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Summary. The physico-mathematics that emerged at the beginning of the seven-
teenth century entailed the quantitative analysis of the physical nature with optics,
meteorology and hydrostatics as its main subjects. Rather than considering physico-
mathematics as the mathematization of natural philosophy, it can be characterized
it as the physicalization of mathematics, in particular the subordinate mixed mathe-
matics. Such transformation of mixed mathematics was a process in which physico-
mathematics became liberated from Aristotelian constraints. This new approach
to natural philosophy was strongly influenced by Jesuit writings and experimental
practices. In this paper we will look at the strategies in which models were selected
from the mixed sciences, engineering and technology adequate for an analysis of the
specific phenomena under investigation. We will discuss Descartes analysis of the
rainbow in the eight discourse of his Meteorology as an example of carefully selected
models for physico-mathematical reasoning. We will further demonstrate that these
models were readily available from Jesuit education and literature.
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1.1 The new physico-mathematics

The physico-mathematics that emerged at the beginning of the seventeenth
century entailed the quantitative analysis of the physical nature with op-
tics, meteorology and hydrostatics as its main subjects. Isaac Beeckman after
his encounter with Descartes in 1618, wrote in his Journal that there are
not many students of physico-mathematics.1 While they understood physico-
mathematics as a new discipline, the term was previously used within the

1 [7], I, 244: “Dicit tamen se nunquam neminem reperisse, praeter me, qui hoc
modo, quo ego gaudeo, studendi utatur accuratèque cum Mathematicâ, Physicam
jungat. Neque etiam ego, praeter illum, nemini locutus sum hujusmodi studij”.
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Aristotelian tradition, denoting related disciplines known as mixed math-
ematics [22]. Although care should be taken with the use of the term (as
argued by Maarten Van Dyck [25]), as it seems that its use in the early sev-
enteenth century already reflects an important semantic shift and change in
practices. Mixed mathematics functioned as an intermediate between natural
philosophy and pure mathematics, but were considered subordinate to them.
Rather than considering physico-mathematics as the mathematization of nat-
ural philosophy, John Schuster [22] has characterized it as the physicalization
of the subordinate mixed mathematics. Such transformation of mixed math-
ematics was a process in which physico-mathematics became liberated from
Aristotelian constraints.

Peter Dear [6] has shown how this new approach to natural philosophy was
strongly influenced by Jesuit writings and experimental practices. Representa-
tives of the tradition, such as Mydorge, Descartes, Mersenne and Cassini were
educated at Jesuit colleges while others, such as Fabri, Grimaldi and Scheiner
were Jesuits themselves. In this paper we will look at the strategies in which
models were selected from the mixed sciences, engineering and technology ad-
equate for an analysis of the specific phenomena under investigation. We will
discuss Descartes analysis of the rainbow in the eight discourse of his Mete-
orology as an example of carefully selected models for physico-mathematical
reasoning. We will further demonstrate that these models were readily avail-
able from Jesuit education and literature.

1.2 Material models for discovery in natural philosophy

Many studies since the late 1990s have demonstrated the importance of mod-
els in different aspects of scientific practice. Basic scientific processes such as
discovery, explanation, simulation, representation, and experimental design
have all been approached as forms of model-based reasoning. These models
have been studied from philosophy of science [11], [18] as well as from cog-
nitive science [16], [17]. The models we are interested in are representational
models for physical phenomena. Such models typically bear an isomorphic re-
lation to the phenomena observed. However, it is usually through abstraction
and idealization that models reveal their heuristic function for the study of
natural phenomena. Natural philosophers or scientists arrive at new laws and
theories by isolating the relevant features of phenomena in an experimental
configuration and excluding the unnecessary and contingent aspects. They do
so by carefully selecting those models that facilitate the process of exclusion
and isolation. Often a single model will not suffice and the discovery pro-
cess may therefore involve several related models that allow focusing on one
specific aspect more precisely.

