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Samenvatting

Recent onderzoek heeft geleid tot een nieuwe generatie planaire antennes die
flexibel zijn en conform kunnen worden gemaakt aan allerhande oppervlakken
zonder verlies aan antenneprestatie. Dergelijke antennes worden vaak onop-
vallend geïntegreerd in verschillende devices en worden steeds dichter bij me-
kaar of bij elektronica geplaatst waardoor er vaak ongewenste interactie optreedt.
Om deze antennes snel en nauwkeurig te kunnen ontwerpen is zogenaamde 2.5-
dimensionale (2.5D) simulatiesoftware ideaal. Dergelijke software brengt het
vlakgelaagd karakter van het antennesubstraat zeer efficiënt in rekening zonder
een volledige 3D-discretisatie te vergen. Deze simulatoren hebben echter sterke
beperkingen. Zo laten ze niet toe om buigingen of het eindige karakter van een
substraat mee in rekening te brengen. Ook de aanwezigheid van objecten in het
reactieve nabije veld, zoals het object waarop de antenne wordt aangebracht, met
name het menselijk lichaam, een wagen, een vliegtuig, een meer uitgebreid elek-
tronisch systeem ..., kan slechts zeer benaderend worden meegenomen. Bij het
onopvallend integreren van deze antennes kunnen ook de lagen die de antenne
bedekken slechts op zeer benaderende wijze worden gemodelleerd. Hierdoor
worden deze antennes op dit moment ontworpen in een geïdealiseerde toestand,
waarna een prototype wordt gefabriceerd dat vervolgens wordt getest in niet-
ideale omstandigheden. Dit leidt vaak tot herontwerp of het overspecificeren van
de ontwerpcriteria.

Als antwoord op de vernoemde beperkingen van de 2.5D-simulatiesoftware wordt
in het eerste deel van deze thesis onderzocht hoe het antenneontwerp kan worden
uitgebreid aan de hand van metingen en analytische modellen. Het a posteriori
verifiëren van de antenneprestaties in realistische omstandigheden via metingen
wordt gedemonstreerd aan de hand van het ontwerp van een intra-vehicle antenne
die in het dashboard van een wagen moet worden geïntegreerd. Om de ideale
positie van de antenne in het dashboard te kunnen bepalen, wordt het dashboard
nagebootst door verschillende lagen op de antenne te plaatsen en de hele module
opnieuw door te meten.

Het uitbreiden van de 2.5D-simulatiesoftware aan de hand van analytische mo-
dellen wordt uitgewerkt voor gebogen antennes, meer bepaald voor flexibele an-
tennes die cilindrisch gebogen worden. Dit komt voor in situaties waarbij een
textielantenne gedragen wordt op een arm of een been. Er wordt daarom een ci-
lindrisch caviteitsmodel opgesteld, dat de antenneprestaties modelleert als functie
van de buigingsstraal. De resonantiefrequentie voor een bepaalde buigingsstraal
kan dan berekend worden door de dispersierelatie van het caviteitsmodel nume-
riek op te lossen, terwijl de verre-veldpatronen analytisch bekomen worden in
gesloten vorm. Het voordeel van deze methode is dat ze snel en accuraat tot een
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resultaat leidt, zonder dat het probleem daarvoor eerst moet worden gediscreti-
seerd. Dit is immers wel het geval voor numerieke simulatiesoftware. Typisch
voor dergelijke flexibele antennes is ook de compressie die de antennesubstraten
ondervinden als ze gebogen worden. Dit wordt in rekening gebracht door de per-
mittiviteit van het substraat als functie van de buigingsstraal aan te passen. Hierbij
wordt bovendien een onderscheid gemaakt tussen antennes met een rekbare en
een niet-rekbare patch.

Het cilindrisch caviteitsmodel wordt vervolgens verder uitgebreid voor situaties
waar de buigingsstraal stochastisch kan variëren, maar waarvoor een statistische
distributie gekend is of gefit kan worden. Dit is bijvoorbeeld het geval voor tex-
tielantennes die op de armen van mensen met verschillende lichaamsafmetingen
geïmplementeerd worden. Aan de hand van een techniek die gebaseerd is op
een veralgemeende polynomiale chaosexpansie is het dan mogelijk de waarschijn-
lijkheidsdistributie van de resonantiefrequentie te bepalen, vertrekkende van de
distributie van de buigingsstraal van de arm. Hierbij moet de dispersierelatie van
het analytisch model slechts enkele keren doorgerekend worden, in tegenstelling
tot een naïeve Monte Carlo techniek, waarbij aan de hand van een groot aantal
simulaties een statistische distributie benaderd wordt.

In het tweede deel van deze thesis verschuift de focus naar het rigoureus mo-
delleren aan de hand van de Maxwellvergelijkingen van de antennes samen met
meer algemene, complexere structuren ingebed in de vrije ruimte. Om ook de
eindige dimensies van de substraten in rekening te brengen richten we ons op 3D-
numerieke technieken als verbetering t.o.v de 2.5D-simulatiesoftware. Algemeen
kunnen we stellen dat er twee grote numerieke technieken bestaan om derge-
lijke antennes computerondersteund te ontwerpen in het frequentiedomein (hier
worden de antennekarakteristieken berekend in functie van de frequentie). Deze
zijn de eindige elementen (FE) methode en de randintegraalvergelijkingsmethode
(BIE). De FE-methode discretiseert het simulatiedomein in kleine elementen en
berekent dan de lokale elektromagnetische interacties tussen deze elementen. Dit
heeft als voordeel dat inhomogene materialen gemakkelijk gemodelleerd kunnen
worden, maar als nadeel dat een stelsel met een zeer groot aantal onbekenden
moet opgelost worden. Ook wordt het simulatiedomein getrunceerd, aangezien
het onmogelijk is om de volledige 3D-ruimte te discretiseren. De BIE-methode
lost de elektromagnetische interacties eerst gedeeltelijk analytisch op om zo de
dimensies van het probleem met één te verlagen. Het voordeel van deze aanpak
is dat enkel de randen van objecten moeten gediscretiseerd worden en dat nu
wel de volledige open vrije ruimte kan gemodelleerd worden. De nadelen aan
deze methode zijn enerzijds dat dit enkel werkt voor configuraties waarvoor een
Greense functie analytisch beschikbaar is, zoals homogene materialen, en ander-
zijds dat de interacties nu globaal worden berekend, wat leidt tot een dichtbezette
systeemmatrix.

Een oplossing voor de problemen van de FE- en de BIE-methode bestaat erin deze
twee technieken te combineren in één hybride FE-BIE formulering. Hierbij wordt
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elke techniek toegepast in de domeinen waar ze het efficiëntst zijn om zo de
computationele vereisten te minimaliseren. Dergelijke hybride methode wordt
ontwikkeld in het tweede deel van deze thesis, met als bijkomende voorwaarde
dat de FE- en BIE-simulatiedomeinen volledig ontkoppeld moeten zijn. Dit wil
zeggen dat ze onafhankelijk van elkaar moeten kunnen gediscretiseerd worden
en dat andere types basisfuncties moeten kunnen aangewend worden. Aan de
hand van snelle multipooltechnieken kunnen de BIE-interacties bovendien ook
versneld worden, zodat de 3D hybride FE-BIE techniek competitief wordt met de
2.5D-simulatiesoftware. De correctheid en enkele eigenschappen van de hybride
methode worden gedemonstreerd aan de hand van numerieke voorbeelden.

Een probleem bij zulke hybride formuleringen is dat de oplossing niet altijd uniek
bepaald is. Bij bepaalde frequenties is het mogelijk dat er interne resonanties op-
treden, waardoor ongewenste parasitaire oplossingen het eindresultaat verstoren.
Dit is een gekend probleem in de literatuur, maar werd in 3D nog nooit funda-
menteel theoretisch onderzocht. Daarom is er ook onderzoek verricht naar de
stabiliteit van verschillende hybride FE-BIE methodes op operatorniveau. Door de
identificatie van een Poincaré-Steklov (PS) of Dirichlet-to-Neumann (DtN) opera-
tor in zowel de FE- als BIE-methode kan er theoretisch worden aangetoond welke
formuleringen vrij zijn van dergelijke interne resonanties en welke niet. Boven-
dien is het mogelijk om voor eenvoudige structuren te voorspellen bij welke fre-
quenties deze resonanties kunnen voorkomen. De theorie wordt daarna gestaafd
aan de hand van numerieke voorbeelden.





Summary

Recent research has led to a new generation planar antennas, which are flexible
and can be made conformal to different surfaces without loss in performance.
Such antennas are unobtrusively integrated into different devices and are placed
closer and closer to each other and to electronics, leading to undesirable inter-
actions. In order to design these antennas efficiently and accurately, so-called
2.5-dimensional (2.5D) simulation software is most suited, since those tools allow
modelling multi-layered planar surfaces without requiring a full 3D discretisation.
However, such simulators have strong limitations. They do not allow bending
the antenna, nor taking into account the finite dimensions of a substrate. Also,
the presence of objects in the reactive near field, such as the object on which
the antenna is deployed, being the human body, a car, an airplane, a more com-
prehensive electronic system ..., can only very approximately be included. When
integrating such antennas unobtrusively, the layers that cover the antenna are also
modelled in a very approximate fashion. Therefore, up to now, these antennas are
designed in an idealised state, after which a prototype is produced that is subse-
quently tested in non-ideal conditions. This eventually leads to a redesign of the
antenna or overspecification of the design criteria.

In the first part of this thesis, it is therefore investigated how the antenna design
via 2.5D simulation software can be extended by means of measurements and
analytical models. Via the design of an intra-vehicle antenna that is specifically
implemented for integration into the dashboard of a car, we demonstrate how a
posteriori measurements validate the antenna performance in realistic conditions.
In order to determine the ideal position of the antenna in the dashboard, the
dashboard is imitated by placing different layers onto the antenna and the whole
module is remeasured.

The extension of 2.5D simulation software by means of analytical models is elabo-
rated for bent antennas, and more specifically for flexible antennas that are cylin-
drically bent. This occurs in situations where a textile antenna is deployed on an
arm or a leg. A cylindrical cavity model is therefore developed as a function of
the bending radius and the resonance frequencies as a function of the bending
radius are obtained by numerically solving the cavity’s dispersion relations, while
the far field patterns are given in closed-form expressions. The advantage of such
a method is that it quickly leads to an accurate result, without first discretising
the problem (which is required for numerical simulation software). Typical for
such flexible antennas is that they also undergo compression when bent. This is
accounted for by adapting the permittivity of the substrate as a function of the
bending radius. A distinction between antennas with a stretchable and a non-
stretchable patch is made.
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The cylindrical cavity model is further expanded for situations where the bending
radius can fluctuate stochastically, but where a statistical distribution of the radius
is known or can be fitted, which is, for example, the case when textile antennas are
deployed on persons with different body morphologies. By means of a technique
based on a generalised polynomial chaos expansion it then becomes possible to
determine the probability distribution of the resonance frequency, given the dis-
tribution of the bending radius. In this formalism, the dispersion relation of the
cavity model is solved only a few times, in contrast to a brute-force Monte Carlo
technique, where the statistical distribution is approximated by performing a large
number of simulations.

The second part of this thesis focuses on modelling antennas together with more
general, complex structures in the free space in a rigorous manner using the
Maxwell equations. In order to also take into account the finite dimensions of the
substrates, we focus on 3D numerical techniques as an improvement over 2.5D
simulation software. In general, two major numerical techniques are considered
for the computer-aided design of such antennas in the frequency domain (where
the antenna characteristics are computed as a function of frequency), i.e. the finite
element (FE) method and the boundary integral equation (BIE) method. The FE
method discretises the simulation domain into small elements and computes local
electromagnetic interactions between these elements. The benefit of this approach
is that inhomogeneous materials are easily modelled, but the drawback is that a
matrix system with a huge number of unknowns needs to be solved. The simu-
lation domain is also truncated, as it is impossible to discretise the full 3D space.
The BIE method first solves the Maxwell equations partially analytically in order to
reduce the dimensions of the problem with one. The asset of this technique is that
it implicitly takes into account the full open space and that only the boundaries
of objects need to be discretised. The disadvantages are that this approach only
works for configurations for which an analytic expression of the Green’s function
is known, such as homogeneous materials, and that the boundary elements now
interact globally, hence resulting in a dense system matrix.

A solution to the drawbacks of the FE and BIE methods is to combine these two
techniques into one hybrid FE-BIE formulation, where each method is employed
in the domains where it is the most efficient, thereby minimising the computa-
tional requirements. Such a hybrid method is developed in the second part of this
thesis, with an extra condition that the FE and BIE simulation domains have to
be completely decoupled. This means that they may be discretised independently
and may rely on different types of basis functions. By means of fast multipole tech-
niques it is possible to accelerate the computation of the BIE interactions, which
makes the 3D hybrid FE-BIE method competitive with the 2.5D simulation soft-
ware. The accuracy and some properties of the hybrid method are demonstrated
by means of numerical examples.

A problem occurring in such hybrid formulations is that the solution is not always
uniquely defined. It is possible that, at certain frequencies, internal resonances oc-
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cur that lead to spurious solutions. This is a well-known problem in literature, but
it was never rigorously theoretically investigated in 3D. Therefore, research was
performed on the stability of different hybrid FE-BIE methods at an operator level.
By identifying a Poincaré-Steklov (PS) or Dirichlet-to-Neumann (DtN) operator in
both the FE and BIE method, it can theoretically be proven which formulations are
free of such internal resonances and which are not. Moreover, it becomes possible
for simple structures to predict the frequencies at which these resonances occur.
Finally, the theory is also verified by means of numerical examples.
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HYBRID ELECTROMAGNETIC SIMULATION TECHNIQUES FOR

THE COMPUTER-AIDED DESIGN OF FLEXIBLE ANTENNAS





Introduction

Wireless communication has become ubiquitous in our daily life. Calling via
smartphones, navigating with GPS or connecting a laptop to a wireless network
are all based on the same principle: to transmit information wirelessly through
space between a sender and a receiver. An electric signal is thereby transformed
by an antenna at the transmitter into a radiating electromagnetic wave that prop-
agates through space at the speed of light and that is eventually transformed back
into an electric signal by the antenna of the receiver.

Depending on the application, different antennas are employed. As an example,
consider the two types of antennas shown in Fig. 1. In Fig. 1(a) a parabolic satel-
lite communications antenna is demonstrated. This type of antenna is designed
to transmit a highly directive signal to a satellite of which the location is known,
whereas Fig. 1(b) displays the internal antenna of a mobile phone, designed to fit
in the casing of the phone and to transmit a non-directive signal to a cell phone
tower at an unknown location. The antennas of Fig. 1 are typically designed by
means of numerical simulators that rely on computational electromagnetics, i.e.
they model the interactions of electromagnetic fields with physical objects and the
environment. These interactions are computed from a set of equations, described
by Maxwell in the 1860s and now (logically) known as the Maxwell equations,
providing the necessary relations between electric and magnetic fields, generated
by currents and charges.

(a) (b)

Figure 1: A parabolic satellite communications antenna at Erdfunkstelle Raisting, the
biggest facility for satellite communication in the world, in Raisting, Bavaria, Germany
(a) and the antenna of a Nokia 8810, the first mobile phone to have an internal antenna.
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There exist various numerical techniques to solve the Maxwell equations both
in time domain, where the behaviour of electromagnetic fields is calculated as a
function of time, and in frequency domain, where the interactions are computed as
a function of frequency. In this thesis, we focus on solving the Maxwell equations
in the frequency domain and we consider two major approaches:

• The Finite Element (FE) method on the one hand discretises the simulation
domain into small elements and computes local interactions between these
elements. The benefit of this approach is that inhomogeneous materials are
easily modelled and that a sparse system matrix is obtained. The drawbacks
are the huge number of unknowns and the truncation of the simulation
domain (as it is impossible to discretise the full 3D space).

• The Boundary Integral Equation (BIE) method on the other hand first
solves the Maxwell equations partially analytically in order to reduce the
dimensions of the problem by one. The asset of this technique is that it
implicitly takes into account the full open space and that only the bound-
aries of objects need to be discretised, leading to much less unknowns in
comparison with the FE method. The disadvantages are that this approach
only works for homogeneous materials and that the boundary elements now
interact globally, hence resulting in a dense system matrix.

None of the two methods can be seen as the better one over the other, because their
performance always depends on the problem that is simulated. This can again be
illustrated by the antennas of Fig. 1. One could best apply the BIE method for
designing the parabolic antenna, as it is constructed using homogeneous materials
and electric conductors, whereas the FE method would be more appropriate for
the mobile phone antenna, because not only the antenna will have to be modelled,
but also the casing of the phone and the electric circuits in it.

In this thesis, we will focus on the design of a new generation of planar antennas,
which are flexible and conformal to different surfaces. An example is demon-
strated in Fig. 2 [1]. Such antennas are unobtrusively integrated into different
devices and are placed closer and closer to each other and to electronics, lead-
ing to undesirable interactions. In order to design these antennas, so-called 2.5-
dimensional (2.5D) BIE simulation tools are ideal, since they allow modelling
multi-layered planar surfaces without requiring a full 3D discretisation. However,
these tools suffer from several drawbacks:

• They do not take into account the finite dimensions of the substrates since
they assume that the surfaces have an infinite extent.

• It is difficult to incorporate other objects in the reactive near field, e.g. the
human body, a car, an electronic system ...

• It is not possible to compute the behaviour of antennas in bent state.
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Figure 2: A flexible planar antenna.

As a result, such antennas are simulated in an idealised environment, causing
discrepancies between simulation and measurement results. This eventually leads
to a redesign of the antenna or overspecification of the design criteria.

The motivation of this thesis is therefore to provide solutions for these problems.
This is done in twofold. First, the 2.5D simulation tools can be complemented
by a posteriori measurements to validate the antenna performance in realistic
conditions and by analytical models in order to describe the behaviour of bent
antennas. This is tackled in Part I. Second, in order to take into account the
finite dimensions and other objects, a 3D hybrid FE-BIE method is developed in
Part II. This method combines the 3D FE and 3D BIE method in order to apply
each method where it is most efficient.

Outline of this work
In Chapter 1 the reader is provided with the necessary background knowledge.
The Maxwell equations are introduced and some typical electromagnetic (EM)
concepts are explained. For a comprehensive analysis of electromagnetism, we
refer to [2], [3].

In Part I, we focus on the problems of 2.5D simulation tools. Chapter 2 presents
the design of a planar antenna for intra-vehicle communication using 2.5D simu-
lation software. This antenna has to be integrated into a dashboard and therefore
non-ideal effects due to the integration of the antenna are investigated by means
of a measurement campaign. In Chapter 3, we provide analytical expressions for
computing the resonance frequency and the radiation pattern of bent textile an-
tennas. By calculating the Maxwell equations in cylindrical coordinates and by
taking into account the effect of compression, a good agreement between simula-
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tions and measurements is obtained. This model is further expanded in Chapter 4
for situations where the bending radius can fluctuate, but where a statistical dis-
tribution of the radius is known (or can be fitted). By applying the technique of
generalised polynomial chaos, it becomes possible to predict the distribution of
the resonance frequency.

In Part II, a 3D non-conformal hybrid FE-BIE method is developed. Therefore, we
start in Chapter 5 by introducing the individual FE and BIE methods and derive
their formulations from the Maxwell equations. Chapter 6 then discusses the hy-
brid formulation with two different boundary conditions. By means of numerical
examples, different properties are explained. Finally in Chapter 7, the stability of
different hybrid FE-BIE formulations is investigated by introducing the concept of
a Poincaré-Steklov operator. This approach allows us to theoretically prove the
existence of internal resonances in some FE-BIE combinations. Both conformal
and non-conformal formulations are investigated and the theory is then applied
to a scattering problem.
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1
Electromagnetic Theory

ÆÆÆ

In this chapter, basic electromagnetic theory is derived from the Maxwell equa-
tions. The scalar and vector potentials are defined, which can then be solved
analytically in Chapter 3 or numerically via the BIE method in Chapter 5. Also
some key properties such as field equivalence, reciprocity and energy conserva-
tion are described. These are necessary for the derivation of the hybrid FE-BIE
system in Chapter 6.

1.1 The Maxwell equations
The Maxwell equations describe the behaviour of the electric field E [V/m], the
magnetic field H [A/m], the electric induction D [C/m2] and the magnetic induc-
tion B [Wb/m2] due to an electric current density J [A/m2], a magnetic current
density K [V/m2], an electric charge density ρ [C/m3] and a magnetic charge
density κ [Wb/m3]. In the frequency domain and at a certain location r, they are
given by [1]

∇× E(r) =− jωB(r)−K(r), (1.1a)

∇×H(r) = jωD(r) + J(r), (1.1b)

∇ ·D(r) = ρ(r), (1.1c)

∇ ·B(r) = κ(r). (1.1d)

This form assumes all entities to be time harmonic, meaning that they all vary
sinusoidally. The time-dependent solution can be derived from

F(r, t) = F(r)e jωt , (1.2)
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with ω= 2π f the pulsation of the sinusoidal variation and f the frequency.

From the Maxwell equations (1.1), the laws of charge conservation can be derived,
which denote that the charge and current densities are not independent from each
other:

∇ · J(r) + jωρ(r) = 0, (1.3a)

∇ ·K(r) + jωκ(r) = 0. (1.3b)

In order to solve an electromagnetic problem, the Maxwell equations (1.1) are
not sufficient. We still need some relations between the fields E and H on the one
hand and the inductions D and B on the other hand. These relations are called
the constitutive equations:

D(r) = ε(r) · E(r), (1.4a)

B(r) = µ(r) ·H(r). (1.4b)

Here, ε(r) and µ(r) denote the permittivity and the permeability tensors, respec-
tively. In this thesis, only isotropic media are considered, meaning that the tensors
can be replaced by scalars (ε(r) = ε and µ(r) = µ).

At the interface between two different materials, the fields are no longer continu-
ous and certain boundary conditions must be fulfilled. These boundary conditions
can be derived from the Maxwell equations (1.1). At an interface S between two
materials 1 and 2, one obtains:

n×
�

E2 − E1
�

=−KS , (1.5a)

n×
�

H2 −H1
�

= JS , (1.5b)

n ·
�

D2 −D1
�

= ρS , (1.5c)

n ·
�

B2 −B1
�

= κS , (1.5d)

with KS and JS the magnetic and electric surface current densities, ρS and κS the
electric and magnetic charge densities, and n the normal to the interface pointing
into material 2.

The boundary condition for open domains is the so-called Sommerfeld radiation
condition, which states that energy radiated from sources cannot scatter back from
infinity. For an isotropic medium with permittivity ε and permeability µ, this
means that in any direction (θ ,φ) of the unit vector ur (in a spherical coordinate
system), the radiation fields must satisfy [2]

lim
r→∞

ur ×H+
1

η
E= 0,

lim
r→∞

ur × E−ηH= 0,

with the wave impedance being η=
p

µ/ε.
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1.2 Scalar and vector potentials
When solving the linear Maxwell equations (1.1), the technique of superposition
can be applied. This means that one can solve the equations once with only electric
sources, once with only magnetic sources and then combine both solutions. The
solution for only electric or magnetic sources can be written in terms of scalar and
vector potentials, which are solutions of Helmholtz equations [2], [3].

1.2.1 Electric sources
When only considering electric current and charge densities as excitations, the
Maxwell equations (1.1) become

∇× E(r) =− jωB(r), (1.6a)

∇×H(r) = jωD(r) + J(r), (1.6b)

∇ ·D(r) = ρ(r), (1.6c)

∇ ·B(r) = 0. (1.6d)

The zero divergence of the magnetic induction in (1.6d) implies the existence of
a vector potential A(r), such that

1

µ
B(r) =∇×A(r), (1.7)

since the divergence of the curl of any vector field is always zero. Remark that
this vector potential is normally introduced for the magnetic induction without
the factor 1/µ, but here we follow the convention used in [3]. Substitution of
(1.7) in (1.6a) then yields

∇×
�

E(r) + jωµA(r)
�

= 0. (1.8)

This, in turn, implies the existence of a scalar potential φ(r), defined by

∇φ(r) =−E(r)− jωµA(r), (1.9)

because the curl of the gradient of any scalar field is always zero.

Expressions for the electric induction and the magnetic field follow from the con-
stitutive equations (1.4). We get

D(r) =− jωεµA(r)− ε∇φ(r), (1.10a)

H(r) =∇×A(r). (1.10b)

In order to define the potentials A(r) and φ(r), we substitute (1.10) into (1.6b)
and (1.6c). This leads to

∇2A(r) + k2A(r)−∇
�

∇ ·A(r) + jωεφ(r)
�

=−J(r), (1.11a)

∇2φ(r) + k2φ(r) + jωµ
�

∇ ·A(r) + jωεφ(r)
�

=−
1

ε
ρ(r), (1.11b)



12 Chapter 1. Electromagnetic Theory

with the wave number being k = ωpεµ. Since A(r) and φ(r) are not uniquely
defined, an additional restriction can be imposed. Here, we apply the Lorentz
gauge

∇ ·A(r) + jωεφ(r) = 0. (1.12)

Then (1.11a) and (1.11b) become the following Helmholtz equations

∇2A(r) + k2A(r) =−J(r), (1.13a)

∇2φ(r) + k2φ(r) =−
1

ε
ρ(r). (1.13b)

1.2.2 Magnetic sources
When only considering magnetic current and charge densities as excitations, the
Maxwell equations (1.1) become

∇× E(r) =− jωB(r)−K(r), (1.14a)

∇×H(r) = jωD(r), (1.14b)

∇ ·D(r) = 0, (1.14c)

∇ ·B(r) = κ(r). (1.14d)

Now the zero divergence of the electric induction (1.14c) implies the existence of
a vector potential F(r), such that

1

ε
D(r) =−∇× F(r). (1.15)

The minus sign in (1.15) is introduced to keep the formulas more symmetric.
Substitution of (1.15) in (1.14b) then yields

∇×
�

H(r) + jωεF(r)
�

= 0. (1.16)

Again, this implies the existence of a scalar potential ψ(r), such that

∇ψ(r) =−H(r)− jωεF(r). (1.17)

The magnetic induction and the electric field are derived from the constitutive
equations (1.4). We get

B(r) =− jωεµF(r)−µ∇ψ(r), (1.18a)

E(r) =−∇× F(r). (1.18b)

In order to determine the potentials F(r) and ψ(r), the equations of (1.18) are
substituted into (1.14a) and (1.14d). This leads to

∇2F(r) + k2F(r)−∇
�

∇ · F(r) + jωµψ(r)
�

=−K(r), (1.19a)

∇2ψ(r) + k2ψ(r) + jωε
�

∇ · F(r) + jωµψ(r)
�

=−
1

µ
κ(r). (1.19b)
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Similar as for electric sources, the potentials F(r) and ψ(r) are not uniquely de-
fined, so the Lorentz gauge can be applied

∇ · F(r) + jωµψ(r) = 0. (1.20)

Then (1.19a) and (1.19b) become the following Helmholtz equations

∇2F(r) + k2F(r) =−K(r), (1.21a)

∇2ψ(r) + k2ψ(r) =−
1

µ
κ(r). (1.21b)

1.2.3 Total fields
With the use of the potentials defined in Section 1.2.1 and Section 1.2.2, the
electric and magnetic field in the presence of both electric and magnetic sources
can be computed. Applying superposition leads to

E(r) =−∇× F(r)− jωµA(r)−∇φ(r), (1.22a)

H(r) =∇×A(r)− jωεF(r)−∇ψ(r). (1.22b)

The electric and magnetic field can also be determined from the vector potentials
only. Inserting the Lorentz gauges (1.12) and (1.20) into (1.22) yields

E(r) =−∇× F(r)− jωµA(r) +
1

jωε
∇ (∇ ·A(r)) , (1.23a)

H(r) =∇×A(r)− jωεF(r) +
1

jωµ
∇ (∇ · F(r)) . (1.23b)

1.3 The equivalence theorem
The equivalence theorem allows to construct new solutions of the Maxwell equa-
tions, starting from a given solution. In this section, we discuss the equivalence
theorem of Love [4], which allows to construct integral kernels in the BIE formu-
lation. It is a consequence of the uniqueness property of electromagnetic fields
and of the source equivalence principle. Therefore, these are described here first.

