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Aut numquam tentes, aut perfice. 
Begin niet of  zet door. 

 

Ovidius, Roman poet 

 
CHAPTER 1: 

GENERAL INTRODUCTION 

A part of this chapter has been adapted from : 

The derby of in vitro equine embryo production: an overview of the race towards 

the improvement of culture conditions 

Nelis H.M., Leemans B., Van Soom A., Smits K. 

Department of Reproduction,  Obstetrics and Herd Health, Ghent University, Merelbeke, 

Belgium 

Ready to submit.  
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1 EQUINE REPRODUCTION AND PREGNANCY IN A 

NUTSHELL 

 

The mare is a poly-oestrous mono-ovulatory seasonal breeder. After fertilization in the 

ampulla, the zygote embarks on a series of cell divisions that results after 5-6 days in the 

formation of a compact morula, consisting of blastomeres surrounded by trophoblast cells. 

These trophoblast cells initiate cavitation or blastocoele formation (Fig. 1), resulting in a 

blastocyst which arrives in the uterus at day 6 post fertilization. In the uterus, a number of 

important differentiating events take place in the horse conceptus, such as capsule formation, 

hatching from the zona pellucid, followed by rapid expansion and further differentiation 

events including gastrulation and subsequent organogenesis (Betteridge 2000). Between day 6, 

i.e. upon arrival in the uterus, and day 22 after fertilization, the embryo is enveloped in a 

closely fitting glycocalyx capsule (Betteridge, et al. 1982). As a result, the equine embryo is 

unable to rearrange and elongate its trophectoderm like its ruminant and porcine counterparts. 

The spherical embryo migrates completely unattached in the uterine lumen from one horn to 

the other, propelled by peristaltic myometrial contractions. In the absence of an embryo, the 

equine uterus produces a potent luteolysin (prostaglandin F2alpha) (Douglas & Ginther 1976) 

that reaches the ovary through the systemic circulation in order to destroy the corpus luteum 

at about day 14 of the cycle (Neely, et al. 1979). When an embryo is present, luteolysis must 

be blocked because the corpus luteum, through its hormone, progesterone, is vital to embryo 

development, (Sharp 2000) since it stimulates the endometrium to produce appropriate 

histotrophe which nourishes the developing embryo. The phenomenon of embryo mobility in 

the mare allows the relatively small embryo to contact the complete uterine mucosa, which is 

essential for successful pregnancy recognition and maintenance in the mare. The mobile 

embryo blocks luteolysis (Mcdowell, et al. 1988, Sharp 2000), resulting in elevated 

progesterone levels and the provision of uterine secretions essential as a nutrient before the 

formation of a definitive placenta (Spencer, et al. 2004). The gradually increasing uterine tone 

and decreasing uterine diameter, together with increasing conceptus diameter causes the 

conceptus to be lodged at the base of one uterine horn around day 16, a phenomenon which is 

called fixation (Ginther 1995).  

At about days 36-38, foetal tissues along the chorionic girdle begin to invade the 

endometrium and form the endometrial cups which secrete equine chorionic gonadotrophin 
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(eCG), formerly called pregnant mare serum gonadotrophin (PMSG), peaking around days 

60-80 (Fig. 2). From then, concentrations decline and the endometrial cups are sloughed 

around days 120-150 (Allen and Moor 1972, Allen and Wilsher 2009). Equine chorionic 

gonadotrophin acts in many species as FSH, however, in the mare, it has a predominant LH 

activity. It stimulates additional ovarian follicular development. These follicles produce high 

amounts of oestrogen (equilin) from days 38-40 on (Allen and Wilsher 2009, Nett, et al. 

1973). Subsequently, the follicles luteinize and contribute to a further increase of serum 

progesterone concentrations to maintain pregnancy. Progesterone rises to a peak at day 80 and 

gradually declines to 1-2 ng/ml during mid-late gestation (day 150). The 5α-pregnanes, 

produced from maternal cholesterol, rise from mid gestation to term.  

 

               

Fig. 1. Approximate timing of some key developmental events during the first 3 weeks of 

gestation of the equine embryo. Adapted from Betteridge (2000). 
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Since the endometrial cups are formed from cells from the trophoblastic girdle of the embryo, 

these cells are foreign for the dam and hence provoke a reaction, which results in dehiscence 

of endometrial cups at about days 120-150 .  

From day 120, placentation starts and it is completed at day 150 (Allen and Wilsher 2009). 

The mare has a diffuse type of microcotyledonary placenta, which takes over progestagen 

production to maintain pregnancy from day 120 until birth of the foal around 340-345 days of 

gestation. From the beginning of the last month of pregnancy, progestagen rises by the 

production of foetal adrenal 5α-reduced pregnanes, while foetal oestrogens decline after 

peaking at day 210 and are basal at term (Fig. 2) (Holtan, et al. 1991).  

 

 

Fig. 2. Relative concentrations, sources and tendencies of fluctuations of progesterone, 

oestrogens, 5α-pregnanes, eCG, LH and FSH during pregnancy in the mare. (Adapted from: 

Allen and Moor, 1972; Douglas and Ginther, 1976; McDowell, et al. 1988; Holtan, et al. 1991; 

Sharp 2000; Spencer, et al. 2004; Allen and Wilsher 2009)  
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2 THE MARE’S OVIDUCT 

 

1 UNIQUE FEATURES OF THE EQUINE OVIDUCT  

Many features in early equine embryo development appear to be unique for this species. In 

particular, the differential transport of the oocyte and the embryo in the equine oviduct is 

quite peculiar. If the recently ovulated oocyte remains unfertilized, it discontinues its journey 

and degenerates in the highly convoluted folds of the ampullary-isthmic junction (Flood, et al. 

1979). When the oocyte is fertilized in the ampullary-isthmic region (Hunter and Nichol 

1988), the resulting embryo produces prostaglandin E2 (PGE2) and passes through the utero-

tubal junction in order to reach the uterus (Allen 2000, Oguri and Tsutsumi 1972, Wagh and 

Lippes 1989, Weber, et al. 1991a, b). This finding was in fact an important step forward in 

revealing what kind of cross-talk is taking place between the equine embryo and the mare’s 

oviduct (Betteridge and Mitchell 1972). Application of PGE2 on the uterotubal papilla has 

even been used in clinical conditions, to improve oviductal transport and uterine entry of 

embryos in subfertile mares with blocked oviducts (Allen, et al. 2006). Despite the fact that 

the embryo resides for 6 days in the oviduct, it spends nearly all of this period close to the 

ampullary-isthmic junction, whereas passage through the isthmus takes only a few hours 

(Weber, et al. 1996). This prolonged period, during which the equine embryo develops in the 

oviduct, is markedly longer than the 48 and 72 h during which the respective porcine and 

bovine embryo remain there. 

 

2 THE ARCHITECTURE OF THE OVIDUCT 

The oviduct is a highly specialized part of the genital tract with a fimbriated, funnel-shaped 

infundibulum enveloping the ovulation fossa, a thin-walled ampulla, leading via the 

ampullary-isthmic junction into the strongly muscular isthmus, and ending into the uterus at 

the utero-tubal junction (Fig. 3). The infundibulum is adhered to the ovarium at the level of 

the ovulation fossa and even covers it around the time of ovulation, in order to take up the 

oocyte after ovulation. The ampulla is the longest and wider part of the oviduct, where oocyte 

maturation and fertilization take place. The next part is the narrower ampullary-isthmic 

junction connected to the highly convoluted isthmus, ending up in the distal end of the 
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oviduct, the utero-tubal junction, which consists of a smooth muscular sphincter in the mare 

(Nickel, et al. 1987, Yaniz, et al. 2000).  

In cross-section, the mucosa of the oviduct is arranged into longitudinal folds: finger-like in 

the infundibulum, numerous and elaborated in the ampulla and non-branched in the isthmus 

(Desantis, et al. 2010) (Fig. 3 h). As in other mammals, the epithelium is pseudo-stratified 

consisting of columnar ciliated and secretory cells (Fig. 4 a and Fig. 4 b) as two major cell 

types (Abe 1996). As substantiated by TEM in freshly isolated oviduct explants (Fig. 4 a), all 

cells contain numerous mitochondria, rough endoplasmic reticulum and microvilli. There is a 

region-dependent proportion of ciliated cells: the isthmus contains less ciliated cells compared 

to the ampulla (Abe and Hoshi 2007, Abe, et al. 1999). Cilia are considered to be responsible 

for oocyte transport (Odor and Blandau 1973). The cilia of the isthmus are enclosed in an 

amorphous matrix, released from non-ciliated cells (Desantis, et al. 2010). The inner tissue 

layer of the tunica mucosa, the lamina propria mucosae, consists of fibrous and cellular 

connective tissue, building the framework for mucosal folds (Ellington 1991) (Fig. 3 h and 

Fig. 4 b). The lamina muscularis or the myosalpinx of the mare is differentially developed 

dependent on the oviductal segment (Fig. 3 e, Fig. 3 g). It is more developed in the ampulla 

compared with the infundibulum. It consists of a longitudinal, circular and spiral smooth 

muscle layers, organized as a plexiform structure (Germana, et al. 2002), which could 

generate a stirring movement of the lumen content (Hodgson, et al. 1977) towards the uterus, 

especially regarding ovum transport and oviductal clearance. 
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Fig. 3. Uterus (a) of a mare with the two adjacent ovaries (b) and right oviduct (c). The 

oviduct consists of a funnel-shaped infundibulum, the ampulla with the numerous and very 

elaborated, finger-like and branched mucosal folds (d; bar = 100 µm) and the rather thin 

muscular layer (e), the ampullary-isthmic junction (AIJ) and the highly convoluted isthmus 

with the non-branch mucosal folds (f; bar = 50 µm) and the pronounced muscular wall (g). 

Both ampullary and isthmic mucosa are lined by a pseudostratified small columnar ciliated 

epithelium (h; bar = 50 µm). 
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3 STEROIDS: KEY REGULATORS OF THE OVIDUCTAL ENVIRONMENT 

Progesterone and oestradiol influence mammalian embryonic development indirectly by 

modulating oviductal and endometrial function and secretions by endocrine, paracrine and 

also autocrine pathways (Wu, et al. 1971). Steroid hormones, being hydrophobic molecules, 

diffuse freely into all cells. Only their target cells contain specific membraneous, cytoplasmic 

and/or nuclear proteins that serve as receptors of the hormone. The unbound receptors are 

associated with an inhibitory complex, containing heat shock proteins (HSP) (Fig. 5). Steroid-

receptor complexes are phosphorylated to varying levels depending on the presence of 

regulators and the type of the receptor. Steroid-receptor complexes dimerize and bind to the 

hormone responsive elements – DNA sequences within promotor regions of genes responsive 

to the steroid and may also regulate energy metabolism through the mitochondria or modulate 

Fig. 4. a) Transmission electron microscopy of freshly isolated equine oviduct explants, 

consisting of highly differentiated cells with numerous mitochondria and rough 

endoplasmatic reticulum. (magnification = x 6000) (courtesy K. D’Herde) b) Haematoxylin-

eosin staining of ex vivo oviductal epithelium bordered by highly differentiated tall columnar 

epithelial cells with basal nuclei, numerous nucleoli, apical cilia and secretory granules (blue 

arrowheads) (x 400) (courtesy P. Cornillie). 
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or activate signalling molecules (Maller 2003). The hormone/receptor complex modulates 

together with transcription factors target gene expression (Beato 1989, Tuohimaa, et al. 1996). 

In this way, steroids can modulate gene transcription and translation relatively slowly. 

However, steroids can also induce their effects very rapidly, for instance, by altering 

membrane fluidity (or by binding to membrane-bound receptors) and subsequently inducing 

biological responses through amongst others cyclinB and MAP-kinase messenger systems 

(Maller 2003). An example of the quick mReceptor mediated effects of progesterone is the 

acrosome reaction in mammalian sperm which is induced within seconds (Cheng, et al. 1998, 

Levin 2002, Toran-Allerand, et al. 2002).  

 

   

 

 

 

Even small local fluctuations in the steroid concentration affect the oviductal cell gene 

expression (Bauersachs et al., 2003; 2004) thus changing the oviductal fluid composition. 

According to Hugentobler et al. 2010, progesterone can increase the glycine concentration in 

the oviduct of cattle by twofold. In mares, Engle et al. (1984) reported cyclic trends in the 

Fig. 5. Schematic overview of endocrine, paracrine and autocrine steroid signaling and the 

mechanism of steroid triggered hormone responsive genes. cReceptor = cytoplasmic 

receptor, mReceptor = membranous receptor, HSP = heat shock protein, SRE = steroid 

responsive element. (Based on: Beato 1989; Tuomihaa,et al. 1996; Maller 2003). 
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oviductal fluid concentrations of histidine, methionine, half-cystine, serine, proline, glycine, 

alanine, isoleucine and leucine. During oestradiol dominance, oviduct-specific proteins are 

produced that prepare the oviductal milieu for fertilisation and early embryo development 

(Buhi 2002, Leese, et al. 2001).  

In the follicular phase, cell height and secretory activity and the ratio ciliated/non-ciliated 

cells increase (Abe 1996, Aguilar, et al. 2012, Buhi, et al. 2000, Donnez and Casanasroux 

1985). In the luteal stage, the oviduct epithelium exhibits a regressed status, characterized by 

a reduction in cellular height and marked deciliation. All of these changes prepare and provide 

the prerequisites for successful transport of the ovulated oocyte, fertilization and the 

nourishment, transport and growth of the early embryo. 

 

Key sites for steroid hormone biosynthesis include the ovary, placenta, testis and the adrenal 

cortex. However, steroids may also be generated de novo at lower levels in other tissues 

(Simpson 1979; Santen 1990; Hanukoglu 1992; Stocco and Clark 1996; Simard et al. 2005; 

LaVoie and King 2009). All steroid hormones are derived from cholesterol (Fig.6). A series 

of enzymatic steps in the mitochondria and the endoplasmic reticulum of steroidogenic tissues 

convert cholesterol into all of the other steroid hormones and intermediates (LaVoie and King 

2009). The rate limiting step in this process is the transport of free cholesterol from the 

cytoplasm into mitochondria, mediated by the steroidogenic acute regulatory protein (StAR) 

(Stocco and Clark 1996), which is in turn rapidly induced by steroidogenic stimuli (LaVoie 

and King 2009). 

Cholesterol is converted to pregnenolone by cytochrome P450 cholesterol side-chain cleavage 

(P450scc) enzyme (Simpson 1979). Pregnenolone is subsequently metabolized to 

progesterone by 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerases (3-beta-HSDs; Fig. 6) 

(Simard, et al. 2005), or in certain tissues hydroxylated by cytochrome P450 17α-

hydroxylase/17,20-lase (P450c17α) (LaVoie and King 2009), resulting in cortisol and 

androgen synthesis (Hanukoglu 1992). P450 aromatase catalyses the conversion of 

testosterone into β-oestradiol. It is mainly expressed in granulosa cells but also, besides the 

gonads, in the mammary gland, the adipocytes, the central nervous system, the skin and the 

placenta (Hanukoglu 1992, Santen 1990). 17β-hydroxysteroid dehydrogenase catalyses the 

conversion of the 17-keto and 17β-hydroxy groups in androgens and oestrogens, including 

androstenedione, DHEA and 17β-oestradiol (Hanukoglu 1992). 
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Ovarian steroids induce morphological, biochemical and physiological changes to the oviduct 

cells and subsequently affect the volume and composition of the oviductal fluid (Georgiou, et 

al. 2005, Hunter 2012b, Seytanoglu, et al. 2008) and ciliary activity (Bylander, et al. 2010, 

Wessel, et al. 2004). Consequently, these changes play a key role in the optimization of the 

microenvironment for final maturation and transport of the gametes, for fertilization and for 

nourishment, transport and growth of the early embryo (Fazeli 2008, Hunter 2005). In the 

horse embryo, progesterone and oestrogen receptors have been detected in conceptuses from 

day 7 to day 14 (Rambags, et al. 2008), indicating that steroids may also act directly to uterine 

stage embryos. These equine embryos are also able to produce large quantities of oestrogens 

themselves (Heap, et al. 1982). Next to oestrogens, other steroids which are secreted by horse 

uterine stage conceptuses are 17-hydroxyprogesterone and androgens (1.0 +/- 0.2 pg of 17-

hydroxyprogesterone/embryo, 4.8 +/- 0.6 pg of androstenedione/embryo) (Weber, et al. 

1991b). It has been shown that 17α-hydroxyprogesterone synthesized by the equine blastocyst 

is metabolized to an unidentified steroid by the mare’s endometrium (Goff, et al. 1993). From 

Fig. 6. Overview of steroidogenesis. Based on Hanukoglu (Hanukoglu 1992).  
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this, it is strongly suggestive that embryonic steroids could have an autocrine and paracrine 

signaling function (Fig. 5) (Walters, et al. 2001; Rambags, et al. 2008) and can exert their 

effects directly. 

However, nothing is known about the role of steroids and very little about the influence on the 

side of ovulation in the development and embryo-maternal communication in the equine 

oviduct. Only the influence of the oviductal side on prostaglandin receptors and mu-opioid 

receptors were investigated. Therefore, in CHAPTER 4 and 5 of this thesis, the local 

concentrations of steroids and their effects are investigated.
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4 OVIDUCTAL SECRETIONS IN THE MARE  

Since fertilization and early embryo development occur in the oviduct, it could be expected 

that the formation and the composition of oviductal fluid is well known (Fig. 7). 

Unfortunately, very little is known concerning the formation of oviductal fluid (Leese, et al. 

2001), in particular in the mare. Oviductal fluid is the product of serum transsudate and the 

compounds synthesized by epithelial cells (Leese 1988). In the mare the oviductal fluid 

secretion rates during estrus and diestrus are respectively 5.08 and 2.82 ml/24h (Campbell, et 

al. 1979). Concentrations of ions in the oviductal fluid of mares tend to be similar of those in 

serum (Aguilar and Reyley 2005), except for magnesium. Magnesium concentrations in the 

oviduct of the mare are 2-5 times higher than plasma concentrations (Campbell, et al. 1979) 

and much higher than those in other species (Aguilar and Reyley 2005).  

                        

 

 

The energy substrates, glucose, pyruvate and lactate, are important for the nourishment of the 

oocyte, the spermatozoa and the early embryo. Glucose concentrations in the mare’s oviduct 

range from 2.84 to 5.92 mM (Campbell, et al. 1979). Pyruvate and lactate concentrations in 

the mare are not known so far. In humans, the main energy substrates are glucose and 

Fig. 7. Formation of oviductal fluid: a mix of secretion, absorption, diffusion and newly 

synthesized molecules. Based on : Leese 1988. 
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pyruvate, both serum transsudates (Brewis, et al. 1992, Leese and Gray 1985). Furthermore, 

pyruvate can be synthesized by the tubal epithelium from glucose and lactate. Pyruvate does 

not only act as an energy source, it can also detoxify ammonia with formation of alanine as a 

result. It is also important in protection against oxidative stress by preventing peroxide-

induced injury (Guérin and Ménézo 2011, Morales, et al. 1999). Lactate can also be used as 

an energy substrate by the embryo. Twenty five % of the lactate in the oviductal fluid is 

filtered from the blood and 75% is produced by the tubal epithelial cells from vascular 

glucose (Nichol, et al. 1992). Its function may also be to maintain the proper redox balance 

and pH. Lactate is converted to pyruvate with generation of reduced nicotinamide adenine 

dinucleotide (NADH). Consequently, one of the benefits of co-culture may be the production 

of lactate by the interconversion with pyruvate which is generated during glycolysis (Ouhibi, 

et al. 1989).  

Since supplementation of synthetic oviductal fluid (SOF) with amino acids at in vivo 

concentrations resulted in a higher percentage of ovine blastocysts compared with SOF 

supplemented with 2% human serum and BSA, amino acids seem to have a beneficial impact 

on gamete function and embryo survival in sheep (Walker, et al. 1996b). A total of 17 free 

amino acids were measured in the mare’s oviduct (Table 1), whereas in other species 23 free 

amino acids could be identified in oviductal fluid (Engle, et al. 1984). Glycine and alanine 

levels were found to be the highest, but levels of free amino acids varied during the oestrous 

cycle. Only traces of histidine, methionine, phenylalanine, threonine and tyrosine were 

detected in equine oviductal fluid. Histidine and methionine concentrations displayed cyclic 

variation, whereas phenylalanine, threonine and tyrosine remained relatively constant during 

the estrous cycle. Glutamic acid had the third highest concentration in equine oviductal fluid 

at day 13 of the estrous cycle, and decreased until day 21. All detected amino acids were 

measured in concentrations higher than in plasma and in follicular fluid (Engle, et al. 1984).  
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Table 1. Concentrations of amino acids in equine oviductal fluid according to Engle et al. 

(1984). 

Amino acid Concentration (µM/ml) Amino acid Concentration (µM/ml) 

Alanine 0.14 Lysine 0.053 

Arginine 0.031 Methionine 0.014 

Aspartic acid 0.022 Phenylalanine 0.026 

Cysteine 0.003 Proline 0.048 

Glutamic acid 0.057 Serine 0.051 

Glycine 0.263 Threonine 0.038 

Histidine 0.02 Tyrosine 0.041 

Isoleucine 0.025 Valine 0.041 

Leucine 0.053   

 

Very little is known about the identity of proteins, growth factors and macromolecules 

prevailing in the mare’s oviduct. An earlier report (Perkins and Goode 1965) shows a mean 

protein concentration in ovine oviductal fluid of 29.3 mg/ml. In general, protein concentration 

in oviductal fluid is approximately 10-15% of that in serum (Leese 1988). Moreover, albumin 

and immunoglobulin G, derived from serum, are the most abundant proteins and represent 

about 95% of the total protein content in the oviductal lumen. In pigs (Buhi and Alvarez 1998) 

and in women (Lippes, et al. 1981), total protein concentration changes during the estrous 

cycle and in response to fertilization, indicating a critical cyclic variation in total protein 

content. Nevertheless, the contribution of passive transudate compared to the active oviductal 

biosynthesis remains to be elucidated (Buhi, et al. 2000). Few attempts have been undertaken 

to identify proteins in equine oviductal fluid (Willis, et al. 1994) or to detect pregnancy-

specific proteins by means of polyacrylamide gel electrophoresis (PAGE), and only retinol 

binding protein (Mcdowell, et al. 1993), platelet derived growth factor (Eriksen, et al. 1994a, 

Eriksen, et al. 1994b), osteopontin, atrial natriuretic peptide (Mugnier, et al. 2009) and 

Deleted in Malignant Brain Tumor 1 (DMBT1) (Ambruosi, et al. 2013) have been identified 

in oviductal fluid (Ménézo and Guérin 1997). 

We determined by means of the Coomassie blue technique the average total protein content of 

the ipsilateral and contralateral oviduct of non-pregnant and pregnant mares at 3-4 days after 
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ovulation. Protein content of ipsilateral and contralateral oviducts of non-pregnant mares was  

136 and 126 µg and 250 and 278 µg in pregnant mares (Smits, Nelis et al. submitted). 

Proteins were separated by 1D-PAGE (Fig. 8). It might be deduced that certain proteins with 

a molecular weight between   4  kDa and   62 kDa are more abundantly expressed in oviductal 

fluid of pregnant compared to non-pregant mares. 

 

Fig. 8. 1D-PAGE of oviductal fluid from the ipsilateral oviduct of non-pregnant mares (c) and 

(p) pregnant (3-4 days) mares (4 µg oviductal protein loaded per column). Standard = 

Precision Plus Protein™ All Blue Standards (Biorad). Preliminary data of Smits, et al 

submitted. 
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3 EQUINE EMBRYO DEVELOPMENT IN VITRO  

1 INTRODUCTION  

At present, no reports are available on the production of a viable equine pregnancy or live foal 

after a complete in vitro procedure, including in vitro maturation (IVM), in vitro fertilization 

(IVF) and further in vitro culture (IVC) of thus produced embryos. Hitherto, only two foals 

have been documented after conventional IVF of sperm incubation with an in vivo matured 

oocyte (Bezard, et al. 1992, Palmer, et al. 1991). To produce equine embryos in vitro, oocytes 

are fertilized in vitro by means of intracytoplasmic sperm injection (ICSI), a technique using 

micromanipulation to inject an immobilized sperm cell directly into the cytoplasm of a mature 

oocyte. Compared to other species, progress in the field of in vitro production of horse 

embryos is relatively slow for several reasons. There is a scarcity of equine ovaries, oocytes 

are much more difficult to retrieve from the follicle (Galli, et al. 2007, Hinrichs 2010), and the 

procedure of ICSI, which replaced classical IVF in equine embryo production, makes the 

whole procedure very costly, time-consuming and labour intensive (Hinrichs and Choi 2005). 

So, research on horse embryo production in vitro remained for many years confined to only a 

few groups which had access to the ovaries and the right equipment (Galli, et al. 2007, 

Hinrichs and Choi 2005). 

 

2 EMBRYO CULTURE MEDIA 

Many embryo culture media have been formulated, based upon the composition of the 

oviductal fluid, like in ruminants (sheep: synthetic oviductal fluid-SOF (Tervit, et al. 1972), in 

cattle: bovine oviduct embryo culture medium - BOECM (Leese, et al. 2008)), in pigs 

(porcine zygote medium – PZM (Yoshioka, et al. 2002) and in humans (human tubal fluid - 

HTF) (Quinn, et al. 1985)). These media are typically simple salt solutions, supplemented 

with amino acids and energy substrates, of which the concentrations as they prevail in bovine 

fluid are listed in Table 2. However, oviductal fluid is far more complex than any of these 

culture media, since many key metabolites and/or growth factors have not been identified yet 

and are therefore lacking from or are added in unphysiological concentrations to the culture 

media. In addition, oviductal fluid is continuously changing under the influence of cyclic 

endocrine changes (Leese et al. 2008; Market-Velker et al. 2010).  
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Table 2. Composition (mM) of embryo culture media based on biochemical analysis of 

genital tract fluids in cattle (BOECM) and sheep (SOF) and on the composition of 

commercial available media. DMEM/F12 is a somatic cell culture medium. Both SOF and 

DMEM /F12 give good results in horse embryo culture (data based on Leese, et al. 2008). 
 

Constituent 
Bovine Oviduct Medium for 

Embryo Culture (BOECM) 

Synthetic 

Oviductal fluid 

(SOF) 

DMEM/ F12 

Amino acids    

Aspartate 0.143 9.709 x 10
-5

 0.050 

Glutamate 0.346 9.709 x 10
-5

 0.050 

Asparagine 0.043 9.709 x 10
-5

 0.050 

Serine 0.178 9.709 x 10
-5

 0.250 

Histidine 0.071 1.942 x 10
-4

 0.150 

Glutamine 0.193 0 0 

Glycine 1.496 9.806 x 10
-3

 0.250 

Threonine 0.164 3.884 x 10
-4

 0.449 

Arginine 0.136 5.816 x 10
-4

 0.699 

Taurine 0.050 0 0 

Alanine 0.612 9.709 x 10
-5

 0.050 

Tyrosine 0.059 0 0.214 

Methionine 0.042 9.839 x 10
-5

 0.116 

Tryptophan 
0.040 4.854 x 10

-5
 0.044 

Valine 0.190 3.884 x 10
-5

 0.221 

Phenylalanine 0.074 1.941 x 10
-4

 0.215 

Isoleucine 0.092 3.891 x 10
-4

 0.416 

Leucine 0.200 3.884 x 10
-4

 0.451 

Lysine 0.229 3.846 x 10
-4

 0.499 

CystineHCl.H2O 
0 0 0.100 

Cystine.2HCl 0 9.703 x 10
-5

 0.100 

Proline 0 9.455 x 10
-5

 0.150 
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Constituent 
Bovine Oviduct Medium for 

Embryo Culture (BOECM) 

Synthetic 

Oviductal fluid 

(SOF) 

DMEM/ F12 

Alanyl glutamine  9.709 x 10
-5

 0 

Total amino acid 

concentration 
4.358 0.0150 4.524 

Energy substrates    

Glucose 2.3 0.0010 17.51 

Lactate 12.4 2.40 x 10
-6

 0 

Pyruvate 0.10 0.3180 0.5000 

Ions    

Chloride 90.0 0.1070 128.8 

Phosphate 1.4 0.0010 0.9530 

Sodium 1.1 0.4390 151.5 

Magnesium 124.1 0.4780 0.7070 

Potassium 0.9 6.913 4.157 

Calcium 1.7 0.0020 1.050 

Sulphate 0 0 0.9530 

Nitrate 0 0 3.713 x 10
-4

 

Hydrogen carbonate 0 24.27 29.02 

Iron 0 0 0.0020 

Copper 0 0 5.200 x 10
-6

 

Zinc 0 0 0.0020 

Other components    

Sodium hypoxanthine 0 0 0.0150 

Linoleic acid 0 0 2. 000 x 10
-4

 

DL-68-thiotic acid 0 0 5.000 x 10
-4

 

Phenol red 0 0 0.023 

Sodium putrescine 0 0 5.000 x 10
-4

 

Gentamicin 0 1.015 x 10
-4

 0 

HEPES 0 0.0100 0 

(Continued) 
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Constituent 
Bovine Oviduct Medium for 

Embryo Culture (BOECM) 

Synthetic 

Oviductal fluid 

(SOF) 

DMEM/ F12 

Foetal calf serum 0 0 0 

Serum replacer 0 0 0 

Vitamins    

Biotin 0 0 1.434 x 10
-5

 

Pantothenate 0 0 0.0050 

Choline 0 0 0.0640 

Folic acid 0 0 0.0060 

Inositol 0 0 0.0700 

Nicotinamide 0 0 0.0170 

Pyridoxine 0 0 0.0100 

Riboflavine 0 0 5.82 x 10
-4

 

Thiamine 0 0 0.0060 

Thymidine 0 0 0.0020 

Pyridoxal 0 0 5.018 x 10
-4

 

 

 

Although substantial progress has been made in the optimization of embryo culture media in 

other species, little is known about the effect of a specific medium on the development of 

equine embryos in vitro. A number of media have successfully been used to obtain blastocysts 

(Table 3), although media which are efficiently applied for embryo culture in other species, 

such as G1/G2 or CZB-medium, were not able to support acceptable blastocyst percentages in 

the horse (Choi, et al. 2003, Choi, et al. 2004a, Choi, et al. 2004b). Up to now, the best 

blastocyst rates have been achieved with DMEM/F12 supplemented with 10 % foetal bovine 

serum at a ratio of 1 µl medium per embryo at 38.2 °C in 5 % O2, 5 % CO2 and 90 % N2 

(Choi, et al. 2006, Hinrichs and Choi 2005). 

No specific factors which may explain successful blastocyst development in the horse, have 

been identified. Especially the high glucose content of the DMEM/F-12 medium (17 mM) 

may be important for the good development achieved, as pointed out by Hinrichs (Hinrichs 

2010). Originally developed for somatic cell culture, DMEM/F-12 medium contains much 

(Continued) 
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more glucose than regular embryo culture media. Increasing the glucose concentration in SOF 

culture media (to 5 mM or even 19 mM) has promoted embryo development to more 

advanced stages (morulae or blastocysts) especially when they were exposed to high glucose 

after day 4 (Azuma, et al. 1995). Contrary to other species, horse embryos appear to benefit 

from high glucose concentrations during early embryo development, which is not surprising 

since equine oviductal fluid contains 100 to > 300 times more glucose than bovine oviductal 

fluid (Hugentobler, et al. 2008) (Table 1). Equine blastocyst development appears not to be 

dependent upon high glucose concentrations but cell allocation may be affected by glucose 

(Choi, et al. 2015). Most laboratories are now either culturing the horse embryos in DMEM/F-

12 and/or in SOF medium until day 5-6 (Table 3) both of which are not based on the 

composition of equine oviductal fluid. Since these media also differ very much as far as the 

concentration of basic amino acids and energy substrates is concerned (Table 2), it is quite 

remarkable that satisfactory blastocyst rates can be obtained by embryo culture in both media. 

This illustrates the flexibility of the equine embryo, to adapt itself to non-physiological 

circumstances, and may have slowed down further investigations towards improved embryo 

culture media for horses. 

 

Equine embryos derived by ICSI and cultured in vitro yield blastocyst rates similar to those in 

cattle, although the blastocyst percentages are varying between the labs (10-47%) (Table 3) 

(Lazzari, et al. 2002, Choi, et al. 2006, Galli, et al. 2007; Smits, et al. 2011; Choi, et al. 2015). 

Foaling rates of over 50% have been reported (Colleoni, et al. 2009, Hinrichs 2010). 

Nevertheless, there is still room for improvement of equine embryo culture media since in 

vitro produced equine embryos display several morphological and developmental aberrations 

(Smits, et al. 2011, Tremoleda, et al. 2003). For instance, most equine in vivo embryos 

recovered 7 days after ovulation have reached the blastocyst stage and are larger and contain 

more cells than their in vitro counterparts 7 days after ICSI, with most of them still being at 

the morula stage (Pomar, et al. 2005). These findings emphasize the importance of embryo-

maternal interaction, which is missing during in vitro culture of the equine embryo. 
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Table 3. Blastocyst production (from cleaved oocytes) in different somatic cell and embryo 

culture media of in vivo derived and in vitro produced horse embryos after ICSI, in relation to 

oxygen tension, culture medium and protein source. High oxygen = 20 %, low oxygen = 5 %; 

ITS = insulin, transferrin, selenium; FBS = foetal bovine serum; BSA = bovine serum 

albumin; NM = not mentioned; CNM = concentration not mentioned. 

Embryo 

origin 

Culture 

medium  

Protein 

Soure 

Oxygen 

tension 

% 

blastocyst 
Reference 

 DMEM/F-12  ITS High 0  Weber et al. 1993 

 Ham’s F12 10 % serum High 14  White et al. 1988 

In vitro DMEM - High 0  Li et al. 2001 

 DMEM/F-12 10 % FBS Low NM Mortensen et al. 2010 

 DMEM/F-12 10 % FBS Low 12.5  Smits et al. 2012 

 DMEM/F-12 10 % FBS Low  36  Choi et al. 2006b 

  0.5 % BSA Low 28  Choi et al. 2004a 

 DMEM/F-12 10 % FCS Low 18-19  Choi et al. 2015 

 G1.2/G1.3 0.8 % BSA NM 3.4  Choi et al. 2004a 

  0.8% BSA 

and 10 % 

FCS 

NM 28  

NM 

Choi et al. 2004a 

Rosati et al. 2002 

 CR1aa 

medium  

5 % FCS Low 26  Matsukawa et al. 2007 

 SOF + MEM 1.6 % BSA Low 15 Tremoleda et al. 2003 

 SOF + MEM 0.8 % BSA Low 0  Rosati et al. 2002 

 SOF BSA 

(CNM) 

Low 43-47  Lazzari et al. 2002 

    20  Galli et al. 2002 

 GB + 0 mM 

for 5 days then 

+ 10 mM 

glucose 

 

10 % FCS Low 31  Choi et al. 2015 

 GB + 0 mM 

for 5 days, 

then + 20 mM 

glucose 

10 % FCS Low 41  Choi et al. 2015 

 GB + 5 mM 

for 5 days then 

+ 10 mM 

glucose 

10 % FCS Low 46 Choi et al. 2015 

 GB + 5 mM 

for 5 days then 

+ 20 mM 

glucose 

10 % FCS Low 35 Choi et al. 2015 

 CZB- medium  0.8% BSA  0 Choi et al. 2004a 
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3 OXYGEN CONCENTRATION 

The oxygen tension in the oviduct is about 5-6 % (Fischer and Bavister 1993), and as a logical 

result, bovine, porcine, ovine and caprine embryos are routinely cultured in 5 % oxygen. 

Further decrease of the oxygen tension, may increase blastocyst rates but may also cause 

developmental abnormalities in ruminants (Thompson and Peterson 2000). There is only one 

study in which low (5 % O2, 5 % CO2 and 90 % N2) and high oxygen (5% CO2 in air or about 

20 % O2) were evaluated for equine in vitro embryo development (Choi, et al. 2003). The 

authors found that the cleavage rate was not different between the 2 gas systems. However, 

after 96 h of culture in low oxygen, the average nucleus number of horse embryos was almost 

twice of that found in embryos cultured in 5% CO2 in air (Choi, et al. 2003). The beneficial 

effect of reduced oxygen tension on embryo development in vitro has been reported in several 

species, including mice (Gardner and Lane 1996), rabbits (Lindenau and Fischer 1994), sheep 

and cattle (Tervit, et al. 1972, Thompson, et al. 1990), and humans (Dumoulin, et al. 1999). 

Reduced oxygen tension may work through suppressing of the production of reactive oxygen 

species, which can cause developmental aberrations (Goto, et al. 1993). Nevertheless, there 

are studies reporting no beneficial effects of lower oxygen concentration on embryos (mouse 

(Nasresfahani, et al. 1992); sheep (Betterbed and Wright 1985) cattle (Khurana and Niemann 

2000). This difference might be related to variations of media or culture systems (Bavister 

1995) or due to observational methods with a rather low sensitivity. 

4 MACROMOLECULES AND PROTEIN SOURCE 

Since albumin is the most abundant protein in the female genital tract, supplementation of 

albumin to the culture medium definitely has a beneficial effect on embryo development by 

modifying oxidation of pyruvate (Eckert, et al. 1998), by acting as a carrier for hormones, 

vitamins, bioactive lipids and autocrine ligands (O'Neill 2008) and by neutralizing toxins 

(Gardner 2008). It provides also surfactant activity and maintains the colloid osmotic pressure, 

similar to the chemically defined polyvinyl-alcohol (PVA) (Thompson and Peterson 2000). 

 

Although serum contains a range of beneficial compounds like growth factors, nutrients and 

heavy metal chelators (Vajta, et al. 2010), it may expose the embryos to undefined molecules 

which are not present in oviductal fluid. In this regard, serum even may have adverse effects 

on early embryonic development (Vajta, et al. 2010). These induced abnormalities are thought 
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to cause the “large offspring syndrome” which occurs in cultured and cloned ruminant 

embryos (Thompson, et al. 1995). Nevertheless, it was not definitely proven that serum 

addition was responsible for the syndrome and moreover, it also occurred in sheep after in 

vitro culture without serum but with PVA or bovine serum albumin (Rooke, et al. 2007, 

Sinclair 2008). Since the late 1990s, serum has become an “unwanted component” and was 

mostly abandoned in ruminant (Walker, et al. 1996a) and human (McEvoy, et al. 2000), but 

not in equine (Hinrichs 2010) embryo culture medium (Table 3). No comparative studies 

have been undertaken to compare blastocyst percentages and long-term effects of serum or 

BSA supplementation in the horse embryo culture media. Up to now, the best results, reported 

by the lab of K. Hinrichs, Texas A&M University (Choi, et al. 2006, Hinrichs and Choi 2005) 

and which are routinely achieved, are obtained with DMEM/F-12 with 10% of foetal calf 

serum.  

 

5 TO RENEW OR NOT TO RENEW 

Choi et al (Choi, et al. 2003) revealed that the changing of culture medium at 72 or 96 h had 

no effect on embryonic development in the horse. Advantages of not renewing the culture 

medium can be: 1) the embryos are left undisturbed and therefore environmental stress 

(changes in pH, temperature, humidity…) is reduced, 2) accumulated endogenous and 

paracrine growth factors are left in place, allowing the embryos to create their own 

microenvironment and 3) labour intensity, quality control and costs are lower. Negative 

aspects of not renewing the culture medium could be that toxins may accumulate. These 

toxins may originate from dead embryos, from healthy embryos, released metabolites, from 

ageing medium, oil, from the atmosphere and from the used plastic recipients (Vajta, et al. 

2010). 

 

6 CO-CULTURE 

6.1 Figures and facts about the good, the bad and the ugly  

Applied cell types and mode of action  

Co-culture of embryos with somatic cells has been used extensively in the early nineties, since 

at that time, it was the only way to overcome the 8- to 16-cell block (Eyestone and First 1989; 
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Eyestone et al. 1991) in a broad range of species, except for the cat (Swanson et al. 1996). 

This indicates that the then used culture media were suboptimal for embryo development and 

had to be “conditioned” by the somatic cells.  

Although the way in which co-cultured cells exert their beneficial effects is far from fully 

understood, oviductal cells probably support early embryos by secreting soluble factors which 

enhance embryonic development (Gandolfi, et al. 1989, Nancarrow and Hill 1994). Various 

oviduct-derived factors are known to enhance fertilization and embryo development in vitro 

in other species. Two such growth factors which have been elaborately studied in mice and 

cattle are insulin-like growth factor 1 (IGF1, (Block, et al. 2008, Bonilla, et al. 2010, Byrne, et 

al. 2002a, b, Jousan and Hansen 2004)) and granulocyte-macrophage colony-stimulating 

factor (GM-CSF, (Chin, et al. 2009, Sjoblom, et al. 2005)), both of which have important 

positive effects on embryonic gene expression, leading to increased cell proliferation, 

decreased apoptosis and normalization of foetal growth. In the horse, only retinol binding 

protein (Mcdowell, et al. 1993) and PDGF (Eriksen, et al. 1994a, Eriksen, et al. 1994b) have 

been identified in the oviduct. These growth factors may be added to in vitro embryo culture 

medium in order to investigate their effects on the embryo’s transcriptome and/or proteome. 

A second possibility in addition to the secretion of embryotrophic substances is that the 

oviduct cells are capable of removing or reducing metabolites or toxic components (Flood and 

Shirley 1991, Vanroose, et al. 2001), such as heavy metal ions, hypoxanthine (Bastias, et al. 

1993), nicotinamide (Tsai and Gardner 1994) and ammonia (Nancarrow and Hill 1994) in the 

culture medium. In addition, somatic cells can also modulate antioxidant gene expression in 

order to protect against oxidative stress by deactivating oxygen free radicals and their 

products (Harvey, et al. 1995, Minotti and Aust 1989). Furthermore, somatic cells may create 

a localized low oxygen tension around the embryo as a result of their own oxidative 

metabolism (Catt 1994) and thereby prevent formation of deleterious radicals (Vanroose, et al. 

2001). Also pH as well as glucose, lactate and ion levels can be modulated (Bavister 1992; 

Rieger, et al. 1995, Vanroose, et al. 2001). These effects do not seem to be limited to oviduct 

cells from the same species, but co-culture with heterologous embryos and cells also has 

beneficial effects.  
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Isolation methods 

In earlier studies, to obtain cells for oviduct cell cultures in different species, cells were 

singularized by enzymatic treatment, using trypsin and pancreatin (Cox and Leese 1997), 

trypsin (Reischl, et al. 1999, Thibodeaux, et al. 1992) or collagenase (Sun, et al. 1997). 

Singularized cells in suspension (Fig. 9 a) were seeded to attach to the culture dish and grow 

to a confluent monolayer (Fig. 9 b). However, ciliated cells are in constant motion and thus 

attach slower. As a consequence, the two different cell types, ciliated and secretory cells, with 

a different adhesion behavior may cause a higher proportion of secretory to ciliated cells (Fig. 

9 a, Fig. 9 b) (Rottmayer, et al. 2006). Furthermore, enzymatic treatment may damage the 

ciliated cells due to their bigger cell surface. Therefore, in more recent publications, oviductal 

cells were obtained by mechanical procedures. Cells are remaining in cell aggregates (Fig. 9 c) 

or explants (Fig. 9 d) and cultured in suspension (Boquest and Summers 1999, De Pauw, et al. 