As a prime historical example for the use of models in scientific discov-
ery we may refer to Descartes analysis of the optical principles behind the
rainbow. While several accounts on the rainbow were available by the 1620s
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it was Descartes who first succeeded in publishing a satisfactory explanation
why the primary and secondary rainbow are always seen under a given angle,
why the colors always appear in the same order and why this order is inverted
in the second rainbow. He argued his findings by a geometrical analysis of
the twofold refraction and single reflection in a raindrop; a corpuscular ex-
planation of light and carefully supported his results by precise quantitative
observations. This analysis is presented as the eight discourse of the Meteorol-
ogy, as part of Descartes ground breaking publication Discours de la méthode
from 1637. Descartes included the discourses on Meteorology and Dioptrics
as an illustration of his general method to arrive at certain and undoubtable
knowledge in natural philosophy. As is well established, Descartes line of ex-
planation in many of these discourses does not faithfully follow his method or
his actual path to discovery. (e.g. for the sine law of refraction [12]). Though,
for his analysis of the rainbow he explicitly stated that he does. This is one
of the reasons for us to take up this example as a case study. Descartes anal-
ysis of the rainbow, conceived as an illustration of his general method, has
been the subject of several historical and philosophical studies, notably by
Carl Boyer [4], Richard Westfall [24], A.I. Sabra [19], William Shea [21], and
what must be the definite account by Jed Buchwald [4]. We will therefore
limit this contribution to the specific use of models and the context in which
these models became available at the beginning of the seventeenth century.
We will argue that Descartes could draw his models from Jesuit writings on
physico-mathematics as well as popular accounts of disputations organized on
these subjects.

1.3 The models

Descartes’ analysis of the rainbow, which according to his own account fol-
lows his path of discovery,2 is based on a succession of different models to
isolate the relevant features of a configuration and exclude the unnecessary
and contingent aspects. As the rainbow is a natural phenomenon which can
only be observed occasionally, the models facilitate experimental procedures
to test and measure a given configuration. We can distinguish the use of five
models in the eighth discourse:

2 From a letter from Descartes to Vatier, February 1638, [9], I, 559-660: “Nor could
I show the use of that method in the three treatises that I included, since it
prescribes an order of investigation which is different enough from the order I
believed I must use in order to explain them. However, I have given a sample of
it in describing the rainbow, and if you take the trouble to reread it, I hope it
will satisfy you better that it did the first time”. Translation from [1], 86.
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1.3.1 Artificial rainbows in fountains

As a natural phenomenon, rainbows can only be observed in specific meteoro-
logical circumstances. There has to be a specific combination of rain and sun
and the position of the sun should not be higher than 42 degrees. However,
the appearance of rainbows can be modeled by artificial rainbows in fountains
where they can be observed during a longer period. In the introduction of his
treatise, Descartes uses the occurrence of rainbows in fountains as an argu-
ment for the reproducibility of this natural phenomenon ([9], VI, 325; [10],
332).

First, taking into consideration that this arc can appear not only in
the sky but also in the air near us whenever there are drops of water
in it that are illuminated by the sun, as experience shows us in certain
fountains.

In the last part of the discourse he comes back to fountains and suggests
the use of liquids with a higher refractive index for theatrical purposes ([9],
VI, 343; Olscamp 344-5).

And this makes me remember an invention for making signs appear in
the sky, which would cause great wonder in those who were ignorant of
the causes. I suppose that you already know the method of making a
rainbow visible by the use of a fountain. (..) To this it is now necessary
to add that there are oils, spirits and other liquids, in which refraction
is notably greater or lesser than in common water, and which are no
less clear and transparent because of that.

1.3.2 The spherical glass modelling a raindrop

Descartes remarks that a raindrop can be modeled by a spherical flask filled
with water (citeAT, VI, 325; [10], 332):

Then, knowing that these drops are round, as has been proven above,
and seeing that their being larger or smaller does not change the
appearance of the arc, I then took it into my head to make a very
large one, the better to examine it. And for this purpose I filled a
perfectly round and transparent large flask with water.

