordinate x, rescale the coordinate y and the function p1(u)

and introduce the constants a and b, de�ned by c3 = 2/3
[
b− c2(c2

2 + a)
]

and c4 = 2
[
c2

2 + a/3
]
, we �nd the following expressions for the one forms:

ω1 =
sp1(u)r√
x3 + ax− b

dx− isp1(u)r
√
x3 + ax− bdy,

ω2 =
sp1(u)r√
x3 + ax− b

dx+ isp1(u)r
√
x3 + ax− bdy,

ω3 = du,

ω4 =

[(
3x2 + a

16p1(u)3ψ0(u)
+

dp1(u)

du

)
r

p1(u)
− 3x

4p1(u)2
+
ψ0(u)

r

]
du

−
(

Λ

6
+

x3 + ax− b
64p1(u)6ψ0(u)2

)
r2du+ dr +

r2

4p1(u)2ψ0(u)
dx.

It is obvious that the sign s doesn't play a role in the line element for this

problem, so we can put s equal to 1. Furthermore a transformation

r −→ r̃/p1(u),

followed by rede�nition of u and ψ0(u), such that

du −→ p1(u)dũ,

ψ0(u) =
k(ũ)

2p1(u)3
,

allows us to make p1(u) equal to one. The corresponding line element

(dropping the tildes) is then given by

ds2 =

[(
Λ

3
+
x3 + ax− b

8k(u)2

)
r2 − (3x2 + a)r

4k(u)
+

3x

2
− k(u)

r

]
du2 − 2dudr

− r2

k(u)
dxdu+

2r2

x3 + ax− b
dx2 + 2(x3 + ax− b)r2dy2, (2.34)

where there is indeed only one free function, k(u), as we expected. In the

above coordinates, the non-zero components of the Weyl and Ricci tensor

(apart from the cosmological constant) are given by

Ψ2 =
1

2

k(u)

r3
, Φ22 =

1

2

k̇(u)

r2
.
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By rescaling of the coordinates u, r, x and y, the constants a and b and the

function k(u) in (2.34) and putting Λ equal to zero, we obtain the metric

(28.74) from (Stephani et al., 2003).

2.4 Geroch Held Penrose analysis B-class

In this section, we will take a look at the B-class, i.e. the class of non-

twisting, aligned pure radiation metrics of Petrov type D, for which the

spin coe�cient π is zero in the null tetrad constructed with the double

principal null direction. We assume R (= 4Λ), Ψ2 and Φ22 6= 0 but all

other components of the Weyl and Ricci tensor equal to zero. From (1.43),

(1.44) and (1.49) we �nd that κ = σ = λ = 0. The remaining Bianchi and

Ricci equations can be written as

ðΨ2 = 3τΨ2, ðΦ22 = τΦ22 + 3νΨ2,

ð′Ψ2 = 0, ð′Φ22 = τΦ22 + 3νΨ2,

Þ′Ψ2 = −ρΦ22 − 3µΨ2,

ÞΨ2 = 3ρΨ2, ÞΦ22 = (ρ+ ρ)Φ22,

and

ð′µ = ν(ρ− ρ), ðρ = τ(ρ− ρ),

Þµ = Ψ2 + ρµ+
Λ

3
, Þρ = ρ2,

ðν = Þ′µ+ µ2 + τν + Φ22, ðτ = τ2, (2.35)

ð′ν = ντ , ð′τ = Þ′ρ+
Λ

3
+ ρµ+ ττ + Ψ2, (2.36)

Þν = µτ, Þτ = ρτ.

From [ð′,Þ]Ψ2] we �nd that ð′ρ = 0, after which [ð,Þ]Φ22 leads to:

ρν − ρν − τµ = 0. (2.37)

Taking the Þ-derivative of this expression and subtracting (ρ+ ρ)× (2.37)

from the result, we �nd

τ(3Ψ2 + Λ) = 0. (2.38)
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As the ð′-derivative of 3Ψ2 + Λ = 0 is equal to 36τΨ2 = 0, we have τ = 0.

This means that we can rewrite (2.36) as

Þ′ρ = −
(

Ψ2 + ρµ+
Λ

3

)
,

whereas (2.37) now becomes (ρ − ρ)ν = 0. We will also rewrite [ð′,Þ′]ρ as

ð′µ = 0.

Assuming now that ρ is not real (and thus ν = 0), we have by [ð′, ð]ρ that

µ = − Λ

6ρ
− ρΨ2 − ρΨ2

2ρ(ρ− ρ)
.

Substituting this, together with ν = 0, in (2.35) leads to Φ22 = 0, which

is impossible. We have thus proven that ρ is real. Herewith [ð′,ð]ρ shows

that also Ψ2 is real, whereas from Þ′ρ we see that also µ is real.

The only unknowns in the system are (expressions for) Þ′ν (complex), Þ′µ

(real) and Þ′Φ22 (real). We can use these quantities to construct four real

indepent zero-weighted quantities of which not all directional derivatives

are known (for example ρ3Þ′Φ22, ρ2Þ′µ and the real and imaginary parts

of (ρÞ′ν)/ν). We thus expect to see four arbitrary (distinguishing) real

functions in the line element, and not �ve (as in Stephani et al. (2003,

Chapter 28)). In the case where ν = 0 (i.e. class A in the original paper)

we can solve (2.35) for Þ′µ leaving only one arbitrary function (as the only

unknown is then given by Þ′Φ22).

2.5 Conclusions

Frolov and Khlebnikov (1975) investigated non-rotating aligned pure radia-

tion metrics of Petrov type D, with cosmological constant. Their solutions

are grouped into three classes, A, B and C. In this chapter, we have shown

that the A-class is in fact redundant, in the sense that it is a subfamily of

the B-class. The C-class covers a family of metrics which are distinct from

the metrics in the B-class. In the original paper the metric for the C-class is

incorrect. In this chapter we re-integrate the latter and we give the correct

line element (2.34) for this class of metrics. By rescaling the coordinates
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and parameters (and for zero cosmological constant2), this is exactly the

same as metric (28.74) in (Stephani et al., 2003).

2The way to allow for a cosmological constant is given in paragraph 28.4 of (Stephani

et al., 2003)
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Chapter 3

Newman Tamburino metrics in

the presence of an Einstein

Maxwell �eld

3.1 Introduction

In 1962 Newman and Tamburino published the general empty space solu-

tions for the class of metrics containing hypersurface orthogonal geodesic

rays with non-vanishing shear and divergence (Newman and Tamburino,

1962; Carmeli, 1977). Their aim was to generalise the Robinson Trautman

metrics to the shearing case.

Locally their solutions can be subdivided into two classes, called `cylin-

drical' and `spherical', according to whether respectively ρ2 − σσ = 0 or

ρ2 − σσ 6= 0 holds in an open set of space-time. The terminology (New-

man and Tamburino, 1962) refers to the geometry of the u = constant,

r = constant surfaces (using the original Newman Tamburino coordinates),

which admit a single Killing vector in the `cylindrical' class and which re-

semble distorted spheres in the `spherical' class. It can be shown (Steele,

2004) that the vacuum Newman Tamburino spherical metrics always admit

a Killing vector.

In the next chapter, we will show how these empty space solutions can

be found without introducing coordinates from the beginning. We prefer

48
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to �rst rewrite the Ricci equations and Bianchi identities in the Geroch

Held Penrose and Newman Penrose formalisms and only at a �nal stage we

introduce coordinates. Also we give the empty space cylindrical metric in

its correct and less complicated form.

In the present chapter, we �rst show that there exist no spherical solutions

in the presence of an aligned Maxwell �eld, and that consistency with the

�eld equations therefore requires the cylindrical condition |ρ| = |σ|. We

will also show that the solutions are of Petrov type I (generalised Goldberg

Sachs). In section 3.3, we prove that the cylindrical condition forces the

Maxwell �eld to be aligned. Next we present the general solution of the

Einstein Maxwell �eld equations: we �rst show that the Newman Penrose,

Bianchi and Maxwell equations form an integrable system and then pro-

ceed to integrate the �rst Cartan structure equations. After obtaining the

explicit form of the line element we will show how this solution is related

to the vacuum cylindrical Newman Tamburino metric.

3.2 Geroch Held Penrose analysis

In this section, we will use the GHP-formalism to examine the Newman

Tamburino metrics in the presence of an aligned Maxwell �eld. The New-

man Tamburino metrics are characterised by the existence of a hypersurface

orthogonal and geodesic principal null direction k, for which the shear and

divergence are non-vanishing. In terms of the NP-variables this translates

into

κ = 0,

Ψ0 = 0, (3.1)

ρ− ρ = 0,

σρ 6= 0,

where equation (3.1) is the mathematical characterisation of the fact that

k is a principal null direction of the Weyl tensor. We suppose that the

Maxwell �eld is aligned, in the sense that k is not only a principal null

direction of the Weyl tensor, but also that k is a principal null direction of

the Maxwell tensor, which means that we can put Φ0 equal to 0 too.
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We will now null rotate the null tetrad (m,m, l,k) about k, such that

π = 0. This �xes the null tetrad upto null rotations for which the rotation

parameter B satis�es ÞB = 0 (i.e. the GHP-equivalent of (1.9b) for κ = 0).

We can then rewrite the GHP Ricci equations (1.25 − 1.42) as follows1:

Þµ = ρµ+ σλ+ Ψ2 +
R

12
, ð′µ = ðλ+ Ψ3 − Φ1Φ2,

Þν = τµ+ τλ+ Ψ3 + Φ1Φ2, ðν = Þ′µ+ τν + µ2 + λλ+ Φ2Φ2,

Þρ = ρ2 + σσ, ðρ = ð′σ −Ψ1,

Þτ = τρ+ τσ + Ψ1, ðτ = Þ′σ + µσ + λρ+ τ2,

Þλ = ρλ+ σµ, ð′ν = Þ′λ+ Ψ4 + λµ+ λµ+ τν,

Þσ = 2ρσ, Þ′ρ = ð′τ − ττ − ρµ− σλ−Ψ2 −
R

12
.

As ρ is real, it follows from the last equation that

ð′τ − ðτ − ρ (µ− µ)− σλ+ σλ−Ψ2 + Ψ2 = 0. (3.2)

We also rewrite the GHP Bianchi equations (1.43 − 1.53) and the GHP

Maxwell equations (1.54 − 1.57). They are given by

ÞΨ1 = 4ρΨ1,

ÞΨ2 = ð′Ψ1 + 2ρΦ1Φ1 + 3ρΨ2,

ÞΨ3 = ð′Ψ2 + ρΦ1Φ2 + 2ρΨ3 + Φ1ð′Φ1 − 2λΨ1,

ÞΨ4 = ð′Ψ3 − 2λΦ1Φ1 − 3λΨ2 + ρΨ4 + Φ1ð′Φ2,

Þ′Ψ1 = ðΨ2 − 2µΨ1 − 2ρΦ1Φ2 + 2τΦ1Φ1 − 3τΨ2 + 2σΨ3,

ðΨ1 = 4τΨ1 − 3σΨ2 − 2σΦ1Φ1,

ðΨ3 = 3µΨ2 − τΦ1Φ2 + ρΦ2Φ2 − 2νΨ1 + Φ2ð′Φ1 + 2τΨ3 − σΨ4

− Φ1Þ′Φ1 + Þ′Ψ2,

ðΨ4 = Þ′Ψ3 + 4µΨ3 + Φ2ð′Φ2 − Φ1Þ′Φ2 − 3νΨ2 + τΨ4 + 2Φ1(νΦ1 − λΦ2),

and

ÞΦ1 = 2ρΦ1, ðΦ1 = 2τΦ1 − σΦ2,

ÞΦ2 = ð′Φ1 + ρΦ2, ðΦ2 = Þ′Φ1 + 2µΦ1 + τΦ2. (3.3)

1Note that the assumption ρ 6= 0 is in fact unnecessary, as follows from Þρ = ρ2 + σσ

and the fact that σ 6= 0.
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Note that Φ1 cannot be zero, as then also Φ2 would be zero, and we would

have a vacuum �eld, the solutions of which are all known (Newman and

Tamburino, 1962), see also chapter 4. Herewith we have proven that the

Einstein Maxwell �eld is necessarily non-null, as for a null EM �eld the

condition 16(Φ0Φ2 − Φ2
1) = 16Φ2

1 = 0 must be satis�ed.

More information can be found, when we apply the commutators (1.61-1.64)

to the spin coe�cients and tensor components. If we act with [ð,Þ] on Φ1,

we obtain an expression for ð′Φ1:

ð′Φ1 = −Φ1

σ

(
ð′σ − 2Ψ1 − τσ

)
.

We can use this expression in [ð′,Þ]Φ1, which, after eliminating Þð′σ by

[ð′,Þ]σ, leads to

ðσ = −στ − 4σðσ
σ

+
σ2Φ2

Φ1
+

2
(
2σΨ1 + ρΨ1

)
σ

.

Expressions for ð′Ψ1 and ð′σ can be found from [ð,Þ]Ψ1 and [ð′,Þ]Ψ1,

respectively. First we �nd

ð′Ψ1 = τΨ1 −
Ψ1ð′σ
σ
− 4σρΦ1Φ1 − 5Ψ2

1

2σ
, (3.4)

from which it can be seen that Ψ1 cannot be zero. This then allows us to

rewrite [ð′,Þ]Ψ1 as

ð′σ =
3σσΨ2

2Ψ1

− τσ − σσΦ2

2Φ1

+
ρΨ1 + 4Ψ1σ

4σ
.

Hence (3.4) becomes

ð′Ψ1 = 2τΨ1 − 2ρΦ1Φ1 −
σΨ1

(
3Ψ2Φ1 −Ψ1Φ2

)
2Ψ1Φ1

+
Ψ1

(
6σΨ1 − ρΨ1

)
4σσ

.

We then immediately �nd an expression for Φ2 from [ð′,Þ]σ:

Φ2 =
Φ1

(
2σ2σΨ2 − ρΨ2

1

)
σ2σΨ1

.

Substituting the latter in (3.3), we �nd

ðΨ2 =
Ψ1Þ′Φ1

Φ1
+ 3τΨ2 + 2µΨ1 −

τΨ2
1

2σσ
+

Ψ2
1Ψ2

2σΨ1

−
2σΨ2

(
Ψ2 + Φ1Φ1

)
Ψ1

−
Ψ1ρ

(
4Φ1Φ1σ

2σ − 2Ψ2
1ρ+ Ψ1σΨ1

)
4σ3σ2 .
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We now calculate [Þ′,Þ]Ψ1, from which we eliminate ÞÞ′Φ1 by [Þ′,Þ]Φ1.

This leads to an expression for ð′τ :

ð′τ =

(
σσ
(
2Ψ2 − Φ1Φ1

)
− Ψ2

1ρ

σ

)
Ψ2

Ψ1Ψ1

+
σð′Ψ2

Ψ1
+

2στΦ1Φ1

Ψ1
+ ρµ

−

(
3στ −

4ρ
(
Ψ1Ψ1 + σσΦ1Φ1

)
− 5σΨ2

1

σΨ1

)
Ψ2

Ψ1
− σλ+

R

24

+
4Φ1Φ1σσ

(
2Ψ1σσ − ρ2Ψ1 − ρσΨ1

)
+ Ψ2

1ρ
(
3Ψ1σ −Ψ1ρ

)
8Ψ1σ2σ2 .

Substitution hereof in (3.2) gives

σð′Ψ2

Ψ1
− σðΨ2

Ψ1

− 2σλ+ 2σλ−
σ
(
2Φ1Φ1 − 3Ψ2

)
τ

Ψ1

+
σ
(
2Φ1Φ1 − 3Ψ2

)
τ

Ψ1

−

(
3Ψ1Ψ1 + 4Φ1Φ1σσ

) (
2σσ2Ψ2

1Ψ2 − 2σ2σΨ1
2
Ψ2 + σΨ1Ψ1

3 − σΨ3
1Ψ1

)
ρ

8σ2σ2Ψ2
1Ψ1

2

−
(
4Φ1Φ1σσ − 9Ψ1Ψ1

) (
Ψ2 −Ψ2

)
4Ψ1Ψ1

= 0. (3.5)

We will use this expression to eliminate ð′Ψ2 from [ð′, ð]Φ1, which then

leads to(
σΨ1

2 − 4ρΨ1Ψ1 + 3σΨ2
1

)
ρ

8σ2σ2

+

(
2σΦ1Φ1

Ψ1
− Ψ1

2σ

)
τ +

((
σΨ1 + 3ρΨ1

)
4σΨ1

−
σΦ1

(
σΨ1 − ρΨ1

)
Φ1

Ψ1Ψ1

)
Ψ2

−
(

2σΦ1Φ1

Ψ1

+
3Ψ1

2σ

)
τ +

(
σ
(
σΨ1 − ρΨ1

)
Φ1Φ1

Ψ2
1Ψ1

+

(
3σΨ1 + ρΨ1

)
4σΨ1

)
Ψ2

+
Φ1

(
σρΨ2

1 − σρΨ1
2

+ 4σσΨ1Ψ1 − 4ρ2Ψ1Ψ1

)
Φ1

2Ψ1Ψ1σσ
= 0. (3.6)

Next, we calculate [ð′,ð]σ, which we simplify by equation (3.6). This gives

us an expression which we can solve for τ :

8σ2Φ1Φ1τ

Ψ1
− 2τΨ1 +

(
Ψ1ρ

Ψ1

− 4σ2σΦ1Φ1

Ψ1Ψ1

)
Ψ2 +

(
σ − 4σ2ρΦ1Φ1

Ψ2

)
Ψ2

+
ρΨ1

(
σΨ1 − ρΨ1

)
2σσ2 +

2Φ1

(
2σσΨ1 − ρσΨ1 − ρ2Ψ1

)
Φ1

σΨ1
= 0.(3.7)
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Making use of (3.5) and (3.7), we �nd an expression for τ from [ð′,ð]Ψ1:

τ =
ρΨ2

2Ψ1

+
σΨ2

2Ψ1
+
ρΨ1

4σσ
+

2σΨ1Φ1Φ1

4σσΦ1Φ1 + Ψ1Ψ1

−
Ψ1ρ

2
(
12σσΦ1Φ1 + Ψ1Ψ1

)
4σσ2

(
4σσΦ1Φ1 + Ψ1Ψ1

)
and we �nd a relation between ρ2 and |σ|2:

32σΦ2
1Φ1

2 (
σσ − ρ2

)
4σσΦ1Φ1 + Ψ1Ψ1

= 0.

The latter can only be zero for ρ2 − |σ|2 = 0, i.e. the cylindrical class.

We have thus proven that Newman Tamburino solutions in the presence of

an aligned Einstein Maxwell �eld, are necessarily cylindrical.

From ðτ and ð′τ , we then �nd expressions for ð′Ψ2 and Þ′σ:

ð′Ψ2 =
Ψ1σÞ′Φ1

ρΦ1

− σΨ1R

12ρ2
−

(
σΨ2

2Ψ1

−
σΨ1

(
σΨ1 − 2ρΨ1

)
4ρ3Ψ1

)
Ψ2

+ 2λΨ1 +
3ρΨ2

2

2Ψ1
−
(

2ρΦ1Φ1

Ψ1
+
ρΨ1 − 6σΨ1

4ρ2

)
Ψ2

−

(
3σ2Ψ2

1 + σρΨ1Ψ1 − 2ρ2Ψ1
2

+ 8σρ3Φ1Φ1

)
Ψ1

8ρ5
, (3.8)

Þ′σ =
σÞ′Φ1

Φ1
− σR

24ρ
+
ρ2Ψ2

2

4Ψ1
2 −

3σ2Ψ2
2

4Ψ2
1

−
(
ρσΨ2

2Ψ1Ψ1

− σΨ1 + ρΨ1

4ρΨ1

)
Ψ2

+
σ
(
σΨ1 − 3ρΨ1

)
Ψ2

4ρ2Ψ1
− 3σ2Ψ1

2
+ 6σρΨ1Ψ1 − 9ρ2Ψ2

1

16ρ4
− σΦ1Φ1

ρ
.

Until now, we have allowed the presence of a non-zero cosmological constant

Λ = R/4, but we will show that R = 0. To obtain this result, we �rst look

at the directional derivatives of ρ2 − |σ|2 = 0. The only information that

can be obtained from these derivatives is(
σΨ1 − ρΨ1

) (
σΨ1Ψ1

2
+ ρΨ2

1Ψ1 − 2σρ2Ψ1Ψ2 − 2ρ3Ψ1Ψ2

)
4σρ2Ψ1Ψ1

− ρ2Þ′Φ1

Φ1
+
ρ2Þ′Φ1

Φ1

− ρR

6
= 0. (3.9)

Taking into account this equation and ρ2 − |σ|2 = 0, the equations (3.5)

and (3.8) allow us to conclude that R = 0.
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Let us now look at [ð′,Þ′]Ψ1 and [ð,Þ′]Ψ1. Before we rewrite those ex-

pressions, note that also Ψ2 cannot be zero (by ÞΨ2). This means we can

write

ð′Ψ3 =

(
2Ψ2

Φ1
− Φ1

)
ρ

σ
Þ′Φ1 +

(
Ψ2

2

Ψ1
+

Ψ3
1

2σ2ρ2
− Ψ1Ψ2

2σρ

)
Ψ1

2ρ
+

2ρΨ2Ψ3

Ψ1

− 3Ψ4
1

16σ3ρ2
− Ψ2

1Ψ2

4σ2ρ
− Ψ1Ψ3

σ
+

Ψ2 (12λσ + 5Ψ2)

4σ
−
(

Ψ1

σ
+

Ψ2ρ

Ψ1

)
Ψ2Ψ2ρ

σΨ1

+

[
3

2

(
3Ψ2

1

4ρσ2
− Ψ2

σ
− ρΨ2

2

Ψ2
1

)
−
(

Ψ2

Ψ1
+

Ψ1

2σρ

)(
Ψ1

4ρ
− ρ2Ψ2

2σΨ1

)]
Φ1Φ1,

where

Þ′Φ1 =

(
3Þ′Ψ2 −

ρΨ1Þ′Ψ2

σΨ1

)
Φ1

4Ψ2
− σΨ4Φ1

2Ψ2

+

[
5

8ρ
+

3σ

4Ψ1

(
Ψ2

Ψ1
− Ψ1

2ρ2

)
− Ψ1

2Ψ2

(
Ψ1

ρ2σ
+

ρ3Ψ2
2

2σ2Ψ1
3

)]
Φ2

1Φ1

+

(
ρ
(
3σΨ1 − ρΨ1

)
Ψ1

+
Ψ1

(
σΨ1 + ρΨ1

)
σΨ2

)
Ψ2Φ2

1Φ1

4σΨ1
2

+

[
Ψ1σΨ1

3

128ρ6Ψ2
+

(
Ψ2

1

2ρΨ2
− σ

)
3Ψ1

2

64ρ4
+

17Ψ4
1

128ρ3σ2Ψ2
−
(
6Ψ2 + 43Ψ2

)
Ψ2

1

64σρ2Ψ2

]
Φ1

+

(
σΨ2

32ρ2Ψ1
− 25Ψ3

1

128σρ4Ψ2
+

(
26Ψ2 + 9Ψ2

)
Ψ1

64ρ3Ψ2
+

13σΨ2
2

16Ψ2
1Ψ1

)
Ψ1Φ1

+

((
2ρ2ν − 6νρσ − σΨ3 + ρΨ3

)
Ψ1

4σρΨ2
+

13Ψ2 + 6Ψ2

32ρ
− σΨ3

2Ψ1

)
Φ1

+

(
9Ψ3

1

4ρσ2Ψ2
−
(
3Ψ2 + 10Ψ2

)
Ψ1

2σΨ2
− ρΨ2

Ψ1

)
Ψ2Φ1

16Ψ1

+

(
3ρΨ2

8
+
ρ2Ψ1Ψ3

σΨ2
− 3Ψ2Ψ2

1

16σΨ2
− 7ρ2Ψ1Ψ2

2

8σΨ2Ψ1

)
ρΨ2Φ1

2σΨ1
2

It is obvious that, with the above equations, (3.9) becomes an expression

containing Þ′Ψ2 and Þ′Ψ2 instead of Þ′Φ1 and Þ′Φ1. The (numerator of

the) coe�cient of Þ′Ψ2 is given by ρ2
(
ρΨ1Ψ2 + 3σΨ1Ψ2

)
, which can't be

zero (as can be seen from this expression and its complex conjugate). We

can then use (3.9), together with [Þ′,Þ]Ψ2 and [Þ′,Þ]Ψ2, to simplify [Þ′,Þ]ρ
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from which we obtain an expression for Þ′Ψ2:

Þ′Ψ2 =

(
Ψ1

2

ρ3
− 2Ψ2 − 9Ψ2

σ
− 13Ψ2

1

4ρσ2

)
Ψ2

1

16ρ2
+

(
3Ψ1

2ρ3
− Ψ2

σΨ1

)
3Ψ3

1

16σρ

+

[(
3Ψ1

2ρ2σ
+

Ψ1

2ρ3
− Ψ2

σΨ1

)
Ψ1

2
−
(
ρΨ2

Ψ1

+
σΨ2

Ψ1

)
Ψ2

Ψ1

]
Φ1Φ1

+

((
7Ψ2 − 24Ψ2

)
Ψ1

32ρ3
− 5σΨ1

3

64ρ6

)
Ψ1 +

(
σΨ1

2ρΨ1
− 1

)
Ψ2Φ1Φ1

ρ

+
21Ψ2σΨ1

2

32ρ4
+

3
(
4σΨ4ρ+ Ψ2

2

)
16ρ

− σΨ3
2

Ψ2
1

−
3ρ2Ψ2

(
9σΨ2

2 − 4ρ3Ψ4

)
8σ2Ψ1

2

+
9ρ2Ψ2Ψ3

2σΨ1

− 3ρ5Ψ2Ψ2Ψ3

σ2Ψ1
3 +

3ρ5Ψ2Ψ2
3

2σ2Ψ1
4 +

σΨ2Ψ3

2Ψ1
− 3σΨ2

2Ψ1

8ρ2Ψ1

+

(
σΨ3 − ρΨ3 + 8νρσ

4σρ
+

Ψ2ρ
3Ψ3

σ2Ψ1
2 −

Ψ2
2
ρ6Ψ3

σ3Ψ1
4

)
Ψ1 +

3ρΨ2
2Ψ2

4Ψ1Ψ1

+
4ρ3Ψ4 + 12σΨ2Ψ2 + 3σΨ2

2

16σ2Ψ1

Ψ1 +
ρ6Ψ2

4
Ψ1

2σ3Ψ1
5

−
ρ3Ψ2Ψ1

(
7σΨ2

2 − 4ρ3Ψ4

)
8σ3Ψ1

3 .