2002, Kamishita, et al. 1999, Lim, et al. 1999, Ulbrich, et al. 2003, Yadav, et al. 1998). 

 

Monolayer or primary explant culture? 

Monolayers are obtained by seeding cells until a confluent layer of cells is obtained (Fig. 9 b). 

These cells have previously been enzymatically singularized. On the contrary, explants are 

produced by scraping the oviductal mucosal folds. Due to the constantly beating cilia, the 

explants remain in suspension (Fig. d). Oviduct explants (Fig. 9 c, Fig. 9 d) have several 

advantages when compared to monolayers (Fig. 9 b). First of all, it has been proven that in 

cattle (Thibodeaux, et al. 1992, Walter 1995) and horses (Dobrinski, et al. 1999, Thomas, et al. 

1995) proliferating oviductal cells grown in monolayers dedifferentiate with a concomitant 

reduction in cell height, loss of beating cilia and loss of secretory granules and bulbous 

protrusions.  
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Fig. 9. a) Seeded singularized cells remain in suspension and do not adhere due to their own 

movement or to stirring of the culture medium. b) Singularized cells attach to the dish and start 

dividing. c) Explants of one cell type remain in suspension and do not divide. d) explants of two cell 

types form spherical structures, do not divide and do not adhere due to their own movement. e) 

Explants of two cell types (ciliated and secretory cells) adhere to the dish (orange cells) and start 

dividing (pink cells = proliferated cells). Adapted from Rottmayer 2006 and Rottmayer, et al. 2006. 

 

In contrast, the cells bordering the explants maintain their ultrastructural highly differentiated 

morphology, including numerous mitochondria and rough endoplasmic reticulum, highly 

similar to the in vivo oviduct epithelium. The fact that the ciliation process is the endpoint of 

differentiation that cannot be induced in an in vitro system (Thibodeaux, Myers et al. 1992a), 

this means an important benefit of the explant suspension. 
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In conclusion, despite the fact that the use of monolayers and resulting cell lines 

minimizes the risk of disease transmission and batch-dependent variations (Menck, et al. 

1997), they are a less solid reflection of the in vivo situation (Reischl, et al. 1999, Thibodeaux, 

et al. 1992, Walter 1995). In our hands, beating cilia in equine oviduct cell aggregates were 

still detected after 20 days in culture (data not shown). Transmission electron microscopy 

confirmed the presence of healthy cilia and numerous microvilli (Fig. 4 a). 

 

Conditioned media 

The use of conditioned media exposed to somatic cells for embryo culture is a technique 

closely related to co-culture (Orsi and Reischl 2007). Media have been conditioned with 

oviduct cells in cows (Eyestone and First 1989, Rieger, et al. 1995, Satoh, et al. 1994), in pigs 

(Vatzias and Hagen 1999) and in mice (Xu, et al. 2001); with granulosa cells in mice 

(Kobayashi, et al. 1996) and cows (Maeda, et al. 1996, Satoh, et al. 1994); with Vero cells in 

cows (Maeda, et al. 1996); and with trophoblast cells in horses (Choi, et al. 2001). In 

conditioned media, there is no interaction between the embryo and the feeder cells (Xu, et al. 

2001). Whereas in co-culture systems oviduct cells may alter their secretory profile in 

response to certain ligands produced by the embryos, a considerable part of the embryo-

maternal dialogue cannot take place in conditioned media, making them less appropriate to 

elaborate on the interaction between the embryo and the oviduct. Moreover, although 

conditioned media have been reported to have beneficial effects on embryo culture (Maeda, et 

al. 1996, Satoh, et al. 1994, Vatzias and Hagen 1999), they appear to be less favorable 

compared to oviduct cell co-culture in cattle, because conditioned media increase the 

incidence of chromosomal anomalies in cattle embryos (Li, et al. 2004). Furthermore, the only 

report available about conditioned media tested in the horse, did not show any beneficial 

effect (Choi, et al. 2001). 
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6.2 The equine embryo and co-culture 

Early studies using in vivo derived horse embryos showed that the horse oviduct was a 

suitable environment for early embryo development, whereas the horse uterus was not 

suitable to allow embryo survival before day 4 after ovulation (Table 4).  

 

Table 4. Survival of in vivo derived equine embryos of different ages after transfer to 

respectively the equine oviduct or uterus. 

Day after 

ovulation 

in donor 

when 

embryo 

recovered 

Presumed 

embryonic 

stage at the 

time of 

transfer* 

Further development per 

cleaved embryo after 

transfer in synchronous 

recipients into ** 

Reference 

  Oviduct Uterus  

1 2-4 cell --- 0/2 Allen & Rowson 1975 

2 5-8 cell 5/7 0/7  

0/1 

Weber et al., 1993,  

Allen & Rowson 1975 3 16-cell --- 1/5 Allen & Rowson 1975 

4 Morula 7/10 5/10 

1/3 

Peyrot et al., 1987 

Allen & Rowson 1975 5 32-64 -cell --- 4/4 Allen & Rowson 1975 

6 Early blastocyst --- 1/1 Allen & Rowson 1975 

*Stages are based on Betteridge 1995 

** further development to day 10-21 or as a confirmed pregnancy after day 34 or by birth of a foal 

 

Many embryotrophic factors do not seem to be tissue specific since, e.g. Vero cells, granulosa 

cells and fibroblast cells next to oviductal cells, were able to sustain equine embryo 

development and to enhance blastocyst percentage (Ball and Altschul 1990; Ball, et al. 1991; 

Freeman, et al. 1991; Weber, et al. 1993; Rosati, et al. 2002) (Table 5 and Table 6).  
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Cell type Medium % blastocysts Reference 

Trophoblastic vesicles DMEM/F-12 0  Ball, et al. 1991 

Equine FUB ML Ham’s F12 12.5  Ball and Altschul 1990 

Bovine FUB ML Ham’s F12 57  Ball and Altschul 1990 

Equine oviductal explants DMEM/F-12 43  

60  

Ball, et al. 1991 

Ball and Altschul 1990 Equine oviductal tissue 

Equine uterine tissue 

Equine oviductal explants 

Equine endometrial explant 

DMEM/F-12 

DMEM/F-12 

Ménézo B2 

Ménézo B2 

43  

86  

66  

66 

Weber, et al. 1993 

Freeman, et al. 1991 

Freeman, et al. 1991 

Freeman, et al. 1991 

Table 6. Co-culture of horse embryos produced in vitro after ICSI with different cell types 

and media. Bold: beneficial effect on blastocyst percentage. 

 

Although not yet soundly investigated and compared in the horse, there is a trend in many 

species that fibroblasts perform more poorly as co-culture cells compared to oviductal cells 

(Gandolfi and Moor 1987, Menezo, et al. 1998, Rexroad and Powell 1988). Therefore, it is 

generally accepted that oviduct epithelial cells are the most appropriate cells to mimic the 

post-fertilization’s and early embryonic development’s environment.  

 

Consequently, this elucidates their superior performance as feeder cells in co-culture in other 

species than the horse, including human (Gandolfi and Moor 1987, Liu, et al. 1998, Menezo, 

et al. 1998, Rexroad and Powell 1993). 

However, blastocyst rate as the sole parameter for equine embryo development is maybe not 

sensitive enough. Cell number, apoptotic index, gene expression profile and cryotolerance are 

Celtype medium % blastocysts Reference 

Equine oviductal 

explants 

DMEM/F-12 24 % Choi, et al. 2004a 

Verocell monolayer Ménézo B2 0 % Dell'Aquila, et al. 

1997 

Verocell monolayer TCM199 8.6 % Guignot, et al. 1998 

Granulosacell 

monolayer 

TCM199 14 % Rosati, et al. 2002 

Table 5. Co-culture of in vivo derived horse embryos with different cell types and in different 

media. ML = monolayer; FUB = foetal uterine fibroblast. 
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reliable markers for embryo quality and viability (Desai, et al. 2000, Kane, et al. 1997, 

Kobayashi, et al. 1996, Rizos, et al. 2002, Xu, et al. 2004).  

 

When equine ICSI started to take off, horse zygotes were at first immediately transferred to 

oviducts of recipient mares in order to create foals (Squires, et al. 2003, Squires, et al. 1996). 

This was yielding blastocyst rates of about 36% (Choi, et al. 2004a, Hinrichs and Choi 2005). 

A logical next step would then be to try to culture horse embryos in host oviducts, like those 

of sheep. By applying this procedure, horse blastocyst development could be more than 

doubled when compared to total in vitro culture (56% in sheep oviduct vs 20% after in vitro 

culture out of cleaved oocytes (Lazzari, et al. 2010, Lazzari, et al. 2002). Culture of horse 

embryos in sheep oviducts, was, however not able to speed up the development of the in vitro 

produced embryos: they were still lagging behind as far as size and cell number was 

concerned, compared to in vivo derived horse embryos (Lazzari, et al. 2010, Tremoleda, et al. 

2003). Although the ligated sheep oviduct is probably up to now the best culture system for 

equine as well as bovine and porcine embryos (Orsi and Reischl 2007), the technique was 

buried in oblivion due to animal welfare, practical and biosecurity reasons. 

In the horse, further research on the topic of somatic cell co-culture was abandoned after the 

discovery that the basic cell culture medium DMEM/F-12 could support more than 35% 

blastocyst development of ICSI embryos in low oxygen conditions (Choi, et al. 2006, 

Hinrichs and Choi 2005). In view of the fact that the oviductal environment represents the 

optimal environment for early embryo development, progress may still be made. Taking the 

genital tract as an example: in vitro produced equine embryos show qualitatively marked 

aberrations compared to their in vivo counterparts (Smits, et al. 2011, Tremoleda, et al. 2003). 

Therefore, oviduct explants culture is definitely the way forward towards the deciphering of 

the embryo-maternal dialogue which could lead to the improvement of the embryo culture 

protocol. 
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Aim for the moon.  
If you miss,  

you may hit a star. 
        W. Clement Stone, businessman and writer 

 
CHAPTER 2 AIMS AND OUTLINES OF 

THE THESIS 



Chapter 2 Aims and Outlines of the Thesis 

58 

 

The equine embryo has an intense relationship with the Fallopian tube or oviduct, in which it 

resides during the first 6 days of its development. The oviduct is under constant cyclic 

influences of changing hormone levels of oestradiol and progesterone, which then also affect 

the developing embryo. Because it is difficult to get access to oviductal stage embryos and/or 

oviductal contents in living mares, so far, details concerning embryo-maternal communication 

are less well-known at this early stage of life in the horse.  

The general goal of this thesis was to gain more insight in the embryo-maternal 

communication in the horse, using both the mare’s oviduct and an in vitro oviduct explant 

model.  

In order to achieve this goal, the following specific aims were pursued :  

1. To optimize and validate an equine oviduct explant culture system, in order to be able 

to study steroid-induced changes in the oviduct and the interaction between the 

oviduct and the developing horse embryo in vitro (CHAPTER 3). 

2. To determine local steroid concentrations as they prevail at the follicular and the luteal 

stage in the equine oviduct in vivo (CHAPTER 4). 

3. To mimic the in vivo oviduct environment by exposing oviduct explants in vitro to 

typical follicular and luteal concentrations of steroids, and monitoring the explant’s 

response by measuring different parameters (CHAPTER 5.1).  

4. To investigate whether the addition of steroids (CHAPTER 5.1) and of equine 

embryos to oviduct explants in vitro (CHAPTER 5.2) affect the gene expression of  

the oviduct cells. 

5. To improve equine embryo culture in vitro, by changing the temperature at which 

equine embryos are cultured in vitro to the body temperature of the mare (CHAPTER 

6) 
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The most exciting phrase to hear in science,  
the one that heralds new discoveries,  

                                                                        is not“Eureka!”    
        but:“That’s funny…”.” 

Isaak Asimov, author and biochemist”                 

 
CHAPTER 3 OVIDUCT EXPLANTS: A 

TOOL TO STUDY EARLY 
REPRODUCTIVE EVENTS IN THE 

HORSE 
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EQUINE OVIDUCT EXPLANT CULTURE: A BASIC MODEL TO DECIPHER 

EMBRYO-MATERNAL COMMUNICATION 

 

ABSTRACT 

 

Equine embryos remain for 6 days in the oviduct and thus there is a need for an in vitro model 

to study embryo– oviductal interactions in the horse, since this subtle way of communication 

is very difficult to analyse in vivo. Until now, no equine oviduct explant culture model has 

been characterised both morphologically and functionally. Therefore, we established a culture 

system for equine oviduct explants that maintained epithelial morphology during 6 days of 

culture, as revealed by light microscopy and transmission electron microscopy. We 

demonstrated the presence of highly differentiated, tall columnar, pseudostratified epithelium 

with basal nuclei, numerous nucleoli, secretory granules and apical cilia, which is very similar 

to the in vivo situation. Both epithelium and stromal cells originating from the lamina propria 

are represented in the explants. Moreover, at least 98% of the cells remained membrane intact 

and fewer than 2% of the cells were apoptotic after 6 days of culture. Although dark-cell 

degeneration, which is a hypoxia-related type of cell death, was observed in the center of the 

explants, quantitative real-time PCR failed to detect upregulation of the hypoxia-related 

marker genes HIF1A, VEGFA, PLAU, GLUT1 and PAI1. Since the explants remained 

morphologically and functionally intact and since the system is easy to set up, it appears to be 

an excellent tool for proteome, transcriptome and miRNome analysis in order to unravel 

embryo–maternal interactions in the horse. 

 

 

INTRODUCTION 

 

Co-culture of bovine embryos with somatic cells has been used extensively in the early 1990s; 

since at that time, it has been the only way to overcome the 8- to 16-cell block (Eyestone and 

First 1989, Eyestone, et al. 1991). This indicates that the culture media used then were 

suboptimal for bovine embryo development and had to be ‘conditioned’ first by somatic cells. 

For a few years, co-culture became a routine technique to produce embryos in vitro and in 

many cases, oviduct epithelial cells were used e.g. in cattle (Vansoom, et al. 1992) and in pigs 
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(Hardy and Spanos 2002). Also in the horse, the benefits of oviduct co-culture were 

investigated using in vivo-collected equine embryos (Ball, et al. 1991, Ball, et al. 1993, Ball 

and Miller 1992, Brinsko, et al. 1994). At the end of the 1990s, semi-defined media were 

developed that were equally suited to culture embryos from the zygote to the blastocyst stage 

in vitro, with blastocyst rates of 35% reported for cattle embryos (in modified SOF with BSA; 

(Holm, et al. 1996, Lonergan, et al. 1991). Horse embryos produced by intracytoplasmic 

sperm injection (ICSI) can be successfully cultured to the blastocyst stage in Dulbecco’s 

Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F-12) plus serum (Carnevale, et al. 

2000, Choi, et al. 2006, Choi, et al. 2004a, Hinrichs and Choi 2005, Smits, et al. 2012b, Yuan, 

et al. 2003) with percentages ranging between 10 and 35%. Since then, embryo–somatic cell 

co-culture has been abandoned and is considered to be a less desirable technique because it is 

labour intensive, may introduce pathogens and is less defined than cell-free medium (Bavister 

1995, De Pauw, et al. 2003). However, in view of the fact that the oviductal environment 

represents the optimal environment for early embryo development, we want to reconsider the 

use of oviduct epithelial explants, especially for co-culture in in vitro-produced horse embryos 

to enable the study of embryo– maternal communication in the horse at the level of gene 

expression in an in vitro model that approximates the in vivo situation as closely as possible.  

At present, molecular biology has progressed enormously compared with twenty years ago, 

making it possible to analyse subtle changes in gene expression at the level of single embryos 

or using very low amounts of tissue (Merkl, et al. 2010). Unfortunately, this does not allow us 

to study embryo–maternal interactions in vivo, ‘‘because some interactions are very short or 

very local, making it very challenging to localise an embryo of only a few hundred µm in 

diameter in a large-size reproductive tract’’ (Ulbrich, et al. 2013b). For the reasons mentioned 

above, we think it is timely now to reintroduce oviduct explants in horse-embryo culture, not 

for the purpose of increasing embryo production, but to study signaling events during the first 

embryonic cleavage divisions in vitro. To this end, the most important prerequisite is to 

preserve the 3D architecture of the oviduct by preventing epithelial cell dedifferentiation. 

Since monolayers dedifferentiate with a concomitant loss of important morphological 

characteristics, an explant culture system more closely resembles the in vivo situation (Walter 

1995), since it is produced by stripping epithelial folds from the oviduct, which consist of 

both epithelial and stromal cells. In order to be used as an in vitro model to study embryo–

oviduct interactions in the horse, the oviduct explants have to remain viable and exert normal 

gene expression for, 6 days, which is the time spent in the oviduct by the horse embryo. One 
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salient feature of the equine oviduct explants was that many of them showed central 

darkening after a few days of culture, while still displaying vigorous ciliary activity, a feature 

that we had never observed with bovine oviduct explants (De Pauw, et al. 2002). Therefore 

the aims of this study were: (1) to characterise equine oviduct explants morphologically by 

means of light, immunofluorescence and transmission electron microscopy over time and (2) 

to assess whether the central dark zones in the explants were induced by hypoxia by 

quantifying the expression of hypoxia-related genes with an embryotrophic function in 

explants at Day 0 and Day 6 of culture. In this paper, we show that epithelial morphology of 

equine oviduct explants is preserved during 6 days of culture, that the dark zones are caused 

by dark-cell degeneration and that hypoxia-related gene expression is not changed during 

culture, indicating that culture conditions are not hypoxic. The equine oviduct explant model 

is at present being used to study the importance of endocrine and paracrine signaling during 

early embryo development in the horse. 

 

MATERIALS AND METHODS 

 

Animals 

 

Oviducts (three replicates of 7 to 10 oviducts) were obtained at a slaughterhouse from healthy 

warmblood mares aged 5–22 years and without any visible reproductive tract pathologies. 

Only ipsilateral oviducts of mares showing a recent corpus luteum or a corpus hemorrhagicum 

on the ovaries, indicating ovulation had occurred not later than 5 days earlier (Pierson and 

Ginther 1985), were used. Determination of progesterone concentration by ultra-high 

performance liquid chromatography coupled to tandem mass spectrometry (UHPLC/MS-MS) 

in another study (Nelis, et al. 2015a) revealed a positive predicting value of 94% between the 

presence of a corpus hemorrhagicum and a progesterone concentration lower than 2 ng/mL. 

 

Preparation and morphological evaluation of oviduct explants 

 

Oviducts of mares were trimmed of excess connective tissue, closed at both ends and 

transported in sterile 0.9% saline and gentamycin (50 mg/mL; Invitrogen, Merelbeke, 

Belgium) on ice. In the laboratory oviducts were washed in phosphate-buffered saline (PBS) 

and the epithelial cells were obtained by scraping the ampullary–isthmic region of the 



Chapter 3.1 Materials and methods 

64 

 

longitudinally opened oviduct. The harvested cellular material was put in a tube containing 

home-made 10x 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered 

Tyrode’s albumin–lactate–pyruvate (TALP) and was left to settle for 10 min, after which the 

cell pellet was resuspended in 3 mL of fresh HEPES-buffered TALP washing medium. The 

process of sedimentation was repeated twice. Afterwards, the harvested cellular material was 

washed and cultured in DMEM/F12 (Invitrogen) with 10% fetal bovine serum (FBS; 

Invitrogen), 50 mg/mL gentamycin and 2.5 mg/mL amphotericin-B (Fungizone; Invitrogen) 

at 38.5°C in a humidified atmosphere with 5% CO2 in air. The time-span from slaughter of 

mares to seeding of cells was 3 to 4 h. The DMEM/F12-FBS culture medium was refreshed 

the first and the fourth day after cell isolation. Only cultures with more than 99% of 

membrane-intact cells, determined by Trypan blue staining (Sigma-Aldrich, Diegem, 

Belgium), 2 to 4 h after start of culture (= Day 0) were used. In the first experiment we 

compared two culture systems: the first were 50 µL droplets under oil containing 5 explants 

with a diameter less than 200 µm per droplet and the second was identical to the first but 

contained only one vesicle with a diameter larger than 600 µm. Frozen damaged explants 

were used as a membrane-damaged control. These explants were subjected to three 

subsequent freeze (-20°C) –thaw (38°C) cycles in PBS. Every 24 h, 20 to 30 explants were 

fixed in 4% formaldehyde for 24 h and processed for haematoxylin–eosin staining. Next, 

ciliary activity and central dark-zone formation, as shown in Fig. 1a–c, was evaluated every 

24 h in the whole number of explants present in at least 20 droplets, containing 20–30 

explants each. Explants were considered to show ciliary activity when bordered by vigorously 

beating cilia, clearly seen on the inverted microscope (400x magnification). To lower 

interpretative bias, all explants were counted by two researchers and the mean value was used 

for statistical analysis. 

 

Fluorescence microscopy 

 

To determine the presence of membrane-damaged cells, 10 explants were stained after every 

24 h of culture with the nucleic stain SYBR14 and propidium iodide (PI; LIVE/DEAD Sperm 

Viability Kit; Molecular Probes, Leiden, The Netherlands; (Garner, et al. 1994). The explants 

were washed in HEPES-buffered washing medium, incubated in 5 mL of a 1:50 SYBR14 

dilution in HEPES-buffered washing medium, for 15 min at 37°C, followed by a 5 min 

incubation with 5 mL PI. The stained explants were mounted in 1,4-diazabicyclo[2.2.2]octane 



Chapter 3.1 Materials and methods 

65 

 

(DABCO) on siliconised glass slides. Explants that were frozen in PBS at -20°C for 24 h, 

subsequently thawed at 38°C and stained were used as a membrane-damaged control. To 

detect apoptotic and necrotic cells, epithelial explants showing dark zones after 6 days of 

culture were stained with a combination of Hoechst, terminal deoxynucleotidyl transferase 

dUTP nick end labeling (TUNEL) and anti-caspase based on previous publications (Gjorret, 

et al. 2007, Vandaele, et al. 2007, Wydooghe, et al. 2011). Explants were fixed in 4% 

paraformaldehyde for 20 min at room temperature and stored in PBS containing 0.5% bovine 

serum albumin (PBS–BSA; Sigma–Aldrich, Bornem, Belgium) at 4°C until the staining was 

performed. Positive-control explants were incubated overnight with 0.5 mM staurosporine. 

Fixed explants were permeabilised with 0.5% Triton X-100 (Sigma–Aldrich, Bornem) in PBS 

for 1 h and washed again in polyvinylpyrrolidon (PVP) solution. The explants were held for 1 

h in 0.5% Triton X-100 in PBS at room temperature. Subsequently, the explants were washed 

three times for 2 min in PBS–BSA. After washing, the explants were blocked overnight in 

10% goat serum (Invitrogen) and 0.05% Tween 20 in PBS at 4°C. Explants serving as 

negative controls remained in blocking solution. The test explants were washed two times for 

15 min at room temperature and incubated overnight at 4°C in rabbit active caspase-3 

antibody (0.768 mg/mL in blocking solution; Cell Signaling Technology, Leiden, The 

Netherlands). After another wash step (two times for 15 min), test explants and negative 

controls were transferred to goat anti-rabbit Texas Red antibody (20 mg/mL in blocking 

solution; Molecular Probes, Merelbeke, Belgium) for 1 h at room temperature. 

 

For TUNEL staining, positive and negative controls were treated with DNase (50 U/ml in 

PBS) for 1 h at 37°C to ensure detection of strand breaks by TUNEL (In Situ Cell Detection 

kit; Boehringer, Mannheim, Germany). After washing, positive controls and samples were 

incubated in fluorescein (FITC)-dUTP and terminal deoxynucleotidyl transferase for 1 h at 

37°C in the dark. Meanwhile, the negative control was incubated in nucleotide mixture only 

in the absence of transferase. After a second washing, controls and samples were incubated in 

RNase A (50 mg/mL in PBS) for 1 h at room temperature. The explants were washed twice 

and transferred to Hoechst 33342 (50 mg/mL in PBS–BSA; Molecular Probes, Life 

Technologies Europe B.V., Ghent, Belgium) for 10 min at room temperature. Evaluation of 

the explants was performed the next day by fluorescence microscopy, with a U-M3DAFITR 

(Olympus, Aartselaar, Belgium) filter cub, a triple bandpass filter for 4
0
,6-diamidino-2-

phenylindole (DAPI) (440/40 filter, 405 nm laser), FITC (525/50 filter, 488 nm laser) and 
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Texas Red (595/50 filter, 561 nm laser). The number of cells of at least 10 explants from each 

of the three replicates was determined by counting the Hoechst-positive cells. Next, the 

percentage of anti-caspase-3 and TUNEL-positive cells was determined by counting all the 

Hoechst-, TUNEL- and anti-caspase-3-positive cells in at least 10 explants. After counting, 

per explant, the ratio of TUNEL- and/or anti-caspase-3-positive cells of the Hoechst-positive 

cells was determined. Images were acquired with a C1si confocal laser-scanning microscope 

(Nikon BeLux, Brussels, Belgium) using a Plan Apo 40x objective with a numerical aperture 

of 0.95 (Nikon). All filters and lasers were purchased from CVI Melles Griot (Albuquerque, 

NM, USA). 

 

Transmission electron microscopy 

 

At Days 0, 3 and 6 of culture, oviduct explants were fixed in 0.2 M sodium cacodylate-

buffered formaldehyde and post-fixed with osmium tetroxide. After rinsing, cells were 

pelleted by centrifugation (for 5 min at 200g at room temperature) in 10% BSA supplemented 

with 1% glutaraldehyde. The pellet was then dehydrated and embedded in epoxy resin (LX-

112; Ladd Industries, Williston, ND, USA). Sections were made with a Reichert Jung 

(Depew, NY, USA) Ultracut E ultra-microtome. 

 

Semi-thin sections (2 µm) were stained with toluidine blue to select the most appropriate 

regions for ultrathin sectioning. Next, ultra-thin sections (90 nm) were made and stained with 

uranyl acetate and lead citrate solutions before examining under a Jeol EX II transmission 

electron microscope (Jeol Europe, Zaventem, Belgium) at 80 kV. 

 

RNA extraction and quantitative RT-PCR 

 

Primer design and validation, RNA extraction and quantitative reverse transcription–

polymerase chain reaction (RT-qPCR) were performed according to the MIQE-guidelines 

(Bustin, et al. 2009). Oviduct explants were cultured in 50 µL drops in DMEM/F12–10% 

FBS. At Days 0 and 6 of culture, between 40 to 70 explants per sample (n = 12 per group) 

were washed in Dulbecco’s Phosphate-Buffered Saline (DPBS; GIBCO BRL Invitrogen, Life 

Technologies Europe B.V., Ghent, Belgium) and conserved at -80°C in RNase-free water 

containing 10% RNasin Plus RNase inhibitor (Promega, Leiden, The Netherlands), 5% 



Chapter 3.1 Materials and methods 

67 

 

dithiothreitol (Promega) and 0.8% Igepal CA-630 (Sigma-Aldrich, Bornem) until analysis. 

 

The primers (Table 1; Integrated DNA Technologies, Leuven, Belgium and Sigma-Aldrich, 

Bornem, Belgium) for the genes of interest (VEGFA, HIF1A, GLUT1, PAI1, PLAU) were 

designed by means of Primer3 software (Misener, et al. 1999)  

(http://frodo.wi.mit.edu/primer3/, accessed 10 May 2011), based on horse sequences found in 

the NCBI GenBank  (http://www.  ncbi.nlm.nih.gov/, accessed 10 May 2011). To distinguish 

genomic DNA amplification, to provide specificity and to avoid secondary structures in the 

primer region, primers were selected over intron–exon boundaries, tested using a BLAST 

analysis against the NCBI database and characterised with MFold (Zuker 2003)  

(http://mfold.rna.albany.edu/?q=mfold/DNA- Folding-Form, accessed 10 May 2011). The 

amplicons were run on a 2% agarose gel and confirmed by nucleotide sequenc-ing. All 

primers are listed in Tables 1 and 2. 

All RT-qPCR reactions were performed in duplicate with 2.5 µL of sample, 7.5 µL of the 

KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems, Woburn, MA, USA), 0.6 µL of 5 

or 10 mM forward and reverse primer and 3.8 µL water. A blank, a melting curve and a 5- or 

10-fold serial dilution series of pooled oviductal cDNA were included for each gene to check 

for contamination and specificity and to acquire PCR efficiencies (Tables 1, 2) based on a 

relative standard curve. Calculation of the Cq values, PCR efficiencies, correlation 

coefficients and analysis of the melting curves was performed by means of iCycler iQ Optical 

System Software Version 3.0a (Biorad, Nazareth, Belgium). All quantification cycle (Cq) 

values were converted into raw data using these PCR efficiencies and normalised by dividing 

them by their respective normalisation factors. This normalisation factor was determined per 

sample by calculating the geometric mean of the validated reference genes as determined for 

each type of explant. Therefore, a set of stable reference genes was identified in 10 samples of 

post-ovulatory oviduct explants at Day 0 and in 10 samples after 6 days of culture. Eight 

reference genes were selected based on previous studies (Bogaert, et al. 2006, Cappelli, et al. 

2008, Goossens, et al. 2005, Smits 2009). The selected genes (ACTB, GAPDH, HPRT, 

RPL32, SDHA, TUBA4A, 18S and UBC; Table 2) belonged to different functional classes, 

which reduced the chance of co-regulation. Primers for ACTB, HPRT1, RPL32, TUBA4A and 

UBC were provided by Bogaert, et al. (2006). Primers for GAPDH, SDHA and 18S were 

available from previous research in equine blastocysts (Smits, et al. 2009). 

Table 1 For each gene the NCBI GenBank accession number, the sequence of both forward 

file:///E:/total%20phd/(http:/frodo.wi.mit.edu/primer3/,
file:///E:/total%20phd/(http:/frodo.wi.mit.edu/primer3/,
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
file:///E:/total%20phd/(http:/mfold.rna.albany.edu/%3fq=mfold/DNA
file:///E:/total%20phd/(http:/mfold.rna.albany.edu/%3fq=mfold/DNA
http://mfold.rna.albany.edu/?q=mfold/DNA-Folding-Form
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and reverse primers, the size of the amplicon and the optimal primer annealing temperature 

are listed. F = forward primer; R = reverse primer. 

 

Gene GenBank accession Primer sequence (5’–3
’
) Amplicon   

 number  size (bp) Ta Efficiency 

    °C  

PLAU XM_001502951.4 F: AAAGTCCCTCCTCTCCTC 249 61 92 

  R: CGAAGAAGGAGGACTACATT    

VEGFA NM_001081821 F: ACTGCCGTCCAATCGAGA 193 61 97 

  R: ATCAAACCTCACCAAAGCCA    

HIF1A XM_001493206 F: TGCTGGAGACACAATCATA 167 59 87 

  R: GAGTTTCAGAGGCAGGTAAT    

GLUT1 NM_001163971.1 F: CCAGAAGGTGATCGAGGAAT 238 60 118 

  R: CAGTTTTGAGAAGCCCATGA    

PAI1 XM_001492517 F: ACTCGGAAGCAGATCCAAGA 223 61 87 

  R: CAGGTGGACTTTTCAGAGGTG    

 

The mRNA expression of five genes – glucose transporter 1 (GLUT1), vascular endothelial 

growth factor (VEGFA), hypoxia-inducible factor 1a subunit (HIF1A), plasminogen activator 

inhibitor 1 (PAI1) and urokinase plasminogen activator inhibitor (PLAU) was evaluated. 

These genes are upregulated under hypoxic culture conditions and can be used as marker 

genes for hypoxia. Moreover, these factors play an important role in early embryonic 

development (Buhi 2002, Carmeliet, et al. 1996, Liao, et al. 2007, Wrenzycki, et al. 2001b), 

so down-regulation of these genes could indicate a loss of functionality of the cells. 
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Table 2 For each gene the NCBI GenBank accession number, the sequence of both forward 

and reverse primers, the size of the amplicon and the optimal primer annealing temperature 

are listed. The RTPrimerDB ID  http://rtprimerdb.org (accessed 10 April 2011) F = forward 

primer; R = reverse primer. 

 

Gene GenBank 

accession number 

Primer sequence (5’-3’) Amplicon 

size (bp) 

Ta 

(°C) 

Efficiency 

(%) 

ACTB AF035774 CCAGCACGATGAAGATCAAG 88 60 101 

GTGGACAATGAGGCCAGAAT 

       

GAPDH AF157626  CAGAACATCATCCCTGCTTC 187 59 97 

ATGCCTGCTTCACCACCTTC 

  

 

   

HPRT1 AY372182 

GGCAAAACAATGCAAACCTT 
163 57 93 

CAAGGGCATATCCTACGACAA 

  

 

   

RPL32 XM_008531004 

  

AGCCATCTACTCGGCGTCA 149 60 89 

TCCAATGCCTCTGGGTTTC 

  

 

   

SDHA XM_001490889 

  

TCCATCGCATAAGAGCAAAG 159 59 99 

GGTGGAACTGAACGAACTCC 

  

 

   

TUBA4A XM_001491910  GCCCTACAACTCCATCCTGA 78 60 104 

ATGGCTTCATTGTCCACCA 

  

 

   

UBC AF506969 GCAAGACCATCACCCTGGA 206 60 100 

CTAACAGCCACCCCTGAGAC 

  

 

   

18 S AJ311673 GACCATAAACGATGCCGACT 219 60 92 

  TCTGTCAATCCTGTCCGTGT    

                                                                     

    

 

Measurement of glucose and lactic acid consumption by oviduct explants 

 

Oviduct explants were cultured in 5% CO2 in air or in 5% CO2, 5% O2 or in 90% N2 at 38°C 

as described earlier. At Days 0, 1, 3 and 6 of culture, samples of culture medium were taken 

and frozen at -80°C until analysis using an UV enzymatic method using the Roche Cobas 

http://rtprimerdb.org/
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF035774
http://www.ncbi.nlm.nih.gov/nuccore/AF157626,%20BI960908,%20CX593628
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY372182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF506969
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 000 according to the manufacturer’s recommendations (Roche Diagnostics, Mannheim, 

Germany). A calibration line to determine the efficiency was drawn up along with 10 samples 

per day of sampling. The efficiency of the UV enzymatic analyses was 98% for glucose and 

99% for lactic acid. The limit of detection was 0.1 mM for glucose and 0.2 mM for lactic 

acid. 

 

Statistical analysis 

 

For analysis of the Gaussian-distributed data of the morphological evaluation of the explants 

and glucose and lactic acid concentration, repeated-measures with Greenhouse–Geisser 

correction with the general linear model procedure was implemented. Post hoc test for 

multiple comparisons with Bonferroni correction was performed. For gene-expression studies, 

analysis of variance (ANOVA) and calculation of standard errors of means (s.e.m.) were 

performed with the general linear model procedure as implemented in SPSS 19 for Windows 

(SPSS IBM, Brussels, Belgium). Paired-samples t-test and Wilcoxon-signed rank test was 

used in comparisons of target gene expression differences throughout the culture period, 

depending on whether or not a Gaussian distribution was obtained after logarithmic 

transformation of the data. Differences were considered to be significant at P < 0.05. 

Statistical analysis and graph plotting were performed with SPSS 19. Power analysis and 

sample-size calculation (a = 0.05; power = 0.90–0.95) for gene-expression studies and other 

experiments were performed using Piface version 1.7 (Lenth 2007) (University of Iowa;  

http://homepage. stat.uiowa.edu/,rlenth/Power/; accessed 28 March 2011), and G*Power 3.1.3 

(Faul, et al. 2007) (Heinrich Heine Universität Düsseldorf; http://www.psycho.uni-

duesseldorf.de/abteilungen/ aap/gpower3/download-and-register; accessed 1 August 2012), 

respectively. 

 

 

RESULTS 

 

Morphological features of equine oviductal explants during culture 

 

From 6 h of culture the formation of spherical structures was observed. More than 95% of the 

explants smaller than 200 µm or larger than 600 µm were still showing ciliary activity after 6 

http://homepage.stat.uiowa.edu/&sim;rlenth/Power/
http://homepage.stat.uiowa.edu/&sim;rlenth/Power/
http://homepage.stat.uiowa.edu/&sim;rlenth/Power/
http://www.psycho.uni-duesseldorf.de/abteilungen
http://www.psycho.uni-duesseldorf.de/abteilungen
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/download-and-register
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days of culture. Over time, we saw that progressively more explants were showing central 

darkening (Fig. 1a, b). At Days 5 and 6, a significantly lower percentage of smaller explants 

was showing central dark zones compared with the larger-sized vesicles (P = 0.01;  Fig. 2).  

         

Fig. 1. (a, c) Inverted microscopic image of equine oviduct explants after 1 day of culture and 

(b) after 6 days of culture, showing central dark zones. (d ) Trypan blue and (e) SYBR14 

staining revealed that more than 98% of the cells were membrane intact after 6 days of culture 

(green in SYBR14, translucent in Trypan blue staining). ( f ) Very few membrane-damaged 

cells were stained orange by propidium iodide. (g) Confocal transmission view of the 

combined staining of TUNEL (green) and anti-caspase-3 (orange; arrow). (h) Confocal 3D 

view of oviduct explants stained with Hoechst, TUNEL and anti-caspase-3. Fewer than 2% of 

the cells in the explants were TUNEL and/or anti-caspase-3 positive after 6 days of culture. (i) 

Staining negative confocal transmission view for background autofluorescence subtraction. (a, 

b, h) Bar = 100 µm; (c) Bar = 50 µm; (d–g, i) Bar = 20 µm. 
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There was no significant difference (P = 0.9) in ciliary activity and the percentage of explants 

showing central black zones related to culture in low-oxygen atmosphere (90% N2, 5% CO2, 

5% O2) and in 5% CO2 in air (data not shown). 

 

 

Fig. 2. Progressively increasing percentage of explants showing central dark zones counted 

every 24 h during a culture period of 6 days in small (<200 µm) compared with large (>600 

µm) explants. * P = 0.05. Repeated-measures ANOVA with Greenhouse–Heisser correction; 

post hoc tests with Bonferroni correction. 

 

Haematoxylin–eosin staining demonstrated that between Day 0 and Day 6 of culture the 

explants (Fig. 3a) were bordered by highly differentiated tall columnar epithelial cells with 

basal nuclei, numerous nucleoli, apical cilia and secretory granules, very similar to ex vivo 

samples (Fig. 3b). In the spherical explant structures, stromal cells originating from the 

lamina propria were also observed. Trypan blue (Fig. 1d) and SYBR14/PI (Fig. 1e, f) staining 

demonstrated that more than 95% of the cells remained membrane intact after 6 days of 

culture. 

Hoechst, TUNEL and anti-caspase-3 staining revealed that only 2% of the cells, scattered 

over the whole explants, contained fragmented DNA (Fig. 1g, h; green TUNEL-positive 

cells) and fewer than 1% showed caspase-3-positive cells (Fig. 1g; orange arrow) after a 

culture period of 6 days. 
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Transmission electron microscopy confirmed the presence of cell polarity during the 6 days of 

culture as evidenced by the presence of cilia and microvilli on the apical cell surface and of 

tight junctions on the lateral cell surfaces (Fig. 4). In explants showing central darkening, 

originating from mares in the postovulatory cycle stage, conspicuous dark nuclear and 

cytoplasmic regions were visible without the hallmark ultrastructural features of either 

apoptotic or necrotic cell death as described previously (Krysko, et al. 2008). In some cases 

these dark cells were engulfed by neighbouring healthy cells. 

Fig. 3. (a) Close-up of the epithelium, bordering an oviduct explant; the cells are highly 

differentiated with tall columnar, pseudostratified epithelium, with basal nuclei, numerous 

nucleoli (blue arrow), secretory granules (arrowheads) and apical cilia (black arrows), very 

similar to (b) the in vivo situation. Haematoxylin–eosin staining, bar = 25 µm. 
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Fig. 4. Transmission electron microscopic images of oviduct explants. (a) Ex vivo 

explant, bar = 500 nm; (b) explant cultured for 1 day, bar = 500 nm; (c) explant cultured 

for 5 days, bar = 1 µm; (d ) explant cultured for 6 days with dark zone, bar = 2 µm. 

During the whole culture period, the explants were bordered by highly differentiated 

epithelial cells with apical cilia (ci) and microvilli (Mv), intact junctional complexes 

(arrowheads) and numerous mitochondria (M) and rough endoplasmic reticulum (RER). 

Explants showing central dark zones contain cells undergoing dark-cell degeneration 

(D), hallmarked by their shrunken and very electron-dense appearance without 

recognizable organelles in the cytoplasm, their nuclei containing condensed chromatin 

and areas of vacuolization in the cytoplasm. 
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Gene expression of equine oviduct explants during culture 

 

Quantitative real-time PCR results of post-ovulatory oviduct explants on Day 0 and Day 6 of 

culture were normalised against the geometric mean of an optimal number of reference genes. 

 

Results of the reference gene stability, as determined by geNorm, are shown in Fig. 5. The 

optimal number of genes was determined with geNorm by means of the pairwise variations 

(Vn/nþ1) between the sequential normalisation fac-tors (NFn and NFnþ1) after successive 

inclusion of less-stable reference genes (Fig. 6). The value of the pairwise variations reduces 

until 0.137 for V4/5. This suggests that the inclusion of a fifth reference gene contributes to the 

stability. Therefore it is recommended to use the five most-stable genes for RT-qPCR in post-

ovulatory oviduct explants. When segregating Day 0 and Day 6, on Day 0 the most stable 

reference genes were ACTB, UBB, 18S, TUBA4A, SDHA, HPRT and on Day 6, ACTB, SDHA, 

UBB, RPL32, HPRT were the most stable (data not shown). When both groups of explants 

(Day 0 and Day 6) were included, the most stable genes were UBB, ACTB, 18S, RPL32 and 

SDHA. The geometric mean of these latter genes was used for normalisation of the test genes. 

The M values (Fig. 5) ranged between 0.4 and 0.8, which indicates relatively good stability. 

 

A highly significant downregulation of GLUT1 (P = 0.0005) and a slightly significant 

downregulation of PAI1 (paired-samples t-test) and PLAU (Wilcoxon-signed rank test) was 

observed after 6 days of culture (P = 0.03 and P = 0.01). Normalised expression values of 

GLUT1 and PAI1 were loga-rithmically transformed to obtain a Gaussian distribution. There 

were no differences in expression levels of HIF1A and VEGFA between Day 0 and Day 6 of 

culture (Fig. 7). 
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Fig. 6. Determination of the optimal number of control genes for normal-isation in post-

ovulatory explants. The optimal number of control genes for normalisation was calculated by 

geNorm. The value of the pairwise variations reduces until 0.137 for V4/5, which indicates that 

the inclusion a fifth reference gene contributes to the stability. Therefore the average of the 

five most stable genes is recommended to determine a reliable normalisation factor. 

Fig. 5. Average expression-stability values of post-ovulatory oviduct explants. The average 

stability values of the control genes were calculated with geNorm. In this population UBB, 

ACTB, 18S and RPL32 were found to be the most stable. 
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Fig. 7. Differential normalised gene expression in oviduct explants between Day 0 and Day 6 

of culture in 5% CO2 in air as determined by RT-qPCR. Mean (+/- s.e.m.) expression of five 

genes determined by RT-qPCR in oviduct explants. After 6 days of culture, mean GLUT1, 

PAI and PLAU expression were significantly lower. *P = 0.05, ***P = 0.0005; paired-

samples t-test or Wilcoxon-signed rank test. 