Descartes exploits the analogue of a flask with a very large raindrop to em-
pirically come to an estimate on the angle under which the colors appear.
He observes that for the color red the angle from the sun to the flask and
back to the eye is approximately 42 ◦. Moving the flask upwards makes the
color change from red to yellow and then to the other colors of the rainbow.
Descartes further determines experimentally that red reappears under an an-
gle of around 52 ◦ “but not as brilliant”.
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1.3.3 The prism

In order to achieve a more accurate observation and to eliminate the double
appearance of colors (caused by a second internal reflection in the raindrop),
Descartes moves to a prism. The prism thus acts as a model in the same way
as a spherical flask but allows him to isolate the color separation to a single
refraction without reflections. Such a controlled experimental setup allows a
more precise observation of the color separation. Descartes wants to know
the precise order of colors and to determine what causes the separation of
white light into colors. He used what was then known as a triangular glass
(crystallo trigonam) (MNP in Figure 1.1).

Fig. 1.1. The prism and aperture from the Meteorology by Descartes

1.3.4 Wooden bowls

In his corpuscular theory of nature, Descartes conceives of light as the result
from movement of small spherical balls (Figure 1.2). These corpuscles can be
modeled by wooden bowls as known from the game of Kayles (in French: quills)
or billiard, or tennis balls as in his first and second discourse on Dioptrics, or
even grapes as in the first discourse on Dioptrics. He uses balls as a model to
explain that colors occur by differences in rotational speed of spherical parti-
cles. He further exploits tangible experience with these games for hypotheses
on the kinetic behavior of corpuscules. A ‘top spin’ of a wooden ball (as used
in billiard or tennis) causes the ball to rotate more than what is needed for
a rotational movement on a surface. According to Descartes this corresponds
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with the color red. A ‘slide’ or middle hit causes the ball to slide and thus
rotate less than needed for a rotational movement. This corresponds with blue
light. Balls that follow the normal rotational movement on a surface will cause
white light. The spin and slide effects on rotating balls are caused by a change
of density in optical media and thus occur together with refraction.

Fig. 1.2. The corpuscular explanation of color by Descartes

1.3.5 The aperture

In order to control the spread of colors by the prism, Descartes covers most of
the refracting surface of the prism (DE in Figure 1.1). In doing so he adopts
the model of an aperture controlling interactions between neighboring spheres.
According to Buchwald [4] who reenacted the historical experiment, Descartes
insisted on an aperture to create shade boundaries as he believed that light
must interact with dark to generate color. Doing so, Descartes would adopt
a transformed version of the Aristotelian theory of color as consisting of a
mixture of black and white light. An alternative explanation which we favor
is that Descartes was familiar with the camera obscura where the size of the
aperture influences the quality of the image. It can be empirically established
that the ideal width of the aperture is about one hundredth the distance
between the aperture and the projected image. It was established only much
later, by Lord Rayleigh that the optimal size of the aperture (d) is given by
the formula d = 1.9

√
fλ, with f as focal distance and λ as the wavelength

of light. For a focal distance of 50 mm this would amount to a very small
aperture of 0.32 mm.
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1.4 Available models from Jesuit physico-mathematics

For each of the models employed, we can identify specific sources that may
have been a source of inspiration for Descartes. Jean-Robert Armogathe [2]
argued that several of the “observations” by Descartes in the introduction
of his eighth discourse on the rainbow stem from the Meteorologica pub-
lished by Froidmont in 1627. While it may be the case that Descartes had
read Froidmont’s work by 1629, we instead will pursue the remark by Boyer
that Descartes was inspired by the anonymous work Recreation mathematique
[henceforth RM ], first published at Pont-à-Mousson in 1624.3 According to
Boyer ([3], 208) the treatment of rainbows in this book as something which
eluded philosophers for a long time posed “a challenge which Descartes could
not resist”. The book has been wrongly attributed to the Jesuit Jean Leure-
chon. Elsewhere we have argued that the book was compiled from notes used
for the public disputationes at the Jesuit college of Pont-à-Mousson, follow-
ing closely a compendium of propositions on physico-mathematics authored
by Jean Leurechon in 1622, bearing the title Selectae Propositiones [hence-
forth SP ] [13]. The RM and to a lesser extent, the SP, were well read, known
and discussed by natural philosophers. The RM is cited frequently in the
correspondence of Beeckman, Descartes, Mydorge and Mersenne. Mydorge’s
compilation of notes and critical comments was added to the Moreau, 1626
edition and further expanded in the Mydorge edition of 1630. Mersenne, in
his La verite des sciences of 1625, freely took tens of pages of material from
Leurechon’s propositions on arithmetic, geometry and music (e.g. pp. 803-
812). His only acknowledgement is “comme ont remarqué les mathematiciens
du Pont dans leur these de l’an 1622” (p. 803). Mersenne became aware of the
RM only later. The first reference to the book in his Correspondence dates
from 27 April 1628. Robert Cornier wrote Mersenne about the volume and
that it was expanded with a new third book (De Waard, Correspondance du P.
Marin Mersenne, II, pp. 83-4). Another early work by Mersenne, Quaestiones
celeberrime in genesis from 1623 also borrows from the Selectae propositiones.
The figure on col. 95, is a description of a proposition taken from SP, Geom-
etry, prop. X, p. 8.