This allows us to �nd a solution for Ψ4 from (3.9):

Ψ4 =
σ4Ψ1

2
Ψ4

ρ4Ψ2
1

+

(
2Ψ2

Ψ1

− 3σΨ1

ρ3

)
Ψ3 +

(
3σ3Ψ1

2

ρ5Ψ1
− 2Ψ1

2
σ4Ψ2

ρ4Ψ3
1

)
Ψ3

− Ψ2
3

Ψ1
2 +

9σΨ2
2

4ρ3
+
σ4Ψ3

2Ψ1
2

ρ4Ψ4
1

− 9σ3Ψ1
2
Ψ2

2

4ρ5Ψ2
1

−
7σΨ1

2
(
σ2Ψ1

2 − ρ2Ψ2
1

)
16ρ9

.

There are only two more commutation relations that provide us with new

information. They are [ð,Þ′]ρ and [ð,Þ′]Φ1. These expressions, together
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with the above equation for Ψ4 lead to

Þ′Ψ3 =
4σΨ2

3

Ψ1
+

(
6ρΨ2σ − 2σρΦ1Φ1 + Ψ2

1

)
Ψ2Ψ3

2σΨ1Ψ1

−
(
Ψ1Ψ1 + 4ρ2Φ1Φ1

)
Ψ2Ψ2

4ρ2σΨ1

+
Ψ2

1

(
16ρ2σΦ1Φ1 + 4σΨ1Ψ1 − 3ρΨ2

1

)
Ψ2

32σ3ρ3Ψ1

− 3σΨ4
2

2Ψ3
1

+
3
(
2σΨ1 + ρΨ1

)
Ψ3

2

8ρ2Ψ2
1

−
3
(
8σρ2Φ1Φ1 + 5σΨ1Ψ1 − 5ρΨ2

1

)
Ψ2

2

16σρ3Ψ1

+

(
16σρ2Φ1Φ1

(
σΨ1 + 3ρΨ1

)
− 15ρ2Ψ3

1 + 4σΨ1Ψ1

(
σΨ1 + 3ρΨ1

))
Ψ2

32ρ5σ2

−
Ψ2

1

(
8ρ2σΦ1Φ1

(
2σΨ1 + 3ρΨ1

)
+ 3ρσΨ2

1Ψ1 − 3ρ2Ψ3
1 + 4σ2Ψ1Ψ1

2
)

64σ3ρ6

− 3ρΨ3
2Ψ2

2Ψ2
1Ψ1

+

(
σΨ1 + ρΨ1

) (
2σρΦ1Φ1 + Ψ2

1

)
Ψ3

4σρ3Ψ1
+ 3νΨ2

−
σ
(
2ρ2Φ1Φ1 + 3Ψ1Ψ1

)
Ψ2Ψ3

2ρ2Ψ2
1

+
9Ψ2

2Ψ2

8σΨ1

− σΨ2
2Ψ3

Ψ2
1

,

and

Ψ4 =

(
2Ψ2

Ψ1
− Ψ1

ρσ

)
Ψ3 −

Ψ3
2

Ψ2
1

+
3Ψ2

2

4ρσ
− Ψ4

1

16ρ3σ3
,

Ψ3 =
σ2Ψ1Ψ3

ρ2Ψ1
−

3
(
σ2Ψ2

2Ψ1
2 − ρ2Ψ2

1Ψ2
2
)

4Ψ2
1Ψ1ρ2

−
3Ψ1

(
σ2Ψ1

2 − ρ2Ψ1

)
16ρ6

.

No other information can be obtained from the GHP-analysis. In summary,

we have

� explicit expressions for R, τ , Ψ0, Ψ4 and Φ2,

� an expression for Ψ3 as a function of Ψ1, Ψ1, Ψ2, Ψ2, Ψ3, ρ and σ,

we also know the solutions belong to the cylindrical class (ρ2 = |σ|2), and we
have expressions for the directional derivatives of zero-weighted quantities,

such as Φ1 and Ψ2 (but also ρµ, λσ, etc.). We will now use this information

to continue the analysis in the Newman Penrose formalism.

3.3 Newman Penrose analysis

In this section we work in the Newman Penrose formalism. Before we copy

any rotation and boost invariant information from the GHP-analysis in the
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previous section, we will �rst prove that a cylindrical Newman Tamburino

metric only admits a non-null Maxwell �eld if the �eld is aligned. Note

that we have shown in the previous section that an aligned Maxwell �eld

can only occur for a cylindrical Newman Tamburino metric. Whether or

not there exist spherical Newman Tamburino metrics in the presence of a

non-aligned Maxwell �eld, remains an open problem.

In this section, we will only consider cylindrical metrics, i.e. those metrics

for which

ρ2 − σσ = 0. (3.10)

The Newman Tamburino solutions are further characterised by

Ψ0 = 0 = ρ− ρ = κ,

σρ 6= 0.

At the moment, we don't assume the Maxwell �eld to be aligned.

We will �rst �x the rotational degree of freedom by making σρ > 0. By

(3.10) we have that

σ = ρ.

The Newman Penrose equations (1.25) and (1.26) then show that ε is real

and that Φ0 = 0, which means that the Maxwell �eld is aligned. We can

then use a boost with parameter A satisfying ε′ = ε + 1/2D lnA = 0 to

make ε = 0. If we add the condition for A that δ lnA = τ −α−β, and take

into account (1.27 − 1.29), (1.36) and (1.41), we see that we can put

β = τ − α.

We now null rotate such that π = 0. As the Maxwell �eld is aligned, we can

copy the expressions for R, τ , Φ2, Ψ3 and Ψ4 from the previous section:

R = 0,
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τ =
ρΨ2

2Ψ1
+
ρΨ2

2Ψ1

− Ψ1 −Ψ1

4ρ
,

Φ2 =
Φ1

(
2ρ2Ψ2 −Ψ2

1

)
2Ψ1ρ2

,

Ψ3 =
Ψ1Ψ3

Ψ1
−

3
(

Ψ1
2
Ψ2

2 −Ψ2
2
Ψ2

1

)
4Ψ1Ψ2

1

−
3Ψ1

(
Ψ1

2 −Ψ2
1

)
16ρ4

, (3.11)

Ψ4 =

(
2ρ2Ψ2 −Ψ2

1

) (
Ψ4

1 + 2Ψ2
1Ψ2ρ

2 + 16Ψ1Ψ3ρ
4 − 8Ψ2

2ρ
4
)

16Ψ2
1ρ

6
.

We also `copy' the derivatives of the zero-weighted quantities Φ1 and Ψ2:

δΦ1 =

(
Ψ2ρ

Ψ1

− Ψ1 − 2Ψ1

2ρ

)
Φ1,

δΦ1 =

(
Ψ1

2ρ
+
ρΨ2

Ψ1

)
Φ1,

∆Φ1 =

(
2ρΨ3

Ψ1
− 3ρΨ2

2

2Ψ2
1

)
Φ1

+

((
ρΨ2

2Ψ1Ψ1

− Ψ1 − 2Ψ1

4ρΨ1

)
Ψ2 +

Ψ1Ψ2

4ρΨ1

−
Ψ1

(
Ψ1 −Ψ1

)
8ρ3

)
Φ1,

DΦ1 = 2ρΦ1, (3.12)

δΨ2 = 2ρΨ3 + 2µΨ1 −
(
2ρ2Ψ2 + Ψ2

1

) (
2ρ2Φ1Φ1 + Ψ1Ψ1

)
2ρ3Ψ1

+

(
4ρ2Ψ2 + Ψ2

1

)
Ψ2

2ρΨ1

− 2ρΨ2
2

Ψ1
+

3Ψ3
1

4ρ3
+

Ψ1Ψ2

ρ
, (3.13)

δΨ2 = 2ρΨ3 + 2λΨ1 −
(

2ρΨ2

Ψ1
+

Ψ1

ρ

)
Φ1Φ1 +

3Ψ1Ψ2

2ρ
− Ψ2

1Ψ1

4ρ3
,(3.14)

DΨ2 = 4ρΨ2 +
Ψ2

1

ρ

and

∆Ψ2 =

(
ρΨ2

Ψ1

+
5ρΨ2

Ψ1
− Ψ1 + Ψ1

2ρ

)
Ψ3 + 2νΨ1 +

Ψ1

(
Ψ1 + 3Ψ1

)
Φ1Φ1

4ρ3

+

(
Ψ2

(
Ψ1 − 2Ψ1

)
2ρΨ1

− ρΨ2
2

Ψ2
1

−
(
ρΨ2

Ψ1Ψ1

+
Ψ1

2ρΨ1

)
Ψ2

)
Φ1Φ1

+

(
3Ψ1Ψ2

4ρΨ1

− Ψ2
1

8ρ3

)
Ψ2 −

4ρΨ3
2

Ψ2
1

+
3Ψ2

2

4ρ
−

3Ψ1

(
2Ψ1 − 3Ψ1

)
Ψ2

8ρ3

+
Ψ2

1

(
Ψ1 + 4Ψ1

) (
Ψ1 −Ψ1

)
16ρ5

. (3.15)
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More rotation and boost invariant information could be extracted from

GHP, such as the derivatives of ρµ, but this does not simplify the calcula-

tions in NP.

We rewrite the NP Ricci, Bianchi and Maxwell equations: from (1.25 −
1.33) and (1.43 − 1.45), we get

Dµ = (µ+ λ) ρ+ Ψ2,

Dν =

((
Ψ2Ψ1 + Ψ2Ψ1

)
ρ

2Ψ1Ψ1

+
Ψ1 −Ψ1

4ρ

)
(µ+ λ) + Ψ3

+

(
2Ψ2ρ

2 −Ψ2
1

)
Φ1Φ1

2ρ2Ψ1
,

Dρ = 2ρ2,

Dα =

(
Ψ2Ψ1 + Ψ2Ψ1

)
ρ2

2Ψ1Ψ1

+ (α− α) ρ− Ψ1 −Ψ1

4
,

Dγ =

(
Ψ2Ψ1 + Ψ2Ψ1

)2
ρ2

4Ψ2
1Ψ1

2 −
(
Ψ2Ψ1 + Ψ2Ψ1

)
(α− α) ρ

2Ψ1Ψ1

+ Ψ2 + Φ1Φ1

−
(
Ψ1 −Ψ1

)
(α+ α)

4ρ
−
(
Ψ1 −Ψ1

)2
16ρ2

,

Dλ = ρ (µ+ λ) ,

δΨ1 =

(
3Ψ1Ψ2

Ψ1

− 2Φ1Φ1

)
ρ− 2αΨ1 −

3Ψ1

(
Ψ1 −Ψ1

)
2ρ

,

δΨ1 =
(
Ψ2 − 2Φ1Φ1

)
ρ+ 2αΨ1 +

Ψ2
1

ρ
,

DΨ1 = 4ρΨ1, (3.16)

whereas from (1.57) we �nd an expression for δρ, after which (1.35) can be

solved for Ψ2:

δρ =
2Ψ2ρ

2

Ψ1

− 2ρα−
3
(
Ψ1 −Ψ1

)
4

,

Ψ2 =
2αΨ1

ρ
+

Ψ1

(
3Ψ1 −Ψ1

)
4ρ2

.

If we substitute the last expression in (3.13 − 3.15), we �nd the directional



Chapter 3. NT metrics in the presence of a Maxwell �eld 60

derivatives of α:

δα =
Ψ3ρ

2

Ψ1
+ µρ+ 2αα− 4α2 +

αΨ1 + 3α
(
Ψ1 − 2Ψ1

)
2ρ

+
7Ψ1Ψ1 − 7Ψ2

1

16ρ2
,

δα =
Ψ3ρ

2

Ψ1
+ λρ− 2α2 +

α
(
Ψ1 −Ψ1

)
ρ

+
3Ψ1

(
Ψ1 −Ψ1

)
16ρ2

,

∆α =

(
α

ρ
+

3Ψ1 −Ψ1

4ρ2

)
∆ρ−

(
α

Ψ1
+

6Ψ1 −Ψ1

8Ψ1ρ

)
∆Ψ1 +

∆Ψ1

8ρ
+ νρ

+
Ψ3 (5α+ α) ρ

Ψ1
−
(
Ψ1 − 3Ψ1

)
Ψ3

2Ψ1
− 2α (α+ α) Φ1Φ1

Ψ1
− 16α3

ρ

+

(
α(Ψ1 − 9Ψ1) + α(Ψ1 − 5Ψ1)

)
Φ1Φ1

4Ψ1ρ
+

3α(4αΨ1 − 11αΨ1 + αΨ1)

2ρ2

+
α(9Ψ1 − 5Ψ1)Ψ1 + 3α(21Ψ1Ψ1 − 4Ψ1

2 − 25Ψ2
1)

16ρ3

+

(
Ψ1 −Ψ1

) (
4ρ2Φ1Φ1 + 13Ψ2

1 − 7Ψ1Ψ1 + Ψ1
2
)

32ρ4
.

The remaining NP Ricci and Bianchi equations can be written as

δλ = δµ+ µ(α+ α)− λ(3α− α)−Ψ3 +
µΨ1 − 3λΨ1

2ρ

−
Φ1Φ1

(
Ψ1 −Ψ1 − 8αρ

)
4ρ2

,

∆λ = δν + λ(γ − 3γ − µ− µ) + 2αν − 4Ψ3α

ρ
+

8Ψ1α
3

ρ3

−
3Ψ1α

2
(
Ψ1 − 2Ψ1

)
ρ4

+
3Ψ1α

(
Ψ1 −Ψ1

) (
Ψ1 − 3Ψ1

)
8ρ5

−
Ψ1

(
Ψ1 − 4Ψ1

) (
Ψ1 −Ψ1

)2
64ρ6

+

(
Ψ1 −Ψ1

)
Ψ3

2ρ2
,

∆µ = δν − µ(µ+ γ + γ) + 2αν − λλ+
νΨ1

ρ

−

(
4αα−

(
Ψ1 −Ψ1

)
(α− α)

2ρ
−
(
Ψ1 −Ψ1

)2
16ρ2

)
Φ1Φ1

ρ2
,

∆ρ =
2Ψ3ρ

2

Ψ1
+ (3γ − γ)ρ− Φ1Φ1 + α2 − 9α2 +

Ψ1

(
5Ψ1 − 7Ψ1

)
8ρ2

+
3αΨ1 + 5αΨ1 − 29αΨ1 + 9αΨ1

4ρ
,
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and

δγ =
(Ψ1 + (2α+ α)ρ)µ

ρ
+

(
8ρ (α− 2α) + 3

(
Ψ1 −Ψ1

))
Φ1Φ1

8ρ2

+
α(α2 − 2αα− 11α2)

ρ
+

Ψ1α
2 + 4Ψ1αα+ 6Ψ1α

2 − 25Ψ1α
2

2ρ2

+
Ψ1

(
29αΨ1 + 7αΨ1 + 5αΨ1 − 61αΨ1

)
16ρ3

+
11Ψ2

1

(
Ψ1 −Ψ1

)
32ρ4

+
(Ψ1 + ρ(3α+ α)) Ψ3

Ψ1
+ αλ, (3.17)

δγ = Ψ3 + µα+ (α+ 2α)λ+
Ψ3(3α+ α)ρ

Ψ1
−
(
α

ρ
− Ψ1 −Ψ1

8ρ2

)
Φ1Φ1

− α(9α2 + 2αα+ α2)

ρ
−
α
(
7αΨ1 − 3αΨ1 + αΨ1

)
ρ2

+
Ψ2

1(Ψ1 −Ψ1)

32ρ4

+
(17α+ 3α)(Ψ1 −Ψ1)Ψ1 − 4αΨ1

2

16ρ3
+
λΨ1

ρ
, (3.18)

∆Ψ1 = 4ρΨ3 − 2(α+ α+
Ψ1

2ρ
)Φ1Φ1 + 2Ψ1γ −

2αΨ1 (7α− α)

ρ

−

(
Ψ1

2 − 5Ψ1Ψ1 + 5Ψ2
1

ρ
− 41αΨ1 + 15αΨ1 + 7αΨ1 − αΨ1

)
Ψ1

4ρ2
,

δΨ3 =

(
6αΨ1

ρ
−

3Ψ1

(
Ψ1 − 3Ψ1

)
4ρ2

)
µ+ 2Ψ3(3α+ 2α)− 24Ψ1α

3

ρ2

+

(
Ψ1

(
Ψ1 −Ψ1

)
4ρ3

− 2ρΨ3

Ψ1
− Ψ1 (3α+ α)

ρ2

)
Φ1Φ1 −

Ψ3

(
Ψ1 − 5Ψ1

)
2ρ

+
3Ψ2

1α (α− 9α)

ρ3
+

(
Ψ1Ψ1 −Ψ2

1

) (
48Ψ2

1 − 23Ψ1Ψ1 + 3Ψ1
2
)

64ρ5

−
Ψ1

(
9αΨ1

2 − 51αΨ1Ψ1 + 5αΨ1Ψ1 + 66αΨ2
1 − 9αΨ2

1

)
8ρ4

+
9α2Ψ1Ψ1

ρ3
,
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δΨ3 =
3Ψ1

(
8ρα+ 3Ψ1 −Ψ1

)
λ

4ρ2
−

(
2Ψ3ρ

Ψ1
−

Ψ1

(
Ψ1 −Ψ1 − 8ρα

)
2ρ3

)
Φ1Φ1

− (3Ψ1 − 7Ψ1)Ψ3

2ρ
+

Ψ1

(
Ψ1 −Ψ1 − 8ρα

) (
3Ψ1

2 − 7Ψ1Ψ1 + 12Ψ2
1

)
64ρ5

+
Ψ1

(
Ψ1 −Ψ1 − 8ρα

) (
24ρ2α2 − 6Ψ1ρα+ 15αρΨ1

)
8ρ5

+ 10αΨ3,

∆Ψ3 =
Ψ1

(
8ρα+ Ψ1 −Ψ1

) (
Ψ1 −Ψ1 − 8ρ(3α+ 2α)

)
Φ1Φ1

32ρ5
− 3Ψ2

1

4ρ3

− 2(α+ α)Ψ3Φ1Φ1

Ψ1
− 2Ψ3γ −

3Ψ1

(
Ψ1 − 3Ψ1 − 8ρα

)
ν

4ρ2
+

4Ψ2
3ρ

Ψ1

− Ψ1 (3α− 5α) + Ψ1 (9α− 7α) + 8 (α− 3α)αρ

2ρ2
+

Ψ1Ψ1

ρ3
− Ψ1

2

4ρ3

+
(
Ψ1 −Ψ1 − 8ρα

) [ 9Ψ4
1

128ρ7
+

(
α2 − αΨ1

4ρ
+

Ψ1
2

64ρ2

)
3 (α+ α) Ψ1

ρ4

+

(
27α2 + 15αα+

Ψ1
2

8ρ2
− (27α+ 7α) Ψ1

8ρ

)
Ψ2

1

8ρ5

+

(
15α+ 3α− 11Ψ1

8ρ

)
Ψ3

1

16ρ6

]
,

DΨ3 = 4ρΨ3 −
Ψ1Φ1Φ1

ρ
+

3αΨ2
1

ρ2
+

Ψ2
1

(
9Ψ1 − 5Ψ1

)
8ρ3

. (3.19)

As ρ is real, we have from ∆ρ that

γ = γ +
α2 − α2

ρ
+
αΨ1 − αΨ1

ρ2
+

Ψ1
2 −Ψ2

1

8ρ3
. (3.20)

This is all the information that can be extracted from the Newman Penrose

Bianchi and Maxwell equations. The derivatives of (3.11) and (3.20) give

no new information, as is also the case for the commutators applied to the

non-zero spin coe�cients or Weyl and Maxwell tensor components.

We note here that Ψ1 may be real, but not imaginary. This can be seen

from the δ-derivative of Ψ1 + sΨ1 = 0, s = ±1, from which we obtain

(s+ 1)
(
Ψ2

1 − 2ρ2Φ1Φ1s
)

sρ
= 0,
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which excludes s = +1.

We proceed by isolating the ρ-dependence of all variables. Equations (3.12)

and (3.16) allow us to introduce variables φ1 and ψ1, respectively de�ned

by

Φ1 = φ1 ρ, Dφ1 = 0,

Ψ1 = ψ1 ρ
2, Dψ1 = 0.

We also de�ne a variable L as

L = log |ρ| .

Since

D (α/ρ) =
1

4
ψ1 DL,

we see that

α =
1

4
ψ1 Lρ+ a ρ, D a = 0. (3.21)

This enables us to put a equal to zero by a null rotation with parameter

B =
(

1
4ψ1 Lρ− α

)
/ ρ (which is compatible with the condition DB = 0).

Comparing the derivatives of α as given by (3.21) with those we already

obtained before, we �nd the following expressions for λ, µ and ν:

λ =
1

4

(
L2 +

5

2
L+

3

2

)
ρψ2

1 −
1

8
(3L+ 1) ρψ1ψ1 −

1

2
ρLφ1φ1 −

Ψ3

ρψ1
,

µ =
1

2

(
1

2
L2 +

7

4
L+ 1

)
ρψ2

1 −
1

4

(
3

2
L+ 1

)
ρψ1ψ1 −

1

2
ρLφ1φ1 −

Ψ3

ρψ1
,

ν =
1

8

(
1

2
L3 + L2 − 7

4
L− 5

4

)
ρψ3

1 +
1

8

(
1

2
L3 +

1

4
L2 + L+ 1

)
ρψ2

1ψ1
2

− 1

8

[(
3

4
ψ1

2
+ φ1φ1

)
L2 + 2

(
1

8
ψ1

2 − φ1φ1

)
L+

(
1

4
ψ1

2
+ φ1φ1

)]
ρψ1

+
1

2
γ ψ1 −

1

8

(
L2 + 1

)
ρψ1φ1φ1 −

1

4

[(
1 +

ψ1

ψ1

)
L− 2

]
Ψ3

ρ
.