 

 

Glucose and lactic acid changes during culture 

 

After 3 days of culture glucose consumption was 5.4 +/- 0.8 mM, so the glucose concentration 

in the culture medium had significantly dropped from 17 mM to 11.6 +/- 0.8 mM. Lactic acid 

concentrations increased from 0 to 4.4 mM in 5% CO2 in air (P = 0.005). Glucose and lactic 

acid concentration did not change during the subsequent 3 days of culture (P = 0.9). In 5% O2, 

5% CO2 and 90% N2, glucose consumption significantly increased to 8.3 mM on Day 3 and to 

11.3 mM on Day 6 (P = 0.005 and 0.0005, respectively) whereas lactic acid concentration 

increased to 18.8 mM (P = 0.0005) on Day 3 and did not change during the following 3 days 

of culture (Fig. 8). 
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Fig. 8. Mean glucose consumption and lactic acid production (mM) measured in medium 

containing equine oviduct explants over 6 days of culture under high- or low-oxygen 

atmosphere. The glucose consumption and the lactic acid production of the explants in the 

low-oxygen environment were significantly higher than in higher-oxygen conditions. ***P = 

0.001; repeated-measures ANOVA with Greenhouse–Heisser correction; post hoc tests with 

Bonferroni correction. 
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DISCUSSION 

 

This study is the first to describe the morphology, ultrastructure, glucose consumption, lactic 

acid production and related gene expression of an equine oviduct explant culture system 

showing preservation of epithelial differentiation for 6 days of culture, which is equal to the 

time spent in the oviduct by the equine embryo. This is a significant finding since this model 

will be used for the further study of differentiation markers and signaling molecules to 

unravel embryo–maternal interaction at the level of gene expression in the horse. The first 

objective of this study was to obtain equine oviduct explants with preservation of 

morphological and ultrastructural features. Oviduct explants have several advantages when 

compared with monolayers. First of all, it has been proven that in cattle (Thibodeaux, et al. 

1992a, Walter 1995) and horses (Dobrinski, et al. 1999, Thomas, et al. 1995a) proliferating 

oviductal cells grown in monolayers dedifferentiate with a concomitant reduction in cell 

height, loss of beating cilia and loss of secretory granules and bulbous protrusions. Despite 

the fact that the use of monolayers and resulting cell lines minimises the risk of disease 

transmission and batch-dependent variations (Menck, et al. 1997), they are a less solid 

reflection of the in vivo situation (Reischl, et al. 1999, Thibodeaux, et al. 1992a, Walter 1995). 

In our hands, beating cilia in equine oviduct cell aggregates were still detected after 20 days in 

culture (data not shown). Transmission electron microscopy confirmed the presence of 

healthy cilia and numerous microvilli (Fig. 4). Furthermore, the cells bordering the explants 

maintained their ultrastructural highly differentiated morphology, including numerous 

mitochondria and rough endoplasmic reticulum, highly similar to the oviduct epithelium ex 

vivo (Fig. 4). Since the ciliation process is stated to be the endpoint of differentiation that 

cannot be induced in an in vitro system (Thibodeaux and Godke 1992), this means an 

important benefit of the explant suspension. Next, the oviduct is a biosynthetic active and 

secretory organ that releases macromolecules throughout the oestrous cycle (Buhi, et al. 

2000). The explants in our culture system were showing numerous secretory granules after 6 

days of culture, indicating that the functional integrity was preserved. A limitation in studying 

embryo–oviduct inter-actions in vitro is the impossibility to study regional and tem-poral 

differences. Furthermore, in the horse, it is rather difficult to determine the exact 

postovulatory cycle stage. To lower this bias, 7–10 oviducts ipsilateral to ovulation were 

pooled. A major advantage of explants compared with monolayers is of practical importance: 

explants can be used within 6 to 12 h after harvest whereas monolayers can be used only after 
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several days (Rottmayer, et al. 2006). 

 

Different media have been used to culture oviduct cells in vitro in different species, such as 

DMEM/F12, Menezo’s B2 medium (MB2), Roswell Park Memorial Institute (RPMI-1640 

medium), Tissue Culture Medium-199 (TCM-199), Con-naught Medical Research 

Laboratories 1066 (CMRL 1066) (Abe and Hoshi 1997, De Pauw, et al. 2002, Ulbrich, et al. 

2003). Since equine embryos apparently benefit from high glucose concentrations during 

early development (Choi, et al. 2004b), DMEM/F12 medium was selected for explant culture 

since it contains high levels of glucose (17.5 mM) and is a suitable medium for equine 

embryo culture (Hinrichs 2010, Smits, et al. 2011). Interestingly, glucose consumption by the 

oviduct explants was almost 2-fold higher under low oxygen tension (5% CO2, 5% O2, 90% 

N2) compared with 5% CO2 in air (Fig. 8), indicating that cellular activity is much higher 

(Leclerc, et al. 2003). Concomitantly, we observed more than 3-fold higher lactic acid 

production in the low oxygen tension condition. This can be explained by the enhanced 

generation of lactic acid by anaerobic glycolysis when oxygen is limited (Heiden, et al. 2009).  

 

One salient finding of this study was that, over time, the number of explants showing central 

dark zones increased gradually, reaching 85% in explants smaller than 200 µm and 98% in 

explants larger than 600 µm at Day 6 of culture (Figs  1b,  3). This finding has never been 

reported before in oviduct explant culture. These dark zones could not be attributed to 

membrane-damaged cells, since Trypan blue and SYBR14/PI staining showed that the 

percentage of membrane-intact cells was over 95% during the whole culture period (Fig. 1d–

f). Acceptable values of 90% membrane-intact cells are reported as an adequate criterion for 

cell isolation and culture (Cox and Leese 1997, Mishra, et al. 2003, Reischl, et al. 1999, 

Ulbrich, et al. 2003). Since the dark zones did not seem to consist of membrane-damaged 

cells, the presence of apoptotic cells was evaluated. Over the whole culture period, fewer than 

2% of the cells in the explants were TUNEL positive and fewer than 1% were anti-caspase-3 

positive. The difference in the percentage of cells containing fragmented DNA (TUNEL 

positive) and anti-caspase-3 positive cells can be explained by the fact that TUNEL is prone 

to artefacts (Hardy and Spanos 2002) and that only a portion of the TUNEL-positive cells 

stain for the caspase-3 cleavage product, suggesting caspase-3 activation may not be required 

for apoptosis in all cells (Namura, et al. 1998). These results indicate that the central dark 

zones did not consist of a cluster of apoptotic nor necrotic cells since TUNEL is a marker for 
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DNA fragmentation (Stadelmann and Lassmann 2000). Transmission electron microscopy 

(TEM) was performed to elucidate the ultrastructural features of the oviduct explants. This 

technique revealed only a few cells with ultrastructural changes typical of apoptosis such as 

plasma membrane blebbing but also showed epithelial cells undergoing dark-cell 

degeneration, characterised by strong cytoplasmic condensation, chromatin clumping and 

ruffling of the cell membrane but no blebbing of the nucleus or plasma membrane (Leist and 

Jaattela 2001). 

 

Dark-cell degeneration is stated to be an apoptosis-like hypoxia-related type of cell 

degeneration described hitherto in Huntington’s disease, in neuronal cell degeneration (Leist 

and Jaattela 2001) and chondrocytes (Roach and Clarke 2000). In neuronal cells, dark-cell 

degeneration is stated to be caused by hypoxia (Barenberg, et al. 2001). Destructive levels of 

glutamate have been reported to mediate hypoxic-induced neuronal death, caused by the 

positive feedback of glutamate on its own release (Hardy, et al. 2002). 

 

We hypothesized that the dark-cell degeneration in the explants was caused by hypoxic 

culture conditions as described in neuronal cells. Although a concentration of 5% oxygen, as 

applied in our experiments, is the physiological oviductal concentration of mammals (Fischer 

and Bavister 1993), due to the lack of microvasculature, the explants might (partly) suffer 

from hypoxia. Therefore, we evaluated the mRNA expression of five hypoxia-related genes. 

Hypoxia-inducible factor (HIF1A) is a transcription factor with a central role in the hypoxia 

response. Its activity is regulated by the oxygen-dependent degradation of the HIF1A protein 

(Chi, et al. 2006). Hypoxia induces not only the expression of HIF1A in mammalian cells but 

also regulates the expression of growth factors such as VEGFA, a potent angiogenic factor 

with an essential role in embryonic vasculogenesis and angiogenesis in mice (Carmeliet, et al. 

1996, Ferrara, et al. 1996). In cattle, VEGFA secretion is increased before ovulation and 

therefore creates an optimal environment for gamete maturation, fertilisation and early 

embryonic development (Wijayagunawardane, et al. 2005). Furthermore, VEGFA enhances in 

vitro maturation of bovine oocytes and accelerates early embryonic development (Gabler, et 

al. 1999, Luo, et al. 2002). Wijayagunawardane, et al. (2005) hypothesize that VEGFA 

regulates oviductal embryo transport in cattle. The promoter region of the VEGFA gene has 

hypoxia-responsive elements that respond to HIF1A (Raleigh, et al. 1998). VEGFA mRNA 

levels are dramatically increased within a few hours of exposing different cell cultures to 
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hypoxia (0% O2; (Shweiki, et al. 1992)), which stimulates neovascularization (Fan, et al. 

2009). In this study, there was no change in expression of HIF1A nor VEGFA after 6 days of 

culture under different oxygen tensions. 

 

The expression of glucose transporter 1 (GLUT1) is also upregulated under hypoxic 

conditions and mediated by HIF1A. Expression of the GLUT1 gene is frequently used to 

describe differences between different culture systems (Wathes, et al. 1998, Wrenzycki, et al. 

1998a, Wrenzycki, et al. 2001b). Furthermore, GLUT1 plays an important role in the transfer 

of glucose from the oviduct epithelium into the lumen and in maintaining adequate glucose 

concentration in the oviductal fluid (Tadokoro, et al. 1995). It also mediates cellular glucose 

incorporation into embryonic cells and is necessary for transition from the morula to 

blastocyst stage (Leese, et al. 1995). Our results revealed a 5-fold downregulation of GLUT1 

after a culture period of 6 days. This can be explained by the autoregulatory mechanism of 

cells by downregulating or induction of degradation of the principal glucose transporter 

GLUT1-mRNA to protect against deleterious effects of hyperglycaemic culture conditions 

(Hahn, et al. 1998). Despite the high glucose consumption by the explants and the 

concomitant drop in glucose concentration (Fig. 8), there was a downregulation of GLUT1. 

This can be explained as a negative feedback caused by the non-physiologically high glucose 

concentration in the medium, even after 6 days of culture (7–12 mM), since the in vivo 

glucose concentration in oviductal fluid of the mare is only 2.84–5.92 mM (Campbell, et al. 

1979). However, modified DMEM/F12 medium with a high glucose concentration of 17 mM 

is superior to media with no glucose or low glucose concentration to support equine 

embryonic development in vitro (Choi, et al. 2004a). Since the explants, especially in the low-

oxygen embryo-culture environment, seem to consume high amounts of glucose (Fig. 8), it 

may be advisable to add glucose daily in embryo–oviduct co-culture experiments. 

 

Plasminogen activator inhibitor 1 (PAI1) is also regulated by hypoxia and HIF1A. It may have 

a function in protecting the zona pellucida, the preimplantation embryo and oviductal tissue 

from proteolytic degradation by active proteases such as urokinase plasminogen activator 

(PLAU) and matrix metalloproteinases present in the oviductal environment (Buhi 2002, 

Kouba, et al. 2000a). Further, it may have a function in the regulation of extracellular matrix 

turnover and remodeling and may be involved in early cleavage-stage embryonic 

development (Kouba, et al. 2000a). In this experiment, both PAI1 and PLAU were slightly 
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downregulated after 6 days of culture under atmospheric oxygen (0.01, P = 0.05). This is 

another indication of the fact that the explants did not suffer hypoxia, since under hypoxic 

conditions these factors are supposed to be upregulated (Liao, et al. 2007). In bovine oviducts 

ex vivo, PLAU expression was significantly higher during the preovulatory phase compared 

with Days 1 to 5 after ovulation (Gabler, et al. 2001), indicating hormonally regulated 

expression. Therefore, the downregulation observed in our experiment might be caused either 

by the presence of PLAU inhibitors such as PAI1, PAI2 and nexin (Blasi 1997) in the serum 

or produced by the explants, or by the lack of hormonal stimulation in our culture system. 

 

In conclusion, our culture system sustains equine oviduct explants bordered by highly 

differentiated, functional and intact epithelial cells showing vigorous ciliary activity during 6 

days of culture. Furthermore, only a negligible percentage (1–2%) of the cells in the explants 

shows features of apoptosis or necrosis and therefore the explants mimic the in vivo situation 

very closely. Although dark-cell degeneration, which is a hypoxia related type of cell death, 

was observed, no proof of hypoxia could be observed at the level of mRNA expression. 

Since our culture system is lacking hormonal stimulation and since in vivo oviductal hormone 

concentrations in the horse are high experiments with steroid hormone supplementation are 

ongoing and promising (Nelis, et al. 2015b, Nelis, et al. 2013, Nelis, et al. 2011). 

Furthermore, in order to finally validate our model, co-culture experiments with ICSI-

produced embryos are planned. So, although the cause of the dark-cell degeneration needs to 

be clarified, the oviduct explant system is definitely the basis of a robust model suitable to 

study embryo–oviduct interactions in the horse. 
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PART 3.2: THE INFLUENCE OF FOETAL BOVINE SERUM 

AND INSULIN-TRANSFERRIN-SELENIUM ON OVIDUCT 

EXPLANT VIABILITY 

 

Part of this work was presented at: 

AETE Conference 2015, Ghent, Belgium. 

 

ABSTRACT 

It has been previously demonstrated that equine oviduct explants are an excellent tool to 

unravel embryo-maternal interactions. The system is easy to set-up and the equine oviduct 

explants remain in vitro functionally intact and highly differentiated. Although the outer 

surface of the explants does not undergo ultrastructural or functional changes, dark cell 

degeneration (DCD), as exteriorized by dark central zones in the explants, is observed inside 

the explants. Since serum has been reported to negatively affect cell and embryo culture the 

effect of serum and the serum replacer insulin-transferrin-selenium on the prevalence of DCD, 

the percentage of explants showing ciliary activity, membrane integrity and ultrastructure was 

assessed. Therefore, ipsilateral oviducts from mares in the early postovulatory cycle stage 

were gathered. Oviduct explants were harvested by scraping and cultured for 6 days in 50 µl 

drops under oil in 5 % CO2 in air in DMEM/F12 (unsupplemented medium) or DMEM/F12 

with 10 % foetal bovine serum (FBS) or in DMEM/F12 supplemented with 5 µg/ml insulin 

and transferrin and 5 ng/ml selenium selenite (ITS). One droplet contained one µl (20-30 

explants) of explant suspension. Three replicates of 60 droplets per treatment group were 

cultured. Using an inverted microscope, every 24 h, the percentage of explants with dark 

zones and the percentage of explants showing ciliary activity were determined and compared 

between the groups. In addition, membrane integrity, as evidenced by Trypan blue staining, 

was compared by recording the percentage of membrane-damaged cells. At day 0, 3 and 6, 

ultrastructure was assessed by TEM.  

Compared to ITS (68 %, P < 0.0005) and the unsupplemented medium (67 %, P < 0.0005), 

FBS seems to protect (36 %) against the development of DCD during the first 2 days of 
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culture while it fails to do so from day 3 on. From then on, the prevalence of DCD was the 

lowest in the unsupplemented group (81 %) compared to ITS and FBS (87-92 %, P < 0.0005). 

FBS and in lesser extent ITS seem to sustain ciliary activity (respectively 97 and 94 %, P < 

0.0005) compared with the unsupplemented medium (87 %, P < 0.0005). In all groups, as 

shown by Trypan blue staining, the explants consisted of more than 98 % membrane intact 

cells (P = 0.9). TEM revealed that there was no qualitative difference in the development of 

DCD. The outer surface of all explants in all groups was, similar to the in vivo situation, 

highly differentiated and intact. 

In conclusion, FBS and ITS supplementation sustains ciliary activity. while ITS seems to 

enhance the development of DCD, components of FBS, which may be depleted after 2 days 

of culture, turn out to protect partly against DCD. Since the toxic margin of insulin and 

transferrin is known to be far above the applied levels in our culture system, next to other 

factors present in the culture system, selenium may play a role in the development of DCD. 

Further research is needed to unravel the exact cause and/or trigger in the development in 

DCD in oviduct explants. 

 

INTRODUCTION 

To maintain the integrity and differentiation status of cultured cells, the culture medium must 

provide all essential components for metabolism, growth and proliferation, ensuring that the 

microenvironment imitates as much as possible the in vivo status. These components include 

precursors and substrates for cell anabolism and energy metabolism, vitamins and trace 

elements to primarily fulfill catalytic functions and electrolytes to maintain among others 

osmolarity and pH (Bottenstein, et al. 1979). Fetal bovine serum (FBS) is almost universally 

added to semi-defined cell culture media such as DMEM/F12. In particular for in vitro culture 

of equine embryos, addition of serum to the culture medium is compulsory (Choi, et al. 2003, 

Choi, et al. 2004a, Hinrichs 2010, Smits, et al. 2011). It provides essential factors for somatic 

as well as embryonic cell growth and differentiation. Serum contains growth factors and 

hormones, binding and transport proteins, amino acids and trace elements, fatty acids and 

lipids, protease inhibitors, direct or indirect detoxifying agents and molecules such as albumin 

to maintain (colloid) osmotic pressure (Bottenstein, et al. 1979). As a drawback, serum is a 

rather ill-defined parameter (Bjare 1992) in cell culture which also hampers proteome 
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research since abundant proteins like albumin overshadow and hide less abundant proteins in 

HPLC/MS-MS output. In addition, compositional between-batch differences are likely to 

occur whereas the endotoxin level may also vary and influence culture results. It has also been 

reported that FBS alters the morphology and biochemistry of cultured cells (Gardner, et al. 

1994, Shamsuddin and Rodriguezmartinez 1994, Thompson, et al. 1995) and lowers embryo 

survival and offspring vitality (Thompson, et al. 1998). Therefore, serum free media have 

been developed during the last decades. It turned out that most cell lines benefit from 

DMEM/F12 supplemented with the serum replacers insulin, transferrin and selenium (ITS) 

(Bottenstein, et al. 1979, Gstraunthaler 2003). Insulin is vital for glucose transport into cells 

and might also initiate IGF activity. Transferrin is a cellular iron transporting protein. 

Selenium (added as sodium selenite) is a trace element which serves as a cofactor of 

selenium-dependent enzymes such as gluthatione peroxidase and reductase (Bottenstein, et al. 

1979, Gstraunthaler 2003).  

Since in our equine oviduct cell explant culture system (Nelis et al 2013; CHAPTER 3.1) dark 

cell degeneration, a caspase-independent way of cell death, was observed in vitro but not in 

vivo, we hypothesized that the supplemented FBS may be involved in the cause of dark cell 

degeneration. Therefore, oviduct explants were cultured in unsupplemented DMEM/F12, in 

DMEM/F12 with FBS or in DMEM/F12 with ITS. The prevalence of dark zones, the 

percentage of explants showing ciliary activity, membrane integrity and ultrastructure were 

compared between the culture conditions. 

 

MATERIALS AND METHODS 

Animals 

 

Oviducts (three replicates of 7 to 10 oviducts) were obtained at a slaughterhouse (Euromeat 

Group, Moeskroen, Belgium) from healthy warmblood mares aged 3–20 years and without 

any visible reproductive tract pathologies. Only ipsilateral oviducts of mares showing a recent 

corpus luteum or a corpus hemorrhagicum on the ovaries were used,  indicating that ovulation 

had occurred not later than 5 days earlier (Nelis, et al. 2015a, Pierson and Ginther 1985).   
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Preparation and morphological evaluation of oviduct explants 

 

Explants were prepared as extensively described earlier (Nelis 2014). The harvested cellular 

material was washed and cultured in DMEM/F12 (Invitrogen) (unsupplemented medium), or 

in DMEM/F12 supplemented with either 10% fetal bovine serum (FBS; Invitrogen) or with 5 

µg/ml insulin, 5 µg/ml transferrin and 5 ng/ml sodium selenite (ITS) (Figure 1). All media 

were supplemented with 50 mg/ml gentamycin and 2.5 mg/ml amphotericin-B (Fungizone; 

Invitrogen). Three replicates were performed. Per treatment group, each replicate contained 4 

plates of 15 droplets (50 µl) containing 20-30 explants (1 µl explants suspension) per droplet. 

Culture was conducted at 38.5°C in a humidified atmosphere with 5% CO2 in air. The time-

span from slaughter of mares to seeding of cells was 3 to 4 h. Only cultures with more than 

99% of membrane-intact cells, determined by Trypan blue staining (Sigma-Aldrich, Diegem, 

Belgium), 2 to 4 h after start of culture (= Day 0) were used. Frozen damaged explants were 

used as a membrane-damaged control. These explants were subjected to three subsequent 

freeze (-20°C) –thaw (38°C) cycles in PBS. The percentage of explants showing central dark-

zones and the percentage of explants showing ciliary activity were evaluated every 24 h in the 

whole number of explants. Explants were considered to show ciliary activity when bordered 

by vigorously beating cilia, clearly seen on the inverted microscope (400 x magnification). To 

lower interpretative bias, all explants were counted by two researchers and the mean value 

was used for statistical analysis.  
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Transmission electron microscopy 

 

At Days 0, 3 and 6 of culture, oviduct explants (Fig. 1) were fixed in 0.2 M sodium 

cacodylate-buffered formaldehyde and post-fixed with osmium tetroxide. After rinsing, cells 

were pelleted by centrifugation (for 5 min at 200g at room temperature) in 10% BSA 

supplemented with 1% glutaraldehyde. The pellet was then dehydrated and embedded in 

epoxy resin (LX-112; Ladd Industries, Williston, ND, USA). Sections were made with a 

Reichert Jung (Depew, NY, USA) Ultracut E ultra-microtome. 

 

Semi-thin sections (2 mm) were stained with toluidine blue to select the most appropriate 

regions for ultrathin sectioning. Next, ultra-thin sections (90 nm) were made and stained with 

Fig. 1. Experimental set-up : explants were cultured in DMEM/F12, DMEM/F12 with 

foetal bovine serum (FBS) or insulin (5µg/ml), transferrin (5µg/ml), selenium (5 ng /ml) 

(ITS). For six days, every 24 hours, the prevalence of explants showing central dark zones 

and ciliary activity were determined using an inverted microscope as well as membrane 

damage by Trypan blue staining. At day 0, 3 and 6, the ultrastructure was evaluated by 

TEM. 
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uranyl acetate and lead citrate solutions before examining under a Jeol EX II transmission 

electron microscope (Jeol Europe, Zaventem, Belgium) at 80 kV. 

 

RESULTS 

Prevalence of dark zones is influenced by FBS and ITS without qualitatively affecting 

ultrastructure 

During the first two days of culture, significantly less explants showed dark zones in the 

medium with FBS (36%, P < 0.0005), compared to ITS (68 %) or the unsupplemented 

medium (67 %). From day 4 on, explants in DMEM/F12 without FBS or ITS supplementation 

exhibited far less dark zones (81 %, P < 0.0005) compared to FBS (87 %) or ITS (92 %) 

supplemented medium (Fig. 2). 

                 

 

 

From days 3 on, as confirmed by transmission electron microscopy, explants in all groups 

showed central darkening with hallmarks of dark cell degeneration (DCD), as described 

previously. However, no qualitative differences in DCD development were observed between 

Fig. 2. The percentage of oviduct explants showing dark zones during a culture period of 6 

days in 3 different media. 
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the 3 groups during the culture period (Fig. 3). Cell polarity and differentiation were 

maintained during the 6 days of culture as evidenced by the presence of cilia and microvilli on 

the apical surface and of tight junctions on the lateral surfaces.  

      

 

 

 

 

 

 

Ciliary activity is supported by FBS and ITS 

During the culture period of 6 days, the number of explants showing ciliary activity, , was 

significantly the highest (97 %; P < 0.0005) in the medium with FBS followed by the medium 

with ITS (94 %; P < 0.0005) compared with unsupplemented DMEM/F12 (91 %) (Fig. 4). 

Whereas the percentage of explants with ciliary activity only dropped slowly during the 

Fig. 3. Transmission electron microscopy of oviduct explants. During the whole culture 

period, the explants were bordered by highly differentiated epithelial cells with apical cilia 

(MT) and microvilli (Mv), intact junctional complexes (arrows) and numerous 

mitochondria (Mit) and rough endoplasmic reticulum. Explants showing central dark zones 

contain cells undergoing dark-cell degeneration (arrowhead, d), hallmarked by their 

shrunken and very electron-dense appearance without recognisable organelles in the 

cytoplasm, their nuclei containing condensed chromatin and areas of vacuolisation in the 

cytoplasm. No differences were observed in explants cultured in different media. 

Magnification x 5000 

Mi 
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whole culture period in the FBS and ITS supplemented media, in the unsupplemented 

DMEM/F12, a steep decrease in ciliary activity was observed from day 4 on.  

 

 

 

 

Membrane integrity is not affected by FBS or ITS 

In all groups (Fig. 5), more than 98 % of the cells were membrane intact during the culture 

period of six days. No differences between the media were observed (P > 0.05). Zones with 

DCD were not showing more membrane damaged cells compared to regions without DCD. 

Frozen damaged negative controls consisted of 100 % membrane damaged cells whereas 

explants stained 2 to 20 hours after harvesting showed more than 99% of membrane intact 

cells and served as positive controls. 

Fig. 4. The percentage of oviduct explants showing vigorous ciliary activity during a culture 

period of 6 days in 3 different media. 
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Fig. 5. Trypan Blue staining of oviduct explants after 2 hours (a), 6 days (c) and 20 h (d) 

after isolation. The white cells are membrane intact while the blue cells are membrane-

damaged. The regions showing dark zones (c, d) do not contain membrane damaged 

cells. (b) Oviduct explants after several freeze-thaw cycles (-20 °C) served as control (b). 

Magnification =  x 200. 
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DISCUSSION 

Whereas the addition of FBS is beneficial to maintain ciliary activity in equine oviduct 

explants in vitro (Fig. 4), it seems also beneficial until at least two days of culture in 

preventing the development of dark cell degeneration (DCD) (Fig. 2, Fig. 3), exteriorized by 

the central dark zones. From day three on, it fails to do so at the level of DCD (Fig. 2). The 

addition of insulin, transferrin and selenium, compared with unsupplemented DMEM/F12 and 

DMEM/F12 with FBS, enhanced the development of dark zones but sustained superiorly 

ciliary activity compared with unsupplemented DMEM/F12 without affecting membrane 

integrity (Fig. 5). From these results, it may be suggested that components of ITS may play a 

role in the development of dark cell degeneration whereas components in FBS, which may be 

depleted after two days of culture, may protect against the phenomenon of DCD (Fig. 2). 

The positive effect of serum on ciliary activity (Figure 4) may be explained by the 

considerable amounts of steroids or other components in the supplemented serum. It has 

indeed been reported earlier that DMEM/F12 with 10 % of FBS contains around and about 

100 pg/ml progesterone and oestrogens and 90 pg/ml testosterone (CHAPTER 4) (Nelis, et al. 

2015a). Moreover, oviductal cilia are steroid responsive (CHAPTER 5.1) (Aguilar, et al. 

2012, Mahmood, et al. 1998). On its turn, ciliary activity was superior in the group 

supplemented with ITS compared to the unsupplemented group (DMEM/F12). Insulin has 

been reported to be relatively non-ciliotoxic as it does not change ciliary beat frequency or 

pattern (Jian and Po 1993). Therefore, it is assumed selenium sustains ciliary activity. Even 

though the toxic margin of selenium/selenite for ciliotoxicity is rather small (Lag, et al. 1984), 

it may contribute to the integrity of ciliary function by protecting the cells from oxidative 

damage. It is indeed a key molecule for selenium-dependent anti-oxidative enzymes such as 

glutathione peroxidase (Bhabak and Mugesh 2010). 

It has been reported that insulin and IGFs increase caspase independent cell death and also the 

proportion of TUNEL positive murine embryonal cells (Chi, et al. 2000). TUNEL is a 

staining method which detects fragmented DNA (Stadelmann and Lassmann 2000). However, 

it has been shown earlier (Nelis, et al. 2014) that the proportion of TUNEL positive cells after 

6 days culture in medium supplemented with FBS, which contains considerable levels of 

insulin (6-14 µU/ml) (Gstraunthaler 2003), was not increased. Although it should be born in 



Chapter 3.2 Of ITS, Serum and Oviduct Explants   

103 

 

mind that cell media are highly cell specific (Gstraunthaler 2003), given the current findings, 

it might be suggested that insulin is not the main cause of the observed dark cell degeneration.  

Transferrin is a 80 kDa protein, that can sequester free traces of iron to prevent highly toxic 

radical formation, and it  sustains cell division in certain cell lines (Guilbert and Iscove 1976, 

Messmer 1973). It has been reported to inhibit cell division and growth in vitro at more than 

100 µg/ml, which is 20-fold higher than supplied in our system (Bottenstein, et al. 1979). 

Thus, it may be assumed that transferrin is also not a catalysator of the observed dark cell 

degeneration in oviduct explants.  

In contrast to transferrin, the toxic margin of sodium selenite is reported to be much narrower. 

While selenium (from sodium selenite) enhances cell division at concentrations of lower than 

or equal to 30 nM selenium (which approaches the applied concentration of 5 ng/ml in the 

current experiment) (Bottenstein, et al. 1979, Wydooghe, et al. 2014), it is reported to be 

cytotoxic at higher levels as demonstrated by a dramatically decreased cell division rate 

(Bottenstein, et al. 1979). Moreover, selenite has been reported to induce caspase-independent 

cell death in several types of cells via the mitochondrial pathway by a combination of indirect 

and direct effects (Chung, et al. 2006, Hu, et al. 2006). For instance, it has been reported that 

selenite induces time- and dose-dependent oxidative stress resulting in suppressed DNA 

synthesis and DNA damage, which in turn activates the p53-dependent and the p38 pathway 

in cervical carcinoma cells without affecting caspase-3, 8 and 9 (Rudolf, et al. 2008). Even 

though bovine embryos seem to benefit from 5 ng/ml selenium in the culture medium 

(Wydooghe, et al. 2014), it may activate cell death pathways in oviductal cells in vitro which 

results in dark cell degeneration, exteriorized by the central dark zones. Since the proportion 

of explants showing dark zones is highly significantly lower in DMEM/F12 medium 

compared with the same medium supplemented with ITS or 10 % of FBS, it is concluded that, 

next to other factors present in the culture system, selenium/selenite may play a role in the 

development of DCD. Further research is needed to unravel the exact cause and/or trigger in 

the development of DCD in equine oviductal explants.     
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ABSTRACT 

Steroids play an important role in mammalian reproduction and early pregnancy. Whereas 

systemic changes in steroid concentrations have been well documented, it is not clear how 

these correlate with local steroid concentrations in the genital tract. We hypothesized that, in 

the horse, the pre-implantation embryo may be subjected to high local steroid concentrations 

for several days. Therefore, we measured progesterone, 17-hydroxyprogesterone, 17β-

oestradiol, testosterone and 17α-testosterone concentrations in equine oviductal tissue by 

means of ultra-high performance liquid chromatography coupled to tandem mass 

spectrometry and progesterone, 17β-oestradiol, oestrone and testosterone in oviduct fluid 

using radioimmunoassay, with reference to cycle stage and side of ovulation. Progesterone 

concentrations were high in oviductal tissue and fluid ipsilateral to the ovulation side during 

diestrus, whereas other steroid hormone concentrations were not influenced by the side of 

ovulation. These results suggest that the high ipsilateral progesterone concentration is induced 

by 1) the contribution from follicular fluid in the oviduct and the diffusion of follicular fluid 

steroids after ovulation; 2) a local transfer of steroids via blood or lymph, 3) local synthesis of 

progesterone in the oviduct, as evidenced by the expression of steroidogenic enzymes and, 4) 

the paracrine contribution from follicular cells. These data provide a basis to study the 

importance of endocrine and paracrine signalling during early embryonic development in the 

horse.  

 

INTRODUCTION 

Oestradiol and progesterone are ovarian steroids which are secreted during the follicular and 

the luteal phase of the mare’s oestrous cycle respectively and which exert both systemic and 

local effects. Systemic effects are very obvious and include changes in the mare’s behaviour 

and gross changes in her reproductive tract (Daels and Hughes 1993, Hayes, et al. 1985). 

During oestrus, plasma progesterone concentrations are < 2 ng/ml (Daels and Hughes 1993, 

Hayes, et al. 1985), while oestrogen concentrations are high (around 140 pg/ml; (Pattison, et 

al. 1974). Under the influence of oestrogen, the mare displays oestrous behaviour and the 

endometrial folds in the uterus become oedematous and can be visualized easily by transrectal 

ultrasound. During dioestrus, circulating progesterone concentrations are high which prepares 
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the uterus for possible pregnancy. The mare rejects the advances of the stallion and 

endometrial oedema disappears (Daels and Hughes 1993).  

Local effects of ovarian steroids on the genital tract are more subtle and can only be detected 

by histological and ultrastructural examinations. Furthermore, changes in local steroid 

concentrations affect gene expression (Chen, et al. 2013b, Desantis, et al. 2010, Nelis, et al. 

2013, Rottmayer, et al. 2006) and, accordingly, the morphology and secretory activity of 

oviductal cells. Oestradiol stimulates epithelial cell hypertrophy, secretion and ciliogenesis, 

while progesterone is associated with atrophy and deciliation of epithelial cells in the 

mammalian oviduct (Georgiou, et al. 2005, Hunter 2012b, Seytanoglu, et al. 2008). 

Progesterone has been reported as being a chemoattractant for mammalian spermatozoa 

(Eisenbach and Giojalas 2006, Guidobaldi, et al. 2008, Teves, et al. 2006). Also in humans, 

sperm migrates preferably to the ipsilateral oviduct (Wildt, et al. 1998). In cattle sheep and 

pigs, concentrations of progesterone, 17β-oestradiol, prostaglandin E2, prostaglandin F2α and 

endothelin, as measured by an immunoassay, have been shown to be higher in the ipsilateral 

than in the contralateral oviduct (Ballester, et al. 2014, Pope, et al. 1982, Staples, et al. 1982, 

Wijayagunawardane, et al. 1999). The highest oviductal activity was observed at oestrus in 

the ipsilateral oviduct (Bennett, et al. 1988, Ruckebusch and Bayard 1975). All these changes 

prepare for successful transport of gametes and fertilization (Suarez 2008, Suarez and Ho 

2003). In the horse, no information is available concerning local steroid concentrations in the 

oviduct and their fluctuations during the oestrous cycle.   

In the present study, we adapted an ultra-high performance liquid chromatography coupled to 

tandem mass spectrometry (U-HPLC-MS/MS) protocol, that was developed previously to 

detect steroids in bovine muscle tissue, to measure progesterone, 17-hydroxyprogesterone, 

17β-oestradiol, testosterone and 17α-testosterone concentrations in equine oviductal tissue, as 

well as in serum and follicular fluid. This technique of U-HPLC-MS/MS is a precise, and 

highly reproducible method for steroid quantification. It allows measurement of actual 

concentrations of steroids in the oviduct and, subsequently, to compare these with systemic 

concentrations of steroids in pre-and postovulatory serum. To evaluate local steroid 

concentrations in equine oviductal fluid, radioimmunoassay (RIA) was used based upon an 

earlier optimized and validated protocol (Franczak and Bogacki 2009, Szafranska, et al. 2002). 

Additionally, immunoreactive protein staining intensity of a set of catalytic enzymes involved 

in the steroidogenic pathway was determined in order to investigate the origin of the steroids 
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found. In addition, since progesterone receptors can potentially sequester large amounts of the 

steroid, their involvement was investigated by localizing and quantifying them in oviductal 

tissue. 

 

MATERIALS AND METHODS 

Steroid concentrations and production in the oviduct 

Sampling 

Oviductal tissue, follicular fluid, and serum. Oviducts and serum samples were 

recovered and frozen within 2h after slaughter from healthy mares with either a preovulatory 

follicle in their ovaries and distinct uterine oedema (preovulatory phase; n = 15), or a corpus 

hemorrhagicum or recent corpus luteum without uterine oedema (early postovulatory phase; n 

= 15). Follicular fluid was also collected from the preovulatory follicles. Determination of 

progesterone concentrations by UHPLC-MS/MS in a preliminary experiment revealed a 

positive predictive value of 94% between the presence of a corpus hemorrhagicum and a 

serum progesterone concentration of < 2 ng/ml. Ginther, et al. 2007 also measured serum 

progesterone concentrations of <  2 ng/ml during the early postovulatory period.  

Oviductal fluid. Ipsi- and contralateral oviducts were collected from slaughtered mares in 

the pre- (n = 18) and postovulatory (n = 18) stages of the oestrous cycle and ligated in the 

slaughterhouse before being transported to the laboratory on ice. Here, each oviduct was 

flushed twice with 1 ml PBS supplemented with 5% BSA. To concentrate the steroids, the 

samples were then evaporated using a Centrivap Cold Trap (Labconco, Kansas City, MO, 

USA). After reduction to dryness, the samples were pooled according to cycle stage and side 

of ovulation. This resulted in 4 pools of samples, each containing the dry matter of the 

oviductal fluid of 18 oviducts.  

 

U-HPLC-MS/MS 

Progesterone, 17-hydroxyprogesterone, 17β-oestradiol, testosterone, and 17α-testosterone 

concentrations were measured in individual samples of pre- and postovulatory oviduct tissue, 

pre-and postovulatory serum and in the follicular fluid of the preovulatory mares. 
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Reagents and chemicals 

Standards for progesterone, 17-hydroxyprogesterone, 17β-oestradiol, 17α-testosterone, and 

testosterone  were purchased from Sigma-Aldrich (Diegem, Belgium). The internal standards 

17β-oestradiol-d3, medroxyprogesteron acetate-d3, and 17β-testosterone-d2 were obtained 

from RIKILT (Wageningen, The Netherlands). Progesterone-d9 was provided by Toronto 

Research Chemicals (New York, USA). Solvents were of analytical grade when used for 

extraction and purification steps, and of LC–MS Optima grade when applied to UHPLC–

MS/MS. They were obtained from VWR International (Merck, Darmstadt, Germany) and 

Fisher Scientific UK (Loughborough, UK), respectively. Primary stock solutions were 

prepared in methanol at a concentration of 1000 ng/L and stored in dark glass bottles at -

20 °C. Ultrapure water was produced using an Arium 611 UV system (Sartorius Stedim 

Biotech, Aubagne, France). Oasis strong anion exchange MAX 6 cc 150 mg cartridges were 

obtained from Waters EDC (Etten-Leur, The Netherlands); Isolute Si (500 mg in 10 ml) and 

NH2 (100 mg in 1 ml) cartridges were purchased from Biotage (Uppsala, Sweden).  

Steroid extraction from serum and follicular fluid 

Serum and follicular fluid samples were thawed and centrifuged for 10 min at 4000 g. 

Aliquots of 0.5 ml for progesterone analysis and 5 ml for 17-hydroxyprogesterone, 17β-

oestradiol, testosterone, and 17α-testosterone analyses were pipetted into 15 ml polypropylene 

centrifuge tubes. Samples were then processed as described by McDonald et al. (McDonald, 

et al. 2010). Briefly, 0.5 or 5 ml phosphorus acid (4%) and 50 ng/ml internal standard was 

added to each sample. The mixture was vortexed for 1 min and mixed on a mechanical shaker 

for 10 min prior to solid phase extraction (SPE). Oasis strong anion exchange MAX 6 cc 150 

mg cartridges were conditioned with 6 ml ethanol and 6 ml water. The samples were decanted 

into the SPE cartridges, the centrifuge tubes were washed with a further 6 ml water and this 

too was decanted into the SPE. The cartridges were then washed with 6 ml of 5% ammonia 

and 3 ml of n-hexane and subsequently dried for 2 min under vacuum. Analytes were eluted 

with 2 times 2 ml ethyl acetate into new centrifuge tubes and dried under nitrogen at 40 °C. 

The analytes were then dissolved in 65 µl methanol plus 65 µl water and vortexed for 30 sec 

before being centrifuged for 10 minutes at 9000 g (Sorvall RC5PLUS centrifuge) before 

being stored at -20 °C until analysed. Together with the serum samples calibration series 

ranging from 0–25 ng/ml for progesterone (0, 0.1, 0.5, 1.0, 2.5, 10, 25 ng/ml) and 0–100 
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pg/ml (0, 5, 10, 25, 50, 75, 100 pg/ml) for 17β-oestradiol, testosterone and 17α-testosterone 

and 17-hydroxyprogesterone were created. 

The limits of detection and quantification in serum were respectively 0.4 and 1.3 ng/ml for 

progesterone, 63.3 pg/ml for 17β- oestradiol, 12 and 40  pg/ml for 17α-testosterone and 

testosterone and 10 and 33.3 pg/ml for 17-hydroxyprogesterone. The limits of detection and 

quantification in follicular fluid were 0.44 and 1.5 ng/ml for progesterone, 2.3 and 7.7 ng/ml 

for 17β-oestradiol, 5.4 and 1  ng/ml for 17α-testosterone , 7.3 and 24.3 ng/ml for testosterone 

and 2.76 and 9.2 ng/ml 17-hydroxyprogesterone. 

Steroid extraction and purification of steroids from oviducts 

Extraction and clean-up of the samples was based on a previously validated protocol 

(Vanhaecke, et al. 2011) using the following procedure. Aliquots of oviductal tissue (2.5 ± 0.1 

g wet weight of complete oviduct) were placed in 100 ml Sovirel glass flasks and mixed with 

50 µl of an internal standard (500 ng/ml) at a level corresponding to 2.5 µg/kg. The flasks 

were kept at room temperature for 15 min before 2 ml of sodium acetate buffer and 8 ml of 

ultrapure water were added to each. Next, the flasks were subjected to microwave (Zanker, 

The Netherlands) treatment for 72 sec at 100 Watts before the contents were transferred to 50 

ml polypropylene tubes and homogenized for 1 min using an Ultra-turrax instrument. 