The SP follows the Aristotelian view on the mixed sciences. Leurechon de-
scribes mechanics as subordinate to geometry and physics, while optics is sub-
ordinate to geometry (cited by Dear [6], 169. On the other hand, many of the
propositions of the book deal with material models, machines, contrivances,
mostly borrowed from Cardano’s De subtilitate, and show a familiarity of en-
gineering treatises from the early seventeenth century. Even subjects in pure
mathematics, such as conic sections, are made tangible by two propositions in
which inflexible bodies, like pyramids and cones, have to be passed through

3 For a forthcoming critical edition of the English translation of this book see [13]
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geometrical figures cut in cardboard.4 These are two of the many propositions
reproduced in the RM (see Figure 1.3).

Fig. 1.3. Conic sections made tangible, from RM, problems 22-3.

In Descartes account on the rainbow we find that all of the five models he
uses also appear in both the SP and the RM. We list them in the same order:

1.4.1 Artificial rainbows in fountains

The description of the rainbow by Leurechon, appears in the SP, under Optics,
prop. XX, p. 35.5 We here reproduce the full proposition:

Refraction and reflection depict various celestial and sublunary ap-
pearances, halos, parhelia, paraselenae, rainbows in clouds, in the
prism, in glass jars, in multi-faceted crystals, in the arched water
of splash fountains, in burning light of a candle. Here one sees with
certainty that the colors that appear in these circumstances have a

4 SP, Geometry, prop. XII, p. 8: “Potest unum & idem corpus solidum ac durum,
per tria foramina transmitti, quorum unum sit rotundum, secundum quadratum,
tertium ovale, ita ut singula in transitu compleat; potest aliud eandem conditione
transmitti per rotundum, ovale & quadrangulare quantaelibet longitudinis: aliud,
per rotundum & quandrangulare; alius per rotundum & triangulare duntaxat”.

5 Refractio et reflexio, varia coelestibus ac sublunaribus pingit phasmata, halones,
parelia, paraselenias, irides in nubibus, in crystallo trigonam, in ampulis vitreus,
in polyoptris, in aquam fontium arcuaram et irroratam, in lucernic ardentibus.
Ubi certum videtur, colores hic apparentes, causam habere congenerem, puta per
mixtionem refractae lucis cum refrigente subiecto; figures autem diversas, inci-
dentium, refractorum simul et reflexorum radiorum legibus gubernari. Probabile
est, geminari posse lunarem iridem, sicut et solarem, sic tamen, ut secundaria iris
non sit imago alterius ex reflexione producta.
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common cause, namely the mixture of the refracted light with the re-
fractive subject; while the different figures that appear are governed
simultaneously by the laws of refraction and reflection of the rays of
light. It is probable that the moon rainbow can be doubled in the
same way as the solar rainbow, yet in such a way that the second bow
is not an image produced by a reflection of the first bow.