Herewith we can integrate the D Ψ3-equation (3.19), which gives

Ψ3 =

(
3

16
(L+ 3)Lψ3

1 −
5

16
Lψ2

1ψ1 −
1

2
Lψ1φ1φ1 + ψ3

)
ρ2, Dψ3 = 0.
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We now come to a more subtle part of the integration. First we introduce

a help variable Ω = δ ρ/D ρ = 1
8

(
[2L+ 3] Ψ1 + Ψ1

)
and de�ne two new

operators e1 and e2 having the property that e1 ρ = e2 ρ = 0 and D e1 x =

D e2 x = 0 for all x obeying Dx = 0. One easily sees from the [δ,D]-

commutator that this can be achieved by putting δ = ρ e2 + e1 + Ω D and

δ = ρ e2 − e1 + Ω D and hence

e1 = −e1 and e2 = e2. (3.22)

It follows that [e1,D] = 0 and [e2,D] = 0, while expressions for the com-

mutators [e1,∆] and [e2,∆] can be derived from [δ,∆] and [δ,∆]. They

read

[e1,∆] =
1

16
ρL
(
ψ1 + ψ1

)2
e1,

[e2,∆] =
1

4

(
ψ2

1 − ψ1
2
)
e1 + 2 γ e2 −

1

8

[(
L2 +

7

2
L+ 2

)
ψ2

1

+

(
(L+ 3)ψ1 −

1

2
ψ1

)
Lψ1+2(L+ 1)φ1φ1

]
ρe2

+
1

64

[
(L+ 7)ψ3

1 −
(
2L2 + 5L− 3

)
ψ2

1ψ1

−
(

1

4

(
8L2 + 5L+ 3

)
ψ1

2
+ 4

(
2L2 + L− 1

)
φ1φ1

)
ψ1

−8
(
L2 + 2L− 2

)
ψ1φ1φ1 + (L+ 1)ψ1

3 − 32

(
ψ1

ψ1
− 1

)
ψ3

]
D.

Finally, from [δ, δ] we �nd an expression for [e2, e1]:

[e2, e1] = −1

4

(
ψ1 + ψ1

)
e1.

At this stage we have expressions for all derivatives of ρ (thus of L), φ1, ψ1

and ψ3.

Next we integrate the D γ-equation and obtain

γ = g0 +
1

16

(
ψ1 + ψ1

)
ρL2ψ1 +

1

4
ρLψ1

2 +

(
1

8
ψ1

2 +
1

2
φ1φ1

)
ρ,
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with g0 = g0, Dg0 = 0, and δg0 = δg0 = 0 as follows from (3.17 −
3.18). Notice that we can put g0 equal to zero by a boost: �rst look at

the derivatives of φ1, which are all zero, except for ∆φ1, which equals

−4φ1 φ1 g0. As a boost transforms φ1 into φ1/A, we can put g0 = 0 by

choosing ∆ lnA = −2 g0, which is compatible with DA = δA = 0. This

also allows us to write φ1 as Qf , with Q a non-zero constant, and with f

on the unit circle (f = 1/f).

Now we write ψ1 as ψ1 = (U + V )/2 with U real and V imaginary. In-

troducing the basis one forms Ω1, Ω2, Ω3, Ω4 dual to e1, e2, ∆, D, the

derivatives of f , U and V are given by

df = e2 fΩ2 + ∆ fΩ3 =
f V

2

(
Ω2 +

ρLU

4
Ω3

)
,

dU = e2 UΩ2 + ∆UΩ3 =
2V 2 − U2 − 16Q2

4

(
Ω2 +

ρLU

4
Ω3

)
,

dV = e2 VΩ2 + ∆VΩ3 =
UV

4

(
Ω2 +

ρLU

4
Ω3

)
, (3.23)

showing that f , U and V are functionally dependent. Notice that U cannot

be constant, as then V would be real:

e2 U =
V 2

2
− U2

4
− 4Q2. (3.24)

This permits us to use U as a coordinate, but we prefer to write U = U(x)

(hence also V = V (x), f = f(x) and φ1 = φ1(x)), with x to be speci�ed

later.

To continue with the integration, we now have to introduce appropriate

coordinates.

The Cartan structure equations imply dΩ3 = 0 and thus Ω3 = du.

Since dρ = ∆ ρΩ3 + 2 ρ2 Ω4 we have

Ω4 =
dρ

2 ρ2
− ∆ ρdu

2 ρ2
.

Next notice that dU = ∆U Ω3 + e2 U Ω2 and dV = ∆V Ω3 + e2 V Ω2,

where, by (3.23) and (3.24), e2 U and e2 V cannot be 0. It follows that Ω2

can be written as a linear combination of dU and du. As we have found

that ∆U = LρU
(
2V 2 − U2 − 16Q2

)
/16, we can write

Ω2 = S(x) dx− U Lρ

4
du,
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with S(x) to be speci�ed below. There remains Ω1 which we can write as

Ω1 = B du + H dx + J dy, by an appropriate choice of the y-coordinate.

From (3.22) we see that
J = −J,
S = S,

H = −H.

The tetrad basis vectors are then given by

e1 =
1

J
∂y,

e2 =
1

S
∂x −

H

S J
∂y,

∆ = ∂u + ∆ ρ∂ρ +
LρU

4S
∂x −

4B S +H LρU

4S J
∂y,

D = 2 ρ2∂ρ.

Acting with the commutators on the coordinates u, ρ, x and y, we get

D J = DS = DH = 0 = e1 S,

∆S =
1

4
LρU e2 S,

DB =
1

2
ρ V,

after which it is easily seen that

B =
1

4
LV +B0, DB0 = 0.

From DB0 = 0 = DH = D J one deduces the existence of a new y-

coordinate, as a function of u, x and y, such that H becomes 0.

From [e2, e1]y we �nd the following expression for e2 J :

e2 J =
JU

4
⇔ d logJ

dx
=
S U

4
,

from which we see that J = J1(x)J2(u, y). De�ning a new y-coordinate

as a function of u and y and absorbing the du-part in a new B-coe�cient,

one can assume J2 = 1. Hence J = J(x) and we have that e1 J = 0 and

∆ J = LρU2J/16.

From [e1,∆]y we �nd that e1B0 = 0 and hence B0 = J B1(x, u), after which

[e2,∆]y results in

e2B1 = −UV/(4J). (3.25)
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Hence B1 can be decomposed as B1 = B2(x) +B3(u). A �nal u-dependent

y-translation allows one to transform Ω1 into

Ω1 = (V L/4 + JB2(x)) du+ Jdy,

i.e. one can assume B1 = B2(x).

We now �x S(x) such that we can integrate (3.25): as e2 V = UV/4 and

e2 J = UJ/4, the choice

S(x) = 4/(xU)

leads to

B1 = −V
J

logx.

From the e2 V -equation, we see that V = 4 iQax, with Qa constant (Q

is assumed to be non-zero). We still need a solution for U . From the

expressions for DU , ∆U , e1 U and e2 U it is easy to see that U = U(x),

with U(x) determined by

∂ U

∂ x
= −16Q2 + 32Q2a2x2 + U2

xU
,

which integrates to

x2U2 = 16
(
c1

2 − a2x4 − x2
)
Q2, (3.26)

where c1 is a constant. From e1, e2, ∆ and D applied to
(
ψ3 + ψ3

)
/2 it

follows that the partial derivatives of ψ (the real part of ψ3 divided by U)

are given by:
∂ψ

∂y
= 0 =

∂ψ

∂u
=
∂ψ

∂ρ
,

∂ψ

∂x
=
U2 + 16 (1− 14x2a2)Q2 − 64ψ

32x
.

Using equation (3.26) the solution of these di�erential equations is given by

ψ =
1

8

(
4 c2

1logx+ 8 c2 − 15 a2x4
) Q2

x2
, with c1, c2 constant.
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The one forms dual to the Newman Penrose tetrad (m,m, l,k) now become

ω1 =

(
1

8
(4iQax− U)L− 2 iQaxlogx

)
du+

2

xUρ
dx+

1

2
ixJ0dy,

ω2 =

(
−1

8
(4iQax+ U)L+ 2 iQaxlogx

)
du+

2

xUρ
dx− 1

2
ixJ0dy,

ω3 = du,

ω4 =
1

2 ρ2
dρ− 1 + L

2x ρ
dx− 1 + L

2
J0Qx

2ady +

[
1

64
(2 + L)LU2 − 2ψ+(

2 (logx− 2)x2a2 +
1

2

(
1 + (4logx− 1)x2a2

)
L− 3

4
x2a2L2

)
Q2

]
du,

in which J0 is a constant, that can absorbed in y.

The metric reads then

ds2 =

[(
logρ2 − logx4 + 1

)
Qx2ady − 1

ρ2
dρ+

2

ρx
dx

]
du+

1

2
x2dy2

+

[
log2ρ2a2x2

2
−
(
c2

1

2x2
+ (logx4 − 1)a2x2

)
logρ2 +

(
c2

1

x2
− 2a2x2

)
logx2

+
4 c2

x2
+

(
1

2
+ 2log2x2

)
a2x2

]
Q2du2 +

1

2
(
c2

1 − x2 − a2x4
)
ρ2Q2

dx2,

(3.27)

with the Maxwell �eld given by

Φ0 = 0, (3.28)

Φ1 = Qfρ, (3.29)

Φ2 =
1

4
(log|ρ|U + 4(log|ρ|+ 1)iQax)Qfρ, (3.30)

where

f = −2 a
√
c2

1 − (a2x2 + 1)x2 + (2 a2x2 + 1)i√
4 a2c2

1 + 1

is on the unit circle, as required and where a, c1, c2 and Q are constants.

Neither u nor y appear in the components of the Riemann tensor Ψ1, Ψ2,
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Ψ3, Ψ4, Φ1, Φ2: the latter pair is given by (3.29, 3.30) while

Ψ1 =
(U + 4 iQax) ρ2

2
,

Ψ2 =
(U + 4 iQax) ρ2

8

[
(L+ 1)U + 4(L+ 2)iQax

]
,

Ψ3 =
(U + 4 iQax) ρ2

128U

[
(3L+ 4)U3L+ 24(L2 + 3L+ 1)iQxaU2

− 16

(
2L+ (3L2 + 14L+ 9)x2a2 − c2

1logx4 + 8c2

x2

)
Q2U

]
,

Ψ4 =
(U + 4iQax) ρ2

256
(LU + 4 (L+ 1) iQax)

[
(8L2 + 32L+ 12)iQxaU

+ (L+ 1)U2L− 32

(
L+

(L2 + 7L+ 4)x2a2

2
− c2

1logx2 + 4c2

x2

)
Q2

]
.

As in the canonical Petrov type I tetrad precisely two functionally indepen-

dent functions remain in the curvature components, the metric will admit

exactly two Killing vectors (Karlhede, 1980).

A more elegant expression for the metric (3.27), preserving its obvious sym-

metries, is obtained by a coordinate transformation ρ→ r x2, which results

in

ds2 =
1

2(c2
1 − x2 − a2x4)r2x4Q2

dx2 +

(
a(2L̃+ 1)Qx2dy − 1

r2x2
dr

)
du

+

(
a2(2L̃+ 1)2Q2x2

2
− (L̃c2

1 − 4c2)Q2

x2

)
du2 +

x2

2
dy2, (3.31)

in which L̃ = logr = logρ − 2 logx and where a, Q, c1 and c2 are real

constants.

3.3.1 Vacuum limit

After replacing c1 by c0/Q, the (Q = 0)-limit of (3.27) is given by

ds2 =
(2logx− L)c2

0

x2
du2 +

(
2

dx

xρ
− dρ

ρ2

)
du+

1

2

dx2

c0
2ρ2

+
x2

2
dy2,

which, after the coordinate transformation x → c0 x/
√

2, ρ → −1/(2 r),

y → 2 y/c0, equals (26.23) of (Stephani et al., 2003). This is a special case of

the cylindrical vacuum Newman Tamburino metric, the Sachs metric, which
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is also examined in the next chapter (4.40). It is also possible, however, to

obtain the general vacuum cylindrical metric (4.39), which we present in

the next chapter. After applying a coordinate transformation

x −→ x4,

r −→ r−1

in (4.39) and by rescaling u and y (by a factor −1/2 and 1/2, respectively),

the general vacuum metric for the cylindrical class looks like this:

ds2 =

(
(2L− 1)2x2

2
− 2L− c2

2x2

)
du2 − 1

x2r2
dudr +

x2

2
dy2

+
1

2r2x4 (1− x4)
dx2 − x2 (2L− 1) dudy,

where |x| < 1 to ensure Lorentzian signature. This metric can also be

obtained from (3.31). To see this, substitute a = 1/Q, c1 = 1/Q, replace c2

by c2/(8Q
2) and apply the coordinate transformation y −→ −y− 2u. Next

taking the limit Q→ 0 results in the line element above, which is equivalent

to the general vacuum metric of the cylindrical class.

3.4 Conclusion

We have obtained the general solution of the `aligned Newman Tamburino

Maxwell' problem: if a space-time is algebraically general and possesses

a hypersurface orthogonal and geodesic principal null direction, with non-

vanishing shear and divergence, then a (necessarily non-null) Maxwell �eld

will be aligned if and only if the cylindrical condition |ρ| = |σ| is satis�ed,
in which case the general solution is given by (3.31). We have also shown

that the cosmological constant for this class of solutions must vanish. By

choosing the right values of the constants in (3.31), it is possible to �nd the

general vacuum cylindrical Newman Tamburino metric by taking the limit

for the charge Q→ 0.

Left as an open question is whether or not there exist spherical metrics in

the presence of a non-aligned Einstein Maxwell �eld and if so, whether these

solutions are a generalisation of the vacuum spherical Newman Tamburino

metrics.





Chapter 4

Newman Tamburino metrics in

vacuum

4.1 Introduction

In the previous chapter, we have found all Newman Tamburino solutions in

the presence of an aligned Maxwell �eld. Also, we have shown that there

exist no cylindrical solutions in the presence of a non-aligned Maxwell �eld.

In this chapter we look at Newman Tamburino solutions in vacuum. Orig-

inally, these solutions were published by Newman and Tamburino (1962).

For the calculations they refer to (Newman and Penrose, 1962) and their

preceding paper (Newman and Unti, 1962). In those papers, however, many

steps are not written down explicitly, making it di�cult to follow how to

arrive at their solutions. Also, the cylindrical metric, as published in (New-

man and Tamburino, 1962), contains typing errors, and therefore is not a

vacuum metric. We will show that it is possible, without introducing co-

ordinates from the beginning, to �nd the Newman Tamburino solutions in

vacuum in a very elegant form, without elliptic functions and with fewer

constants compared to the original paper.

4.2 Geroch Held Penrose analysis

The Newman Tamburino metrics have non-vanishing shear and divergence,

and are further characterised by the existence of a hypersurface orthogonal

72
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and geodesic principal null direction k. These properties can be written in

terms of GHP-variables as follows:

σρ 6= 0,

ρ− ρ̄ = 0 = κ = Ψ0.

As we are now searching for empty space solutions, all components Φij of

the Ricci tensor are equal to zero. The Goldberg Sachs theorem then states

that for an algebraically general Weyl tensor Ψ1 cannot be zero, which can

easily be checked in GHP: substituting Ψ1 = 0 in (1.44) and keeping in

mind σ 6= 0 leads to Ψ2 = 0, after which (1.46) and (1.48) lead to Ψ3 = 0

and Ψ4 = 0.

Under null rotations about k, Ψ2 transforms as Ψ′2 = Ψ2 + 2BΨ1 + B
2
Ψ0.

With Ψ0 = 0 and Ψ1 6= 0, we can �x the null rotation of the null tetrad

(m, m̄, l,k) by choosing any zero-weighted value for Ψ2. In contrast with

our calculations in the previous chapter, we will not use the null rotation

here to put the spin coe�cient π equal to zero, as this would make the

calculations more di�cult. We prefer to completely �x the null rotation by

following choice:

Ψ2 = −1

4

Ψ1

(
ρΨ1 + σΨ1

)
σ2σ

.

The GHP Bianchi equations (1.43 − 1.53) and Ricci equations (1.25 − 1.42)

can then be rewritten as follows:

ðΨ1 = 4τΨ1 +
3

4

Ψ1

(
ρΨ1 + σΨ1

)
σσ

, (4.1)

ð′Ψ1 = −2πΨ1 −
1

4

Ψ1

(
ρΨ1 + σΨ1

)
σσ

, (4.2)

ÞΨ1 = 4ρΨ1, (4.3)
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Þ′Ψ1 =
Ψ1

4σ2σ

((
ρΨ1 + σΨ1

)
ðσ

σ
−Ψ1ð′σ +

(
2ρΨ1 + σΨ1

)
ðσ

σ

)

− 1

4

Ψ1 (5ρΨ1 + σσ) τ

σ2σ
+

1

2

Ψ1Ψ1π

σσ
+ 2σΨ3 − 2µΨ1

+
1

8

Ψ1

(
2σσΨ2

1 − 4ρσΨ1Ψ1 − σ2Ψ1
2 − 3ρ2Ψ2

1

)
σ3σ2 , (4.4)

ðΨ3 =
Ψ1

16σ2σ2

ρ
(

2σΨ2
1 − σΨ1

2
)
ð′σ

σ2σ
−
(
2ρΨ1 + σΨ1

)2 ðσ
σ3

−
ρΨ1

(
2ρΨ1 + 3σΨ1

)
ðσ

σ2σ
−

Ψ1

(
2ρΨ1 + σΨ1

)
ð′σ

σ

+
4σ
(
2ρΨ1 + σΨ1

)
Þ′σ

σ
+ 4Ψ1

(
ρΨ1 + σΨ1

)
Þ′σ − 4σΨ1Þ′ρ

+

(
2ρΨ1 + σΨ1

) (
5ρΨ1 + σΨ1

)
τ

σ2
+

Ψ1

(
5ρΨ1 + σΨ1

)
τ

σ

)

− 2νΨ1 −
(
2ρΨ1 + σΨ1

)
Ψ3

2σσ
− Ψ1Ψ3

2σ
−

Ψ1Ψ1

(
2ρΨ1 + σΨ1

)
π

8σ3σ2

− 1

4

Ψ1

(
−ρΨ1 + σΨ1

)
µ

σ2σ
+

1

2

Ψ1Ψ1µ

σ2σ2 − σΨ4 + 2τΨ3 +
3ρ2Ψ1Ψ1

3

32σ3σ4

−
Ψ1

(
Ψ2

1σ(4ρΨ1 + Ψ1σ)σ + σ3Ψ1
3 − 10ρσ2Ψ1Ψ1

2 − 6ρ3Ψ3
1

)
σ

32σ5σ4

− Ψ2
1Ψ1π

8σ2σ
+

11ρ2Ψ3
1Ψ1

32σ4σ3
,

ð′Ψ3 = ÞΨ4 −
3

4

Ψ1

(
ρΨ1 + σΨ1

)
λ

σ2σ
− 4πΨ3 − ρΨ4,

Þ′Ψ3 = ðΨ4 −
3

4

Ψ1

(
ρΨ1 + σΨ1

)
ν

σ2σ
− 4µΨ3 − τΨ4,

ÞΨ3 =
1

4

Ψ1

σ2σ

((
2ρΨ1 + σΨ1

)
ð′σ

σ
−Ψ1ðσ +

(
ρΨ1 + σΨ1

)
ð′σ

σ

)

+ 2ρΨ3 − 2λΨ1 −
1

4

Ψ1

(
−ρΨ1 + σΨ1

)
π

σ2σ
− Ψ1Ψ1τ

σσ

+
1

8

Ψ1

(
ρ2Ψ1Ψ1 + σσΨ1Ψ1 − σρΨ1

2
+ ρσΨ2

1

)
σ3σ2 ,
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and

Þλ = ρλ+ σµ+ π2 + ð′π, (4.5)

Þµ = ρµ+ σλ+ ππ − 1

4

Ψ1

(
ρΨ1 + σΨ1

)
σ2σ

+
R

12
+ ðπ,

Þν = (τ + π)µ+ (τ + π)λ+ Ψ3 + Þ′π,

Þρ = ρ2 + σσ,

Þσ = 2ρσ,

Þτ = (τ + π) ρ+ (τ + π)σ + Ψ1,

Þ′λ = (π − τ) ν − (µ+ µ)λ−Ψ4 + ð′ν,

ðν = µ2 + λλ− πν + τν + Þ′µ,

ðρ = −Ψ1 + ð′σ,

ðτ = µσ + λρ+ τ2 + Þ′σ,

ð′τ = µρ+ λσ + ττ − 1

4

Ψ1

(
ρΨ1 + σΨ1

)
σ2σ

+
R

12
+ Þ′ρ,

ðλ = (µ− µ)π −Ψ3 + ð′µ.

If we apply the commutator [ð,Þ] to Ψ1 we obtain

ð′σ = (τ + 2π)σ +
1

4

ρΨ1 + 11σΨ1

σ
.

From [ð′,Þ]Ψ1 we get

Þπ = −4 (τ + π)σ − ρΨ1 + 4σΨ1

σ
.

Next, we calculate [ð′,Þ]σ which gives an expression for ðσ:

ðσ = −3σ (3τ + 4π) +
1

4

ρΨ1 − 45σΨ1

σ
. (4.6)

Making use of the previous expression (4.6) in [ð,Þ]σ we �nd that

Ψ1 = − (τ + π)σ.

This shows τ + π cannot be zero.
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Substituting the expression for Ψ1 into equations (4.1 − 4.4) results in

ðπ = −Þ′ρ− R

12
− ρµ− σλ+

1

4
(τ + π) τ +

1

4
(5τ + π)π

+
1

4

(τ + π)2 ρ

σ
− 1

2

(τ + π)2 ρ

σ
,

ð′π = −Þ′σ − µσ − ρλ+ (τ − π)π + τ2 +
1

2

(τ + π) (τ + π) ρ

σ
,

Þ′π = −(τ + π)Þ′σ
σ

− Þ′τ − 2 (τ + π)µ− 2Ψ3 −
1

4

(τ + π) (τπ)π

σ

+
1

16

(τ + π)2 (2ρτ + 2ρπ + σπ − 3στ)

σσ
− 3

16

(τ + π)3 ρ2

σσ2 .

Then, we evaluate [ð′, ð]σ to obtain

Þ′ρ =
3τπ + τπ

4
+
ππ − ττ

2
− σλ+ 3σλ

2
− R

24
+

(τ + π)2 ρ

16σ
+

7 (τ + π)2 ρ

16σ
.

As the right hand side of this equation is real, we �nd an expression for λ

λ =
σλ

σ
+

3

8

(
(τ + π)2

σσ
− (τ + π)2

σ2

)
ρ+

1

2

τπ − τπ
σ

. (4.7)

At this point it is interesting to notice that ρ2 = c σσ, where c is a constant,

is only possible for c = 11. In fact

0 = Þ
(
ρ2 − c σσ

)
= 2ρ

(
ρ2 − 2 c σσ + σσ

)
,

implies c = 1. Also τ = c π, with c constant, is only possible for c = 1, as

follows from

Þ (τ − cπ) = −ρ(c− 1)(τ + π)

and the fact that Ψ1 = − (τ + π)σ 6= 0.

We now use [Þ′,Þ]σ and [Þ′,Þ]τ to eliminate ÞÞ′σ and ÞÞ′τ from [Þ′,Þ]π.

This gives us a useful algebraic expression:

3 (τ + π) (τ + π) ρ2

σ2σ
− 5τπ + τπ + 7ττ − ππ

σ
= 0. (4.8)

1Notice that ρ2/σσ is (0,0)-weighted.
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In the remainder of this section, we will often use this equation to eliminate

σ from various expressions. From this equation, we also see that π can't be

zero.

Calculating the ð- and ð′-derivatives of (4.8), and making use of (4.7) and

(4.8) we �nd

Þ′σ =

(
3σ (τ + π)

τ + π
− σρ

σ

)
λ−

(
σ +

3 (τ + π) ρ

τ + π

)
µ− 1

8

(τ + π)R

τ + π

+
9

8

(τ + π) (τ + π) ρ3

σσ2 +
3

8

(
σ (τ + π)2 + 2σ

(
π2 − τ2

))
ρ2

σσ2

− 1

8

(37 τπ + 39 ττ + τπ − ππ) ρ

σ
,

where

λ =
R

24σ
+
ρµ

σ
− 1

16

(τ + π) (13τπ + 4ππ − 8ττ − 17τπ) ρ

σ2 (τ + π)

+
1

16

(7π − 19τ) τπ + (13π + 2τ) τ2 + (6π − 9τ)π2

σ2 (τ + π)

+
1

8

(τ + π) (5τπ + τπ + 7ττ − ππ)

(τ + π) ρ
. (4.9)

Hence we can rewrite (4.7), to obtain an equation for µ in terms of µ, τ , τ ,

π, π, σ, σ and ρ:

µ = µ− (τπ − τπ) (13ττ + 7τπ + ππ + 7τπ)

8 (τ + π) (τ + π) ρ

+
(τ + π)(17τπ − 13τπ + 8ττ − 4ππ)

16(τ + π)σ

− (τ + π)(17τπ − 13τπ + 8ττ − 4ππ)

16(τ + π)σ

− 3 (τ + π)2 (τπ − τπ)

2(5τπ + τπ + 7ττ − ππ)σ
, (4.10)

where the last term has to be purely imaginary.