Consider the configuration of Fig. 1.1(a) where the sources J1, K1, J2 and K2 gen-
erate an electromagnetic field (E,H). A volume V , with boundary ∂ V , is also
defined and encloses the sources J1 and K1. The uniqueness property and the ra-
diation condition then state that the field (E,H) is the only solution of the Maxwell
equations, given these sources. This can be proven by assuming that there are two
possible solutions (E1,H1) and (E2,H2) which eventually have to be equal [3],
[5]. It can also be demonstrated that it is sufficient to know the tangential com-
ponents of E and H on ∂ V in order to uniquely determine the field inside V [6],
[7].
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V
∂ V

E,H

n

J1

K1

J2

K2

E,H

(a)

V
∂ V

E,H

n

J1

K1

Jeq

Keq

Eext = 0,
Hext = 0

(b)

Figure 1.1: The sources J1, K1, J2 and K2 generate a unique electromagnetic field (E,H)
(a). In order to find the same field inside V , the sources J2 and K2 can be replaced by the
equivalent Huygens sources Jeq and Keq (b) on the boundary ∂ V .

Hence, it is clear that two different fields always require two different sources.
However, the reverse is not true, i.e. there may well be different sources that
give rise to the same field inside V . Such sources are then called equivalent with
respect to V . This is demonstrated in Fig. 1.1(b), where the field in V is generated
by a contribution of the original sources J1 and K1 and a contribution of equivalent
sources on ∂ V , which represent the effect of J2 and K2. These equivalent sources
are defined by

Jeq = n×H, (1.24a)

Keq = E× n, (1.24b)

and they correspond to the Huygens sources. Inside V we then find the unique
solution (E,H) and outside V we obtain a zero field, which means that Jeq and Keq
are non-radiating sources. This also follows from the boundary conditions (1.5a)
and (1.5b):

n×
�

E− Eext
�

=−Keq, (1.25a)

n×
�

H−Hext
�

= Jeq, (1.25b)

resulting in Eext = 0 and Hext = 0 in the complete space outside V by invoking
the uniqueness theorem. Therefore, one is allowed to omit the original materials
outside V and add new materials in order to simplify the original problem. This
is the main idea behind the field equivalence theorem of Love, where the outside
materials are replaced by a homogeneous isotropic medium with permittivity εext
and permeability µext. This is beneficial if the inner domain is also filled with a
homogeneous material. One can then choose the outer and inner materials to be
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equal and create a full homogeneous space. This allows us to construct a Green’s
function (see Chapter 5), that can be used in a BIE formulation.

1.4 Reciprocity
In its simplest sense, a reciprocity theorem states that a response of a system
to a source is unchanged when source and measurer are interchanged [3]. Its
properties are pioneered by H.A. Lorentz [8] and play a fundamental role in elec-
tromagnetic theory.

Assume there are two separate source distributions, (J1,K1) and (J2,K2) in a
medium. The fields produced by these sources are (E1,H1) and (E2,H2), respec-
tively. The Maxwell curl equations (1.1a) and (1.1b), together with the constitu-
tive equations (1.4) then imply

∇× E1 =− jωµH1 −K1, (1.26a)

∇×H1 = jωεE1 + J1, (1.26b)

∇× E2 =− jωµH2 −K2, (1.26c)

∇×H2 = jωεE2 + J2, . (1.26d)

Now, we calculate

∇ ·
�

E1 ×H2
�

=− jωµH2 ·H1 −H2 ·K1 − jωεE1 · E2 − E1 · J2, (1.27)

∇ ·
�

E2 ×H1
�

=− jωµH1 ·H2 −H1 ·K2 − jωεE2 · E1 − E2 · J1. (1.28)

Subtracting the last two equations results in:

∇ ·
�

E1 ×H2 − E2 ×H1
�

= H1 ·K2 −H2 ·K1 + E2 · J1 − E1 · J2. (1.29)

After integration over a volume V with surface S, this becomes:
∮

S

�

E1 ×H2 − E2 ×H1
�

· n dS =

∫

V

H1 ·K2 −H2 ·K1 + E2 · J1 − E1 · J2 dV. (1.30)

If the integration domain V is the entire space, the surface integral is cancelled
out thanks to the radiation condition and we obtain the reciprocity theorem:

∫

V

E1 · J2 −H1 ·K2 dV =

∫

V

E2 · J1 −H2 ·K1 dV. (1.31)

1.5 Energy conservation at an interface
Define the Poynting vector S as

S=
1

2

�

E×H∗
�

. (1.32)
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Γ

E1,H1

n2

E2,H2

S2

S1

n1

Figure 1.2: The field (E1,H1) inside a material and field (E2,H2) outside the material
respect the law of energy conservation at the interface Γ .

The integral of this vector over a surface then represents the time-averaged com-
plex power flux through this surface [9]. Now, consider the configuration of
Fig. 1.2. In a material, with boundary Γ , a field (E1,H1) exists. Outside the
material we have the field (E2,H2). A volume V can now be created, that encloses
Γ and is bounded by the two surfaces S1 and S2. The outward normal on the
boundary S1 ∪ S2 of V is n, which is equal to n1 on S1 and n2 on S2. From the
divergence theorem, the outward power flux PS can then be written as:

PS =
1

2

∮

S1

⋃

S2

�

E×H∗
�

· n dS =
1

2

∫

V

∇ ·
�

E×H∗
�

dV. (1.33)

Given the fields (E1,H1) in the first domain and (E2,H2) in the second domain,
(1.33) becomes

PS =
1

2

∮

S1

�

E1 ×H∗1
�

· n1 dS+
1

2

∮

S2

�

E2 ×H∗2
�

· n2 dS =
1

2

∫

V

∇ ·
�

E×H∗
�

dV,

(1.34)
with ni the outward normal of Si . Now let the volume go to zero, then S1 and S2
go to the boundary Γ and the law of energy conservation states:

∮

S1

�

E1 ×H∗1
�

· n1 dS+

∮

S2

�

E2 ×H∗2
�

· n2 dS = 0. (1.35)

This means that the total power flux passing through Γ is identical on both sides
of the interface and thus no power is dissipated in Γ .
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A robust low-profile aperture-coupled quasi-circularly polarised patch antenna
was designed for intra-vehicle communication in the unlicensed 2.45 GHz ISM
band (2.4 GHz - 2.485 GHz). Since dashboards offer a large platform for
invisible integration, the antenna is implemented using materials compatible
with the production process of dashboards. This also allows easy, invisible and
low-cost integration inside a car’s dashboard. A measured gain of 6.437 dBi
and nearly circular polarisation were obtained with the antenna covered by
the different dashboard layers.
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2.1 Introduction

There is a growing interest towards integration of wireless networks in vehicles
for intra-vehicle, vehicle-to-vehicle and vehicle-to-roadside communication. The
purpose of these new technologies is to increase the safety on the road and to
share several types of information. Some examples are Forward Collision Warning,
Green Light Optimal Speed Advisory and Remote Diagnostics [1]. We focus on
intra-vehicle communication and introduce hereby the concept of the Cable Free
Car. Within this concept it becomes possible to connect certain wireless devices
such as PDAs and GSMs to a central infotainment console of the car. These wireless
connections use protocols such as Bluetooth, Wifi and Zigbee that operate in the
unlicensed 2.45 GHz ISM band (2.4 GHz - 2.485 GHz). This requires an antenna
for the console that has to be unobtrusively and invisibly integrated in the vehicle.
The best location for integration is in the dashboard, with the main lobe of the
antenna’s radiation pattern towards the centre of the car [2], [3].

Integration of an antenna into the dashboard has already been attempted in the
past, but with rigid materials as substrates and a via for connecting different lay-
ers [4]. This approach suffers from several disadvantages such as the extra effort
needed for incorporating the non-flexible antenna in the flexible dashboard and
the use of a via, making the antenna vulnerable to pressure, shock and vibration.
Therefore we present, for the first time in literature, the design of a patch antenna
using flexible foams compatible with the production process of dashboards, suit-
able for this type of integration. The use of vias is avoided by relying on aperture
coupling as a feed technique. The antenna is quasi-circularly polarised to min-
imise the effect of polarisation mismatch between a device and the antenna. In
this case, the device doesn’t have to be oriented along a certain direction to obtain
an optimal communication link.

The organisation of this chapter is as follows. Section 2.2 describes the antenna
topology, the material selection and the design. In Section 2.3, the simulated
and measured return loss and axial ratio are presented. Section 2.4 describes
the integration of the antenna into a dashboard and also presents the measured
return loss and axial ratio for different configurations. The conclusions are drawn
in Section 2.5.

2.2 Antenna topology and design

2.2.1 Antenna topology

The antenna must have a planar low-profile structure for easy integration in the
dashboard. This leads to the use of patch antennas, which are also light in weight,
compact and easy to fabricate in mass production. It also has to be shock and
stress resistant, so the use of vias connecting different layers should be avoided.
For this reason an aperture-coupled feeding structure is proposed, which has the
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Figure 2.1: Topology A: top view (a) and side view (b).
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Figure 2.2: Layout of a dashboard

extra advantage of allowing the use of different materials as feed and antenna
substrate, minimising back radiation [5]. Moreover, an active circuit may easily
be integrated onto the feed substrate. The realised antenna topology is shown
in Fig. 2.1. It consists of a nearly-square patch, a crossed slot and a feed line
placed along the diagonal of the cross. Quasi-circular polarisation is obtained by
the excitation of two orthogonal modes in the crossed slot [6], [7].

2.2.2 Integration in the dashboard
First, a sensitivity analysis was performed to check the influence of the alignment
of the different layers on the quasi-circular polarisation. The alignment appeared
to be crucial and hence, the best solution is to integrate the antenna as a separate
module in the dashboard, which consists of three layers: a carrier, a backfoam and
a top layer, as demonstrated in Fig. 2.2 [8]. This leads to two possible configura-
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(a) (b)

Figure 2.3: Two possible schemes for integrating the antenna in the dashboard. Integration
between the backfoam and the top layer (a) and integration between the carrier and the
backfoam (b).

Table 2.1: Possible substrates for the antenna.

Type foam Description εr tanδ

1 Aromatic polyurethane 2.55 0.07

2 Aliphatic polyurethane 2.59 0.08

3 Two-layer complex aromatic + 2.53 0.065

aliphatic polyurethane

4 Aromatic polyurethane with blown air bubbles 1.45 0.03

5 Aromatic polyurethane with blown air bubbles 1.12 0.01

tions for the integration. In a first configuration, the module is placed between the
backfoam and the top layer, so only the top layer covers the antenna. In a second
configuration, the module is integrated between the carrier and the backfoam, so
both the backfoam and the top layer are on top of the antenna. These two inte-
gration schemes are shown in Fig. 2.7. Both configurations were tested and are
discussed further in this chapter.

2.2.3 Material selection

As depicted in Fig. 2.1, the aperture-coupled patch antenna consists of an antenna
substrate and a feed substrate. The feed substrate is preferably thin with a high
relative permittivity εr , whereas the antenna substrate must have a low εr [9],
[10]. In order to find the right materials for these substrates, we were provided
by Recticel R© with some flexible materials typically used in the production process
for dashboards. Their material parameters were determined using the measure-
ment method described in [11] and are shown in Table 2.1. All substrates are
polyurethane based foams, but only type 4 and 5 have encapsulated air bubbles,
providing a low εr . These substrates are also open-cell foams, which means that
the pores are connected, keeping a good flexibility. Types 1, 2 and 3 are closed-
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Table 2.2: Optimised parameters of the intra-vehicle antenna.

Parameter Size [mm]

Patch (L×W ) 50.1 × 45.2

Slot (L×W ) 21.8 × 2.2

Stub 6.17

Feed 2.8

cell foams, which means that the pores are not connected, resulting in a denser
polyurethane substrate providing a high εr . The chosen substrates are type 5 as
antenna substrate and type 3 as feed substrate. The choice for the feed substrate
was also determined by the loss tangent, because the relative permittivity of the
first three types are almost equal. The feed substrate has a thickness of 1 mm and
the antenna substrate has a thickness of 5.1 mm.

The antenna patch, feed line and ground plane are etched copper layers on a very
thin polyimide carrier.

2.2.4 Antenna design
The design was carried out by imposing design criteria for the reflection coefficient
(S11) and the axial ratio (AR) in the 2.45 GHz ISM band:

S11 <−10dB, (2.1)

AR< 3dB. (2.2)

The 2.5D full-wave field simulator ADS Momentum R© was used for the optimisa-
tion. The optimised parameters are shown in Table 2.2.

2.3 Simulations and measurements in open
space

After fabrication, a measurement of the reflection coefficient was performed us-
ing an HP8510C network analyser. The comparison between the simulated and
measured reflection coefficient is shown in Fig. 2.4. The simulated bandwidth is
385 MHz and the measured bandwidth is 435 MHz. The entire 2.45 GHz ISM band
is covered.

The axial ratio as a function of the frequency was obtained by means of a transmis-
sion measurement in an anechoic chamber. The resulting curve, for the broadside
direction, is shown in Fig. 2.5. One observes a shift of the curve towards lower
frequencies. The centre frequency is 2.41 GHz and the AR-bandwidth is about
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Figure 2.4: Simulated and measured reflection coefficient for the antenna in open space.
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Figure 2.5: Simulated and measured axial ratio for the antenna in open space.

85 MHz. As can be seen in Fig. 2.5, the antenna is not fully circularly polarised
in the entire 2.45 GHz ISM band, but this is not an absolute requirement as quasi-
circular polarisation is only used to minimise the polarisation mismatch between
transmitter and receiver.

The fabricated antenna exhibits a measured radiation efficiency of 64.3% and the
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Figure 2.6: Radiation pattern in the xz-plane (a) and the yz-plane (b). The radiation
pattern in open space is given by the dashed line, whereas the radiation pattern for the
antenna placed between the carrier and the backfoam is plotted by the solid line.
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Figure 2.7: Picture of the antenna in configuration a (a) and configuration b (b).

maximal gain is 6.714 dBi. The 3 dB beam width is 62◦ in both the xz-plane and
yz-plane and the forward/backward ratio is 14 dB. The radiation patterns in the
xz-plane and the yz-plane are shown in Fig. 2.6.

2.4 Simulations and measurements in the car

As mentioned before, there are two possible configurations for integrating the an-
tenna into a vehicle’s dashboard. These two configurations were tested by means
of covering the antenna with the appropriate layers provided by Recticel R©, as
shown in Fig. 2.7.
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Figure 2.8: Measured reflection coefficient for the antenna in open space and in the dif-
ferent configurations. Configuration a has only the top layer on the antenna, whereas
configuration b has both the top layer and the backfoam on the antenna.

2.4.1 Integration between the backfoam and the top
layer

This configuration was imitated by placing the top layer on the antenna. The
measured reflection coefficient, compared to the return loss in open space, can be
seen in Fig. 2.8. One notices a -10 dB bandwidth of 480 MHz with the 2.45 GHz
ISM still entirely covered.

The measured axial ratio in broadside direction is shown in Fig. 2.9. The curve has
shifted towards lower frequencies and there is no circular polarisation anymore in
the ISM band.

This configuration clearly affects the antenna characteristics too much and hence
will not be a good solution.

2.4.2 Integration between the carrier and the backfoam

The integration between the carrier and the backfoam was imitated by placing
both the backfoam and the top layer on the antenna. We were provided with
backfoams of different thicknesses, so we did measurements with the thickest
(9.12 mm) and the thinnest (4.37 mm) ones.

The measured reflection coefficient is shown in Fig. 2.8 and one notices that both
configurations cover the entire ISM band. The configuration with the thinnest



2.4. Simulations and measurements in the car 29

2.3 2.35 2.4 2.45 2.5
0

1

2

3

4

5

6

Frequency [GHz]

A
xi

al
ra

ti
o
[d

B
]

original
configuration a
configuration b (thin)
configuration b (thick)

Figure 2.9: Measured axial ratio for the antenna in open space and in the different config-
urations. Configuration a has only the top layer on the antenna, whereas configuration b
has both the top layer and the backfoam on the antenna.

backfoam has a -10 dB bandwidth of 505 MHz, the other one a bandwidth of
425 MHz.

Fig. 2.9 shows the measured axial ratio in broadside direction. The curve is the
least affected in the configuration with the thickest backfoam. One notices that
the antenna is quasi-circularly polarised in the ISM band.

The configuration with the thickest backfoam exhibits a measured radiation effi-
ciency of 63.7% and the maximal gain is 6.437 dBi. The 3 dB beam width is 68◦

in both the xz-plane and yz-plane and the forward/backward ratio is 13 dB. The
radiation patterns in the xz-plane and the yz-plane are shown in Fig. 2.6.

2.4.3 Comparison between the two configurations

The configuration with the antenna integrated between the carrier and the back-
foam leads to the best results. The dense top layer affects the characteristics the
most, so this layer has to be as far away from the antenna as possible. This can
be done by placing the backfoam in between the antenna and the top layer. This
backfoam acts as an air gap and will not have a large influence on the antenna
characteristics.
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2.5 Conclusion
The proposed antenna is capable of covering the entire 2.45 GHz ISM band (span-
ning 2.4 GHz - 2.485 GHz). Also the requirement for quasi-circular polarisation
has been fulfilled.

When integrating the antenna into a dashboard, there is only a small deterioration
in antenna characteristics if the antenna is integrated between the carrier and the
backfoam. This demonstrates the feasibility of invisibly integrating the antenna
into the dashboard of a vehicle.
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Textile patch antennas are well known as basic components for wearable
systems that allow communication between a human body and the external
world. Due to their flexibility, textile antennas are subjected to bending when
worn, causing a variation in resonance frequency and radiation pattern with
respect to the flat state in which their nominal design is performed. Hence,
it is important for textile antenna engineers to be able to predict these perfor-
mance parameters as a function of the bending radius. Therefore, we propose a
a comprehensive analytical model that extends the cylindrical cavity model for
conformal rigid patch antennas by incorporating the effects of patch stretching
and substrate compression. It allows us to predict the resonance frequency and
the radiation pattern as a function of the bending radius. Its validity has been
verified experimentally. Unlike previous contributions, which concerned only
qualitative studies by means of measurements and numerical full-wave sim-
ulations, the proposed model offers advantages in terms of physical insight,
accuracy, speed and cost.
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3.1 Introduction

Textile antennas emerged during the last decade as a new promising class of
antennas that are particularly suitable for use in wearable applications [1]–[5].
These antennas can be fully integrated into intelligent garments, known as wear-
able electronic systems [6], enabling the transmission of data collected by wear-
able sensors or the reception of signals sent to wearable actuators integrated into
clothing. The applications of wearable systems and textile antennas are numer-
ous, ranging from rescue workers interventions’ coordination to monitoring of
dependent patients in hospital and sports applications.

In order to allow an optimal integration into garments without hindering the
wearer’s movements and comfort, the most suitable topology for a textile antenna
is the planar patch. This flexible patch may be subjected to bending when the
garment is worn, conforming its shape to the surface on which it is placed. As
a result, also stretching of the patch (resulting in an elongation of the resonant
length) and substrate compression (leading to a variation of the dielectric permit-
tivity as a function of the bending radius) can occur.

Since the beginning of textile antenna design, these effects have been taken into
account, however, they were not well-known and were compensated for by in-
creasing the antenna bandwidth and validating the design afterwards by experi-
ments [4]. Hence, it is essential to model the behaviour of the antenna under bent
conditions and to predict the influence of bending on the resonance frequency and
the radiation pattern. Full-wave simulation approaches are a potential solution,
but most available commercial software tools do not offer the possibility of build-
ing a conformal mesh for bent structures, which results in inaccuracies in the
obtained results. Moreover, these simulations do not offer physical insight into
the bending mechanisms and may require high computational effort and time.
Therefore, we propose analytical formulas that help the designer to assess a pri-
ori the effects of bending, stretching and compression. The focus is on cylindrical
bending in particular, since, for wearable applications, textile antennas are usually
deployed on cylindrical surfaces such as a human arm, a leg or a torso.

This study starts from past research efforts on rigid conformal antennas attached
to cylindrical surfaces, of which several contributions can be found in literature.
Krowne started by extending the popular cavity model for the rectangular patch
antenna (introduced by Lo et al. in 1979 [7]) to the cylindrical case [8]. Reso-
nance frequencies for the TEz and TMz modes were theoretically derived, though
radiation patterns were not calculated in this model. A more comprehensive study
was performed by Dahele et al. [9] and Luk et al. [10]. Their cavity model is only
valid for patch antennas with a very thin substrate, but resonance frequencies, far
fields, input impedances and Q-factors were derived analytically. Other analytical
approaches were also introduced, which allow to calculate radiation patterns of
antennas with patches of arbitrary shape [11]–[13]. However, they are based on
an electric surface current model and assume the surface current distribution to
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be known on the patch.

Cylindrical bending of deformable textile antennas has been an important sub-
ject in recent papers, but exclusively from an experimental point of view [4],
[5], [14]–[16]. The general conclusions drawn from these contributions are that
bending causes an upward shift of the resonance frequency, a broadening of the
radiation pattern, a decrease in gain along broadside and an alteration of the po-
larisation (in case of a circularly polarised antenna). Yet, these studies are rather
qualitative and do not provide physical insight into the complex mechanisms oc-
curring due to antenna bending.

Here, we try to overcome all drawbacks of the previous analysis methods by
proposing a comprehensive study on cylindrical bending of rectangular textile
patch antennas. An analytical model based on the cylindrical cavity model for
conformal antennas, which allows to calculate both the resonance frequency and
the radiation pattern, is constructed. This offers the advantage of requiring only
small computational effort for calculating the main antenna performance param-
eters.

In order to model deformable textile patch antennas, some novel extensions to
rigid conformal antenna models are proposed:

1. Wearable textile antennas are usually realised with electrotextiles as conduc-
tive patch materials, which are subjected to stretching when the antenna is
bent. This causes an elongation of the patch along one direction and shifts
the resonance frequency [17]. This behaviour is integrated into the model
by introducing a factor that determines the location of the original patch
width.

2. Textile antennas are subjected to compression when bent, which causes a
variation of its dielectric permittivity. This can be tackled by proposing an
expression for the compressed permittivity εr,comp as a function of the bend-
ing radius.

The model is validated in twofold.

1. A theoretical validation is performed for large curvature radii using Debye’s
expansion for large-order Bessel functions. By doing so, the expressions for
the planar cavity should be found.

2. Experimental validation is carried out by measuring five prototypes based
on different substrates with different thicknesses, patch materials and oper-
ation frequencies.

The organisation of this chapter is as follows. First, the cavity model for
cylindrical-rectangular antennas is described in Section 3.2. The expressions for
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Figure 3.1: Geometry of the cavity: top view (a) and side view (b).

the resonant fields inside the cavity are calculated, from which the resonance
frequencies and radiation patterns are derived. In Section 3.3, the cavity model is
verified for large curvature radii by comparing the obtained dispersion relations
with the expression for resonance frequencies in rectangular cavities. Section 3.4
presents the experimental results. The proposed model is verified by means of five
textile antenna prototypes with different geometries and material characteristics.
Both resonance frequencies and radiation patterns are compared. Finally, the
general conclusions are summarised in Section 3.5.

3.2 Theory

The geometry of the cylindrical cavity representing the textile antenna is shown
in Fig. 3.1. The length and width of the wearable antenna are denoted by L and
W and the flexible dielectric substrate has a height h and relative permittivity εr .
The curvature radius is a and the angle formed by the edges of the patch is β .

In order to obtain a relationship between W , a and β , one has to take into account
whether the antenna patch is stretchable or not. According to [17], the following
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relations exist for stretchable patches:

∆W

W
=

h

2a+ h
, (3.1a)

β(a+ h) =W +∆W, (3.1b)

with W +∆W the width of the bent patch. This is shown in Fig. 3.2. Combining
(3.1a) and (3.1b) leads to

β

�

a+
h

2

�

=W. (3.2)

This means that the original patch width is located at ρ = a + h
2

due to patch
elongation. If the patch is non-stretchable, the patch length does not vary when
bending the antenna and ground plane crumpling occurs. The original width W
is then still located at ρ = a+ h.

Because textile antennas can be constructed using both stretchable as non-
stretchable patches, we introduce a factor d (Fig. 3.2) that determines the
location of the original width:

W = β (a+ hd) . (3.3)

This factor d can take values between 0.5 and 1. For perfectly stretchable patches
we find that d = 0.5 and for perfectly non-stretchable patches d = 1.

3.2.1 The cavity model
We now proceed with the derivation of the cylindrical cavity model [8]. Similar
as for planar cavity models, the cavity is bounded by electric walls at ρ = a and
ρ = a+ h and magnetic walls at φ =±β

2
and z =± L

2
.
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The electric and magnetic fields inside the cavity are given by (1.23):

E=−∇× F− jωµA+
1

jωε
∇ (∇ ·A) , (3.4a)

H=∇×A− jωεF+
1

jωµ
∇ (∇ · F) , (3.4b)

where, given the translation invariance of the structure, the vector potentials are
defined by

A= Azuz ,

F= Fzuz .

The scalar wave functions Az and Fz obey the scalar Helmholtz equation

∇2ψ+ k2ψ= 0, (3.5)

with k2 = εr k2
0. In cylindrical coordinates (ρ,φ, z), this translates into

1

ρ

∂

∂ ρ

�

ρ
∂ψ

∂ ρ

�

+
1

ρ2

∂ 2ψ

∂φ2 +
∂ 2ψ

∂ z2 + k2ψ= 0. (3.6)

It is well-known that equations like this can be solved by separation of variables.
Therefore, we substitute ψ

�

ρ,φ, z
�

= R
�

ρ
�

Φ
�

φ
�

Z(z) into the wave equation
(3.6), what leads to the following system:

Z ′′ (z) + k2
z Z (z) = 0, (3.7a)

Φ′′
�

φ
�

+ k2
φΦ
�

φ
�

= 0, (3.7b)

R′′
�

ρ
�

+
1

ρ
R′ρ+

 

k2 − k2
z −

k2
φ

ρ2

!

R
�

ρ
�

= 0, (3.7c)

for which the following solutions are found:

Z (z) = Acos(kzz) + B sin(kzz), (3.8a)

Φ
�

φ
�

= C cos(kφφ) + D sin(kφφ), (3.8b)

R
�

ρ
�

= EJkφ

�

kρρ
�

+ FYkφ

�

kρρ
�

. (3.8c)

Here are J and Y the Bessel functions of the first and second kind, respectively,
and is kρ =

p

k2 − k2
z .