Problem 46 of the RM (44 in the English editions) is an elaboration of
this proposition. It includes the “experiment” to fill ones mouth with water
and to blow it out through the lips, standing with the back to the sun. The
author, in a remark omitted by the English translator, complains about the
lack of an explanation on the rainbow:

I am afraid that you will ask me more; about the production, dis-
position and figure of these colours. I shall reply that they come by
reflection and refraction of light, and that is all. (..) And he who said
that it is the mirror in which human nature has had a full view of
its ignorance has well understood; for all the philosophers and mathe-
maticians who for so many years have been engaged in discovering and
explaining its causes, have learned nothing except they know nothing
but a appearance of truth

This was the challenge which, according to Boyer [3], Descartes could not
let pass. Descartes also commences his eight discourse with the observation
that several phenomena share a common cause. His references to the rainbow
in fountains is indeed most likely to be inspired by RM. His remark “this
makes me remember an invention for making signs appear in the sky, which
would cause great wonder in those who were ignorant of the causes”, cited
above, is almost a literal quote from the book.6

1.4.2 The spherical glass modelling a raindrop

The spherical glass is already mentioned by Leurechon (ampulis vitreus), as
quoted above. In RM the glass is described as “a stable and permanent”
configuration to observe the colors of the rainbow.7

6 Compare Descartes, [9], VI, 343: “qui pourroient causer grande admiration a ceux
qui en ignoreroient les raisons”, with one of several similar formulations in RM :
“avec grand estonnement des assistans particulierement s’ils en ignorent la cause”
(1630, p. 73).

7 From the English edition: 1633, 68:“But to have one more stable and permanent
in his colours. Take a glass full of water, and expose it to the sun, so that the
rays that pass through strike upon a shadowed place, you will have pleasure to
see the fine form of a rainbow by this reflection”.
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1.4.3 The prism

The use of a prism for color separation is described both in SP (crystallo
trigonam) as in RM (1633, 68):

Or take a triagonal glass, or crystal glass of divers angles; and look
through it, or let the beams of the sun pass through it; or with a
candle let the appearances be received upon a shadowed place: you
will have the same contentment.

1.4.4 Colliding bowls

That mathematical principles govern the behavior of wooden of ivory balls on
impact is discussed in SP, Geometry, XV:8

It is a pleasing quality of mathematics, so to play with ivory balls, or
ebony and the like, according the laws of reflection, 1) on one plane,
or else 2) impacting on more planes, to be shot at a specific location;
or else 3) one ball pushed by the other, at whatever direction rolled
forward, also attributed to, if you please, the various linear motions,
and the collision at the various points of contact, whether in the plane,
or within the perimeter of the circle.

The planes to which is referred to are the vertical rails, in later versions
of the game table replaced by cushions. Leurechon describes three principles
which apply to the balls movement without any spin: 1) the law of reflection
describing the path when hitting the rail under a given angle, 2) directing the
ball to a specific location by hitting the rail more than one time and 3) the
effects of colliding balls.

This early reference to ball games should not surprise us. Mac Lean, in
a PhD dissertation on the history of the laws of collision [15], describes the
popularity of these games in France at the beginning of the seventeenth cen-
tury. He points at the RM as the first work in which ball games are analyzed
by the laws of geometry. However, Cusanus used the game of bowling already
in his De ludo globi of 1463, as a metaphorical tool for expounding his view
on the cosmos. Although in this dialogue the bowling ball is most often used
as a metaphor, in his argumentation Cusanus explains the laws governing the
impetus and movement of the ball. As an example [5], I, 23:

8 Mathematicae iucunditatis est, in sphaerulis eburneis, aut buxeis, et similibus, ita
ludere, ut reflecionem legibis, una in planum, aut duo vel plura plana impingens,
ad destinatum locum emittatur: vel ita una sphaerula, caeteras impellens, ad
quamcunque volveris partem dirigat, assignatis etiam, si lubet, variorum motuum
lineis, variorum contactuum et allisionum punctis, sive in plano, sive per ambitum
circuli.
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Fig. 1.4. Geometrical analysis of billiard from Récréations Mathématiques, problem
78

Keep in mind that the motion of the bowling-ball ceases but that the
ball remains intact; for the ball has no natural motion but has [only] an
accidental and forced motion. Therefore, the ball stops moving when
the impetus that was impressed upon it ceases. But if the bowling-ball
were perfectly round, then (as was said earlier) its motion would never
cease, because a circular movement would be natural to that ball and
not at all forced upon it.