In the next step, we �nd an interesting relation between τ and π. First we

substitute (4.9) in (4.5). Eliminating from this expression λ, µ and σ by
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(4.9), (4.10) and (4.8) we obtain

(τπ − τπ)

(
9 (τ + π)3 (τ + π) ρ2

(5τπ + τπ + 7ττ − ππ)2 σ2
− 5τ + 3π

4(τ + π)

+

(
11τ2τ + τ2π − 14τπτ − 22τππ + 11π2τ + 13π2π

)
ρ

4 (τ + π) (5τπ + τπ + 7ττ − ππ)σ

)
= 0. (4.11)

Then, we evaluate [Þ′,Þ]ρ, where we again use (4.9), (4.10) and (4.8), but

also (4.11), to simplify things. This leads to

0 = (τπ − τπ)

[
−2π3ρ

(
275τπ + 170π2 + 131τ2

)
τ

τ + π

+
ρπ2

(
π2
(
62τπ + 107π2 − 25τ2

)
+ 120π2τ2 + 6

(
41τ2 + 95τπ

)
τ2
)

τ + π

+
ρ
((

41π2 + 47τ2 + 128τπ
)
τ4 − 2π

(
20π2 + 59τ2 − 7τπ

)
τ3
)

τ + π

−
(5τ + 3π) (5τπ + τπ + 7ττ − ππ)

(
τ2 − 16τπ + π2

)
τσ

(τ + π)

−
(5τ + 3π) (5τπ + τπ + 7ττ − ππ)

(
5τ2 − 2τπ + 11π2

)
πσ

(τ + π)

]
. (4.12)

Assume for a moment that τπ − τπ 6= 0 (so de�nitely τ 6= π). If the coe�-

cient of ρ in (4.12) would be zero, also the coe�cient of σ in this expression

would have to be zero. Eliminating τ from those coe�cients, however,

we get (τ + π) (τ − π)π8 = 0, which is impossible under the assumption

τπ − τπ 6= 0. This means that, if we assume τπ − τπ 6= 0, we can solve

(4.12) for σ. Substituting this expression for σ in (4.8) and eliminating τ

from it and its complex conjugate, we see that π = 0 or τ = c π, which

is impossible. It follows that τπ must be real: henceforth we will often

substitute

τ =
τπ

π
.

We still have to check the ð- and Þ′-derivatives of (4.9). Those equations,

together with Þ′(4.8) and [ð,Þ′]ρ give us expressions for Þ′τ , ð′µ, Þ′µ and



Chapter 4. Newman Tamburino metrics in vacuum 79

ðµ:

Þ′τ =
(π − τ) (π − 11τ)µ

3 (τ + π)
− 2τΨ3

τ + π
+

(5π − τ) (π − 7τ)R

144 (τ + π) ρ

− 1

8

τ (τ + π)2

σ
+
π (π − 7τ)

(
9τ3 + 12τ2π − 19τπ2 + 2π3

)
24π (τ + π) ρ

+
σπ2 (π − 7τ)

(
29τ2π − 31τ3 − 11τπ2 + π3

)
36π2 (τ + π) ρ2

,

ð′µ =
ρðµ
σ

+

(
π − 3τ

32σ
− π (π − 7τ)

288πρ

)
R+

(
(π − 5τ) ρ

2σ
+
π (π − τ)

6π

)
µ

+
π (π − 3τ)

(
5π2 + 3τ2 − 4τπ

)
16πσ

− π2τ (π − 7τ) (17π + 3τ)

24π2ρ

+
σπ3 (π − 7τ)

(
91τ2 − 42τπ + 11π2

)
144π3ρ2

+ Ψ3,

Þ′µ =
σð′ν
ρ

+
(3π − τ) (π − τ)πΨ3

4π (τ + π) ρ
+

(π − τ)πσν

πρ

+

(
(3π − τ) (π − τ)

4 (τ + π) ρ
− πσ (π − 7τ) (π + 7τ)

6π (π + τ) ρ2

)
Ψ3 −

2 (π + 5τ)µ2

3 (τ + π)

+
(π − 7τ)µR

36 (π + τ) ρ
− (τ + π)2 µ

8σ
+
π (π − τ)

(
17τ2 − 102τπ + 9π2

)
µ

12π (τ + π) ρ

+
σπ2 (π − 7τ)

(
251τ2 − 78τπ + 7π2

)
µ

72π2 (τ + π) ρ2

+
(π − 7τ)R2

1728 (τ + π) ρ2
− (τ + π)2R

96σρ
+
π (π − 7τ)

(
18π2 − τ2 − 15τπ

)
R

288π (τ + π) ρ2

−
σπ2 (π − 7τ)

(
π2 + 93πτ − 76τ2

)
R

864π2 (τ + π) ρ3

+
3π4π − 22τππ3 + 4τ2ππ2 − 64πσ2Ψ4 + 22τ3ππ − 7τ4π

64πσρ

+
π2 (π − 7τ)

(
11τ4 + 168τ3π + 298τ2π2 − 264π3τ + 43π4

)
192π2 (τ + π) ρ2

+
π3σ (π − 7τ)

(
25π4 − 538π3τ + 2588τ2π2 − 2342τ3π − 501τ4

)
576π3 (τ + π) ρ3

+
σ2π4 (π − 7τ)2 (π3 − 113τπ2 + 767τ2π − 847τ3

)
1728 (τ + π)π4ρ4
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and

ðµ =

(
12ρτπ2 − ρπ3 − 6ππτσ + 13πρτ2 − 18πτ2σ

)
µ

6ρπ (τ + π)

−
(
13ρπ3 − 9π2πσ − 30ρτπ2 + 66ππτσ − 43πρτ2 − 21πτ2σ

)
R

576πρ2 (τ + π)

+
Ψ3

4
+

(π − 3τ)σΨ3

4ρ (τ + π)
− 3 (τ + π) ρν

2 (π − 7τ)
− σν

2

+
(π + 5τ) (τ + π)2

64σ
−
(
19π3 − 119π2τ + 97πτ2 − 213τ3

)
π

192πρ

−
π2σ (π − 7τ)

(
65π3 + 71π2τ − 413πτ2 − 131τ3

)
576π2 (π + τ) ρ2

−
π3σ2 (π − 7τ)

(
173τ3 − 49τ2π − 25τπ2 + 5π3

)
192π3 (τ + π) ρ3

.

We will now distinguish between two cases: τ = π or τ 6= π. These re-

spectively coincide, in the present tetrad, with the cylindrical and spherical

classes of the original paper. To see this, it is su�cient to look at equation

(4.8) and to take into account the fact that Ψ1 = −(τ + π)σ 6= 0.

4.2.1 The cylindrical class τ = π

If we substitute τ = π into (4.8), we get ρ2 = σσ, the so called cylindrical

class of (Newman and Tamburino, 1962). From Þ′(τ − π) = 0 we readily

get that R = 0.

From [ð′,Þ′]ρ we get expressions for ν and Ψ3:

ν =
σν

ρ
−

3 (ρπ − πσ)
(
σ2π2 + ρ2π2

)
4ρ4σ

(4.13)

and

Ψ3 = −σΨ3

ρ
+

2 (ρπ + πσ)µ

ρ
+

(ρπ + πσ)
(
5σ2π2 − 12πσπρ+ 3ρ2π2

)
2ρ3σ

.

The only extra information that can be obtained for this class of solutions,

comes from [ð,Þ′]π and [ð′, ð]µ. These equations together with (4.13), give
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explicit expressions for ν, Ψ3 and Ψ4:

ν =
(ρπ + πσ)µ

ρσ
+
π2 (5ρπ − πσ)

4ρ3
,

Ψ3 = 2πµ− π2 (9ρπ − 5πσ)

2ρ2
,

Ψ4 =
2π (3πσ + ρπ)µ

ρσ
+
π (3πσ + ρπ)

(
10σ2π2 − 15πσρπ + ρ2π2

)
4ρ3σ2

.

The subsequent integration follows in section 4.3.

4.2.2 The spherical class τ 6= π

If τ 6= π, we can �nd expressions for ν, Ψ3 and Ψ4 from [ð′,Þ′]ρ, [ð,Þ′]σ
and [ð,Þ′]π:

ν =

(
τ

σ
− (π − 7τ) τπ

3π (τ + π) ρ

)
µ+

(π − 7τ)
(
π3 − 9τπ2 − 3τ2π − 9τ3

)
π2

48π2 (τ + π) ρ2

−
(

3π + τ

192σ
+

3π2 + 20τπ + τ2

π (τ + π) ρ

)
(π − 7τ)R

(π − τ) ρ

+
(π − 7τ)2 (3π2 − 14τπ + 7τ2

)
σπ3

288π3 (τ + π) ρ3
− π (π − τ)2 (π − 7τ)

32πσρ
, (4.14)

Ψ3 =
π (7τ − π)µ

3π
−

(
(τ + π)2

32σ
+
π (π − 7τ) (7π − τ)

288πρ

)
R

π − τ

− π (τ + π)2 (π − τ)

16πσ
− (π − 7τ)2 σπ3 (π − 11τ)

144π3ρ2

−
(π − 7τ)π2

(
π2 − 13τπ − 6τ2

)
24π2ρ

,

Ψ4 =

(
π (π − 7τ)

πρ
− τ + π

σ

)
µπ (π − 7τ)

6π
− (τ + π)3 (π − 3τ)π

64πσ2

+

(
(π + 5τ) (τ + π)

σ
−
π
(
5τ2 + 74τπ + 5π2

)
2πρ

)
π (π − 7τ)R

288π (π − τ) ρ

+

(
19π2 − 118τπ − 41τ2

)
576π3ρ2

−
(π − 7τ) (τ + π)

(
π2 − 3τ2 − 10τπ

)
48σπ2ρ

− (π − 3τ) (τ + π)3 π

64πσ2
+

(π − 11τ) (π − 7τ)3 σπ4

288π4ρ3
− (τ + π)2R

64 (π − τ)σ2
.

The only remaining information now comes from ð(4.14), showing that R =

0 also in this class.
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We will now transfer all invariant information, obtained in this section,

to the Newman Penrose formalism. It is interesting to note that we have

completely �xed the null rotation at the beginning of the GHP-analysis and

that we know all directional derivatives of the spin coe�cients and tensor

components. Therefore we can conclude that coordinates exist for which no

arbitrary functions appear in the line elements for this problem.

4.3 Cylindrical class: Newman Penrose analysis

The cylindrical class of Newman Tamburino metrics is characterised by

the existence of a principal null direction k of the Weyl tensor which is

hypersurface orthogonal and geodesic,

Ψ0 = κ = ρ− ρ = 0, (4.15)

but has non-vanishing shear and divergence, with the spin coe�cients ρ and

σ related by

ρ2 − |σ|2 = 0. (4.16)

As in the previous section, we will �x the null rotation of the tetrad, by

putting

Ψ2 = −1

4

(
ρΨ1 + σΨ1

) Ψ1

σ2σ
.

By �xing the null rotation in the same way as in our GHP-calculations in

section 4.2, we are allowed to copy the expressions for λ, τ , ν, Ψ1, Ψ3, Ψ4

and R:

λ =
ρµ

σ
+

2π2

ρ
,

τ = π,

ν =
(ρπ + πσ)µ

ρσ
+
π2 (5ρπ − πσ)

4ρ3
,

Ψ1 = −2πσ,

Ψ3 = 2µπ − (9ρπ − 5πσ)π2

2ρ2
,

Ψ4 =
2 (ρπ + 3πσ)πµ

σρ
+

(ρπ + 3πσ)
(
10π2σ2 − 15σππρ+ π2ρ2

)
π

4σ2ρ3
,

R = 0.
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Also the expression for µ (4.10) remains valid:

µ = µ− (ρπ − πσ) (ρπ + πσ)

2σρ2
. (4.17)

As we assume non-vanishing shear, we can �x the spatial rotation such that

σρ > 0 and hence, by (4.16):

σ = ρ.

From (1.26) we see that ε is real, so we can boost such that ε = 0:

ε′ = ε+
1

2
D lnA = 0.

Taking into account (1.25), (1.27 − 1.29), (1.32) and (4.17), a further boost

can be used to make α = π − β:

π′ − α′ − β′ = π − α− β − δ lnA = 0.

The remaining tetrad freedom now consists of boosts with (real) boost pa-

rameter A satisfying δA = δA = DA = 0.

As in GHP, we proceed by rewriting all NP and Bianchi equations in a nice

and useful form. First, we rewrite (1.25), (1.27) and (1.29 − 1.33):

Dρ = 2ρ2, (4.18)

Dβ =
(
β − β

)
ρ,

Dγ = 2ππ − 2πβ + 2πβ − π2,

Dπ = 2ρπ,

Dµ = 2µρ− 2πβ + δπ,

δπ = ππ − π2 − 2βπ − 2βπ + δπ,

∆π = π (γ − γ − 2µ)− 2π (π + π)β

ρ
+

3π2π − 3π3 + πδπ + πδπ

ρ
.

Then, (1.35 + 1.35) shows β is imaginary.
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With this information, we rewrite (1.36 − 1.40), (1.42), and (1.44):

δπ = ππ + πβ − 3πβ − 4β2 − δβ + δβ,

δµ = πµ− πµ− 4µβ + δµ+
2π2δρ

ρ2

−
π
(
3ππ − 3π2 − 8 (π − π)β − 32β2 + 8δβ + 8δβ

)
2ρ

,

∆µ =
(π + π) δµ

ρ
+

(
π (7π + 3π)

2ρ2
− 2µ

ρ

)(
δβ − δβ

)
+
π2π (11π − 3π)

4ρ2

−
(
µ (π + π)

ρ2
+
π2 (π − 5π)

2ρ3

)
δρ− µ (µ+ µ+ γ + γ)

+
2πβµ− µπ2 + 4ππµ− 8µβ2 − 6πβµ− 2π2µ− µπ2

ρ

−
π
(
6βπ2 − 18βπ2 + 8πβπ − 56πβ2 − 9π3 − 24πβ2 + π3

)
4ρ2

, (4.19)

δγ = ∆β − β(γ − γ − µ− µ)− (µ− µ)π +
(π − 5π)π2 + 8(β + π)π2

4ρ
,

∆ρ = δβ − δβ + ππ + πβ − 4β2 − πβ + (3γ − γ − µ− µ)ρ− 2π2,

δγ = β (µ+ µ+ γ − γ) + ∆β +
π

ρ

(
δβ − δβ

)
+
π

ρ

(
δβ − δβ

)
+

(π + β)π2 + π2β − 4(π + π)β2

ρ
+

(π − π)π2

4ρ
− π (µ− µ) ,

δρ =
ρ

2π

(
2δβ − 2δβ − 2πβ + 8β2 − π2 + 10πβ + ππ

)
. (4.20)

As ρ is real, we obtain an expression for γ from ∆ρ:

γ = γ − π2 − π2

2ρ
. (4.21)

Next we examine (1.35) and (1.34); (1.35) can be written as follows:

ρ (π − π)

ππ

(
δβ − δβ

)
− ρβ

ππ

(
π2 − 14ππ + π2 + 4β (π − π)

)
= 0. (4.22)

Furthermore, adding (1.34) and (π + π)µ/ρ2×(4.22) and simplifying the

resulting equation, we obtain by (4.17) and (4.21)(
π2 − 14ππ + π2

) (
δβ − δβ

)
+ β

(
π3 − 39ππ2 + 39π2π − π3 − 4β

(
π2 − 14ππ + π2

))
= 0.
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Eliminating δβ − δβ from the latter equation and (4.22), we obtain

−
12βρ

(
π2 + 10ππ + π2

)
π2 − 14ππ + π2 = 0,

from which it is obvious that β = 0, as π 6= 0.

The only equation in the set of NP and Bianchi equations, that still contains

new information, is Bianchi equation (1.48)

δµ = (π + 3π)
µ

2
+

3π3 − ππ2 − 5π2π + 11π3

8ρ
.

Herewith we have extracted all information from the NP Ricci and Bianchi

equations. In summary, we have expressions for

� all directional derivatives of ρ, π and µ,

� all but one directional derivatives of γ (we do not have an expression

for ∆γ),

� the imaginary parts of µ and of γ, given by (4.17) and (4.21), respec-

tively.

Making use of the latter, all derivatives of (4.17) and of (4.21) are identically

satis�ed, and the same holds for all commutators applied to ρ, π and µ.

Also, acting with [δ,D], [δ,D] and [δ, δ] on γ yields no new information.

Furthermore, we note that the tetrad is �xed up to boosts with real boost

parameter A satisfying δA = δA = DA = 0.

Remark: the spin coe�cient π can be real, but not purely imaginary, as can

be seen by evaluating δ (π − sπ), with s = ±1.
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The Cartan equations take the following form:

dω1 = ρ(ω1 + ω2) ∧ ω4 + πω1 ∧ ω2 − µρ+ 2π2

ρ
ω2 ∧ ω3

+ (γ − γ − µ)ω1 ∧ ω3 + 2πω3 ∧ ω4,

dω2 = ρ(ω1 + ω2) ∧ ω4 − πω1 ∧ ω2 − µρ+ 2π2

ρ
ω1 ∧ ω3

+ (γ − γ − µ)ω2 ∧ ω3 + 2πω3 ∧ ω4,

dω3 = 0, (4.23)

dω4 = (µ− µ)ω1 ∧ ω2 +
4µρ (π + π) + π2 (5π − π)

4ρ2
ω1 ∧ ω3

− (γ + γ)ω3 ∧ ω4 +
4µρ (π + π) + π2 (5π − π)

4ρ2
ω2 ∧ ω3.

We will now introduce coordinates. From (4.23), we see that ω3 is exact, so

we will write ω3 = du. The other one forms ω1, ω2 and ω4 have the most

general form:

ω1 = V du+Wdr + Pdx+Qdy,

ω2 = V du+Wdr + Pdx+Qdy,

ω4 = Hdu+ R̃dr +Xdx+ Y dy,

where V ,W , Q and P are complex functions of the real coordinates (u, r, x, y)

and H, R̃, X and Y are real functions of these coordinates. By means

of a coordinate transformation of x −→ x + f1(u, r, x, y) and y −→ y +

f2(u, r, x, y), we can make W , the coe�cient of dr in ω1, equal to zero.

Then a transformation of r −→ r ∗ f3(u, r, x, y) can be used to make R̃,

the coe�cient of dr in ω4, equal to one. We can still use the following

coordinate transformations:

x −→ g1(u, x, y)x+ g2(u, x, y),

y −→ g3(u, x, y)y + g4(u, x, y),

r −→ r + g5(u, x, y).
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In the above coordinates, the directional derivatives have the following form:

δ =
PY −QX
QP −QP

∂r +
Q

QP −QP
∂x −

P

QP −QP
∂y, (4.24)

δ = −PY −QX
QP −QP

∂r −
Q

QP −QP
∂x +

P

QP −QP
∂y,

∆ = ∂u −

(
X
(
V Q− V Q

)
+ Y

(
V P − V P

)
QP −QP

−H

)
∂r

+
V Q− V Q
QP − PQ

∂x +
V P − PV
QP −QP

∂y, (4.25)

D = ∂r. (4.26)

In the next step, we will determine the r-dependence of all spin coe�cients,

making use of (4.26). From (4.18) we see that ρ = (−2[r + f(u, x, y)])−1.

After a transformation r −→ r − f(u, x, y) we have

ρ = − 1

2 r
. (4.27)

From the D-derivatives of π, µ and γ, we get

π =
π0

r
,

µ =
µ0

r
+
π0π0 log r

r
, (4.28)

γ = g0 +
π0 (π0 − 2π0)

r
,

where π0 and µ0 are complex functions of (u, x, y) and g0 is a real function

of (u, x, y) (the fact that g0 is real, comes from (4.21)).

From [δ,D]x, [δ,D]x, [δ,D]y and [δ,D]y, we see that the real parts of P and

Q are proportional to r (the proportionality factors being real functions of

(u, x, y)), whereas the imaginary parts of P and Q are independent of r:

P = p1r + ip2, P = p1r − ip2, Dp1 = Dp2 = 0,

Q = q1r + iq2, Q = q1r − iq2, Dq1 = Dq2 = 0.

Combining the real and imaginary part of [δ,D]r shows both X and Y

are independent of r. It is obvious now, that a transformation of y exists,
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which makes P real, after which a transformation of x can be used to make

Q purely imaginary:

p2(u, x, y) = 0 = q1(u, x, y).

If we compare the expression for δρ, i.e. (4.20), to the one we obtain, when

applying (4.24) to (4.27), we see that

X = 0,

Y = iq2 (π0 − π0) .

In the same way the coe�cient of r in δπ shows that π0 is independent of

y, whereas from the r-independent terms we deduce

∂π0

∂x
= π0p1 (3π0 − π0) . (4.29)

Taking into account the latter equation and its complex conjugate, we see

from δµ that also µ0 is independent of y and that

∂µ0

∂x
= 2µ0p1 (π0 + π0)− p1

2

(
3π0

3 + π0
2π0 − 7π0π0 + 11π3

0

)
. (4.30)

It is clear from (4.29) that p1 is independent of y too and also g0 is in-

dependent of y (and even of x) as can be seen from δγ. As γ is of the

form

γ = g0 +
(π0 − 2π0)π0

r
,

with g0 now only depending on u, we can use the remaining boost freedom

to make g0 = 0. The only variables, of which the r-dependence is as yet

unknown, are V and H. From [∆,D]x, [∆,D]y and [∆,D]r, we �nd that

V = v1r + iv2 + π0 + π0 + (π0 − π0) log r,

H = h0 +
(
π0

2 − 4π0π0 + π2
0

)
,

where

� the real function h0(u, x, y) can be determined from ∆ρ:

h0 = i (π0 − π0) v2 − 2µ0 + 2 (2π0 − π0) (π0 − π0) ,
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� the real function v1(u, x) is independent of y, as can be seen from ∆π,

� the real function v2(u, x, y) is for the moment completely arbitrary.

From ∆π, we also get that

∂π0

∂u
= π0 (3π0 − π0) v1. (4.31)

Substituting the latter and its complex conjugate, (4.29) and its complex

conjugate and (4.30) in the expressions for ∆µ (i.e. equation (4.19) and the

result of applying (4.25) to (4.28)), we obtain

∂µ0

∂u
= 2 (π0 + π0)µ0v1 −

1

2

(
3π0

3 + π0
2π0 − 7π0π

2
0 − 11π3

0

)
v1. (4.32)

Expressions for the partial derivatives of v1 with respect to x and of v2 with

respect to x and to y, can be found by acting with [δ,∆] on x and on y:

∂v1

∂x
=

∂p1

∂u
,

∂v2

∂x
= i (2π0 − 2π0 + iv2) (π0 + π0) p1, (4.33)

∂v2

∂y
=

∂q2

∂u
+ v1 (π0 + π0) q2. (4.34)

In addition [δ,∆]y provides an expression for
∂q2

∂x
:

∂q2

∂x
= −q2p1 (π0 + π0) , (4.35)

which shows that q2(u, x, y) can be factorised in a factor depending on u

and x and one depending on u and y:

q2(u, x, y) = q3(u, x)q4(u, y).

We will assume q3(u, x) > 0, as one can always absorb its sign in q4(u, y).

Notice also that (4.35) provides us with a solution for p1(u, x):

p1 = − 1

q3 (π0 + π0)

∂q3

∂x
. (4.36)

We now substitute (4.36) in (4.29), which results in a partial di�erential

equation for π0:

π0 (π0 − 3π0)

π0 + π0

∂q3

∂x
− q3

∂π0

∂x
= 0,
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the solution of which is given by

π0(u, x) =

√
f(u)− n(u)2q3(u, x)4

q3(u, x)
+ iq3(u, x)n(u),

where f(u) > n(u)2q3(u, x)4 is positive, and where n(u) can be zero.

From (4.31) we get expressions for v1(u, x) and for n(u):

v1 = − 1

4
√
f − n2q4

3

2
∂q3

∂u
+
q3

(
2nq4

3
dn
du −

df
du

)
f + n2q4

3

 ,

n =
c1√
f
.

We can also solve (4.33)(
∂v2

∂x
+ 4n

∂q3

∂x

)
− v2

q3

∂q3

∂x
= 0

from which we get following expression for v2:

v2 = q3 (v3 − 4nlogq3) ,

where v3 is a real function of u and y.

Next, we will combine (4.17), (4.30) and (4.32) to �nd a solution for µ0:

µ0 = in
√
f − n2q4

3 −
7

2
n2q2

3 +
f (c2 − logf + 2logq3)

q2
3

,

with c2 a real constant.

The only equation still remaining is (4.34):

1

q4

(
∂v3

∂y
− ∂q4

∂u

)
− 1

2f

df

du
= 0. (4.37)

The metric one forms are given by

ω1 = iq3q4dy − 1

2

∂q3
∂x rdx√
f − n2q4

3

−

(
2
√
f − n2q4

3

q3
+ iq3

(
nlog(r2q4

3)− v3

))
du

+

(
∂q3

∂u
+

2nq5
3

dn
du − q3

df
du

2
(
f + n2q4

3

) ) r

2
√
f − n2q4

3

du,

ω3 = du,

ω4 =

(
f log f2

q2
3

−
(
f + 2n2q4

3

)
log
(
r2q4

3

)
q2

3

− 2c2 f

q2
3

− n(5n− 2 v3)q2
3

)
du

+ 2 q2
3 q4 n dy + dr,
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which suggests the use of q3(u, x) as a new x-coordinate. Introducing ỹ such

that dỹ = q4dy and dropping the tilde, allows us to solve (4.37):

v3 = c3 +
y

2f

df

du
.