Methanol (10 ml) was added to the tubes which were then vortexed for 1 min before being 

centrifuged at 9000 g at 4 °C for 10 min. Any tissue residues were then removed from the 

supernatant by filtration over a cotton plug. Addition of 5 ml n-hexane, followed by rigorous 

shaking for 2 min and centrifugation at 9000 g at 4 °C for 10 min allowed elimination of the 

more lipophilic matrix fraction by discarding the hexane fraction. The analytes were then 

extracted by adding 20 ml diethyl ether to the water–methanol mixture and vigorously 

shaking for 2 min. The samples were allowed to settle before the ether layer was transferred to 

a 15 ml polypropylene flask and evaporated to dryness at 60 °C under nitrogen. Next, the 

residue was reconstituted in 0.5 ml chloroform, vortexed for 1 min and diluted with 5 ml 

hexane just prior to SPE. The solution was applied onto Si cartridges (500 mg), which had 

been preconditioned twice with 2.5 ml of hexane, the tubes which had contained the extract 

were rinsed with 5 ml of hexane and this too was applied onto the Si cartridges. NH2 

cartridges (100 mg) were placed underneath the Si cartridges which were rinsed with 5 ml 

hexane and allowed to run dry. Finally, each cartridge was eluted with 5 ml 
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chloroform:acetone (4:1, v/v) and the eluates were reduced to dryness under nitrogen at 45 °C 

before being reconstituted with 125 µl of methanol:water (50:50, v/v). A 10 µl aliquot was 

then injected onto the UHPLC column. Together with the oviductal samples, a calibration 

series which ranged from 0–75 ng/g for progesterone (0, 0.5, 2.5, 5.0, 10, 25, 50 and 75 ng/ml) 

and 0–5 ng/ml (0, 0.01, 0.05, 0.1, 0.5, 1.0, 2.0 and 5.0 ng/g) for 17β-oestradiol, testosterone, 

17α-testosterone, and 17-hydroxyprogesterone were injected onto the UHPLC column.  

The limits of detection were 24 ng/g for progesterone, 3 ng/g for 17β-oestradiol, 0.9 ng/g for 

17α-testosterone and testosterone and 0.4 ng/g for 17-hydroxyprogesterone. The limits of 

quantification were  0 ng/g for progesterone, 10 ng/g for 17β-oestradiol, 3 ng/g for 

testosterone and 17α-testosterone and 1.3 ng/g for 17-hydroxyprogesterone. 

Instrumentation and steroid quantification 

The LC system consisted of a Thermo Fisher Scientific (San José, CA, USA) Accela UHPLC 

pumping system, coupled with an Accela Autosampler and Degasser. Chromatographic 

separation was achieved by reversed phase chromatography and gradient elution. Separation 

of the steroids was carried out on a Hypersil Gold C18 column (1.9 µm, 100 mm x 2.1 mm, 

Thermo Fisher Scientific), kept at 30 °C. The mobile phase consisted of water and methanol 

and was pumped at a flow rate of 0.3 ml min
-1

. Optimized separation of all analytes was 

obtained using a linear gradient starting with a mixture of 50% water and methanol. After 0.5 

min the amount of methanol was increased to 65% and kept at this concentration for 2.75 min. 

Next, the amount of methanol was increased to 100% in 0.5 min and kept at this concentration 

for 2 min. Finally, the column was allowed to re-equilibrate for 2.25 min at initial conditions 

before each run. All the analytes could be separated in a total run time of 8 min.  

MS/MS analysis was performed on a triple quadrupole mass analyzer (TSQ Vantage, Thermo 

Fisher Scientific, San José, CA, USA), fitted with an atmospheric pressure chemical 

ionization source (APCI) operating in positive ion mode. The following working conditions 

were applied: spray voltage at 4 (+) kV; vaporizer and capillary temperature at 320 and 

300 °C, respectively; sheath and auxiliary gas at 35 and 10 arbitrary units (a.u.), respectively; 

cycle time of 0.8 s. Argon pressure in the collision cell (Q2) was set at 1.5 mTorr and the 

mass resolution at the first (Q1) and third (Q3) quadrupole was set at 0.7 Da FWHM. 

Precursor ion, S-lens RF amplitude, and collision energy (CE) in Q2 were optimized 

individually per compound or transition, as was reported previously. Instrument control and 
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data processing were carried out by Xcalibur 2.1 software (Thermo Fisher Scientific, San José, 

CA, USA). 

Prior to analysis of the samples, a standard mixture of the targeted compounds was injected to 

check the operational conditions of the devices. To every sample, a mixture of procedure 

ISTD was added at a concentration of 2.5 g kg
-1

 prior to the extraction. Identification of the 

steroids was based on their retention time relative to the retention time of the ISTD of choice 

and on the ion ratios of the product ions. After identification, the analyte concentration was 

quantified by fitting its area ratio in a seven (serum and follicular fluid) or eight (tissue)-point 

calibration curve, established by blank meat samples fortified with the ISTDs at 2.5 g kg
-1

 

and the steroids in the range of 0–25 ng/ml for progesterone and 0–100 pg/ml for 17β-

oestradiol, testosterone, 17α-testosterone, and 17-hydroxyprogesterone. Area ratios were 

determined by integration of the area of an analyte under the specific extracted 

chromatograms with reference to the integrated area of the ISTD. Regression coefficients of 

the calibration lines were all > 0.99. Limits of detection were calculated as 3*SD/slope. 

Limits of quantification were calculated as 10*SD/slope.  

Statistical analysis 

For oviductal tissue, follicular fluid and serum, independent samples t-test, paired-samples-t-

test, Mann-Whitney-U-test, or Wilcoxon-signed rank test were applied, based upon data 

distribution. Correlations between oviductal tissue, serum and follicular fluid concentrations 

were calculated by means of Kendall’s-τ correlation coefficients. Linear and 

curvilinear/polynomial regression was applied to identify linear and non-linear associations. 

Differences were considered significant at P < 0.05. Statistical analysis and graph plotting 

was performed with SPSS 21. Power analysis and sample size calculation (α = 0.05; power = 

0.85–0.99) were performed using G*Power 3.1.3 (Faul, et al. 2007).  

 

Radioimmunoassay 

Concentrations of 17β-oestradiol, progesterone, oestrone, and testosterone in preovulatory and 

postovulatory oviductal fluid were determined using the radioimmunoassay (RIA) method 

described by Ciereszko (Ciereszko 1999) and validated before (Franczak and Bogacki 2009). 
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The cross reactivities of the antisera against steroids have been previously reported 

(Szafranska, et al. 2002).  

The efficiency of extraction and the coefficient of correlation between the added and 

recovered amounts of different hormone concentrations for 17β-oestradiol, progesterone, 

oestrone, and testosterone were 85.10% and 0.988, 85.60% and 0.989, 86.40% and 0.978, and 

85.10% and 0.992, respectively. The limits of sensitivity of the assays were 0.5 pg/ml for 17β-

oestradiol and testosterone, and 1 pg/ml for progesterone and oestrone. For each hormone all 

the samples were included in the same assay. The intra-assay coefficient of variation for 17β-

oestradiol was 1.17%, for progesterone 1.08%, for oestrone 0.45%, and for testosterone 

0.69%. 

 

Localization of steroidogenic enzymes and progesterone receptors 

Epifluorescence and confocal microscopy to detect aromatase, StAR and 

cytochrome P450scc protein  

Oviductal samples were snap-frozen and stored in liquid nitrogen. Expression of aromatase, 

steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme 

(cytochrome P450scc) protein in oviductal cross-sections was determined using indirect 

immunofluorescent staining as described earlier (Franczak, et al. 2013). In short, oviductal 

samples were sectioned at 7-μm. Approximately 30 min before staining the slides were 

brought up to room temperature, washed in PBS, dried, and then incubated with goat serum 

for 1 h to prevent nonspecific binding. After further rinsing with PBS and drying, the sections 

were incubated overnight (20 h) at 4 °C with the primary antibodies, each at a concentration 

of 1 μg/ml (rabbit anti-human aromatase, cytochrome P450scc and StAR polyclonal 

antibodies; Sigma Aldrich, Poznarí, Poland). The specificity of antibodies was evaluated 

initially in silico using Protein BLAST. The similarities of detectable immunogens with 

equine immunogens for anti-aromatase, anti-cytochrome P450scc and anti-StAR antibodies 

were 75%, 80% and 95%, respectively. For each staining a negative control, with dilution 

buffer used instead of primary antibody, was performed. Positive control tissues were 

follicular wall tissue and corpus luteum. Negative control tissue was connective tissue of 

oviductal tunica serosa. Next day, after washing with PBS and drying, the sections were 

incubated for 1 h at room temperature with the second antibody (goat anti-rabbit IgG 
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conjugated with biotin; Chemicon, Warszawa, Poland) at a concentration of 1.25 μg/ml. The 

sections were then rinsed thoroughly in PBS, dried, and incubated with Cy3-conjugated 

streptavidin (Jackson Immunoresearch, West Grove, PA, USA) to visualize the antigen–

antibody complex. The sections were then mounted using Fluoroshield with 40,6-diamidino-

2-phenylindole (Sigma Aldrich) to counterstain DNA and examined under an epifluorescent 

microscope (Olympus BX51). They were photographed at 500× magnification using Cell ˇF 

software version 3.4 (Olympus, Warszawa, Poland). 

The intensity of fluorescent emission was evaluated after the conversion of the photographs to 

grayscale by measuring the average grey intensity with Cell ˇF software (Franczak, et al. 

2006). The grey intensity was measured in 12 regions of interests (epithelium) for each of 4 

biological replicates. 

 

Immunohistochemistry to detect progesterone receptors and 3β-hydroxysteroid 

dehydrogenase/∆5→4-isomerase  

Staining for progesterone receptors (PR) and 3β-hydroxysteroid dehydrogenase/∆5→ 4-

isomerase (3-beta-HSD) was performed as described previously (De Bosschere, et al. 2002, 

Van den Broeck, et al. 2002). Briefly, for PR, the oviductal tissue samples were fixed for 24 h 

in 10% phosphate-buffered formaldehyde (pH 6.7) at room temperature and dehydrated with 

increasing concentrations of ethanol. Subsequently, the tissue samples were embedded in 

paraffin wax and sectioned at 5 μm (Microm HM360, Prosan, Merelbeke, Belgium). The 

sections were mounted on 3-aminopropyl-triethoxysilane-coated slides (APES, Sigma, St. 

Louis, MO, USA) and dried overnight at 37 °C. Next, they were dewaxed with xylene and 

dehydrated using decreasing concentrations of ethanol before being submitted to heat-

mediated antigen retrieval in 1:10 citrate-based solution (pH 6; Antigen Retrieval Citra 

solution, Biogenex, Fremont, USA). After quenching of endogenous peroxidases with 3% 

H2O2, blocking was performed using 20% bovine serum. Next, the sections were incubated in 

a wet box for 1 h at room temperature while covered with 75 µl of a 1/100 dilution of the 

primary mouse anti-human PR antibody (MA5-12642, clone hPRa2, Thermo scientific inc., 

Perbio Science BVBA, Aalst, Belgium) in 2% BSA (Sigma-Aldrich, Diegem, Belgium); this 

antibody was reported by the manufacturer to cross-react with the equine progesterone 

receptor. Rabbit anti-mouse gamma globulin conjugated to biotin (DAKO, Prosan, Merelbeke, 
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Belgium) was used at a dilution of 1/500 as the secondary antibody and peroxidase-

conjugated streptavidine (1/3000) was employed as the enzyme label. A 6 min incubation 

with 3,3’-diaminobenzidine hydrochloride (DAB) chromogen substrate (Liquid DAB+, 

DAKO, Prosan, Merelbeke, Belgium) resulted in a brown staining of the nucleus. The 

sections were counterstained with hematoxylin and subsequently dehydrated with increasing 

concentrations of ethanol and, finally, with xylene. Positive and negative controls were 

included in every staining procedure (Burry 2011). Positive controls were equine 

endometrium known to be positive for PR (Silva, et al. 2014, Wilsher, et al. 2011), while 

similar tissue sections were incubated with dilution buffer instead of the primary antibody, 

then biotinylated secondary antibody, or the peroxidase-conjugated streptavidine served as 

negative controls. Equine connective tissue of the oviductal tunica serosa served as negative 

control tissue. Other sections were also incubated with DAB alone to exclude the possibility 

of residual endogenous peroxidase activity. For each oviductal region, at least four technical 

replicates per each of five biological replicates were included. 

3-Beta-HSD staining was performed similarly. The cross reactivity of rabbit anti-human 3-

beta-HSD (Ab 154385, Abcam, Cambridge, UK) with equine tissue was initially in silico 

confirmed by subjecting the equine HSD3B sequence (gi|126352310) and the human 

HSD3B2 sequence (gi|112770) to NCBI protein BLAST analysis (last accessed: July 2013; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PRO

GRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=bla

st2seq&QUERY=&SUBJECTS=). This revealed a cover query of 99% and 75% identities. 

Goat anti-rabbit gamma globulin conjugated to biotin (DAKO, Prosan, Merelbeke, Belgium) 

was used as the secondary antibody. The staining protocol, including negative controls, 

antibody and reagent concentrations, was identical to the PR staining protocol as mentioned 

above. In a preliminary trial, primary antibody concentrations of 1/50, 1/100 and 1/500 were 

evaluated. To confirm reactivity and specificity of the PR antibody, equine corpus luteum was 

used as the positive control tissue and serosal connective tissue of the oviduct was included as 

a negative control.  

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&QUERY=&SUBJECTS
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&QUERY=&SUBJECTS
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&QUERY=&SUBJECTS
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Quantification and statistical analysis 

To quantify progesterone receptor (PR-) positive cells, the ratio of epithelial PR-negative cells 

(purple)/PR-positive nuclei (brown) was determined in each sample by means of Image J 

software (Maryland, USA; (Schneider, et al. 2012). Per oviductal region, all the cells were 

evaluated at a magnification of 400x in 3 different fields (n = 961–1735) of the various 

sections for each biological replicate (Bologna-Molina, et al. 2011). To determine significant 

differences in the percentages of PR- positive cells, binary logistic regression was 

implemented with the Nagelkerke pseudo R
2
 and χ

2
 fit tests. To quantify 3-beta-HSD 

immunoreactive protein, chromogen intensity was analysed via a reciprocal intensity 

approach (Nguyen, et al. 2013). At least 12 similar regions of interest were analysed for each 

tissue slice of the four technical replicates per each of five biological replicates within one 

group.  

To compare staining intensities, one-way ANOVA with post-hoc LSD test was applied. To 

elucidate relationships between staining intensities and steroid concentrations, Spearman’s 

rho or Pearson correlation coefficients were calculated and linear and polynomial/curvilinear 

regression model fit was applied. Statistical analysis was performed with SPSS 21 and graph 

plotting by means of Excel 2010 and sample size calculation (α = 0.05; power = 0. 5–0.99) 

were performed using G*Power 3.1.3 (Faul, et al. 2007). 

 

RESULTS 

High progesterone concentrations in the ipsilateral postovulatory oviductal tissue measured 

using U-HPLC-MS/MS 

Our main finding was that progesterone values in the postovulatory stage were much higher 

(P < 0.0005) in the ipsilateral (median value 700 ng/g) compared with the contralateral 

oviduct (median value 18.7 ng/g) (Table 1); this overt difference was not apparent in the 

preovulatory oviducts. Progesterone concentrations were lower in the preovulatory than in the 

postovulatory stage, both in the ipsilateral and contralateral oviducts (P < 0.0005). 17β-

oestradiol concentrations were higher in the preovulatory than the postovulatory stage both in 

the ipsilateral and contralateral oviducts (P < 0.0005) and similarly 17α-testosterone 

concentrations were slightly higher (P = 0.011) in the preovulatory stage than the 
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postovulatory stage in the ipsi- and contralateral oviducts. Concentrations of 17-

hydroxyprogestrone or testosterone were not significantly influenced by the cycle stage or the 

side relative to ovulation -). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stage Side Median 

value 

(ng/g) 

Interquar-

tile range 

(ng/g) 

P – value  

(pre vs post) 

P – value  

(ipsi vs 

contra) 

Progesterone Pre Ipsi 18.7 75.0 < 0.0005*** NS 

  Contra 20.6 28.7 < 0.0005*** 
 

 Post Ipsi 700 825  < 

0.0005*** 
  Contr 69.0 127  

 

17β-Oestradiol Pre Ipsl 63.3 115 < 0.0005*** 
NS 

  Contra 80.8 123 < 0.0005*** 
 

 Post Ipsi 2.40 9.40  
NS 

  Contra 4.60 26.0  
 

17-

Hydroxyprogesterone 

Pre Ipsi 25.0 123 NS 
NS 

  

Post 

Contra 26.0 169 NS 
 

 Ipsi 35.5 35.2  
NS 

  Contra 14.0 11.0  
 

17α-Testosterone Pre Ipsi 7.0 13.3 0.011* 
NS 

  Contra 5.60 29.0 0.011* 
 

 Post Ipsi 4.20 3.50  
NS 

  Contra 2.30 3.00  
 

Testosterone Pre Ipsi    1.40 4.50 NS 
NS 

  Contra     0.900 9.00          NS 
 

 Post Ipsi    1.70 2.90  
NS 

 Contra    1.20 2.10  

 

Table 1. Median values and interquartile range of local concentrations of progesterone, 17β-

oestradiol, 17-hydroxyprogesterone, 17α-testosterone and testosterone measured by U-HPLC-

MS/MS in equine oviducts with reference to side of ovulation and cycle stage. P-values are 

provided for the comparison between preovulatory (pre) and postovulatory (post) and between 

ipsilateral (ipsi) and contralateral (contra) oviducts. *** P < 0.0005, * 0.005 < P < 0.05; NS = 

not significant. 
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Correlation coefficients (Kendall’s τ) between ipsi- and contralateral oviducts are represented 

in Table 2. Ipsi- and contralateral steroid concentrations are strongly correlated, indicating a 

systemic influence. However, this is much less so for progesterone, suggesting an additional 

local control mechanism. 

 

 

 

 

Steroid concentrations in oviductal fluid differ with reference to side of ovulation and cycle 

stage as measured with RIA 

Preliminary, the average volume of fluid in equine oviducts other than those included for 

steroid measurement was measured, and based on an earlier report on equine oviductal fluid 

volume (Campbell, et al. 1979), the volume was set to be 50 µl in the postovulatory stage and 

100 µl at the preovulatory stage. Based on these findings and the absolute quantities of 

steroids that had been measured in the oviduct samples, progesterone, 17β-oestradiol, 

oestrone and testosterone concentrations were calculated in oviductal fluid (Table 3). At the 

postovulatory stage, again a high progesterone concentration (103.087 ng/ml) was detected in 

the ipsilateral oviduct fluid; it was 6.5 times higher than that of the contralateral side (15.760 

ng/ml) and 31.2 times higher than in the preovulatory stage (3.300 ng/ml). The preovulatory 

contralateral oestrone concentration (9.868 ng/ml) was 54.5 times higher than the 

postovulatory concentration (0.181 ng/ml), but this difference was not observed on the 

ipsilateral side (respectively 0.131 and 0.544 ng/ml). No marked differences in the order of 

Preovulatory 

 

Postovulatory 

 
Progesterone  0.228 0.535* 

17β-oestradiol  0.600*** 0.657*** 

17-Hydroxyprogesterone  0.390* 0.905*** 

17α-Testosterone  0.562*** 0.524*** 

Testosterone  0.517** 0.941*** 

Table 2. Correlation coefficients (Kendall’s τ or Pearson’s) with reference to the cycle stage 

between ipsilateral and contralateral oviductal tissue progesterone, 17β-oestradiol, 17-

hydroxyprogesterone, 17α-testosterone and testosterone concentrations. * 0.01 < P < 0.05; 

** 0.005 < P < 0.05; *** P <  0.005. 
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magnitude of 17β-oestradiol and testosterone levels were detected when comparing ipsilateral 

and contralateral or preovulatory and postovulatory oviductal fluid. 

 

 

 

 Preovulatory  Postovulatory 

  Ipsilateral Contralateral  Ipsilateral Contralateral 

Progesterone  3.30 11.6  103 15.8 

17β-Oestradiol  0.168 0.147  0.512 0.385 

Oestrone  0.131 9.87  0.544 0.181 

Testosterone  0.547 0.376  1.09 0.874 

 

High concentrations of steroids in follicular fluid versus serum, measured using U-HPLC-

MS/MS 

Mean progesterone, 17β-oestradiol, 17-hydroxyprogesterone, testosterone and 17α-

testosterone concentrations (ng/ml) were compared between follicular fluid and preovulatory 

and postovulatory serum (Table 4). The concentrations of all these steroids were significantly 

higher in follicular fluid compared to preovulatory (P < 0.005) and postovulatory (0.0005 < P 

< 0.05) serum. 

 

Immunoreactive protein expression of steroidogenic enzymes aromatase, cytochrome P450scc, 

StAR and 3-beta-HSD  in the oviduct is dependent on cycle stage and side of ovulation 

The epithelial cells lining both the ampulla and the isthmus were found to be positive for 

StAR, cytochrome P450scc, aromatase and 3-beta-HSD, except for the postovulatory 

contralateral ampulla and the ipsilateral ampulla which were negative for StAR and 

cytochrome P450scc respectively (Fig. 1; Fig. 2. Fig. 3). 

 

Table 3. Progesterone, 17β-oestradiol, oestrone and testosterone concentrations (ng/ml) in 

equine oviductal fluid, calculated from pooled oviductal flushes and assuming that the oviduct 

contains on average 100 µl of oviductal fluid in the preovulatory and 50 µl in the 

postovulatory cycle stage (Own unpublished observations; Campbell et al. 1979). 
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No specific cell type expressing steroidogenic immunoreactive protein could be identified as 

the signal was present in all types of oviductal cells. No specific pattern which may explain 

 Serum 

preovulatory 

Serum 

postovulatory 

Follicular 

fluid 

Mean SEM Mean SEM Mean SEM 

Progesterone 0.768 0.355 2.57 0.244 14.3 4.43 

17β-Oestradiol 0.882 0.382 < 0.010 < 0.010 59.2 13.9 

17-Hydroxyprogesterone 0.726 0.363 0.442 0.089 5.82 1.3 

17α-Testosterone 0.164 0.046 0.001 2.04 .10
-4

 2.77 0.393 

Testosterone 0.001 1.00 . 10
-

6
 

0.001 5.67 . 10
-6

 1.76 0.437 

Table 4. Mean concentrations of progesterone, 17β-oestradiol, 17-hydroxyprogesterone, 17α-

testosterone and testosterone (ng/ml) measured by U-HPLC-MS/MS in equine serum and 

follicular fluid from the same mare and in postovulatory serum. SEM = standard error of the 

mean. 

 

Figure 1. Epifluorescent pictures for aromatase in the equine oviduct with reference to cycle 

stage, location (ampulla [a–d] or isthmus [e–h]) and side of ovulation. ISPI = ipsilateral to 

ovulation (a, e, c, g), CONTRA = contralateral to ovulation (b, f, d, h), PRE = preovulatory 

(a, b, e, f), POST = postovulatory (c, d, g, h). Blue = DAPI nuclear counterstaining; red = 

aromatase positive tissue. All oviductal fragments were found to be aromatase positive 

compared to the negative control slide without primary antibody (upper right corner). Bar = 

20 μm. 

 

 



Chapter 4 Results 

124 

 

the ipsilateral postovulatory oviductal high progesterone concentrations could be detected 

(Fig. 2). Both preovulatory and postovulatory oviductal epithelium stained positively for 3-

beta-HSD compared to the negative controls (Fig. 3). The chromogen intensity was the 

strongest in the contralateral isthmus epithelium (Fig. 2 d). In each part, chromogen intensity 

was significantly higher in the isthmus compared to the ampulla (P < 0.0001; Fig. 2d). 

Smooth muscle cells lining the small oviductal veins and arteries, the lamina (propria) 

muscularis and in the surrounding connective tissue were also strongly positively stained (Fig. 

3). Compared to the negative controls, the cytoplasm and the nuclei of cumulus cells both 

stained strongly (P < 0.0001) for 3-beta-HSD (Suppl. 1 f). Positive tissue control samples 

(follicular wall or corpus luteum) were markedly positive (Suppl. 1). 

 

            

 

 

Fig. 2. Average gray intensity (a-c) and chromogen intensity (d) in arbitrary units of slides 

of equine oviductal tissue stained by immunofluorescensce (a-c) and 

immunohistochemistry (d) to detect immunoreactive protein of aromatase, cholesterol side-

chain cleavage enzyme (cytochrome P450scc), steroidogenic acute regulatory protein 

(StAR) and 3β-hydroxysteroid dehydrogenase/Δ5→4-isomerase (3- beta-HSD). NC = 

Negative antibody controls. Positive controls were follicular wall (F) and corpus luteum 

(CL). Negative tissue control is stroma of equine oviductal tunica serosa (S). One-way 

ANOVA. All intensities (ampulla versus isthmus and pre- versus postovulatory) were 

significantly different, except the contralateral ampulla for StAR and the ipsilateral ampulla 

for cytochrome P450scc in the postovulatory stage. 

 

 



Chapter 4 Results 

125 

 

 

 

 

 

 

 

Correlations  

In the preovulatory stage of the cycle, no correlations were observed between serum and 

follicular fluid. However, follicular fluid progesterone, 17-hydroxyprogesterone and 17α-

testosterone concentrations were positively correlated with postovulatory serum 

concentrations (respectively P = 0.008, P = 0.026, P = 0.026 and r = 0.846, r = 0.6, r = 0.643; 

Table 5). Follicular fluid progesterone concentrations are positively associated with 

preovulatory oviductal tissue concentrations (R
2
 = 0.453, F(1,13) = 9.10, P = 0.015) whereas 

no association with postovulatory concentrations could be detected suggesting a local transfer 

and a minimal shedding of follicular fluid in the oviduct after ovulation. Follicular fluid 17β-

oestradiol/progesterone ratio is significantly correlated to preovulatory ipsilateral cytochrome 

P450scc staining intensity (r = 0.770, P = 0.003) but not to contralateral or postovulatory 

intensities (P > 0.05). Similarly, follicular fluid progesterone is negatively correlated to 

Fig. 3. 3β-hydroxysteroid dehydrogenase/Δ5 → 4-isomerase (3-beta-HSD) 

immunohistochemical staining (brown) with hematoxylin counterstaining (purple) of 

oviductal tissue, related to cycle stage, location (ampulla [a–d] or isthmus [e–h]) and side 

of ovulation. IPSI = ipsilateral to ovulation (a, c, e, g), CONTRA = contralateral to ovulation 

(b, d, f, h), PRE = preovulatory (a, b, e, f), POST = postovulatory (c, d, g, h). 3-beta-HSD is 

highly abundant in the cytoplasm of epithelial cells and smooth muscle cells of the lamina 

muscularis propria (red arrow head), the lamina muscularis (red arrows) and also in the wall 

of arteries and veins in the oviductal wall (black arrow heads) and surrounding connective 

tissue (black arrow). A negative control without primary antibody is included in the upper 

right corner of each photograph. Bar = 50 μm. 
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preovulatory ipsilateral (r = 0.650, P = 0.016) but not to contralateral or postovulatory 3-beta-

HSD expression (P > 0.05). 

          

 

 

 

Suppl. 1. Epifluorescent (a-c) and immunohistochemically (d-f) positive tissue control 

pictures and negative control slides without primary antibody (right upper corners) in the 

equine oviduct for aromatase (a), StAR (b), cytochrome P450scc (c), 3-beta-HSD (d, f) and 

PR (e). Positive control tissue was equine follicular wall (a), corpus luteum (b-d) and 

endometrium (e). 3-Beta-HSD staining (brown) with hematoxylin counterstaining (purple) 

of equine cumulus cells (f). Both the cytoplasm and the nuclei of cumulus cells stain 

strongly. Bar a-c = 20 μm, bar d-f = 100 μm. 
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Table 5. Correlation coefficients (Kendall’s τ or Pearson’s) between 

preovulatory/postovulatory serum and follicular fluid progesterone, 17β-estradiol, 17-

hydroxyprogesterone, 17α-testosterone and testosterone concentrations. * 0.01  < P < 0.05; ** 

0.005 < P < 0.01. 

 

The percentage of progesterone receptor positive nuclei is decreased in the epithelium of the 

preovulatory contralateral ampulla and increased in the postovulatory contralateral isthmus 

Ratios of PR positive to PR negative cells (Fig. 4 and Fig. 5) were higher in the epithelium of 

the ipsilateral preovulatory ampulla (66 %) than in the epithelium of the contralateral 

preovulatory ampulla (44.8%; P < 0.0001; odds ratio = 2.38), whereas in the postovulatory 

oviduct, the contralateral epithelium of the isthmus contained more progesterone positive 

(93.5%) nuclei than the ipsilateral isthmus epithelium (66.6%; P < 0.0001; odds ratio = 7.22). 

Overall, significantly more PR positive nuclei were detected in the postovulatory contralateral 

oviduct compared with the ipsilateral side (P < 0.0001). Also smooth muscle cells in the 

lamina propria muscularis (Fig. 4e, red arrow) and the lamina muscularis and smooth muscle 

cells in the surrounding connective tissue of the tunica serosa all stained positively. Smooth 

muscle cell nuclei lining the small oviductal veins and arteries were also positive.  

 Preovulatory   Postovulatory   

Progesterone 0.139  0.846** 

17β-Estradiol 0.428  -0.445 

17-Hydroxyprogesterone 0.555  0.600* 

17α-Testosterone -0.530  0.643* 

Testosterone -0.217  0.333 
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Fig. 4. Progesterone receptors in equine oviductal tissue stained with immunohistochemistry 

(brown) and counterstained with hematoxylin (purple) in oviductal tissue, related to cycle 

stage, location (ampulla [a–d] or isthmus [e–h] and side of ovulation. IPSI = ipsilateral to 

ovulation (a, c, e, g), CONTRA = contralateral to ovulation (b, d, f, h), PRE = preovulatory 

(a, b, e, f), POST = postovulatory (c, d, g, h). Progesterone receptors (brown) were present 

in epithelial nuclei as well as in the smooth muscle cell nuclei of the lamina muscularis 

propria (red arrow) and the lamina muscularis. A negative control without primary antibody 

is included in the upper right corner of each photograph. Bar = 50 μm. 
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DISCUSSION 

Using U-HPLC-MS/MS in this study, we determined for the first time local concentrations of 

17β-oestradiol, progesterone, 17-hydroxyprogesterone, testosterone and 17α-testosterone in 

the ipsi- and contralateral oviduct of the mare, at two biologically different stages of the 

oestrous cycle. Furthermore, using RIA, 17β-oestradiol, progesterone, testosterone and 

oestrone concentrations were quantified in oviductal fluid. We found that oviductal steroid 

concentrations, progesterone receptor expression, staining intensity of steroidogenic proteins 

and tissue steroidogenic activity are all dependent on both the cycle stage of the mare and the 

side of ovulation.  

Fig. 5. Percentage of progesterone receptor positive and negative epithelial nuclei on 

immunohistochemical slides in the preovulatory and postovulatory cycle stage. The percentage 

of progesterone receptor positive nuclei was highly significantly lower in the contralateral 

ampulla compared to the isthmus and the ipsilateral ampulla and isthmus in the preovulatory 

cycle stage. In the postovulatory cycle stage, the percentage of progesterone receptor positive 

nuclei in the contralateral isthmus was highly elevated. Binary logistic regression. *** = P < 

0.0001 
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The most significant finding was that ipsilateral postovulatory oviductal tissue and oviductal 

fluid progesterone concentrations are dramatically higher than those on the contralateral side. 

In oviductal tissue, this phenomenon has only been described once in the cow 

(Wijayagunawardane, et al. 1996), a species in which a countercurrent transfer mechanism 

between the uterine vein and ovarian artery is present (Kotwica, et al. 1982). In the cow, a 

substantial number of genes which are involved in important reproductive biological 

processes have been shown to be differentially expressed in the postovulatory ipsilateral 

oviduct, when compared to the contralateral oviduct, (Bauersachs, et al. 2003a). These genes 

are hypothesized to play a role in providing the optimal conditions for the early reproductive 

processes and to pave the way for the early embryo. These unilateral effects may result from 

local progesterone-induced influences of the ipsilateral ovary or the cumulus-oocyte complex 

and/or from local steroidogenic processes (Bauersachs, et al. 2003a) Thus, next to the cycle 

stage-specific endocrine changes, local effects of steroids, in particular progesterone, may 

play a role as well in the oviduct (Reischl, et al. 1999). Also in humans, the biological 

relevance of different local progesterone concentrations has been illustrated by the fact that 

sperm moves preferably to the ipsilateral oviduct (Wildt, et al. 1998), confirming the 

chemotactic properties of progesterone (Eisenbach and Giojalas 2006). 

Now, using the new and highly sensitive U-HPLC-MS/MS assay method we have confirmed 

the same marked difference between ipsilateral and contralateral oviduct steroid levels in the 

horse, in which no countercurrent exchange mechanism exists (Ginther, et al. 1972). Although 

there may be some transport of progesterone via the local circulation towards the oviduct, we 

nonetheless hypothesize that the high local concentration of progesterone found in the oviduct 

may be caused by 5 different mechanisms (Hunter 2012b, Wijayagunawardane, et al. 1996); 1) 

a peritoneal route, involving progesterone uptake from follicular fluid shed during ovulation, 

2) the presence of a local transfer system from the ovary to the oviduct via blood or lymph; 3) 

the expression of high affinity receptors for progesterone in the oviduct; 4) local synthesis of 

progesterone in the oviduct; and 5) paracrine contribution of progesterone by follicular cells 

shed into the oviduct at ovulation. 

Follicular fluid shed into the oviduct or the peritoneal cavity  

A preovulatory follicle has a mean diameter of about 45 mm, which is equivalent to a volume 

of 47.7 ml. In line with the observations of Watson et al. (Watson, et al. 2002), the average 



Chapter 4 Discussion 

131 

 

progesterone concentration in fluid from follicles close to ovulation was 14.32 ± 4.40 ng/ml 

(Table 4), which means that such a follicle contains about 683.06 ± 207.70 ng of progesterone 

in total. Likewise, total concentrations for other follicular steroids are about 2825.4 ± 666.1 

ng for 17β-oestradiol, 277 ± 66.1 ng for 17-hydroxyprogesterone, 132.1 ± 1 .7 ng for 17α-

testosterone and 83.8 ± 20.8 ng for testosterone. These follicular steroids, in particular 

progesterone, may reach the ipsilateral oviduct in two putative ways that may explain the 

higher oviductal progesterone concentrations. A first possibility is the abovarian direction in 

which the cilia beat within the infundibulum (Yaniz, et al. 2002). A second possible route is 

by diffusion from the peritoneal fluid through pores within the visceral peritoneum that cover 

the oviduct (Abuhijleh, et al. 1995, Ginther, et al. 2008, Leak and Rahil 1978). The latter 

route is much more likely than the former since in the mare, the majority of the large amount 

of follicular fluid shed at ovulation passes from the fimbriae into the peritoneal cavity 

(Ginther, et al. 2008). Moreover, curvilinear regression analysis showed that follicular fluid 

17β-oestradiol and its ratios with progesterone could significantly predict postovulatory 

ipsilateral but not contralateral oviductal progesterone concentrations and progesterone/17β-

oestradiol ratio (data not shown). Also follicular fluid progesterone concentration is positively 

associated with oviductal 17β-oestradiol/progesterone ratio. The causal relationship between 

these parameters might suggest an ipsilateral influence of follicular fluid shed in the oviduct 

or peritoneal cavity on the oviductal concentrations. Thus, these results may suggest that 

oviductal fluid steroids shed in the peritoneal cavity diffuse into the oviduct after ovulation. 

However, since follicular fluid contains besides progesterone also high amounts of other 

steroids, another mechanism is required to explain the selective increase of progesterone in 

the ipsilateral oviduct. 

Local transfer of steroids from the ovary to the oviduct 

Local transfer of steroids from the ovary to the oviduct via a counter-current system including 

ovarian veins or lymph vessels which anastomose in the mesovarium has been described in 

sows, cows and women (Bendz 1977, Bendz, et al. 1979, Cicinelli, et al. 2004, Einer-Jensen 

and Hunter 2000, Einerjensen and Mccracken 1981, Gabler, et al. 1999, Ginther 1974, 1976, 

Mccracken, et al. 1984, Stefanczyk-Krzymowska, et al. 2002). In contrast to pigs and cows, in 

which a countercurrent arterio-venous system exists, the equine uterine vein and its tributaries 

perfuse only a small area of the local tissues. However, anatomically, the idea of a counter-

current exchange between the ovarian venous drainage and the uterine tubal arterial supply 
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may not be rejected due to the intense contact between the accessory ovarian vein and the 

ovarian branch of the ovarian vein, which supplies a major part of the uterine tube (Fig. 6; 

(Barone 2001). In sheep it has been shown that the oviductal vein which drains the oviduct 

and the cranial part of the uterus, adjacent to the ovary with the corpus luteum, contributes to 

the ipsilateral elevated progesterone concentrations in uterine tissue. After resection of the 

oviductal vein indeed, the ipsilateral uterine progesterone concentration was not higher 

anymore compared to the contralateral side (Weems, et al. 1989).  

Local elevated progesterone concentrations could also originate from transport or diffusion of 

hormones by the extensive network of lymphatic vessels in the mesovarium. In sheep and 

goats, the utero-ovarian lymph progesterone concentrations were between 10 to 1000-fold 

higher than those in peripheral plasma. Moreover, lymph progesterone concentrations 

equalled plasma concentrations after ipsilateral ovariectomy (Staples, et al. 1982). Local 

diffusion with resulting high concentrations of hormones in tissue surrounding the ovary was 

also evidenced in the cow: a progesterone gradient in tissue ipsilateral but not contralateral to 

the corpus luteum was demonstrated (Pope, et al. 1982). Also in the mare, a similar 

phenomenon has been described during early pregnancy (d24-80): a 220-fold increased 

progesterone concentration in the venous effluent from the corpus luteum bearing ovary 

compared with the contralateral side was reported while contralateral concentrations 

approached those measured in the jugular vein (Squires and Ginther 1975). These findings 

most likely also explain the 100-fold increase of the ipsilateral postovulatory oviductal 

progesterone concentration in mares (Table 1). Indeed, follicular fluid progesterone and 17β-

oestradiol concentrations and their ratios are associated with oviductal progesterone and 17β-

oestradiol concentrations. The one-sided (unilateral) influence of a dominant follicle or corpus 

luteum via a regional vascular/lymphatic transfer probably may also account for the unilateral 

elevated steroidogenic enzyme staining intensity of aromatase, StAR, cytochrome P450scc 

and 3-beta-HSD as depicted in Fig. 2. The associations between follicular fluid steroid 

concentrations and unilateral enzyme expression may suggest indeed a unilateral influence of 

follicular fluid on preovulatory enzyme expression probably accomplished by a local vascular 

and/or lymphatic transfer system. Nonetheless, one should bear in mind that the biological 

relevance and significance of associations between variables should be interpreted with 

caution. Steroid determination in ovarian arteries, venes and lymph vessels would substantiate 

this hypothesis definitively. 
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A difference between steroid concentrations in arterial and systemic blood endorses the 

assumption that local counter-current transfer of modulating factors, even though very species 

specific (Einer-Jensen and Hunter 2005), modulates the function of the female genital tract 

Fig. 6. a) Schematic drawing of the vasculature at the level of the left uterine tube in the mare 

(left lateral view, redrawn after Barone (2001). Courtesy: Pieter Cornillie. The ovarian vein 

(v1) lies topographically isolated from the ovarian artery (a1) and drains directly into the caudal 

vena cava. However, an accessory ovarian vein (v2), which is a tributary of the uterine branch 

(v3) of the ovarian vein (ramus uterinus), is heavily encircled by a coiled ovarian branch of the 

ovarian artery, which not only supplies the ovary (OV), but also a large part of the uterine tube 

(UT) through its cranial tubal branch (a2). The remainder of the uterine tube is supplied by 

derivatives of the uterine branch of the ovarian artery (a3), i.e. the middle (a4) and caudal tubal 

branch (a5), before the uterine branch disperses in the uterine horn (UH) as cranial artery of the 

uterine horn (a6). b) Ex vivo equine ovary, oviduct and top of the uterine horn with adjacent 

tissues and blood vessels. Courtesy: Pieter Cornillie (6 a) and Jan Govaere (6 b). 
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(Hunter, et al. 1983, Stefanczyk-Krzymowska, et al. 2002). For instance, the transfer of 

progesterone from the corpus luteum may inhibit follicle growth more in the ipsilateral 

compared to the contralateral ovary (Fukuda, et al. 1997). This may explain the tendency of 

alternation of ovulation between the ovaries (Fukuda, et al. 1997). Similarly, high levels of 

oestradiol produced in the large follicle reach the ovarian artery where it induces an increased 

blood flow (Cicinelli, et al. 2004). Also other substances, which have been demonstrated to be 

transferred between the ovarian vein and artery such as prostaglandins, inert gases, peptides 

and other steroids as described in mice, pigs, sheep, cows and women (Einer-Jensen and 

Hunter 2000, Einerjensen 1988), may unilaterally optimize the oviductal milieu for gamete 

transport and maturation, fertilization and early embryonic development (Einer-Jensen and 

Hunter 2005). Indeed, spermatozoa tend to move to the ipsilateral oviduct and human 

embryos prefer to nidate on the uterine wall ipsilateral to the side of ovulation (Kunz, et al. 

1998). 

Expression of high-capacity progesterone receptors 

Another explanation for the high progesterone concentrations in the ipsilateral oviduct could 

be the presence of high-capacity progesterone receptors (PRs) on the ipsilateral side. 

Hypothetically, an upregulation of PRs along the oviduct could indicate increased amounts of 

functionally active hormone-receptor complexes (Ulbrich, et al. 2003) which could 

subsequently sequestrate large amounts of progesterone. This hypothesis could also explain 

the dramatically increased level of progesterone in the ipsilateral oviduct shortly after 

ovulation (Hartt, et al. 2005, Watson, et al. 1992) (Table 1). If so, it should be possible to 

demonstrate high expression of PRs in the ipsilateral postovulatory oviduct. 

Immunohistochemistry did indeed reveal that PRs are abundantly expressed in the luminal 

epithelium of the oviduct (Fig. 4). However, many more progesterone receptor positive nuclei 

were present in the isthmic portion of the contralateral postovulatory oviduct, than in the 

ipsilateral oviduct (Fig. 4 g, h and Fig. 5). This finding might be explained by the fact that an 

elevated progesterone concentration in the ipsilateral oviduct may decrease its own receptor 

expression by means of a negative feedback mechanism, as has been described previously in 

guinea pigs (Hai, et al. 1977). Therefore, the high ipsilateral progesterone concentration 

observed in the present study seems to be associated with a downregulation of PRs, and as 

such the hypothesis that the elevated ipsilateral progesterone is due to an increase in PRs can 

be rejected. The significant differences in PR expression in relation to the target regions 
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(ampulla and isthmus), the side (ipsilateral or contralateral) and the stage of the cycle (pre and 

postovulatory) do reflect their functional importance and are indicative of the fact that 

progesterone, the PR ligand, exerts its effect locally in the oviduct. Since PR expression is 

very species-specific, further elaboration on the regulation of the finely tuned differences in 

PR expression, and the interaction of PR with its ligands, including progesterone and 17-

hydroxyprogesterone, is needed.  

Local synthesis of progesterone in the oviduct 

A further mechanism to possibly explain the elevated progesterone concentrations in 

ipsilateral oviductal tissue and oviductal fluid is its local production. Fig. 2 shows that StAR, 

cytochrome P450scc, aromatase and 3-beta-HSD immunoreactive proteins are present in the 

equine oviduct which is suggestive of local steroidogenesis (Suppl. 2). In the rabbit, 

progesterone synthesis by the oviduct epithelium and associated muscle cells has been put 

forward in previous studies (Richardson and Oliphant 1981, Spilman and Wilks 1976, Takeda, 

et al. 1978). The murine oocyte also stimulates increased production of progesterone by the 

oviduct during oocyte transport (Kendle and Lee 1980). Even though no apparent differences 

in the steroidogenic enzymes could explain the selective increase of progesterone in the 

ipsilateral postovulatory oviduct, the overall expression of these immunoreactive proteins 

clearly demonstrates the steroidogenic capacity of the oviduct.  