The Italian priest and Aristotelian philosopher Antonio Scaino da Salò
(1524-1612), published in 1555 a treatise on giuoco della palla (jeu de paume
or tennis), describing the rules of the game and the courts where it is played.
He briefly touches upon the relation of the balls movement with the laws of
natural philosophy, mainly concerning the principles of ballistics.

Problem 78 of RM, probably contains the first diagram used for a geo-
metrical analysis of a ball game (see Figure 1.4. Here we find the three rules
described by Leurechon applied to the game of billiard.9

And the first maxim is thus. When a bowl toucheth another bowl or
when a trap stick striketh the ball, the moving of the ball is made in a
right line, which is drawn from the centre of the bowl by the point of
contingency. Secondly, in all kind of such motion, when a ball or bowl
rebounds, be it either against wood, a wall, upon a drum, a pavement,
or upon a racket, the incident angle is always equal to the angle of
reflection.

9 From the English edition which does not mention billiard but tennis and trap-
ball. This reference to the game of trap-ball predates the earliest entry in the
Oxford English Dictionary (1658). The figure is taken from the author’s copy of
the 1672 Lyon edition.
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Fig. 1.5. A geometrical analysis of billard from Johannes Marcus’s De Proportione
Motus, 1636, p. 105

Now following these maxims, it is easy to conclude:
First, in what part of the wood or wall one may make the bowl or ball
go to reflect or rebound, to such a place as one would.
Secondly, how one may call a bowl upon another, in such sort that
the first or the second shall go and meet with the third, keeping the
reflection or angle of incidence equal.
Thirdly, how one may touch a bowl to send it to what part one
pleaseth, such and many other practices maybe done. At the exercises
at kayles there must be taken heed that the motion slack or diminish
by little and little, and may be noted that the maxim of reflections
cannot be exactly observed by local motion, as in the beams of light,
and of other qualities, whereof it is necessary to supply it by industry
or by strength otherwise one may be frustrated in that respect.

Descartes explains in his discourse on refraction of the Dioptrique the
causes of refraction by means of an idealized tennis ball (jeu de paume) hitting
a piece of loosely woven cloth. The second discourse on refraction does not
mention a tennis ball explicitly but Descartes refers to the game in the first
discourse in describing the effect on the motion of the ball impacting on a
surface. He further explains that the different effects the ball or corpuscule,
correspond with the different colors of light (AT, VI, 90-91):

Those who play tennis can prove this sufficiently, when their ball en-
counters uneven ground, or else when they hit it obliquely with their
racket, which they call, I believe, cutting or grazing (..) Some reflect
these rays without causing any other change in their action, such as
those which we call white, and the others carry with this reflection a
change similar to that which the movement of a ball receives when we
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graze it, such as those which are red, or yellow, or blue, or any other
such color.

In the fifth discourse of the Dioptrique on the anatomy of the eye and in
the Meteores on the rainbow, the acceleration and slip of wooden balls further
serves as a model for the behaviour of spherical corpuscules and the causes of
color.

Fig. 1.6. The earliest depiction of tennis from Sambucus, Emblemata, 1564, p. 133

The model of the tennis ball further plays a role in the experimentum crucis
of 1666 by Newton where he describes to the Royal Society his discovery of
the cause for chromatics abberation in lenses: 10

Then I began to suspect, whether the Rays, after their trajection
through the Prisme, did not move in curve lines, and according to
their more or less curvity tend to divers parts of the wall. And it
increased my suspition, when I remembred that I had often seen a
Tennis ball, struck with an oblique Racket, describe such a curve line.

1.4.5 The aperture

The the camera obscura is described as “that dioptrical instrument” in propo-
sition XIX of the part on Optics. The aperture is called a (pupillae foramen).
Leurechon further describes the use of a concave lens to reinvert the image
and draws the parallel with the eye: “for philosophers, it is a fine secret to
explaining the organ of the sight, for the hollow of the eye is taken as the

10 Philosophical Transactions of the Royal Society, No. 80 (19 Feb. 1671/2), pp.
3075-3087.
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close chamber, the ball of the apple of the eye, for the hole of the chamber,
the crystalline humour as the small of the glass and the bottom of the eye,
for the wall or leaf of paper”. The Jesuit must have been familiar with Ke-
pler’s Paralipomena in which the retinal image theory was first expounded.
An elaborated version appears as problem 2 in RM (see Figure 1.4.5. Both
specifically mention to experiment with the aperture to achieve the best re-
sults. The translator of the English edition recommends an aperture of the
size of a six pence coin.