Actually, we do not expect the function f(u) to appear in the metric (as can

be seen from our GHP-analysis, we do not expect any free function in the

resulting metric). Therefore, it is necessary to look for an appropriate coor-

dinate transformation to eliminate f(u) from the system. We temporarily

distinguish between the cases c1 = 0 and c1 6= 0.

If c1 = 0 = n, we apply the following coordinate transformation:

x −→ x̃
√
f,

y −→ ỹ√
f
− c3√

f

∫ √
fdu,

r −→ r̃

x̃2
.

Dropping the tildes, the metric one forms simplify to

ω1 =
2

x
du− r

2x2
dx+ ixdy,

ω2 =
2

x
du− r

2x2
dx− ixdy,

ω3 = du,

ω4 =
1

x2
dr − 2r

x3
dx− 2c2 + log r2

x2
du,

which leads to the line element

ds2 =
4 (2 + c2) + log r4

x2
du2 − 2

x2
drdu+

r2

2x4
dx2 + 2x2dy2. (4.38)

If c1 6= 0, however, things are a bit more complicated. The required coor-

dinate transformation is now given by

x −→ x̃
√
f

√
c1
,

y −→
y
√
c1√
f
,

r −→ r̃
√
c1,

u −→ ũ
√
c1
.



Chapter 4. Newman Tamburino metrics in vacuum 92

Next we replace f by f̃
√
c1, c3 by c3 c

3/4
1 , and c2 by

c2

2
− 2. A second

coordinate transformation

ỹ −→ y′ +

∫
log f̃2 − c3

√
f̃du,

r̃ −→ r′

x̃2
,

x̃ −→ x′1/4,

and dropping the dashes and tildes then leads to the one forms

ω1 =

(
2
√

1− x
x1/4

− ix1/4 log r2

)
du− r

8x5/4
√

1− x
dx+ ix1/4dy,

ω3 =
1
√
c1

du,

ω4 =
√
c1

[(
4− c2 − 5x√

x
− (2x+ 1) log r2

√
x

)
du+

dr√
x
− rdx

2x3/2
+ 2
√
xdy

]
,

which corresponds to the line element

ds2 =

(
2
√
x
(
log r2

)2
+

2 (2x+ 1) log r2

√
x

+
2 (x+ c2)√

x

)
du2 − 2√

x
drdu

−
(
4
√
x log r2 + 4

√
x
)

dydu+
r2dx2

32x5/2 (1− x)
+ 2
√
xdy2. (4.39)

Notice that the constant c1 does not appear in the line element (indeed, as

can be seen from the one forms above, we can boost such that c1 = 1).

4.3.1 Comparison with the original paper

In this paragraph, we will look at the metrics (4.38) and (4.39), and we ex-

amine the relation between these and the ones in (Newman and Tamburino,

1962). First note that, due to typing mistakes, the cylindrical metrics pre-

sented in the original paper are not empty space metrics, neither the general

metric, nor the limiting Sachs metric. The latter is obtained by shifting the

y-origin in the general cylindrical Newman Tamburino metric and then tak-

ing the limit for b −→ 0. The Sachs metric in its correct form is de�ned by

the line element

ds2 =
log
(
r2x4

)
− g

x2
du2 −

(
2dr +

4r

x
dx

)
du+ x2dy2 + r2dx2, (4.40)
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which is equivalent to the original Sachs metric (Sachs, 1961):

exp (2k − 2U)
(
dr2 + dx2

)
+ r2 exp (−2U)dy2 − exp (2U)du2,

where U = x+ log r and k = − r2

2 + 2x+ c+ log r, c being a constant. If we

replace in the latter

x −→ g

2
− c− log x̃,

r −→
√
g − log (r̃2x̃4),

y −→ ỹx̃ exp
(g

2
− c− log x̃

)
,

u −→ ũ+ h(x̃, r̃),

c −→ g

2
,

where h(x̃, r̃) is a function satisfying

∂h

∂r̃
=

x̃2

g − log (r̃2x̃4)
,

∂h

∂x̃
=

2x̃r̃

g − log (r̃2x̃4)
,

and if we drop the tildes, this is precisely the form of the Sachs metric as

in (4.40).

The empty space cylindrical metric should have had the following form:

ds2 =

[(
4

cn2
+ cn2

(
log r2

)2
+

log(r2cn4)

cn2

)
b2 +

c

cn2

]
du2 − 2drdu

+

(
r2

2
+ 8u2b4

(
1− cn4

))
dx2 + 4cn

√
2u
√

1− cn4b2dxdy + cn2dy2

+
(
2u cn2b2 log r2 + r

) 2
√

2b
√

1− cn4

cn
dxdu+ 2cn2b log r2dydu,

(4.41)

where b and c are constants, and where cn = cn(bx) is an elliptic function

subject to the di�erential equations

dcn

dx
= −b

√
1− cn4

2
, (4.42)

d2cn

dx2
= −b2cn3.
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The misprint in the original paper is situated in the coe�cient of dx2, due to

the presence of a factor log r/16 in the second term. Although this mistake

had been determined before, the author was unaware of that fact until after

her calculations (private communication with A. Barnes and J. Åman).

The calculations presented in this chapter are independent of the work of

A. Barnes and J. Åman, and it is only recently that we put our results

together.

It is useful to rewrite the Newman Tamburino cylindrical metric (4.41) in

other coordinates: replacing y and r by

y −→
√

2y + 2bu log cn2,

r −→ r

cn2
,

and taking into account the conditions (4.42), we obtain a metric that can

be compared to (4.39) more easily. In these coordinates, the line element

takes the form

ds2 =

(
b2cn2(log r2)2 +

b2 log r2

cn2
+

4b2 + c

cn2

)
du2 − 2

cn2
drdu

+ 2cn2
√

2b log r2dydu+
r2dx2

2cn4
+ 2cn2dy2. (4.43)

We will now show how one can �nd the metric of Newman and Tamburino

(and its Sachs limit) from our metric (4.39). We will also show that metric

(4.38) is a limiting metric of (4.39), which, surprisingly, coincides with the

Sachs metric.

If we replace r by r x2 and c2 by −g
2 − 2− log 2 in metric (4.38), and scale

x and y with a factor
√

2 and 2−1 respectively, we obtain

ds2 =
log(r2x4)− g

x2
du2 −

(
2dr +

4r

x
dx

)
du+ r2dx2 + x2dy2,

which is exactly the same as the Sachs metric (Sachs, 1961).

It is also possible, by a singular limit procedure, to obtain this metric from

(4.39). Therefore the latter is the most general empty space metric, sat-

isfying the cylindrical condition (4.16), that has a hypersurface orthogonal
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and geodesic principal null direction, with non-vanishing shear and diver-

gence. The way to prove this, is as follows: in (4.39) apply the coordinate

transformations

x −→ x̃4,

y −→ ỹ + u(1 + log r2),

r −→ r̃x̃2.

Next, replace x̃ by x̃
a
√

2
, r̃ by 2 a r̃, u by u

2a , ỹ by a ỹ and c2 by −g + log a2.

Taking the limit for a to +∞ again results in the Sachs metric, in the same

coordinates as before.

The more di�cult task is to prove that (4.41) is a family of metrics that

are covered by (4.39). To this end, we have already rewritten (4.41) in the

form (4.43). If we now substitute x by cn4 in (4.39), where cn is an elliptic

function satisfying (4.42) and if we scale r and u and replace c2 by 5 + c/b2,

this exactly reproduces the (corrected version of the) metric of Newman and

Tamburino (4.43). A CLASSI input �le for both the Sachs metric (4.40) and

the original (corrected version of) cylindrical Newman Tamburino metric

(4.41) is given in the appendix (�les by A. Barnes (modi�cations by J.

Åman)).

4.4 Spherical class: Newman Penrose analysis

In this section we will examine the spherical empty space solutions in the

same way as we did for the cylindrical solutions in section 4.3. First we

substitute the basic assumptions in the set of NP Ricci and Bianchi equa-

tions:

Ψ0 = 0,

ρ = ρ,

κ = 0,

Φij = 0, i = 0, 1, 2; j = 0, 1, 2.

We again �x the null rotation by choosing the same value for Ψ2 as in the

GHP analysis:

Ψ2 = −1

4

(
ρΨ1 + σΨ1

) Ψ1

σ2σ
.
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This allows us to copy all the invariant information obtained in section 4.2.2

to the present situation. We thus have expressions for all the components

Ψi of the Weyl tensor, but also the spin coe�cients ν and λ are de�ned in

an invariant manner.

Ψ1 = − (τ + π)σ,

Ψ2 = −1

4

(τ + π)2 ρ

σ
− 1

4
(τ + π) (τ + π) ,

Ψ3 =
1

3

(7τ − π)πµ

π
+

1

16

(τ − π) (τ + π)2 π

πσ

− 1

144

π2 (π − 7τ)2

π2ρ

(
6
(
π2 − 13πτ − 6τ2

)
(π − 7τ)

+
σπ (π − 11τ)

πρ

)
,

Ψ4 =
1

6

π (π − 7τ)2

π

(
π

πρ
− τ + π

σ (π − 7τ)

)
µ

− 1

192

π (τ + π)3

πσ

(
3 (π − 3τ)

σ
+

4π (π − 7τ)
(
π2 − 10πτ − 3τ2

)
πρ (π + τ)2

)

+
1

576

π3 (π − 7τ)3

π3ρ2

(
19π2 − 118πτ − 41τ2

(π − 7τ)
+

2πσ (π − 11τ)

πρ

)
,

ν =

(
1

σ
− 1

3

π (π − 7τ)

π (τ + π) ρ

)
τµ− 1

32

π (π − τ)2 (π − 7τ)

πσρ

+
π3 (π − 7τ)2

288(τ + π)

(
6
(
π3 − 3πτ2 − 9τ(τ2 + π2)

)
ππ2 (π − 7τ) ρ2

+
σ
(
3π2 − 14πτ + 7τ2

)
π3ρ3

)
,

λ =
ρµ

σ
+
π (3π − τ) (π − τ)

8πσ
− π2 (π − 7τ) (π + 7τ)

24π2ρ
.

In addition, we have two algebraic equations

τπ = τπ, (4.44)

ρ2 +
1

3

σσ (π − 7τ)

τ + π
= 0 (4.45)

and an expression for the imaginary part of µ, given by

µ = µ+
1

4

(τ + π) (π − 2τ)
(
σπ2 − π2σ

)
σσπ2 . (4.46)

As we assume non-vanishing shear, we can again �x the rotational freedom

of the null tetrad (m, m̄, l,k) by making σ real. This in turn allows us to
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boost such that ε = 0 (by (1.26)) and such that

α = τ − β.

The required boost parameter A has to satisfy

ε′ = 0 = ε+
1

2
D lnA,

α′ + β′ − τ ′ = 0 = α+ β − τ + δ lnA,

the integrability conditions of which are identically satis�ed under the New-

man Penrose equations (1.27 − 1.29), (1.36) and (1.41).

In the spherical case, it is not so easy to �rst `solve' the NP-equations for

directional derivatives of the spin coe�cients, subsequently do the same for

the Bianchi equations and the directional derivatives of the Weyl tensor

components and next apply the commutators to the spin coe�cients and

Weyl tensor components. Doing so, the equations become very lengthy and

hard to solve. We will therefore, in this section, switch between the sets, in

order to extract all information in a faster, more elegant way.

First we write (1.25 − 1.30) as

Dρ = ρ2 + σ2,

Dσ = 2ρσ,

Dτ = (τ + π) ρ, (4.47)

Dβ = ρβ − βσ,

Dγ =
1

4
(3τ (τ + π) + π (3τ − π)) + β (τ + π)− β (τ + π)− (τ + π)2 ρ

4σ
.

Then, we solve (1.43) for Dπ:

Dπ = (τ + π) ρ.

At this point, we can �nd a solution for τ : notice �rst that ρ2 − c σ2 = 0,

where c is a constant, is only possible for c = 1, the cylindrical case, which

we have already studied. This follows directly by evaluating D
(
ρ2 − c σ2

)
=

0. It is thus allowed to solve equation (4.45) for τ :

τ = −
π
(
3ρ2 + σ2

)
3ρ2 − 7σ2

.
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The equations (4.44) and (4.47) are then identically satis�ed.

Next we proceed by rewriting (1.31 − 1.32), (1.35 − 1.36) and (1.40):

Dµ =
σδπ

ρ
+ 2µρ− 2σπβ

ρ

+
3
(
ρ2 − σ2

) (
9πρ3 + 12πσρ2 − 11πσ2ρ− 14πσ3

)
π

ρ (3ρ2 − 7σ2)2 ,

δπ =
σδπ

ρ
− 2βπ − 2σπβ

ρ

+
2σπ

(
21σ4π + 12σπρ3 − 38σ2πρ2 − 4πσ3ρ+ 9πρ4

)
ρ (3ρ2 − 7σ2)2 ,

δρ = δσ + 4βσ − 3πρ3 + σ2πρ− 9ρ2πσ + 5σ3π

3ρ2 − 7σ2
,

δπ =
48ρ2π

(3ρ2 + σ2) (3ρ2 − 7σ2)

(
σδσ − ρδσ

)
−
ρ
(
3ρ2 − 7σ2

)
(3ρ2 + σ2)σ

(
δβ + δβ

)
−
(
9πρ5 − 18σπρ4 − 18σ2πρ3 − 156σ3πρ2 − 7πσ4ρ+ 14σ5π

)
β

σ (3ρ2 + σ2) (3ρ2 − 7σ2)

−
2πσ

(
153πρ5 − 255σπρ4 + 21σ5π + 138σ3πρ2 − 11πσ4ρ− 78σ2πρ3

)
(3ρ2 − 7σ2)2 (3ρ2 + σ2)

−
4ρ
(
3ρ2 − 7σ2

)
ββ

(3ρ2 + σ2)σ
− ρπβ

σ
,

∆σ =
ρ

σ

(
δβ + δβ

)
+

48πρ
(
ρ2 + σ2

)
δσ

(3ρ2 − 7σ2)2 − 96πρ2σδσ

(3ρ2 − 7σ2)2 +
4ρββ

σ

−
(
7σ4π + 192σ3πρ+ 18σ2πρ2 − 9ρ4π

)
ρβ

(3ρ2 − 7σ2)2 σ
−
(
18ρ2 − 185σ2

)
ρσπβ

(3ρ2 − 7σ2)2

−
ρππ

(
27ρ6 − 441σ2ρ4 − 63σ4ρ2 + 157σ6

)
(3ρ2 − 7σ2)3 σ

+ 3σγ − σγ − µσ − ρ2µ

σ

+
2π2

(
27ρ6 + 285σ2ρ4 − 163σ4ρ2 − 21σ6

)
(3ρ2 − 7σ2)3 +

9ρ5πβ

(3ρ2 − 7σ2)2 σ
. (4.48)

As we have rotated the tetrad so that σ is real, also ∆σ is real. Taking into
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account (4.46), we get from the imaginary part of (4.48) that:(
ρ2π + 2σπρ+ σ2π

)
δσ

(3ρ2 − 7σ2)2 σ
−
(
ρ2π + 2σπρ+ πσ2

)
δσ

(3ρ2 − 7σ2)2 σ
− 4σ (ρπ + σπ)β

(3ρ2 − 7σ2)2

+
4σ (ρπ + σπ)β

(3ρ2 − 7σ2)2 +
γ − γ
12ρ

−
σ
(
7σ4 − 138σ2ρ2 + 195ρ4

) (
π2 − π2

)
12ρ (3ρ2 − 7σ2)3 = 0.

(4.49)

Notice that we can solve this equation for δσ (or δσ), as ρ2π + 2σπρ+ πσ2

cannot be zero. Proof: substitute

π = −
π
(
ρ2 + σ2

)
2σρ

in D(ρ2π + 2σπρ+ πσ2) = 0. This leads to(
ρ2 − σ2

)2
π

ρ
= 0,

which is impossible in the spherical class.

Another relation between δσ and δσ can be found by calculating D(4.46).

The equation so obtained is given by

ρπ + σπ

σ2 (2ρ2 − σ2)
δσ − ρπ + σπ

σ2 (2ρ2 − σ2)
δσ +

4
(
πβ − πβ

)
2ρ2 − σ2

+
4
(
π2 − π2

)
3ρ2 − 7σ2

= 0.

(4.50)

Again one can solve this equation for δσ (or δσ). To show that (ρπ+σπ) 6= 0,

it su�ces to take the D-derivative of ρπ + σπ.

Next, we will rewrite the couple of Bianchi equations (1.44) and (1.45). The

�rst gives us an expression for δβ, which we will use, together with (4.50)

to simplify the second:

δβ = −δβ +

(
9ρ2 + σ2

)
πδσ

σ (3ρ2 − 7σ2)
− 6πρδσ

3ρ2 − 7σ2

− 4ββ −
5π
(
3ρ2 + σ2

)
β

3ρ2 − 7σ2
−
(
3ρ2π + 24σρπ + σ2π

)
β

3ρ2 − 7σ2

+
2
(
27πρ4 − 27σπρ3 − 9πρ2σ2 + 11πσ3ρ− 2πσ4

)
π

(3ρ2 − 7σ2)2 , (4.51)
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(
9ρ2π − 6σπρ− 7σ2π

)
δσ =

4
(
3πρ3 + 12πσρ2 − 13πσ2ρ− 14σ3π

)
ρσβ

ρ2 − σ2

+
4
(
9ρ2π − 6σπρ− 7σ2π

)
σ3β

ρ2 − σ2

+
2σ
(
2πσ2 + σπρ− 3πρ2

) (
9ρ2π − 6σπρ− 7σ2π

)
3ρ2 − 7σ2

.

We can solve this last equation for δσ, as
(
9ρ2π − 6σπρ− 7σ2π

)
cannot be

zero. It is again su�cient to look at D
(
9ρ2π − 6σπρ− 7σ2π

)
, which after

substituting π =
π
(
9ρ2 − 7σ2

)
6σρ

equals

−
(
ρ2 − σ2

) (
9ρ2 + 7σ2

)
π

ρ
.

It follows that

δσ =
4
(
3πρ3 + 12ρ2πσ − 13σ2πρ− 14σ3π

)
ρσβ

(ρ2 − σ2) (9ρ2π − 6σπρ− 7σ2π)
+

4σ3β

ρ2 − σ2

+
2
(
2πσ2 + σπρ− 3πρ2

)
σ

3ρ2 − 7σ2
, (4.52)

with a similar expression for δσ, as σ is real.

We now return to equation (4.49), from which we eliminate δσ by (4.50)

and δσ by (4.52). This gives us the imaginary part of γ:

γ = γ −
(
π2 − π2

)
σ

3ρ2 − 7σ2

(
48ρ2β

9ρ2π − 6σπρ− 7σ2π
+

9ρ2 − σ2

3ρ2 − 7σ2

)
. (4.53)

From (4.50), we get an expression for β:

β =
9πρ2 − 6σπρ− 7πσ2

9πρ2 − 6σπρ− 7πσ2
β, (4.54)

the D-derivative of which tells us that β has to be zero, unless π is real or

purely imaginary. Substituting (4.54) in D(4.54) leads to

βσ
(
27ρ4 − 150ρ2σ2 + 91σ4

)
(π − π) (π + π) = 0. (4.55)

We can now prove that β = 0. To this end, we �rst look at [δ,D]π, from

which we eliminate Dδβ and Dδβ by [δ,D]β and [δ,D]β. From the result
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we then eliminate δβ by (4.51), and β by (4.54), yielding

πρ2σ3β
[
ρ2
(
81ρ6 − 1035ρ4σ2 + 1971ρ2σ4 − 889σ6

)
π3

− σπρ(189ρ6 − 1527ρ4σ2 + 1959ρ2σ4 − 749σ6)π2

+
(
1215ρ8 − 5229ρ6σ2 + 7989ρ4σ4 − 6063σ6ρ2 + 1960σ8

)
π2π

− π3ρσ
(
891ρ6 − 3537ρ4σ2 + 4545ρ2σ4 − 1771σ6

)]
= 0.

If β were not equal to zero, then, by (4.55) and by the fact that ρ2/σ2

cannot be constant, π is real or purely imaginary. Substituting π = sπ,

s = ±1, in the previous equation, however, we get

βσρπ
(
ρ2 − σ2

) (
162ρ6 − 621σ2ρ4 + 624σ4ρ2 − 245σ6

)
s

− βσρπ
(
ρ2 − σ2

) (
135ρ4 − 498ρ2σ2 + 315σ4

)
ρσ = 0,

so that β = 0 anyway.

We now proceed by solving the remaining NP Ricci and Bianchi equations

for the directional derivatives of the spin coe�cients ρ, π, µ and γ:

∆ρ = 2ρ (γ − µ)−
ππ
(
27ρ4 − 42ρ2σ2 − σ4

)
(3ρ2 − 7π2)2

− 27σπ2ρ3 + 9σπ2ρ3 + 7σ3π2ρ− 11σ3π2ρ

(3ρ2 − 7π2)2 ,

∆π =

(
3ρ4 − 2ρ2σ2 + 7σ4

)
πµ

σ2 (3ρ2 − 7σ2)
+
π3
(
54ρ6 − 111ρ4σ2 + 224ρ2σ4 − 7σ6

)
σ (3ρ2 − 7σ2)

+

(
9ρ2 − σ2

)
πσπ2

(3ρ2 − 7σ2)2 +

(
27ρ6 − 135ρ4σ2 + 21ρ2σ4 − 169σ6

)
ρπ2π

σ2 (3ρ2 − 7σ2)3 ,

δµ =
2 (3ρπ + σπ) ρµ

7σ2 − 3ρ2
−

24σ5π3 + 3ρπ
(
27ρ4 − 66ρ2σ2 + 47σ4

)
π2

(3ρ2 − 7σ2)3

+
3σπ2

(
45ρ4 − 106ρ2σ2 + 37σ4

)
π + 4π3σ2ρ

(
45ρ2 − 23σ2

)
(3ρ2 − 7σ2)3 ,
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δµ = −2ρ (σπ + 3πρ)µ

3ρ2 − 7σ2
−
πσ
(
31σ4 − 66ρ2σ2 + 27ρ4

)
π2

(3ρ2 − 7σ2)3

− 24σ4ρπ3

(3ρ2 − 7σ2)3 −
π2ρ

(
81ρ4 − 306ρ2σ2 + 185σ4

)
π

(3ρ2 − 7σ2)3

−
4π3σ

(
27ρ4 + 9π2σ2 − 14σ4

)
(3ρ2 − 7σ2)3 ,

∆µ = −2µγ −
3π2

(
81ρ8 − 630ρ6σ2 + 1356ρ4σ4 − 842ρ2σ6 − 29σ8

)
π2

(3ρ2 − 7σ2)σ2

−
(
ρ2 + σ2

)
µ2

σ2
−

2ρπ3
(
405ρ6 − 1755ρ4σ2 + 1671ρ2σ4 − 257σ6

)
π

σ (3ρ2 − 7σ2)4

+
24
(
3ρ2 + σ2

)
σ4π4

(3ρ2 − 7σ2)4 −
8π4

(
81ρ6 − 180ρ4σ2 + 48ρ2σ4 + 7σ6

)
(3ρ2 − 7σ2)

+
3σ3

(
ρ2 − σ2

)
π2 − 12ρ3π

(
3ρ2 − 11σ2

)
π − π2

(
54ρ2 − 13ρ2σ2 − 9σ4

)
σ2 (3ρ2 − 7σ2)2 µ,

δγ =
3π
((
π2 + 8π2

)
σ2 − 6

(
4π2 + 7π2

)
ρ2
)
ρσ2

(3ρ2 − 7σ2)3

+
ππ
(
27πρ5 + 9πσρ4 + 78πρ2σ3 − 7πσ5

)
(3ρ2 − 7σ2)3

and

δγ =
π
((

8π2 + π2
)
σ2 − 6

(
4π2 + 7π2

)
ρ2
)
σ3

(3ρ2 − 7σ2)3

+
ππ
(
27πρ5 + 9πρ4σ − 54πσ2ρ3 + 11πσ4ρ

)
(3ρ2 − 7σ2)3 .