In the ipsilateral postovulatory equine oviduct, no clear upregulation of StAR or cytochrome 

P450scc was detected which could explain the high progesterone production.  

Aromatase activity has been demonstrated before in the oviduct of the frog (Kobayashi, et al. 

1996), the woman (Li, et al. 2003) and the rat (Tetsuka, et al. 1998). Little is known about the 

regulation of this enzyme. It may influence the actions of either androgen and oestrogen in 

vivo (Hillier, et al. 1980) and may be involved in the regulation of androgen receptors in vivo 

(Shao, et al. 2007b). The presence of immunoreactive aromatase protein demonstrates that the 

equine oviduct is able to convert androgens to oestrogens (Suppl. 2). Since oestrone synthesis 

is also catalyzed by aromatase and since high concentrations of oestrone, measured in 

oviductal fluid (Table 3) in the contralateral preovulatory oviduct, are consistent with the 

relatively higher expression of aromatase by the contralateral oviduct, the elevated 

contralateral oviductal fluid concentrations of oestrone could be explained by local synthesis, 

catalyzed by aromatase. 
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3β-Hydroxysteroiddehydrogenase (3-beta-HSD) catalyses (Suppl. 2) the conversion of 

pregnenolone to progesterone (LaVoie and King 2009). Its expression is enhanced by, 

amongst other factors, oestradiol and suppressed by testosterone (Heggland, et al. 1997) and 

progesterone (Munabi, et al. 1983). However, it should be noted that regulation of the HSD3B 

gene is species and cell type specific (Simard, et al. 2005). The lack of association between 

immunoreactive protein expression of 3-beta-HSD and progesterone production levels 

indicates that other variants, haplotypes or enzymes may be involved in equine oviductal 

progesterone biosynthesis and metabolism pathways (Olson, et al. 2007) 

 

 

Paracrine contribution of follicular cells in the oviduct 

The follicle cells shed together with the oocyte and the follicular fluid in the oviduct at the 

time of ovulation, could be another source of steroids that might affect local oviductal steroid 

concentrations. This could explain the selectively elevated progesterone concentration without 

a concomitant increase in concentrations of 17β-oestradiol, 17-hydroxyprogesterone and 

Suppl. 2. Overview of steroidogenesis (based on Lavoie and King 2009). The enzymes discussed in 

the paper are encircled in red. 

 



Chapter 4 Discussion 

137 

 

testosterone in the ipsilateral oviduct in the postovulatory phase. Many viable follicle cells in 

suspension have been shown to be present in the neighbourhood of an oocyte or a developing 

embryo (Gardner, et al. 1996). They are able to act in a paracrine manner to produce large 

amounts of progesterone and oestradiol (Reverchon, et al. 2012), androgens, and other 

signalling molecules. Equine granulosa cells show immunoreactive 3-beta-HSD protein (data 

not shown) which may confirm their progesterone producing capabilities, as described in 

other species (Chabrolle, et al. 2009, Schuetz and Dubin 1981, Smith, et al. 2011, Stoklosowa, 

et al. 1982). Porcine granulosa cells are reported to produce in 48 h 114 ng progesterone per 

10
5
 granulosa cells (Stoklosowa, et al. 1982). This could explain the ipsilateral elevated 

progesterone concentrations without increased levels of other steroids.  

In conclusion, it can be deduced that the most plausible explanation for establishment 

of the elevated progesterone concentration in the ipsilateral oviduct of the mare is a 

combination of 1) the contribution from follicular fluid in the oviduct and the diffusion of 

follicular fluid steroids after ovulation; 2) a local transfer of steroids via blood or lymph, 3) 

local synthesis of progesterone in the oviduct, as evidenced by the expression of steroidogenic 

enzymes and, 4) the paracrine contribution from follicular cells  
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                           Edward Teller, physicist 
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STEROIDS AFFECT GENE EXPRESSION, CILIARY ACTIVITY, GLUCOSE 

UPTAKE, PROGESTERONE RECEPTOR EXPRESSION AND 

IMMUNOREACTIVE STEROIDOGENIC PROTEIN EXPRESSION IN EQUINE 

OVIDUCT EXPLANTS IN VITRO. 

ABSTRACT 

The oviduct undergoes dramatic functional and morphological changes throughout the estrous 

cycle of the mare. To unravel the effects of steroids on the morphology, functionality and 

gene expression of the equine oviduct, an in vitro oviduct explant culture system was 

stimulated with physiological concentrations of progesterone and 17β-oestradiol. Four 

conditions were compared: unsupplemented preovulatory explants, preovulatory explants 

which were stimulated with postovulatory hormone concentrations, unsupplemented 

postovulatory explants and postovulatory explants which were stimulated with preovulatory 

hormone concentrations. The modulating effects of both steroids on oviduct explants at 

different levels were investigated: 1) ciliary activity, 2) glucose consumption and lactate 

production pattern, 3) ultrastructure, 4) mRNA expression of embryotrophic genes, 5) 

steroidogenic capacities of oviductal explants, and 6) progesterone receptor expression. 

The present paper shows that the equine oviduct is an organ with potential steroidogenic 

capacities which is highly responsive to local changes in progesterone and 17β-oestradiol 

concentrations at the level of morphology, functionality and gene expression of the oviduct. 

These data provide a basis to study the importance of endocrine and paracrine signalling 

during early embryonic development in the horse. 

 

INTRODUCTION 

The reproductive cycle in mammals consists of two stages: the preovulatory follicular and the 

postovulatory luteal stage. These stages are induced by fluctuations of steroid hormones, 

mainly progesterone and 17β-oestradiol, before and after ovulation (Seytanoglu, et al. 2008). 

Ovarian steroids induce morphological, biochemical and physiological changes to the oviduct 

cells and subsequently affect the volume and composition of the oviductal fluid (Georgiou, et 

al. 2005, Hunter 2012b, Seytanoglu, et al. 2008) and ciliary activity (Bylander, et al. 2010, 

Wessel, et al. 2004). These changes play a key role in the optimization of the 
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microenvironment for final maturation and transport of the gametes, for fertilization and for 

nourishment, transport and growth of the early embryo (Fazeli 2008, Hunter 2005). 

Important local paracrine embryo-maternal interactions are difficult to capture in in vivo 

studies because the equine oviduct can only be reached surgically or post mortem; moreover, 

the exact location of the embryo is hard to pinpoint. Therefore, an in vitro model which 

approximates the in vivo situation as closely as possible provides the ideal basis to study the 

oviductal response to steroids, gametes or embryos. In this study an oviduct epithelial explant 

culture model, on which has been reported earlier (Nelis, et al. 2014), was further optimized 

by unravelling its response to physiological concentrations of progesterone and oestradiol. It 

has been demonstrated that in vivo concentrations of progesterone can be very high in the 

equine oviductal tissue and fluid ipsilateral to the ovulation side (Nelis et al., 2015). This 

phenomenon has also been described in the bovine oviduct (Wijayagunawardane, et al. 1998). 

Apart from the endocrine hormones influencing the oviduct, the oviduct itself appears to have 

potential steroidogenic properties. Immunoreactive steroidogenic enzymes, all of which have 

catalytic properties in steroidogenesis, are abundantly present in the mare’s oviduct (Nelis, et 

al. 2015a), hallmarking the steroidogenic capacity of the oviduct and the importance of local 

steroids for reproductive events taking place during the oviductal stage of equine embryo 

development.  

In vitro culture of oviduct epithelial explants has been developed in several species such as 

horses (Ball and Altschul 1990, Nelis, et al. 2014, Thomas, et al. 1994), cattle (Rottmayer, et 

al. 2006, Walter 1995), pigs (Buhi, et al. 1989, Miessen, et al. 2011, Suarez, et al. 1991), 

humans (Kervancioglu, et al. 1997, Levanon, et al. 2010) and monkeys (Rajagopal, et al. 

2006). However, little information exists on how steroid hormone concentrations influence 

morphology, function and gene expression in the oviduct. Only in the cow (Rottmayer, et al. 

2006) and the sow (Chen, et al. 2013a) the effect of hormonal changes on oviduct epithelial 

cells has been studied during in vitro culture. In the pig, 17β-oestradiol and progesterone 

affect cellular polarity, transformation of ciliated and secretory cells, as well as electrical 

conductivity of the oviduct epithelium and expression of hormone receptors and oviductal 

glycoprotein (Chen, et al. 2013a). In bovine oviductal cells, 17β-oestradiol increases 

progesterone receptor mRNA expression (Rottmayer, et al. 2006). In the horse, only two 

studies compared the mRNA expression in oviductal tissue from mares in oestrus and post-

ovulation. No influence of the oestrous cycle on prostaglandin E2 receptors was found (Ball, 
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et al. 2013). Another study reported that mRNA of µ-opioid receptors were mainly 

upregulated during oestrus (Desantis, et al. 2010). In addition, equine embryos apparently 

benefit from high glucose concentrations (17 mM) during early development (Choi, et al. 

2004a, Hinrichs 2010, Smits, et al. 2011). However, no data is available concerning the 

glucose consumption in oviduct explants in response to steroids. Moreover, since in this 

article postovulatory oviduct cells turned out to produce considerable higher amounts of 

progesterone compared to preovulatory explants, the expression of enzymes involved in the 

progesterone synthesis pathway may be steroid regulated. It has been suggested earlier that 

immunoreactive protein expression of steroidogenic enzymes in the equine oviduct is cycle-

stage dependent (Nelis, et al. 2015a). However, no literature data is available about the direct 

regulation of steroidogenic immunoreactive proteins in the equine oviduct by progesterone 

and 17β-oestradiol.   

The aim of the present study was to induce cycle stage-related alterations in vitro to verify 

whether the in vivo situation could be mimicked in oviduct explants in response to steroids. 

For that purpose, preovulatory explants were stimulated with hormone concentrations as they 

prevail in the postovulatory stage and vice versa. The influence of these steroid hormones on 

ciliary activity, and the effect on glucose consumption and lactate production as well as the 

ultrastructure, the mRNA expression of a set of embryotrophic genes, the steroidogenic 

capacities and the progesterone receptor expression in the equine oviduct explants were 

assessed (Fig. 1). 

 

MATERIALS AND METHODS 

Animals 

Oviducts were collected during the breeding season (March - August) in a local 

slaughterhouse (Euro Meat Group, Moeskroen, Belgium) from healthy mares with a 

preovulatory follicle and distinct uterine oedema, indicating oestradiol dominance (late 

follicular phase) or a recent corpus luteum/hemorrhagicum and without uterine oedema, 

indicating recent ovulation (early luteal phase) (Pierson and Ginther 1985). Determination of 

progesterone concentration in oviductal tissue by U-HPLC-MS/MS revealed a positive 

predicting value of 94% between the presence of a recent corpus luteum/hemorrhagicum and 

a serum progesterone concentration lower than 2 ng/ml (Nelis, et al. 2015a). This association 
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was confirmed earlier (Ginther, et al. 2007, Pierson and Ginther 1985). Mares with ovaries 

showing signs of atretic or anovulatory follicles (Ginther 1992, McCue and Squires 2002, 

McKinnon 1997, Pierson 1993) were not included. 

 

Culture and hormone supplementation of oviduct explants  

Preparation and selection of oviduct explants  

Oviduct epithelial explants were obtained as described earlier (Nelis, et al. 2014). Briefly, the 

harvested cellular material, obtained by scraping the ampulla and the ampullary-isthmic 

junction of ipsilateral oviducts, was washed and cultured in DMEM/F12 (Invitrogen, 

Merelbeke, Belgium) supplemented with 10% FCS (Fetal calf serum, Invitrogen, Merelbeke, 

Belgium), 50 µg/ml gentamycin (Invitrogen, Merelbeke, Belgium) and 2.5 µg/ml 

amphotericin-B (Fungizone, Invitrogen, Merelbeke, Belgium). One µl of explants suspension, 

coinciding with 30-35 oviduct explants with a diameter of less than 200 µm, was cultured in 

50 µl under mineral oil or 10 µl in 500 µl without oil overlay at 38.5° C in a humidified 

atmosphere with 5% CO2 in air (Nelis et al. 2014). Viability was judged at the start and after 

culture by Trypan blue staining (Sigma-Aldrich, Diegem, Belgium) and by evaluating ciliary 

activity at the start and at the end of culture (Fig. 1). Only oviduct explants with more than 98% 

of membrane intact cells, determined by Trypan blue staining, 2 to 4 hours after start (= day 0) 

of culture were used. 
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Hormone supplementation 

To gain insights in the hormone responsiveness of equine oviduct epithelial cells, the in vivo 

situation was mimicked as closely as possible in vitro by adding 17β-oestradiol and 

progesterone concentrations as those measured in equine ipsilateral oviductal tissue with 

reference to cycle stage. Mean concentrations of progesterone in oviductal tissue in vivo were 

48 ± 18.6 ng/g in the preovulatory stage and 1098 ± 296.5 ng/g in the postovulatory stage. 

Mean preovulatory concentrations of 17β-oestradiol were 81.3 ± 21.2 ng/g and postovulatory 

concentrations were 12.7 ± 5.9 ng/g (Nelis, et al. 2015a). Based upon these in vivo 

concentrations and assuming a density of 1000 kg/m
3
 for oviductal tissue, the in vitro culture 

Fig. 1. Experimental set-up. Oviductal explants originating from mares in the preovulatory or the 

postovulatory cycle stage were cultured in DMEM/F12 supplemented with 10% fetal calf serum. 

The pre- and postovulatory explants were cultured supplemented with respectively 1 µg/ml or 40 

ng/ml cell-culture tested water soluble progesterone and 10 ng/ml or 80 ng/ml cell culture tested 

water soluble 17β-estradiol. Control = no hormone supplementation, hormone = hormone 

supplementation. After 3 days of culture, ciliary activity, glucose consumption and lactic acid 

production, the ultrastructure, gene expression, steroidogenic enzyme expression and the number 

of progesterone receptor positive nuclei were assessed. 
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medium was supplemented with physiological concentrations of steroids and the explants 

were cultured for 3 days. The explants taken at the preovulatory cycle stage were cultured 

with 1 µg/m1 cell-culture tested water soluble progesterone (progesterone: 2-hydroxypropyl-

β-cyclodextrin complex, P7556, Sigma-Aldrich BVBA, Diegem, Belgium), and 10 ng/ml cell 

culture tested water soluble 17β-oestradiol (cyclodextrin-encapsulated 17β-oestradiol, E4389, 

Sigma-Aldrich BVBA, Diegem, Belgium), while the explants taken at the postovulatory stage 

were cultured with 40 ng/ml soluble progesterone and  0 ng/ml soluble 17β-oestradiol (Fig. 

1). These water soluble molecules were validated and proven to cross cell membranes and 

activate oestrogen (Kim, et al. 2010) and progesterone (Sukerkar, et al. 2011) receptors in 

vitro. In each group, a control group without hormone supplementation was included.  

 

Ultrastructural and functional effects of steroid supplementation on equine oviduct 

explants in vitro 

Evaluation of ciliary activity 

Ciliary activity was evaluated in the whole number of explants present in 3 replicates of at 

least 20 droplets, containing 30-35 explants each. Explants were considered showing ciliary 

activity when bordered by vigorously beating cilia, clearly seen on the inverted microscope 

(400× magnification). To lower interpretative bias in the assessment of ciliary activity, culture 

plate labels were blinded and all explants were counted twice and the mean value was used 

for statistical analysis. To compare ciliary activity, binary logistic regression was 

implemented. Differences were considered significant at P < 0.05. Statistical analysis and 

graph plotting was performed with SPSS 21 for windows (SPSS IBM, Brussels, Belgium). 

 

Quantification of glucose consumption and lactic acid production 

At day 0 and day 3 of culture of preovulatory and postovulatory oviduct explants with or 

without hormone supplementation, 10 samples (from 3 replicates) of 250 µl medium were 

taken and frozen at -80 °C until analysis. The samples were analysed (Medic Lab/Zoolyx, 

Aalst, Belgium) with a UV enzymatic method using the Roche Cobas 8000 according to the 

manufacturers recommendations (Roche Diagnostics, Mannheim, Germany). A calibration 

line to determine the efficiency was drawn up along with 10 samples per day of sampling. The 



Chapter 5.1 Materials and Methods 

167 

 

efficiency of the UV enzymatic analyses was 98% for glucose and 99% for lactic acid. The 

limit of detection was 2 mg/dl for glucose and 1.8 mg/dl for lactic acid. To detect statistically 

significant differences, repeated measures analysis of variance (ANOVA) with Greenhouse-

Geisser correction with the general linear model procedure as implemented in SPSS 19 was 

performed. 

 

Transmission electron microscopy 

After 3 days of culture, the oviduct explants in the pre- and postovulatory cycle stage (from 7 

mares in each group) with and without steroid supplementation as described above, were 

pooled per group and fixed in 0.2 M sodium cacodylate buffered formaldehyde and post-fixed 

with osmium tetroxide. After rinsing, cells were pelleted by centrifugation in 10% BSA 

supplemented with 1% glutaraldehyde. The pellet was then dehydrated and embedded in 

epoxy resin (LX-112 Ladd Industries, Williston, ND, USA). Sections were made with a 

Reichert Jung Ultracut E ultra-microtome (Depew, NY, USA). Semi-thin sections (2 µm) 

were stained with toluidine blue to select the most appropriate regions for ultrathin sectioning. 

Next, ultra-thin sections (90 nm) were made and stained with uranyl acetate and lead citrate 

solutions before examining under a Jeol EX II transmission electron microscope (Jeol Europe, 

Zaventem, Belgium) at 80 kV.  

 

Gene expression 

Experimental set-up 

In a first experiment, the mRNA expression of 11 genes, plasminogen activator inhibitor 1 

(PAI1), urokinase plasminogen activator inhibitor (PLAU), transforming growth factor α 

(TGFA), tissue inhibitor of matrix metalloproteinase-1 (TIMP1), matrix metalloproteinase 

(MMP2), colony stimulating factor (CSF1), prostaglandin receptor E2 (PTGER2) and E4 

(PTGER4), insulin-like growth factor-1 (IGF1), vascular endothelial growth factor (VEGFA) 

and glucose transporter 1 (GLUT1) was evaluated in pre- and postovulatory oviduct explants 

without hormone supplementation to elucidate hormone dependency. These genes were 

selected based on their embryotrophic function and their putative steroid responsiveness (Buhi, 

et al. 2000).                                 
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 In a second experiment, the influence of hormone supplementation on the expression of the 

genes that were found to be significantly up- or downregulated in the first experiment (TGFA, 

MMP2, CSF1, PAI1, GLUT1, PLAU) was further examined by comparing the expression in 

preovulatory and postovulatory oviduct explants cultured with and without hormone 

supplementation. 

 

RNA extraction and quantitative RT-PCR  

 

After 3 days of culture, ciliary activity was evaluated, the explants were washed 2 times in 

DPBS (Gibco Invitrogen, Ghent, Belgium), subsequently snap-frozen in lysis buffer and 

stored in liquid nitrogen in cryovials. Lysis buffer constituted of 10% RNasin Plus RNase 

inhibitor (Promega, The Netherlands), 5% dithiothreitol (Promega, The Netherlands), 0.8% 

Igepal CA-630 (Sigma, Belgium) in RNase free water (Qiagen, Venlo, The Netherlands). 

Total RNA was extracted with the RNeasy kit (Qiagen) according to the manufacturers’ 

instructions, including DNAse digestion, as described earlier (Nelis, et al. 2014, Smits, et al. 

2011). Primer design and validation, RNA extraction and quantitative RT-PCR were 

performed according to the MIQE-guidelines (Bustin, et al. 2009) and as also reported earlier 

(Nelis, et al. 2014). The primers (Integrated DNA Technologies, Leuven, Belgium and Sigma-

Aldrich, Bornem, Belgium) for the genes of interest (PAI1, PLAU, TGFA, TIMP1, MMP2, 

CSF1, PTGER2, PTGER4, VEGFA, IGF1, GLUT1) are summarized in Table 2. For 

normalization, eight candidate reference genes (Table 1) were evaluated based on previous 

studies (Bogaert, et al. 2006, Cappelli, et al. 2008, Goossens, et al. 2007, Smits 2009). The 

most stable reference genes were selected with GeNorm (Vandesompele, et al. 2002).  

 

An optimal set of reference genes: UBB, ACTB and RPL32 

Quantitative real-time PCR results of pre- and postovulatory oviduct explants were 

normalized against the geometric mean of the expression of an optimal number of reference 

genes as determined with geNorm (Vandesompele, et al. 2002). When taking only 

postovulatory explants into account, the most stable reference genes were ACTB, UBB, 18S, 

RPL32, SDHA and HPRT. For preovulatory explants, ACTB, RPL32, UBB, SDHA and HPRT 

were the most stable reference genes. Taking into account both preovulatory and 

postovulatory explants, ACTB, UBB and RPL32 turned out to be the most reliable reference 
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genes. Therefore, the geometric mean of ACTB, UBB and RPL32 was used for normalization 

of the test genes.  

 

Table 1. Primers for RT-qPCR of the reference genes. For each reference gene, the NCBI 

GenBank accession number, the sequence of both forward and reverse primer, the size of the 

amplicon, the optimal primer annealing temperature and amplification efficiency are listed.  

 

Gene GenBank 

accession number 

Primer sequence (5’-3’) Amplicon 

size (bp) 

Ta 

(°C) 

Efficiency 

(%) 

ACTB AF035774 CCAGCACGATGAAGATCAAG 88 60 101 

GTGGACAATGAGGCCAGAAT 

       

GAPDH AF157626  CAGAACATCATCCCTGCTTC 187 59 97 

ATGCCTGCTTCACCACCTTC 

  

 

   

HPRT1 AY372182 

GGCAAAACAATGCAAACCTT 
163 57 93 

CAAGGGCATATCCTACGACAA 

  

 

   

RPL32 XM_008531004 

  

AGCCATCTACTCGGCGTCA 149 60 89 

TCCAATGCCTCTGGGTTTC 

  

 

   

SDHA XM_001490889 

  

TCCATCGCATAAGAGCAAAG 159 59 99 

GGTGGAACTGAACGAACTCC 

  

 

   

TUBA4A XM_001491910  GCCCTACAACTCCATCCTGA 78 60 104 

ATGGCTTCATTGTCCACCA 

  

 

   

UBC AF506969 GCAAGACCATCACCCTGGA 206 60 100 

CTAACAGCCACCCCTGAGAC 

  

 

   

18 S AJ311673 GACCATAAACGATGCCGACT 219 60 92 

  TCTGTCAATCCTGTCCGTGT    

                                                                     

    

 

 

 

 

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF035774
http://www.ncbi.nlm.nih.gov/nuccore/AF157626,%20BI960908,%20CX593628
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY372182
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AF506969
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Gene GenBank 

accession 

number 

Primer sequence (5’-3’) Amplicon 

size (bp) 

Ta 

(°C) 

Efficiency 

(%) 

PLAU XM_001502951.4 AAAGTCCCTCCTCTCCTC 249 61 92 

CGAAGAAGGAGGACTACATT 

      

VEGFA NM_001081821 ACTGCCGTCCAATCGAGA 193 61 97 

  ATCAAACCTCACCAAAGCCA    

      
GLUT1 NM_001163971.1 CCAGAAGGTGATCGAGGAAT 238 57 118 

CAGTTTTGAGAAGCCCATGA 

      PAI1 XM_001492517 ACTCGGAAGCAGATCCAAGA 223 61 87 

  CAGGTGGACTTTTCAGAGGTG        

      CSF1 XM_005610548 

 

TTCGGTTTGTAGACCCAGAC   193 56 108 

   TGCTCTTCATAGTCCTTGGTG     

      
IGF1 NM_001082498 TTCTACCTGGCCCTGTGCT 108 59.5 103 

  CTGTCTCCACACACGAACTGA    

      
TGFA XM_005599909 GATTCCCACAGTCAGTTCTGC 210 60 105 

  

ACATGCGATGATGAGGACAG 

         MMP2 XM_001493281 AGGGCACATCCTACGACAG 240 61 90.9 

  

AGATGTGGTGCGCGACTA 

         PTGER2 NM_001127352.1  GGACCACCTCATCCTCCTG 181 60 94 

  

CGGCCTAAAGATGGCAAAG 

         PTGER4 XM_001499068.3 CATCTTACTCATCCCACCT 229 60 103 

  

GAGGCATTTGATCTTCTCTATCG 

             

 

   

TIMP1 NM_001082515                 AGAAGTCAACCAGACCACCTTAC 152 61  96 

 

 

ATACTTCCACAGGTCGGAGA 

    

 

 

 

Statistical analysis 

An independent samples t-tests with bootstrapping or an independent samples Mann-Whitney 

U-test were used to compare target gene expression differences, depending on whether or not 

a Gaussian distribution was obtained after logarithmic transformation of the data. Differences 

Table 2. Primers for RT-qPCR of the target genes. For each gene, the NCBI GenBank 

accession number, the sequence of both forward and reverse primer, the size of the amplicon 

and the optimal primer annealing temperature and amplification efficiency are listed. 

http://www.ncbi.nlm.nih.gov/nuccore/NM_001163971.1
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were considered significant at P < 0.05. To elucidate relationships between the expression of 

genes, Spearman’s rho or Pearson correlation coefficients were calculated and linear and 

polynomial/curvilinear regression model fit was applied. Statistical analysis and graph 

plotting was performed with SPSS 21. Power analysis and sample size calculation (α = 0.05; 

power = 0.85 - 0.99) for gene expression studies were performed using Piface version 1.7 

(Lenth 2007); (University of Iowa; http://homepage.stat.uiowa.edu/_rlenth/Power/; accessed 

28 March 2013).  

 

Steroid quantification by means of RIA 

After 3 days of culture without hormone supplementation, culture medium from the 

preovulatory group, culture medium from the postovulatory group and control medium, 

cultured without explants, was pooled per group and concentrated using a Centrivap Cold 

Trap (Labconco, Kansas City, MO, USA). The three pools each contained culture medium 

from 7 replicates. After reduction to dryness, the pools were dissolved in 2 ml PBS. Due to 

the limitations in availability of oviducts of healthy mares in the optimal cycle stage and in 

order to exceed the limits of detection, only one pool per group was created and measured.  

Concentrations of 17β-oestradiol, progesterone, oestrone and testosterone were determined 

with the radioimmunoassay method described (Ciereszko 1999) and validated earlier 

(Franczak and Bogacki 2009). The cross reactivities of the antisera against steroids have been 

previously reported (Szafranska, et al. 2002). The efficiency of extraction and the coefficient 

of correlation between the added and recovered amount of different hormone concentrations 

for oestradiol, progesterone, oestrone and testosterone were 85.10% and 0.988, 85.60% and 

0.989, 86.40% and 0.978, and 85.10% and 0.992, respectively. The assay sensitivity for 

oestradiol and testosterone was 0.5 pg/ml, for progesterone and oestrone 1 pg/ml. All samples 

were measured within one assay per one hormone. The intra-assay coefficient of variation for 

17β-oestradiol was 1.17%, for progesterone 1.08%, for oestrone 0.45%, and for testosterone 

0.69%. 

Epifluorescence of aromatase, cytochrome P450scc and StAR  

Oviductal epithelium explants were snap-frozen and stored in liquid nitrogen. Expression of 

aromatase (aromatase), steroidogenic acute regulatory protein (StAR) and cholesterol side-

chain cleavage enzyme (cytochrome P450scc) protein in oviductal epithelium explants was 

http://homepage.stat.uiowa.edu/&sim;rlenth/Power/
http://homepage.stat.uiowa.edu/&sim;rlenth/Power/
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determined using indirect immunofluorescent staining as described earlier (Franczak, et al. 

2013). In short, explants were immobilized on Menzel-Gläser SuperFrost® Plus microscope 

slides (Thermo Scientific, Braunshweig, Germany). Approximately 30 minutes before 

staining, slides were transferred to room temperature, washed with PBS, dried, and then 

incubated with goat serum for 1 hour to prevent nonspecific binding of antibodies. After 

washing with PBS and drying, samples were incubated overnight (20 hours) at 4 °C with 

primary antibodies at the concentration of 1 μg/mL - rabbit anti-human cytochrome aromatase 

(A7981), StAR (HPA027318) and cytochrome P450scc (HPA016436) polyclonal antibodies 

(Sigma Aldrich, St. Louis, MO, USA). The specificity of antibodies was initially evaluated in 

silico using Protein BLAST and confirmed in optimization experiments. The similarities of 

detectable immunogens with equine immunogens for anti-aromatase, anti- StAR and anti-

cytochrome P450scc antibodies were 75%, 95% and 80%, respectively. For each staining, a 

negative control with dilution buffer used instead of primary antibody, was performed to 

ensure that visible signal is antigen-specific. Positive tissue control samples were both equine 

corpus luteum and follicular wall. The next day, after washing with PBS and drying, samples 

were incubated for 1 hour at room temperature (approximately 21 °C) with a secondary 

antibody at the concentration of 1.25 μg/mL (goat anti-rabbit IgG conjugated with biotin; 

Merck-Millipore, Darmstadt, Germany). Subsequently, samples were washed with PBS, dried, 

and incubated with Cy3-conjugated streptavidin (Jackson Immunoresearch, West Grove, PA, 

USA) to visualize the antigen–antibody complex. Preparations were mounted with use of 

Fluoroshield with 40,6-diamidino-2-phenylindole (Sigma Aldrich) to counterstain DNA and 

subsequently examined using an epifluorescent microscope (Olympus BX51). Pictures were 

taken at 500× magnification with Cell ˇF software version 3.4 (Olympus). The intensity of 

fluorescent emission was evaluated after the conversion of the photographs to grayscale by 

measuring the average grey intensity using Cell ˇF software. The grey intensity was measured 

in 12 regions of interests for each biological replicate, averaged and subjected to One-way 

ANOVA statistical analysis. To compare staining intensities, one-way ANOVA with post-hoc 

LSD test was applied. Statistical analysis was performed with SPSS 21 and graph plotting by 

means of Excel 2010. Sample size calculation (α = 0.05; power = 0. 5–0.99) was performed 

using G*Power 3.1.3 (Faul, et al. 2007). 
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Immunohistochemistry of progesterone receptors and 3-beta-HSD 

Staining for progesterone receptors (PR) and 3β-hydroxysteroid dehydrogenase/∆5→ 4-

isomerase (3-beta-HSD) was performed as described previously (De Bosschere, et al. 2002, 

Van den Broeck, et al. 2002). Briefly, for PR, the oviductal tissue samples were fixed for 24 h 

in 10% phosphate-buffered formaldehyde (pH 6.7) at room temperature, embedded in 

methylcellulose (Methocel, Sigma Aldrich) and dehydrated with increasing concentrations of 

ethanol. Subsequently, the tissue samples were embedded in paraffin wax and sectioned at 

5 μm (Microm HM360, Prosan, Merelbeke, Belgium). The sections were mounted on 3-

aminopropyl-triethoxysilane-coated slides (APES, Sigma, St. Louis, MO, USA) and dried 

overnight at 37 °C. Next, they were dewaxed with xylene and dehydrated using decreasing 

concentrations of ethanol before being submitted to heat-mediated antigen retrieval in 1:10 

citrate-based solution (pH 6; Antigen Retrieval Citra solution, Biogenex, Fremont, USA). 

After quenching of endogenous peroxidases with 3% H2O2, blocking was performed using 20% 

bovine serum. Next, the sections were incubated in a wet box for 1 h at room temperature 

while covered with 75 µl of a 1/100 dilution of the primary mouse anti-human PR antibody 

(MA5-12642, clone hPRa2, Thermo scientific inc., Perbio Science BVBA, Aalst, Belgium) in 

2% BSA (Sigma-Aldrich, Diegem, Belgium); this antibody was reported by the manufacturer 

to cross-react with the equine progesterone receptor. Rabbit anti-mouse gamma globulin 

conjugated to biotin (DAKO, Prosan, Merelbeke, Belgium) was used at a dilution of 1/500 as 

the secondary antibody and peroxidase-conjugated streptavidin (1/3000) was employed as the 

enzyme label. A 6 min incubation with 3,3’-diaminobenzidine hydrochloride (DAB) 

chromogen substrate (Liquid DAB+, DAKO, Prosan, Merelbeke, Belgium) resulted in a 

brown staining of the nucleus. The sections were counterstained with hematoxylin and 

subsequently dehydrated with increasing concentrations of ethanol and, finally, with xylene. 

Positive and negative controls were included in every staining procedure (Burry 2011). 

Positive controls were equine endometrium known to be positive for PR, while similar tissue 

sections were incubated with dilution buffer instead of the primary antibody, then biotinylated 

secondary antibody, or the peroxidase-conjugated streptavidin served as negative controls. 

Equine connective tissue of the oviductal tunica serosa served as negative control tissue. 

Other sections were also incubated with DAB alone to exclude the possibility of residual 

endogenous peroxidase activity. At least 20 sections of each group in each of 3 replicates 

were stained. 
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3-Beta-HSD staining was performed similarly. Rabbit anti-human 3-beta-HSD (Ab 154385, 

Abcam, Cambridge, UK) was known to cross-react with equine tissue and was used as the 

primary antibody. This cross reactivity was confirmed by subjecting the equine HSD3B 

sequence (gi|126352310) and the human HSD3B2 sequence (gi|112770) to NCBI protein 

BLAST analysis (last accessed: July 2013; 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PRO

GRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=bla

st2seq&QUERY=&SUBJECTS=). This revealed a cover query of 99% and 75% identities. 

Goat anti-rabbit gamma globulin conjugated to biotin (DAKO, Prosan, Merelbeke, Belgium) 

was used as the secondary antibody. The staining protocol, including negative controls, 

number of sections, antibody and reagent concentrations, was identical to the PR staining 

protocol as mentioned above. Preliminary, primary antibody concentrations of 1/50, 1/100 

and 1/500 were evaluated. Equine corpus luteum was used as the positive control tissue. 

Ovarian stroma was included as negative control tissue. To quantify progesterone receptor 

(PR)- positive cells, the ratio of epithelial PR-negative cells (purple) / PR-positive nuclei 

(brown) was determined in each sample by means of Image J software (Maryland, USA; 

(Schneider, et al. 2012). All the cells at 200x magnification in at least 20 sections in each 

replicate of each group were evaluated (Bologna-Molina, et al. 2011). To determine 

significant differences in the percentages of PR- positive cells, binary logistic regression with 

the Nagelkerke pseudo R
2
 and χ

2
 fit tests was implemented. To quantify 3β-hydroxysteroid 

dehydrogenase/∆5→4-isomerase immunoreactive protein, chromogen intensity via a 

reciprocal intensity approach was implemented (Nguyen, et al. 2013). At least 10 similar 

regions of interest for each section were analyzed.  

 

 

 

 

 

 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&QUERY=&SUBJECTS
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&QUERY=&SUBJECTS
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins&PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq&QUERY=&SUBJECTS
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RESULTS 

Ultrastructure and functional responses of oviduct explants to steroids in vitro 

Ciliary activity 

Ciliary activity was lower in the postovulatory compared with the preovulatory 

unsupplemented explants (P = 0.002) (Fig. 2). Supplementation of oviduct explants 

originating from mares in the preovulatory cycle stage with 1 µg/ml of progesterone and 10 

ng/ml of 17β-oestradiol decreased ciliary activity after three days of culture from 91% in the 

control group to 56% in the hormone treated group (P < 0.001). Supplementation with 40 

ng/ml of progesterone and  0 ng/ml of 17β-oestradiol also reduced ciliary activity in 

postovulatory explants (P = 0.017) (Fig. 2).

  

                   

 

 

 

 

Fig. 2. Percentage of equine oviduct explants showing vigorous ciliary activity in vitro 

with or without hormone supplementation. Preovulatory explants were cultured with or 

without supplementation of 1 µg/ml of progesterone and 10 ng/ml of 17β-estradiol 

whereas postovulatory oviduct explants were exposed to 40 ng/ml of progesterone and 

80 ng/ml of 17β-estradiol. One-way analysis of variance (ANOVA); error bars (2 x 

standard error of means) with different label are significantly different (P < 0.05). 
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Glucose consumption and lactic acid production in response to steroids in vitro 

The average glucose consumption was higher in the postovulatory explants than in the 

preovulatory explants. Hormone supplementation during three days of culture did not affect 

glucose consumption nor lactate production in the preovulatory explants. In the postovulatory 

explants cultured in medium supplemented with 40 ng/ml progesterone and 80 ng/ml 

oestradiol, glucose consumption was significantly increased (P = 0.002) compared to the 

control group (Fig. 3). Lactate production was not altered in response to hormone 

supplementation. 

 

 

 

 

 

 

Transmission electron microscopy  

Transmission electron microscopy confirmed the presence of cell polarity during the three 

days of culture as evidenced by the presence of cilia and microvilli on the apical cell surface 

and of tight junctions on the lateral cell surfaces (Fig. 4). No qualitative differences were 

Fig. 3. Average glucose consumption (a) and lactate production (b) of preovulatory and 

postovulatory oviduct explants after 3 days of culture quantified by means of an UV 

enzymatic method. The pre- and postovulatory explants were cultured supplemented with 

respectively 1 µg/ml or 40 ng/ml cell-culture tested water soluble progesterone and 10 

ng/ml or 80 ng/ml cell culture tested water soluble 17β-oestradiol. Control = no hormone 

supplementation, hormone = hormone supplementation. Error bars (± 2 x standard error of 

means) with different label are significantly different (P < 0.05). One-way analysis of 

variance (ANOVA). 
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observed between the four groups with regard to the differentiation status and the polarity of 

the cells and to the presence of dark cells. In none of the four conditions an ultrastructural 

signature of active steroidogenesis, i. e. an elaborate smooth endoplasmic reticulum and the 

presence of mitochondria with tubulovesicular cristae was observed. The explants in both 

control groups (B, D) as well as in both hormone treated groups (A, C) showed conspicuous 

dark nuclear and cytoplasmic regions without classical ultrastructural features of apoptotic 

cell death as described previously (Krysko, et al. 2008) and reported earlier in oviduct 

explants in vitro (Nelis, et al. 2014). The cytoplasm surrounding the condensed chromatin did 

not contain recognizable organelles. In some cases these dark cells were engulfed by 

neighbouring healthy cells.  

 

 

 

 

 

 

Fig. 4 Transmission electron micrographs. A. Postovulator oviduct explants after hormone 

supplementation. B. Postovulatory explants without hormone supplementation. C. 

Preovulatory explants after hormone supplementation. D Preovulatory explants without 

hormone supplementation. In the four conditions dark cells are apparent (arrows) within 

regions with healthy cells displaying normal nuclei (N). The dark cells are engulfed by 

neighbouring healthy cells (asterisk). No morphological differences were observed between 

the four conditions. Bar = 2 µm (a-c); bar = 1 µm (d). 
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Gene expression  

Gene expression according to the cycle stage  

A highly significant upregulation of PAI1 and PLAU (P < 0.005), and a significant 

upregulation of GLUT1, CSF1, TGFA and MMP2 were observed (0.01 < P < 0.05) in the 

postovulatory explants compared to the preovulatory explants. There were no differences in 

the expression levels of VEGFA, TIMP1, PTGER2 and PTGER4 in postovulatory oviduct 

cells (Fig. 5). VEGFA expression showed a strong correlation (r > 0.80, P = 0.002) in the 

postovulatory stage and a moderate correlation in the preovulatory stage (r > 0.60, P = 0.04) 

with expression of PTGER2 and PTGER4. In the postovulatory but not in the preovulatory 

stage, there is a highly positive correlation between the expression of TIMP1 and MMP2 (r = 

0.82, P = 0.001), between PAI1 and PLAU (r = 0.96, P = 0.001), and between PLAU with 

MMP2 (r = 0.84, P = 0.018) and TIMP1 (r = 0.90, P < 0.0005).  

 

 

 

 

 

 

 

Fig. 5. Differential normalised gene expression (mean ± 2 x S.E.M.) in oviduct 

explants in the pre- and the postovulatory cycle stage as determined by RT-qPCR. In 

the postovulatory phase, expression levels of PAI1, uPA, GLUT1, CSF1, TGFA and 

MMP2 were significantly higher compared with the preovulatory phase. * 0.01 < P < 

0.05, ** 0.005 < P < 0.01; Independent samples t-test or Mann-Whitney U-test. 

 



Chapter 5.1 Results 

179 

 

Gene expression changes in response to hormone supplementation 

Supplementation of oviduct explants originating from mares in the preovulatory cycle stage 

with 1 µg/ml of progesterone and 10 ng/ml of 17β-oestradiol induced after three days of 

culture an upregulation of PAI1 (P = 0.012), GLUT1 (P = 0.01), CSF1 (P = 0.04) and MMP2 

(P = 0.03), but not of PLAU and TGFA (P = 0.96 and 0.9) (Fig. 6). Supplementation of 

oviduct explants originating from mares in the postovulatory cycle stage with 40 ng/ml of 

progesterone and  0 ng/ml of 17β-oestradiol induced after three days of culture a 

downregulation of CFS1 and an upregulation of GLUT1 (Fig. 7).  

    

 

 

 

 

 

 

 

 

 

 

Fig. 6. Differential normalised 

gene expression (mean ± 2 x 

S.E.M.) as determined by RT-

qPCR in oviduct explants derived 

from mares in the preovulatory 

cycle stage and cultured for 3 days 

with or without supplementation of 

1 µg/ml progesterone and 10 ng/ml 

17β-estradiol. Mean PAI1, GLUT1, 

CSF1 and MMP2 expression are 

significantly upregulated in the 

hormone treated explants. * 0.01 < 

P < 0.05. Paired samples t-test or 

Wilcoxon-signed rank test. 

 

Fig. 7. Differential normalised gene 

expression (mean ± 2 x S.E.M.) as 

determined by RT-qPCR in oviduct 

explants derived from mares in the 

postovulatory cycle stage cultured for 

2.5 days with or without 

supplementation of 80 ng/ml 17β-

estradiol and 40 ng/ml progesterone. 

Mean CSF1 expression is significantly 

lower, whereas GLUT1 is strongly 

upregulated. * 0.01 < P < 0.05, ** 

0.005 < P < 0.01. Paired samples t-test 

or Wilcoxon-signed rank test. 
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Steroid determination in oviduct explant culture medium by means of RIA 

The progesterone concentration in the culture medium of postovulatory explants was 84 times 

higher (6659.0 pg/ml) compared to the control medium without oviduct explants (79.1 pg/ml). 

In the preovulatory culture medium, the progesterone level was in the same range (55.4 pg/ml) 

as in the control group. 17β-Oestradiol, testosterone and oestrone concentrations were lower 

in the pre- and postovulatory group compared with the control group (Table 3).  

 

Table 3. 17β-oestradiol, progesterone, testosterone concentrations (pg/ml) in pooled cultured 

medium after 3 days of cultures without (control) or with (pre- or postovulatory) explants.  