TE mode

The TEz mode is found by choosing A = 0. From (3.4a), it is clear that the z-
component of the electric field then disappears. After applying the boundary con-
ditions on (3.8), we obtain

ψ= Rkφ (kρρ) sin
�

kφφ +
mπ

2

�

cos
�

kzz+
nπ

2

�

, (3.9)
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where

Rkφ (kρρ) = cTE

�

Y ′kφ (kρa)Jkφ (kρρ)− J ′kφ (kρa)Ykφ (kρρ)
�

, (3.10)

and

kφ =
mπ

β
, (3.11a)

kz =
nπ

L
. (3.11b)

The constant cTE is a proportionality coefficient for the TEz mode. Further in this
chapter, we will also refer to the TEz mode as the TEmn mode.

TM mode

The TMz solution can be found by choosing F = 0. It is now clear from (3.4b)
that the magnetic field has no z-component. Applying the boundary conditions on
(3.8) leads to

ψ= Rkφ (kρρ) cos
�

kφφ +
mπ

2

�

sin
�

kzz+
nπ

2

�

, (3.12)

where

Rkφ (kρρ) = cTM

�

Ykφ (kρa)Jkφ (kρρ)− Jkφ (kρa)Ykφ (kρρ)
�

(3.13)

and the wave numbers kφ and kz are the same as in (3.11). The constant cTM is a
proportionality coefficient for TMz mode. Similar as for the TEz mode, further in
this chapter, the TMz mode will also be referred to as the TMmn mode.

3.2.2 Resonance frequency
In order to find the expressions for ψ for the TEmn and the TMmn modes, all
boundary conditions were applied, except one for each mode. In order to invoke
this last boundary condition, ψ must satisfy a dispersion relation. For the TEmn
modes, this dispersion relation becomes

J ′kφ (kρa)Y ′kφ
�

kρ(a+ h)
�

= J ′kφ
�

kρ(a+ h)
�

Y ′kφ (kρa). (3.14)

For the TMmn modes, one finds

Jkφ (kρa)Ykφ

�

kρ(a+ h)
�

= Jkφ

�

kρ(a+ h)
�

Ykφ (kρa). (3.15)

The resonance frequencies of the antenna in bent state are found as zeros of these
transcendental equations.
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3.2.3 Radiation pattern
The radiation pattern can be calculated from the equivalent magnetic currents
M= Eρuρ × un along the edges of the curved patch [10], [18].

In general, Eρ can be written as

Eρ = λ(ρ) cos
�

mπ

β
φ+

mπ

2

�

cos
�nπ

L
z+

nπ

2

�

, (3.16)

where λ(ρ) is a mode-dependent factor. For the TEz modes, λ(ρ) is defined as

λTE(ρ) =−
1

ρ

mπ

β
R mπ

β

 r

k2−
�nπ

L

�2

ρ

!

.

For the TMz modes, λ(ρ) becomes

λTM(ρ) =−
jω

ε

nπ

L

r

k2−
�nπ

L

�2

R′mπ
β

 r

k2−
�nπ

L

�2

ρ

!

.

The far-field components then follow from:

Eθ = jωµ0
e− jk0 r

πr
sinθ

+∞
∑

p=−∞
e jpφ jp+1 fp

�

−k0 cosθ
�

, (3.17a)

Eφ =− jk0
e− jk0 r

πr
sinθ

+∞
∑

p=−∞
e jpφ jp+1 gp

�

−k0 cosθ
�

. (3.17b)

Remark that, according to the convention of Harrington, the elevation angle θ is
measured from the z-axis. The auxiliary functions fp(u) and gp(u) are defined as
follows:

fp(u) =
jωε0M̃φ(p, u)

�

k2
0 − u2

�

H(2)p

�

(a+ h)
p

k2
0 − u2

� , (3.18a)

gp(u) =
1

p

k2
0 − u2H(2)′p

�

(a+ h)
p

k2
0 − u2

�

·

 

−M̃z(p, u) +
pu

(a+ h)
�

k2
0 − u2

� M̃φ(p, u)

!

, (3.18b)

with

M̃φ(p, u) =
1

2π

∫ 2π

0

∫ +∞

−∞
Mφ

�

a+ h,φ, z
�

e− jpφe− juz dz dφ, (3.19a)

M̃z(p, u) =
1

2π

∫ 2π

0

∫ +∞

−∞
Mz
�

a+ h,φ, z
�

e− jpφe− juz dz dφ. (3.19b)
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In order to find Mφ

�

ρ,φ, z
�

and Mz
�

ρ,φ, z
�

, it is important to know that the
structure radiates from the fringing fields that are exposed above the substrate
at the edges of the patch. Hence, these equivalent magnetic currents need to be
found at φ =±β

2
and z =± L

2
.

At φ = −β
2

, we find with un = −uφ that M = Mzuz . The components Mz and M̃z
are then

Mz
�

ρ,φ, z
�

=−λ
�

ρ
�

cos
�nπ

L
z+

nπ

2

�

, (3.20a)

M̃z(p, u) =−λ (a+ h) e jp β
2

1

2π

∫
L
2

− L
2

cos
�nπ

L
z+

nπ

2

�

e− juz dz. (3.20b)

Similarly, at φ = β

2
, we find with un = uφ:

Mz
�

ρ,φ, z
�

= λ
�

ρ
�

(−1)m cos
�nπ

L
z+

nπ

2

�

, (3.21a)

M̃z(p, u) =−λ (a+ h) (−1)me− jp β
2

1

2π

∫
L
2

− L
2

cos
�nπ

L
z+

nπ

2

�

e− juz dz.

(3.21b)

At z = − L
2
, M = Mφuφ , because un = −uz . The components Mφ and M̃φ then

become

Mφ

�

ρ,φ, z
�

= λ
�

ρ
�

cos
�

mπ

β
φ +

mπ

2

�

, (3.22a)

M̃φ(p, u) = λ (a+ h) e ju L
2

1

2π

∫
β

2

− β
2

cos
�

mπ

β
φ +

mπ

2

�

e− jpφ dφ. (3.22b)

Finally, at z = L
2
, un = uz and we obtain:

Mφ

�

ρ,φ, z
�

=−λ
�

ρ
�

(−1)n cos
�

mπ

β
φ +

mπ

2

�

, (3.23a)

M̃φ(p, u) =−λ (a+ h) (−1)ne− ju L
2

1

2π

∫
β

2

− β
2

cos
�

mπ

β
φ +

mπ

2

�

e− jpφ dφ.

(3.23b)

The components M̃φ and M̃z are then

M̃φ(p, u) =−λ(a+ h) σ (n, uL) I
�

m, p,β
�

, (3.24a)

M̃z(p, u) = λ(a+ h) σ
�

m, pβ
�

I (n, u, L) , (3.24b)
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with

σ(q, a) = (−1)qe− j a
2 − e j a

2 ,

I(q, a, b) =

∫
b
2

− b
2

cos
�qπ

b
x +

qπ

2

�

e− jax dx = j
ab2 σ

�

q, ab
�

a2 b2 − q2π2 .

After substitution of these results in (3.18) and in (3.17), the following far-field
components are found:

Eθ =
λ(a+ h)
2π2 sinθ

e− jk0 r

r
σ
�

n,−Lk0 cosθ
�

·
+∞
∑

p=−∞

e jpφ jp+1 I(m, p,β)

H(2)p
�

(a+ h)k0 sinθ
�

, (3.25a)

Eφ = j
λ(a+ h)

2π2

e− jk0 r

r
·
+∞
∑

p=−∞

e jpφ jp+1

H(2)′p
�

(a+ h)k0 sinθ
�

�

σ(m, pβ)I(n,−k0 cosθ , L)

−
p cosθ σ(n,−Lk0 cosθ) I(m, p,β)

(a+ h)k0 sin2θ

�

. (3.25b)

3.3 Validation of the model for large
curvature radii

Now, the analytical model will be verified for the limit case where the curvature
radius a tends to ∞. A rectangular cavity is then obtained and the following
relation should be found:

k2 =
�mπ

W

�2

+
�nπ

L

�2

+
�

lπ

h

�2

. (3.26)

By rewriting (3.14) and (3.15) using the substitutions

ν =
mπ

β
, (3.27a)

secα=

r

k2 −
�nπ

L

�2 W − βhd

mπ
, (3.27b)

secγ=

r

k2 −
�nπ

L

�2 W − βh(d − 1)
mπ

, (3.27c)

we obtain

Jν (ν secα)Yν
�

ν secγ
�

= Jν
�

ν secγ
�

Yν (ν secα) , (3.28a)

J ′ν (ν secα)Y ′ν
�

ν secγ
�

= J ′ν
�

ν secγ
�

Y ′ν (ν secα) . (3.28b)
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When taking the limit for a to∞, ν also goes to∞, while α and γ remain constant.
Debye’s asymptotic expansion for large-order Bessel functions can then be utilised
for ν →∞ [19]:

Jν
�

ν secχ
�

∼

r

2

πν tanχ

�

cosξ
∞
∑

k=0

U2k
�

j cotχ
�

ν2k

− j sinξ
∞
∑

k=0

U2k+1
�

j cotχ
�

ν2k+1

�

, (3.29a)

Yν
�

ν secχ
�

∼

r

2

πν tanχ

�

sinξ
∞
∑

k=0

U2k
�

j cotχ
�

ν2k

+ j cosξ
∞
∑

k=0

U2k+1
�

j cotχ
�

ν2k+1

�

, (3.29b)

J ′ν
�

ν secχ
�

∼

r

sin2χ

πν

�

− sinξ
∞
∑

k=0

V2k
�

j cotχ
�

ν2k

− j cosξ
∞
∑

k=0

V2k+1
�

j cotχ
�

ν2k+1

�

, (3.29c)

Y ′ν
�

ν secχ
�

∼

r

sin 2χ

πν

�

cosξ
∞
∑

k=0

V2k
�

j cotχ
�

ν2k

− j sinξ
∞
∑

k=0

V2k+1
�

j cotχ
�

ν2k+1

�

, (3.29d)

with
ξ= ν

�

tanχ −χ
�

−
π

4
,

and Uk(p) and Vk(p) polynomials in p of degree 3k, given by U0(p) = V0(p) = 1,
and

Uk+1
�

p
�

=
1

2
p2
�

1− p2
�

U ′k
�

p
�

+
1

8

∫ p

0

�

1− 5t2
�

Uk(t) dt,

Vk+1
�

p
�

= Uk+1
�

p
�

−
1

2
p
�

1− p2
�

Uk
�

p
�

− p2
�

1− p2
�

U ′k
�

p
�

.

Using the lowest-order Debye’s expression, one finds for both the dispersion rela-
tions:

sinξ cosξ′ = sinξ′ cosξ (3.30)
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with

ξ= ν (tanα−α)−
π

4
,

ξ′ = ν
�

tanγ− γ
�

−
π

4
.

This leads to

ξ′ = ξ+ lπ, (3.31a)

tanγ− γ= tanα−α+
l

m
β . (3.31b)

Assuming that h << λ, a first-order Taylor expansion can be performed on
tanγ(h)− γ(h) and tanα(h)− α(h) for h→ 0. Therefore, we first need to deter-
mine dα

dh
and dγ

dh
. By calculating the derivative of the left hand sides of (3.27b) and

(3.27c) to α and γ, respectively, and their right hand sides to h, the derivatives
are easily found:

dα

dh
=−

r

k2 −
�nπ

L

�2 βd

mπ

cos2α

sinα
, (3.32a)

dγ

dh
=−

r

k2 −
�nπ

L

�2β(d − 1)
mπ

cos2 γ

sinγ
. (3.32b)

The first order Taylor expansions around h= 0 are then

tanα(h)−α(h)≈ tanα(0)−α(0) + h

 

−

r

k2 −
�nπ

L

�2 βd

mπ
sinα(0)

!

, (3.33a)

tanγ(h)− γ(h)≈ tanγ(0)− γ(0) + h

 

−

r

k2 −
�nπ

L

�2β(d − 1)
mπ

sinγ(0)

!

.

(3.33b)

Since α(0) = γ(0), the first order Taylor expansion of expression (3.31b) becomes:

sinα(0) =
lπ

h

1
q

k2 −
�

nπ
L

�2
. (3.34)

Combining (3.27b) and (3.34) results in:
√

√

√

√1−
1

�

k2 −
�

nπ
L

�2
�

�

W
mπ

�2 =
lπ

h

1
q

k2 −
�

nπ
L

�2
, (3.35)

which finally leads to (3.26) and verifies the transition to a rectangular cavity.
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3.4 Comparison of experimental and
theoretical results

Using this model, the resonance frequencies and radiation patterns of flexible tex-
tile antennas can be calculated analytically. However, when comparing the mea-
sured resonance frequencies of a fabricated textile antenna with the frequencies
obtained from our model for different bending radii, a discrepancy is noticed. This
is due to the fact that textile antennas are subjected to compression when bent.
Consequently, the substrate permittivity will change as a function of the bending
radius. This effect needs to be incorporated in our model in order to provide a
good prediction of the resonance frequency. In other words, an expression for the
permittivity εr,comp of a substrate subjected to compression needs to be found.

3.4.1 Experimental setup
By measuring five prototypes with different specifications and constructed on dif-
ferent flexible materials, the effect of several parameters on εr,comp is investigated.
Their geometry is displayed in Fig. 3.3. All prototypes are fed by a probe feed
structure, with the probe located on the perpendicular bisector of the Lp edge.

Prototype 1 and 2 are both fabricated on aramid substrates and are designed for
the 1.57 GHz GPS band. The patch material of prototype 1 is the stretchable
electro-textile Flectron R©, whereas non-stretchable copper foil is used for proto-
type 2. Prototype 3, 4 and 5 are fabricated on cotton substrates and have copper
foil as patch material. Prototypes 3 and 5 are designed for the 1.57 GHz GPS
band, whereas prototype 4 operates in the 2.45 GHz ISM band. The difference
between prototype 3 and 5 is the thickness of the substrate. The parameters of
the prototypes are shown in Table 3.1, where the substrate height h is determined
based on the ISO 5084 standard [20].

For these prototypes, the resonance frequencies in flat and bent state are mea-
sured by means of a PNA-X vector network analyser. The bent states are realised
by attaching the antennas to plastic cylinders with different radii ranging from
31.5 mm to 90 mm. These radii resemble typical curvatures of human body parts.

When the antennas are bent in the Wp-direction, the model is used by setting
L = Lp and W = Wp. According to the model, the TE10 mode is then excited
and (3.14) needs to be solved in order to determine the resonance frequency.
Similarly, when bending the antennas in the Lp-direction, one has to set L = Wp
and W = Lp. According to the model, the TM01 mode is then excited and the
resonance frequency follows from (3.15).

3.4.2 Compression effects on the permittivity
After comparing the measured resonance frequencies of the prototypes for the
different bending radii, the following observations are made:
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Figure 3.3: Geometry of a prototype.

Table 3.1: Parameters of the prototypes.

Prototype Lp [mm] Wp [mm] h [mm] yf [mm] εr d

1 81.2 69.25 2 16 1.75 0.5

2 81.2 69.25 2 16 1.75 1

3 78.5 69.3 2.7 17 1.715 1

4 52.5 43.7 2.7 11 1.715 1

5 78.5 68.3 4.04 16.8 1.715 1

1. The εr,comp is inversely proportional to the bending radius a, since com-
pression becomes stronger as the curvature radius decreases. Because of
this compression, air is pushed out of the substrate and the permittivity in-
creases.

2. The part of the substrate that undergoes the largest compression has a
height h(d − 0.5) and εr,comp is directly proportional to this.

3. The compression is not frequency dependent.

Based on these observations, an empirical formula for εr,comp can be found:

εr,comp = εr,flat

�

1+η
h(d − 0.5)

a

�

. (3.36)

The permittivity εr,flat is obtained by evaluating (3.26) after measuring the an-
tenna in flat state under well-defined environmental conditions. It therefore cap-
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Table 3.2: Proportionality factors η for the compression correction term.

Prototype TE10 mode TM01 mode

2 1.589 0.380

3 1.497 0.214

4 1.472 0.592

5 1.485 0.654

tures effects such as humidity, temperature, fringing effects, etc., while the second
term in (3.36) isolates the effect of bending. The parameter h is the height of the
flexible substrate in flat state, measured according to the ISO 5084 standard. This
simplifies the work of the designer, since he doesn’t need to measure the height of
the substrates for each bending radius.

Expression (3.36) also takes into account the following remarks:

1. When a tends to∞, the antenna becomes planar and εr,flat is found.

2. For perfectly stretchable antennas, εr,comp = εr,flat. Hence, the resonance
frequency will not change when the antenna is bent.

The proportionality factor η can be found for each prototype with a non-
stretchable patch by minimising an error function τ(η), defined by

τ(η) =
1

N

N
∑

i=1

∣∣ fmod,i(η)− fmeas,i

∣∣
fmeas,i

. (3.37)

This function represents the relative mean error between the modelled and mea-
sured resonance frequencies of a bent prototype, with N the number of cylinders.

The calculation of η is carried out iteratively by combining MATLAB’s minimisation
function fminsearch with our analytical model in Maple. The obtained values for
both the TE10 and the TM01 modes are shown in Table 3.2. The η-values for the
TE10 modes are quite similar, whereas the values for the TM01 mode exhibit larger
differences. Also, there is a significant difference between the values for the TE10
mode and the TM01 mode. This is due to the geometry and feeding structure of the
prototypes. The solid feed points are not located in the centre of the patches and
thus produce different compression effects, depending on whether the prototypes
are bent in the Wp-direction or the Lp-direction.

Table 3.3 and Table 3.4 display the error values when using εr = εr,flat (shown as
τ(0)) and εr = εr,comp (shown as τ(η)) for the TE10 mode and the TM01 mode
respectively. A constant small error of ca. 0.1% can be found for all prototypes
when using the ideal proportionality factor η, validating the use of (3.36).
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Table 3.3: Relative mean error between the modelled and measured resonance frequencies
of the bent prototypes for the TE10 mode.

Prototype τ(0) [%] τ(η) [%]

1 0.09 0.09

2 1.56 0.03

3 1.97 0.09

4 1.94 0.07

5 2.91 0.12

Table 3.4: Relative mean error between the modelled and measured resonance frequencies
of the bent prototypes for the TM01 mode.

Prototype τ(0) [%] τ(η) [%]

1 0.04 0.04

2 0.37 0.03

3 0.23 0.07

4 0.76 0.10

5 1.28 0.07

3.4.3 Resonance frequency
Fig. 3.4 shows the modelled and measured resonance frequencies of prototypes
1 and 3 as a function of the bending radius when the antennas are bent in the
Wp-direction. Prototype 1 has a stretchable patch, so patch elongation occurs
and the substrate will not be compressed (εr,comp = εr,flat). Consequently, the
resonance frequency does almost not change when the antenna is bent. Proto-
type 3 has a non-stretchable patch, therefore the resonance frequency will change
with varying curvature radii. The resonance frequencies obtained from the model
with and without compression correction are displayed, where the model with-
out compression correction can be seen as if the antenna would be conformally
attached to the cylinders. Since the prototypes are flexible deformable antennas,
the measured curve follows the curve obtained from the model with compression
correction. One also notices that the increase in resonance frequency for smaller
bending radii is not as distinct as compared to the conformal case. This behaviour
is also observed for the other prototypes.

In Fig. 3.5, the modelled and measured resonance frequencies of prototypes 1 and
3 are displayed as a function of the bending radius when the antennas are bent
in the Lp-direction. According to the model, the resonance frequency of prototype
1 does not vary since no compression occurs and the resonant length is not bent
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Figure 3.4: Resonance frequencies of prototypes 1 and 3 as a function of the bending radius
when the antennas are bent along the Wp-direction.

3 4 5 6 7 8 9 10

1.52

1.54

1.56

1.58

1.60

Curvature radius [cm]

Fr
eq

ue
nc

y
[G

H
z]

prot. 1: model
prot. 1: measurement
prot. 3: model with εr,flat

prot. 3: model with εr,comp

prot. 3: measurement

Figure 3.5: Resonance frequencies of prototypes 1 and 3 as a function of the bending radius
when the antennas are bent along the Lp-direction.

in TMz mode. For prototype 3, a decrease in resonance frequency now occurs for
smaller bending radii. This effect is purely due to compression of the substrate,
which can also be noticed by comparison with the curve obtained from the model
without compression correction, where the resonance frequency doesn’t change.
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Figure 3.6: Radiation pattern in x y-plane of prototype 1 for 1.567 GHz when bent in the
Wp-direction. The bending radii are 90 mm (a) and 31.5 mm (b). The modelled radiation
pattern is drawn by the solid line, the measured radiation pattern is plotted by the dashed
line.

Again, this result is also observed for the other prototypes.

As a footnote, we like to point out the difference in resonance frequency for the
flat state between Fig. 3.4 and Fig. 3.5. The measurements for the TMz case were
performed later in time than those for the TEz case. As a result, the resonance
frequencies of the prototypes have changed due to humidity effects. This effect is
larger for prototype 3 than for prototype 1, since the cotton substrate suffers more
from this effect than the aramid substrate [21]. However, the model still remains
accurate, since it only takes into account bending effects. In other words, using
this formulation, the effect of bending on the behaviour of deformable antennas
can be isolated.

3.4.4 Radiation pattern
Fig. 3.6 shows the modelled and measured radiation patterns in the x y-plane (as
defined in Fig. 3.1) of the stretchable prototype 1 for curvature radii of 90 mm
and 31.5 mm at a frequency of 1.567 GHz (the resonance frequency of the planar
antenna) when the antenna is bent in the Wp direction. The radiation pattern
calculated by the model is normalised w.r.t. the measured gain in broadside di-
rection, since only its shape can be predicted. For a curvature radius of 90 mm,
the measured 3 dB beamwidth is 75◦ and the modelled 3 dB beamwidth is 80◦.
For a bending radius of 31.5 mm, the measured 3 dB beamwidth is 86◦ and the
modelled 3 dB beamwidth is 84◦.

On Fig. 3.7, the modelled and measured radiation patterns in the x y-plane of
the non-stretchable prototype 2 are displayed for curvature radii of 90 mm and
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Figure 3.7: Radiation pattern in x y-plane of prototype 2 for 1.573 GHz when bent in the
Wp-direction. The bending radii are 90 mm (a) and 31.5 mm (b). The modelled radiation
pattern is drawn by the solid line, the measured radiation pattern is plotted by the dashed
line.

31.5 mm at a frequency of 1.573 GHz (the resonance frequency of the planar
antenna) when the antenna is bent in the Wp-direction. For a curvature radius of
90 mm, the measured 3 dB beamwidth is 70◦ and the modelled 3 dB beamwidth is
80◦. For a bending radius of 31.5 mm, the measured 3 dB beamwidth is 88◦ and
the modelled 3 dB beamwidth is 86◦.

There is no distinct difference between the shape of the radiation patterns of pro-
totype 1 and 2. Hence, stretching has almost no influence on the radiation pattern
of bent flexible antennas. Also, from the model we conclude that the use of the
corrected permittivity due to compression has almost no influence on the radiation
pattern.

Fig. 3.8 shows the modelled and measured radiation patterns in the x y-plane of
prototype 2 for curvature radii of 90 mm and 40 mm at a frequency of 1.573 GHz
when the antenna is bent in the Lp-direction. For a curvature radius of 90 mm, the
measured 3 dB beamwidth is 85◦ and the modelled 3 dB beamwidth is 82◦. For a
bending radius of 40 mm, the measured 3 dB beamwidth is 94◦ and the modelled
3 dB beamwidth is 94◦.

The influence of bending on the gain along broadside direction and the 3 dB
beamwidth is shown in Fig. 3.9. The measured gain and 3 dB beamwidth of pro-
totype 1 and 2 when the antennas are bent in the Wp-direction are displayed. For
smaller bending radii, a decrease of the maximum gain and an increase of the 3 dB
beamwidth is noticed. This effect is stronger for antennas with non-stretchable
patches. The same results can be found when bending the antennas along the Lp
direction.
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Figure 3.8: Radiation pattern in x y-plane of prototype 2 for 1.573 GHz when bent in the
Lp-direction. The bending radii are 90 mm (a) and 40 mm (b). The modelled radiation
pattern is drawn by the solid line, the measured radiation pattern is plotted by the dashed
line.
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Figure 3.9: Measured gain and 3 dB beamwidth of prototypes 1 and 2 when the antennas
are bent in the Wp-direction. The solid lines indicate the gain along broadside, the dashed
lines show the 3 dB beamwidths.
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3.5 Conclusion
In this chapter, a novel analytical model for cylindrically bent textile patch an-
tennas was proposed. The starting point was the existing analytical model for
conformal cylindrical-rectangular patch antennas, in which additional effects due
to stretching and compression were incorporated. The model allows to calculate
textile antenna performance parameters, such as resonance frequency and radi-
ation pattern, as a function of the bending radius. Moreover, it answers to the
need for a fast and accurate prediction tool for bent textile patch antennas, in
contrast to previously proposed measurement- or simulation-based analysis meth-
ods, which are time consuming, expensive and do not provide physical insight
into the mechanisms of bending. The resonance frequencies as a function of the
bending radius can be obtained by numerically solving the cavity’s dispersion rela-
tions, while the far field patterns are given in closed-form expressions. Two main
novelties were introduced in the proposed model, dedicated to the particular case
of textile antennas:

1. The patch elongation due to stretching has been derived by geometrical
considerations and has been taken into account in the model.

2. An expression for the substrate permittivity as a function of the bending
radius has been proposed, which isolates the effect of bending from all other
external effects.

The validity of the proposed model has been successfully verified in two ways.
First, it was analytically demonstrated that for large curvature radii (i.e. for
a → ∞) the dispersion relations converge to the one valid for the flat state.
Secondly, an experimental verification of the model was performed by means of
a measurement campaign in which the resonance frequencies and the radiation
patterns of five different textile patch antenna prototypes were measured for dif-
ferent bending radii. In particular, the new model now captures the following two
effects:

1. Concerning the resonance frequency, the measurements showed a signifi-
cant variation for antennas with a non-stretchable patch and a nearly con-
stant resonance frequency for antennas with a perfectly stretchable patch.

2. Regarding the radiation patterns, the experiments demonstrated that
stretching has almost no influence on the radiation pattern of bent flexible
antennas.

In summary, an excellent agreement is now obtained between measured results
and the new model.