No further information can be obtained from the NP Ricci equations, the

Bianchi equations, the commutator relations applied to any of the spin

coe�cients or from the directional derivatives of (4.53) or (4.46). The next

step in the integration is to introduce coordinates.
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We �rst look at the �rst Cartan equations:

dω1 = −
π
(
3ρ2 + σ2

)
3ρ2 − 7σ2

ω1 ∧ ω2 + (γ − γ − µ)ω1 ∧ ω3 + ρω1 ∧ ω4

−
µ
(
9ρ5 − 42ρ3σ2 + 49ρσ4

)
+ 3ππ

(
3ρ4 − 8ρ2σ2 + 5σ4

)
σ (3ρ2 − 7σ2)2 ω2 ∧ ω3

−
2π2ρ

(
9ρ2 + 7σ2

)
(3ρ2 − 7σ2)2 ω2 ∧ ω3 + σω2 ∧ ω4 − 8πσ2

3ρ2 − 7σ2
ω3 ∧ ω4,

dω2 =
π
(
3ρ2 + σ2

)
3ρ2 − 7σ2

ω1 ∧ ω2 + (γ − γ − µ)ω2 ∧ ω3 + ρω2 ∧ ω4

−
µ
(
9ρ5 − 42ρ3σ2 + 49σ4ρ

)
+ 3ππ

(
3ρ4 − 8ρ2σ2 + 5σ4

)
σ (3ρ2 − 7σ2)2 ω1 ∧ ω3

−
2π2ρ

(
9ρ2 + 7σ2

)
(3ρ2 − 7σ2)2 ω1 ∧ ω3 + σω1 ∧ ω4 +

8πσ2

3ρ2 − 7σ2
ω3 ∧ ω4,

dω3 = 0, (4.56)

dω4 = (µ− µ)ω1 ∧ ω2 − (γ + γ)ω3 ∧ ω4 +
6
(
ρ2 − σ2

)
3ρ2 − 7σ2

(
πω1 + πω2

)
∧ ω4

−

((
3ρ2 + σ2

)
(πρ+ σπ)µ

(3ρ2 − 7σ2)σ2
+

2ρ
(
27ρ4 − 42ρ2σ2 + 7σ4

)
π3

(3ρ2 − 7σ2)3 σ

)
ω1 ∧ ω3

−

(
π
(
27ρ6 − 54ρ4σ2 + 99ρ2σ4 + 8σ6

)
π2 + 27π2σρ

(
ρ2 − σ2

)2
π

(3ρ2 − 7σ2)3 σ2

)
ω1 ∧ ω3

−

((
3ρ2 + σ2

)
(πρ+ πσ)µ

(3ρ2 − 7σ2)σ2
+

2ρ
(
27ρ4 − 42ρ2σ2 + 7σ4

)
π3

(3ρ2 − 7σ2)3 σ

)
ω2 ∧ ω3

−

(
π
(
99ρ2σ4 + 8σ6 + 27ρ6 − 54ρ4σ2

)
π2 + 27π2ρσ

(
ρ2 − σ2

)2
π

(3ρ2 − 7σ2)3 σ2

)
ω2 ∧ ω3.

By (4.56), we have ω3 = du. Furthermore, we have proven that −ρ/σ
cannot be constant, and we will use this expression as coordinate r. From

dr = −d(ρ/σ) = −δ(ρ/σ)ω1 − δ(ρ/σ)ω2 −∆(ρ/σ)ω3 −D(ρ/σ)ω4,
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we have that

ω4 =

((
9πr4 − 18πr3 − 48πr2 + 10πr + π

)
π

(3r2 − 7)2 σ2
− rµ

σ

)
du

+
1

σ (r2 − 1)
dr − (3πr − π)

σ (3r2 − 7)
ω1 − (3πr − π)

σ (3r2 − 7)
ω2,

where ω1 and ω2 have the general form

ω1 = Pdx+Qdy + V du+Wdr,

ω2 = Pdx+Qdy + V du+Wdr.

In the above expressions P , Q, V andW are complex functions of (u, r, x, y).

It is obvious now that we can choose the coordinates x and y in such a way

that W is equal to zero. The derivative operators then become

δ =
(3πr − π)

(
r2 − 1

)
3r2 − 7

∂r +
Q

QP − PQ
∂x −

P

QP − PQ
∂y,

δ =
(3πr − π)

(
r2 − 1

)
3r2 − 7

∂r −
Q

QP − PQ
∂x +

P

QP − PQ
∂y,

∆ = ∂u +

(
rµ−

(
9πr4 − 18πr3 − 48πr2 + 10πr − π

)
π

σ (3r2 − 7)2

)(
r2 − 1

)
∂r

+
V Q−QV
QP −QP

∂x +
V P − V P
QP − PQ

∂y,

D = σ
(
r2 − 1

)
∂r.

We again proceed by examining the r-dependence of the spin coe�cients,

making use of their D-derivatives. From Dσ, for example, we �nd that

σ =
σ0

r2 − 1
,

where σ0 = σ0(u, x, y) is a real r-independent function. We then examine

the r-dependence of π, γ and µ, making use of the expressions for Dπ, Dγ

and Dµ. The linear di�erential equations so obtained lead to

π =
π0

(
3r2 − 7

)
r2 − 1

,

γ = γ0 +
2π0π0

σ0
log

(
r − 1

r + 1

)2

−
π0

(
9π0r

3 + 7π0r + 8π0

)
σ0 (r2 − 1)

,

µ =
µ0

r2 − 1
+

4π0π0

σ0 (r2 − 1)
log

(
r − 1

r + 1

)2

+
3π0r

(
3π0r

2 − 6π0r − 13π0

)
σ0 (r2 − 1)

,
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where π0 is a complex function of (u, x, y), which we will write as π1 + iπ2

(π1 and π2 are real functions), and where γ0 and µ0 can be determined from

(4.53) and (4.46), respectively. This leads to

γ0 = γ1 −
18iπ1π2

σ0
,

µ0 = µ1 +
20iπ1π2

σ0
.

The functions π1, π2, γ1 and µ1 are all real and r-independent. We now

know the r-dependence of all spin coe�cients. We will also determine the

r-dependence of the functions P , Q and V . First note that we can assume

Q to be not real as if it were real, then P must have a non-zero imaginary

part (else ωi, i = 1..4, is not a basis) and by a transformation x −→ x+f(y)

we can make the imaginary part of Q non-zero.

Applying the commutators [δ,D] and [δ,D] to x and to y, we �nd that P

and Q are of the form

P = p1 (r + 1) + ip2 (r − 1) ,

Q = q1 (r + 1) + iq2 (r − 1) ,

where p1, p2, q1 and q2 are real functions of (u, x, y), and where q2(u, x, y)

is de�nitely non-zero. Next, we apply [∆,D] to the coordinates x and y to

�nd an expression for V :

V = (r + 1)

[
v1 +

π1

σ0
log

(
r − 1

r + 1

)2
]

+ i (r − 1)

[
v2 −

π2

σ0
log

(
r − 1

r + 1

)2
]

+
4

σ0
(π1 − iπ2) ,

where we have again introduced two real r-independent functions v1 and v2.

It is obvious now, that a transformation of x can be used to make q1(u, x, y)

equal to zero while a transformation of y can be used to make p2(u, x, y)

equal to zero.

We proceed by looking at the remaining directional derivatives of the spin

coe�cients. From δσ we �nd the following expressions:

∂σ0

∂x
= −8π1σ0p1,

∂σ0

∂y
= 8π2σ0q2.
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These expressions, in combination with the information that can be ex-

tracted from δπ:

∂π1

∂x
= 4p1

(
2π2

2 − π2
1

)
,

∂π2

∂x
= −12p1π1π2, (4.57)

∂π2

∂y
= 4q2

(
π2

2 − 2π2
1

)
,

∂π1

∂y
= 12q2π1π2, (4.58)

lead to

∂π1

∂y
=

3

2

π1

σ0

∂σ0

∂y
,

∂π2

∂x
=

3

2

π2

σ0

∂σ0

∂x
.

We can solve the above equations to obtain solutions for π1 and π2:

π1 = π4(u, x)σ0(u, x, y)
3
2 ,

π2 = π3(u, y)σ0(u, x, y)
3
2 .

Note that π1 and π2 (and therefore π4 and π3) cannot be zero, as follows

from the set (4.57 − 4.58) and the fact that π is non-zero. We also �nd

expressions for p1(u, x, y) and q2(u, x, y):

p1(u, x, y) = −1

8

1

π4(u, x)σ0(u, x, y)5/2

∂σ0(u, x, y)

∂x
,

q2(u, x, y) =
1

8

1

π3(u, y)σ0(u, x, y)5/2

∂σ0(u, x, y)

∂y
,

where

∂σ0(u, x, y)

∂x
= − π4(u, x)σ0(u, x, y)

π4(u, x)2 + π3(u, y)2

∂π4(u, x)

∂x
,

∂σ0(u, x, y)

∂y
= − π3(u, y)σ0(u, x, y)

π4(u, x)2 + π3(u, y)2

∂π3(u, y)

∂y
.

Substitution of the above expressions for p1(u, x, y) and q2(u, x, y) in the

basis one forms shows that we can use −π4(u, x)/4 as coordinate x and

π3(u, y)/4 as coordinate y. From the partial di�erential equations for σ0 we

then see that

σ0(u, x, y) =
σ1(u)√
x2 + y2

.

We can use the remaining boost freedom to put σ1(u) equal to one.
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We then proceed by looking at δµ and δγ, which give us expressions for µ1

and γ1:

µ1(u, x, y) = m(u) +
x2

2 (x2 + y2)
,

γ1(u, x, y) = g(u)− 9

8

x2

x2 + y2
.

The only information still remaining, comes from the expressions for the

∆-derivatives of the spin coe�cients. From ∆σ and ∆π we �nd that

v1(u, x, y) =
x (1− 2m(u))

2 (x2 + y2)1/4
,

v2(u, x, y) = −y (1 +m(u))

(x2 + y2)1/4
,

g(u) =
11

16
+

1

2
m(u),

whereas ∆µ tells us that m(u) is a constant. We will write

m(u) =
1

4
(2c− 1) , c = constant.

The basis one forms now look like this:

ω1 = − 1

2 (x2 + y2)1/4

[
(r + 1) dx+ i (r − 1) dy

]
+

[
2 (iy(1− r)− x(1 + r)) (c− 2L) + x(3r − 1)− iy(3r + 1)

]
4 (x2 + y2)1/4

du,

ω3 = du,

ω4 =

[
x(r + 1)(1− 3r)dx+ y(r − 1)(1 + 3r)dy

]
4
√
x2 + y2

+
√
x2 + y2dr

+
1

4
√
x2 + y2

[(
(1− 4r − 3r2)x2 − (1 + 4r − 3r2)y2

)
(c− 2L)

+
(3r − 1)2x2 + (3r + 1)2y2

4

]
du,

where we have introduced 2L = log
(
r+1
r−1

)
. The corresponding line element
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is then given by

ds2 =
c− 2L

2
√
x2 + y2

[
2r(x2 + y2) + (c− 2L)

(
(r + 1)2x2 + (r − 1)2y2

)]
du2

−

[
2
√
x2 + y2dr − (r + 1)2x√

x2 + y2
(c− 2L) dx− (r − 1)2 y√

x2 + y2
(c− 2L)dy

]
du

+
1

2

(r + 1)2√
x2 + y2

dx2 +
1

2

(r − 1)2√
x2 + y2

dy2. (4.59)

4.4.1 Comparison with the original paper

In this section, we will compare the spherical metric (4.59) with the spherical

metrics in the original paper (Newman and Tamburino, 1962). First note

that no free functions appear in the solution (4.59), as was expected from

the GHP-analysis in section 4.2.2. Furthermore we see the presence of one

constant c, as is also the case in the original paper. More interesting is to

note that we have only one line element, and not two. This suggests that,

using the notation of the paper (Newman and Tamburino, 1962), the metric

for which A = B, where B is a constant can be found as a special case of

the metric for which A = B u.

Before presenting the relation between (4.59) and the metrics in the original

paper, we will �rst rewrite the latter. In the paper, the metric is presented

in the following way:

g12 = 1,

g22 =
2rL

A
− 2r2

√
ζζ

r2 − a2
+

2r2A
(
r
(
ζ2 + ζ

2
)
− 2A

(
ζζ
)3/2)

(r2 − a2)2 ,

g33 =
−2
(
ζζ
)3/2

(r + a)2 , g44 =
−2
(
ζζ
)3/2

(r − a)2 ,

g23 = 4A2x
(
ζζ
)3/2( L

2a3
− r − 2a

2a2 (r2 − a2)
− r − a

(r2 − a2)2

)
,

g24 = 4A2y
(
ζζ
)3/2( L

2a3
− r + 2a

2a2 (r2 − a2)
− r + a

(r2 − a2)2

)
,

where A is either constant or proportional to u (A ∈ {B,Bu}, where B is
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a real constant) and where

a = A

√
ζζ, ζ = x+ iy,

L =
1

2
log

(
r + a

r − a

)
.

First note that it is interesting to apply the coordinate transformation r →
ar. A set of one forms corresponding to this metric is then given by

ω1 =
1

2

A (r + 1)

(x2 + y2)1/4
dx+

i

2

A (r − 1)

(x2 + y2)1/4
dy,

ω2 =
1

2

A (r + 1)

(x2 + y2)1/4
dx− i

2

A (r − 1)

(x2 + y2)1/4
dy,

ω3 = du,

ω4 =

((
Ȧ+ L

)
r
√
x2 + y2 −

(
(r + 1)2x2 + (r − 1)2y2

)
L2√

x2 + y2

)
du

+
AxL (t+ 1)2√

x2 + y2
dx+

AyL (t− 1)2√
x2 + y2

dy +A
√
x2 + y2dr,

where ˙ denotes di�erentiation to u and where L is now given by

L =
1

2
log

(
r + 1

r − 1

)
.

If A is a constant we can apply the following coordinate transformation in

order to put A = B equal to one:

x −→ x/A2,

y −→ y/A2,

u −→ uA.

The line element for this family is then given by

ds2 =

(
2
(
(r + 1)2x2 + (r − 1)2y2

)
L2√

x2 + y2
− 2rL

√
x2 + y2

)
du2

− 2
√
x2 + y2drdu− 2xL(r + 1)2√

x2 + y2
dxdu− 2yL(r − 1)2√

x2 + y2
dydu

+
1

2

(r + 1)2√
x2 + y2

dx2 +
1

2

(r − 1)2√
x2 + y2

dy2. (4.60)
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If A is proportional to u we will apply a coordinate transformation

x −→ 64

xu2c2
,

y −→ 64

yu2c2
.

Next, we replace u by exp (−3u/64) and we substitute c = 3c/2. The

corresponding line element is then identical to (4.59).

The only question that remains is to �nd a relation between (4.60) and

(4.59). As the latter is the most general vacuum Newman Tamburino metric

belonging to the spherical class, the former should be a special case of (4.59).

Indeed, by putting c equal to zero in (4.59), we obtain (4.60).

4.5 Conclusion

In this chapter we have re-examined the Newman Tamburino empty space

metrics. It is shown here that the cylindrical metrics published by Newman

and Tamburino (1962) are incorrect, and that the correct version can be

simpli�ed considerably. By �rst making some calculations in the Geroch

Held Penrose formalism, we can �nd rotation and boost invariant informa-

tion concerning the Weyl tensor components. If we use the same �xation for

the null rotation in the Newman Penrose formalism, we are allowed to copy

this invariant information, helping us to �nd an integrable set of di�erential

equations rather quickly. Next, we introduce coordinates, which allow us to

integrate the system, resulting in an elegant form for the metric one forms.

We also compared our metrics and those of Newman and Tamburino. In

the cylindrical case, we were able to correct the mistakes which occur in the

original paper. Also we found a line element (4.39) which looks much nicer

than the (corrected version of) the original one. In the spherical case, we

were able to prove that the two distinct metrics which occur in (Newman

and Tamburino, 1962) are actually related to one another, in the sense

that the metric with A = B, B ∈ R, is a special case of the metric with

A = B u. The latter, which is equivalent to our solution (4.59) is the most

general vacuum Newman Tamburino metric for the spherical class.





Chapter 5

Aligned Petrov type D pure

radiation solutions of Kundt's

class

5.1 Introduction

As mentioned in the introduction, a space-time is said to belong to Kundt's

class if it admits a null congruence, generated by a vector �eld k̃, which

is non-diverging (i.e. which is both non-expanding and non-rotating and

therefore also geodesic). In the case of a pure radiation �eld, which, by

de�nition, has an energy momentum tensor of the form Tab = φkakb, with

kak
a = 0, φ 6= 0, one can furthermore show (Stephani et al., 2003), making

use of the null energy condition Rabkakb ≥ 0 and the Raychaudhuri equation

Θ,ak̃
a − ω2 + Θ2 + σσ = −1

2
Rabk̃

ak̃b,

that k and k̃ are aligned and that the associated null congruence is shear-

free:

Rabk̃
ak̃b = −2σσ ⇒σ = 0 and Rabk̃

ak̃b = 0,

Rab = φkakb + Λgab ⇒ k ∝ k̃,

where Λ is the cosmological constant. The Goldberg Sachs theorem implies

then that the Kundt space-times must be algebraically special (type II, D,

112
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III or N or conformally �at) and that k̃ is aligned with a repeated principal

null direction of the Weyl tensor.

Conversely, for aligned Petrov type D pure radiation �elds, it follows imme-

diately from the Bianchi equations (without invoking the energy conditions)

and from

Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0, Ψ2 6= 0, (5.1)

Φ00 = Φ11 = Φ01 = Φ12 = Φ02 = 0, Φ22 6= 0, (5.2)

that

κ = σ = λ = 0, (5.3)

such that the principal null direction k aligned with the radiative vector

is geodesic and shear-free, i.e. the converse part of the Goldberg Sachs

theorem is generalised to this situation. Moreover, it is known that aligned

Petrov type D pure radiation �elds cannot be of Maxwell type (Debever

et al., 1989) nor of neutrino or scalar �eld type (Wils and Van den Bergh,

1990), while Wils (1990) showed that k is necessarily non-twisting (ρ = ρ).

The diverging solutions (ρ 6= 0) then belong to the Robinson Trautman class

and are all explicitly known (see chapter 2 and Stephani et al., 2003). In

this chapter we present the non-diverging case ρ = 0, for which only a few

type D examples have appeared in the literature (Wils and Van den Bergh,

1990). In De Groote et al. (2010) we presented an exhaustive list of the

solutions belonging to the latter class, thus solving completely the problem

of aligned Petrov type D pure radiation �elds. This work extends in a

natural way the complete classi�cations of pure radiation �elds of Petrov

type 0 and N (Edgar and Machado Ramos, 2005, 2007; Edgar and Ramos,

2007; Podolsky and Prikryl, 2009).

As shown by Kundt (1961) the line elements admitting a geodesic, shear-free

and non-diverging null congruence can all be expressed in the form:

ds2 = 2P−2dζdζ − 2du(dr +Hdu+Wdζ +Wdζ), (5.4)

in which P is a real function of (ζ, ζ, u) and H,W are respectively real and

complex functions of (ζ, ζ, u, r), to be determined by appropriate �eld equa-

tions. The vacuum solutions of this type have been known for a very long
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time (Kinnersley, 1969). A procedure (based on Theorem 31.1 in Stephani

et al. (2003)) is also available allowing one to generate non-vacuum solu-

tions of Kundt's class, from vacuum solutions. However, in this way the

Petrov type of the metric generally will be changed from D to II. Insisting

that the Petrov type remains the same, constrains the function H0 of the

`background metric' and it was not certain whether all pure radiation solu-

tions could be generated in this way. This technique was used in Wils and

Van den Bergh (1990), where the authors managed to construct a family of

type D pure radiation �elds and where they conjectured that these solutions

were the only aligned type D pure radiation �elds of Kundt's class. Below

we show that the solutions obtained in Wils and Van den Bergh (1990) only

cover a small part of the entire family, which is presented in this chapter.

The most obvious way to construct type D pure radiation �elds of Kundt's

class, is to start from the general Kundt metric (5.4), express the condition

that the solutions one is looking for are of Petrov type D, and to make

sure that the �eld equations for pure radiation are satis�ed. This however

introduces a hard to solve system of non-linear conditions. In section 5.2 we

derive a classi�cation theorem within the GHP-formalism, the use of which

makes the proof geometrically more clear and much more compact. For the

integration in section 5.3 we switch to the NP-formalism.

5.2 Geroch Held Penrose analysis

Introducing the set of conditions (5.1 − 5.3) and the non-diverging condi-

tion ρ = 0 within the GHP Bianchi equations, one arrives at

ÞΨ2 = 0,

ðΨ2 = 3τΨ2,

ð′Ψ2 = −3πΨ2,

Þ′Ψ2 = −3µΨ2,

ÞΦ22 = 0,

ðΦ22 = 3νΨ2 + τΦ22, (5.5)

ð′Φ22 = 3νΨ2 + τΦ22.

The GHP Ricci equations then reduce to
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Þτ = 0,

ðτ = τ2,

ð′τ = ττ + Ψ2 +
Λ

3
,

ð′µ = (µ− µ)π,

ð′ν = (τ − π)ν, (5.6)

ð′π = −π2

and

Þν = Þ′π + (τ + π)µ,

Þ′µ = ðν − µ2 + νπ − ντ − Φ22, (5.7)

Þµ = ðπ + ππ + Ψ2 +
Λ

3
.

The remaining basic variables at this stage are µ, ν, π, τ,Ψ2 and their com-

plex conjugates, together with Φ22. From the integrability conditions for

Ψ2 one obtains:

Þν = 0,

Þµ = ππ − ττ ,

ðµ = −Þ′τ,

Þπ = 0,

ðπ = −(ττ + Ψ2 +
Λ

3
), (5.8)

Þ′π = −(τ + π)µ.

[ð′,Þ]µ now yields the algebraic equation(
2ττ + Ψ2 +

Λ

3

)
π +

(
2ττ + Ψ2 +

Λ

3

)
τ = 0. (5.9)

From [ð, ð′]µ we can extract an expression for ð′Þ′τ :

ð′Þ′τ =

(
Ψ2 − 2Ψ2 − 2ττ − Λ

3

)
µ+

(
Ψ2 + 2ττ +

Λ

3

)
µ− πÞ′τ,

after which evaluation of [ð, ð′]Þ′τ , using [Þ′,Þ]τ , [ð,Þ′]τ and (5.9), leads

to

Þ′τ = µτ − µπ − 2µτ.

Herewith [Þ′, ð]π yields a second algebraic equation

µQ = 0, Q = 6(τπ + τπ) + 3(ττ + ππ)− Λ + 3(Ψ2 + Ψ2). (5.10)

From ð(5.9)− 2τ(5.9) one readily infers

ππ = ττ .
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In the case where π = τ = 0, ðπ = 0 and Þ′ðπ = 0 yield

Ψ2 = −Λ

3
, µ = 0 (5.11)

and all the above equations are identically satis�ed.

When πτ 6= 0 we introduce the zero-weighted quantities

A ≡ |ππ|1/2 = |ττ |1/2 (A = A > 0),

T ≡ π

τ
=
τ

π

(
T = T−1

)
.

In this way π and τ are conveniently parametrised by

π =
A

B
, τ = ATB,

the weight of both being absorbed in the (1,-1)-weighted quantity

B ≡
(
π

π

)1/2

=
(τ
τ

)1/2
(B = B−1).

Herewith equations (5.9) and (5.10) translate into

(T + 1)(2A2 + Λ/3) + Ψ2 + TΨ2 = 0, (5.12)

µQ = 0, Q ≡ 2(T 2 + T + 1)A2 + T (Ψ2 + Ψ2 − Λ/3), (5.13)

respectively. De�ning the (-2,-2)-weighted quantities X ≡ ðν, N ≡ Bν and

the zero-weighted derivative operators D ≡ B−1ð, D′ ≡ B ð′, one deduces
from (5.5 − 5.7), [Þ′,ð]µ and [ð,ð′]ν the following autonomous �rst-order

system for the zero-weighted �elds Ψ2, Ψ2, T, A and the (-2,-2)-weighted

�elds X, X, N, N, Φ22:

DΨ2 = 3ATΨ2, DΨ2 = −3AΨ2, (5.14)

DT = AT (T + 1), DA = −A2 − 3Ψ2 + Λ

6
, (5.15)

DX = A(4T + 1)X −ATX − 2A2T (T + 1)N + 2A2(T + 2)NA2

+ (3Ψ2 + Ψ2 + Λ/3)N −A(T + 1)Φ22, (5.16)

DX = A(T − 1)X + (4Ψ2 + Λ/3 + 2A2)N, (5.17)

DN = X +
(3Ψ2 + Λ)

6A
N, DN =

(
A(T − 1)

T
− 3Ψ2 + Λ

6A

)
N,

(5.18)

DΦ22 = ATΦ22 + 3Ψ2N. (5.19)



Chapter 5. Aligned type D pure rad. Kundt metrics 117

For later use, one immediately observes from (5.15) that T constant implies

T = −1. Also notice that (5.14 − 5.15) forms a zero-weighted subsystem,

whereas the equations (5.16 − 5.19) are (-2,-2)-weighted, such that their

right hand sides are necessarily linear and homogeneous in X,X,N,N,Φ22.