 

 

 control preovulatory postovulatory 

17β-Estradiol 23.1 5.6 11.4 

Progesterone 79.1 55.4 6.66 x 10
3
 

Testosterone 87.4 7.70 49.7 

Estrone 60.1 14.5 21.2 
 

 

 

Immunoreactive steroidogenic protein detection in oviduct explants by means of 

epifluorescence and immunohistochemistry 

Immunoreactive protein was clearly detected for aromatase, cytochrome P450scc and StAR as 

determined by epifluorescence, as well as for 3-beta-HSD as determined by 

immunohistochemistry (Fig. 8; Fig. 9) in both the unsupplemented control and the hormone-

treated groups. Hormone supplementation to the preovulatory explants induced a 

downregulation of aromatase (P < 0.0005) and an upregulation of cytochrome P450scc (P < 

0.005) whereas StAR and 3-beta-HSD intensity remained unchanged. Steroid 

supplementation to postovulatory explants increased the expression of aromatase, cytochrome 

P450scc, StAR and 3-beta-HSD immunoreactive proteins (P < 0.005, 0.0005, 0.0005 and 

respectively 0.0005). Staining intensity of positive tissue control samples were compared to 

negative tissue and negative antibody controls, which stained positive for all enzymes. 

Negative antibody and tissue controls were approximately zero (Fig. 9 a-c) for aromatase, 

cytochrome P450scc and StAR and very low for 3-beta-HSD (Fig. 9 d). Positive control 
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slides (follicular wall for aromatase and StAR and corpus luteum for cytochrome P450scc and 

corpus luteum for 3-beta-HSD) stained strongly positive (Fig. 9). 

 

 

 

Fig. 8. Epifluorescent pictures for aromatase (e-h), P450 scc (i-l) and StAR (m-p). 3β-

hydroxysteroid dehydrogenase/∆5→4-isomerase (brown) stained with 

immunohistochemistry and hematoxylin counterstaining (purple) (a-d). 

Immunohistochemistry staining for progesterone receptor (PR, brown) with hematoxylin 

counterstaining (purple) (q-t). A negative control for each staining is added in the middle 

of the row. Bar a-d and q-t = 50 µm; Bar e-p = 20 µm 
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Progesterone receptors 

Ratios of progesterone positive/negative cells (Fig. 8 q-t) were significantly lower in the 

postovulatory explants when compared to the preovulatory explants (P < 0.0005) (Fig. 10). 

Supplementation of preovulatory explants with 1 µg/ml progesterone and 10 ng/ml 17β-

oestradiol induced a highly significant decrease (P < 0.0005) in the ratio of progesterone 

receptor positive/negative nuclei. Ratios were comparable in the postovulatory explants 

Fig. 9. Average gray intensity (a-c) and chromogen intensity (d) in arbitrary units of slides 

equine oviduct explants stained by immunofluorescence (a-c) and immunohistochemistry 

(d) to detect immunoreactive protein of aromatase (P450AROM), P450SCC, STAR and 

HSD3B. Negative controls (NC) were negative for P450AROM, P450SCC and STAR. 

Follicular wall and corpus luteum (CL) served as positive control tissue.. Serosal 

(oviductal) tissue was negative control tissue. Error bars (confidence interval) with 

different label are significantly different. One-way ANOVA. 
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cultured with and without supplementation of 40 ng/ml of progesterone and  0 ng/ml of 17β-

oestradiol.  

 

          

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Percentage of progesterone receptor positive and negative nuclei in oviduct epithelial 

cells as determined by immunohistochemistry. Preovulatory explants (pre) and postovulatory 

explants (post) were cultured with or without respectively 1 µg/ml or 40 ng/ml cell-culture 

tested water soluble progesterone and 10 ng/ml or 80 ng/ml cell culture tested water soluble 

17β-oestradiol supplementation. The percentage of progesterone receptor positive nuclei was 

significantly higher in the unsupplemented preovulatory oviduct explants, when compared to 

the three other groups. Binary logistic regression; different labels in the bars correspond to 

significant differences. 
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DISCUSSION 

 

This report shows that steroid hormones influence the equine oviduct at the level of ciliary 

activity, glucose consumption, mRNA expression, steroidogenesis and progesterone receptor 

expression. This effect is present in the oviduct in vivo, since differences were observed 

between oviduct epithelial explants originating from mares in oestrus when compared to those 

from mares in the postovulatory stage. Moreover, this influence was also observed in oviduct 

explants in vitro after the addition of hormones to the culture medium. Interestingly, 

supplementation of the culture medium of preovulatory oviduct explants with steroid 

hormones in concentrations as they prevail in the postovulatory mare induced a change in the 

oviduct explants, approaching the in vivo postovulatory situation, at the level of ciliary 

activity, gene expression and progesterone receptor expression. The effect of preovulatory 

hormone levels on postovulatory explants was less pronounced, as explained below. 

The phenotype of the epithelial explants is very similar to that of oviduct epithelium collected 

in vivo (Nelis, et al. 2014). It consists of polarized, highly differentiated epithelial cells with 

basal nuclei and apical cilia and microvilli, as shown by histology (Fig. 8) and TEM (Fig. 4). 

No apparent influence of steroid hormones on the oviductal ultrastructure was observed. 

However the 4 experimental groups were not compared morphometrically with regard to 

quantitative features of different subcellular compartments such as number, form and 

dimension of organelles (golgi apparatus, rough and smooth endoplasmic reticulum, 

mitochondria and  nucleus). It is to be expected but not an absolute rule that increased 

steroidogenic activity in vitro as measured in the culture medium of postovulatory explants is 

accompanied by alterations in 2 subcellular compartments i.e the smooth endoplasmic 

reticulum and the mitochondrial compartment. The smooth endoplasmic reticulum would 

become more abundant, the mitochondria adapt a configuration with tubulovesicular cristae 

(Christensen and Gillim 1969). The dark cell degeneration (Krysko, et al. 2008, Leist and 

Jaattela 2001), as described earlier in oviductal explants in vitro (Nelis et al. 2013) but which 

was not detected in vivo (Desantis, et al. 2011), was observed in both preovulatory and 

postovulatory, as well as in both hormone treated and untreated explants (Fig. 4). Although 

this hypothesis needs to be confirmed, the dark cell degeneration is speculated to be induced 

by a caspase-non-dependent apoptotic process, established amongst others by hypoxia, 

nutrient depletion, waste accumulation, mechanical agitation, reactive oxygen species (Nelis, 

et al. 2014).  
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The ciliary beating was the highest in the unsupplemented preovulatory explants. This 

coincides with the physiological situation, as ciliary activity is stimulated by oestrogen and 

decreased by progesterone (Mahmood, et al. 1998). The treatment of preovulatory explants 

with progesterone and 17β-oestradiol concentrations as they prevail physiologically in the 

postovulatory oviduct induced a strong decrease in ciliary activity without jeopardizing the 

vitality of the explants (Fig. 2). This could be explained by the concentration-dependent 

reduction in ciliary activity caused by progesterone (Mahmood, et al. 1998), without decrease 

in the proportion of ciliated/non ciliated cells (Aguilar, et al. 2012). Despite the fact that high 

levels of 17β-oestradiol may counteract the progesterone mediated reduction in ciliary beating 

(Mahmood, et al. 1998), the addition of 17β-oestradiol to the postovulatory explants 

apparently did not reach a sufficient level to obtain this effect (Fig. 2). It should also be noted 

that more obvious effects could have been obtained when using oviducts from mares in the 

late luteal stage. However, in the light of embryo co-culture, since the scope of the present 

paper is to study oviduct explants that provide the most physiological environment for 

embryos, explants from early postovulatory oviducts were studied. 

Next to the effect on ciliary activity, 17β-oestradiol and progesterone can also influence the 

glucose consumption in the oviduct (Fig. 3). Horse embryos are cultured in vitro at relatively 

high levels (17 mM) of glucose (Hinrichs 2010) and that is why this parameter is especially 

interesting. Glucose consumption by the postovulatory oviduct explants was higher (Fig. 3) 

compared to the preovulatory explants, indicating a higher cellular activity (Leclerc, et al. 

2003) in order to optimize the microenvironment for gamete and embryo development and 

transport. Similarly, in bovine endometrium, maximum metabolic activity and glucose 

consumption was observed during progesterone dominance (Chase, et al. 1992). Nevertheless, 

the addition of postovulatory concentrations of progesterone (1 µg/ml) and 17β-oestradiol (10 

ng/ml) to preovulatory explants could not simulate glucose consumption as measured in the 

postovulatory explants. Higher glucose consumption is not only observed in tissues that are 

influenced by high progesterone concentrations, but also in tissues that produce progesterone 

themselves. An enhanced oxygen and glucose consumption was observed in progesterone 

producing luteal tissue compared with luteal tissues which lost their progesterone producing 

ability (Armstron and Black 1966). This finding is in line with the fact that postovulatory 

explants, which produce 100 times more progesterone compared with preovulatory explants 

(Table 3), consume significantly more glucose than their preovulatory counterparts (Fig. 3). 
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GLUT1, which plays an important role in the glucose transfer from the oviduct epithelium 

into the lumen along a gradient, maintains the adequate glucose concentration in the oviductal 

fluid to support the developing embryo (Tadokoro, et al. 1995). Progesterone upregulates 

while estrogen downregulates GLUT1 expression and glucose uptake (Frolova, et al. 2009). 

This was confirmed in our study, as GLUT1 expression was significantly higher in the 

postovulatory explants than in the preovulatory explants and as addition of postovulatory 

hormone concentrations to preovulatory explants induced upregulation of GLUT1 expression. 

Surprisingly, GLUT1 was also upregulated in postovulatory explants stimulated with 

preovulatory high 17β-oestradiol and low progesterone concentrations. This may be explained 

by a more explicit effect of progesterone, when compared to 17β-oestradiol and to the 

considerable amount of accumulating autologously produced progesterone (Table 3) which 

may induce GLUT1 expression in the postovulatory explants or by other factors which 

directly or indirectly upregulate GLUT.                   

Lactic acid production was not concomitantly enhanced in response to steroid stimulation. In 

mammalian cells, except in muscle cells and red blood cells, lactic acid fermentation of 

pyruvate is most likely occurring as a consequence of pyruvate accumulation following 

enhanced glycolysis (Nielsen, et al. 2001, Rose and Warms 1966).  

The mRNA expression of 11 genes, PAI1, PLAU, TGFA, TIMP1, MMP2, CSF, PTGER2, 

PTGER4, IGF1, VEGFA and GLUT1 was evaluated in pre- and postovulatory oviduct 

explants to elucidate hormone dependency. PAI1, TGFA, MMP2, CSF1, GLUT1 and PLAU 

expressions were upregulated in the postovulatory stage (Fig. 5) which strongly suggests their 

steroid-responsiveness and it is indicating that these proteins may play a relevant role in 

fertilization, the gamete- and embryo-maternal dialogue and/or early embryonic development 

(Buhi and Alvarez 2003).   

IGF1, VEGFA, TIMP1, PTGER2 and PTGER4 do not seem to be predominantly steroid 

regulated. Similar to the postovulatory in vivo situation, upregulation of MMP2, CSF1, PAI1 

and GLUT1 could be induced in preovulatory explants after three days of exposure to 

postovulatory hormone concentrations (Fig. 6). TGFA and PLAU expression was not altered 

after hormone supplementation, indicating that other (intermediate) factors may be involved 

in their regulation which are absent in vitro. In turn, addition of preovulatory concentrations 

of steroids to postovulatory explants could induce a downregulation only in CSF1 (Fig. 7). 

Overall, this may suggest a predominant stimulatory effect of progesterone on the modulation 
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of MMP2, CSF1, PAI1 and GLUT1. In the equine oviduct indeed, PAI1 with PLAU and also 

TIMP1 with MMP2 are positively associated in the postovulatory but not the preovulatory 

stage, confirming their predominant role in maintaining and stabilizing the oviductal milieu in 

the anticipation of fertilization and the arrival of the embryo. This also suggests that these 

proteins may play a relevant role in fertilization, the gamete- and embryo-maternal dialogue 

and/or early embryonic development (Buhi and Alvarez 2003).  

MMP2 is involved in tissue remodelling (Bonnans, et al. 2014, Duc-Goiran, et al. 1999) and 

cell motility during embryogenesis (Duong and Erickson 2004, Page-McCaw, et al. 2007). 

Moreover, together with its inhibitor TIMP1, its protein and gene expression is strictly 

controlled and balanced in order to regulate degrading, reconstruction of the extracellular 

matrix and consequently cellular adhesion, cell migration and proliferation (Duong and 

Erickson 2004, Zhao, et al. 2002). Indeed, mRNA expression of MMP2 is strongly positively 

associated with TIMP1, TGFA, PAI1, PLAU, CSF and GLUT1 in the postovulatory stage and 

with PAI1 and TIMP1 in the preovulatory phase. In bovine endometrial cells in vitro, MMP2 

expression is enhanced by high doses of progesterone (Hashizume, et al. 2003). Also in the 

horse oviduct, MMP2 was increased in the early luteal phase (Fig. 5). Moreover, 

supplementation of postovulatory hormones characterized by high progesterone 

concentrations to preovulatory explants upregulated mRNA expression of MMP2 (Fig. 6). In 

contrast, in the bovine oviduct, MMP2 mRNA is downregulated after ovulation (Gabler, et al. 

2001). This finding could be explained by the species, cell-type and tissue specific nature of 

the expression of MMPs (Rodgers, et al. 1994). As in the cow (Gabler, et al. 2001), PLAU 

expression was higher after ovulation (Fig. 5). PLAU may rebuild or degrade cumulus cells 

during fertilization or early development (Roldan-Olarte, et al. 2005) and/or could be 

involved in sperm capacitation or sperm-egg interaction (Diaz, et al. 2000). An important 

inhibitor of PLAU, PAI1, was also upregulated in the postovulatory phase. However, 

supplementation of postovulatory or preovulatory concentrations of progesterone and 17β-

oestradiol could not mimic this phenomenon (Fig. 6; Fig. 7). PAI1, upregulated in the same 

order of magnitude as PLAU (Fig. 5) may act as a stabilizer of extracellular matrix integrity of 

the oviduct epithelium and the zona pellucida by neutralizing the inherent plasminogen 

activator activity of cumulus-oocyte complexes (Kim and Menino 1995, Yamada, et al. 1996), 

the embryo and/or the oviduct itself (Gabler, et al. 2001, Kouba, et al. 2000b). 
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CSF1 (or M-CSF), a hematopoietic growth factor, plays a role in the regulation of 

macrophages in the reproductive tract as well as its influence on other cells like trophoblast 

cells and oocytes (Cohen, et al. 1997). CSF1, which was significantly upregulated in the 

postovulatory oviduct explants, is proven to stimulate blastocyst development (Pampfer, et al. 

1991b), to accelerate blastocoel formation and to increase the number of trophectodermal 

cells (Bhatnagar, et al. 1995).    

Also expression of TGFA, together with TIMP1 fulfilling an antiproteolytic function (Pepper, 

et al. 1990), is dependent on cell type and hormonal status (Chegini, et al. 1994, Pfeifer and 

Chegini 1994, Schell, et al. 1994, Schmidt, et al. 1994, Stevenson and Wathes 1996, Zhao, et 

al. 1994). TGFA is also expressed in the human (Morishige, et al. 1993) and porcine 

(Wollenhaupt, et al. 2001) oviduct. TGFα exerts its action through epidermal growth factor 

receptors (EGF-R) (Wollenhaupt, et al. 2001). In porcine oviductal tissue, oestrogen 

stimulates EGF-R protein concentration (Wollenhaupt, et al. 1997). Progesterone and 

oestradiol together caused a more intense increase than did each steroid alone (Watson, et al. 

1996). Reports concerning the steroid responsiveness of oviductal TGFA are conflicting: 

oestrogen dependency (Lei and Rao 1992) as well as unresponsiveness (Kennedy, et al. 1994) 

to steroids have been described. In our experiments, TGFA was upregulated in the early 

postovulatory phase compared to the preovulatory phase, indicating a stimulatory experiment 

of progesterone in the horse (Fig. 5). The comparable levels of IGF1 expression shortly 

before and after ovulation might be due to its spatial and regional distribution. This is 

confirmed by findings in sows (Buhi and Alvarez 1998) and cows (Schmidt, et al. 1994). 

IGF1 concentrations were higher on day 0 and day 2 after ovulation. In contrast, in oviducts 

of mice, IGF1 is regulated by oestradiol through (putative co-localized) estrogen receptors α 

(Shao, et al. 2007a). In the oviductal lumen, locally produced IGF1 may regulate embryo 

development directly or indirectly via IGF1Rs (LeRoith, et al. 1995b), present on the oviduct 

epithelium, resulting in differentiation, mitogenesis and inhibition of apoptosis (Jones and 

Clemmons 1995, Leroith, et al. 1995a, Ullrich, et al. 1986).  

Especially in the horse, the fertilization and early embryo development are strongly dependent 

on a precisely orchestrated interaction between the embryo and the maternal genital tract. The 

equine embryo indeed produces prostaglandin E2 (PGE2). PGE2 binds to PTGER2 or 

PTGER4, resulting in a relaxation of the oviduct which hastens the oviductal transport of 

equine embryos and opens up the uterotubal papilla in order to allow uterine entry (Weber, et 
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al. 1991a, b). However, mRNA expression of PTGER2 and PTGER4 was not significantly 

altered (P = 0.2) in the equine oviduct in the postovulatory stage, coinciding with the 

physiological stage at which interaction with the embryo occurs in vivo.  

These results show that preovulatory oviduct explants, primed by steroids in vivo, are 

responsive to in vitro stimulation with postovulatory oviductal progesterone and 17β-

oestradiol concentrations and approach the in vivo condition at the level of functionality and 

gene expression. This confirms again that our explant model remains functional and 

responsive for at least three days (Nelis, et al. 2014). The novel finding that equine epithelial 

explants are capable of producing large amounts of progesterone and are able to remove 

considerable amounts of oestrone, 17β-oestradiol and testosterone from the culture medium 

further substantiates the functional intactness of the culture system (Table 3). This substantial 

progesterone production by the postovulatory oviduct explants coincides with findings in 

other species (Kendle and Lee 1980, Richardson and Oliphant 1981, Spilman and Wilks 1976, 

Takeda, et al. 1978). While progesterone concentrations were significantly increased in 

medium conditioned by the postovulatory explants, concentrations of 17β-oestradiol, oestrone 

and testosterone in the medium were similar in the presence of preovulatory and 

postovulatory explants. Lower concentrations of these hormones were detected in the 

presence of oviduct explants, when compared to the explant-free control medium, indicating 

that the oviduct explants might bind or metabolize 17β-oestradiol, oestrone and testosterone 

from the culture medium. The steroids measured in explant free medium originates from the 

foetal calf serum (Table 3) (Gstraunthaler 2003). 

To gain insight in the mechanisms underlying the production and the metabolism of steroid 

hormones by the oviduct cells, the presence of the immunoreactive proteins of four enzymes 

involved in the steroidogenesis was localized and quantified in the explants. Steroidogenic 

acute regulatory protein (StAR), which initiates and catalyses steroidogenesis by delivering 

cholesterol from the outer mitochondrial membrane to the inner membrane (LaVoie and King 

2009), was significantly higher in the postovulatory explants (Fig. 9). Therefore, increased 

StAR in the postovulatory stage could be at the basis of the higher progesterone production, 

as observed in the postovulatory stage. StAR was further increased after supplementation with 

preovulatory hormones, which could be due to a reported stimulatory effect of 17β-oestradiol 

(Townson et al. 1996). The regulation of StAR is very complex and not fully understood 

(LaVoie and King 2009, Stocco 2001, Stocco, et al. 2005). Our results suggest higher StAR 
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immunoreactive protein expression in the postovulatory explants, under progesterone 

dominance, and a further increase by supplemental addition of preovulatory hormones, 

characterized by a high oestradiol concentration. Therefore, both hormones could have a 

stimulatory effect on StAR.  

Immunoreactive protein expression of cytochrome P450 cholesterol side chain cleavage 

(cytochrome P450scc; CYP11A1 gene), which converts cholesterol to pregnenolone (King 

and LaVoie 2012), is also significantly higher in the postovulatory compared with the 

preovulatory explants (Fig. 9). Therefore cytochrome P450scc is the second possible 

candidate enzyme involved in the high progesterone production by the postovulatory explants. 

Cytochrome P450scc is reported to be stimulated by amongst others oestradiol (Urban, et al. 

1991) and progesterone (Swan, et al. 2002). This coincides with our observations in vitro, 

where cytochrome P450scc in both pre- and postovulatory equine oviduct explants was 

upregulated after supplementation of the culture medium with progesterone and 17β-

oestradiol (Fig. 9). 

3β-Hydroxysteroiddehydrogenase (3-beta-HSD) catalyses the conversion of pregnenolone to 

progesterone (LaVoie and King 2009). In the rat, its expression is enhanced by 17β-oestradiol 

(Munabi, et al. 1983) and suppressed by progesterone (Munabi, et al. 1983) but the regulation 

of the HSD3B gene is species and cell type specific (Simard, et al. 2005). This was confirmed 

in our model as 3-beta-HSD immunoreactive protein expression was higher in preovulatory 

oviduct explants than in unstimulated postovulatory explants. Moreover, expression of 3-beta-

HSD could be induced in the postovulatory explants by culture in the presence of hormone 

concentrations as they prevail preovulatory in vivo. A similar event was observed in rat 

ovarian cells (Munabi, et al. 1983): progesterone reduces whereas 17β-oestradiol increases 3-

beta-HSD activity. Overall stimulation of 3-beta-HSD by preovulatory hormones in our study 

coincided with literature findings, but 3-beta-HSD could not explain the high progesterone 

production in the postovulatory stage. 

Besides the support for a steroid induced capacity to produce progesterone, our findings also 

provide evidence that the equine oviduct may convert testosterone to 17β-oestradiol, 

catalyzed by aromatase (Fig. 8; Fig. 9; (Nelis, et al. 2015a). Oviduct aromatase activity has 

been demonstrated before in the frog (Kobayashi, et al. 1996), in human (Li, et al. 2003) and 

in the rat oviduct (Tetsuka, et al. 1998). Literature data concerning the endocrine regulation of 
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aromatase expression by 17β-oestradiol and progesterone is contradictory. In equine oviduct 

explants, immunoreactive protein of aromatase was stimulated by preovulatory hormones and 

reduced by postovulatory hormones, suggesting a possible positive feedback by 17β-

oestradiol and a stimulatory effect of progesterone. Apart from the potential aromatase 

activity, metabolisation of testosterone by the equine oviduct was also suggested by a reduced 

concentration of testosterone in the culture medium in the presence of equine oviduct explants. 

Testosterone concentrations in the control medium, originating from the supplementation of 

FCS to the culture medium, were higher than the concentrations in the medium with explants. 

Moreover, testosterone levels in the medium with the postovulatory explants were higher 

compared with its preovulatory counterpart (Table 3), again suggesting increased 

metabolisation of testosterone in the preovulatory stage, which coincides with the increased 

presence of aromatase immunoreactive protein. Also 17β-oestradiol and oestrone 

concentrations seem to be much lower in the culture medium of the explants compared with 

the control medium (Table 3). Oestrone and 17β-oestradiol may be converted to oestriol, as 

described in the liver and placenta (Hanukoglu 1992) or might be converted by a variety of 

isoenzymes of P450 into quinols (Ohe, et al. 2000).  

The observed high concentrations of progesterone associated with the postovulatory condition 

in vivo and in vitro have further repercussions on the progesterone receptor expression. 

Significantly lower ratios of progesterone receptor positive nuclei were observed in the 

oviductal explants from mares in the postovulatory stage, when compared with the 

preovulatory explants (Fig. 10), confirming previous findings in vivo (Nelis, et al. 2015a). 

Again, this effect could be elegantly mimicked in vitro, as addition of postovulatory hormones 

to preovulatory explants resulted in a significant downregulation of the progesterone receptors 

(Fig. 10). Our hypothesis is that an elevated progesterone concentration in the ipsilateral 

oviduct may decrease its own receptor expression by means of a negative feedback 

mechanism, as has been described previously in guinea pigs (Alkhalaf, et al. 1992, Hai, et al. 

1977), macaques (West and Brenner 1985), cats (West, et al. 1977) and mice (Tibbetts, et al. 

1998). Results obtained in bovine oviduct cells stimulated with progesterone and oestradiol in 

vitro (Ulbrich, et al. 2003) confirm the downregulating capacity of progesterone on its own 

receptor. 

In conclusion, for the first time, we used an equine simulation of the pre- and the 

postovulatory changes in progesterone and oestradiol concentrations and showed that they 



Chapter 5.1 Discussion 

192 

 

were able to modify ciliary activity, energy metabolism, gene expression, immunoreactive 

steroidogenic enzyme expression and progesterone receptor expression in oviductal explants. 

Furthermore, a set of embryotrophic genes was shown to be upregulated in the oviductal 

epithelium originating from mares in the postovulatory cycle stage. In addition, these cycle-

related changes indicate the importance of steroids, especially progesterone, in fertilization, 

embryo growth and viability, as well as of the oviduct, both as a target of steroids and as a site 

of steroid biosynthesis and metabolism. An overview of the findings is presented in Fig. 11. 

These findings are of significant value and can be implemented in in vitro oviduct-embryo co-

culture models (Nelis, et al. 2014) in order to elaborate on the deciphering of endocrine, 

autocrine and paracrine signalling during early embryo development in the horse. 
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Fig. 11 A synthesis of the outcomes after the stimulation of preovulatory explants with 

postovulatory concentrations of progesterone and 17β-oestradiol and vice versa. 
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CO-CULTURE WITH EQUINE EMBRYOS AFFECTS GENE EXPRESSION IN 

EQUINE OVIDUCTAL EPITHELIAL EXPLANTS 

ABSTRACT  

The equine embryo spends an exceptionally long time in the oviduct. While studies in other 

species demonstrated an effect of the presence of embryos on oviductal gene expression and 

protein production, little is known about this interaction in the horse. The aim of this study 

was to determine the effect of co-culture of horse embryos and oviduct epithelial explants on 

function and gene expression of those explants. Equine oviduct explants and embryos were 

produced in vitro and cultured in 50 μl-droplets of DMEM-F12 with 10% FCS. After 9.5 days 

of co-culture, explants were evaluated for ciliary activity and subsequently frozen for gene 

expression analysis of 11 embryotrophic genes by RT-qPCR. The ciliary beating of the 

explants was not affected, but co-culture affected gene expression. The explants cultured in 

the presence of embryos showed a significant upregulation of PTGER2, TIMP1 (0.0005 < P < 

0.005) and TGFA and MMP2 (0.01 < P < 0.05). A tendency (0.05 < P < 0.09) of upregulation 

was observed for CSF1 and PAI1. Expression of HIF1A, TGFA, PTGER4, VEGFA and PLAU 

was unaffected. The upregulated genes have been described to stimulate embryonic 

development and embryo transport to the uterus, and to modulate oviductal matrix turnover. 

In conclusion, co-culture did not affect ciliary activity of oviduct explants, but expression of 4 

embryotrophic genes was significantly upregulated indicating that the equine embryo can 

convey its presence to the oviduct explant in vitro. 

 

INTRODUCTION 

The dynamic, fine-tuned environment of the oviduct provides the optimal environment for 

early embryonic development. The oviduct epithelium alters its secretory profile in response 

to cycle-stage related and steroid-induced changes (Bauersachs, et al. 2003b, Bauersachs, et al. 

2004). The oviduct does not only respond to endocrine signals and to signals from gametes 

(Bauersachs, et al. 2003b, Fazeli, et al. 2004, Georgiou, et al. 2005, Kodithuwakku, et al. 

2007) but also to embryo-secreted factors. Indeed, porcine, murine and bovine embryos in 

vivo influence the oviduct in order to create their own micro-environment by modulating the 

oviductal transcriptome and proteome (Chang, et al. 2000, Lee, et al. 2002, Maillo, et al. 

2015). A myriad of proteins are involved in the dialogue between the oviduct and the embryo. 



Chapter 5.2 Of Embryos and Oviductal Genes in Vitro 

209 

 

The molecules performing this dialogue include growth factors, cytokines, angiogenic factors, 

apoptotic factors and adhesion molecules (Hill 2006). These ligands and receptors exert their 

effects in a precisely orchestrated interaction between the embryo and the maternal genital 

tract, resulting in the activation of signal transduction pathways, inducing changes in the 

embryonic (Cordova, et al. 2014, Lee, et al. 2001, Lloyd, et al. 2009) or the oviductal 

transcriptomic profile (Bauersachs, et al. 2003b, Fazeli, et al. 2004, Georgiou, et al. 2005, 

Kodithuwakku, et al. 2007, Lee, et al. 2002). In the horse, a striking and unique example of an 

early maternal response to the embryo’s signaling is the stage-specific production of PGE2 by 

the equine conceptus in order to relax the oviductal smooth muscle cells of the uterotubal 

junction to allow uterine entry (Freeman, et al. 1992, Weber, et al. 1991a, b). The intimate 

dialogue between the mature oocyte, the fertilizing sperm and the oviduct seems to be crucial 

since conventional in vitro fertilization in the horse yields discouraging and non-reproducible 

results (Hinrichs 2010). Moreover, equine embryos produced in vitro by ICSI are genetically, 

functionally, morphologically and developmentally aberrant compared with their in vivo 

counterparts (Smits, et al. 2011, Smits, et al. 2012b, Tremoleda, et al. 2003). This emphasizes 

that especially in the horse, early embryo development is critically dependent on the efficient 

interplay with the oviduct.  

It can be assumed that the oviduct represents the most optimal environment for the early-stage 

equine embryo. Hence, we suppose that oviductal cells derived from the mare provide specific 

mitogenic factors that would normally be present in the oviduct or non-specific factors that 

improve the culture environment by reduction of oxygen tension, by removing waste products 

or by providing substrates and co-factors (Orsi and Reischl 2007). There are some data 

confirming this hypothesis. Successful attempts have been undertaken to improve in vitro 

fertilization and blastocyst rates using an oviductal co-culture system in humans, cows and 

pigs (Bongso and Fong 1993, Ellington, et al. 1990, Eyestone and First 1989, Rexroad 1989, 

Sakkas, et al. 1989, Smith, et al. 1992, Xu, et al. 2000). However, in the horse, a positive 

effect of oviduct co-culture has up to now been described with in vivo (Ball, et al. 1993, 

Freeman, et al. 1991, Weber, et al. 1993) but not with in vitro-derived (Choi, et al. 2004b) 

embryos. Moreover, very few signals involved in the embryo-maternal interplay have been 

identified in the horse so far (Ambruosi, et al. 2013, Mugnier, et al. 2009, Weber, et al. 1991b) 

and data on alterations in the gene expression of the equine oviduct in response to the 

presence of developing embryos are lacking. In the light of the improvement of in vitro 
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equine embryo production and the optimization of a (semi-)defined medium, a thorough 

understanding of the underlying mechanisms of the embryo-oviductal interplay is required. 

The aim of the study was to elucidate the role of developing embryos on the gene expression 

in the oviduct. Therefore, the mRNA expression of a set of genes is evaluated in oviductal 

cells cultured with or without equine zygotes produced by ICSI. These genes, plasminogen 

activator inhibitor 1 (PAI1), urokinase plasminogen activator inhibitor (PLAU), transforming 

growth factor α (TGFA), tissue inhibitor of matrix metalloproteinase-1 (TIMP1), matrix 

metalloproteinase (MMP2), colony stimulating factor (CSF1), prostaglandin receptor E2 

(PTGER2) and E4 (PTGER4), vascular endothelial growth factor (VEGFA), hypoxia 

inducible factor 1α (HIF1A) and glucose transporter 1 (GLUT1) were selected based on their 

embryotrophic, embryo protective function (Ball, et al. 2013, Buhi, et al. 2000, Duc-Goiran, 

et al. 1999) or hypoxia-marking capacity (Chi, et al. 2006). In addition, the effects on ciliary 

activity and the occurrence of dark cell degeneration, as described earlier in our oviduct 

explant model (Nelis, et al. 2014), were assessed. The influence of co-culture on blastocyst 

percentage and blastocyst diameter was also evaluated. 

  

MATERIALS AND METHODS 

Equine embryo production  

Oocytes were collected, matured and fertilized and zygotes were cultured as described earlier 

(Smits, et al. 2010, Smits, et al. 2012a). Briefly, ovaries were collected from slaughtered 

mares and all follicles larger than 5 mm were aspirated. The oocytes were matured during 26 

hours in Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM-F12; 

Invitrogen) based medium in an atmosphere containing 5% CO2 in air (Galli et al., 2007). 

After the removal of the surrounding cumulus cells by means of gentle pipetting, mature 

oocytes with a polar body were fertilized by Piezo-driven ICSI. Frozen sperm from a stallion 

of proven fertility was thawed, centrifuged over a 90%/45% Percoll® gradient, washed with 

calcium free Tyrode’s Albumin-Lactate-Pyruvate (TALP) solution and centrifuged again at 

400 x g for 10 minutes. During ICSI the oocytes were kept in 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES) buffered SOF medium and the sperm in 9% 

polyvinylpyrrolidone in PBS. All manipulations were performed on a heated plate (38.5 °C) 

of an inverted microscope. ICSI was performed using a Piezo Drill (Prime Tech Ltd., Ibaraki, 
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Japan) as described before (Smits, et al. 2012a). The injected oocytes were cultured in groups 

of 14-21 embryos in 50 μl droplets of DMEM-F12 with 10% fetal calf serum at 38.5 °C in 5% 

CO2, 5% O2 and 90% N2. On day 2.5 after fertilization, the embryos which were not cleaved, 

were removed and half of the medium was changed. On day 6, again half of the medium was 

changed and on day 9.5 the embryonic development was evaluated. The size of the 

blastocysts was measured using a stereomicroscope fitted with an eyepiece micrometer. 

 

Equine oviduct explant culture and evaluation  

Oviduct epithelial explants were obtained as described in Nelis et al., (2012).  

Vitality was judged by evaluating ciliary activity. Only cultures with more than 99% of 

membrane intact cells, determined by Trypan blue staining (Sigma-Aldrich, Diegem, 

Belgium), 18 h after start of culture were used. The time span from slaughter of mares to 

seeding of cells was approximately 3 to 4 h. Explants were considered showing ciliary activity 

when bordered by vigorously beating cilia, clearly seen on the inverted microscope (400x 

magnification). The number of explants showing dark zones (Nelis, et al. 2014) was also 

determined in each group.  

 

Experimental designs 

Equine oviduct explants (n = 30-35) were cultured without (Fig. 1 a) and with (Fig. 1 b) 

equine ICSI-derived zygotes (n = 14-21). In a third group, equine zygotes were cultured 

without explants (Fig. 1 c). Ciliary activity, black zones and gene expression in oviduct 

explants were evaluated after 9.5 days of culture. Embryo cleavage rate and, blastocyst 

percentage and diameter were evaluated after respectively 2.5 and 9.5 days. 
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Fig. 1. Experimental set-up. Oviduct explants were cultured without (a) and with equine 

developing ICSI-derived embryos (b) for 9.5 days. The effect of the presence of the embryos 

on ciliary activity, the prevalence of dark cell degeneration and gene expression was assessed. 

On the other hand, the effect of co-culture on cleavage rate and blastocyst percentage and 

diameter was evaluated. Embryos cultured without oviduct cells served as control (c). 

 

RNA extraction and quantitative RT-PCR 

After 9.5 days of culture, ciliary activity and the prevalence of dark cell degeneration was 

evaluated as aforementioned. The explants were washed 2 times in PBS (14190, Gibco, 

Invitrogen, Ghent, Belgium) and subsequently snap-frozen in lysis buffer and stored at -80°C 

in cryovials. Lysis buffer constituted of 10% RNasin Plus RNase inhibitor (Promega, Leiden, 

The Netherlands), 5% dithiothreitol (Promega, Leiden, The Netherlands), 0.8% Igepal CA-

630 (Sigma Aldrich, Diegem Belgium) in RNase free water (Qiagen, Venlo, The Netherlands). 

Total RNA was extracted with the RNeasy mini kit (Qiagen) according to the manufacturers’ 

instructions, including DNAse digestion and transcribed into cDNA (iScript cDNA synthesis 

kit, Bio-Rad, Nazareth, Belgium) as described earlier (Nelis, et al. 2014). Primer design and 

validation, RNA extraction and quantitative RT-PCR were performed according to the MIQE-

guidelines (Bustin, et al. 2009) and as also reported earlier (Nelis, et al. 2014). The sequences 

of forward and reverse primers, optimal primer annealing temperature, and amplification 
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efficiency of all primers (Integrated DNA Technologies, Leuven, Belgium and Sigma-Aldrich, 

Bornem, Belgium) of the genes of interest (CSF1, GLUT1, HIF1A, MMP2, PAI1, PTGER2, 

PTGER4, TGFA, TIMP1, PLAU and VGFA) and of the reference genes (ACTB, UBB and 

RPL32) have been reported earlier (Nelis, et al. 2014, Nelis, et al. 2015b). 

All 252 RT-qPCR reactions (9 explant samples per group (n = 2); 3 reference genes and 11 

target genes) were performed in duplicate with 2.5 µl of sample, 7.5 µl of the KAPA SYBR 

FAST qPCR Master Mix (Kapa Biosystems, Woburn, MA, USA), 0.6 µl of 10 µM forward 

and reverse primer and 3.8 µl of water. A blank, a melting curve and a 5- or 10-fold serial 

dilution series of pooled oviductal cDNA were included for each gene to check for 

contamination and specificity and to acquire PCR efficiencies (Nelis, et al. 2014, Nelis, et al. 

2015b) based on a relative standard curve. Calculation of the Cq values, PCR efficiencies, 

correlation coefficients and analysis of the melting curves was performed by means of iCycler 

iQ Optical System Software Version 3.0a (Biorad, Nazareth, Belgium). All quantification 

cycle (Cq) values were converted into raw data using these PCR efficiencies and normalised 

by dividing them by their respective normalisation factor. This normalisation factor was 

determined per sample by calculating the geometric mean of the validated reference genes 

UBB, ACTB and RPL32 (Bogaert, et al. 2006, Nelis, et al. 2014, Nelis, et al. 2015b, Smits 

2009). 

 

Statistical analysis 

To determine significant differences in the blastocyst rate, binary logistic regression with the 

Nagelkerke pseudo R
2
 and χ

2
 fit tests was implemented. Independent samples t-tests or 

independent samples Mann-Whitney U-test as implemented in SPSS 19 for Windows (SPSS 

IBM, Brussels, Belgium) were used to compare target gene expression differences and 

blastocyst diameters, depending on whether or not a Gaussian distribution was obtained after 

logarithmic transformation of the data. Differences were considered significant at P < 0.05. 

Statistical analysis and graph plotting was performed with SPSS 21. Power analysis and 

sample size calculation (α = 0.05; power = 0. 5 - 0.99) for gene expression studies were 

performed using Piface version 1.7 (Lenth 2007); University of Iowa; 

http://homepage.stat.uiowa.edu/,rlenth/Power/; accessed July 2013). 
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RESULTS 

The influence of co-culture on blastocyst rate and diameter 

Of the total number of 82 and 84 injected oocytes (3 replicates), 53 and 52 zygotes reached 

the cleavage stage in the control respectively the co-cultured group. Six (11%), respectively 

12 (23%) of these 2-cell stage embryos reached the blastocyst stage. A tendency for increased 

blastocyst rate in the co-culture group could be observed, albeit not significant (P = 0.1; 

Table 1). No significant difference in blastocyst diameter was detected (P > 0.05; Table 1). 

 

 

 

 Injected 

oocytes 

Cleaved zygotes 

(% of injected oocytes) 

Blastocyst stage 

(% of cleaved oocytes) 

Blastocyst diameter 

+/- SD (µm) 

no co-culture 82 53 (65 %) 6 (11 %) 153.4 +/- 14.9 

co-culture 84 52 (62 %) 12 (23 %) 154.6 +/- 13.3 

 

The influence on the functionality and morphology of oviduct explants 

No significant differences were observed in the percentage of explants showing dark cell 

degeneration. 49 (64/313) of the control and 42 % (55/131) of the co-cultured explants 

showed dark cell degeneration (P = 0.264) whereas 59 (77/131) and 60 % (78/131) showed 

ciliary activity (P = 0.269).

 

The influence of co-culture on the gene expression of oviduct explants 

A highly significant upregulation of the RNA expression of PTGER2 (2-fold) and TIMP1 (4-

fold) (0.0005 < P <0.005), and a significant upregulation of the RNA expression of MMP2 

(3.5-fold) and TGFA (2-fold) were observed (0.01< P < 0.05) in the co-cultured explants 

compared to the control preovulatory explants. A tendency to upregulation (0.05 < P < 0.09; 

Table 1. Percentage of cleaved oocytes that develop to the blastocyst stage and blastocyst 

diameter when cultured with and without oviduct explants for 9.5 days (co-culture) . SD = 

standard deviation. 
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1.5-fold) of both CSF1 and PAI1 expression in oviduct explants with embryo co-culture was 

shown. There were no differences in expression levels of GLUT1, HIF1A, PLAU, PTGER4 

and VEGFA between both groups (Fig. 2). 

 

Fig. 2. Mean normalized gene mRNA expression of oviduct explants cultured with and 

without equine developing embryos. MMP2, PTGER2, TGFA and TIMP1 were compared to 

the control group upregulated in response to the presence of embryos. Independent samples t-

tests or independent samples Mann-Whitney U-test. Error bars = 95 % confidence interval 

with mean value. * 0.005 < P < 0.05; ** 0.0005 < P < 0.005.  
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DISCUSSION 

In this study, we demonstrated that the equine embryo is able to signal its presence to the 

oviduct cells in vitro by modulating the oviduct’s gene expression profile in order to establish 

an environment in favour of the optimal requirements of the early developing embryo.  

The finding that the oviduct is able to respond to embryonic stimuli in vitro by altering its 

transcriptome has also recently been solidly established in the cow by means of microarray 

screening of the oviductal transcriptome (Schmaltz-Panneau, et al. 2014). In total, 33 genes, 

mostly involved in the delicate balance between pregnancy recognition and protection against 

the oviductal immune response, were upregulated in cultured oviductal cells as a reply to 

embryonic stimuli (Schmaltz-Panneau, et al. 2014). A similar effect on the oviductal 

transcriptome in response to early-stage embryos has also been reported in the in vivo 

embryo-bearing bovine (Maillo, et al. 2015), porcine (Alminana, et al. 2012) and human 

(Hess, et al. 2013) oviduct.  

In our study, the mRNA expression of PAI1, PLAU, TGFA, TIMP1, MMP2, CSF1, PTGER2, 

PTGER4, VEGFA, HIF1A and GLUT1 was evaluated in oviduct explants using RT-qPCR 

after 9.5 days of co-culture with ICSI-derived equine embryos. It was demonstrated earlier 

that these genes play a role in early reproductive processes (Ball, et al. 2013, Bhatnagar, et al. 

1995, Buhi and Alvarez 2003, Buhi, et al. 1997, 2000, Chi, et al. 2006, Duc-Goiran, et al. 

1999, Merkl, et al. 2010, Nelis, et al. 2015b, Nelis, et al. 2013, Roldan-Olarte, et al. 2012, 

Ulbrich, et al. 2011). 