Fig. 1.7. The camera obscura from Récréations Mathématiques, problem 2

Descartes, in the fifth discourse on Dioptrics describes his experiences
with the camera obscura in relation to the eye. Even without the use of a lens
“certain images will certainly appear on the cloth, provided that the hole be
quite small, but they will appear very confused and imperfect, so much more
so as this hole is quite small” ([9], VI, 126; [10], 97). He further discusses
the size of the image being proportional to the object as the focal distance is
to the distance between the aperture and the object, and the quality of the
image related to the distance to the aperture. His description reflects practical
experience with the camera obscura. This supports our view that his use of
the aperture on the prism was motivated by such experience.

The aperture was later also employed by Newton in the experiment cited
above:

The gradual removal of these suspitions, at length led me to the Ex-
perimentum Crucis, which was this: I took two boards, and placed
one of them close behind the Prisme at the window, so that the light
might pass through a small hole, made in it for the purpose, and fall
on the other board, which I placed at about 12 feet distance, having
first made a small hole in it also, for some of that Incident light to
pass through.
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Not only where these models for the analysis of the rainbow readily avail-
able in RM, Descartes also shares the admiration and the principle of wonder
with the book. In the last paragraph he writes: this makes me remember an
invention for making signs appear in the sky, which would cause great wonder
in those who were ignorant in the cause. The invention he talks about is an op-
tical experiment described in RM and his definition of wonder as admirables
pour ceux qui en ignorent la cause (repeated from discourse 7) echoes a fre-
quent remark from RM. Wonder is an epistemological quality it depends on
our knowledge of the hidden causes. Descartes raises it to a methodological
principle.

That the models borrowed by Descartes from RM already appear in the
witness account of the disputationes held at Pont-à-Mousson should not sur-
prise us. The physicalization of mixed mathematics, as Schusters calls it, was
happening already at the Jesuit colleges. Making mathematics tangible was
part of a deliberate pedagogical strategy of the Jesuits to allure the nobility
to their colleges. Even pure mathematics as conic sections was made tangi-
ble by experiments in which solid bodies (conic, cylindrical, pyramidal) were
passed through a hole in a flat surface (both in SP and RM ). The physical-
ization of mathematics provided new opportunities for the use of models in
physico-mathematics in which Descartes excelled.

1.5 Negotiating models

Until now we have discussed the successful models as used in Descartes’ discov-
ery and explanation of the causes of the rainbow. Evidently, such a sequence
of five models, each highlighting some aspect of the phenomenon under inves-
tigation, does not comes as a single insight. Each discovery is preceded by a
process of trial, experimentation and consideration, to find out what the most
adequate models may be. Typically for Descartes, we do not find anything
of such considerations in his published work. However, the correspondence in
the circle of Marin Mersenne provides a witness account of the negotiations
on the choice of adequate models for the analysis of specific phenomena.

One interesting example related to color separation is the halo seen around
a burning candle (Figure 1.8). Leurechon, (SP, Optics, prop. XX, p. 3) already
placed it on the same level as the rainbow. Also in RM, the appearance of
colors around the flame is compared to the spherical glass filled with water: “or
with a candle let the appearances be received upon a shadowed place: you will
have the same contentment”. Mersenne repeatedly observed a colored corona
around the flame of a candle, and discusses the phenomenon in his treatise
on the rainbow, written between 1625 and 1627 ([8], II, 649-). However, from
his correspondence it appears that Descartes “is astonished to hear” that
Mersenne observed the phenomenon while he himself “rubbed and rolled [his]
eyes in all sorts of ways to try to see something similar, but with no success”
(Descartes to Mersenne 18 Dec 1629, [9], I, 83). A little later Descartes writes
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Fig. 1.8. Descartes’ entopical explanation of a halo around a candle