The complex conjugates of (5.14 − 5.19) yield an analogous D′-system.

However, as deduced from [ð, ð′]Φ22, both systems are constrained by

3T (Ψ2X −Ψ2X) + 6A(T 2Ψ2N −Ψ2N) + T (Ψ2 −Ψ2)Φ22 = 0, (5.20)

which is again linear and homogeneous in X,X,N,N,Φ22.

We are now ready to prove:

Theorem With respect to a Weyl canonical tetrad (5.1 − 5.2) any aligned

Petrov type D pure radiation �eld, for which the principal null direction,

aligned with the radiative direction is non-diverging, satis�es the following

boost and rotation invariant properties:

κ = σ = ρ = 0, λ = µ = 0, ν 6= 0, (5.21)

π + τ = 0, Ψ2 = Ψ2, πΦ22 + ν

(
Ψ2 +

Λ

3

)
= 0. (5.22)

Proof It immediately follows from (5.7) that µ = ν = 0 is inconsistent

with Φ22 6= 0, and from (5.9) that π + τ = 0 implies Ψ2 to be real. By

(5.11) the theorem is true in the case where π = τ = 0, and it remains to

establish µ = 0 and π = −τ (T = −1 in the above notation) when πτ 6= 0.

Referring to (5.13), we �rst treat the case Q = 0. Two linear and homo-

geneous systems in X,X,N,N and Φ22 are obtained from [(5.20), D(5.20),
D′(5.20), DD′(5.20)] and DD(5.20), respectively D′D′(5.20). As Φ22 6= 0,

the determinants of these systems must vanish. This yields two polyno-

mial relations in A2, Λ,Ψ2, Ψ2 and T . Eliminating A2 and Λ by means of

(5.12) and Q = 0, and appropriately scaling the results with Ψ2, yields two

polynomial relations in the zero-order variables T and k ≡ Ψ2/Ψ2 of the

form (T + 1)3T 7Pi(T, k) = 0, i = 1, 2, where P1 and P2 are irreducible and

non-proportional. Calculating the resultant of P1 and P2 with respect to

k, necessarily yields a non-trivial polynomial relation P (T ) = 0. Thus T is

constant, whence T = −1 and Ψ2 = Ψ2. Substituting this into Q = 0 yields

ππ −Ψ2 + Λ/6 = 0, and calculating the Þ′-derivative hereof gives µ = 0.
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Thus µ = 0 in any case, and (5.7) implies

ð′ν = ðν = −πν−πν+Φ22, i.e., X = X = −A(N−TN)+Φ22. (5.23)

Three linear and homogeneous systems in N , N and Φ22 can now be ob-

tained, by substituting the above expressions in [(5.20),D(5.20),D′(5.20)],
[(5.20),D(5.20),DD(5.20)] and [(5.20),D′(5.20),D′D′(5.20)]. Eliminating A2

and Λ from the three determinants and (5.12) leads to two polynomial rela-

tions in T and k with (T + 1)3 as the only common factor, such that again

T = −1 and Ψ2 = Ψ2. Inserting this and (5.23) into (5.20) implies N = N

(i.e., ν/π is real), a �nal D-derivative of which yields

AΦ22 = N(Ψ2 + Λ/3),

the translation of the last equation of (5.22). �

One checks that, given the speci�cations (5.1 − 5.2) and (5.21 − 5.22), the

remaining GHP-equations are consistent, so that corresponding solutions

exist. Referring to (5.13) and the above proof, we �nally remark that all

derivatives of QΨ
−2/3
2 are zero, so that one has the following important

relation:

ππ = Ψ2 −
Λ

6
+ c1Ψ

2/3
2 , c1 constant. (5.24)

Because of (5.11), this only yields new information when π 6= 0; the case

c1 = 0 ⇔ Q = 0 will be distinguished from c1 6= 0 for the corresponding

integration in § 5.3.2.

5.3 Newman Penrose analysis

In order to construct the metrics, we now switch to the NP-formalism, where

we �rst introduce the invariant information, as obtained above:



Chapter 5. Aligned type D pure rad. Kundt metrics 119

Ψ2 6= 0,

Φ2,2 6= 0,

Ψ2 = Ψ2,

κ = σ = λ = 0,

ν 6= 0,

Ψi = 0, i 6= 2,

Φi,j = 0, [i, j] 6= [2, 2],

Φ2,2 π + ν

(
Ψ2 +

Λ

3

)
= 0,

ρ = µ = 0,

π = −τ .

As ν is non-zero, we can eliminate the rotational degree of freedom of the

null tetrad, by putting ν = ν. From (5.22) it follows that also π (and thus

τ) is real. A boost allows one to put β = −(α− τ), �xing the tetrad up to

boosts satisfying δA = δA = 0.

From Newman-Penrose equations (1.27) and (1.33), we get

Dτ = −τ(ε− ε),

Dν = −∆τ − τ(γ − γ)− ν(3ε+ ε),

showing ε is real and τ(γ− γ) = 0. (1.28) and (1.29) then yield expressions

for Dα and δε:

Dα = 0,

δε = 2ετ,

from which we see one can boost such that ε = 0. Notice that boosts

satisfying DA = δA = δA = 0 are still allowed.

The solutions can now be subdivided into two families: one in which τ = 0

and one in which τ 6= 0. We also introduce γ0 and γ1/ν, the real and

imaginary part of γ respectively.

5.3.1 The family τ = 0

In the case τ = −π = 0 equation (5.8) shows Ψ2 = −Λ
3 6= 0. The NP Ricci

equations can then be rewritten in the form:

Φ22 = −4αν, (5.25)
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Dν = 0, δα+ δα = 4α2 +
Λ

2
, (5.26)

Dα = 0, ν∆α− iδγ1 = 0, (5.27)

Dγ1 = 0, Dγ0 = −Λ

2
, (5.28)

δν = −2αν, δν = −2αν, (5.29)

δγ0 = 0.

The Bianchi equations now yield an expression for δα (under which (5.26)

becomes an identity):

δα = 2α2 +
Λ

4
.

From the last equation and Λ 6= 0 it follows that α 6= 0. Hence, by (5.25)

and (5.29) ν cannot be constant and this allows one to use ν as a coordinate.

As is clear from (5.28), γ0 provides a second independent function and hence

can be used to de�ne a coordinate r = −2γ0/Λ. As δγ0 = 0 it follows that

ω4 = dr + Hω3 (H = −∆r, ωi representing the basis one forms). From

(5.29) we see that we can write ω1 + ω2 = (νY ω3 − dν)/(2αν), where

Y = ∆ν/ν. The Cartan equations read

dω1 = 2αω1 ∧ ω2 + 2iγ1/ν ω
1 ∧ ω3, (5.30)

dω3 = 0,

dω4 = ν(ω1 + ω2) ∧ ω3 + rΛω3 ∧ ω4,

showing that a function u exists, such that ω3 = du. A fourth coordinate x

is de�ned by writing ω1 −ω2 = iNdν + 4iν(Udu+Xdx), with, because of

(5.30), N,U,X real functions depending on (u, x, ν), only. This allows one

to put N = 0 and we obtain the following structure for the basis one forms:

ω1 =
1

4α

(
Y du− dν

ν

)
+ 2iν(Udu+Xdx), (5.31)

ω3 = du,

ω4 = dr +Hdu,

where H is a real function of (u, r, ν, x). The corresponding directional
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derivatives are then given by:

δ = −2αν∂ν −
i

4νX
∂x,

∆ = ∂u −H∂r + νY ∂ν −
U

X
∂x,

D = ∂r.

Notice that, because of the remaining boost freedom A = A(u), r is �xed

only up to transformations of the form r → A−1(u)r +B(u).

From the directional derivatives of α it follows that α can be written in the

form

α =
±
√
−2Λν2 + sm(u)2

4ν
, s = ±1. (5.32)

Applying [∆,D] and [δ,∆] to r, we obtain H = −Λr2/2 + 4αν/Λ + n(u),

while [δ, δ]x and [δ,∆]x show that

X = X(u, x),

∂U

∂x
=
∂X

∂u
+ Y X (5.33)

and
∂U

∂ν
= − γ1

4αν3
. (5.34)

From (5.27) and Dγ1 = 0 we see that γ1 = γ1(u, x) and

dm2

du
= 2Y m2 − 8α

sX

∂γ1

∂x
. (5.35)

Hence evaluation of [δ,∆]ν implies

∂Y

∂x
= −16γ1αX (5.36)

and
∂Y

∂ν
= −∂γ1/∂x

4αν3X
. (5.37)

We now distinguish two subclasses, corresponding to m = 0, respectively

m 6= 0.
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The class m(u) = 0

Notice from (5.32) that this case is only consistent for Λ < 0, where we

put α0 = α = ±
√
−2Λ/4 for convenience. Equations (5.35) and (5.37)

are equivalent to γ1 = γ1(u) and Y = Y (u, x). At this stage we make a

distinction between the subcases γ1 = 0 and γ1 6= 0.

If γ1 = 0, then (5.34) and (5.31) imply that a transformation of x exists

which makes U = 0. The remaining equations (5.33) and (5.36) combine

to 1
X
∂X
∂u = −Y (u), such that X(u, x) = f(x)/b(u), where we can put f(x)

equal to one by a further transformation of x. Using ν = y2b(u) as a

coordinate, together with the coordinate transformation

r −→ r̃ p(ũ) +
1

Λp(ũ)

dp(ũ)

dũ
,

x −→ x̃

2
,

where p(ũ) is a function of ũ de�ned by

2 p
d2p

dũ2
− 3

(
dp

dũ

)2

+ 2nΛ p2 = 0,

and replacing

dũ −→ 1

p(ù)
dù,

we are able to eliminate the function n(u). Absorbing a factor ±p(ù)−2

in b(ù) and dropping the tildes and dashes, we obtain the following line

element for this class1:

ds2 =

(
−Λr2 +

2
√
−2Λ b y2

Λ

)
du2 + 2drdu− 2y4dx2 +

4

Λy2
dy2. (5.38)

The only free function in this metric is b(u).

If γ1 6= 0, we can use Y as coordinate x (as [δ,∆]ν and [δ,∆]ν show that

(δ − δ)∆ν 6= 0, it follows that ν, u and Y are functionally independent).

From (5.36) we get X(u, x) = −1/(16γ1α0), after which (5.33) and (5.34)

yield

U(u, ν, x) = ± γ1

2
√
−2Λν2

− x2

8γ1

√
−2Λ

+
x

4γ2
1

√
−2Λ

dγ1

du
+ q,

1There was an error in this line element in (De Groote et al., 2010)
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with q(u) an arbitrary function of u. Applying the following coordinate

transformations

ν −→ y2

p2
,

x −→ 2
√
−2Λx̃γ1p

2 − 2

p2

dp

dũ
,

r −→ 1

p
r̃ − 1

Λp2

dp

dũ
,

du −→ p dũ,

with p a function of ũ de�ned by

n = 4
qg

p3
√
−2Λ

− 3

2p4Λ

(
dp

dũ

)2

+
1

p3Λg

dg

dũ

dp

dũ
,

and where we have put γ1(u) = g(ũ)/p(ũ)3, we are able to eliminate the

function n(u). Introducing b(ũ), de�ned by

q =

√
−2Λ

4
bpg +

1

2
√
−2Λg2

dp

dũ

dg

dũ
− 1

2
√
−2Λg

d2p

dũ2
,

and dropping the tildes then leads to the line element:

ds2 =

[
−Λr2 +

(
1

Λy4
− 4x2 + Λy4(b(u)− 2x2)2

)
g(u)2 − 4y2

√
−2Λ

]
du2

+ 2

[
dr +

8g(u)xdy

y
√
−2Λ

+

(√
−2Λ(b(u)− 2x2)y4 +

2√
−2Λ

)
g(u)dx

]
du

+
4dy2

y2Λ
− 2y4dx2, (5.39)

where [b(u), g(u)] is a pair of distinguishing free functions (meaning that two

metrics of this class, described by pairs [b1(u), g1(u)] 6= [b2(u), g2(u)], are

necessarily di�erent). The fact that we �nd two distinguishing free functions

could be predicted from the GHP-analysis: in the case where m(u) = 0, we

�nd from (5.25) and α = ±
√
−2Λ/4, that Φ22 = ∓

√
−2Λν. To obtain a

well-weighted expression in GHP, we should write Φ2
22 = −2Λνν. The only

unknown function in GHP is then Þ′ν. As the latter is complex, we can

construct from it two zero-weighted quantities of which not all directional

derivatives are known.
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The class m(u) 6= 0

The general solution of (5.34) is now

U =
4αγ1

sm2
+B(u, x).

As in the case m = γ1 = 0 one can make B(u, x) = 0 by rede�nition of x.

Hence equations (5.33) and (5.35) can be solved to give

X =
X1(x)

m(u)
, Y =

1

m

(
dm

du
+

4α

sX1

∂γ1

∂x

)
.

Equation (5.37) is now identically satis�ed. Applying the coordinate trans-

formation x → x̃, with dx̃
dx = 2X1, the only remaining equation (5.36)

becomes
∂2γ1

∂x̃2
+ sγ1 = 0.

The general solution of this equation is γ1 = f(u)

2
√

2
cos[(x̃ + q(u))] for s = 1

and γ1 = f(u)

2
√

2
cosh[(x̃ + q(u))] for s = −1. One can now show that a

coordinate transformation of the form

ν −→ ± ym√
2
,

r −→ r̃ p+
1

Λ

dp

dũ
,

du −→ dũ

p
,

where p is a function of ũ de�ned by

n =
1

2Λ

(
dp

dũ

)2

− p

Λ

d2p

dũ2
,

in combination with an appropriate boost to make f = mp and rede�nition

of m = ±m̃ p2, allows one to write the line element in the form

ds2 =

[
−Λr2 − (s− y2Λ)g2 +

2m

Λ

√
s− y2Λ−

(
∂g

∂x

)2
]

du2

+ 2

[
dr − s y

√
s− y2Λ gdx+

s√
s− y2Λ

∂g

∂x
dy

]
du

− y2dx2 − 1

s− y2Λ
dy2, (5.40)

where g(u, x) = cos (x+ q(u)) for s = 1 and g(u, x) = cosh (x+ q(u)) for

s = −1 and where [m(u), q(u)] is a couple of distinguishing free functions.
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5.3.2 The family τ 6= 0

In this case (5.22) yields

Φ22 =
ν(Ψ2 + Λ/3)

τ
.

As we have shown above τ(γ − γ) = 0, so γ is now real. The Bianchi

equations can be written as follows:

δΨ2 = 3τΨ2,

δΨ2 = 3τΨ2,

∆Ψ2 = 0,

DΨ2 = 0,

δτ =
τ(δν + ντ)

ν
,

δτ =
τ(δν + ντ)

ν
,

∆τ = 0,

while the NP Ricci equations yield an expression for α:

α = −3Ψ2 + Λ− 6τ2

12τ
,

and expressions for some of the directional derivatives of ν and γ:

δν =
ν(3Ψ2 + Λ)

6τ
,

δν =
ν(3Ψ2 + Λ)

6τ
,

δγ = 0,

δγ = 0,

Dγ = −c1Ψ
2/3
2 .

We thus have the total derivatives:

dγ = ∆γ ω3 − c1Ψ
2/3
2 ω4,

dν =
ν(3Ψ2 + Λ)

6τ
(ω1 + ω2) + ∆νω3,

dτ = (τ2 +
Ψ2

2
+

Λ

6
) (ω1 + ω2),

dΨ2 = 3 τ Ψ2 (ω1 + ω2).

We can use τ (or Ψ2) as a coordinate, but for the moment we write τ = τ(x),

Ψ2 = Ψ2(x) and de�ne a function S(x) such that

dΨ2

dx
= 6SτΨ2, (5.41)

or, equivalently,
dτ

dx
=

1

3
S(6τ2 + 3Ψ2 + Λ).
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The �rst Cartan equations read

dω1 = −3Ψ2 + Λ

6τ
ω1 ∧ ω2,

dω3 = 0,

dω4 = ν(ω1 + ω2) ∧ ω3 − 2γ ω3 ∧ ω4 − 2τ (ω1 + ω2) ∧ ω4.

These equations, together with the directional derivatives of τ , show that

we can write the basis one forms as:

ω1 = Sdx+ i(Udu+Xdx+ fdy),

ω3 = du,

ω4 = dr +Hdu+ Fdx+Gdy,

where f, F,G,H,U and X are real functions of (u, r, x, y). The correspond-

ing directional derivatives are given by

δ =
1

2Sf
((XG− fF + iSG)∂r + f∂x − (X + iS)∂y) ,

∆ =
1

f
(f∂u + (UG− fH)∂r − U∂y) ,

D = ∂r.

Applying [∆,D] and [δ,D] to y shows that f , U and X are independent

of r, so a transformation of y exists making U = 0. From [δ,∆]y it then

follows that f and X are independent of u so a coordinate transforma-

tion exists, allowing one to put X = 0. Next [δ, δ]y, (5.24) and (5.41)

imply that f = −τΨ
−1/3
2 . From the directional derivatives of γ, we get

γ = −c1Ψ
2/3
2 r + γ′(u, x, y), F (u, r, x, y) = 4τ(x)rS(x) + F1(u, x, y) and

G(u, r, x, y) = G1(u, x, y), with F1 and G1 de�ned by

F1 = − 1

c1Ψ
2/3
2

∂γ′

∂x
,

G1 = − 1

c1Ψ
2/3
2

∂γ′

∂y
.

Notice also that, in case c1 = 0, γ′ is a function of u only, such that we can

use the remaining boost freedom to put γ′ equal to zero. This allows us to

write γ′ = c2
1b.
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The directional derivatives of ν, together with (5.41), lead to an expression

for ν:

ν = − n(u)

τ(x)Ψ
1/3
2 (x)

,

and from [∆,D]r, [δ,∆]r and [δ, δ]r we �nd an expression for H:

H =
1

Ψ
2/3
2

[
c1

(
−r2Ψ

4/3
2 + 2rc1bΨ

2/3
2 − c2

1b
2 − ∂b

∂u

)
+
(
m− nΨ

1/3
2

)]
,

where m(u), n(u) and b(u, x, y) are real functions.

If we use Ψ2 as coordinate x, we �nd expressions for S and τ :

S =
1

6τx
,

τ = ±
√
x− Λ

6
+ c1x2/3.

Performing a translation r → (r+ q(u) + c1b(u, x, y))/x2/3, where dq/du =

−m, the line element for this family is given by

ds2 = − 2

x2/3

(
c1(r + q(u))2 + n(u)x1/3

)
du2 +

2

x2/3
drdu

− 1

3x2
(
6x− Λ + 6c1x2/3

)dx2 − 6x− Λ + 6c1x
2/3

3x2/3
dy2. (5.42)

(Notice that the sign of τ has no in�uence on the metric).

This metric contains only one arbitrary function of u, namely n(u) if c1 = 0

(as q does not appear in the line element then) and q(u) if c1 6= 0 (as one

can then �x the boost such that n = 1). Alternatively, for c1 6= 0, one

could use a transformation r → r̃g(u) + f(u) followed by du = g(u)−1dũ,

where we choose the functions f and g such that f(ũ) = −q(ũ) + ġ(ũ)
2c1

and
¨g(˜)u = ġ(ũ)2

2g(ũ) +2c1q̇(ũ). This also eliminates q(u) from the system and as we

then obtain exactly the same line element as before, but with q(u) = 0, this

shows we can always put q(u) = 0, leaving n(u) as the only free function.

The fact that we �nd only one free function in this case could again be easily

predicted from the GHP-analysis: the only unknown is now Þ′ν, which is

real, as can be deduced from τν − τν = 0 and Þ′τ = 0 (τ 6= 0).
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5.4 Classi�cation of the Kundt metrics

In this section we present the classi�cation of the Kundt metrics. For each

metric, and for some special cases where speci�c choices for the free func-

tions are made, we give the number of isometries and the components of

the Weyl and Ricci tensor. To obtain a valid classi�cation of each of the

metrics, it is necessary to (null-) rotate and boost the tetrad, such that it

is in a `standard tetrad form' for CLASSI. We will give an explicit example

for one of the Kundt metrics (5.38), without its special cases (see below).

The other input �les can be found in the appendix.

5.4.1 Classi�cation of metric 5.38

In order to obtain a standard CLASSI tetrad for metric 5.38, it is necessary

to apply following dyad transformations:

� boost with parameter A = (−bLy2)1/4,

� rotation with parameter θ = π/4.

Also we have replaced the function b(u) by −b(u) to make the value of

Φ22, returned by CLASSI, positive, and we use L =
√
−2Λ to simplify the

calculations. The non-zero components of the Weyl and Ricci tensor are

then given by Ψ2 = L2/6 = −Λ/3 and Φ22 = 1. This metric generally has

three functionally independent elements:

f1 = <DΦ33 = −r L
√
L

y
√
b
− ḃ

y
√
b L b

,

f2 = <D2Φ44 = 1− 5

12

L3r2

by2
− 5

6

Lrḃ

b2y2
− 1

3

b̈

b2Ly2
,

f3 = <D3Φ55 =
L
√
Lr

y
√
b
− 15

104

L4
√
Lr3

y3b
√
b

+
ḃ

yb
√
bL
− 45

104

L2
√
Lr2ḃ

y3b2
√
b

− 9

26

√
Lrb̈

y3b2
√
b
− 1

13

˙̈
b

y3b2L
√
bL
.

As the function b(u) appears in those elements explicitly, no coordinate or

tetrad transformation exists eliminating this function from the metric. The



Chapter 5. Aligned type D pure rad. Kundt metrics 129

metric is of Petrov type D and of Segre type A3 [(11, 2)], pure radiation

(including electromagnetic null). The remaining isotropy group is zero-

dimensional. The classisum result reads r1D 1 0 s0000123.

The general input in CLASSI looks like this:

Input Comment

(PRELOAD DYTRSP)

(TITLE "KUNDT5.38.SPI") Name of the metric

(OFF ALL) (ON NOZERO PSUBS)

(NAMLC U R X Y)

(VARS U R X Y) The variables (u, r, x, y)

(FUNS (B U) (L)) b is in general a function of u,

L is a constant

(RPL IZUD) Input of the metric one forms

1 $ 0 $ 0 $ 0 $

L�2/4*R�2+2*B*Y�2/L $ 1 $ 0 $ 0 $

0 $ 0 $ Y�2*I $ -2/Y/L $

0 $ 0 $ -Y�2*I $ -2/Y/L $

(NULLT IFRAME) Null tetrad

(RPL DYTR1) A �rst dyad transformation

0 $ I $

I $ 0 $

(RPL DYTR2) A second one (boost)

(-B*L*Y�2)�(1/4) $ 0 $

0 $ (-B*L*Y�2)�(-1/4) $

(RPL DYTR3) And a third (spatial rotation)

sqrt(2)/2*(1+I) $ 0 $

0 $ sqrt(2)/2*(1-I) $

During the classi�cation of the metric, CLASSI asks to verify whether or

not some expressions can be equal to zero. If so, we obtain special cases.
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If b(u) is a non-zero constant, only one functionally independent quantity

survives:

f1 = <DΦ33 =
rL
√
L

y
√
b
,

and the corresponding classisum result reads r1D 3 0 s0000111.

Putting the function b(u) equal to zero, all functionally independent quan-

tities disappear, as this corresponds to a (Bertotti) vacuum �eld (all Φij-

components are equal to zero). The fact that the metric no longer presents a

pure radiation �eld can be easily predicted: the function b(u) is proportional

to the (non-zero) spin coe�cient ν. The Segre type is nowA1 [(111, 1)], with

Λ-term and the remaining isotropy group consists of boosts and rotations

(two-dimensional). This leads to the classisum result 01D 6 2 eeee0000.

5.4.2 Classi�cation of metric 5.39

To obtain a standard tetrad, one now has to

� boost with parameter A = (−Ly2)1/4,

� rotate with parameter θ = π/4,

where we have again replaced
√
−2Λ by L in order to simplify the calcu-

lations. We �nd the same expressions for the components of the Weyl and

Ricci tensor, as in the previous case:

Ψ2 =
L2

6
,

Φ22 = 1.