Based on the obtained results, it can be concluded that the proposed model repre-
sents a valuable tool for textile antenna design engineers, allowing performance
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prediction and analysis of bent textile antennas. The model shows clear advan-
tages with respect to previously employed methods, such as measurements and
simulations, in terms of accuracy and computational cost. Moreover, it provides
physical insight into bending mechanisms of textile patch antennas.
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In the previous chapter, it was shown that textile antennas are subjected to
bending when worn, resulting in a shift of the resonance frequency, which
can be predicted by solving the correct dispersion relation. However, wearable
antennas in garments are actually subjected to varying bending conditions
when deployed on persons with different body morphologies. Therefore, a fast
and accurate design tools quantifying the uncertainty due to bending along
different curvature radii is needed. We present such a technique based on
generalised polynomial chaos combined with the cavity model of Chapter 3.
The non-intrusive stochastic method solves the corrected dispersion relation
for the resonance frequencies of a set of radius of curvature realisations. These
radii correspond to the Gauss quadrature points belonging to the orthogonal
polynomials having the probability density function of the random variable as
a weighting function. The formalism is applied to different distributions for
the radius of curvature, either using a priori known or on-the-fly constructed
sets of orthogonal polynomials. The accuracy and efficiency of the approach
are shown by comparison to Monte Carlo simulations and by experimental
validation.
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4.1 Introduction
In the last decade, we witnessed a rapid growth of smart textiles and interactive
fabrics, where electronic circuits capable of sensing and communicating with their
environment are integrated in apparel. As key components of these systems, the
design of textile antennas needs special care [1]–[4]. Wearable antenna garments
may be subjected to bending and crumpling [5]. Moreover, their radiation effi-
ciency may drop due to proximity of the human body. Whereas the latter problem
is easily countered by adopting a microstrip patch antenna topology with a suffi-
ciently large ground plane, the former is typically mitigated by overspecifying the
requirements for the antenna in planar state. The designer then aims for a larger
bandwidth and a higher return loss than actually required in the intended applica-
tion. Yet, this approach may increase effects of out-of-band interference and cost
of the system. A more judicious design requires that deterministic full-wave elec-
tromagnetic solvers be extended with stochastic methods that statistically quantify
randomness in the antenna’s figures of merit, allowing to capture the effect of un-
certainty in the wearable antenna’s performance parameters due to variations in,
for example, the radius of curvature of the flexible antenna due to

1. movements and activity of one wearer;

2. variations in body morphology when deploying a wearable antenna on dif-
ferent persons.

This chapter specifically focuses on the second scenario, as our experiments dem-
onstrated that movements in the first scenario do not lead to large variations in
the curvature radius, resulting in a negligible shift of the resonance frequency.

As Monte-Carlo simulations require many realisations to accurately capture the
statistics of the random process, they are too time-consuming to be used as de-
sign tools. Therefore, generalised polynomial chaos [6] was introduced as a more
effective way to rapidly model uncertainty due to variations in the input param-
eters. Recently, in addition to techniques that quickly determine lower-order sta-
tistical moments [7], many new intrusive and non-intrusive procedures were pro-
posed [8] and applied to transmission lines [9]–[11] and multiport microwave
circuits [12]. Yet, none of them is dedicated to antenna design. In particular, the
proposed techniques are suitable to describe simple variations in the geometry, but
become very complex when modelling curved antennas at different bending radii,
to characterise the uncertainty on the resonance frequency due to randomness in
the radius of curvature. For this problem, the stochastic full-wave approach is still
too CPU-intensive and a designer might want to rely on a faster, albeit more ap-
proximate, technique to estimate the probability density function of an antenna
performance characteristic due to variations in the antenna geometry.

Therefore, we propose a new efficient formalism that provides a fast and accurate
description of the statistics of the resonance frequency thanks to
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1. the use of a recently proposed cavity model for curved microstrip patch
antennas [13] that empirically accounts for textile substrate compression
and subsequent change in substrate height and permittivity occurring when
bending textile antennas;

2. the application of a non-intrusive generalised polynomial chaos formalism
[14] that takes as inputs the solutions of the dispersion equation of the cav-
ity model for radii of curvature coinciding with the quadrature points that
correspond to the orthogonal polynomials having as a weighting function
the probability density function of the input random variable.

This set of orthogonal polynomials is either readily available, such as the Legendre
polynomials for a uniform distribution, or, for an arbitrary distribution [15], con-
structed on-the-fly by applying the Modified Chebychev algorithm [16] followed
by the Golub-Welsch algorithm [17] to obtain the quadrature points and weights.

In Section 4.2 the non-intrusive polynomial chaos theory is applied to determine
the statistics of the resonance frequencies of the textile patch antenna for a given
statistical distribution of the radius of curvature. In Section 4.3 the novel tech-
nique is validated both numerically and experimentally. First, a numerical verifi-
cation is performed for different distributions of the input random variable, being
a Gaussian, uniform and truncated Gaussian distribution for the radius of curva-
ture of the patch antenna, by comparing the probability density function obtained
with the new method to the distribution found by applying Monte Carlo simu-
lations. Next, the technique is experimentally validated by means of a real-life
example considering the deployment of textile patch antennas on human arms.
The conclusions are summarised in Section 4.4.

4.2 Statistics of the resonance frequency of a
curved textile patch antenna

We now combine the dedicated cavity model for curved textile patch antennas
with a non-intrusive generalised polynomial chaos algorithm to determine the
statistics of the resonance frequency based on a minimal number of realisations.

4.2.1 Non-intrusive generalised polynomial chaos

Assume that an input random variable X , in our case the radius of curvature of a
bent textile antenna, is given and that we want to determine the variation on the
output variable Y , in our case the resonance frequency of the patch, due to the
statistical variation of X , following the cumulative distribution function PX and
probability density function dPX in the sample space Ω. To determine statistics
of Y , we rely on the Wiener-Askey scheme [8] to approximate the transformation
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Y = f (X ) by the polynomial expansion of order P

Y ≈ f P(X ) =
P
∑

k=0

yX
k φ

X
k (X ). (4.1)

An optimal expansion is obtained when the set of expansion polynomials forms a
complete orthogonal basis in Ω with orthogonality relation

D

φX
i (x),φ

X
j (x)

E

=

∫

Ω

φX
i (x)φ

X
j (x)dP

X (x)

=
D

�

φX
i

�2
E

δi j . (4.2)

In this case, the Cameron-Martin’s convergence theorem ensures exponential con-
vergence to the function Y = f (X ) for P →∞. By relying on the Askey scheme, we
can directly make use of several families of orthogonal polynomials corresponding
to well-established distributions dPX (x), as shown in Table 4.1 [6]. To determine
the unknown expansion coefficients yX

k , we apply Galerkin weighting to (4.1) and
make use of (4.2) to obtain

yX
j = E[Y (x)φX

j (x)] =

∫

Ω

Y (x)φX
j (x)dP

X (x). (4.3)

We can now conveniently approximate the integral by a suitable N -point Gauss
quadrature rule, being

yX
j ≈

N
∑

i=1

wiY (x i)φ
X
j (x i), j = 0, 1, . . . , P. (4.4)

where the quadrature points x i are given by the N zeros of φX
N (x) in Ω and with

wi the corresponding weights. In order to evaluate (4.4), we must evaluate Y =
f (X ) for N realisations of the random variable X corresponding to the quadrature
points. In contrast to intrusive methods, this technique may be applied to any
function or procedure taking x i as an input and yielding Y (x i) as an output. Here,
we apply the non-intrusive formalism to the cavity model of Chapter 3.

Note that, in order to evaluate the moments of the output distribution PY , we
do not need to revert to (4.1), as they might be directly computed based on the
knowledge of the Y (x i) generated in order to calculate (4.4). Indeed, we have
that

E[g(y)] =

∫

Ωy

g(y)dPY (y)

=

∫

Ω

g(Y (x))dPX (x)≈
N
∑

i=1

wi g
�

Y (x i)
�

, (4.5)

for an arbitrary function g(y).
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Table 4.1: The correspondence of the type of Wiener-Askey polynomial chaos and their
underlying continuous random variables.

Random variable distribution Wiener-Askey polynomials Support

Gaussian Hermite polynomials (−∞,∞)
Gamma Laguerre polynomials [0,∞)

Beta Jacobi polynomials [a, b]

Uniform Legendre polynomials [a, b]

4.2.2 On-the-fly construction of the orthogonal
polynomials φX

j (x)

Although the Askey scheme provides analytic expressions for sets of orthogo-
nal polynomials corresponding to many widely-used distributions, many practical
cases exist where the required set is not readily available for the distribution at
hand. Assume, for example, that the radius of curvature is distributed follow-
ing a normal distribution. The infinite support of the Gauss distribution is not
compatible with the practical fact that textile antennas deployed on the human
body only have a positive radius of curvature. This means that, in practice, we
must truncate the normal distribution to a finite support. In this case, we do not
have a set of orthogonal polynomials readily available. Therefore, we on-the-fly
construct the set of polynomials that are orthogonal to the truncated Gaussian
distribution as a weighting function. Although many techniques exist to orthogo-
nalise monic polynomials, the problem is known to be notoriously ill-conditioned.
We start from the set of Hermite polynomials corresponding to the Gauss distri-
bution with infinite support and use the Modified Chebychev algorithm [16] to
transform the recurrence relation for Hermite polynomials to a recurrence rela-
tionship for polynomials orthogonal to the truncated normal distribution. Next,
we apply the Golub-Welsch algorithm [17] to derive the quadrature points x i and
weights wi required to evaluate (4.4). This procedure can be used to construct a
set of orthogonal polynomials for any arbitrary distribution of the input random
variables.

The modified Chebychev algorithm

The modified Chebychev algorithm is a moment-based method that allows to
transform a set of orthogonal polynomials to a new set of polynomials, orthog-
onal over a new domain. It can be applied with any system of monic polynomials
satisfying a three-term recurrence relation.

Define the original set of monic orthogonal polynomials with respect to measure
dl as

pk+1(t) = (t − ak)pk(t)− bk pk−1(t), k = 0,1, 2, . . . (4.6)
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with p−1(t) = 0, p0(t) = 1, ak ∈ R and bk ≥ 0. The three-term recurrence relation
of the new set, with respect to measure dλ, is defined as

πk+1(t) = (t −αk)πk(t)− βkπk−1(t), k = 0,1, 2, . . . (4.7)

with π−1(t) = 0 and π0(t) = 1. This new set can also be written as

πk = pk +O(k− 1),
= (t − ak−1)pk−1(t)− bk−1pk−2(t) +O(k− 1),
= t pk−1(t) +O(k− 1), (4.8)

where O(k− 1) stands for a polynomial of order k− 1.

Now the mixed moments can be introduced:

σkl =

∫

πk(t)pl(t) dλ(t), k, l ≥−1. (4.9)

Note that by orthogonality σkl = 0 for k > l and from (4.8), we obtain
∫

π2
k(t) dλ(t) =

∫

πk(t)t pk−1(t) dλ(t) = σkk, k ≥ 1. (4.10)

The coefficients αk and βk in (4.7) are found from σk+1,k−1 = 0 and σk+1,k = 0.
Indeed, σk+1,k−1 = 0 yields

0=

∫

�

(t −αk)πk(t)− βkπk−1(t)
�

pk−1(t) dλ(t),

= σkk − βkσk−1,k−1, (4.11)

whereas σk+1,k = 0 leads to

0=

∫

�

(t −αk)πk(t)− βkπk−1(t)
�

pk(t) dλ(t),

=

∫

πk(t)t pk(t) dλ(t)−αkσkk − βkσk−1,k,

= σk,k+1 + (ak −αk)σkk − βkσk−1,k. (4.12)

Hence, from (4.11) and (4.12), we find that

βk =
σkk

σk−1,k−1
, (4.13a)

αk = ak +
σk,k+1

σkk
−
σk−1,k

σk−1,k−1
, (4.13b)

σkl = σk−1,l+1 − (αk−1 − al)σk−1,l − βk−1σk−2,l + blσk−1,l−1, (4.13c)

which allows us to recursively determine αk and βk.
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The Golub-Welsch algorithm

Once the three-term recurrence relation for the new monic polynomials is known,
the Golub-Welsch algorithm can be applied to calculate the Gauss quadrature
rules. Therefore, start by identifying the recurrence relation (4.7) with the fol-
lowing matrix equation
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or equivalently

tp(t) = Tp(t) +πN (t)en, (4.15)

with en = (0,0, . . . , 1)T . It is shown in [18] that if the polynomials are orthonor-
mal, T becomes a symmetric matrix. In the case where T is not symmetric, a
diagonal similarity transformation can be performed

DT D−1 = J =
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As already mentioned in Section 4.2.1, the quadrature points are the zeros of
πN (t) and from (4.15) it is clear that πN (t j) = 0 only if t jp(t j) = Tp(t j), where
t j is an eigenvalue of the tridiagonal matrix T . Remark that the eigenvalues of
T and J are identical because of the similarity transformation. The quadrature
weights w j are found via the following property [18]:

w j[p(t j)]
T [p(t j)] = 1, j = 1,2, . . . , N . (4.17)

Now, since the eigenvectors q(t j) = (q0(t j), q1(t j), . . . , qN−1(t j))T of J correspond
to orthonormal polynomials, we get

[q(t j)]
T [q(t j)] = 1. (4.18)

The orthogonal eigenvectors p(t j) and q(t j) only scale by a constantω, since their
corresponding matrices are similar. This means that (4.17) can be written as

w jω
2[q(t j)]

T [q(t j)] = w jω
2 = 1. (4.19)
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The weights w j are thus easily derived from the eigenvectors of J . It suffices to
consider 1 component of each eigenvector in order to determine these weights

w j =
q2

0(t j)

π2
0(t j)

= q2
0(t j). (4.20)

4.3 Results
We now illustrate our approach for different textile patch antenna prototypes sub-
jected to cylindrical bending when deployed on an arm or a leg. The ability to iso-
late variations in the antenna’s figures of merit due to bending only is an important
asset of the non-intrusive polynomial chaos approach. Indeed, conventional tech-
niques that merely rely on measurements of textile antenna prototypes can only
characterise the overall variations due to the aggregate effect of many different
adverse factors. To keep this chapter concise, we concentrate on bending in the
direction of the patch width Wp only, solving the transcendental equation (3.14),
since bending in this direction gives rise to the largest variation in the resonance
frequency of the antenna. However, if one is also interested in studying or adding
effects originating from fabrication tolerances, humidity, temperature, etc., it is
sufficient to replace the dispersion relation by a different relation that takes these
effects into account and apply the same technique on it. In a similar fashion, vari-
ations in the figures of merit of other antenna types, such as dipole antennas, may
be studied.

In a first part, our technique based on generalised polynomial chaos is numeri-
cally validated in terms of speed and accuracy by comparison to a Monte Carlo
approach for different distributions for the radius of curvature. Experimental val-
idation is performed in a second part by means of a real-life example. It will also
be shown that the distributions and their parameters used in the first part indeed
correspond to real-life applications.

4.3.1 Numerical validation
For the numerical validation, let us use the five prototypes of Chapter 3, con-
structed on different flexible materials and exhibiting different specifications. The
dimensions of each prototype are repeated in Table 4.2.

We consider two nominal application scenarios where the prototype 2 textile an-
tenna is bent in the direction of the patch width Wp: a textile antenna deployed
on the human leg, with an average radius of curvature R = 10 cm and a flexible
antenna deployed on the human arm, corresponding to a mean radius of curva-
ture R = 5 cm. We now assume that, due to variations in body morphologies of
multiple persons, the radius of curvature behaves as a random variable following
a Gaussian distribution. Due to the infinite support of the normal distribution, we
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Table 4.2: Parameters of the prototypes.

Prototype Lp [mm] Wp [mm] h [mm] yf [mm] εr d

1 81.2 69.25 2 16 1.75 0.5

2 81.2 69.25 2 16 1.75 1

3 78.5 69.3 2.7 17 1.715 1

4 52.5 43.7 2.7 11 1.715 1

5 78.5 68.3 4.04 16.8 1.715 1
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Figure 4.1: CDFs of the resonance frequency for the prototype 2 textile antenna deployed
on the arm with a mean radius of curvature R = 5 cm, assuming a Gaussian distribution
with standard deviation σ = 7 mm, a uniform distribution over the interval [1 cm, 9 cm],
and a Gaussian distribution truncated to the interval [2 cm, 9 cm] with standard deviation
σ = 2cm.

need to restrict the range of acceptable values for the standard deviation in order
to avoid unrealistic (negative) values for the radius of curvature. Assuming a uni-
form distribution, by relying on a set of Legendre polynomials, and a truncated
Gaussian distribution, using a set of on-the-fly constructed orthogonal polynomi-
als following Section 4.2.2, allows us to consider larger variations for the radius
of curvature.

Let us first compare the distributions obtained for prototype 2 based on non-
intrusive generalised polynomial chaos and Monte Carlo simulations. Fig. 4.1
presents the cumulative distribution functions (CDFs) obtained for the textile an-
tenna deployed on a human arm with a mean radius of curvature R = 5 cm,
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Figure 4.2: PDF of the resonance frequency for the prototype 2 textile antenna deployed
on the leg assuming a Gaussian distributed radius of curvature with mean R = 10 cm and
standard deviation σ = 17 mm.

considering a Gaussian distribution with standard deviation σ = 7 mm, a uniform
distribution over the interval [1 cm, 9 cm], and a Gaussian distribution truncated
to the interval [2 cm, 9 cm]with standard deviation σ = 2 cm. An excellent agree-
ment is found between our non-intrusive generalised polynomial chaos method
and the Monte Carlo approach. Yet, on the one hand, to apply the Monte Carlo
technique, the dispersion relation (3.14) is evaluated for 50 000 realisations on
an Intel R© Core

TM
i7-2760QM CPU operating at 2.40 GHz with 8 GB RAM using

Mathematica 8.0, taking 4 min 51 s, 5 min 21 s, and 5 min 10 s of CPU-time
for the Gaussian, uniform and truncated Gaussian distributions, respectively. In
order to apply the non-intrusive polynomial chaos, on the other hand, adopting
a conservative strategy for all distributions considered, we evaluated (4.4) at 33
quadrature points, requiring 1.4 s to compute the dispersion relation (3.14) at
these points.

Fig. 4.2 presents the probability density function (PDF) when the prototype 2
textile antenna is deployed on a human leg and subjected to bending following
a Gaussian distributed radius of curvature along the patch width Wp with mean
R= 10 cm and standard deviationσ = 17 mm. For this smallσ, the distribution of
the resonance frequency does not differ that much from a Gaussian distribution.
Due to the non-linear dependence of the resonance frequency on the bending
radius, we see that the output PDF exhibits a slight positive skew of 1.319 (1.325
based on the Monte Carlo simulation). Yet, we notice a good agreement with the
Monte Carlo simulation when using Hermite polynomials up to order P = 3 in the
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Figure 4.3: PDF of the resonance frequency for the prototype 2 textile antenna deployed
on the leg considering a uniformly distributed radius of curvature in the interval [2 cm, 18
cm].

Wiener-Askey expansion (4.1).

When the radius of curvature is uniformly distributed over an interval of width
16 cm centred around R = 10 cm, in Fig. 4.3 we observe that the output PDF
for the resonance frequency differs a lot from the uniform input distribution. The
skewness of the output distribution has now increased to 1.579 (an identical value
is found using Monte Carlo simulation). We obtain a good agreement between the
Monte-Carlo simulation and the generalised polynomial chaos based on Legendre
polynomials of orders up to P = 21.

Next, we consider a Gaussian distribution around the mean bending radius R= 10
cm that is truncated to the interval [2 cm, 30 cm]. As the distribution’s support
is now finite, compared to the complete Gaussian distribution, we may increase
the standard deviation now to σ = 5 cm. For illustrative purposes, we delib-
erately chose to make the input distribution asymmetrical, exhibiting a positive
skew of 0.35. The modified Chebychev algorithm is then applied to generate the
appropriate basis of orthogonal polynomials after which the N = 33 quadrature
points follow from the Golub-Welsch algorithm. The output PDF for the resonance
frequency shown in Fig. 4.4, generated using the basis of on-the-fly constructed
polynomials to construct the generalised polynomial expansion (4.1) of order up
to P = 16, is in excellent agreement with the histogram generated using the Monte
Carlo data. The PDF now exhibits a skewness of 2.004 (2.026 based on the Monte
Carlo simulation).

To investigate the convergence of the generalised polynomial chaos expansion
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Figure 4.4: PDF of the resonance frequency for the prototype 2 textile antenna deployed
on the leg considering a Gaussian distributed radius of curvature truncated to the interval
[2 cm, 30 cm] with mean R= 10 cm and standard deviation σ = 5cm.

5 10 15 20 25 30
2.36

2.37

2.38

2.39

2.40

2.41

2.42

Arm radius [cm]

R
es

on
an

ce
fr

eq
ue

nc
y
[G

H
z]

P = 3
P = 6
P = 9
P = 16
19 quadrature points

Figure 4.5: Prototype 4 bent around a human leg with a radius of curvature following a
Gaussian distribution truncated to the interval [2 cm, 30 cm] with mean R = 10 cm and
standard deviation σ = 5 cm. Polynomial chaos expansion f P(X ) for different maximum
polynomial orders P.
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Figure 4.6: Prototype 4 bent around a human leg with a radius of curvature following a
Gaussian distribution truncated to the interval [2 cm, 30 cm] with mean R = 10 cm and
standard deviation σ = 5 cm. PDF of the output random variable for different maximum
polynomial orders P.

(4.1) as a function of the maximum polynomial order P, we consider prototype
4, which is a textile patch antenna resonating close to the 2.45 GHz ISM band.
We assume that the antenna is bent along the Wp direction around a human leg,
and that the radius of curvature follows a truncated Gaussian in the interval [2
cm, 30 cm] with mean R = 10 cm and standard deviation σ = 5 cm. In Fig. 4.5
we plot the function f P(X ), transforming the input random variable, being the
bending radius R, to the output random variable, being the resonance frequency
fr , for different polynomial orders P. In the process, we reduced the number of
quadrature points from 33 to 19, as it was found that this does not significantly
reduce the accuracy of the expansion coefficients. These 19 quadrature points
used in (4.4) are also plotted in Fig 4.5. Fig. 4.6 shows the corresponding effect
of the expansion order P on the probability density function. One notices that the
expansion up to order P = 3 only provides a poor fit to the output distribution,
whereas for P = 6 and P = 9, the approximation starts to converge to the actual
PDF, exhibiting Gibbs-like oscillations that decrease with higher values of P. For
P = 16, the PDF has fully converged to the correct function Y = f (X ).

Table 4.3 provides the median resonance frequency and the 90% confidence in-
terval, bounded by the 5th and 95th percentiles when bending the different textile
antenna prototypes along the Wp direction around a human arm with a radius of
curvature following a Gaussian distribution truncated to the interval [2 cm, 9 cm]
with mean R = 5 cm and standard deviation σ = 2 cm. The resonance frequency
of prototype 1 at 1.57 GHz in planar state exhibits a negligible shift to a median
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Table 4.3: Statistical properties of the resonance frequencies when positioning different
prototypes on a human arm with a radius of curvature following a Gaussian distribution
truncated to the interval [2 cm, 9 cm] with mean R = 5 cm and standard deviation σ = 2
cm. (numbers between parentheses: results obtained by means of Monte Carlo simulations)

Prototype median [GHz] 5th percentile [GHz] 95th percentile [GHz]

1 1.5701 1.57004 1.57037

(1.5701) (1.57004) (1.57036)

2 1.58194 1.57989 1.58707

(1.58194) (1.57989) (1.58703)

3 1.55299 1.54975 1.56098

(1.55297) (1.54975) (1.56092)

4 2.3964 2.39113 2.40942

(2.39637) (2.39114) (2.40948)

5 1.53585 1.53124 1.54661

(1.53584) (1.53123) (1.54673)

frequency of 1.5701 GHz with a very narrow 90% confidence interval spanning
320 kHz. The fact that the resonance frequency remains very stable when bending
the antenna results from the use of the stretchable electro-textile Flectron as con-
ductive material for antenna patch and ground plane. When applying copper foil
for the antenna patch and the ground plane, as for antenna prototype 2, we no-
tice a significant shift in resonance frequency from 1.576 GHz in planar state to a
median resonance frequency of 1.58194 GHz in bent state, with a 90% confidence
interval spanning 7.2 MHz. Similar behaviour is observed for the cotton-based
prototype 3 where the resonance frequency of 1.5435 GHz in planar state shifts
to a median resonance frequency of 1.55299 GHz in bent state, with a 90% con-
fidence interval spanning 11.2 MHz. Prototype 5, for which a thicker antenna
substrate was used, exhibits a larger resonance frequency shift from 1.522 GHz in
planar state to a median resonance frequency of 1.53585 GHz in bent state, with
a broader 90% confidence interval spanning 15.4 MHz. Prototype 4, operating
close to the 2.45 GHz ISM band with a resonance frequency of 2.381 GHz, has its
resonance frequency shifted to a median resonance frequency of 2.3964 GHz in
bent state, with a 90% confidence interval spanning 18.3 MHz.

Table 4.4 provides the median resonance frequency and the 90% confidence inter-
val, when bending the different textile antenna prototypes along the Wp direction
around a human leg with a radius of curvature following a Gaussian distribution
truncated to the interval [2 cm, 30 cm] with mean R = 10 cm and standard devi-
ation σ = 5 cm. Similar conclusions can be drawn as for the antennas deployed
on the arm.
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Table 4.4: Statistical properties of the resonance frequencies when positioning different
prototypes on a human leg with a radius of curvature following a Gaussian distribution
truncated to the interval [2 cm, 30 cm] with mean R = 10 cm and standard deviation
σ = 5 cm. (numbers between parentheses: results obtained by means of Monte Carlo
simulations)

Prototype median [GHz] 5th percentile [GHz] 95th percentile [GHz]

1 1.57002 1.57001 1.57019

(1.57002) (1.57001) (1.57019)

2 1.57903 1.57773 1.5841

(1.57903) (1.57773) (1.5841)

3 1.54838 1.54629 1.55638

(1.54839) (1.5463) (1.55645)

4 2.3889 2.38553 2.40192

(2.38889) (2.38554) (2.40192)

5 1.52925 1.52619 1.54052

(1.52927) (1.52617) (1.5405)

4.3.2 Experimental validation
In the previous part, the proposed technique was validated for different probability
distribution functions for the curvature radius of textile antennas. However, in
real-life applications, this distribution is mostly not readily available and must be
fitted on measured sample data. We now demonstrate how this fitted analytical
PDF then forms the starting point for our technique.

Consider the design of a textile antenna, similar to prototype 2, that has to be
worn on a human arm. Since we focus on the fluctuations in arm radius for per-
sons with different morphology wearing the antenna, the PDF of the arm radius for
a representative population needs to be known. This distribution can be derived
from measurement campaigns, such as NHANES [19], that provide databases of
sample data. Fig. 4.7 shows the histogram of the arm radius after measuring the
arm circumference of 7,056 persons. It is compiled using freely available NHANES
examination data of 2009-2010, selecting persons larger than 1.40 m and heavier
than 40 kg. The histogram of the sampled measurement data is now approxi-
mated by an analytical PDF, where a truncated normal distribution in the interval
[3 cm, 8 cm], with mean R = 5.14 cm and σ = 0.85 cm provides a good fit. Re-
mark that these parameters are in good agreement with the parameters used for
numerical validation in Section 4.3.1. The fitted truncated Gaussian distribution
is also displayed in Fig. 4.7.

Next, a measurement campaign was performed to construct the dispersion relation
(3.14) that relates the arm radius to the measured antenna resonance frequency.
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Figure 4.7: PDF of the arm radius of different people. NHANES data and truncated Gaus-
sian in [3 cm, 8 cm] with mean R = 5.14 cm and σ = 0.85 cm.