TIMP1, MMP2 and PTGER2 were markedly upregulated (2 – 4-fold; P < 0.05) while CSF1 

and PAI1 showed a tendency to upregulation (1.5-fold; 0.05 < P < 0.09) in response to 

embryonic stimuli (Fig. 2). It could consequently been deduced that these factors participate 

in the optimization of the oviductal milieu during the embryo’s passage through the oviduct. 

Indeed, MMPs and TIMPs are crucial factors in the remodeling of extracellular matrices 

(ECM) (Ulbrich, et al. 2011, Visse and Nagase 2003). The ECM consists of mainly collagen 

and proteoglycans through which metabolites, nutrients, ions and growth factors may diffuse 

(Ulbrich, et al. 2011). Thus, the ECM functions as a “mailbox” between the oviduct and the 

embryo (Wolf, et al. 2003a). MMPs degrade the ECM but contribute at the same time to the 

activation and liberation of growth factors, such as TGFA (Whiteside, et al. 2001) which was 

also upregulated in our study (Fig. 2). These activated growth factors support embryo 
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development by modulating differentiation, cell migration and vascularisation (Nagase, et al. 

2006). The inhibitors of MMPs, TIMPs, counterbalance the proteolytic effects of MMPs on 

both the oviduct and the embryo, in particular the zona pellucida (Buhi, et al. 1997, 2000) in 

order to create a well-balanced ECM turn-over (Nagase, et al. 2006, Ulbrich, et al. 2011). The 

biological importance of TIMPs has been substantiated in vitro in cows (Hwang, et al. 2000) 

and in vivo in mice (Nothnick 2001). Indeed, adding TIMP1 to bovine embryo culture 

medium increased the percentage of morulae or blastocysts (Hwang, et al. 2000) while TIMP-

deficient mice exhibit lower pregnancy rates (Nothnick 2001). Interestingly, TIMPs were also 

upregulated in endometrial cells in mares (Klein, et al. 2010, Merkl, et al. 2010), cows 

(Ulbrich, et al. 2011), sheep (Gray, et al. 2006) and women (Giudice 1999) in response to an 

embryo during the first 2 weeks of pregnancy. This corroborates that TIMPs also play a 

considerable role in the uterus during the period of embryo mobility and 

attachment/implantation. 

TGFA is also upregulated in co-cultured oviduct explants (Fig. 2). The importance of TGFA 

in early embryo development is further substantiated by the fact that 4-cell porcine embryos 

in vivo are already able to strongly upregulate TGFA oviductal mRNA (Chang, et al. 2000). 

Moreover, TGFA reduces the number of apoptotic cells in mouse embryos (Brison and 

Schultz 1998) and has an effect on proliferation and differentiation of mammalian embryonic 

cells and extra embryonic tissues (Lysiak, et al. 1993, Reneker, et al. 1995). 

As an obvious example that the equine embryo is able to communicate with its environment 

from day 5 on, it has been demonstrated that the equine embryo regulates its own transport 

through the oviduct by producing PGE2 in order to relax the smooth muscle cells to allow 

uterine entry (Freeman, et al. 1992, Weber, et al. 1991a, b). The fact that in the co-cultured 

explants, PTGER2 but not PTGER4 was upregulated (Fig. 2) may substantiate further the 

interaction of embryo-derived PGE2 with the oviductal PTGER2 but not with PTGER4, in 

order to open up the uterotubal papilla (Freeman, et al. 1992, Weber, et al. 1991a, b). Given 

the widespread distribution of PTGER2 in epithelial, endothelial and in muscular cells of the 

oviduct (Ball, et al. 2013) it could be deduced that, next to modulating muscular activity, 

PGE2 exerts diverse other effects on the oviduct (Ball, et al. 2013). Since PTGER2 is 

expressed in both secretory and ciliated cells (Ball, et al. 2013), a regulatory role of PGE2 on 

oviductal secretion (Desantis, et al. 2011) as well as on oviductal ciliary activity may be 

suggested. Indeed, embryo-derived PGE2 has been described to increase ciliary beat in 
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laboratory species (Hermoso, et al. 2001, Verdugo, et al. 1980), indicating that next to 

steroids (Nelis, et al. 2015b), also the equine embryo may modulate oviductal ciliary activity. 

However, in the co-cultured group, the percentage of explants showing ciliary activity was not 

different compared to the control group. A similar observation has been reported in the cow 

and in women in vivo (Kolle, et al. 2009, Patek, et al. 1972, Verhage, et al. 1979). The 

presence of an embryo may keep the ciliary beating relatively constant to ensure mucociliar 

clearance (Kolle, et al. 2009, Patek, et al. 1972, Verhage, et al. 1979).  

Live cell imaging may be an interesting approach to visualize tiny changes in ciliary beat 

frequency and pattern of the oviductal cells in the presence or absence of an embryo (Kalab, 

et al. 1993, Kolle, et al. 2009, Kolle, et al. 2010, Lyons, et al. 2006). 

The importance of PGE2 and PTGERs in the embryo-maternal dialogue is further emphasized 

by the fact that PTGER2 and PTGER4 are also upregulated in the equine endometrium as a 

response to the presence of a day 8-12 embryo while potential target genes of conceptus 

derived PGE2 are concomitantly enhanced (Klein, et al. 2010, Merkl, et al. 2010). 

CSF1 and PAI1 showed a tendency for upregulation (1.5 fold, 0.05 < P < 0.09 ) after co-

culture, suggesting that both factors might also participate in the optimization of the oviductal 

milieu of the pregnant mare. Indeed, the receptor for CSF1 has been detected in human 

embryos (Duc-Goiran, et al. 1999, Sharkey 1998) while CSF1 protein has also been reported 

in murine oviducts (Arceci, et al. 1992, Pampfer, et al. 1991a). In the murine uterus, CSF1 

expression was 100-fold during pregancy while depletion of CSF1 resulted in failure of 

initiation of embryonic DNA synthesis (Matsushime, et al. 1991), hallmarking its importance 

in early embryonic development.          

PAI1 inhibits the proteolytic activity of uPA (gene = PLAU) and may thus contribute further 

to a predominantly antiproteolytic environment to protect the embryo, in particular the zona 

pellucida, from oviductal or embryonic uPA and MMP activity (Kouba, et al. 1998).  

It should nevertheless be borne in mind that no protein content or activity of the proteases and 

their inhibitors was determined. Due to the presence of inhibitors at the posttranscriptional 

level, the mRNA expression may remain high while enzyme activity is decreased (Gabler, et 

al. 2001). Basal PAI1 activity may inhibit uPA activity while PLAU mRNA levels remain 

high. Moreover, next to PAI1, PAI2 and nexin, 2 other inhibitors of PLAU (Blasi 1997) may 

for instance bias the interpretation of the relevance of mRNA fluctuations. 
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Next to PTGER4 and PLAU, embryo co-culture does not seem to influence the expression of 

GLUT1, HIF1A and VEGFA. GLUT1 plays an important role in the transport of glucose down 

a concentration gradient (Tadokoro, et al. 1995). It also mediates cellular glucose 

incorporation into embryonic cells and is necessary for transition from the morula to 

blastocyst stage (Leese 1995). The medium DMEM/F12 which is very suitable for equine 

embryo culture (Choi, et al. 2003, Hinrichs 2010, Smits, et al. 2011), contains 

unphysiologically high glucose levels (17 mM versus 2.8-5.2 mM (Campbell, et al. 1979). 

Apparently, since no embryo-induced GLUT1 up- or downregulation could be observed, it 

might be concluded that the medium glucose concentrations meet the embryo’s requirements. 

GLUT1, similar to VEGFA, is also upregulated and mediated by HIF1A under hypoxic 

conditions and thus are markers of hypoxia (Petroski 2008, van den Driesche, et al. 2008, 

Wagh and Lippes 1989, Wang, et al. 1995). Hypoxia-inducible factor (HIF1A) is a 

transcription factor with a central role in the hypoxia response. Its activity is regulated by the 

oxygen-dependent degradation of the HIF1A protein (Chi, et al. 2006). In response to hypoxia, 

HIF1A stimulates angiogenesis via VEGFA (Petroski 2008, van den Driesche, et al. 2008, 

Wang, et al. 1995, Wrenzycki, et al. 2001a, Wrenzycki, et al. 1998b) and glucose uptake via 

GLUT1 (Wrenzycki, et al. 2001a, Wrenzycki, et al. 1998b). VEGFA is a potent angiogenic 

factor with an essential role in embryonic vasculogenesis and angiogenesis in mice (Carmeliet, 

et al. 1996, Ferrara, et al. 1996, Risau 1997). In cattle, it is supposed to be involved in 

oviductal embryo transport (Gabler, et al. 1999). Taken together, since neither HIF1A and 

VEGFA neither GLUT1 were upregulated in response to embryonic stimuli, it could be 

concluded that, at least at the level of the oviduct explants, no hypoxia prevails in our culture 

system. 

While the developing embryos were able to alter the oviductal gene expression profile, the 

percentage of explants showing ciliary activity (vide supra) and the prevalence of explants 

showing dark cell degeneration (DCD) were not modified as a consequence of embryo-

oviduct interaction. As previously demonstrated (Nelis, et al. 2014, Nelis, et al. 2015b), the 

oviductal explants showed phagocytosis of cells suffering from dark cell-degeneration (DCD) 

without any observed features of autophage cell death. This phenomenon was not detected in 

vivo (Desantis, et al. 2011). The percentage of oviduct cells showing DCD was not lower in 

the group co-cultured with embryos. Despite the observation of DCD, in both groups, the cells 

bordering the oviductal explants maintained their highly differentiated, ciliated status and 
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intact cell membrane and did not seem to be functionally hampered during the culture period 

as was previously described (Nelis, et al. 2014).  

This present and the aforementioned studies provide unequivocal evidence that the 

preattachment embryo communicates its presence to the oviduct in the horse and other 

domestic species. On the other hand, there is also very convincing evidence that oviduct-

derived factors modify the embryonic transcriptome in order to support proliferation, 

differentiation, cell migration and vascularization (Carter, et al. 2010, Cordova, et al. 2014, 

Gad, et al. 2012, Goovaerts, et al. 2011, Lee, et al. 2001, Lloyd, et al. 2009, Maillo, et al. 2015, 

Rief, et al. 2002), which may in vitro be translated to an improvement of embryo quality and 

blastocyst percentage in ruminants, rodents and pigs (Donnay, et al. 1997, Lee, et al. 2001, 

Schmaltz-Panneau, et al. 2014, Yadav, et al. 1998). Despite the fact that earlier reports have 

demonstrated a beneficial effect on blastocyst percentage of oviduct co-culture using in vivo 

collected equine embryos (Ball, et al. 1991, Ball and Miller 1992, Brinsko, et al. 1994, 

Freeman, et al. 1991), in line with our results, co-culture of oviduct explants with in vitro 

produced equine embryos does not seem to enhance nor to reduce blastocyst percentages 

(Choi, et al. 2004b) or blastocyst diameter (Table 1). This could be explained by the fact that 

blastocyst rate and diameter (Mckinnon, et al. 1988) as sole parameters for the assessment of 

equine embryo development are maybe not sensitive enough.  

In conclusion, in order to create an environment in the oviduct ideal for early embryo 

development, we have shown that equine oviductal explants in vitro are able to crosstalk in a 

paracrine and/or an autocrine way with developing in vitro derived equine embryos. However, 

little is known about underlying regulatory mechanisms. In order to decipher the embryo-

maternal dialogue, the co-culture model will be used in future for proteome, transcriptome 

and/or microRNome studies.  
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                          Gaston Bachelard, philosopher 
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OF EQUINE EMBRYO IN VITRO CULTURE TEMPERATURE 

 

ABSTRACT 

It is generally accepted that the incubation temperature is an important parameter for 

successful embryo culture, but in the horse, this variable has not been investigated so far. The 

objective of this experiment was to investigate the effect of a decrease in maturation and 

culture temperature from 38.5°C to 37.3°C on maturation and blastocyst rate and on 

blastocyst size. 

Oocytes from slaughtered mares were matured in DMEM-F12-based medium (Galli et al. 

2007) in 5% CO2 in air at either 37.3 °C (group 1) or 38.5 °C (group 2) for 30-32 h. Oocytes 

with a polar body were fertilized by piezo drill intracytoplasmic sperm injection (ICSI) and 

cultured in DMEM-F12 with 10% fetal calf serum in 5% CO2, 5% O2, and 90% N2 for 9.5 

days. Group 1 was cultured at 37.3 °C and group 2 at 38.5 °C. At day 9.5, the size of the 

blastocysts were measured using a stereo microscope fitted with an eyepiece micrometer.  

After maturation, about one third of the oocytes in each group were degenerated. Of the non-

degenerated oocytes, 90.1% (155/172) and 89.7% (130/145) were mature in group 1 vs 2 

respectively. Cleavage rate at day 2.5  after ICSI was 44% in group 1 and 47% in group 2. Six 

out of 68 (8.8%) in group 1 and three out of the 61 cleaved embryos in group 2 (5%) reached 

the blastocyst stage. Percentages of degenerated and matured oocytes, cleavage and blastocyst 

rates did not differ significantly between groups (P > 0.5, Pearson Chi-square test). 

Interestingly blastocyst size at day 9 was significantly larger (P=0.02; Mann-Whitney U test) 

in group 2 (166 +/- 4.8 µm in diameter) than in group 1 (134 +/- 6.7 µm in diameter).  

Maturation of oocytes and culture of embryos at the physiological temperature of 37.3°C did 

not influence nuclear maturation or blastocyst rates significantly, although blastocyst rates 

were numerically higher at 37.3°C (P > 0.05). Blastocyst size was significantly larger after 

culture at 38.5°C. These preliminary data show that there is apparently no clear benefit in 

using the physiological temperature of 37.3°C for horse embryo production in vitro. 
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INTRODUCTION 

Intracytoplasmic sperm injection (ICSI) is the method of choice for production of equine 

embryos in vitro. Despite the quick progress in the optimization of embryo culture conditions 

in other species, little is known about the effect of specific environmental factors such as 

temperature on equine embryonic development. Moreover, blastocyst rates are varying 

markedly amongst research groups between 5 (Jarazo, et al. 2011), 10 (Smits, et al. 2010), 

17.8 (Galli, et al. 2001) and 38% (Hinrichs and Choi 2005). Moreover, the applied culture 

temperatures are varying respectively between 39, 38.5, 38 and 38.2°C. Since blastocyst rates 

in mice decrease significantly at mild hyperthermic conditions (38.5°C-39°C) by impairing 

cytoplasmic maturation (Wang, et al. 2009), we hypothesized that the lowest physiological 

temperature of 37.3°C in healthy mares (Robertshaw, 2005) approaches more the optimal 

embryo culture temperature compared to 38.5°C. Therefore, to test this hypothesis, we 

compared oocyte maturation, cleavage and blastocyst rate as well as blastocyst diameter 

between both temperatures.  

 

MATERIALS AND METHODS 

Oocytes were collected, matured and fertilized and zygotes were cultured as described earlier 

(Smits, et al. 2010, Smits, et al. 2012a). Half (n = 264) of the oocytes were matured at 37.3°C 

and the other half (n = 242) at 38.5°C. After fertilization, zygotes from oocytes matured at 

37.3°C respectively 38.5°C, were cultured  at respectively 37.3°C and 38.5°C. 

On day 9.5 the embryonic development was evaluated. The size of the blastocysts was 

measured using a stereomicroscope fitted with an eyepiece micrometer. 

To determine significant differences in the blastocyst rate, binary logistic regression with the 

Nagelkerke pseudo R
2
 and χ

2
 fit tests was implemented. Differences were considered 

significant at P < 0.05. Statistical analysis and graph plotting was performed with SPSS 21.  

 

RESULTS 

The outcome of maturation, fertilization and blastocyst rate are depicted in Fig. 1., After 

maturation, in group 1 (n = 264) 35% and in group 2 (n = 242) 40% of the oocytes were 

degenerated. Of the non-degenerated oocytes, maturation was respectively 90.1% (155/172) 
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and 89.7% (130/145). Cleavage rate was 47% in group 1 and 49% in group 2. Six out of 68 

(9.6%) in group 1 and three out of the 61 cleaved embryos in group 2 (5.2 %) reached the 

blastocyst stage. Although the percentage of degenerated oocytes (P = 0.8), the maturation (P 

= 0.9), cleavage (P = 0.7) neither blastocyst rates differed significantly (P = 0.2 ), blastocyst 

size was significantly larger (P = 0.02; Mann-Whitney U test) in group 2 (166 +/- 4.8 µm) 

than in group 1 (134 +/- 6.7 µm) (Fig. 2). 
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Fig. 1 Low temperature (37.3°C) versus high temperature (38.5°C) outcome of in vitro 

maturation and fertilization of oocytes and blastocyst development.IVM = in vitro maturation; 

ICSI = intracytoplasmic sperm injection; IVC = in vitro culture. 

                                 

 

 

 

 

 

  

  

 

 

 

 

DISCUSSION 

These results show that maturation of oocytes and culture of zygotes at 37.3°C does not 

change nuclear maturation neither cleavage rate (P > 0.05). Blastocyst rate showed a slight 

tendency to be higher in the group cultured at 37.3°C (P = 0.2). Since cytoplasmic rather than 

nuclear components determine preimplantation developmental capacity (Wang, et al. 2009) 

and the developmental parameters did not change significantly, we may conclude that 

cytoplasmic maturation does not differ at 38.5°C compared to 37.3°C. Nevertheless, it should 

be borne in mind that blastocysts percentages as a sole factor to assess in vitro embryo 

development does not always reflects the aberrations which may occur at the molecular, 

functional or ultrastructural level. Therefore, gene expression profile, apoptotic index, cell 

number, and cryotolerance are markers which represent more quality and viability (Desai, et 

al. 2000, Orsi and Reischl 2007, Rizos, et al. 2002, Xu, et al. 2004). 

         

 

* 

Fig. 2. Mean blastocyst diameter after oocyte maturation and embryo culture. ** P = 

0.02. Independent samples Mann-Whitney U-test. Error bar = 2 standard error of mean. 
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The size of blastocysts was significantly smaller (P = 0.02) in the group of oocytes matured 

and embryos cultured at 37.3°C compared with the group matured and cultured at 38.5°C. 

Since blastocyst size is a parameter of embryo viability (Mckinnon, et al. 1988), maturation 

and culture at 38.5°C may be recommended rather than culture at 37.3°C.  

In conclusion, out of the many factors that influence early embryo development in the 

oviduct, we provided evidence that an equine embryo culture temperature of 38.5°C is 

recommended rather than 37.3°C.  
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CHAPTER 7: GENERAL DISCUSSION 

 

The aim of argument, or of discussion, 
should not be victory, but progress. 

Joseph Joubert, moralist 

http://thinkexist.com/quotation/the_aim_of_argument-or_of_discussion-should_not/148206.html
http://thinkexist.com/quotation/the_aim_of_argument-or_of_discussion-should_not/148206.html
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1 EQUINE OVIDUCTAL EXPLANTS  

1.1 A MODEL TO STUDY EARLY REPRODUCTIVE EVENTS  

The complex and dynamic oviductal environment is pivotal during the early reproductive 

events such as oocyte maturation, sperm capacitation, fertilization, embryonic development 

and embryo-maternal communication (Fig. 1). To gain a better insight into the complexity of 

endocrine, paracrine and autocrine signalling and biochemical pathways, appropriate models 

are essential. 

 

Fig. 1. Oviductal events such oocyte maturation, sperm capacitation, fertilization, embryonic 

development and embryo-maternal communication are up to now poorly understood in the 

horse. All these processes can be studied in vitro using our oviductal explant model. AIJ = 

ampullary-isthmic junction; UTJ = uterotubal junction. Adapted from Avilés, et al. 2010 and 

Smits 2010. 

 

Although in vivo models are the gold standard, it is difficult to investigate molecular 

processes within a large space like the equine oviduct. It is for instance difficult to locate 

gametes and the embryo in the oviduct and to unravel local paracrine and autocrine events, 
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which are essential in elucidating intra- and extracellular molecular pathways and processes. 

Moreover, the equine oviduct can only be reached surgically or post mortem. In addition, in 

vivo experiments with horses conflict with animal welfare and are time consuming and 

expensive.  

The ligated sheep oviduct could be an excellent preimplantation culture system for equine as 

well as bovine and porcine embryos (Lazzari, et al. 2010, Orsi and Reischl 2007, Rizos, et al. 

2010). However, there are some differences between the development of equine and ruminant 

embryos. Moreover, the surgical procedure may introduce a bias. Therefore, the technique of 

temporary culture in the sheep oviduct was quickly abandoned. This evolution was enhanced 

for reasons of animal welfare, and for practical and biosecurity issues.  

Since the oviductal environment is the most appropriate for early embryonic development, co-

culture of embryos with equine oviduct explants is a suitable model to study embryo-maternal 

interaction (Wolf, et al. 2003b). Indeed, co-culture with explants allows paracrine interaction 

between epithelial and in a lesser extent stromal cells (Fig. 2 c), whereas in conventional 

embryo culture, only autocrine interactions can occur (Fig. 2 b). Whereas in co-culture 

systems oviduct cells may alter their secretory profile in response to certain ligands produced 

by the embryos (Fig. 2 c), a considerable part of the embryo-maternal dialogue cannot take 

place in (semi)defined or conditioned media, making them less appropriate (Fig. 2 b) to 

elaborate on the interaction between the embryo and the oviduct (Fig. 2 a). During in vitro 

culture without co-culture, embryos are deprived of endocrine as well as paracrine signals 

from epithelial, stromal and muscle cells, whereas in vivo paracrine interactions between 

embryos are rather unlikely to occur (Fig. 2 b).  

During the period of co-culture, the observed effects on embryos and somatic cells are 

resulting on the one hand from the reciprocal messages between them, but on the other hand 

also from the combined effect of excreted waste products and the consumption and depletion 

of nutrients and growth factors (Lee, et al. 2002). Whereas in co-culture the oviductal cells 

may be able to remove deleterious factors produced by the embryos, in conventional embryo 

culture, all waste products are accumulating in the culture medium. In addition, the superior 

performance of oviductal cells in sustaining embryonic development in other species than the 

horse, including human, compared to conventional culture media and other somatic cells, has 
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been frequently confirmed (Gandolfi and Moor 1987, Liu, et al. 1998, Menezo, et al. 1998, 

Rexroad and Powell 1993). 

 

Fig. 2 Schematic representation of possible interactions in vivo (A), in vitro without (B) and 

with (C) co-culture. In vivo, endocrine, autocrine and paracrine interactions are possible 

between embryos and the oviduct. The embryo is continuously nourished in response to its 

signals to the oviduct in function of its changing needs. Waste products are efficiently 

removed and/or neutralized (A). In conventional embryo culture (B), only paracrine and 

autocrine interactions between the embryos are possible. The supply of embryotrophic 

products and the removal of toxic products are dependent on the medium replacement 

protocol and the embryo’s capacity to neutralize waste products. In an oviductal explant co-

culture system, autocrine and paracrine interactions are possible between embryos and the 

oviduct. Nutrients are delivered and waste products removed by the oviductal cells, the latter 

which respond to the embryonic signals.  

 

To guarantee optimal environmental conditions, the culture system must meet the 

requirements for embryos as well as oviductal cells. Moreover, to mimic the in vivo situation, 

the cells must keep their differentiation status. In our culture system (CHAPTER 3) the cells 
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bordering the explants are maintaining their ultrastructural highly differentiated morphology 

during at least six days of culture, including cilia, numerous mitochondria and rough 

endoplasmic reticulum, highly similar to the oviduct epithelium ex vivo. Since the ciliation 

process is stated to be the endpoint of differentiation that cannot be induced in an in vitro 

system (Thibodeaux, et al. 1992b), this means an important benefit of the explant suspension. 

Furthermore, only a negligible percentage (1–2%) of the cells in the explants shows features 

of apoptosis or necrosis and therefore the explants mimic the in vivo situation very well). 

Although dark-cell degeneration, which is probably a hypoxia related type of cell death, 

was observed (CHAPTER 3), no proof of hypoxia could be observed at the level of mRNA 

expression. 

Moreover, oviduct explants respond at the level of protein, progesterone receptor and gene 

expression as well as glucose metabolism to stimuli such as steroid supplementation 

(CHAPTER 5.1). This confirms the functionality and vitality of our culture system and the 

superiority of oviductal cells as compared to epithelial monolayers. Although monolayers and 

resulting cell lines provide more standardized culture conditions, it has been proven in cattle 

(Thibodeaux, et al. 1992b, Walter 1995) and horses (Dobrinski, et al. 1999, Thomas, et al. 

1995b) that monolayers of oviductal cells dedifferentiate and consist of cells with reduced 

height, less beating cilia and loss of secretory granules. Therefore, they are far less mimicking 

the in vivo situation (Reischl, et al. 1999, Thibodeaux, et al. 1992b, Walter 1995), despite the 

fact that the use of monolayers and resulting cell lines minimizes the risk of disease 

transmission (Menck, et al. 1997). 

 

1.2 MARGINAL NOTES OF LIMITATIONS  

Although co-cultured somatic cells may neutralize toxic components, nutrient depletion and 

the accumulation of particular toxic components can still occur in the oviduct explant co-

culture. To overcome this, the introduction of dynamic perfusion culture systems (Fig. 3), 

using permeable cell supports (Reischl, et al. 1997) or sequential media (different culture 

media for culturing at different stages of development), as already applied in human assisted 

reproduction, could open up new perspectives. However, it is difficult to imitate the dynamic 

changes of the composition of the oviductal fluid: embryos have different requirements 

depending on their stage of development and some culture conditions may induce 
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dedifferentiation in somatic cells (Lee, et al. 2002, Wolf, et al. 2003b), since the composition 

of the medium and serum supplementation have obvious effects on cell function, integrity and 

morphology (CHAPTER 3.2; (Rief, et al. 2002).  

                                     

 

 

Also the environmental temperature may play a considerable role during cell culture. A 

temperature gradient exists in the oviduct. In rabbits, sheep and pigs (Hunter 2012a), the 

caudal isthmus is reported to be 1-2 °C cooler than the ampulla at oestrus. These gradients 

may be involved in sperm storage and transport (thermotaxis) (Hunter 2012a). Even small 

fluctuations in temperature may have biochemical and/or molecular consequences by altering 

the folding and final conformation of certain proteins in the oviduct and the embryo. 

Unfortunately, these temperature gradients cannot be imitated in vitro unless high-tech 

equipment is being applied. In CHAPTER 6, it was shown that lowering the in vitro culture 

temperature from 38.5° C to 37.3° C decreased blastocyst diameter significantly (P = 0.02) 

with a tendency of increased blastocyst rate. Even though 37.3° C approaches more the 

physiologic body temperature of the mare, a temperature of 38.5° C seems to be more 

beneficial to sustain intact in vitro equine embryo development. Indeed, blastocyst diameter 

seems to be a superior parameter of embryo viability compared with blastocyst percentage 

(Mckinnon, et al. 1988). 

Fig. 3. A dynamic culture system with a continuing supply of fresh culture medium and 

removal of waste products. 
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Equine embryos are generally cultured in small amounts of medium (1 - 2 µl/embryo; (Choi, 

et al. 2004a, Galli, et al. 2007, Hinrichs 2010, Smits 2010, Smits, et al. 2012a). As a 

consequence, taken into account the scarce availability of equine 

oviducts/ovaries/oocytes/embryos and thus the rather low sample sizes in experiments with 

equine embryos compared with bovine and porcine experimental set-ups, sample pooling is 

sometimes the only option to meet the detection limits of certain techniques. For instance, to 

obtain raw data concerning steroid concentrations using RIA in oviduct explant culture 

medium, all culture medium of all replicates was pooled per test group and concentrated in 

order to ensure that the outcome comes within the reach of the limits of detection (CHAPTER 

5.1). Since the basic assumption of sample pooling is biological averaging, the measure taken 

on the pool of samples is equal to the average of the same measure taken on each of the 

individual samples which contributed and will therefore not reduce biological variation 

(Zhang and Gant 2005). Consequently, the average values of the measurements, either 

individual or pooled, will always be the same (Leger and Didrichsons 1994).  

 

1.3 DARK CELL DEGENERATION 

In our cell culture from day 2 on (CHAPTER 3), the oviductal explants showed phagocytosis 

of cells suffering from dark cell-degeneration without any observed features of autophage cell 

death. Nevertheless, the cells bordering the explants maintained their highly differentiated, 

ciliated status and intact cell membrane and did not seem to be functionally hampered 

(CHAPTER 3, CHAPTER 5). Moreover, only very few cells were observed to be Trypan blue, 

propidium iodide (SYBR14/PI), TUNEL and/or caspase-positive (CHAPTER 3) indicating 

that only very few cells show respectively membrane damage (Trypan blue, PI), DNA 

fragmentation (TUNEL) and/or apoptosis (caspase). It may be suggested that an intrinsic 

caspase-independent mechanism (Fig. 4) with atypical morphology may be detected. Hypoxia, 

mechanical or environmental agitation, nutrient depletion and waste product accumulation 

may be other likely causes of caspase-independent apoptosis. To definitively exclude caspase 

involvement, Z-VAD-fmk, the classical caspase inhibitor could be added to oviduct explant 

culture medium (Galluzzi, et al. 2012b).  
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Fig. 4. Caspase-dependent and independent apoptosis. IAPs: inhibitor of apoptosis protein; 

CYTC: cytochrome c; DIABLO: direct IAP-binding protein; HTRA2: high temperature 

requirement protein A2; APAF1: cytoplasmic adaptor protein; ROS: reactive oxygen species. 

Adapted from Galluzzi, et al. 2012a. 

 

It was hypothesized that the dark cell degeneration was induced by hypoxia (CHAPTER 3.1) 

as a putative consequence of hampered oxygen diffusion in the spherical oviductal explants. 

However, the oviductal expression of several markers for hypoxia, namely HIFA (Lin, et al. 

2011), VEGFA (Fan, et al. 2009, Shweiki, et al. 1992) and GLUT1 (Wrenzycki, et al. 2001a, 

Wrenzycki, et al. 1998b), was not increased after 6 days of culture (CHAPTER 3.1). Co-

culture with equine embryos during 9 days did not increase the expression of these genes in 

the oviductal explants either. (CHAPTER 5.2). Therefore hypoxia is not likely to occur in our 

culture system. Moreover, culture at high (5 % CO2 in air) and low (5 % O2, 5 % CO2, 90 % 

N2) oxygen tension yielded a comparable incidence of explants showing DCD (CHAPTER 

3.1). 

A second putative cause for the DCD may be the occurrence of hypoglycemia in the culture 

medium (Galluzzi, et al. 2012a). Following the very high glucose concentration in equine 

embryo culture medium (17 mM) compared with the physiological oviductal concentrations 
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(3-5 mM; (Campbell, et al. 1979), hypoglycemia is very unlikely in the culture system, 

despite the measured high glucose consumption by the explants and the concomitant drop in 

glucose concentration (CHAPTER 3.1). In addition, long-term culture (6 days) of post- and 

preovulatory explants cultured without steroid supplementation, a spectacular decrease of 

GLUT1 was noted (CHAPTER 3.1), rather indicating hyperglycemic conditions. The 

compensatory direct downregulating effect of high glucose concentrations on glucose 

transporters 1 (and 2) has also been observed in mouse embryos (Coutinho da Silva 2008, 

Moley, et al. 1998a, Moley, et al. 1998b). As a consequence of the strong downregulation of 

GLUTs, cellular hypoglycemia may arise which may activate apoptosis inducing factors 

(AIFs) which on its turn results in caspase-independent cell death (Santiago, et al. 2007) (Fig. 

4). It should be noted that other (insulin sensitive) GLUTs, insulin or other factors involved in 

cellular energy metabolism may be involved. 

Since it is reported that the addition of anti-apoptotic factors which are activated by insulin or 

IGF1 receptors, may decrease the number of explants showing the hallmarks of caspase-non 

dependent cell death (Purcell and Moley 2009), in a third hypothesis, the effect on the dark 

cell degeneration of 10% serum supplementation or 5 µg/ml insulin + 5 µg/ml transferrin + 5 

ng/ml selenium (ITS) to the regular medium DMEM/F12 was investigated (CHAPTER 3.2). 

The addition of FBS seems to protect the oviductal explants to some extent against dark cell 

degeneration during the first 2 days of culture, whereas it seems to enhance the development 

of dark cell degeneration from day 3 on. It may be suggested that serum contains factors 

which partly protect against DCD, but which may be consumed after 2 days of culture. The 

addition of insulin, transferrin and selenium, enhanced the development of dark zones 

compared to unsupplemented DMEM/F12 or DMEM/F12 with 10% FBS. Thus, it could be 

concluded that components of ITS play a role in the development of dark cell degeneration. It 

has indeed been reported that insulin and IGFs increase caspase independent cell death and 

also the proportion of TUNEL positive cells (Chi, et al. 2000). However, it has been shown 

earlier (CHAPTER 3.1)(Nelis, et al. 2014) that the proportion of TUNEL positive cells after 6 

days culture in medium supplemented with FBS, which contains considerable levels of insulin 

(6-14 µU/ml) (Gstraunthaler 2003), was not increased. Consequently, medium supplemented 

with 10 % FBS contains comparable levels of insulin as measured in (human) oviductal fluid 

(< 2 µU/ml) (Chi, et al. 2000) or in our medium supplemented with 5 µg/ml insulin. Thus, the 

DCD is not likely to be induced by insulin. Toxicity levels of transferrin are reported to be 20-
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fold higher than 5 ng/ml as applied in our culture system (Bottenstein, et al. 1979). Therefore, 

also transferrin is not considered as being the principal cause of the DCD. Contrastingly,  the 

toxic margin for selenium (selenite) in certain cell lines is 5 ng/ml whereas it promotes bovine 

embryo development at this concentration (Bottenstein, et al. 1979, Wydooghe, et al. 2014), 

which is equal to the concentration in our experiment. As a consequence, it is likely that 

selenium or its by-products enhances DCD in the medium supplemented with ITS compared 

to unsupplemented DMEM/F12 and during the first 2 days with the DMEM/F12 

supplemented with 10 % of FBS.  
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2 STEROIDS IN THE EQUINE OVIDUCT  

2.1 FIGURES AND FACTS  

Tissue progesterone and 17β-oestradiol concentrations in the equine oviduct are obviously 

cycle stage dependent whereas testosterone and 17β-hydroxyprogesterone concentrations are 

not significantly altered. Median progesterone concentrations in the postovulatory ipsilateral 

oviduct tissue are 37 times increased when comparing with the preovulatory oviduct, whereas 

this increase is only three times at the contralateral side. The same tendency was observed in 

oviductal fluid of ipsilateral oviducts.  

The most plausible explanation for the ipsilateral elevated progesterone concentration is a 

combination of 1) a local transfer between the ovary/corpus luteum and the oviduct, 2) the 

ipsilateral contribution of progesterone produced by the granulosa cells, and 3) local oviductal 

progesterone production. Since follicular fluid progesterone and 17β-oestradiol concentrations 

and their ratios were associated with oviductal progesterone and 17β-oestradiol concentrations, 

a local transfer mechanism of steroids between the ipsilateral corpus luteum bearing ovary 

could indeed contribute to the ipsilateral dramatically increased local oviductal concentrations 

(Barone 2001). Equine granulosa cells as well as granulosa cells from other species have been 

reported earlier to produce high amounts of progesterone in mammalian species (Chabrolle, et 

al. 2009, Schuetz and Dubin 1981, Smith, et al. 2011, Stoklosowa, et al. 1982). However, this 

cannot clarify the high levels of in vitro produced progesterone, since no granulosa cells were 

present in the culture system. Local production of progesterone by oviduct explants was 

obviously confirmed in vitro (CHAPTER 5.1). However, the expression in the oviduct of 

none of the key enzymes, 3-beta-HSD, StAR and cytochrome P450scc which are involved in 

the progesterone synthesis pathway, was markedly stronger in the ipsilateral oviduct. 

Nevertheless, their expression is region- and cycle-stage dependent in in vivo oviducts. The 

progesterone producing capacity of oviduct explants was confirmed in vitro. Indeed, 

progesterone production by oviduct explants originating from ipsilateral postovulatory 

oviducts produced 100 times more progesterone than explants from preovulatory oviducts 

(CHAPTER 5.1). Again, also in vitro, none of the investigated steroidogenic enzymes were 

upregulated. Nevertheless, the steroid responsiveness of the steroidogenic enzymes was 

confirmed in vitro in oviduct explants (CHAPTER 5.1).  



Chapter 7 General Discussion 

254 

 

From the in vitro and in vivo findings, it may be concluded that the drastically increased 

ipsilateral postovulatory progesterone concentrations are highly likely to be induced by 

oviductal synthesis, but (iso)enzymes other than 3-beta-HSD seem to be involved.  

In CHAPTER 4, the concentrations of progesterone, 17β-oestradiol, testosterone and 

hydroxyprogesterone in equine oviductal tissue were determined by the highly powerful 

technique U-HPLC-MS/MS (Vanhaecke, et al. 2011), whereas RIA was applied to measure 

steroids in oviductal fluid (Szafranska, et al. 2002). Due to the tiny amount of oviductal fluid 

in each oviduct, which is about 50-100 µl on average, the limits of detection of U-HPLC-

MS/MS for steroids in serum (10 pg/ml for 17α- 17β-hydroxytestosterone and 17-

hydroxyprogesterone, 0.4 ng/ml for progesterone and 19 pg/ml for β-oestradiol) were 

approximated. Moreover, due to optimization issues, it was inevitable to switch to RIA. Even 

though the RIA results could be consistently higher compared with (U-HP)LC-MS/MS due to 

lower specificity, interference and matrix effects as reported before (Fernandes, et al. 2011), 

Nonetheless, the high correlation between RIA and MS, as described in Hsing et al. (2007) 

and in Dorgan et al. (2002) suggest that these two methods are very likely to yield similar 

proportions between pre- and postovulatory stage and ipsilateral and contralateral side. RIA 

may have caused a slight overestimation of the real values of steroid concentrations in the 

oviductal fluid, but the conclusion, on which is elaborated on in the aforementioned 

paragraphs, remains the same.  

 

2.2 A WEIGHTY ROLE FOR STEROIDS, CONDUCTORS OF OVIDUCTAL FUNCTIONALITY 

The cumulus-oocyte complex and spermatozoa enter the oviduct from opposite ends. The 

oocyte travels around 12 h to reach the ampullary-isthmic junction where fertilization occurs. 

After 6 days the embryo moves on to the uterus. In synchrony with the contraction of tubal 

musculature and the flow of oviductal secretions, gamete and embryo transport is established 

by ciliary activity (Buhi, et al. 1997, Jansen 1984, Killian 2004, Lyons, et al. 2006). 

Meanwhile, the oviductal epithelium prepares and establishes the optimal environment for 

gamete transport and maturation, fertilization and embryonic development and transport 

(Aguilar and Reyley 2005, Besenfelder, et al. 2012, Wolf, et al. 2003b). In order to 

accomplish this task, the oviduct epithelium undergoes cycle dependent changes, which 

precisely and timely prepare oviductal function in correspondence to the stage of embryonic 
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development and the site where the early embryo contacts the epithelium. These epithelial 

cycle dependent changes are conducted by steroids, with progesterone and 17β-oestradiol 

playing a leading role (Abe and Hoshi 2008, Nakahari, et al. 2011).  

Data on the effect of progesterone and oestradiol on ciliary beat are contradictory. Most 

reports describe an accelerating effect of oestradiol and a decelerating effect induced by 

progesterone (Lyons, et al. 2002, Lyons, et al. 2006, Nakahari, et al. 2011, Orihuela, et al. 

2001). The latter is confirmed by the prevention of progesterone induced ciliary beat 

frequency inhibition by mifepristone, which is a progesterone receptor blocker (Mahmood, et 

al. 1998). Moreover, in mammals, LH is inducing expression of progesterone receptors in 

ciliated cells, suggesting a regulatory role for progesterone on ciliary beat frequency and 

subsequent gamete and embryo transport (Akison and Robker 2012, Nishimura, et al. 2010). 

In CHAPTER 5.1, it has been shown that in vitro, the addition of postovulatory 

concentrations of 17β-oestradiol and progesterone decreased the number of explants showing 

ciliary activity, which may suggest that progesterone overshadows the effects of 17β-

oestradiol and that progesterone is depressing indeed ciliary activity or is decreasing the 

number of ciliated cells. However, it should also be noted that progesterone and 17β-

oestradiol may exert their actions through intermediate molecules and pathways which may 

be absent in vitro. Consequently, these other factors may alter or overshadow the effect of 

steroids on ciliary activity in vivo. Moreover, since it is only possible to count explants 

showing vigorous ciliary activity, the use of digital cameras would be interesting to visualize 

changes in ciliary beat frequency and pattern, and to determine the ratio of cells which are 

showing increased or decreased ciliary activity (Lyons, et al. 2006).  

The steroids produced by the oviduct may not only exert their actions by modulating the 

oviductal environment, they may also act directly on the developing embryo. Indeed, the 

presence of membrane-associated progesterone (and oestrogen) receptors on early equine 

embryos (Rambags, et al. 2008) could confirm this hypothesis. If progesterone does have 

direct effects on embryonic development, this is most likely mediated by membrane-

associated and not by nuclear progesterone receptors (Falkenstein, et al. 1996). This results in 

activation of cyclin B and MAP-kinases (Maller 2003), respectively regulators of mitosis 

(Pines 2006) and embryonic processes such as differentiation and angiogenesis (Kuida and 

Boucher 2004). Oestrogens can directly influence developmental processes such as embryonic 

brain gene expression (Beyer, et al. 2003), embryonic neural stem cell differentiation and 
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proliferation (Brannvall, et al. 2002). Up to now, no attempts have been undertaken to assess 

the effects of steroids on the development of in vitro produced equine embryos.  
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3 OVIDUCTAL GENE EXPRESSION BEARS THE STAMP OF 

STEROIDS AND EMBRYOS  

In synchrony with ciliary and muscular activity, the epithelial cells prepare and provide the 

optimal environment for transport of gametes, fertilization and early embryonic development 

(Aguilar and Reyley 2005) and concurrent embryo-maternal crosstalk. This crosstalk is 

facilitated by 1) cytokines such as CSF1, 2) growth factors such as IGFs, EGFs and TGFA, 3) 

angiogenic factors such as VEGF, 4) adhesion molecules such as galectins and 5) apoptotic 

factors such as galectin-3-bp (Aguilar and Reyley 2005). To fulfill this task, the epithelium 

that lines the oviductal lumen, serves as an interface to determine the composition of the 

oviductal fluid, which is crucial for embryonic survival (Besenfelder, et al. 2012, Wolf, et al. 

2003b). The composition of oviductal fluid is strongly regulated by both steroids and the 

presence of gametes or an embryo (CHAPTER 5.1 and CHAPTER 5.2). Steroids may alter 

expression and secretion patterns and may alter diffusion of, for instance, amino acids or 

steroids by modulating the permeability of membranes in a spatio-temporal pattern (Carlson, 

et al. 1970, Ehrenwald, et al. 1990, Killian, et al. 1989). On the other hand, the oviductal-stage 

early equine embryo synthesizes already PGE2 in order to relax the smooth muscle cells of 

the uterotubal junction (Weber, et al. 1991a, b). This demonstrates that embryo-maternal 

communication is already established at this stage. It also confirms that also the embryo is 

able to modulate oviductal function and gene expression. Indeed, the murine transcriptomic 

profile is reported to be altered in response to the presence of embryos (Lee, et al. 2002). In 

addition, the oviductal proteome is altered as well in response to developing embryos 

(Seytanoglu, et al. 2008). 