Mersenne that this should not be confused with the corona seen around stars
and is to be explained as secondary light coming from the rays which pass
straight through the iris (Descartes to Mersenne, January 1630, [9], I, 106).
Descartes’ view is confirmed by an experience on a boat in Holland, which he
reported to Golius on 19 May 1635 ([9], I, 318-9): “What this taught me was
that the coronas were arranged in exactly the opposite way to those which
appear around stars, i.e. red and the outside, and that they did not form
in the air, but simply in the water of one of my eyes”. Later again, in the
ninth discourse of his Meteoroloy, he refers to this incident and proposes an
explanation of the halos based on the particles on the cornea of the eye ([9]
VI, 351-354; [10], 350-1): “their cause must be sought, not in the air, but
only in the eye which looks at them”. This explanation corresponds with an
entry in Beeckman’s Journal of 1632.11 Others like Pierre Gassendi and the
Jesuit Claude Dechales instead believed that the phenomenon was caused by
the same principles as the rainbow, by dispersion of light. Such differences in
opinion cannot be settled in one way or the other. In fact, both explanations
have their value. Ocular halos do exist as conjectured by Descartes while
halos can also appear around light sources by dispersion of light through ice
crystals. Interesting from a historical standpoint is that natural philosophers
were involved in a process of negotiation on the adequate models for the
study of specific phenomena. In Descartes’ view, the halo around the flame of
a candle is a better model for studying entopical diffraction phenomena than
for the dispersion of light [23]]. Others believed that the flame of candle was a
suitable model for studying the causes of color separation. These discussions
show us how the selection of adequate models was a process of argumentation
and negotiation.

11 [7], III, 237: “Iris oculi est humor corneae concavo adhaerens a parte sui pupillae,
limbum (ubi lux dissolvens humores, est debilior quam in medio) inficiens, id est
tegens. Hinc sequitur iridem circa candelam, aut quodvis lumen pupilla majus,
visam, eo videri majorem quo lumen id est ab oculo remotius”.
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1.6 Conclusion

The five models that are used in Descartes analysis are no sophisticated or
abstract mathematical models but are rather derived from artifacts or simple
technological devices. We have pointed out that 1) the appearance of a rainbow
in a fountain, 2) the analogy of a raindrop with a spherical flask filled with
water, 3) the kinetic behavior of wooden or ivory balls, 4) the appearance of
colors in a prism and 5) the aperture in a camera obscura all appeared as
propositions that were the subject of discussion at Jesuit colleges during the
disputationes amongst students. Descartes was educated at such a college and
was strongly influenced by the Jesuit attempts to physicalize pure and mixed
mathematics as part of a pedagogical strategy. He explicitly mentions in his
Principles of Philosophy that he draws much inspiration from daily artifacts
([9], VIIIA, 236, tr. Cottingham):

In this matter I was greatly helped by considering artefacts. For I
do not recognize any difference between artefacts and natural bodies
except that the operations of artefacts are for the most part performed
by mechanisms which are large enough to be easily perceivable by
the sensesas indeed must be the case if they are capable of being
manufactured by human beings.

Rather than setting up highly contrived experiments, Descartes believes
that natural phenomena are better studied by common situations with which
we are familiar in daily situations [9], VI, 63, tr. Cottingham): “rather than
seeking those which are more unusual and highly contrived, it is better to re-
sort only to those which, presenting themselves spontaneously to our senses”.
Descartes may have acquired his taste for experience with natural objects and
simple artifacts from his days at the Jesuit college of La Flèche (1606 - 1616).
He certainly believed that his approach to physico-mathematics is useful for
Jesuit education, as he is recommending his analysis of the rainbow in a letter
to Fournet, J.S. of October 1637 ([9], I, 455):

It seems to me that there is no-one who has a greater interest in exam-
ining this book than the members of your Society, for I can already see
that what it contains (especially as far as meteorology is concerned)
will be accepted by so many people that I just do not know how they
will be able to teach these subjects without either refuting or accepting
what I have written.
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