Therefore, a new textile antenna prototype was built and the resonance frequen-
cies of the antenna in bent state were measured for different curvature radii, as
displayed in Fig. 4.8. In order to find a good fit, the relative permittivity after

compression, εr,comp = εr,flat

�

1+η h(d−0.5)
R

�

, was optimised for both εr,flat and η
by applying the least-squares method. The fitted dispersion curve is shown in
Fig. 4.8 by the full line. For the error analysis, we also plotted the dispersion
relation for εr,comp ± 0.003.

The resulting PDF of the resonance frequency is displayed in Fig. 4.9. The mea-
sured data is obtained by solving the fitted dispersion relation (3.14) with the
optimised εr,comp for all 7,056 arm radii of the NHANES data set, requiring 59 s
of CPU-time, whereas only 19 evaluations were needed to construct the modelled
PDF, taking 0.5 s of CPU-time (with expansion order P = 9). A good agreement is
found between the modelled and the measured data. The modelled PDFs are also
shown for εr,comp±0.003 and one observes a shift of approximately 1 MHz due to
the tolerance on the permittivity. Remark that the terms ’lower bound’ and ’higher
bound’ correspond to the bounds defined in Fig. 4.8.

4.4 Conclusion

A new efficient stochastic design tool was introduced based on a non-intrusive
generalised polynomial chaos expansion combined with a cavity model for textile
antennas subject to cylindrical bending. The method predicts the cumulative dis-
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Figure 4.8: Resonance frequency as a function of the arm radius. Measurement data and
fit.
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Figure 4.9: PDF of the resonance frequency. Measurement and fit.

tribution function, the probability density function, the confidence intervals and
the moments of the statistical distribution of the resonance frequency when the
radius of curvature of the textile patch is a random variable. The method can
be applied for input distributions of the Askey family as well as to any arbitrary
distribution. For the latter, the Modified Chebychev algorithm is applied to con-
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struct the relevant set of orthogonal polynomials, followed by the Golub-Welsch
algorithm to determine the quadrature points, for which the dispersion relation of
the cavity model is solved. Comparison to Monte Carlo simulations and to exper-
imental data demonstrates the accuracy and the large speed-up obtained by the
new procedure.
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PART II
Hybrid Electromagnetic

Modelling





5
Numerical Techniques for

solving the Maxwell Equations

ÆÆÆ

In the frequency domain, two major numerical techniques exist for simulating
electromagnetic problems: the Finite Element (FE) method, which is powerful
for modelling complex inhomogeneous problems, and the boundary integral
equation (BIE) method, whose strength is to model homogeneous and un-
bounded domains. Both methods solve the Maxwell equations, albeit from a
different viewpoint. In this chapter, the theory behind these two methods is
presented in order to understand the construction of the hybrid FE-BIE system
in Chapter 6.

5.1 A note on curl-conforming and
div-conforming basis functions

When solving the Maxwell equations by means of numerical techniques, it is nec-
essary to discretise certain quantities such as fields and currents, which are then
represented by a linear combination of basis functions. In the process, it is im-
portant that some properties of the fields and currents are maintained. For the
fields, this means that the basis functions have to maintain sufficient continuity
to be differentiable via the curl operator, yielding a bounded, well-defined result
without introducing Dirac delta distributions. Such basis functions are called curl-
conforming basis functions and maintain first-order tangential vector continuity
across cell edges. For the currents, the basis functions have to conserve enough
continuity to be differentiable via the divergence operator. These basis functions
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are called div-conforming basis functions and maintain first-order normal vector
continuity across cell edges [1].

The function space in which the curl-conforming basis functions of a domain Ω ex-
ist, is denoted as H (curl;Ω). For the div-conforming basis functions, this becomes
H (div;Ω). The traces of the basis functions on the boundary ∂ Ω are defined in
the spaces H−

1
2 (curl,∂ Ω) and H−

1
2 (div,∂ Ω), respectively. For more information

over these function spaces, we refer the reader to [2], [3].

5.2 The finite element method

The FE method, as first described by Courant in 1942, is one of the most success-
ful numerical techniques for solving different engineering problems. For a good
overview of this method applied to electromagnetic problems, we refer the reader
to [4]–[7].

In this thesis, the FE implementation by Agilent Technologies R©, EMPro is used.
This formulation solves the non-symmetric Maxwell equations (1.6) for the elec-
tric field E due to implied electric currents Jimp. It is constructed by weighting
the differential equations that describe the problem with the same basis functions
that are used to discretise the electric field. Such a method, where the test and
basis functions are equal, is called a Galerkin FE method and leads to a symmetric
system matrix.

An important characteristic of the FE method is that it discretises the full 3D sim-
ulation domain. The basis functions in this domain only interact locally, leading
to a sparse system matrix. A drawback, however, is that the domain has to be
truncated, meaning that not the full 3D space is modelled. To compensate for
the truncation error, different techniques can be applied, such as, e.g. imposing
Absorbing Boundary Conditions [8].

5.2.1 Formulation

The FE formulation starts from the curl equations (1.6a) and (1.6b) and eliminates
the magnetic field H in order to construct the wave equation for the electric field
in a domain Ω

1

µr
∇× (∇× E)− k2

0εr · E=− jωµ0 · Jimp, (5.1)

with k0 = ω
p
ε0µ0. The variational formulation is found after testing (5.1) with

weighting functions W ∈ H (curl;Ω):

1

µr

∫

Ω

W · ∇× (∇× E) dV − k2
0εr

∫

Ω

W · E dV =− jωµ0

∫

Ω

W · Jimp dV. (5.2)
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Applying the identity A · (∇×B) = (∇×A) ·B−∇· (A×B) on (5.2) and using the
divergence theorem yields

1

µr

∫

Ω

(∇×W) · (∇× E) dV − k2
0εr

∫

Ω

W · E dV

= jωµ0

∫

∂ Ω

w · (n×H) dS− jωµ0

∫

Ω

w · Jimp dV, (5.3)

where w ∈ H−
1
2 (curl,∂ Ω) is the trace of W on ∂ Ω. Here we have explicitly

introduced the trace of the magnetic field (n × H), since this term will later be
used to couple the formulation with a BIE method.

5.2.2 Schur complement
Since a hybrid FE-BIE formulation only couples the boundary FE unknowns with
the BIE unknowns, we can eliminate all internal FE unknowns by computing the
Schur complement of the FE system matrix.

Consider the following FE system






AΩ,Ω AΩ,∂ Ω

A∂ Ω,Ω A∂ Ω,∂ Ω













XΩ

X∂ Ω






=







BΩ

0






. (5.4)

The submatrix AΩ,Ω represents the interactions from all internal unknowns, A∂ Ω,∂ Ω
stands for the boundary unknown interactions, and AΩ,∂ Ω and A∂ Ω,Ω correspond
to the interactions between the internal and boundary unknowns. After LU de-
composition, this becomes

A=







LΩ,Ω 0

L∂ Ω,Ω I













UΩ,Ω UΩ,∂ Ω

0 S






. (5.5)

The Schur complement S is then defined as

S = A∂ Ω,∂ Ω − A∂ Ω,Ω(AΩ,Ω)
−1AΩ,∂ Ω. (5.6)

In the FE method, the internal basis functions only interact locally. Therefore,
given the sparseness of the system matrix, the Schur complement is calculated in
order to obtain a smaller dense matrix. The calculation is performed using the
efficient MUMPS1 library. The FE unknowns then follow from







UΩ,Ω UΩ,∂ Ω

0 S













XΩ

X∂ Ω






=







B′Ω

B′∂ Ω






(5.7)

1http://graal.ens-lyon.fr/MUMPS/

http://graal.ens-lyon.fr/MUMPS/
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with






LΩ,Ω 0

L∂ Ω,Ω I













B′Ω

B′∂ Ω






=







BΩ

0






. (5.8)

By calculating the Schur complement, a relationship between the tangential trace
of the electric field on the boundary Et = n × (E × n) and the electric surface
current J= n×H is obtained. We get

SEt = jk0η0

�

J− Jimp
�

, (5.9)

with η0 =
p

µ0/ε0. A scaled version of the Schur complement is the Poincaré-
Steklov or Dirichlet-to-Neumann operator Y, which relates the tangential electric
field directly to the electric surface current

YEt = J− Jimp. (5.10)

It is this representation that will be used to couple the FE method with the BIE
method in Chapter 6.

5.2.3 Discretisation
EMPro applies up to second order curl-conforming basis functions to discretise the
electric field. The first order basis functions are the standard edge elements [9],
and the second order are the quadratic edge and quadratic face basis functions. In
Fig. 5.1, a typical element for discretising the simulation domain is shown. Each
tetrahedron is associated with 20 basis functions: one standard edge element for
each edge, one quadratic edge basis function for each edge and two quadratic face
basis functions for each face.

In order to define the basis functions, we first introduce the barycentric coordi-
nates ξi as the normalised distances of a given point to the opposite face, such
that ξi equals 1 at point pi and zero at the opposing face. Following Fig. 5.1, this
means that each point in the tetrahedron can be represented by its barycentric co-
ordinates (ξ0,ξ1,ξ2,ξ3). We can then define a standard edge element associated
with edge p0p1 as

ξ0∇ξ1 − ξ1∇ξ0, (5.11)

and the quadratic edge basis function as

ξ0∇ξ1 + ξ1∇ξ0. (5.12)

The two quadratic face basis functions associated with face p0p1p2 are given by

4ξ0
�

ξ1∇ξ2 − ξ2∇ξ1
�

, (5.13a)

4ξ1
�

ξ2∇ξ0 − ξ0∇ξ2
�

. (5.13b)
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p0

p1

p2

p3

p

Figure 5.1: A typical element for discretising a 3D FE simulation domain. Any point p
in this tetrahedron is represented by its barycentric coordinates (ξ0,ξ1,ξ2,ξ3), where ξi

represents the normalised distance of p to the plane opposing pi .

(a) (b)

Figure 5.2: Traces of FE edge basis functions: a standard first order edge element (a) and
a quadratic edge basis (b).

Note that a third related face basis function can be constructed by a further cyclical
rotation of the indices, but this does not expand the space spanned by taking the
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Figure 5.3: The trace of a second order FE face basis function.

curl of the full set of basis functions and is omitted.

The traces of these basis functions are important for the hybrid FE-BIE formula-
tion, since they discretise Et on the boundary of the FE domain. These traces are
the 2D edge and face basis functions of which examples are displayed in Fig. 5.2
and Fig. 5.3.

5.3 Boundary integral equations
In contrast to the FE method, the BIE method does not immediately discretise the
differential form of the Maxwell equations in three dimensions. It first solves them
partially analytically in order to decrease the dimensions of the problem with one.
As a result, only the boundaries of materials need to be discretised, what leads to a
system with substantially less unknowns as compared to the FE method. Also, the
simulation domain can be extended to the full open 3D space. Drawbacks are that
this is only possible for configurations for which a Green’s function is analytically
available, such as homogeneous media and that the system matrix is now a dense
matrix. For more information about this technique, see [10]–[12].

The derivation of the BIE formulation starts from the vector and scalar potentials,
derived in Section 1.2.

5.3.1 Green’s function
The Helmholtz equations (1.13) and (1.21) are solved by means of the Green’s
function. This function is a solution of

∇2G(r) + k2G(r) =−δ(r). (5.14)

Given the symmetry of the problem, the solution G(r) only depends on the radial
coordinate r of the spherical coordinate system, thus G(r). We then obtain

1

r2

d

dr
r2 d

dr
G(r) + k2G(r) = 0, r > 0. (5.15)
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The general solution of this equation is

G(r) = A
e− jkr

r
+ B

e jkr

r
. (5.16)

Since the wave cannot propagate from infinity (it must satisfy the radiation con-
dition), B = 0 must hold. After integration of equation (5.14) over a sphere, we
find

G(r) =
e− jkr

4πr
. (5.17)

Note that this Green’s function is only valid for an open homogeneous region of
infinite extent.

5.3.2 Integral representations
The solutions of (1.13) and (1.21) are found using the Green’s function, with their
source terms in the Maxwell equations (here represented as s(r)) written as

s(r) =

∫

V

δ(r− r′)s(r′) dV ′. (5.18)

The vector and scalar potentials are then related to the sources by

A(r) =

∫

V

G(|r− r′|)J(r′) dV ′, (5.19a)

F(r) =

∫

V

G(|r− r′|)K(r′) dV ′, (5.19b)

φ(r) =
1

ε

∫

V

G(|r− r′|)ρ(r′) dV ′, (5.19c)

ψ(r) =
1

µ

∫

V

G(|r− r′|)κ(r′) dV ′. (5.19d)

The electric and magnetic field in a certain point are given by (1.22) and become

E(r) =−∇×
∫

V

G(|r− r′|)K(r′) dV ′ − jωµ

∫

V

G(|r− r′|)J(r′) dV ′

−
1

ε
∇
∫

V

G(|r− r′|)ρ(r′) dV ′, (5.20a)

H(r) =∇×
∫

V

G(|r− r′|)J(r′) dV ′ − jωε

∫

V

G(|r− r′|)K(r′) dV ′

−
1

µ
∇
∫

V

G(|r− r′|)κ(r′) dV ′. (5.20b)
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Γ

r

p
h

n

Bδ

Figure 5.4: The fields in an observation point r near the surface Γ are calculated in two
parts: a contribution from the small circle Bδ around p, the projection of the observation
point, and a contribution from the remaining part of the surface Γ\Bδ.

By applying the laws of charge conservation (1.3), electric and magnetic charges
are eliminated and we get

E(r) =−∇×
∫

V

G(|r− r′|)K(r′) dV ′ − jωµ

∫

V

G(|r− r′|)J(r′) dV ′

+
1

jωε
∇
∫

V

G(|r− r′|)∇′ · J(r′) dV ′, (5.21a)

H(r) =∇×
∫

V

G(|r− r′|)J(r′) dV ′ − jωε

∫

V

G(|r− r′|)K(r′) dV ′

+
1

jωµ
∇
∫

V

G(|r− r′|)∇′ ·K(r′) dV ′. (5.21b)

5.3.3 Traces of integral representations
To construct the BIE formulation, we need to consider the special case of a current
distribution X(r′) located on a surface Γ , with outward normal n. In order to
calculate E(r) and H(r) for r→ Γ , it is clear from (5.21) that the following limits
then have to be computed:

lim
r→Γ

∫

Γ

G(|r− r′|)X(r′) dS′, (5.22a)

lim
r→Γ

∫

Γ

∇G(|r− r′|)∇′ ·X(r′) dS′, (5.22b)

lim
r→Γ

∫

Γ

∇× G(|r− r′|)X(r′) dS′. (5.22c)

The first term contains a weakly singular integrand 1
|r−r′| . Its limit value can be

calculated by placing r on Γ and evaluating the integral as an improper integral.
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The other terms contain the integrand ∇ 1
|r−r′| , which has to be handled more

carefully. Therefore, consider r to be very close to Γ , with projection p onto Γ , as
demonstrated in Fig. 5.4. The signed distance of r to Γ is then

h= (r− p) · n. (5.23)

The integral is then calculated in two parts. First, integrate over a small circle
with centre p and radius δ, denoted as Bδ, and then integrate over the remaining
part Γ\Bδ. This is allowed as long as δ is chosen to be small enough and provided
that the surface is sufficiently smooth. The integral over Bδ is then

∫

Bδ

∇
1

|r− r′|
dS′ =

{
−2πn, h→ 0+
+2πn, h→ 0−

. (5.24)

It can be proven that the integral of ∇ 1
|r−r′| over the remaining part of the surface

converges as a Cauchy principal value when r ∈ Γ .

The result of (5.24) can now be used to compute the limiting values of (5.22b)
and (5.22c). The current densities can be assumed constant throughout the small
circle Bδ:

G(|r− r′|)X(r′)≈
1

4π |r− r′|
X(r), (5.25a)

G(|r− r′|)∇′ ·X(r′)≈
1

4π |r− r′|
∇ ·X(r). (5.25b)

We then obtain for (5.22b):

lim
h→0±

∫

Γ

∇G(|r− r′|)∇′ ·X(r′) dS′

=

�

−
∫

Γ

∇G(|r− r′|)∇′ ·X(r′) dS′
�

h=0

+ lim
h→0±

1

4π

∫

Bδ

∇
1

|r− r′|
∇ ·X(r) dS′,

=

�

−
∫

Γ

∇G(|r− r′|)x(r′) dS′
�

h=0

∓
1

2
∇ ·X(r)n. (5.26a)

The line through the integration symbol means that the integral has to be calcu-
lated in the Cauchy principal value sense. The limit value of (5.22c) is:

lim
h→0±

∫

Γ

∇× G(|r− r′|)X(r′) dS′

=

�

−
∫

Γ

∇× G(|r− r′|)X(r′) dS′
�

h=0

+ lim
h→0±

1

4π

∫

Bδ

∇×
1

|r− r′|
X(r) dS′,

=

�

−
∫

Γ

∇× G(|r− r′|)X(r′) dS′
�

h=0

∓
1

2
n×X(r). (5.27)
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The identity ∇× (ϕF) =∇ϕ× F+ϕ∇× F was applied in the last line.

In the following, the notation

Y±(r) = lim
h→0±

Y(r) (5.28)

will be used.

The traces of the tangential parts of the integral representations are the most
interesting for constructing boundary integral equations. Therefore, two integral
operators T and K are introduced. The operator T is defined as

T [X](r) = Ts[X](r) + Th[X](r)

=−
jω

4πc
n×

∫

Γ

G(|r− r′|)X(r′) dS′

+
c

4π jω
n×−
∫

Γ

∇G(|r− r′|)∇′ ·X(r′) dS′, (5.29)

∀r ∈ Γ , and the definition of the operator K is

K[X](r) =−
1

4π
n×

∫

Γ

∇G(|r− r′|)×X(r′) dS′, (5.30)

∀r ∈ Γ . The traces of the tangential parts of the integral representations are then
written as

E±(r)× n=−ηT [J](r) +
{
−K±

1

2

}
[K](r), (5.31a)

n×H±(r) =
{
−K±

1

2

}
[J](r) +

1

η
T [K](r), (5.31b)

with η =
p

µ/ε the wave impedance. In the special case where the currents are
the equivalent currents Jeq = n×H and Keq = E×n (see Section 1.3), this becomes







E±(r)× n

n×H±(r)






=







−K± 1
2
I −ηT

1
η
T −K± 1

2
I






·







E(r)× n

n×H(r)






+







Ei(r)× n

n×Hi(r)






,

(5.32)
with I the identity operator and where Ei and Hi are the fields radiated by other
sources. This is the Stratton-Chu representation theorem, describing a relationship
between the traces of the fields.

The representation of (5.32) can, in analogy to the FE formulation, also be written
as a function of the tangential trace of the electric field on Γ , Et = n×(E× n), and
the equivalent electric current J = Jeq (the r dependency will be omitted for the
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ease of reading). For the sourceless system in a domain where a normal n points
into, we then obtain







−n× Et

J






= P







−n× Et

J






, (5.33)

where the block-Calderón operator P is defined as

P ≡







−K+ 1
2
I −ηT

1
η
T −K+ 1

2
I






. (5.34)

If the normal n points outside the domain, it follows from (5.32) that the comple-
mentary Calderón operator P̃ = I−P needs to be used. In a system with sources,
this becomes

�

I − P̃
�







−n× E

J






=







−n× Ei

Ji






, (5.35a)







K′ + 1
2
I ηU

− 1
η
NUN −K+ 1

2
I













Et

J






=







Et,i

Ji






. (5.35b)

We have that N = n×, with N ′ = −N and N 2 = −I. The complex symmetric
operator U = U ′ is related to (5.29) and (5.34) by T = NU and NKN = K′
[13]. The equations of (5.35b) are the well-known electric field integral equation
(EFIE) and magnetic field integral equation (MFIE) and will be used in Chapter 6
to couple the BIE method with the FE method.

5.3.4 The Calderón identities

The Calderón identities are obtained from the Calderón operator P and play an
important role in determining the stability of hybrid FE-BIE formulations in Chap-
ter 7. Therefore, they are given here.

The sourceless Calderón operator (5.33) is written as

1

2







Et

ηJ






=H







Et

ηJ






. (5.36)
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Applying the Hamiltonian operator H [13] again on (5.36) leads to

1

2
H







E

ηJ






=H2







E

ηJ






, (5.37)

1

4







E

ηJ






= C







E

ηJ






, (5.38)

with

C =







K′2 − UNUN K′U − UK

−NUNK′ +KNUN −NUNU +K2






. (5.39)

Since (5.38) has to be valid for all frequencies, four equations are found, the
so-called Calderón identities.

5.3.5 The method of moments
The method of moments is a numerical technique that can be applied to solve the
EFIE and the MFIE (5.35b). The foundation of the method, as we know it, was
laid by Harrington [14]. The principle is as follows: consider a linear operator L
connecting a field f(r) with a source g(r)

L(f(r)) = g(r). (5.40)

The field is then projected onto a finite n-dimensional subspace with basis func-
tions bi(r)

f(r)≈
n
∑

i=1

aibi(r), (5.41)

where ai is a set of unknown scalar coefficients. In order to determine the n
unknowns, equation (5.40) is projected onto an m-dimensional basis, spanned by
the weighting functions v j




v j ,L(f(r))
�

=



v j ,g(r)
�

. (5.42)

In this thesis, the Galerkin method is applied, meaning that the weighting func-
tions and basis functions are equal. This leads to a dense system of n equations
for solving n unknowns.

5.3.6 Discretisation
The basis functions that are used to discretise the equivalent currents on the mate-
rial boundaries are the div-conforming Rao-Wilton-Glisson (RWG) basis functions
[15]. Remark that in contrast to the FE method, the BIE basis functions only need
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Figure 5.5: An RWG basis function.

to span a 2D space. For a point in a triangular cell, an RWG is evaluated by means
of

f(r) =±
l

2A
(r− p), (5.43)

with l the length of an edge, A the area of the triangle and p the vertex opposite
to the edge.

A second type of div-conforming basis functions are the Buffa-Christiansen (BC)
basis functions [16]. These basis functions are constructed on the barycentric
mesh (also named as the refined mesh) and each RWG on the original mesh cor-
responds to one BC basis function, as demonstrated in Fig. 5.6. The BC basis
function is a linear combination of RWG basis functions, associated with the re-
fined mesh that have a vertex in common with the RWG on the original mesh.

An important property is that the curl-conforming n× BC basis functions are not
perpendicular to the div-conforming RWG basis functions. This means that the
Gramian matrix




n× BC,RWG
�

is well-conditioned, whereas



n×RWG, RWG
�

is
a singular matrix.
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Figure 5.6: A BC basis function.
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6
A Non-Conformal 3D

Hybrid Finite Element -
Boundary Integral Equation

Method

ÆÆÆ

A symmetric hybrid FE-BIE system is formulated with two types of bound-
ary conditions. The first type imposes weak tangential continuity of the field
components, whereas the second type applies Robin transmission conditions.
In this formulation, the FE and BIE simulation domains are fully decoupled,
meaning that their solutions are discretised on different meshes and/or with
a different type/order of basis functions. The goal of this coupling is, as for
all kinds of hybrid methods, to minimise the computational requirements by
employing each method where it is most efficient.

6.1 Introduction
The FE method offers the ability to model complex inhomogeneous materials and
anisotropic structures, but suffers from domain truncation and approximate ab-
sorbing boundary conditions. Its effectiveness can be improved by combining the
technique with the BIE method. This approach allows to extend the simulation
domain to the full open space by enforcing the Silver-Müller radiation conditions
in the kernel functions of the integral equations. Also multiple distant subdomains
can be coupled in this way.

For this coupling, the following additional criteria are also proposed:
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• The coupling between neighbouring domains must be enforced in the weak
sense, resulting in decoupled discretisations. This means that the FE and BIE
solutions are discretised on different meshes. This can also mean that the FE
and BIE may use the same mesh, but different type/order basis functions.

• The reciprocity theorem and energy conservation must be respected at the
FE-BIE interface.

A 2D decoupled formulation has previously been proposed in [1], but this ap-
proach suffers from some drawbacks. First, reciprocity is not respected in the
non-symmetric system, and second, a zero lies on the diagonal of the system ma-
trix, leading to an inherently less stable system. An improvement for bodies of
revolution is found in [2], where both the EFIE and MFIE equations are used in
order to form a symmetric system matrix.

In 3D, it is worth mentioning the work described in [3], where the CFIE is used
to avoid interior resonances, but this leads to an non-symmetric system matrix.
Hence, it becomes more difficult and computationally expensive to solve with it-
erative solvers. The approach described in this chapter is based on [4], where the
FE and BIE domains are fully decoupled and the formulation leads to a symmetric
system matrix. This enhances the modularity of the formulation and faster con-
vergence is achieved when solving the system with iterative solvers. Two types
of boundary conditions are used: the first type imposes weak tangential continu-
ity of the field components, whereas the second type applies Robin transmission
conditions.

6.2 Matrix representations

Fig. 6.1 depicts the configuration of the hybrid system. The bounded FE domain
is Ω with boundary ∂ Ω and outward normal n1. The outward normal of the
unbounded BIE domain is given by n0 = −n1. In the FE domain, we have the
electric field E1, with tangential trace Et

1 on ∂ Ω and the equivalent electric current
J1 (this last set of unknowns is introduced because of the decoupling of the FE
and BIE meshes). On the BIE side, the electric field in the BIE domain is Et

0 and
the equivalent electric current is J0. The relation between the tangential electric
current and the equivalent magnetic current in the BIE domain is: Et

0 = n0 ×M0.

The following equations are combined in the hybrid formulation:

1. The wave equation for the electric field, after construction of the Dirichlet-
to-Neumann operator Y1, as calculated in (5.10)

Y1Et
1 − J1 =−Jimp. (6.1)
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Figure 6.1: Hybrid configuration.

2. The EFIE, as obtained in (5.35b) for a domain with an outward normal
�

K′ +
1

2
I
�

Et
0 +η0UJ0 = Et,i . (6.2)

3. The MFIE, also from (5.35b), for a domain with an outward normal

−
1

η0
NUNEt

0 +
�

−K+
1

2
I
�

J0 = Ji . (6.3)

6.2.1 Tangential continuity
On ∂ Ω, the continuity of the tangential electric field and the equivalent electric
current is imposed:

Et
0 = Et

1, (6.4a)

J0 =−J1. (6.4b)

It is clear that these boundary conditions satisfy the reciprocity theorem and the
law of energy conservation, defined in Section 1.4 and Section 1.5.
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The first equation combines (6.1) with (6.4b). By splitting the electric current J1
into two and substituting the electric current J0 from the BIE domain, we get:

Y1Et
1 −

1

2
J1 +

1

2
J0 =−Jimp. (6.5)

The second equation is constructed from (6.2) and (6.4a). Here, the FE electric
field is substituted via the singular part of the EFIE.

K′Et
0 +η0UJ0 +

1

2
Et

1 = Et,i . (6.6)

The third equation combines (6.3) and (6.4b). The FE electric current is substi-
tuted via the singular part of the MFIE.