The metric is of Petrov type D, Segre type A3 [(11, 2)], pure radiation

(including electromagnetic null). The independent quantities are now given

by

f1 = <DΦ33 =
g x
√
L

y
− 1

2

r L
√
L

y
,

f2 = =D2Ψ52 =
g
√
L

y3
,

f3 = <D2Φ44 =
g2Lx2

y2
+

g2

Ly6
− 5

2

gL2rx

y2
+

5

8

L3r2

y2
− xġ

y2
− 3

2
,

f4 = =D3Ψ63 =
g2Lx

y4
− 5

4

gL2r

y4
− 1

2

ġ

y4
.
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The classisum result for this metric is r1D 0 0 s0000134. The isotropy

group is zero-dimensional.

It is a bit surprising that b(u) does not appear in the free functions, giving

the impression that a transformation should exist, which eliminates this

function from the line element. However, as we have explained in section

5.3.1, we do expect two distinguishing free functions in the metric. Indeed,

as will be shown in the appendix, b(u) will appear in the free functions

for some special cases. The fact that it is not present in the free elements

for the general case is probably due to the fact that CLASSI also counts

(relations between) coordinates as independent quantities.

5.4.3 Classi�cation of metric 5.40

The necessary transformation to obtain a CLASSI standard tetrad is a boost

with parameter

A =

(
m

√
L2y2

2
+ s

)1/4

.

In this choice of tetrad the components of the Weyl and Ricci tensor are

given by

Ψ2 =
L2

6
,

Φ22 = 1,

where again, we have replaced Λ by −L2/2.

The metric is of Petrov type D and of Segre type A3 [(11, 2)], pure radiation

(including electromagnetic null). For both cases, s = +1 and s = −1, the

functionally independent elements are given by <DΨ41, <DΦ33, <D2Ψ52
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and =D2Ψ52. The explicit forms of these elements are given below:

f1 = <DΨ41 =
L2y√
L2y2

2 + s
,

f2 = <DΦ33 =

√
m

m
(
L2y2

2 + s
)1/4

L2r +
1

m

dm

du
−
L2y

√
s(1−H2)

2
(
L2y2

2 + s
)
 ,

f3 = <D2Ψ52 =
L2y
√
m(

L2y2

2 + s
)3/4

L2r

m
+

1

m2

dm

du
−

√
(1−H2)

(
sL2y2

2 + 1
)

ym

 ,

f4 = =D2Ψ52 =
HL2√m

m
(
L2y2

2 + s
)3/4

,

where H = cos(x+q(u)) or cosh(x+q(u)) and L =
√
−2Λ. The correspond-

ing classisum result for these metrics is r1D 0 0 s0000244. The remaining

isotropy group is zero-dimensional.

5.4.4 Classi�cation of metric 5.42

We will now classify metric 5.42, where π 6= 0. To obtain a standard

CLASSI tetrad we use a boost with parameter

A1/4 =

(
−n(u)x2/3

(
Λ

3x
+ 1

))1/4

.

In general we can �nd the following functionally independent elements:

f1 = <Ψ2 = x,

f2 = <DΦ33 =
c1r√
A
− Au

4A3/2
,

f3 = <D2Φ44 =
3(L3x− (5− 8x2)L2 − 12x(2 + 2x2)L− 108x2)

2(L+ 3x)2(Lx+ 3)

+ Ä2A2 − 5c1Ȧr

A2
+

10c2
1r

2

A
.

The non-zero components of Weyl and Ricci tensor for this choice of tetrad

are Ψ2 = x and Φ22 = 1. The metric is of Petrov type D and of Segre type

A3 [(11, 2)], pure radiation (including electromagnetic null). The dimension
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of the remaining isotropy group is zero. The classisum result is r1D 1 0

s0001233.

A �rst special case arises when simultaneously c1 = 0 and n = (c2u+ c3)−2,

where c2 and c3 are constants (not both equal to zero). In this case there

is only one functionally independent element, f1 = Ψ2 = x. The metric

remains of Petrov type D and Segre type A3 [(11, 2)], pure radiation (in-

cluding electromagnetic null). The classisum result however is given by

r1D 3 0 s0001111.

A second case that has to be examined separately, arises in two situations:

� when c1 = 0, but n(u) is not of the form (c2u+ c3)−2

� when n(u) is subject to the di�erential equation

−4n2

(
d3n

du3

)
− 15

(
dn

du

)3

+ 18n

(
dn

du

)(
d2n

du2

)
= 0.

In the �rst situation the functionally independent elements are given by

f1 = <Ψ2 = x,

f2 = <DΦ33 = − nu

n
√
A
.

Also in the second situation only two functionally independent elements

survive:

f1 = <Ψ2 = x,

f2 = <DΦ33 =
1√
A

[
c1r −

nu
4n

]
.

For both subcases the components of Weyl and Ricci tensor are Ψ2 = x,

Φ22 = 1, all others being zero. The corresponding metrics are of Petrov type

D and of Segre type A3 [(11, 2)], pure radiation (including electromagnetic

null). The dimension of the remaining isotropy group is zero. This leads to

the classisum result r1D 2 0 s0001222, valid for both subcases.

Notice also that it is again not necessary to examine the case n(u) = 0, as

n(u) is introduced as a function proportional to the non-zero spin coe�cient

ν. Putting n(u) equal to zero in metric 5.42 makes all Φ-components equal
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to zero (so we no longer have a non-zero pure radiation �eld). The metric

remains of Petrov type D, but the Segre type changes to A1 [(111, 1)],

with Λ-term. The only functionally independent element is f1 = <Ψ2 = x

and the classisum result is now 01D 4 1 ebbb111, from which we see that

the remaining isotropy group exists of boosts (one-dimensional) and an

interchange of null directions.

5.5 Discussion and conclusions

We have shown that all Petrov type D pure radiation metrics, with or

without cosmological constant, which admit a non-diverging null congru-

ence, can be written in one of the four forms (5.38), (5.39), (5.40) or (5.42).

Metric 5.42 reduces to the metric of Wils and Van den Bergh (1990) for

n(u) = 0.

We have also classi�ed the metrics, using the program CLASSI (Åman,

2002). The dimension of the isotropy group is zero for all cases. The dimen-

sion of the isometry group depends on particular choices of the parameters

and the free functions. The Kundt solutions presented here, together with

the already known Robinson Trautman solutions, constitute the complete

class of aligned pure radiation �elds of Petrov type D.
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Chapter 6

Conclusion and perspectives

In this thesis we have examined some previously known metrics and some

new metric families. After introducing the terminology and notation used

in this thesis in chapter one, we �rst re-examined the Petrov type D pure ra-

diation metrics belonging to the Robinson Trautman family in chapter two.

These pure radiation metrics, which are de�ned geometrically by the prop-

erty that they admit a geodesic, non-twisting and shear-free but expanding

null congruence had �rst been investigated by Frolov and Khlebnicov. They

organised their solutions into three classes, A, B and C, from which the A-

and B-classes were further subdivided into three and �ve subclasses, re-

spectively. In this thesis we showed that their A-class is a subfamily of the

B-class, thus removing some redundancy in the published solutions. Fur-

thermore we noted that their C-class is incorrect and we presented the full

calculations and integration of this class explicitly. Both results can also

be found in Stephani et al. (2003, Chapter 28). In section 2.4 we gave the

GHP-analysis of the B-class. It is shown there that we only expect four

distinguishing functions in the line element for this class, and not �ve, as

in the exact solutions book. Therefore a coordinate transformation should

exist, which eliminates one function from expression (28.73) in Stephani

et al. (2003).

In chapters three and four we examined solutions belonging to the Newman

Tamburino family. These are de�ned geometrically by the presence of a

hypersurface orthogonal, geodesic null congruence with non-vanishing shear
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and divergence. We were able to show that, in vacuum, the cylindrical

metric in the original paper is incorrect (a fact that had been known before,

although the author was not aware of that) and we wrote the metric line

element for this class in a much more elegant way, without elliptic functions.

This results in a metric which can be used more easily (for example for

classi�cation, limit cases, equivalence of metrics,...). The corrected version

of the original metric for this class was classi�ed by Alan Barnes and Jan

Åman and the input �le is added in the appendix. We also re-integrated

the spherical class and proved that also here there was some redundancy in

the original article: both spherical vacuum metrics from the article can be

written in one single form. As far as the author knows, this fact was not

determined before.

In chapter three, we examined Newman Tamburino solutions in the presence

of a Maxwell �eld. We were able to prove that the Maxwell �eld is aligned if

and only if the metric belongs to the cylindrical class. This Einstein Maxwell

solution can be shown to be a generalisation of the vacuum cylindrical

metric. Whether or not spherical solutions in the presence of a non-aligned

Maxwell �eld exist remains an open problem.

Chapter �ve was dedicated to Kundt solutions in the presence of a pure

radiation �eld. These solutions are de�ned by having a non-diverging (i.e.

non-rotating and non-expanding and therefore geodesic) null congruence. In

the case of a pure radiation �eld, the solutions are shear-free. We integrated

this problem and found four di�erent line elements. It is possible that some

of these are related to one another, but this remains to be examined. We

also classi�ed the di�erent line elements and their special cases, and the

input �les can be found in the appendix. A discussion on how to �nd the

number of distinguishing free functions in the line element, based on the

GHP-analysis, is also demonstrated in this chapter.



Appendix A

Input �les for CLASSI

In this appendix, we present the input �les for CLASSI.

A.1 Input �le for the Sachs metric

In this section we give the input �le for the Sachs metric, which was pre-

sented to us by Alan Barnes.

(PRELOAD IZUD)

(TITLE "NTS.NUL Special limit of cylindrical Newman-Tamburino metric in null

tetrad. Collinson & French JMP 8, 701 (1967). KSMH p.244: Two errors corrected

(by Koutras). This version by A Barnes. empty space")

(OFF ALL) (ON NOZERO)

(NAM X Y R U C)

x $ y $ r $ u $ c $

(VARS X Y R U)

(RPL A)

(C/2 + log(R*X�2))/X�2 $

(FUNS (C) A )

(NEWSUL RIESUL)

A $ :A $

(USESUL RIESUL RIEF SPCURV RICC)
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(RPL IZUD)

0 $ 0 $ 0 $ 1 $

2*R/X $ 0 $ 1 $ -A $

R*2�(-1/2) $ I*X*2�(-1/2) $ 0 $ 0 $

R*2�(-1/2) $ -I*X*2�(-1/2) $ 0 $ 0 $

(NULLT IFRAME)

A.2 Input �le for the cylindrical Newman Tam-

burino empty space metric

In this section we give the input �le, as presented to us by Alan Barnes, for

the general vacuum cylindrical Newman Tamburino metric. In the present

�le a form of the metric containing elliptic functions is being classi�ed. As

we have shown that our solution (4.39) is equivalent to the one below, it

was not necessary to write a new input �le. Also the �le below can serve as

a nice example on how to insert more di�cult functions.

(PRELOAD IZUD)

(TITLE "NTC.NUL Cylindrical Newman-Tamburino metric in null tetrad. New-

man & Tamburino JMP 3, 902 (1962). This version by A Barnes, modi�ed by Jan

E. Aman. empty space")

(OFF ALL) (ON NOZERO)

% Jacobi's elliptic functions

% sn(x,k), cn(x,k), dn(x,k).

% The modulus and complementary modulus are denoted by K and K!'

% usually written mathematically as k and k' respectively

% Special case of modulus k=2�(-1/2) appearing in Newman Tamburino solutions

(NAMLC SN CN DN)

(DS DFEFUN (FN VRL !& REST BDY) (DC FN EFUN VRL . BDY))

% De�ne derivatived of sn, cn and dn.

(DFEFUN SN (X) (SMTIMES2 (LIST 'CN (CADR X)) (LIST 'DN (CADR X))))
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(DFEFUN CN (X) (SMMINUS (SMTIMES2 (LIST 'SN (CADR X)) (LIST 'DN

(CADR X)))) )

(DFEFUN DN (X) (SMTIMES2 MIHALF!* (SMTIMES2 (LIST 'SN (CADR X))

(LIST 'CN (CADR X)))) )

% Symmetry simpli�cation for Sheep simpli�er.

(DEFLIST '((SN ODDXX) (CN EVENXX) (DN EVENXX)) 'SIMPXFN)

% To make Reduce accept them, no particular simpli�cation.

(DEFLIST '((SN SIMPIDEN) (CN SIMPIDEN) (DN SIMPIDEN)) 'SIMPFN)

(NAMLC U R X Y B C)

(VARS U R X Y)

(RPL H W)

2*B�2*CN(B*X)�2 +(C/2 +B�2*LOG(R*CN(B*X)�2))/CN(B*X)�2 $

B*(1 - CN(B*X)�2)�(1/2)*(1+CN(B*X)�2)�(1/2)/(2*2�(1/2)*CN(B*X)) $

(FUNS (B) (C))

(NEWSUL 2 RIESUL)

SN(B*X) $ (1 -CN(B*X)�2)�(1/2) $

DN(B*X) $ 2�(-1/2)*(1 +CN(B*X)�2)�(1/2) $

(USESUL RIESUL RIEF)

(RPL IZUD)

1 $ 0 $ 0 $ 0 $

-:H $ 1 $ 0 $ 0 $

4*:W+I*2�(1/2)*B*CN(B*X)*LOG(R) $ 0 $

R/2+I*4*2�(1/2)*B*U*:W*CN(B*X) $ I*2�(-1/2)*CN(B*X) $

4*:W-I*2�(1/2)*B*CN(B*X)*LOG(R) $ 0 $

R/2-I*4*2�(1/2)*B*U*:W*CN(B*X) $ -I*2�(-1/2)*CN(B*X) $

(NULLT IFRAME)

A.3 Input �le for metric 5.38

The input �le for the classi�cation of metric 5.38 (not for its special cases)

has been given in section 5.4.1. As mentioned there, a �rst special case
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arises, when the function b(u) is a non-zero constant. For the classi�cation

of this subclass, it is su�cient to replace the input line (FUNS (B U) (L))

by (FUNS (B) (L)).

A second special case occurs when b(u) = 0. In fact we knew in advance that

this would no longer represent a pure radiation metric, as the function b(u)

is proportional to the non-zero spin coe�cient ν. To obtain the input �le for

this metric, replace b by 0 in the one forms and remove dyad transformations

two and three.

A.4 Input �le for metric 5.39

(PRELOAD DYTRSP)

(TITLE "KUNDT5.39.SPI")

(OFF ALL) (ON NOZERO PSUBS)

(NAMLC U R X Y)

(VARS U R X Y)

(FUNS (B U) (L) (G U))

(RPL IZUD)

1 $ 0 $ 0 $ 0 $

L�2/4*R�2 + B*G�2 + 2*Y�2/L $ 1 $ 0 $ 0 $

(-I*L/2*(B-2*X�2)*Y�2+2*X-I/L/Y�2)*G $ 0 $ -I*Y�2 $ 2/L/Y $

(I*L/2*(B-2*X�2)*Y�2+2*X+I/L/Y�2)*G $ 0 $ I*Y�2 $ 2/Y/L $

(NULLT IFRAME)

(RPL DYTR1)

0 $ I $

I $ 0 $

(RPL DYTR2)

(-L*Y�2)�(1/4) $ 0 $

0 $ (-L*Y�2)�(-1/4) $

(RPL DYTR3)

SQRT(2)/2*(1+I) $ 0 $

0 $ SQRT(2)/2*(1-I) $
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A special case arises if the function g(u) satis�es

3

4
g

dg

du

d2g

du2
−
(

dg

du

)3

= 0. (A.1)

Let us �rst examine the case g(u) = constant. It is su�cient to remove the

u-dependence of g in the input lines above. We again �nd four functionally

independent functions of which f1, f2 and f3 are the same as in the general

case, but where f4 is now given by

f4 = =D3Φ55 =
bg3xL

√
L

y3
+

3g2L2rx2
√
L

y3
+

3g2r
√
L

y7
− 15

4

gr2xL3
√
L

y3

+
26

3

gx
√
L

y
+

5

8

r3L4
√
L

y3
− 13

3

rL
√
L

y
.

If both g(u) and b(u) are constants, only the �rst three functionally inde-

pendent elements survive, and the classisum result reads r1D 1 0 s0000133.

Now assume that g(u) is not a constant, but still satis�es (A.1). It is

not necessary to solve this di�erential equation. Instead we will give the

following input in CLASSI:

(FUNS (B U) (L) (G U) (G SPEC U) (GU U) (GU SPEC U))

GU $

4*GU�2/3/G $

Classifying the metric then leads to four functionally independent functions,

of which f1, f2 and f3 are again the same as in the general metric 5.39, but

where f4 is now given by

f4 = <D3Φ55 =
bg3xL

√
L

y3
+

1

3

bgġ
√
L

y3
+

3g2rx2L2
√
L

y3
+

3g2r
√
L

y7

+
2gġx2

√
L

y3
+

2gġ

L
√
Ly7
− 15

4

gr2xL3
√
L

y3
+

26

3

gx
√
L

y

− 3ġrxL
√
L

y3
+

5

8

r3L4
√
L

y3
− 13

3

rL
√
L

y
− 8

9

ġ2x

g
√
Ly3

.

The classisum result is again given by r1D 0 0 s0000134.
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A.5 Input �le for metric 5.40

In the input �le below, replace s by ±1.

(PRELOAD DYTRSP)

(TITLE "KUNDT5.40.SPI")

(OFF ALL) (ON NOZERO PSUBS)

(NAMLC U R X Y)

(VARS U R X Y)

(FUNS (M U) (M SPEC U) (MU U) (A U Y) (A SPEC Y) (A SPEC U) (H U X)

(H SPEC X) (L))

MU $

A*L�2*Y/(s*2+L�2*Y�2) $

A/M*MU $

-s*SQRT (s*(1-H�2)) $

(RPL IZUD)

1 $ 0 $ 0 $ 0 $

L�2/4*R�2 + M*SQRT(s+Y�2*L�2/2)/L�2*2 $ 1 $ 0 $ 0 $

s*I/SQRT(2)*SQRT(s+L�2*Y�2/2)*H-SQRT (s*(1-H�2) )/SQRT(2) $ 0 $

I*Y/SQRT(2) $ -1/SQRT(2)/SQRT(s+L�2*Y�2/2) $

-s*I/SQRT(2)*SQRT(s+L�2*Y�2/2)*H-SQRT (s*(1-H�2) )/SQRT(2) $ 0 $

-I*Y/SQRT(2) $ -1/SQRT(2)/SQRT(s+L�2*Y�2/2) $

(NULLT IFRAME)

(RPL DYTR1)

0 $ I $

I $ 0 $

(NEWSUL EEN)

M $ A/SQRT(L�2*Y�2/2+s) $

(USESUL EEN PHI DPSI XI)

(NEWSUL TWEE)

A $ M*SQRT(L�2*Y�2/2+s) $

(USESUL TWEE DPHI D2PSI D2PHI)

(RPL DYTR2)

A�(1/4) $ 0 $

0 $ 1/A�(1/4) $
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A.6 Input �le for metric 5.42

(PRELOAD DYTRSP)

(TITLE "KUNDT5.42.SPI")

(OFF ALL) (ON NOZERO PSUBS)

(NAMLC U R X Y)

(VARS U R X Y)

(RPL A)

-L*N/X�(1/3)/3-N*X�(2/3) $

(FUNS (L) (N U) (C) (g) (h) (A U X) (A SPEC X))

-A/3/X*(L-6*X)/(L+3*X) $

(RPL IZUD)

-1 $ 0 $ 0 $ 0 $

(R)�2*C/X�(2/3)+N/X�(1/3) $ -1/X�(2/3) $ 0 $ 0 $

0 $ 0 $ -1/6/X/(X+X�(2/3)*C-L/6)�(1/2) $

I*(X+X�(2/3)*C-L/6)�(1/2)/X�(1/3) $

0 $ 0 $ -1/6/X/(X+X�(2/3)*C-L/6)�(1/2) $

-I*(X+X�(2/3)*C-L/6)�(1/2)/X�(1/3) $

(NEWSUL EEN)

L $ -X�(1/3)/N*(A+N*X�(2/3))*3 $

(USESUL EEN PHI)

(NEWSUL TWEE)

N $ -A/X�(2/3)/(L/3/X+1) $

(USESUL TWEE DPSI XI D2PSI APSI D2PHI)

(NULLT IFRAME)

(RPL DYTR1)

0 $ I $

I $ 0 $

(RPL DYTR2)

A�(1/4) $ 0 $

0 $ 1/A�(1/4) $

For the �rst special case, where c1 = 0 and n(u) is of the form (c2u+ c3)−2,

the input is given by
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(PRELOAD DYTRSP)

(TITLE "KUNDT5.42.SPI")

(OFF ALL) (ON NOZERO PSUBS)

(NAMLC U R X Y)

(VARS U R X Y)

(funs (L) (G) (H) (A U X) (A SPEC X) (A SPEC U) (N U) (N SPEC U))

-A/3/X*(L-6*X)/(L+3*X) $

-2*G*A*N�(1/2) $

-2*G*N�(3/2) $

(RPL IZUD)

-1 $ 0 $ 0 $ 0 $

1/X�(1/3)*N $ -1/X�(2/3) $ 0 $ 0 $

0 $ 0 $ -1/6/X/(X-L/6)�(1/2) $ I*(X-L/6)�(1/2)/X�(1/3) $

0 $ 0 $ -1/6/X/(X-L/6)�(1/2) $ -I*(X-L/6)�(1/2)/X�(1/3) $

(NEWSUL EEN)

L $ -X�(1/3)/N*(A+N*X�(2/3))*3 $

(USESUL EEN PHI)

(NEWSUL TWEE)

N $ -A/X�(2/3)/(L/3/X+1) $

(USESUL TWEE DPSI XI D2PSI APSI D2PHI)

(NULLT IFRAME)

(RPL DYTR1)

0 $ I $

I $ 0 $

(RPL DYTR2)

A�(1/4) $ 0 $

0 $ 1/A�(1/4) $

The input �le for the second special case, c1 = 0 but n(u) not of the form

(c2u+ c3)−2 looks like this:

(PRELOAD DYTRSP)

(TITLE "KUNDT5.42.SPI")

(OFF ALL) (ON NOZERO PSUBS)
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(NAMLC U R X Y)

(VARS U R X Y)

(RPL A)

-L*N/X�(1/3)/3-N*X�(2/3) $

(FUNS (Q U) (L) (N U) (N SPEC U) (NU SPEC U) (C) (A U X) (A SPEC X)

(A SPEC U))

NU $

-A/3/X*(L-6*X)/(L+3*X) $

A/N*NU $

(RPL IZUD)

-1 $ 0 $ 0 $ 0 $

N/X�(1/3) $ -1/X�(2/3) $ 0 $ 0 $

0 $ 0 $ -1/6/X/(X-L/6)�(1/2) $ I*(X-L/6)�(1/2)/X�(1/3) $

0 $ 0 $ -1/6/X/(X-L/6)�(1/2) $ -I*(X-L/6)�(1/2)/X�(1/3) $

(NEWSUL EEN)

L $ -(A+N*X�(2/3))/N*3*X�(1/3) $

(USESUL EEN PHI)

(NEWSUL TWEE)

A $ :A $

(USESUL TWEE DPHI)

(NULLT IFRAME)

(RPL DYTR1)

0 $ I $

I $ 0 $

(RPL DYTR2)

A�(1/4) $ 0 $

0 $ 1/A�(1/4) $

Finally, if n(u) is subject to the di�erential equation

4n2

(
d3n

du3

)
− 15

(
dn

du

)3

+ 18n

(
dn

du

)(
d2n

du2

)
= 0

the input looks like this:
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(PRELOAD DYTRSP)

(TITLE "KUNDT5.42.SPI")

(OFF ALL) (ON NOZERO psubs)

(NAMLC U R X Y)

(VARS U R X Y)

(FUNS (L) (N U) (N SPEC U) (NU U) (NU SPEC U) (NUU U) (NUU SPEC U)

(C) (A U X) (A SPEC X) (A SPEC U))

NU $

NUU $

(-15*NU�3+18*N*NU*NUU)/4/N�2 $

-A/3/X*(L-6*X)/(L+3*X) $

A/N*NU $

(RPL IZUD)

-1 $ 0 $ 0 $ 0 $

R�2*C/X�(2/3)+N/X�(1/3) $ -1/X�(2/3) $ 0 $ 0 $

0 $ 0 $ -1/6/X/(X+X�(2/3)*C-L/6)�(1/2) $

I*(X+X�(2/3)*C-L/6)�(1/2)/X�(1/3) $

0 $ 0 $ -1/6/X/(X+X�(2/3)*C-L/6)�(1/2) $

-I*(X+X�(2/3)*C-L/6)�(1/2)/X�(1/3) $

(NEWSUL EEN)

L $ -X�(1/3)/N*(A+N*X�(2/3))*3 $

(USESUL EEN PHI)

(NULLT IFRAME)

(RPL DYTR1)

0 $ I $

I $ 0 $

(RPL DYTR2)

A�(1/4) $ 0 $

0 $ 1/A�(1/4) $
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