−
1

η0
NUNEt

0 −KJ0 −
1

2
J1 = Ji . (6.7)

The last equation explicitly enforces (6.4a):

1

2
Et

0 −
1

2
Et

1 = 0. (6.8)

The symmetric matrix representation is then:



















Y1 − 1
2
I 0 1

2
I

− 1
2
I 0 1

2
I 0

0 1
2
I 1

η0
NUN K

1
2
I 0 K′ η0U





































Et
1

J1

Et
0

J0



















=



















−Jimp

0

−Ji

Et,i



















. (6.9)

6.2.2 Robin transmission conditions
The Robin transmission conditions find their origin in the Sommerfeld radiation
condition, which states that the energy radiated from sources cannot scatter back
from infinity.

lim
r→∞

r
�

ur × (∇× E)− jkE
�

= 0. (6.10)

At the boundary ∂ Ω, a similar residue can be calculated.

ψ=−
�

n× (∇× E)− jkE
�

= Et +η0J. (6.11)

This residue is transferred to the other domain.

Et
0 +η0J0 = Et

1 −η0J1, (6.12a)

Et
1 +η0J1 = Et

0 −η0J0. (6.12b)
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In order to make it more general, a constant factor α can be used.

Et
0 +αJ0 = Et

1 −αJ1, (6.13a)

Et
1 +αJ1 = Et

0 −αJ0. (6.13b)

These boundary conditions also satisfy reciprocity and energy conservation, since
by subtracting and adding the equations (6.13a) and (6.13b), we obtain the tan-
gential continuity boundary conditions.

The first equation combines (6.1) with (6.13b):
�

Y1 +
1

2α

�

Et
1 −

1

2
J1 −

1

2α
Et

0 +
1

2
J0 =−Jimp. (6.14)

The second equation is constructed from (6.2) and (6.13a):

K′Et
0 +
�

η0U −
1

2
α

�

J0 +
1

2
Et

1 −
1

2
αJ1 = Et,i . (6.15)

The third equation combines (6.3) and (6.13a):

−
�

1

η0
NUN +

1

2α

�

Et
0 −KJ0 +

1

2α
Et

1 −
1

2
J1 = Ji . (6.16)

The last equation explicitly enforces (6.13b):

1

2
Et

0 −
1

2
αJ0 −

1

2
Et

1 −
1

2
αJ1 = 0. (6.17)

The symmetric matrix representation is then:


















Y1 +
1

2α
I − 1

2
I − 1

2α
I 1

2
I

− 1
2
I − 1

2
αI 1

2
I − 1

2
αI

− 1
2α
I 1

2
I 1

η0
NUN + 1

2α
I K

1
2
I − 1

2
αI K′ η0U −

1
2
αI





































Et
1

J1

Et
0

J0



















=



















−Jimp

0

−Ji

Et,i



















.

(6.18)

6.2.3 Multiple domains
Multiple FE domains

The matrix representation for multiple FE domains is a simple extension of the
representation for one FE domain, since we do not allow the FE domains to couple
with each other. Consider the following simple form of the system matrix for one
FE and one BIE domain:

A=







AFE C

C T ABIE






. (6.19)
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The extension to multiple FE domains then becomes:

A=



























AFE,1 0 0 0 C1

0 AFE,2 0 0 C2

0 0
... 0

...

0 0 0 AFE,n Cn

C T
1 C T

2 · · · C T
n ABIE



























. (6.20)

Multiple BIE domains

If a system contains multiple BIE domains, it is possible to couple these also in
a non-conformal formulation. The EFIE and MFIE are then calculated in each
domain and are coupled using the weak tangential continuity (6.4) or the Robin
(6.13) boundary conditions. We will provide the symmetric system matrix for two
BIE domains with Robin transmission conditions here:



















1
η1
N1U1N1 +

1
2α
I K1 − 1

2α
I 1

2
I

K′1 η1U1 −
1
2
αI 1

2
I − 1

2
αI

− 1
2α
I 1

2
I 1

η0
N0U0N0 +

1
2α
I K0

1
2
I − 1

2
αI K′0 η0U0 −

1
2
αI





































Et
1

J1

Et
0

J0



















=



















−Ji

Et,i

−Ji

Et,i



















. (6.21)

The indices in the operators denote the domain in which they are calculated. Re-
mark that the same coupling matrices are obtained as for a hybrid FE-BIE formu-
lation.

6.3 Projections
Typical for this hybrid formulation is the occurrence of coupling matrices, which
represent projections of certain basis functions onto other basis functions in or-
der to couple the different simulation domains. These projections have to be
calculated as efficiently as possible and therefore they are computed analytically
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Figure 6.2: Triangle intersection.

instead of using traditional Gauss quadrature rules. In this way, no trade-off be-
tween speed and accuracy needs to be made. The calculation of these projections
is explained in this section.

6.3.1 Theory
The projection of two 2D vector basis functions A(r) and B(r) is defined as the
surface integral of the scalar product of the basis functions.

P =

∫

Σ

A(r) ·B(r) dS =

∫

Σ

Φ(r) dS. (6.22)

The integration domain Σ is the overlap area of the support of the two basis func-
tions and, since a triangular mesh is used, can be seen as the overlap area of two
triangles. This makes Σ a polygon spanned by maximum 6 vertices. The use of
traditional Gauss quadrature rules for calculating these integrals then becomes
more complicated since different polygons require different Gauss rules. Alterna-
tively, one can also subdivide the polygon into triangles, but this slows down the
calculation.

It is however possible to calculate these integrals analytically, based on a tech-
nique for evaluating singular integrals over polyhedral domains. This technique,
as described in [5], allows to reduce the integral of Φ(r) over Σ to an integral
over the boundary ∂ Σ, allowing the kernel of Φ(r) to become singular in a point
a ∈ Σ. This is demonstrated in Fig. 6.2. The overlap area of the two triangles is
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Σ and a potentially singular point is a. From [5] it follows then that, if Φ(r) is
continuously differentiable over an open domain containing the conical domain

Σ(a) = {tr+ (1− t)a : 0< t ≤ 1, r ∈Σ}, (6.23)

and provided that

lim
t→0

t2Φ(tr+ (1− t)a) = 0, (6.24)

the following result is valid:

P =

∫

∂ Σ

(r− a) · un dl

∫ 1

0

tΦ(tr+ (1− t)a)dt. (6.25)

With this generalised Gauss theorem, the surface integral (6.22) is transformed
into a line integral along the edges of the overlap area. Moreover, since the scalar
product of two basis functions exhibits no singularities, conditions (6.23) and
(6.24) are always satisfied. In the example of Fig. 6.2, this means that the projec-
tion is calculated along the lines pip(i+1)%4 with outward normal un using (6.25).
The point a can be chosen arbitrarily in Σ.

6.3.2 Practical implementation

First, the inner integral of (6.25) is calculated. The point a can be an arbitrary
point in the plane, since Φ(r) has no singularities.

f (r,a) =

∫ 1

0

tΦ (tr+ (1− t)a) dt. (6.26)

The projection integral then becomes

P =

∫

∂ Σ

(r− a) · un f (r,a) dl, (6.27)

=
∑

i

||pi+1 − pi || (pi − a) · un I(pi ,pi+1,a). (6.28)

with

I(p,q,a) =

∫ 1

0

f
�

(1− t)p+ tq,a
�

dt. (6.29)

This last integral I(p,q,a) has to be calculated over each line pq with outward
normal un. Remark that by choosing a equal to a vertex of Σ, two line integrals
become 0. In Appendix A, the analytical expressions of I(p,q,a) for all combina-
tions of FE and BIE basis functions can be found.
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6.3.3 Improving the condition number
The electric fields components Et

i are discretised using curl-conforming basis func-
tions (denoted as wi) and the electric currents Ji by div-conforming basis functions
(denoted as vi). The projections used in the hybrid formulation can then be sub-
divided into 3 categories.

Dual space testing The first category consists of projections where the test
functions are in the dual space of the basis functions.

∫

∂ Ω

wi(r) · v j(r) dS. (6.30)

Self testing In the second category, the test functions are equal to the basis
functions.

∫

∂ Ω

wi(r) ·wi(r) dS, (6.31a)

∫

∂ Ω

vi(r) · vi(r) dS. (6.31b)

Equal space testing In the last category, the test and basis functions belong to
the same space, but they are defined on the other side of the boundary Γ .

∫

∂ Ω

wi(r) ·w j(r) dS, (6.32a)

∫

∂ Ω

vi(r) · v j(r) dS, (6.32b)

with i 6= j.

In the formulation with weak tangential continuity boundary conditions, only pro-
jection matrices belonging to the dual space testing exist. A problem can then arise
when the FE and BIE domains are defined on the same mesh. The coupling matri-
ces are then singular, and even worse, result in a singular FE-BIE system matrix.
This problem can be tackled by using BC basis functions for the electric currents,
so that the projection matrices and the system matrix become well-conditioned.
However, using BC basis function to expand the electric currents in the BIE do-
main leads to a slow computation of the BIE interaction matrix (since it has to
be computed on the refined mesh). Therefore, a trade-off is made and BCs are
only used for the FE electric currents. With this approach, two of the three projec-
tion matrices become well-conditioned and the total system matrix is not singular
anymore.
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The expansion of the electric currents with BC basis functions is not necessary for
the formulation with Robin transmission conditions, because in this formulation,
we also have projection matrices belonging to the self testing category and the
equal space testing category, which are well-conditioned.

6.4 Solution of the hybrid system
The solution process is discussed here for a system with one FE domain and one
BIE domain, but it can easily be extended for multiple simulation domains. The
symmetric system matrix is represented by the block matrix

A=







A1 C12

C21 A2






, (6.33)

where C T
12 = C21.

The benefit of this hybrid FE-BIE formulation is that the FE and BIE domains are
decoupled, which makes it interesting to solve the system using domain decompo-
sition methods. These methods alternate solutions of the different domains until
convergence is reached. Because only the system matrices of the local domains
need to be solved, much larger problems can be tackled using this approach.

6.4.1 Stationary iterative methods
Stationary iterative methods solve a set of linear equations

Ax= b, (6.34)

in a way that the solution vector at a certain iteration can be expressed by

xk = Bxk−1 + c, (6.35)

where neither B or c depends upon the iteration count k [6].

A first method is the additive Schwarz method. Here, in every iteration step,
a solution is calculated for all local domains and then the residues are updated
using the coupling matrices Ci j . This can be schematically explained by writing
the system matrix as a sum of a strictly lower triangular matrix, a diagonal matrix
and a strictly upper triangular matrix:

A= L+ D+ U , (6.36a)

=







C21






+







A1

A2






+







C12






, (6.36b)
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One iteration is then defined by

xk+1 = D−1
�

b− (L+ U)xk
�

. (6.37)

A great advantage of this solution is that the solutions of the different domains
can be calculated in parallel. This method is equivalent to a block-Jacobi method.

A second stationary method is the multiplicative Schwarz method. In contrast
to the additive Schwarz method, the residue is updated after each subdomain
solution. This means that in a system with n subdomains, the residue is n times
updated per iteration step. Using the notation of (6.36b), one iteration is now
defined by

xk+1 = (L+ D)−1
�

b− Uxk
�

. (6.38)

This method is equivalent to a block Gauss-Seidel method.

6.4.2 Non-stationary iterative methods

Despite their advantage in domain decomposition methods, the stationary meth-
ods described above converge rather slowly to the correct solutions. Therefore,
non-stationary methods are implemented. These methods differ from stationary
methods in that the computations involve information that changes at each iter-
ation. Typically, constants are computed by taking inner products of residuals or
other vectors arising from the iterative method [6].

The non-stationary methods that were used in this formulation are the Biconjugate
Gradient Stabilised (BiCGSTAB) and the Transpose Free Quasi Minimal Residual
(TFQMR) algorithms with block-Jacobi preconditioners. For more information
about these methods, we refer the reader to [6].

6.5 Acceleration of the program

In order to speed up the hybrid FE-BIE program, several accelerations are imple-
mented. We make use of Nexus, an open source library for parallel fast multipole
method (FMM) computations, designed by dr. ir. Jan Fostier [7] and further de-
veloped by dr. ir. Joris Peeters [8], together with OpenMPI1 for parallellising the
hybrid program over multiple processes. By combining this framework with a
multilevel fast multipole algorithm (MLFMA) (also from [8]), the low-rank prop-
erty of the BIE interaction matrix is exploited and we can further accelerate its
construction. Finally, a shared-memory multiprocessing program OpenMP2 is also
employed for speeding up matrix-vector calculations and again the computation
of BIE interactions.

1http://www.open-mpi.org/
2http://openmp.org/

http://www.open-mpi.org/
http://openmp.org/
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Figure 6.3: Scattering by a dielectric cuboid.

6.6 Numerical results
This section demonstrates some numerical results. Most of the examples consider
plane wave scattering by a dielectric cuboid with dimensions L ×W × H, as de-
picted in Fig. 6.3. The dimensions and the material parameters of the dielectric
are mentioned in the different subsections.

6.6.1 Accuracy
The accuracy is tested by solving the scattering problem for a dielectric cube with
{L, W, H} = {1,1, 1}m and εr = 4. The FE calculations rely on first order basis
functions. The normalised radar cross section (RCS) σ/λ2 in the yz-plane is then
calculated at 100 MHz and compared against a pure BIE reference simulation,
computed by means of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCWHT)
formulation with an average edge size of 100 mm.

Influence of mesh size

First, the RCS is calculated for different mesh sizes. In this setup, the dielectric
cube is treated as an FE domain and the background medium is calculated as a
BIE domain. In order to obtain an accurate result, λ/15 meshing is applied. In
free space, this corresponds to approximately 200 mm, whereas in the dielectric
medium, this reduces to about 100 mm.

Three simulations are then performed and compared against the reference BIE
simulation.

1. Identical meshes for the FE and BIE domains with an average edge size of
100 mm. This means that the FE domain has a normal mesh size of λ/15
and the BIE domain has a dense mesh size of λ/30.
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Figure 6.4: Normalised RCS of the dielectric cube in the yz-plane for different mesh sizes.

2. Again identical meshes for the FE and BIE domains, but now with an average
edge size of 200 mm. This means that the FE domain has a too coarse mesh
size of approximately λ/7, whereas the BIE domain has a normal mesh size
of λ/15.

3. Different meshes for the FE and BIE domains. The average edge size is
100 mm for the FE domain and 200 mm for the BIE domain. Now both
domains have discretisations of size λ/15.

Fig. 6.4 shows the RCS for the different simulations. It is clear that the per-
formance of the 100 mm mesh is better than the performance of the 200 mm
mesh. But more importantly, there is almost no difference in accuracy between
the 100 mm mesh and the mixed mesh simulation. This means that, thanks to
the non-conformal meshes, similar results can be achieved with less unknowns.
The same conclusion can also be drawn when relying on second order FE basis
functions.

Influence of FE bounding box size

Next, the RCS is calculated for different FE bounding box sizes. In the previous
section, the FE-BIE boundary was the interface between the dielectric and the
background medium. Here, we will increase the FE bounding box size, what
means that now also a part of the background medium is calculated by means of
the FE method.
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Figure 6.5: Normalised RCS of the dielectric cube in the yz-plane for different FE bounding
box sizes.

The radar cross sections for the different FE bounding box sizes are shown in
Fig. 6.5. All calculations are performed with a 100 mm mesh size. It is clear that
the larger the FE bounding box becomes, the worse the accuracy gets. This has
a double advantage for the hybrid method. It is necessary to keep the bounding
box as small as possible in order to achieve better results and this leads to less
unknowns in the hybrid system. When relying on second order FE basis functions,
similar conclusions can be drawn, but in this case it is more important to reduce
the number of unknowns.

6.6.2 Reciprocity and energy conservation
The reciprocity theorem (see Section 1.4) and the law of energy conservation (see
Section 1.5) are verified by solving the scattering problem for a dielectric cuboid
with {L, W, H} = {1,0.6, 0.2}m and a relative permittivity of 2. Some losses are
also introduced by setting the tanδ = 0.1.

The reciprocity error is calculated by

error=

∣∣∣∣Et
1




w1,v2
�

Γ J2 − Et
2




w2,v1
�

Γ J1

∣∣∣∣∣∣∣∣Et
1




w1,v2
�

Γ J2

∣∣∣∣ (6.39)

and is shown for both the formulation with tangential continuity and Robin trans-
mission conditions in Fig. 6.6 for an increasing number of unknowns. When re-
lying on first order FE basis functions, the reciprocity theorem is better respected
by the Robin transmission conditions. However, if second order FE basis functions
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Figure 6.6: Reciprocity errors for the hybrid formulation with weak tangential continuity
and the formulation imposing Robin transmission conditions. Both were simulated using
first order FE basis functions (solid line) and second order FE basis functions (dashed line).

are used, the formulation imposing weak tangential continuity leads to the small-
est error. Also notice that, in both formulations, the reciprocity theorem is better
respected when relying on first order FE basis functions.

The energy error is computed as

error=

∣∣∣∣Et
1




w1,v1
�

Γ J∗1 − Et
2




w2,v2
�

Γ J∗2
∣∣∣∣∣∣∣∣Et

1




w1,v1
�

Γ J∗1
∣∣∣∣ . (6.40)

and is displayed in Fig. 6.7 for both formulations for an increasing number of
unknowns. It is clear that the same conclusions can be drawn as for the reciprocity
theorem. Remark that the difference between the reciprocity errors and the energy
errors is approximately one order of magnitude.

6.6.3 Multiple domains

As a problem with multiple FE domains, we consider scattering of a plane wave
by 9 dielectric cuboids, as demonstrated in Fig. 6.8. The cuboids have dimensions
{L, W, H} = {1,0.6, 0.2}m and a relative permittivity of 4. The normalised RCS
in the x y-plane is shown in Fig. 6.9 and an excellent agreement can be found
when comparing the solution with a reference BIE solution applying the PMCHWT
formulation.
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Figure 6.7: Reciprocity errors for the hybrid formulation with weak tangential continuity
and the formulation imposing Robin transmission conditions. Both were simulated using
first order FE basis functions (solid line) and second order FE basis functions (dashed line).
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Figure 6.8: Scattering problem with multiple dielectric cuboids.

6.6.4 Patch antenna

As a real-life example, the reflection coefficient of a planar inset microstrip patch
antenna is calculated. The configuration is shown in Fig. 6.10 and the substrates
have a length of 6 cm and a width of 5 cm. The antenna is designed with the 2.5D
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Figure 6.10: Configuration of the planar inset microstrip patch antenna.

simulation tool ADS Momentum R© for operation at 3 GHz with an input impedance
of 50Ω. It is constructed on rigid substrates with relative permittivities of 3.38
(bottom substrate) and 3.66 (top substrate, Rogers R© RO4350B).

Three simulation setups are now compared in terms of CPU-time, memory usage
and accuracy:



112 Chapter 6. A Non-Conformal 3D Hybrid FE-BIE Method

Table 6.1: Data of the different patch antenna simulations setups.

Setup FE padding # FE unknowns # FE boundary # BIE unknowns

unknowns

1 20 mm 370 613 7 720 -

2 20 mm 370 613 7 720 2 220

3 10 mm 336 341 1 157 534

1. A pure FE simulation with absorbing boundary conditions. In EMPro, the
surface mesh size of the substrates is set to 3 mm and that of the conductors
to 2 mm. The target mesh size is set to 7 mm.

2. A hybrid FE-BIE simulation with the same FE bounding box and discretisa-
tion as setup 1 and a coarse BIE mesh with an average edge size of 10 mm.

3. A hybrid FE-BIE simulation with a smaller FE bounding box as setup 1 and
where the BIE mesh is identical to the boundary FE mesh. The surface mesh
sizes of the substrates and conductors are equal to that of setup 1, however,
no target mesh size is specified in this setup.

Their data are shown in Table 6.1. The FE padding (a term used in EMPro to set
the boundary of the simulation domain) is 20 mm in each direction for setups 1
and 2, since the radiating boundaries of setup 1 should be applied approximately
one quarter of a wavelength away from the source of the signal. This is, however,
not necessary for a hybrid FE-BIE simulation, hence the padding is reduced to
10 mm in setup 3. All simulations are performed with second order FE basis func-
tions and the hybrid simulations impose Robin transmission conditions, as this
leads to a faster convergence in the solution phase. The solutions are calculated
with an error of 1× 10−5 by applying the TFQMR algorithm.

The CPU-time of the most time-consuming parts of the simulations are compared
in Table 6.2. During the FE meshing, the FE mesh is created and the local FE
interactions are calculated. It is clear that this requires less time in setup 3, since
the bounding box is closer to the antenna and less FE unknowns are created. One
also notices that the computation of the Schur complement, which reduces the FE
unknowns to only the boundary FE unknowns, forms the bottleneck of the hybrid
simulations. It even leads to a total simulation time of setup 3 that is still larger
than that of setup 1.

In Table 6.3 the memory requirements of the different simulation parts are given.
Again, the Schur complement computations form the bottleneck of the hybrid sim-
ulations. Remark that the peak memory usage is given by the maximum memory
usage of a part, instead of the sum of the usages of all parts.



6.6. Numerical results 113

Table 6.2: CPU time of different simulation parts at 2.5 GHz.

Setup FE meshing Schur complement BIE interactions Solution

1 1 m 30 s - - 35 s

2 1 m 30 s 5 m 24 s 10 s 1 m 18 s

3 1 m 12 s 2 m 8 s 2 s 1 s

Table 6.3: Memory requirements of different simulation parts at 2.5 GHz.

Setup Schur complement BIE interactions Solution

1 - - 872 MB

2 5.8 GB 75 MB 1.6 GB

3 2.3 GB 4.4 MB 33 MB
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Figure 6.11: Simulated and measured reflection coefficient of the patch antenna.

The reflection coefficient is displayed in Fig. 6.11 for all simulations and for a
measurement performed on an antenna prototype. It is clear that the resonance
frequency is reasonably accurate for all simulations, compared to the measured
resonance frequency. The only difference between the simulations is the depth of
the resonance peak.
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6.6.5 Patch antenna on a human body
As a final example, we demonstrate how the hybrid FE-BIE method can be em-
ployed for the simulation of a planar patch antenna on a human body. Instead
of relying on a detailed body model, the simulation time is decreased by simply
adding a small homogeneous block behind the antenna (with length and width
8 cm, height 2 cm and positioned 2 cm from the back of the antenna), since the
size and shape of the human tissue were found to have small influence on the
antenna resonance [9]. This approach was already applied in [10]. The parame-
ters of the block are chosen to be εr = 50.8 and σ = 2.01 S/m and correspond to
the human tissue mimicking fluid MSL2450, recommended by CENELEC standard
EN50383 [11].

The simulation of the homogeneous block is performed by means of the BIE
method and different discretisations are used for the interior and exterior sur-
faces. The average edge size of the exterior surface is set to 1 cm (corresponding
to λ/10 at 3 GHz in free space) and the average edge size of the interior surface
is chosen to be 2 mm (corresponding to λ/7 at 3 GHz in the human tissue). This
leads to a total of 30 496 BIE unknowns and 1 157 FE unknowns (after calcula-
tion of the Schur complement). At 2.5 GHz, the calculation of the BIE interaction
required only 3 m 17 s of CPU time and 861 MB memory, thanks to the accelera-
tion by the MLFMA. The solution of the hybrid system was then computed after
1 m 51 s of CPU time and used 932 MB memory.

A pure FE simulation is also performed with a target mesh size of 1 cm. A system
with 845 049 unknowns is then constructed in 2 m 27 s and solved in 3 m 6 s of
CPU time. This required 1.8 GB memory. The reflection coefficient of both simu-
lations is shown in Fig. 6.12. A slight difference between the resonance peaks is
noticed.
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Figure 6.12: Simulated reflection coefficient of the patch antenna on a human body.
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The interest in combining the FE method with the BIE method has led to vari-
ous 3D hybrid FE-BIE formulations in literature. However, some formulations
suffer from breakdown frequencies at which the solution is not uniquely de-
fined and errors are introduced due to internal resonances. In this chapter,
we investigate the occurrence of spurious solutions resulting from these reso-
nances by using the concept of the Poincaré-Steklov or Dirichlet-to-Neumann
operator, which provides a relation between the tangential electric field and the
electric current on the boundary of a domain. By identifying this operator in
both the FE and the BIE method, several new properties of internal resonances
in 3D hybrid FE-BIE formulations are easily derived. Several conformal and
non-conformal formulations are studied and the theory is then applied to a
scattering problem.
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7.1 Introduction
We already know from Chapter 6 that the effectiveness of the FE method can be
improved by combining the technique with the BIE method, which allows extend-
ing the simulation domain to the full open space by enforcing the Silver-Müller
radiation conditions in the kernel functions of the integral equations. Such meth-
ods were already successfully implemented in the past in 2D (e.g. [1], [2]) and
in 3D (e.g. [3], [4]).

The exact hybrid formulation appears to be very important in order to avoid so-
called spurious solutions. Previous contributions demonstrated that formulations
applying the EFIE or the MFIE as BIE method in combination with an FE method
contain certain ’forbidden frequencies’ if the background medium is lossless [3],
[5]–[12]. At these frequencies, the EFIE and MFIE are not uniquely defined and
the sourceless hybrid system contains non-trivial solutions that introduce errors on
the result. Adding some losses to the background medium alleviates this problem,
but doesn’t provide much theoretical insight [13].

Some knowledge about spurious solutions is rendered by Chew in [14], [15],
where he discusses internal resonances in integral equations by means of Gedan-
ken experiments. He also relates the combined field integral equation (CFIE) to
the cavity resonance problem with impedance boundary conditions to conclude
that uniqueness is provided. The CFIE is also applied in time-domain FE-BIE meth-
ods, such as in [16], and in FDTD transparent boundary conditions, see [17], in
order to overcome the problem of internal resonances. However, the stability of
hybrid formulations such as in [4], [18], [19] was until now only investigated
by means of numerical simulations, which is actually a trial-and-error method.
Hence, another approach is still required.

In this chapter, we build further on the approach applied in [20], where the con-
cept of a Poincaré-Steklov (PS) or Dirichlet-to-Neumann (DtN) operator is used
to describe the relationship between the tangential electric field and the electric
current on the boundary of a domain. By identifying this operator in the FE and
BIE methods, different properties regarding internal resonances in hybrid formu-
lations are easily derived. This also gives us the opportunity to investigate hybrid
formulations on an operator level. Furthermore, we will not only investigate con-
formal formulations, where the FE and BIE share the same mesh, but also non-
conformal formulations, where the FE and BIE solutions exist on different meshes
and the continuity of the tangential electric fields and the electric currents is im-
posed in a weak sense.

The organisation of this chapter is as follows. Section 7.2 presents the theoretical
background for both the FE and BIE formulations. In Section 7.3, some conformal
hybrid formulations are studied and Section 7.4 discusses non-conformal formu-
lations. The results are shown in Section 7.5 and the conclusions are drawn in
Section 7.6.
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Figure 7.1: Configuration of the scattering problem.

7.2 General formulations

Consider the configuration of Fig. 7.1. A plane wave is scattered by an inhomoge-
neous domain Ω, bounded by ∂ Ω, and with relative permittivity and permeability
tensors εr (r) and µr (r), respectively. The domain is considered to consist of re-
ciprocal material, hence the permittivity and permeability tensors are complex

symmetrical, i.e. εr (r) = ε
T

r (r) and µr (r) = µ
T

r (r). The background medium
is homogeneous and isotropic, characterised by ε0 and µ0. At the boundary ∂ Ω,
we define the surface Γ0 as the smallest surface that encloses ∂ Ω and Γ1 as the
largest surface that can be enclosed by ∂ Ω. Their outward normals are n0 and n1,
respectively.

The tangential electric field on Γ0 is Et
0 and the equivalent electric current on

Γ0 is J0. Accordingly, the tangential electric field on Γ1 is Et
1 and the equivalent

electric current on Γ1 is J1. The relation between Et
0 and J0 is found using the

BIE method and the connection between Et
1 and J1 is obtained by the FE method.

This section describes these two formulations more in detail and identifies the
complex symmetric PS operator Y = Y ′ that maps the tangential electric field
on the equivalent electric current: YEt = J [21]. It is important to note that
the transpose operator Y ′ is defined with respect to the bilinear inner product
〈X|Y〉 =

∫

∂ Ω
X · YdS [22]. The frequencies for which YEt = 0 are known as

the Neumann eigenfrequencies and the frequencies for which Y−1J = 0 are the
Dirichlet eigenfrequencies of the domain Ω.
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7.2.1 The finite element method

In the inhomogeneous domain Ω, we apply the FE method as described in Sec-
tion 5.2. After calculation of the Schur complement, we obtain

SEt
1 = jk0η0J1, (7.1)

with η0 =
p

µ0/ε0. Note that at some frequencies the Schur complement S can
become singular, meaning that its inverse S−1 is undefined. Therefore, at these
frequencies, we implicitly extend Γ1 with some interior edges, such that S−1 al-
ways exists. This is the equivalent of leaving some unknowns uneliminated while
forming the Schur complement.

It is easily observed that S is a scaled version of the complex symmetric PS op-
erator Y1, since it already provides a direct relationship between Et

1 and J1. The
reduced FE system can thus be written as

Y1Et
1 = J1. (7.2)

In the rest of this chapter, we will refer to (7.2) as the Electric Field Formulation
(EFF), as in [20].

Remark that, in the case of lossless reciprocal media, εr and µr are real symmetric
tensors. For these materials, the left hand side of (5.3) becomes a real symmetric
matrix in a Galerkin weighting scheme (assuming the basis functions are real-
valued). S is then a real symmetric matrix and Y1 becomes a purely imaginary
operator that can be written as Y1 = jX1, with X1 a real symmetric operator:
X1 = X ′1.

7.2.2 Boundary integral equations

The fields in the homogeneous background medium are related to Et
0 and J0 by

integral equations with the Green’s function G(|r− r′|) = e− jk0|r−r′|/
�

4π |r− r′|
�

as integral kernel. As can be seen from the configuration of Fig. 7.1, we solve for
the tangential electric field Et

0 and the equivalent electric current J0 in the exterior
domain. Hence, we can employ the EFIE and the MFIE from (5.35b), which are
repeated here for the ease of reading







K′ + 1
2
I ηU

− 1
η
NUN −K+ 1

2
I













Et

J






=







Et,i

Ji






. (7.3)

The PS operator Y0, which relates Et
0 and J0 in the interior domain, can now be

identified in the sourceless Stratton-Chu representation (5.33). Remark that the
domain is supposed to be filled with background material

�

ε0,µ0
�

, since G0(r, r′)
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is used as kernel in the integral equations. We obtain

1

2
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
, (7.4)

and with Y0Et
0 = J0, the following properties are found:

�

−K′ +
1

2
I
�

Y−1
0 = η0U , (7.5a)

�

K+
1

2
I
�

Y0 =−
1

η0
NUN . (7.5b)

Similarly, the complementary PS operator Ỹ0, which relates Et
0 and J0 in the exte-

rior domain, can be identified in the sourceless EFIE and MFIE (7.3):
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, (7.6)

and with Ỹ0Et
0 = J0, we obtain

K′ +
1

2
I =−η0UỸ0, (7.7a)

−K+
1

2
I =

1

η0
NUNỸ−1

0 . (7.7b)

More details about Y0 and Ỹ0 can be found in [21].

The uniqueness of the EFIE and the MFIE solutions is easily established after iden-
tification of the PS operator Ỹ0 in (7.3). For the sourceless EFIE we find with
(7.7a):

η0U
�

Ỹ0Et
0 − J0

�

= 0, (7.8)

which indicates that spurious solutions can exist when U becomes singular. From
(7.5a), it is clear that this occurs at the Dirichlet eigenfrequencies of the interior
structure filled with background material. Hence, at these frequencies, a non-zero
spurious electric current Jsp can be found. Remark that Jsp does not radiate, since
it is a resonant current on the PEC cavity formed by Ω. It will only generate a non-
zero field inside the cavity. However, it will induce a radiating spurious tangential
electric field Et

sp = Ỹ−1
0 Jsp.

For the sourceless MFIE, we obtain using (7.7b):

1

η0
NUN

�

Et
0 − Ỹ−1

0 J0

�

= 0, (7.9)
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which shows that now spurious solutions can exist when NUN becomes singular.
From (7.5b), we find that this occurs at the Neumann eigenfrequencies of the
interior structure filled with background material. Hence, at these frequencies,
a non-zero spurious tangential electric field Et

sp can be found. This is a resonant
tangential electric field on the PMC cavity formed by Ω, which will only generate
a non-zero field inside the cavity. However, it will induce a radiating spurious
electric current Jsp = Ỹ0Et

sp.

It is important to note that the spurious solutions of (7.8) and (7.9) do not coincide
[23]. Therefore, no spurious solutions can exist if both equations are satisfied.

7.2.3 Physical resonances

When solving the sourceless problem of Fig. 7.1, the Maxwell equations lead to
the following expressions in the exterior and interior domain:{

Ỹ0Et
0 − J0 = 0,

Y1Et
1 − J1 = 0.

(7.10)

In the case of conformal meshes, we have that Et
0 = Et

1 and J0 = −J1. After
substituting this in (7.10) and pre-multiplying both equations with Ỹ−1

0 , we find

�

I + Ỹ−1
0 Y1

�

Et
0 = 0. (7.11)

This leads to Et
0 = 0, unless

�

I + Ỹ−1
0 Y1

�

becomes singular. In this case, we find
a physical resonance tangential electric field for the configuration.

A similar expression for the electric current can be found, starting from{
Et

0 − Ỹ−1
0 J0 = 0,

Et
1 −Y−1

1 J1 = 0.
(7.12)

After substitution of Et
1 by Et

0 and J1 by −J1, and after pre-multiplication of (7.12)
with Ỹ0, we obtain

�

Ỹ0Y−1
1 + I

�

J0 = 0. (7.13)

This leads to J0 = 0, unless
�

Ỹ0Y−1
1 + I

�

becomes singular. In this case, we find a
physical resonance electric current for the configuration.

7.3 Conformal hybrid FE-BIE formulations

A first group of hybrid formulations consists of conformal formulations. In these
systems, both the FE and BIE method are applied on the same mesh and the
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tangential electric fields and equivalent electric currents are coupled via strong
(pointwise) continuity relations

Et
0 = Et

1, (7.14a)

J0 =−J1. (7.14b)

The solution of these systems is, however, not always uniquely defined and the
frequencies for which internal resonances occur can be predicted by identifying
the PS operator in the different formulations.

7.3.1 EFF and EFIE
The classic approach to construct a hybrid FE-BIE formulation is to combine the
EFF and the EFIE [3], [8]. Making use of (7.2) and the first equation of (7.3), the
following system is obtained:
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Y1 I

K′ + 1
2
I η0U













Et
0

J0






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


. (7.15)

It is well-known that this formulation suffers from internal resonances, more pre-
cisely at the Dirichlet eigenfrequencies of the interior structure filled with back-
ground medium [15]. This occurs because of the non-uniqueness of the EFIE for
the background medium. In order to verify this, the PS operator Ỹ0 is first identi-
fied in the sourceless EFIE, as in (7.8), and after substitution of the first equation
into this expression, we find for the electric current:

η0U
�

Ỹ0Y−1
1 + I

�

J0 = 0. (7.16)

This leads to J0 = 0, unless η0U or
�

Ỹ0Y−1
1 + I

�

becomes singular. In Sec-
tion 7.2.3 it was already shown that the singularity of the latter leads to physical
resonances, so spurious resonances are only present when η0U is singular. As al-
ready demonstrated in Section 7.2.2, this occurs at the Dirichlet eigenfrequencies
of the interior structure filled with background material. At these frequencies we
thus find a non-radiating resonant spurious electric current Jsp and a radiating
induced spurious tangential electric field Et

sp =−Y
−1
1 Jsp.

7.3.2 EFF and MFIE
Another approach is to combine the EFF and the MFIE. Now (7.2) and the second
equation of (7.3) are utilised to form the following system:
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This formulation also suffers from internal resonances, but now at the Neumann
eigenfrequencies of the interior structure filled with background medium, due to
the non-uniqueness of the MFIE. This is again verified after identification of Ỹ0 in
the homogeneous matrix system. Making use of (7.9), and after substitution of
the first equation into this expression, we find:

1

η0
NUN

�

I + Ỹ−1
0 Y1

�

Et
0 = 0. (7.18)

This leads to Et
0 = 0, unless 1

η0
NUN or

�

I + Ỹ−1
0 Y1

�

is singular. Again, it was al-

ready shown in Section 7.2.3 that the singularity of
�

I + Ỹ−1
0 Y1

�

leads to physical
resonances, which means that spurious solutions can only occur when 1

η0
NUN is

singular. It is shown in Section 7.2.2 that this occurs at the Neumann eigenfre-
quencies of the interior structure filled with background material. At these fre-
quencies we thus find a non-radiating spurious tangential electric field Esp and a
radiating induced spurious electric current Jsp =−Y1Et

sp.

Remark that these spurious solutions differ from the spurious solutions in Sec-
tion 7.3.1, since in (7.18), they occur due to the non-uniqueness of the MFIE,
whereas the spurious solutions in (7.16) exist because of the non-uniqueness of
the EFIE.

7.3.3 EFF and CFIE
A solution to the problem in previous formulations is to employ the CFIE in the
BIE domain [3]. The system matrix then becomes a linear combination of the
system matrices in 7.3.1 and 7.3.2. We get
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with 0< α < 1. Using (7.7), the sourceless matrix system becomes
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First of all, note that the spurious solutions of Section 7.3.1 and Section 7.3.2
can never be solutions of this system, since they are different from each other, as
explained in the previous section and in [23]. Therefore, at the Dirichlet and Neu-
mann eigenfrequencies of the interior structure filled with background medium,
the solution of (7.20) will be zero. Possible spurious solutions for the electric cur-
rent can be found by substituting the first equation of (7.20) into the second one.
We obtain:

�

αη0U + (1−α)η0

�

−K+
1

2

��

�

Ỹ0Y−1
1 + I

�

J0 = 0. (7.21)

With the transposed equation of (7.5a), this is further simplified to

�

α+ (1−α)η0Y0
�

η0U
�

Ỹ0Y−1
1 + I

�

J0 = 0. (7.22)

This leads to J0 = 0, unless
�

α+ (1−α)η0Y0
�

or η0U or
�

Ỹ0Y−1
1 + I

�

is singular.
We already know that the singularity of the latter corresponds with physical reso-
nances and that the singularity of η0U cannot lead to internal resonances since it
occurs at the Dirichlet eigenfrequencies of the interior structure filled with back-
ground medium. Hence, it is clear that spurious solutions can only exist when
�

α+ (1−α)η0Y0
�

is singular. Therefore, α

(α−1)η0
has to be an eigenvalue of Y0

(or (α−1)η0

α
an eigenvalue of Y−1

0 ). This means that Y0 should have a real non-zero
eigenvalue. However, for a lossless reciprocal medium, Y0 is a pure imaginary
symmetric matrix, so it possesses only imaginary eigenvalues. Therefore, no inter-
nal resonances are present.

The proof for the tangential electric field is similar and leads to the same conclu-
sions.

7.3.4 EFF + MFIE and EFIE
The last conformal formulation under study adds up the EFF and the MFIE in one
equation and combines it with the EFIE in order to form a symmetric system. The
system is then [18], [19]:







Y1 +
1
η0
NUN K+ 1

2
I

K′ + 1
2
I η0U













Et
0

J0






=







−Ji

Et,i






. (7.23)

Although one would expect that the solution of (7.23) is uniquely defined since
both the EFIE and the MFIE are used to model the background medium, inter-
nal resonances are still present due to the construction of the hybrid system ma-
trix. Indeed, after transposing (7.7a), we find that K+ 1

2
I and U have a shared

nullspace:

K+
1

2
I =−η0Ỹ0U . (7.24)
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Therefore, spurious solutions of the form
�

0 Jsp

�T
can exist. From (7.5a), it is

clear that this occurs at the Dirichlet eigenfrequencies of the interior structure
filled with background material.

Remark that, in contrast to the internal resonances of Section 7.3.1 and Sec-
tion 7.3.2, no tangential electric field is induced here.

7.4 Non-conformal hybrid FE-BIE
formulations

A second group of hybrid formulations consists of non-conformal formulations.
In these systems, the FE and BIE methods are independently discretised and the
solutions are projected from one domain to the other. These projections can be
calculated analytically and do not largely extend the simulation time [24]. A great
advantage of these formulations is that higher order FE basis functions can be used
in combination with first-order BIE basis functions. Also, domain decomposition
techniques can be employed to solve the hybrid system.

Depending on the transmission conditions, different formulations exist. In this
chapter, we focus on weak tangential continuity and Robin transmission condi-
tions.

7.4.1 Tangential continuity

In this formulation, as described in Section 6.2.1, the transmission conditions are
the continuity of the tangential electric and magnetic field at the boundary ∂ Ω:

Et
0 = Et

1, (7.25a)

J0 =−J1, (7.25b)

which are applied in a weak sense. After combination with the EFF, EFIE and
MFIE, the following symmetric system matrix is obtained:


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











Y1 − 1
2
I 0 1
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I 0

0 1
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


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0

0

−Ji

Et,i


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


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







. (7.26)

It is clear that the continuity of the tangential electric field is explicitly enforced
in the weak sense (in the second equation), whereas the continuity of the electric
current is only implicitly defined. The investigation of internal resonances starts
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from the sourceless matrix representation and after elimination of Et
1 we find:


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







− 1
2
I Y1

1
2
I

1
2
I 1
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
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. (7.27)

The electric current J1 can also be eliminated from the first equation and we ob-
tain:







Y1 +
1
η0
NUN K+ 1

2
I

K′ + 1
2
I η0U








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
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J0






=
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



0

0






. (7.28)

This is the same system matrix as (7.23), so the same spurious solutions will exist.
This occurs at the Dirichlet eigenfrequencies of the interior structure filled with
background medium.

7.4.2 Robin transmission conditions

This is the formulation of Section 6.2.2. For the configuration of Fig. 7.1, the
Robin boundary conditions are given by

Et
0 +αJ0 = Et

1 −αJ1, (7.29a)

Et
1 +αJ1 = Et

0 −αJ0. (7.29b)

After combining the EFF, EFIE and MFIE, the following symmetric matrix repre-
sentation is obtained [4]:
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(7.30)
Again, in order to find internal resonances, we start from the sourceless matrix
representation and eliminate Et

1.


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. (7.31)
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The second and third equation can be replaced by the following linear combina-
tions: {

−η0

�

K+ 1
2
I
�

(eq. 2) +NUN (eq. 3),
−η0U(eq. 2) +

�

K′ − 1
2
I
�

(eq. 3).
(7.32)

By applying the Calderón identities (see Section 5.3.4), this is simplified to{
�

η0

�

K+ 1
2
I
�

+αNUN
�

�

J0 + J1
�

= 0,
�

η0U +α
�

K′ − 1
2
I
��

�

J0 + J1
�

= 0,
(7.33)

and after identifying the PS operator Y0 by means of (7.5), we find:{
NUN

�

Y−1
0 −αI

�

�

J1 + J0
�

= 0,
�

K′ − 1
2

��

Y−1
0 −αI

�

�

J1 + J0
�

= 0.
(7.34)

Hence, J0 = −J1, unless a shared nullspace is found between NUN
�

Y−1
0 −αI

�

and
�

K′ − 1
2

��

Y−1
0 −αI

�

. Therefore, α should be an eigenvalue of Y−1
0 (or 1

α
an eigenvalue of Y0). The same reasoning as for the CFIE can be used here to
conclude that Y−1

0 only has imaginary non-zero eigenvalues if the background
medium is lossless and reciprocal. So, for real α 6= {0,∞}, (7.31) becomes:
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0

0


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







. (7.35)

Here, both the EFIE and MFIE are solved for the background medium, so the
solution will always be uniquely defined. Hence this formulation is free of internal
resonances.

7.5 Numerical results
In this section, the above concepts are illustrated by means of numerical simu-
lations. The configuration of the simulated problem is depicted in Fig. 7.2. A
plane wave, travelling along the positive x-axis and with the electric field po-
larised along the positive y-axis, is scattered by a dielectric cuboid with dimen-
sions {L, W, H} and relative permittivity εr = 2. As expansion functions, the curl
conforming first-order edge elements wi [25] are used for Et

i and the divergence
conforming RWGs vi [26] are used for Ji . We have that wi = ni × vi . Galerkin
weighting is applied in all formulations.

Remark that the Dirichlet and Neumann eigenfrequencies are equal for 3D con-
figurations, because of the duality principle. In order to prove this, we use the
example of Fig. 7.3. The eigenfrequencies of the Dirichlet problem in 7.3(a) are
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Figure 7.2: Configuration of the simulated problem. A plane wave is scattered by a dielec-
tric cuboid with relative permittivity εr = 2.

equal to the eigenfrequencies of Neumann the problem in 7.3(b) because the con-
figurations are dual to each other. This is also true for the problems 7.3(c) and
7.3(d) (the terms Dirichlet and Neumann refer to the electric field solution). Now,
since the eigenfrequencies are found from

∇×∇× E− k2E= 0, (7.36)

it is clear that the eigensolutions are only frequency dependent through the wave-
number

k =
2π f
p
εrµr

c0
. (7.37)

This implies that the eigenfrequencies of Figs. 7.3(a) and 7.3(c) are also equal,
because the wave number for both configurations is the same. Hence, the eigenfre-
quencies of 7.3(a) and 7.3(b) are equal. The latter two problems are the Dirichlet
and Neumann problem of the same configuration, respectively. Hence, the Dirich-
let and Neumann eigenfrequencies are equal.

7.5.1 Discretised PS operator
In (7.1), it was already shown that Y1 can be calculated by rescaling the Schur
complement of the FE system matrix with jk0η0. If a Green’s function kernel
is available, such as for homogeneous regions Ω, the same operator can also be
computed via the BIE method and the obtained matrices must be the same up to
discretisation errors.

In order to obtain the BIE PS operator Y1, we expand the tangential electric field
and the equivalent electric current in first-order edge element and RWG basis
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Figure 7.3: Example of the duality principle. Configuration (a) is dual to configuration (b)
and configuration (c) is dual to configuration (d).

functions, respectively:

Et =
N
∑

n=1

χnwn, (7.38a)

J=
N
∑

n=1

ξnvn. (7.38b)

The discretised PS operator then becomes the complex symmetric N × N matrix
Y, with

Yi j = 〈wi |Yw j〉. (7.39)

Here, both test and basis functions are the curl conforming first order edge ele-
ments wi , since Y1 operates on the tangential field Et and results in an equivalent
electric current that needs to be tested with functions from its dual space.

After inserting (7.38) into the sourceless Stratton-Chu formulation (7.4) and into
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the definition of the PS operator (YEt = J), we obtain [21]

1

2
DTχ = ATχ +η1Bξ, (7.40a)

1

2
η1Dξ=−Cχ −η1Aξ, (7.40b)

Yχ =Dξ, (7.40c)

with χ and ξ the vectors containing the unknowns χn and ξn, and the N × N
matrices A,B,C and D defined as

Ai j = 〈wi |Kv j〉, (7.41a)

Bi j = 〈vi |Uv j〉, (7.41b)

Ci j = 〈wi |NUNw j〉, (7.41c)

Di j = 〈wi |v j〉. (7.41d)

Note that the calculation is performed for the inner domain, so the Calderón op-
erator P needs to be employed. Also, in order to obtain Y1, the Green’s function
G1(r, r′) is used (with εr = 2). Now, since the matrices B and C are complex
symmetric, it is easily shown from (7.40) that the discretised PS operator can be
written in an explicitly symmetric form as

Y =
1

η1

�

−C+
�

1

2
D−A

�T

B−1
�

1

2
D−A

�

�

. (7.42)

The matrices YFE, obtained from (7.1), and YBIE, obtained from (7.42), are
now compared against each other for the problem of Fig. 7.2 with {L, W, H} =
{1, 1,1}m at a frequency of 100MHz. The matrix YFE is calculated twice, once
with first-order FE basis functions and a second time with second-order FE basis
functions. The mesh of the configuration is depicted in Fig. 7.4. It has an average
edge length of 100mm and leads to 2040 degrees of freedom on the boundary.
Remark that, for the FE calculations, the interior mesh has the same average edge
length as the boundary mesh. For the first-order FE computations, this leads to
a total of 8086 unknowns and for the second-order FE computations, we have
41 815 unknowns.

The numerical equivalence of the PS operators is illustrated in Fig. 7.5, where the
imaginary part of the 512th column of YBIE and YFE (obtained once via first-order
and a second time via second-order FE basis functions) are compared. This column
represents the interactions between the marked basis function in Fig. 7.4 and all
other basis functions. In Fig. 7.5(a) the singular close interactions are shown and
errors between the matrices are visible because only in the BIE method special
routines were used to calculate these selfpatch integrals [27]. We also observed
that this error became even worse when investigating the interactions between
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Figure 7.4: Mesh used to calculate the FE and BIE PS operator Y1. The interactions of the
marked RWG with the other basis functions are displayed in Fig. 7.5.

basis functions on the edges or in corners. However, it is seen that the accuracy of
YFE increases by using second-order FE basis functions.

Some non-singular interactions are shown in Fig. 7.5(b) and here we observe a
very good match between the PS operators. The same results are obtained for the
other columns.

7.5.2 Spurious solutions
In Sections 7.3 and 7.4, it was shown that internal resonances can occur at the
Dirichlet and Neumann eigenfrequencies of the FE domain filled with background
medium for the formulations under study. Here, we will demonstrate this for the
scattering problem of Fig. 7.2 with {L, W, H} = {1.2, 0.5,0.2}m using a mesh
with an average edge length of 70mm. As mentioned before, the Dirichlet and
Neumann eigenfrequencies are identical for 3D configurations and for a box, they
are found from

fl,m,n =
c

2
p
εr

r

l2

1.22 +
m2

0.52 +
n2

0.22 . (7.43)

These frequencies are shown in Table 7.1 for both the background medium (εr =
1) and the dielectric medium (εr = 2). The numerical simulations are then per-
formed as follows. A reference solution XPMCHWT is first calculated by means of
the pure BIE (PMCHWT) formulation and then a combined error in Et

0 and J0
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Figure 7.5: Imaginary part of the 512th column of the discretised PS operators YBIE and
YFE, where the FE PS operator is calculated once with first-order basis functions and a
second time with second-order basis functions. Some singular (a) and non-singular (b)
interactions are shown.

with respect to this solution is computed using the solution vectors X for each of
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Table 7.1: Eigenfrequencies of the vacuum and dielectric cuboid.

mode (l, m, n) f [MHz] for εr = 1 f [MHz] for εr = 2

(1,0, 0) 124.913524 88.327200

(2,0, 0) 249.827048 176.654400

(0,1, 0) 299.792458 211.985280

(1,1, 0) 324.775163 229.650720

(3,0, 0) 374.740572 264.981600

(2,1, 0) 390.242325 275.942994

(3,1, 0) 479.902089 339.342021

the formulations under study:

ε=
||X − XPMCHWT||
||XPMCHWT||

. (7.44)

The error for the conformal formulations is shown in Fig. 7.6(a) for a frequency
range from 300 MHz to 350MHz and the corresponding condition numbers of the
hybrid system matrices are displayed in Fig. 7.6(b). As expected, all conformal
formulations exhibit spurious solutions except the formulation of 7.3.3, where the
CFIE was computed with α = 0.5. The breakdown frequency of formulations
7.3.1 and 7.3.4 occurs exactly as predicted, whereas it has shifted towards lower
frequencies for formulation 7.3.2. This is because different integration routines
were used to calculate the BIE interactions in formulation 7.3.2 (in a Galerkin
scheme, these interactions form an n×MFIE formulation). Moreover, the K oper-
ator is not well tested in this formulation, what leads to the broader error peak.
A solution would be to employ Buffa-Christiansen test functions for the second
equation [28], [29], but then there is no Galerkin testing anymore. Also note that
with these test functions, the formulation still suffers from internal resonances,
since these occur in the continuous problem, independent from any discretisation.

Observing Fig. 7.6(b), we see that the condition number increases for all formu-
lations that have breakdown frequencies around 325 MHz. Other increases of the
condition numbers are also observed at 337 MHz and 346MHz. These peaks are
a bifurcation of the expected peak at 339 MHz, due to the singularity of Y1. Al-
though, it is clear from Fig. 7.6(a) that this does not contribute to errors on the
solution vector.

Fig. 7.7(a) compares the solution error defined by (7.44) for the non-conformal
FE-BIE formulations discussed in Section 7.4. Since these formulations completely
decouple the FE and BIE discretisations, it is also possible to compare the solutions
from FE-BIE formulations with second-order FE basis functions. As explained
in the previous section, the formulation imposing weak tangential continuity of
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Figure 7.6: Combined error of the solutions of the conformal formulations with respect
to the reference PMCHWT solution (a) and the corresponding condition numbers of the
hybrid system matrices (b). The theoretical breakdown frequency is shown by the vertical
arrow.

electric and magnetic fields suffers from internal resonances, whereas the Robin
boundary conditions (with α= η0) lead to a resonance-free solution. A difference
in accuracy between first and second-order FE basis functions is also noticeable.
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The condition numbers of the system matrices of the non-conformal formulations
are shown in Fig. 7.7(b). The resonance of Y1 can be noticed for these formula-
tions too and the bifurcation has disappeared for the formulations with second-
order FE basis functions. Again, this resonance does not contribute to errors on
the solution vector, as illustrated in Fig. 7.7(a).

7.5.3 Radiating vs. non-radiating spurious solutions

In Section 7.3, it was already shown that not all spurious solutions radiate. The
internal resonance solutions of the PEC or PMC cavity filled with background ma-
terial produce a non-zero field in the cavity, but do not radiate outside Ω, whereas
the solutions that are induced by these resonance currents or fields do radiate out-
side the cavity. Here, we will demonstrate this for the example of Fig. 7.2 with
{L, W, H}= {1.2,0.5, 0.2}m using a mesh with an average edge length of 70 mm.
The normalised radar cross section (RCS) σ/λ2 is first calculated in the yz-plane
at a frequency of 324.75 MHz by means of a reference PMCHWT formulation. This
RCS is then compared with the RCS obtained from each of the spurious solutions
of Section 7.3 and Section 7.4.

Fig. 7.8(a) displays the RCS in the yz-plane for the reference PMCHWT solution
and for the spurious tangential electric fields Esp of the formulations in 7.3.1 and
7.3.2. The spurious tangential electric field of formulation 7.3.1 is induced by
a resonant current and one can observe that this produces a spurious RCS with
the same order of magnitude as the correct reference RCS. The field radiated by
the spurious tangential electric field of formulation 7.3.2 is clearly much lower in
magnitude and it can be concluded that these spurious solutions do not radiate.

In Fig. 7.8(b), the RCS in the yz-plane is shown for the reference PMCHWT solu-
tion and for the spurious electric currents Jsp of the formulations in 7.3.1, 7.3.2,
7.3.4 and 7.4.1. Again, it is clear that only the currents that are induced by a
resonant tangential electric field radiate, whereas the internal resonant currents
do not produce a field outside Ω.

7.6 Conclusion

In this chapter the stability of several conformal and non-conformal hybrid FE-
BIE formulations was analysed by identifying the Poincaré-Steklov operator in the
system matrices. This method identifies and explains all internal resonances and
even predicts their frequencies for simple configurations.

All conformal formulations except the EFF-CFIE formulation exhibited spurious
solutions at the Dirichlet or Neumann eigenfrequencies of the FE domain filled
with background medium. We also proved that the EFF-CFIE system is free of
internal resonances because the PS operator Y0 has no real eigenvalues.
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Figure 7.7: Combined error of the solutions of the non-conformal formulations with respect
to the reference PMCHWT solution (a) and the corresponding condition numbers of the
hybrid system matrices (b). The theoretical breakdown frequency is shown by the vertical
arrow.

The non-conformal formulations under study were the formulation with weak tan-
gential continuity of electric and magnetic fields at the interface and the formu-
lation with Robin boundary conditions. It was shown that tangential continuity
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Figure 7.8: RCS in the yz-plane for the spurious tangential electric fields (a) and the
spurious electric currents (b). The RCS calculated from a reference PMCHWT solution is
also displayed in order to compare the order of magnitude.

leads to spurious solutions and that Robin boundary conditions are free from in-
ternal resonances as long as the parameter α is real and different from {0,∞}.

The equivalence between the discretised FE and BIE PS operators was also dem-
onstrated. However, a mismatch between the singular selfpatch interactions was
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found due to numerical issues. Furthermore, the theory was verified for a scatter-
ing problem and it was shown that only the induced resonance currents (or fields)
radiate outside the cavity.





References

[1] T. Cwik, “Coupling finite element and integral equation solutions using de-
coupled boundary meshes”, IEEE Trans. Antennas Propag., vol. 40, no. 12,
pp. 1496–1504, Dec. 1992.

[2] D. J. Hoppe, L. W. Epp, and J.-F. Lee, “A hybrid symmetric FEM/MOM for-
mulation applied to scattering by inhomogeneous bodies of revolution”,
IEEE Trans. Antennas Propag., vol. 42, no. 6, pp. 798–805, Apr. 1994.

[3] J. L. Volakis, K. Sertel, and B. C. Usner, Frequency Domain Hybrid Finite
Element Methods for Electromagnetics, C. A. Balanis, Ed. Morgan & Claypool,
2006.

[4] K. Zhao, M. N. Vouvakis, and J.-F. Lee, “Solving electromagnetic problems
using a novel symmetric FEM-BEM approach”, IEEE Trans. Magn., vol. 42,
no. 4, pp. 583–586, Apr. 2006.

[5] E. Arvas and J. R. Mautz, “On the non-uniqueness of the surface EFIE ap-
plied to multiple conducting and/or dielectric bodies”, Archiv für Elektronik
und Übertragungstechnik (AEÜ), vol. 42, no. 6, pp. 364–369, 1988.

[6] B.-S. Yang, A. W. Glisson, and P. M. Goggans, “Interior resonance problems
associated with hybrid integral equation/partial differential equation meth-
ods”, in Antennas and Propagation Society International Symposium, 1992.
AP-S. 1992 Digest. Held in Conjuction with: URSI Radio Science Meeting and
Nuclear EMP Meeting., IEEE, vol. 2, Jul. 1992, pp. 781–784.

[7] J.-J. Angélini, C. Soize, and P. Soudais, “Hybrid numerical method for har-
monic 3-D Maxwell equations: scattering by a mixed conducting and inho-
mogeneous anisotropic dielectric medium”, IEEE Trans. Antennas Propag.,
vol. 41, no. 1, pp. 66–76, Jan. 1993.

[8] X.-Q. Sheng, J.-M. Jin, J. Song, C.-C. Lu, and W. C. Chew, “On the for-
mulation of hybrid finite-element and boundary-integral methods for 3-D
scattering”, IEEE Trans. Antennas Propag., vol. 46, no. 3, pp. 303–311, Mar.
1998.

[9] Y. Ji, H. Wang, and T. H. Hubbing, “A numerical investigation of interior res-
onances in the hybrid FEM/MoM method”, IEEE Trans. Antennas Propag.,
vol. 51, no. 2, pp. 347–349, Feb. 2003.

[10] M. Smith and A. Peterson, “Numerical solution of the CFIE using vector
bases and dual interlocking meshes”, IEEE Trans. Antennas Propag., vol. 53,
no. 10, pp. 3334–3339, Oct. 2005.

[11] F. Andriulli and E. Michielssen, “A regularized combined field integral equa-
tion for scattering from 2-D perfect electrically conducting objects”, IEEE
Trans. Antennas Propag., vol. 55, no. 9, pp. 2522–2529, Sep. 2007.



144 Chapter 7. Analysis of Internal Resonances in 3D Hybrid FE-BIE Formulations

[12] S. Yan, J.-M. Jin, and Z. Nie, “Calderón preconditioner: from EFIE and
MFIE to N-Müller equations”, IEEE Trans. Antennas Propag., vol. 58, no.
12, pp. 4105–4110, Dec. 2010.

[13] J. Collins, J.-M. Jin, and J. Volakis, “Eliminating interior resonances in finite
element-boundary integral methods for scattering”, IEEE Trans. Antennas
Propag., vol. 40, no. 12, pp. 1583 –1585, Dec. 1992.

[14] W. C. Chew and J. M. Song, “Gedanken experiments to understand the in-
ternal resonance problems of electromagnetic scattering”, Electromagnetics,
vol. 27, no. 8, pp. 457–471, Nov. 2007.

[15] W. C. Chew, M. S. Tong, and B. Hu, Integral Equation Methods for Electro-
magnetic and Elastic Waves, C. A. Balanis, Ed. Morgan & Claypool, 2008.

[16] D. Jiao, A. Ergin, B. Shanker, E. Michielssen, and J.-M. Jin, “A fast higher-
order time-domain finite element-boundary integral method for 3-D elec-
tromagnetic scattering analysis”, IEEE Trans. Antennas Propag., vol. 50, no.
9, pp. 1192–1202, Sep. 2002.

[17] M. Lu, B. Shanker, and E. Michielssen, “Elimination of spurious solutions
associated with exact transparent boundary conditions in FDTD solvers”,
IEEE Antennas Wireless Propag. Lett., vol. 3, pp. 59–62, Dec. 2004.

[18] M. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE for-
mulation with a single-level IE-QR algorithm for solving electromagnetic
radiation and scattering problems”, IEEE Trans. Antennas Propag., vol. 52,
no. 11, pp. 3060 –3070, Nov. 2004.

[19] M. M. Botha and J.-M. Jin, “On the variational formulation of hybrid finite
element-boundary integral techniques for electromagnetic analysis”, IEEE
Trans. Antennas Propag., vol. 52, no. 11, pp. 3037–3047, Nov. 2004.

[20] P. Demarcke and H. Rogier, “The Poincaré-Steklov operator in hybrid Finite
Element-Boundary Integral Equation formulations”, IEEE Antennas Wireless
Propag. Lett., vol. 10, pp. 503–506, May 2011.

[21] L. Knockaert and D. De Zutter, “On the complex symmetry of the Poincaré-
Steklov operator”, Progress In Electromagnetics Research B, vol. 7, pp. 145–
157, 2008.

[22] S. R. Garcia and M. Putinar, “Complex symmetric operators and applica-
tions”, Transactions of the American Mathematical Society, vol. 358, no. 3,
pp. 1285–1315, May 2005.

[23] J. G. Van Bladel, Electromagnetic Fields, 2nd, D. G. Dudley, Ed. John Wiley
and Sons, Inc., 2007.

[24] F. Boeykens, H. Rogier, J. Van Hese, J. Sercu, and T. Boonen, “Efficient calcu-
lation of coupling matrices for a decoupled FE/BIE formulation”, in Electro-
magnetics in Advanced Applications (ICEAA), 2012 International Conference
on, 2012, pp. 506 –509.



7.6. Conclusion 145

[25] J.-C. Nédélec, “Mixed finite elements in R3”, Numerische Mathematik, vol.
35, pp. 315–341, 1980.

[26] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering by
surfaces of arbitrary shapes”, IEEE Trans. Antennas Propag., vol. 30, no. 3,
pp. 409–418, May 1982.

[27] J. Peeters, I. Bogaert, and D. De Zutter, “Calculation of MoM interaction
integrals in highly conductive media”, IEEE Trans. Antennas Propag., vol.
60, no. 2, pp. 930–940, Feb. 2012.

[28] K. Cools, F. P. Andriulli, F. Olyslager, and E. Michielssen, “Improving the
MFIE’s accuracy by using a mixed discretization”, in Antennas and Propaga-
tion Society International Symposium, 2009. APSURSI ’09. IEEE, Jun. 2009,
pp. 1–4.

[29] S. Yan, J.-M. Jin, and Z. Nie, “Improving the accuracy of the second-kind
Fredholm integral equations by using the Buffa-Christiansen functions”,
IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1299–1310, Apr. 2011.





Conclusions

General conclusions
The main objective of this thesis was to provide efficient and accurate solutions for
the computer-aided design of flexible antennas that operate in non-ideal environ-
ments, since 2.5D simulation software is only capable of modelling the antennas
in flat state and embedded in free space.

Therefore, we demonstrated in Part I how such 2.5D simulations can be validated
in realistic conditions by means of a posteriori measurements. Also, an analyti-
cal model was proposed for computing the resonance frequency and the radiation
patterns of flexible antennas in bent state. This model was further expanded for
situations where the bending radius can fluctuate, but where a statistical distribu-
tion of the radius is known (or can be fitted).

In Part II, we developed a 3D non-conformal hybrid FE-BIE method, which takes
into account the finite dimensions of the antenna substrates and is also capable
of modelling objects in the near field of the antenna. The accuracy and some
properties of the hybrid method were demonstrated by means of numerical exam-
ples. We also investigated the occurrence of internal resonances in different hybrid
formulations based on a general rigorous operator theory. This provided insight
in how to combine the FE and BIE method correctly in order to avoid spurious
solutions.

Future work
The analytical cavity model for computing the resonance frequencies and radia-
tion patterns of bent antennas is limited to rectangular patch antennas that are
cylindrically bent. It can therefore be interesting to investigate the accuracy for
other antenna types and to adapt the model if necessary. Also, when considering
the deployment of flexible antennas on a human torso, it is possible that antennas
are bent in two directions. In that case, the cylindrical model has to be extended
to ellipsoidal surfaces.

Concerning the hybrid FE-BIE formulation, we demonstrated by means of the de-
sign of a planar patch antenna that the construction of the Schur complement
of the FE system matrix forms the bottleneck of the program. However, in [1],
it was proven that this Schur complement is of low-rank and that is has similar
rank-structured properties as the BIE matrices. Therefore, it might be possible
to accelerate the calculation of the Schur complement by means of hierarchical
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matrix techniques, which forms a counterpart for the MLFMA applied in the BIE
domains.

Another challenge for the hybrid FE-BIE formulation is to allow conductors or
dielectric media to cross the FE-BIE boundary. This means that the FE bounding
box is no longer a closed surface, resulting in junctions at the FE-BIE boundary,
which have to be taken into account in a similar manner as in [2]. Moreover, it is
highly likely that the FE and BIE discretisations will have to be conformal at these
junctions in order to maintain sufficient accuracy.
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Appendices





A
Projection Integrands

A.1 Theory

Consider a closed and bounded domain Σ in n-dimensional Euclidean space Rn

and let a be a point in Rn. Next, consider a function Φ(r) which is defined and
continuously differentiable over an open domain containing the conical domain

Σ(a) = {tr+ (1− t)a : 0< t ≤ 1, r ∈Σ}.

Then if

lim
t→0

tnΦ(tr+ (1− t)a) = 0,

the following result is valid:

∫

Σ

Φ(r) dVn =

∫

∂ Σ

(r− a) · un dSn

∫ 1

0

tn−1Φ(tr+ (1− t)a) dt. (A.1)

The scalar products of the different FE and BIE basis functions form the inte-
grands for the projections, necessary to couple the FE and BIE systems. Using
(A.1), the surface integral is transformed into a line integral and can be calcu-
lated analytically. Remark that the projections are 2D, since they are calculated
per triangle-triangle overlap. Now, define

f (r,a) =

∫ 1

0

tΦ (tr+ (1− t)a) dt, (A.2)
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then the projection integral becomes

P =

∫

∂ Σ

(r− a) · un f (r,a) dSn, (A.3)

=
∑

i

||pi+1 − pi || (pi − a) · un I(pi ,pi+1,a), (A.4)

with

I(p,q,a) =

∫ 1

0

f
�

(1− t)p+ tq,a
�

dt. (A.5)

This last integral I(p,q,a) is calculated here for the different scalar products of
basis functions.

A.2 Definitions

A.2.1 Basis functions
The BIE domain is spanned by RWG basis functions. For the sake of simplicity,
these are defined here without scaling factors, hence we have

RWGi(r) = r− bi . (A.6)

In the FE domain, both edge and face basis function exist. These basis are defined
based on triangle barycentric coordinates

�

λ0,λ1,λ2
�

and form a second order
basis. The first and second order edge elements are

E1 = λ0∇λ1 −λ1∇λ0, (A.7)

E2 = λ0∇λ1 +λ1∇λ0, (A.8)

and the second order face element is defined as

F= 4λ0
�

λ1∇λ2 −λ2∇λ1
�

. (A.9)

A.2.2 Shorthand notations
Some shorthand notations will be used for the ease of reading. These are

α(λi) =
∑

v=a,p,q

v · ∇λi ,

β(λi ,µ j) =
∑

v=a,p,q

(v · ∇λi)(v · ∇µ j),

γ(λi ,µ j ,νk) =
∑

v=a,p,q

(v · ∇λi)(v · ∇µ j)(v · ∇νk),
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and

α×(λi) =
∑

v=a,p,q

(n× v) · ∇λi ,

β×(λi ,µ j) =
∑

v=a,p,q

�

(n× v) · ∇λi
�

(v · ∇µ j),

γ×(λi ,µ j ,νk) =
∑

v=a,p,q

�

(n× v) · ∇λi
�

(v · ∇µ j)(v · ∇νk).

A.3 Integrals

A.3.1 RWG and RWG
The scalar product Φ(r) is given by

Φ(r) =
�

r− b1
�

·
�

r− b2
�

, (A.10)

and the integral becomes

I =
1

12

�

a·(a+p+q)+p·(p+q)+q·q
�

−
1

6

�

(a+p+q)·(b1+b2)
�

+
1

2
b1·b2. (A.11)

A.3.2 n×RWG and RWG
The scalar product Φ(r) is given by

�

n×
�

r− b1
��

·
�

r− b2
�

, (A.12)

and the integral is

I =
1

6

�

n×
�

a+ p+ q
�

�

·
�

b1 − b2
�

+
1

2

�

n× b1
�

· b2. (A.13)

A.3.3 Edge and RWG
The scalar product Φ(r) is given by

�

ξ0∇ξ1 ∓ ξ1∇ξ0
�

· (r− b) . (A.14)

Now, define c as the centroid of the edge triangle and

b(λi) = b · ∇λi ,

c(λi) = c · ∇λi ,

Ai = α(ξi)− 3b(ξi),
Bi j =

�

α(ξi)− 4c(ξi)
��

α(ξ j)− 4b(ξ j)
�

,

Ci j = β(ξi ,ξ j)− 4c(ξi)b(ξ j).
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Then, with

I1 =
1

18
A1 +

1

24

�

B01 + C01
�

,

I2 =
1

18
A0 +

1

24

�

B10 + C10
�

,

the integral becomes
I = I1 ∓ I2. (A.15)

A.3.4 Face and RWG
The scalar product Φ(r) is given by

�

4ξ0(ξ1∇ξ2 − ξ2∇ξ1)
�

· (r− b) . (A.16)

Now, define c as the centroid of the face triangle and

b(λi) = b · ∇λi ,

c(λi) = c · ∇λi ,

Ai = α(ξi)− 3b(ξi),
Bi j =

�

α(ξi)− 4c(ξi)
��

α(ξ j)− 4b(ξ j)
�

+ β(ξi ,ξ j)− 4c(ξi)b(ξ j),

Ci jk =
�

α(ξi)− 5c(ξi)
��

α(ξ j)− 5c(ξ j)
��

α(ξk)− 5b(ξk)
�

,

Di jk =
�

α(ξi)− 5c(ξi)
��

β(ξ j ,ξk)− 5c(ξ j)b(ξk)
�

Ei jk =
�

α(ξi)− 5b(ξi)
��

β(ξ j ,ξk)− 5c(ξ j)c(ξk)
�

Fi jk = γ(ξi ,ξ j ,ξk)− 5c(ξi)c(ξ j)b(ξk).

Then, with

I1 =
2

27
A2 +

1

18

�

B02 + B12
�

+
1

30

�

C012 + D012 + D102 + E201 + 2F012
�

,

I2 =
2

27
A1 +

1

18

�

B01 + B21
�

+
1

30

�

C021 + D021 + D201 + E102 + 2F021
�

,

the integral becomes
I = I1 − I2. (A.17)

A.3.5 Edge and n×RWG
The scalar product Φ(r) is given by

�

ξ0∇ξ1 ∓ ξ1∇ξ0
�

· (n× (r− b)) . (A.18)
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Now, define c as the centroid of the edge triangle and

b×(λi) = (n× b) · ∇λi ,

c(λi) = c · ∇λi ,

Ai = α×(ξi)− 3b×(ξi),
Bi j =

�

α(ξi)− 4c(ξi)
��

α×(ξ j)− 4b×(ξ j)
�

,

Ci j = β(ξi ,ξ j)− 4c(ξi)b×(ξ j).

Then, with

I1 =
1

18
A1 +

1

24

�

B01 + C01
�

,

I2 =
1

18
A0 +

1

24

�

B10 + C10
�

,

the integral becomes
I = I1 ∓ I2. (A.19)

A.3.6 Face and n×RWG
The scalar product Φ(r) is given by

�

4ξ0(ξ1∇ξ2 − ξ2∇ξ1)
�

· (n× (r− b)) . (A.20)

Now, define c as the centroid of the face triangle and

b×(λi) = (n× b) · ∇λi ,

c(λi) = c · ∇λi ,

Ai = α×(ξi)− 3b×(ξi),
Bi j =

�

α(ξi)− 4c(ξi)
��

α×(ξ j)− 4b×(ξ j)
�

+ β×(ξ j ,ξi)− 4c(ξi)b×(ξ j),

Ci jk =
�

α(ξi)− 5c(ξi)
��

α(ξ j)− 5c(ξ j)
��

α×(ξk)− 5b×(ξk)
�

,

Di jk =
�

α(ξi)− 5c(ξi)
��

β×(ξk,ξ j)− 5c(ξ j)b×(ξk)
�

Ei jk =
�

α×(ξi)− 5b×(ξi)
��

β(ξ j ,ξk)− 5c(ξ j)c(ξk)
�

Fi jk = γ×(ξk,ξi ,ξ j)− 5c(ξi)c(ξ j)b×(ξk).

Then, with

I1 =
2

27
A2 +

1

18

�

B02 + B12
�

+
1

30

�

C012 + D012 + D102 + E201 + 2F012
�

,

I2 =
2

27
A1 +

1

18

�

B01 + B21
�

+
1

30

�

C021 + D021 + D201 + E102 + 2F021
�

,

the integral becomes
I = I1 − I2. (A.21)
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A.3.7 Edge and edge
The scalar product Φ(r) is given by

�

ξ0∇ξ1 ∓ ξ1∇ξ0
�

·
�

χ0∇χ1 ∓χ1∇χ0
�

. (A.22)

Now, define c as the centroid of the first edge triangle, d as the centroid of the
second edge triangle and

c(λi) = c · ∇λi ,

d(λi) = d · ∇λi ,

Ai j = α(ξi) +α(χi)− 3
�

c(ξi) + d(χi)
�

,

Bi j =
�

α(ξi)− 4c(ξi)
��

α(χi)− 4d(χi)
�

,

Ci j = β(ξi ,χ j)− 4c(ξi)d(χ j).

Then, with

I1 =
�

1

18
(1+ A00) +

1

24
(C00 + E00)

�

�

∇ξ1 · ∇χ1
�

,

I2 =
�

1

18
(1+ A01) +

1

24
(C01 + E01)

�

�

∇ξ1 · ∇χ0
�

,

I3 =
�

1

18
(1+ A10) +

1

24
(C10 + E10)

�

�

∇ξ0 · ∇χ1
�

,

I4 =
�

1

18
(1+ A11) +

1

24
(C11 + E11)

�

�

∇ξ0 · ∇χ0
�

.

the integral for the two first order elements becomes

I = I1 − I2 − I3 + I4, (A.23)

the integral for a first order and a second order edge element is

I = I1 + I2 − I3 − I4, (A.24)

the integral for a second order and a first order edge element becomes

I = I1 − I2 + I3 − I4, (A.25)

and the integral for the two second order elements is

I = I1 + I2 + I3 + I4. (A.26)

A.3.8 Edge and face
The scalar product Φ(r) is given by

�

ξ0∇ξ1 ∓ ξ1∇ξ0
�

·
�

4χ0(χ1∇χ2 −χ2∇χ1)
�

. (A.27)
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Now, define c as the centroid of the edge triangle, d as the centroid of the face
triangle and

c(λi) = c · ∇λi ,

d(λi) = d · ∇λi ,

Ai jk = α(ξi) +α(χ j) +α(χk)− 3
�

c(ξi) + d(χ j) + d(χk)
�

,

Ci = α(ξi)− 4c(ξi),
Di = α(χi)− 4d(χi),
Ei = α(ξi)− 5c(ξi),
Fi = α(χi)− 5d(χi),

Gi j = β(ξi ,χ j)− 4c(ξi)d(χ j),

Hi j = β(χi ,χ j)− 4c(χi)d(χ j),

Ji j = β(ξi ,χ j)− 5c(ξi)d(χ j),

Ki j = β(χi ,χ j)− 5c(χi)d(χ j),

Li jk = γ(ξi ,χ j ,χk)− 5c(ξi)d(χ j)d(χk).

Then, with

Ii jk =
� 2

27
(1+ Ai jk) +

1

18
(Ci D j + Ci Dk + D j Dk + Gi j + Gik +H jk)

+
1

30
(Ei F j Fk + EiK jk + F jJik + FkJi j + 2Li jk)

�

(∇ξ1−i · ∇χ3− j−k), (A.28)

the integral for the first order edge element and the face element becomes

I = I001 − I002 − I101 + I102. (A.29)

and the integral for the second order edge element and the face element is

I = I001 − I002 + I101 − I102. (A.30)

A.3.9 Face and face

The scalar product Φ(r) is given by

�

4ξ0(ξ1∇ξ2 − ξ2∇ξ1)
�

·
�

4χ0(χ1∇χ2 −χ2∇χ1)
�

. (A.31)
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Now, define c as the centroid of the first face triangle, d as the centroid of the
second face triangle and

c(λi) = c · ∇λi ,

d(λi) = d · ∇λi ,

Ai = α(ξi)− 3c(ξi),
Bi = α(χi)− 3d(χi),
Ci = α(ξi)− 4c(ξi),
Di = α(χi)− 4d(χi),
Ei = α(ξi)− 5c(ξi),
Fi = α(χi)− 5d(χi),
Gi = α(ξi)− 6c(ξi),
Hi = α(χi)− 6d(χi),
Ji j = β(ξi ,ξ j)− 4c(ξi)c(ξ j),

Ki j = β(ξi ,χ j)− 4c(ξi)d(χ j),

Li j = β(χi ,χ j)− 4d(χi)d(χ j),

Mi j = β(ξi ,ξ j)− 5c(ξi)c(ξ j),

Ni j = β(ξi ,χ j)− 5c(ξi)d(χ j),

Oi j = β(χi ,χ j)− 5d(χi)d(χ j),

Pi j = β(ξi ,ξ j)− 6c(ξi)c(ξ j),

Q i j = β(ξi ,χ j)− 6c(ξi)d(χ j),

Ri j = β(χi ,χ j)− 6d(χi)d(χ j),

Si jk = γ(ξi ,ξ j ,χk)− 5c(ξi)c(ξ j)d(χk),

Ti jk = γ(ξi ,χ j ,χk)− 5c(ξi)d(χ j)d(χk),

Ui jk = γ(ξi ,ξ j ,χk)− 78c(ξi)c(ξ j)d(χk),

Vi jk = γ(ξi ,χ j ,χk)− 78c(ξi)d(χ j)d(χk),

Wi jk = α(ξi)α(ξ j)α(χk)−α(ξi)β(ξ j ,χk)−α(ξ j)β(ξi ,χk)−α(χk)β(ξi ,ξ j)

+ 2γ(ξi ,ξ j ,χk),

X i jk = α(ξi)α(χ j)α(χk)−α(ξi)β(χ j ,χk)−α(χ j)β(ξi ,χk)−α(χk)β(ξi ,χ j)

+ 2γ(ξi ,χ j ,χk).

Then, with

Ii, j,k,l =
8

81
(1+ Ai + A j + Bk + Bl)

+
2

27
(CiC j + Ci Dk+ Ci Dl + C j Dk+ C j Dl + Dk Dl + Ji j +Kik+Kil +K jk+K jl + Lkl)
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+
2

45
(Ei E j Fk + Ei E j Fl + Ei Fk Fl + E j Fk Fl

+ EiN jk + EiN jl + EiOkl + E jNik + E jNil + E jOkl

+ Fk Mi j + FkNil + FkN jl + Fl Mi j + Fl Nik + Fl Nil

+ 2(Si jk + Si jl + Tikl + T jkl))

+
2

45
(GiG jHkHl + Pi jRkl +Q ikQ jl +Q ilQ jk

+ 2(GiVjkl + G jVikl +HkUi jl +Hl Ui jk))

+
14

15
(β(ξi ,ξ j)−α(ξi)α(ξ j)d(χk)d(χl)+

β(ξi ,χk)−α(ξi)α(χk)c(ξ j)d(χl)+

β(ξi ,χl)−α(ξi)α(χl)c(ξ j)d(χk)+

β(ξ j ,χk)−α(ξ j)α(χk)c(ξi)d(χl)+

β(ξ j ,χl)−α(ξ j)α(χl)c(ξi)d(χk)+

β(χk,χl)−α(χk)α(χl)c(ξi)c(ξ j))

+
2

15
(Wi jkd(χl) +Wi jl d(χk)

+ X ikl c(ξ j) + X jkl c(ξi))

+ 112c(ξi)c(ξ j)d(χk)d(χl), (A.32)

the integral becomes

I = I0101 − I0102 − I0201 + I0202. (A.33)
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