In order to understand the molecular mechanisms of embryo-maternal interaction, an in-depth 

understanding of the temporal (Bauersachs, et al. 2007, Bauersachs, et al. 2004, Lapointe and 

Bilodeau 2003, Lapointe, et al. 2006, Swangchan-Uthai, et al. 2011) and regional (Arganaraz, 

et al. 2012, Jeoung, et al. 2010, Kubota, et al. 2009) transcriptomic changes in the oviduct as 

well as the embryo-induced gene expression patterns is required. Therefore, in CHAPTER 4 

and CHAPTER 5.1 the effects of respectively steroids in vivo and in vitro and the effects of in 

vitro developing embryos (CHAPTER 5.2) on the mRNA expression of 11 putative steroid-

regulated embryotrophic genes such as proteases (MMP2, PLAU) and their inhibitors (TIMP1, 

PAI1), growth factors (CSF1, TGFA, VEGFA) and glucose transporters (GLUT1) and 
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prostaglandin E2 receptors (PTGER2, PTGER4) were investigated in oviductal cells. The 

results show that the equine oviduct is a source of both proteases and their specific inhibitors 

(Gabler, et al. 2001, Kouba, et al. 1998, 2000a) such as PLAU/PAI and MMP2/TIMP1. 

Moreover, the expression of mRNA measured by RT-qPCR of the proteases and inhibitors is 

cycle-stage dependent and responds also to progesterone and oestradiol exposure as well as to 

the presence of developing equine embryos in vitro (Fig. 5, Fig. 6).                                                                                                    

 

Fig. 5 Venn diagram of all investigated factors, except IGFI (due to technical restrictions in 

co-cultured explants). MRNA of all factors depicted in the figure was expressed in the equine 

oviduct. HIF1A, PTGER4 and VEGFA did not respond to steroids neither to embryonic 

signalling. PLAU, MMP2, PAI1, CSF1, GLUT1 and TGFA were upregulated in oviduct 

explants in the postovulatory phase. MMP2, PAI1, CSF1 and GLUT1 could also be induced in 

vitro by adding postovulatory concentrations of progesterone and oestradiol to preovulatory 

explants. MMP2 was also upregulated in explants co-cultured with equine embryos. A similar 

tendency (t) was observed in PAI1 and CSF1. TIMP1 and PTGER2 could be induced by 

embryos but do not seem to be steroid-regulated whereas GLUT1 seems to be steroid-

regulated without responding to embryonic stimuli. 

 

MMP2, TGFA, and to a lesser extent to PAI1 and CSF1 mRNA expression responds to both 

postovulatory steroids as well as to embryonic signalling by ICSI-derived equine embryos 

(Fig. 5). Moreover, the steroid-effect can be reproduced in vitro in MMP2, PAI1 and CSF1. 
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TIMP1 and PTGER2-2 are not responsive to steroids but do firmly answer to embryonic 

factors whereas PLAU and GLUT1 solely reply to steroids. The latter effect is inducible in 

vitro in GLUT1 but not in PLAU (Fig. 5). The expression of the hypoxia markers HIF1A and 

VEGFA (van den Driesche, et al. 2008) was not altered by steroids neither by embryos, 

indicating that no hypoxia prevails in our culture system.  

Interestingly,  the ratio of PLAU/PAI1 and MMP2/TIMP1 expression was respectively 4 and 

4.5 times lower in postovulatory explants with embryo co-culture compared to postovulatory 

explants without embryo co-culture (CHAPTER 5.2). This confirms the hypothesis that the 

oviduct responds to the embryo’s signalling by establishing a predominantly antiproteolytic 

environment. 

           

Fig. 6 The plasminogen-plasmin pathway. Plasminogen is activated by urokinase 

plasminogen activator (uPA), which is inhibited by plasminogen activator inhibitor 1 (PAI1). 

On its turn, plasmin activates matrix metalloproteinases (MMPs) and growth factors. MMPs 

are inhibited by tissue inhibitors of MMPs (TIMPs), the latter are proteolysed by plasmin. 

Active MMPs degrade the extracellular matrix (ECM). Progesterone is able to increase 

mRNA expression of PLAU (uPA), PAI1 and MMP2 in equine oviduct explants in vivo and in 

vitro. mRNA expression of PAI1, MMP2 and TIMP1 is increased in response to embryonic signalling 

during in vitro co-culture. 
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Extracellular matrix degradation is initiated by the generation of plasmin from its inactive 

form plasminogen, catalyzed by uPA (PLAU = gene), whereas PAI1 is the potent 

physiological inhibitor of PAs. The former controls therefore the activation of plasminogen 

and subsequently maintains and stabilizes the oviductal epithelium and milieu (Fig. 6). 

Consequently, PAI1 might act to prevent premature nidation of the embryo (Kouba, et al. 

1998). However, since the early equine embryo lacks invasive potential (Bazer, et al. 2009), it 

is possible that the PAI1, produced by the oviductal epithelium protects the oviduct from 

embryo-induced proteolysis (Kouba, et al. 1998). Since PAI1 is slightly upregulated in 

response to embryonic messages without inducing PLAU, an anti-proteolytic milieu may be 

created. PAI1 may also counterbalance embryo-derived uPA. Indeed, the equine embryo, like 

the human (Duc-Goiran, et al. 1999) and mouse and rat embryo (Harvey, et al. 1995) may 

produce additional uPA to facilitate its transport through the oviduct (Harvey, et al. 1995, 

Zhang, et al. 1994). The fact that the uPA receptor has also been detected in the bovine and 

porcine oviduct (Garcia, et al. 2014, Roldan-Olarte, et al. 2012) may support this hypothesis. 

PAI1 acts in concert with TIMP1 (Kouba, et al. 1998, 2000a), the specific inhibitor of MMP2 

(Fig. 6). MMP2, also known as gelatinase A, degrades collagen types IV, V, VII and X, 

elastin and denatured collagens (Lijnen 2002) with subsequent pericellular proteolysis.  

Altogether, these observations could sustain again the hypothesis that the embryo produces 

factors which enhance predominantly PAI1 production and simultaneously TIMP1 levels in 

order to counteract the proteolytic activities to protect the embryo, in particular the zona 

pellucida, from oviductal or embryonic plasminogen activator activity (Kouba, et al. 2000a). 

However, it should be borne in mind that no protein content or activity of the proteases and 

their inhibitors was determined. Due to the presence of inhibitors, the mRNA expression may 

remain high while enzyme activity is decreased (Gabler, et al. 2001). Basal PAI1 activity may 

inhibit PLAU activity while PLAU mRNA levels remain high. Moreover, next to PAI1, PAI2 

and nexin, 2 other inhibitors of PLAU (Blasi 1997) may, for instance, bias the interpretation 

of the relevance of mRNA fluctuations. 

Next to MMP2 and PAI, TGFA and CSF1 are upregulated in postovulatory explants, whereas 

it is additionally upregulated as a result of co-culture with embryos. TGFA interacts with and 

mediates its biological effects through EGF receptors and may be modulated by glucose 

(Daniels, et al. 1993, Paria, et al. 1990). TGFA may exert autocrine and paracrine effects, 

inducing cell proliferation (Lyons, et al. 1988) and suppressing progesterone production in 
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steroidogenic tissue (Roberts and Skinner 1991). Since EGF receptors, like in human (Cross, 

et al. 1994, Duc-Goiran, et al. 1999) may also be present on equine embryos, the embryo may 

in a positive feedback further stimulate oviductal TGFA expression. Plasmin may also induce 

TGFA, like it induces other growth factors such as EGF, FGFs, IGFs and VEGFs (Gabler, et 

al. 2001, Lee, et al. 2005, Taipale and KeskiOja 1997). Also CSF1 receptors have been 

reported in human embryos (Duc-Goiran, et al. 1999, Sharkey 1998). These are highly likely 

to be expressed also on equine concepti, since co-culture slightly concomitantly enhances 

CSF1 expression in oviduct explants, while postovulatory steroids induced a strong 

upregulation (Fig. 5). Levels in mice uteri have been reported to increase 1000 fold in 

response to pregnancy. Its importance in embryonic development has been confirmed in 

depletion studies in which failure of initiation of DNA synthesis has been shown (Matsushime, 

et al. 1991). Moreover, it has been detected in mouse oviducts (Arceci, et al. 1989, Pampfer, 

et al. 1991b).  

Comparable to the expression pattern of PLAU, GLUT1 is upregulated in postovulatory 

explants compared to the preovulatory counterparts (CHAPTER 5.1), but its expression is not 

altered in response to embryos. In addition, in vitro oviductal epithelial glucose consumption 

is higher in postovulatory derived oviduct epithelium compared with the preovulatory stage 

(CHAPTER 5.1). In endometrial cancer cells a similar trend has been observed in response to 

the higher energy demand in response to increased transcriptory and translatory activity 

(Medina, et al. 2004). Taken into account the elevated glucose consumption in steroid-

stimulated cells, it is highly likely that a similar mechanism prevails in oviductal cells. 

Progesterone and β-oestradiol supplementation to the culture medium induced an upregulation 

of GLUT1 in both preovulatory and postovulatory explants. Higher glucose consumption is 

not only observed in tissues that are influenced by high progesterone concentrations, but also 

in tissues that produce progesterone themselves. An enhanced oxygen and glucose 

consumption was observed in progesterone producing luteal tissue compared with luteal 

tissues which lost their progesterone producing ability (Armstron and Black 1966). This 

finding is in line with the fact that postovulatory explants, which produce 100 times more 

progesterone compared with preovulatory explants, consume significantly more glucose than 

their preovulatory counterparts (CHAPTER 5.1). Co-culture did not further stimulate GLUT1 

expression even though the equine embryo is reported to produce considerable amounts of 

progesterone and oestradiol (Marsan, et al. 1987, Walters, et al. 2001, Zavy, et al. 1979) 
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which could directly or indirectly enhance GLUT1 expression. Even though, nonetheless the 

embryos may produce GLUT1-enhancing steroids, the embryos may also produce factors, 

which decreases GLUT1 expression, such as calreticulin, which was also detected in the 

equine oviduct (Smits, Nelis, et al. submitted) in response to the high glucose concentrations 

(Totary-Jain, et al. 2005). Furthermore, other GLUTs which work against the gradient such as 

SGLT1 and SGLT2 (De Vos, et al. 1995) may be involved and other factors and energy 

substrates may play a role in the embryo-oviductal energy metabolisms and dialogue.  

PTGER2 and PTGER4 expression was not altered in response to steroid stimulation in vivo or 

in vitro. In contrast, co-culture induced a strong upregulation of PTGER2 but not PTGER4. 

This may indicate that the embryo-derived PGE2 interacts with PTGER2 rather than PTGER4 

in order to open the uterotubal papilla (Weber et al., 1991a; b; Freeman et al., 1992). 

In conclusion, to cope with the changing needs during the early reproductive events, the 

oviduct modifies its gene expression in response to cycle related local steroid fluctuations and 

embryonic signalling.  

Fig. 7 presents an overview of all current knowledge of genes, enzymes, proteins and 

receptors demonstrated in the oviductal epithelium or oviductal fluid of the mare, based on the 

findings in this thesis, own unpublished results and on literature data. Retinol binding protein 

(RBP) (McDowell, et al. 1993), deleted in malignant brain tumor 1 (DMBT1) (Ambruosi, et 

al. 2013), µ-opioid receptor (Desantis, et al. 2010), and osteopontin and atrial natriuretic 

peptide (ANP A) (Mugnier, et al. 2009) were detected in oviduct fluid and/or oviductal 

epithelium.  
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4 FINAL CONCLUSIONS  

In conclusion, for the first time, we optimized an equine oviduct explant model and used it to 

simulate the effect of pre- and postovulatory changes in progesterone and oestradiol 

concentrations upon oviduct epithelial cells. In this way we showed that steroids were able to 

modify ciliary activity, energy metabolism, gene expression, immunoreactive steroidogenic 

enzyme expression and progesterone receptor expression in oviductal explants. Furthermore, 

a set of embryotrophic genes was shown to be upregulated in the oviductal epithelium 

originating from mares in the postovulatory cycle stage in vivo and in vitro. These cycle-

related changes indicate the importance of steroids, especially progesterone, in fertilization, 

embryo growth and viability, as well as of the oviduct, both as a target of steroids and as a site 

of steroid biosynthesis and metabolism. Moreover, it was confirmed that embryos are capable 

of changing the oviductal gene expression in vitro and the proteome in vivo, confirming that 

the embryo does communicate with its environment. These findings are of significant value 

and will be implemented in an in vitro oviduct-embryo co-culture model in order to elaborate 

further on the deciphering of endocrine, autocrine and paracrine signalling during early 

embryo development in the horse. 
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5 PROSPECTS FOR THE FUTURE  

5.1 IN VIVO/EX VIVO MODELS  

In vivo models with proteome (nano-UHPLC-MS/MS), transcriptome (micro-array and next 

generation sequencing) and/or lipidome analysis (for instance electrospray ionization tandem 

mass spectrometry (Murphy, et al. 2001)) are without doubt the gold standard to investigate 

embryo-maternal and gamete-maternal interaction. However, the investigation of the specific 

interactions between the gametes and embryo and the oviduct in vivo is almost impossible due 

to the very local character of the interactions, the very small amounts of material and the 

difficult access of the oviduct in large animals in vivo. As a consequence, only major 

alterations in expression patterns can be determined.  

An interesting approach to decipher the contribution of a single molecule is to transfer gamete 

or blastocyst-sized gelatin beads carrying the absorbed target molecule (Glattauer, et al. 2010, 

Hwang, et al. 2000, Ma, et al. 2013) into the oviduct. These carrier beads may mimic the 

presence of gametes or an embryo and provoke a maternal response. As already performed in 

mice (Paria, et al. 2002), the maternal signals can be captured in vivo by means of 

transcriptome and proteome analysis (Paria, et al. 2001). However, it is difficult to distinguish 

between gamete and embryo-induced effects (Fazeli 2008). 

The combination of transcriptome data of oviductal ligands and embryonic receptors and vice 

versa, will also provide putative interacting factors which offers a very robust base for target 

confirmation studies (Ulbrich, et al. 2013a, Ulbrich, et al. 2013b).  

 

5.2 IN VITRO MODELLING 

Evaluation of specific effects 

As already mentioned before, embryo-maternal interactions are difficult to capture in vivo 

since the exact location of the embryo is almost impossible to determine. As a consequence, 

upregulated molecules with a low abundance may be diluted to undetectable levels. This 

could be circumvented using in vitro oviduct explants. Oviduct explants could be attached to a 

culture plate and co-cultured with embryos. To unravel and compare the response of embryos 

on for instance ciliated and non-ciliated cells, single cell isolation by laser capture 
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microdissection (Fig. 8) (Espina, et al. 2006) with subsequent transcriptome (next generation 

sequencing and microarray) proteome (nano-UHPLC-MS/MS) and/or lipidome analysis 

(using for instance electrospray ionization tandem mass spectrometry (Murphy; et al. 2001) ) 

may identify critical factors in the embryo-maternal interplay.  

             

Fig. 8. Laser capture microdissection. Tissue slide with target cell(s) fixed on a glass slide (A). 

Using a laser pulse which activates a transfer film (B), the target cell(s) are isolated from the 

tissue sample (C). Adapted from Espina, et al. 2006. 

 

Further confirmation 

In order to unravel the pathways which may play a role in oocyte-, sperm- and embryo-

maternal interaction an in vitro model can be used, such as the oviduct explant. To confirm 

functional relevance of putative candidate genes, these genes should be overexpressed or 

knocked down or recombinant protein could be added to the culture medium. The 

development of a suitable in vitro system (CHAPTER 3; CHAPTER 5) combined with the 

developments in vector design (Davis 2002, Kaufman 2000) and RNA interference (RNAi) 

(Azorsa, et al. 2006, Fire, et al. 1998, Timmons, et al. 2003) will boost these investigations. 

RNA interference, a technique for selectively inhibiting specific genes (Fig. 9), may help to 



Chapter 7 General Discussion 

267 

 

identify processes and signalling pathways by performing large scale screening 

(Kupferschmidt 2013).  

How promising the newest biotechnological techniques may be the establishment of the 

hierarchy of molecular relationships and the distinction whether signalling pathways operate 

as a network, in parallel or independently (Paria, et al. 2002), remains a considerable 

challenge. Another challenge is to unravel critical factors within the same gene family or 

within the same gene via alternative splicing. For instance, when EGF, TGFA and 

amphiregulin are deleted, their function is taken over by other members of the same gene 

family, which obscures the relative significance of individual genes contributing to embryo-

maternal interaction (Lim, et al. 2002). 

 

 

Fig. 9. Gene silencing through RNA interference. RNAi technology takes advantage of the 

cell’s natural machinery, facilitated by short interfering RNA molecules, to effectively knock 

down expression of a gene of interest. There are several ways to induce RNAi, synthetic 

molecules, RNAi vectors, and in vitro dicing. In mammalian cells, short pieces of dsRNA, 

short interfering RNA (siRNA), initiate the specific degradation of a targeted cellular mRNA. 

Adapted from: Azorsa, et al. 2006. Picture drawn using MOTIFOLIO PPT drawing toolkit®. 
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In vitro fertilization  

Up to now, conventional in vitro fertilization results in equine species are disappointing.  

The lack of hyperactivated motility under standard in vitro capacitation conditions has been 

proposed as the main reason why in vitro fertilization fails in the horse (Hinrichs and Loux 

2012). To elucidate the conditions that trigger hyperactivated motility of stallion spermatozoa 

in the mare’s reproductive tract and to determine whether release of capacitated sperm from 

oviduct epithelial cells could be achieved under in vitro conditions, an oviductal cell model is 

indispensable (Lagutina, et al. 2007, Leemans, et al. 2014, Leemans, et al. 2011). For instance, 

oviduct-derived osteopontin and atrial natriuretic peptide have been reported as potentially 

involved in equine fertilization (Mugnier, et al. 2009).On the other hand, also the effect of 

spermatozoa on oviductal cells could be studied in vitro using oviduct cells (Abe 1996, 

Aldarmahi, et al. 2014, Aldarmahi, et al. 2012).  

 

Inadequate maturation of the horse oocyte, which is an obstacle for in vitro production of 

equine embryos, may also benefit from the use of the oviduct explant model. The proportion 

of equine oocytes that reach the metaphase II stage of development after culture in vitro for 

20 to 40 h is much lower than for other domestic species (Li, et al. 2001). Interestingly, 

encouraging pregnancy rates were reported when metaphase I oocytes, obtained by oocyte 

aspiration 24 h after administration of gonadotrophins, were transferred simultaneously with 

spermatozoa into the oviducts of recipient mares (Carnevale, et al. 2000). This proves that 

equine oocytes can complete maturation in the oviduct and be fertilized successfully 

thereafter in vivo.  

This illustrates also the important role of the oviduct in equine oocyte maturation and the 

great potential of our oviduct explants model in gaining knowledge of the conditions required 

to achieve satisfactory equine maturation and fertilization rates. In addition, it appears to be 

an excellent tool for proteome, transcriptome and miRNome analysis in order to unravel 

embryo–maternal interactions in the horse to improve in vitro embryo development.  

 

Towards the improvement of equine embryo culture medium 

 

After the functional confirmation of particular target molecules, these molecules may be 

added to equine embryo culture media in order to increase blactocyst quality. 
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Nevertheless, up to now, most studies have only investigated the effect of a single factor 

while in vivo, a coordinated crosstalk between the embryo and its environment is enabled by a 

complex network of several interacting factors. A complex mixture of carefully determined 

concentrations of embryotrophic factors would reproduce natural conditions more closely. An 

in vitro system allows to capture and unravel pathways and reactions induced by for instance 

one single factor without the presence of other influences which may obscure its effect. For 

example, the importance of a growth factor for embryonic development could be first 

confirmed by detecting its respective receptors on equine embryos and subsequently, its 

regulation, biological functions and involvement in embryo-maternal communication could be 

studied in vitro whereas in vivo, numerous factors may overshadow the single factor’s effects. 

Like this, the equine embryo culture medium could be enriched with maternally derived 

proteins and other (growth) factors (Richter 2008) which contribute to the improved 

development of embryos (Roudebush, et al. 2004). 

In order to design an optimal appropriate horse-specific (co-)culture medium, gaining 

knowledge in the energy metabolism of both the embryo and the oviduct  is imperative (Leese, 

et al. 2008). Up to now, very little is known concerning the energy and oxygen requirement of 

developing embryos. To gain insights in metabolic pathways, both enzyme-linked 

fluorescence assays and radiolabelled substrates  to detect the appearance and disapprearance 

of a particular substrate from culture media have been reported (Rieger , et al., 1992, Guerif, 

et al 2013).  

To derive knowledge about oxidative metabolism, oxugen consumption of embryos and 

oviduct cells may be measured using pyrene fluorescence (Houghton , et al. 1996) and 

nanorespirometry (Lopes, et al. 2010). In addition, metabolic inhibitors such as cyanide, can 

be added to the culture medium. From this, it can be proven whether or not a certain pathway 

is essential for development (Brison & Leese 1994).  

 

Taken together, the modifications induced by co-cultured oviduct explants, mimicking 

oviductal secretions in response to the embryo’s needs, could be the basis of the improvement 

of equine embryo culture conditions. 
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SUMMARY  

 

Science never solves a problem without 
creating ten more. 

George Bernard Shaw, playwriter 
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SUMMARY  

To date, in vivo derived equine embryos are of superior quality compared to those produced 

in vitro, in terms of morphology and ultrastructure, gene expression and developmental 

competence. This phenomenon confirms that current in vitro systems are deprived of 

particular essential maternal factors or signals and illustrates the importance of embryo-

maternal interplay. So far, only very few signals involved in the embryo-maternal dialogue 

have been identified in the horse. Although in vivo models are the gold standard, it is difficult 

to investigate molecular processes within a relatively large space like the equine oviduct. It is 

for instance difficult to locate gametes and the embryo in the oviduct and to unravel local 

paracrine and autocrine events, which are essential in elucidating intra- and extracellular 

molecular pathways and processes. The general goal of this thesis was to gain insight in the 

embryo-maternal communication in the horse. To achieve this aim, the influence of steroids 

on the oviduct was in vivo investigated (CHAPTER 4). These effects were simulated in vitro 

(CHAPTER 5.1) by means of an optimized in vitro oviduct explant model (CHAPTER 3). 

The effect of steroids (CHAPTER 5.1) and embryos (CHAPTER 5.2) on oviduct explant’s 

gene expression was assessed. Next, as a step forward to the improvement of in vitro equine 

embryo culture, it was also investigated whether embryos in vitro benefit from culture at the 

mare’s body temperature (CHAPTER 6).   

 

In CHAPTER 3.1, a culture system which sustains equine oviduct explants bordered by 

highly differentiated, glucose consuming, functional and intact epithelial cells showing 

vigorous ciliary activity during 6 days of culture was optimized. Only a negligible percentage 

(1–2%) of the cells in the explants showed features of apoptosis or necrosis and therefore, it 

could be concluded that the explants mimic the in vivo situation very closely. Although 

dark-cell degeneration, a hypoxia related type of cell death, was detected using TEM, the 

hypoxia marker genes HIF1A, GLUT1 and VEGFA were not upregulated in the culture 

system, even in culture at high oxygen concentrations. In an attempt to further unravel the 

origin of the dark cell degeneration, explants were cultured with and without foetal calf 

serum (FCS) or supplemented with serum replacement insulin-transferrin-selenium (ITS) in 

CHAPTER 3.2. It turned out that selenium increases while FCS decreases to some extent the 

incidence of explants showing dark cell degeneration.  
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In the horse no information is available concerning local steroid concentrations in the oviduct 

and their fluctuations during the oestrous cycle. Therefore in CHAPTER 4 the concentrations 

of progesterone, oestradiol, testosterone and 17-hydroxyprogesterone were determined in 

equine oviductal tissue by the highly powerful technique UHPLC-MS/MS whereas RIA was 

applied to measure steroids in oviductal fluid. Progesterone concentrations were high in 

oviductal tissue and fluid ipsilateral to the ovulation side during diestrus, whereas testosterone, 

and 17α-testosterone and 17-hydroxyprogesterone other steroid hormone concentrations were 

not influenced by the side of ovulation. The most plausible explanation for the elevated 

progesterone concentration in the ipsilateral oviduct of the mare is a combination of 1) the 

contribution from follicular fluid in the oviduct and the diffusion of follicular fluid steroids 

after ovulation; 2) a local transfer of steroids via blood or lymph, 3) local synthesis of 

progesterone in the oviduct which is confirmed by the expression of StAR, cytochrome 

P450scc and 3-beta-HSD, key enzymes in the progesterone synthesis, as well as aromatase, 

which is suggestive of local steroidogenesis; and, 4) the paracrine contribution from follicular 

cells. 

 

In CHAPTER 5.1, preovulatory explants were stimulated with hormone concentrations as 

they prevail in the postovulatory stage and vice versa. The influence of these steroid 

hormones on the function (ciliary activity, glucose consumption and lactate production), the 

ultrastructure, the mRNA expression of a set of embryotrophic genes, the steroidogenic 

capacities and the progesterone receptor expression in the equine oviduct was assessed. 

Progesterone and 17β-oestradiol were able to modify ciliary activity, energy metabolism, gene 

expression, immunoreactive steroidogenic enzyme expression and progesterone receptor 

expression in oviductal explants in vitro. Furthermore, PAI1, PLAU, GLUT1, CSF1, TGFA and 

MMP2 were shown to be upregulated in the oviductal epithelium originating from mares in the 

postovulatory cycle stage. Moreover, preovulatory oviduct explants, primed by steroids in 

vivo, are responsive to in vitro stimulation with postovulatory oviductal progesterone and 

17β-oestradiol concentrations and approach the in vivo condition at the level of functionality 

and gene expression. This endorses that our explant model remains functional and responsive 

for at least three days (CHAPTER 3). In addition, it turned out that oviduct explants are 

capable of producing large amounts of progesterone in vitro and are able to remove 

considerable amounts of oestrone, 17β-oestradiol and testosterone from the culture medium. 

This confirms again the functional integrity of the culture system. 
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The oviductal environment represents the optimal environment for early embryo development. 

Supposing that oviductal cells provide specific mitogenic factors that would normally be 

present in the oviduct, or non-specific factors that improve the culture environment such as 

reduction of oxygen tension, removal of waste products or provision of substrates and co-

factors, we cultured equine zygotes, obtained by ICSI, with and without equine oviduct 

explants in CHAPTER 5.2. To elucidate the role of developing embryos on the modulation 

of gene expression in the oviduct, we unraveled the response of the same set of embryotrophic 

genes as used in CHAPTER 5.1 in oviductal cells cultured together with equine putative 

zygotes (CHAPTER 3). Co-culture with equine embryos stimulated the expression of the 

embryotrophic genes TIMP1, PTGER2, TGFA, MMP2, CSF1 and PAI1 in the oviduct explant, 

which have been described to be involved in embryo transport, and in stimulating embryonic 

development and quality, and they modulate oviductal matrix turnover. Co-culture did not 

affect ciliary activity or viability of oviduct explants. 

In an attempt to further improve embryo culture conditions, it was investigated in CHAPTER 

6 if oocyte maturation, cleavage, blastocyst rate and blastocyst diameter could be improved 

when applying the physiological body temperature of the mare (37.3 °C) rather than the 

conventional 38.5°C. Cytoplasmic maturation does not differ in both groups. The size of 

blastocysts was smaller in the oocytes matured and embryos cultured at 37.3°C compared 

with the matured and cultured at 38.5°C. Since blastocyst size is a parameter of embryo 

viability,  culture at 38.5°C may be recommended rather than culture at 37.3°C.  

In the final CHAPTER 7 the general discussion and conclusions are presented. Our findings 

indisputably demonstrate that the equine oviduct is able to respond to both steroids and 

embryonic signals in vivo and in vitro and that our oviduct explant model is an excellent 

model to further unravel the embryo-maternal interplay in the horse. 
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SAMENVATTING  

 

Facts are the air of scientists; without them   
you cannot fly 

Linus Pauling, biochemist 
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SAMENVATTING 

Tot nu toe zijn in vivo paardenembryo’s van betere kwaliteit op vlak van morfologie, 

ultrastructuur en genexpressie en ontwikkelen ze zich bovendien sneller tot blastocyst in 

vergelijking met in vitro geproduceerde embryo’s. Dit bevestigt dat onder andere in de 

huidige in vitro systemen bepaalde essentiële maternale factoren ontbreken en benadrukt het 

belang van embryo-maternale interactie. Tot nu toe zijn er slechts een paar signalen van de 

embryo-maternale dialoog geïdentificeerd bij het paard. Alhoewel in vivo modellen de gouden 

standaard zijn, is het zeer moeilijk om processen op het moleculaire niveau te ontrafelen in 

een relatief grote ruimte zoals het paardenoviduct. Het is bijvoorbeeld moeilijk om de 

gameten en het embryo te lokaliseren en om lokale paracriene en autocriene signalen in het 

oviduct op te vangen die essentieel zijn voor intra- en extracellulaire moleculaire 

signaaltransducties en processen. Het algemene doel van deze thesis was inzichten verwerven 

in de embryo-maternale communicatie bij het paard. Daarom werd in vivo de invloed van 

steroïden op het oviduct nagegaan (HOOFDSTUK 4). Dit werd gesimuleerd in vitro 

(HOOFDSTUK 5.1) met een geoptimaliseerd in vitro oviductexplantmodel (HOOFDSTUK 

3). Het effect van steroïden (HOOFDSTUK 5.1) en embryo’s (HOOFDSTUK 5.2) op de 

genexpressie van oviductexplanten werd beoordeeld. In een volgende stap, met als doel de in 

vitro cultuur van paardenembryo’s verder te verbeteren, werd nagegaan of embryo’s in vitro 

baat hebben bij cultuur aan de lichaamstemperatuur van de merrie (HOOFDSTUK 6). 

In HOOFDSTUK 3.1 werd een cultuursysteem geoptimalizeerd voor oviductexplanten. Die 

explanten zijn afgelijnd door hoog gedifferentieerde, glucoseconsumerende, functionele en 

intacte epitheliale cellen die uitgesproken ciliënbeweging vertonen gedurende een 

cultuurperiode van 6 dagen. Slechts een verwaarloosbaar percentage (1-2%) van de cellen in 

de explanten vertoonde tekenen van apoptose of necrose. Deze explanten bootsen dus zeer 

sterk de in vivo situatie na. Hoewel “dark-cell degeneration” (DCD), een hypoxie-gerelateerde 

vorm van celdood, door middel van TEM werd gedetecteerd in de explanten, waren de 

markers voor hypoxie HIF1A, GLUT1 en VEGFA niet opgereguleerd, zelfs niet in cultuur bij 

lage zuurstofconcentratie. In een poging om de oorzaak van de DCD te achterhalen werden 

explanten op cultuur gezet al of niet met foetaal kalfserum en al of niet gesupplementeerd met 

de serumvervanger insuline-transferrine-selenium (HOOFDSTUK 3.2). Blijkbaar verhoogde 



Samenvatting 

323 

 

selenium de incidentie van DCD terwijl serum, tot op zekere hoogte, de incidentie van DCD 

verlaagde. 

Bij het paard zijn er geen gegevens beschikbaar betreffende lokale concentraties en fluctuaties 

van steroïden in het oviduct tijdens de voortplantingscyclus. Daarom werden (HOOFDSTUK 

4) de concentraties van progesteron, oestradiol, testosteron en 17-hydroxyprogesterone 

bepaald in oviductweefsel met de zeer krachtige techniek U-HPLC-MS/MS, terwijl met RIA 

de steroïdconcentraties in oviductvocht werden gemeten. De progesteronconcentratie was zeer 

hoog in zowel weefsel als vocht tijdens dioestrus in de oviducten ipsilateraal van de kant van 

ovulatie. De meest aannemelijke verklaring voor de verhoogde progesteronconcentraties in de 

ipsilaterale oviducten is een combinatie van 1) een bijdrage van follikelvocht en de diffusie 

van steroïden uit het follikelvocht na ovulatie; 2) een lokale transfer van steroïden via het 

bloed of lymfe; 3) lokale synthese van progesteron in het oviduct. Dit werd bevestigd door de 

expressie van immunoreactieve proteïnen van StAR, cytochroom P450scc en 3-beta-HSD, 

enzymen die een cruciale rol spelen in de progesteronsynthese. Aromatase werd ook 

gelokaliseerd; 4) de paracriene bijdrage van follikelcellen. 

In HOOFDSTUK 5.1 werden preovulatoire explanten gestimuleerd met 

hormoonconcentraties zoals ze voorkomen in postovulatoire oviducten (HOOFDSTUK 4) en 

vice versa. De invloed van deze steroïden op de functie (ciliënbeweging, glucoseverbruik en 

lactaat productie), de ultrastructuur, de mRNA expressie van een set embryotrofe genen, de 

steroidogene capaciteit en de expressie van progesteronreceptoren in het paardenoviduct 

werden beoordeeld. Progesteron en 17β-oestradiol waren in staat om in vitro ciliënbeweging, 

energiemetabolisme, genexpressie, expressie van immunoreactieve proteïnen van 

steroidogene enzymen en progesteronreceptorexpressie in oviductexplanten te moduleren. 

PAI1, PLAU, GLUT1, CSF1, TGFA en MMP2 waren opgereguleerd in het oviduct epithelium 

afkomstig van merries in het postovulatoire cyclusstadium. Bovendien bleken preovulatoire 

explanten, geïnitieerd door steroïden in vivo, te reageren op in vitro stimulatie met 

postovulatoire progesteron en 17 β-oestradiol concentraties en benaderden zij de in vivo status 

op vlak van functionaliteit en genexpressie. Dit bevestigt dat ons explantmodel functioneel en 

responsief blijft gedurende minstens 3 dagen. Bovendien is gebleken dat oviduct explanten in 

vitro grote hoeveelheden progesteron kunnen produceren en in staat zijn aanzienlijke 

hoeveelheden oestrone, 17β-oestradiol en testosteron uit het cultuurmedium te verwijderen. 

Dit bevestigt opnieuw de functionele integriteit van de explanten. 
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Het oviduct is de meest optimale omgeving voor de vroege embryonale ontwikkeling. 

Oviductcellen in vitro produceren specifieke mitogene factoren die normaal gezien in het 

oviduct voorkomen, alsook niet-specifieke factoren die de cultuurparameters, zoals de 

zuurstofspanning of het neutraliseren van afvalproducten verbeteren of de aanvoer van 

substraten en cofactoren bevorderen. Daarom werden paardenzygoten, verkregen door ICSI, 

met of zonder oviduct explanten op cultuur gezet (HOOFDSTUK 5.2). Om het effect van de 

ontwikkelende embryo’s op de genexpressie van het oviduct na te gaan werd de expressie van 

dezelfde set embryotrofe genen als in HOOFDSTUK 5.1 vergeleken in oviduct explanten met 

en zonder co-cultuur. Co-cultuur met paardenembryo’s verhoogde de expressie van de 

embryotrofe genen TIMP1, PTGER2, TGFA, MMP2, CSF1 and PAI1, dewelke allen 

betrokken zijn bij embryotransport en het ondersteunen van de embryonale ontwikkeling en 

kwaliteit alsook bij het vernieuwen van de extracellulaire matrix. Co-cultuur had geen effect 

op de ciliënbeweging of vitaliteit van de explants. 

In een poging om de cultuuromstandigheden voor het embryo verder te verbeteren werd 

(HOOFDSTUK 6) nagegaan of eicelmaturatie, deling, blastocystpercentage en -diameter 

konden verbeterd worden door de conventionele cultuurtemperatuur van 38.5 °C te verlagen 

naar de fysiologische lichaamstemperatuur van de merrie (37.3 °C). Cytoplasmatische 

maturatie was niet verschillend in beide groepen. De diameter van de blastocysten waren 

kleiner in de groep gecultiveerd bij 37.3 °C vergeleken met de groep bij 38.5 °C. Aangezien 

de blastocystdiameter een parameter is die de viabiliteit van een embryo karakteriseert, geniet 

cultuur bij 38.5°C de voorkeur boven 37.3 °C. 

De algemene discussie, de conclusies en toekomstperspectieven zijn weergegeven in het 

laatste HOOFDSTUK 7. Onze bevindingen tonen onweerlegbaar aan dat het paardenoviduct 

in staat is om te reageren op zowel steroïden als embryonale signalen in vivo en in vitro en dat 

ons explantcultuursysteem het model bij uitstek is om de embryo-maternale dialoog bij het 

paard verder te ontrafelen.  



Acknowledgements -Dankwoord 

325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ACKNOWLEDGEMENTS DANKWOORD 

 

Do not kick away the canoe which helped you 
to cross the river 

Madagascan Proverb 

 



Acknowledgements -Dankwoord 

326 

 

ACKNOWLEDGEMENTS – DANKWOORD  
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het duister klom, 

en verre sterren staan alom. 

De lange tocht loopt ten einde,  

de paarden  mogen  nu op stal...  

 

“Dankbaarheid is een bloem die in weinig hoven bloeit”, dichtte Guido Gezelle, maar toch 

wisten wij gedurende deze zes jaar durende marathon, een omvangrijk boeket van deze 

zeldzame bloemen te plukken en te verzamelen om ze nu op het einde van deze rit met gulle 

hand te kunnen uitdelen. Nu is immers de tijd aangebroken om bloemen van dankbaarheid te 

schenken en gouden pluimen uit te delen. 

Het hoofdstuk “Dankwoord” is maar enkele pagina’s lang. Toch zou zonder de grote of kleine 

helpende hand van de personen vermeld in de volgende paragrafen, het boekje dat u nu 

vasthoudt nooit zijn uitgegeven. Als een poor lonesome cowboy deze thesis schrijven zou 

immers onmogelijk geweest zijn. Daarom hield ik eraan iedereen die tijdens deze lange 

trektocht, ook al was het maar voor heel even, de rol van gids, trainer, menner, groom of 

luidruchtige of stille supporter aan de zijlijn, op zich heeft genomen, uitgebreid in de 

bloemetjes te zetten en uit de grond van mijn hart te bedanken. 

 

Tijdens deze lange reis door zowel vlak en windstil als winderig, bergachtig en 

onherbergzaam gebied, werd ik begeleid door mijn vaste gidsen. Mijn promotor, prof. Dr. 

Ann Van Soom: Ann, hartelijk bedankt om me de kans te geven aan dit hindernissenparcours 

te beginnen, om in mij te geloven en me de vrijheid te geven om op eigen initiatief het 

noorden te zoeken, wijzigingen in de vooraf uitgestippelde route aan te brengen en me zelfs 

nieuwe wegen te laten bewandelen. Bedankt om, ondanks uw overvolle agenda, tijd te maken 

voor feedback.  

Mijn copromotor, prof. Dr. Luc Peelman: bedankt voor de brainstormsessies waaruit 

meermaals nieuwe ideeën en inzichten voortkwamen. Wie Prof. Luc Peelman zegt, zegt Labo 

Dierlijke Genetica en in dezelfde adem dr. Lic. Karen Goossens, het andere lid van het 

tweespan genetica, dat ervoor zorgde dat er in het genetica hindernissenparcours niet al te veel 

kegels omver werden gereden. Karen, toen alles nog in z’n kinderschoenen stond en ik mijn 
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eerste onzekere pasjes zette in de boeiende wereld van de genetica, heb je mij met 

engelengeduld en met raad en daad bijgestaan en te paard geholpen. We hebben die IGF1 

primer toch maar mooi gevalideerd gekregen! 

 

Dr. Katrien Smits: Katrien, na je Aruba-verblijf ben je als lid van de begeleidingscommissie 

op de marathonwagen gesprongen (eindelijk een paardenspecialist erbij in mijn 

begeleidingscommissie!). Mijn welgemeende dank om mijn schrijfsels grondig bij te sturen, 

voor de proteomics en co-cultuur samenwerking en om me door de bomen het bos aan te 

wijzen. Veel succes nog met je postdoc project.  

 

I am also very grateful to the members of the examination committee: prof. Dr. Katharina 

D’Herde, prof. dr. Stefan Deleuze, dr. Ghylène Goudet and prof. dr. Maarten Hoogewijs, for 

their critical evaluation and constructive remarks. 

 

Prof. dr. dr. h.c. Aart de Kruif: u ben ik zeer erkentelijk om in de herfst van 2008 enthousiast 

in te gaan op mijn vraag of er op DI08 een mogelijkheid was om een FWO-aanvraag in te 

dienen. Stante pede loodste u mij mee naar Ann die al even enthousiast meteen kwam 

aandraven met een paardenonderwerp, dat ik natuurlijk gretig aannam.  

Bedankt, FWO-Vlaanderen, om groen licht te geven voor dit onderzoek.  

 

Prof. dr. ir. Lynn Vanhaecke en dr. Julie Vanden Bussche, het tweespan U-HPLC-MS/MS 

experts, jullie ben ik veel dank verschuldigd voor de excellente begeleiding in het 

steroïdenverhaal. Ik ben er trots op dat ik ettelijke maanden in het labo Chemische Analyse 

mocht vertoeven. Zonder jullie was, op z’n zachtst uitgedrukt, een groot deel van deze thesis 

niet geworden wat ze nu is. Jullie aanmoedigend en nooit aflatend animo vormde een 

blijvende stimulans om door te bijten, ook al leken er zich op een gegeven moment 

onneembare hindernissen op ons parcours te bevinden. Mieke Naessens, erg bedankt om de 

ruwe data-analyse uit tevoeren. Lucy, Ine en Dirk: dank u wel voor de technische-logistieke 

hulp en de gezellige babbels. 

 

Prof. Dr. Anita Franczak and dr. Bartosz Wojciechowicz of the University of Warmia and 
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considerable and valuable contributions to the manuscripts. It was a real pleasure to 

collaborate with you, a hyper-enthusiastic team. Your help was priceless. I wish you all the 

best. Dziękuję! 

 

Prof. Dr. Apr. Dieter Deforce, ik had de eer me in het labo Farmaceutische Biotechnology te 

mogen verdiepen in de proteomics. Dr. Apr. Katleen Van Steendam: Katleen, jij hebt ervoor 

gezorgd dat Katrien en ik met beslagen paarden op het ijs kwamen, zodat het proteomics 
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en bergen energie beginnen stilaan legendarisch te worden. Geen enkele moeite was je teveel: 
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zelfs in hoogzwangere toestand in het holst van de nacht! Chapeau! Veel success nog met je 

carrière en alles wat je dierbaar is. 

 

Prof. dr. Katharina D’Herde van UZ-Gent, u ben ik zeer erkentelijk voor het monnikenwerk 
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Dominique Jacobus, bedankt om kant-en-klaar fixatief te maken en om de stalen waarmee ik 

meer dan eens kwam aandraven, te verwerken. 

 

Bart (AKA dr. Leemans), jij hebt in 2010 het paardenteam vervoegd. Onze 
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(Uit: “Mensen en dieren” door J. Apostel) 

 

Hilde Nelis, mei 2015 
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The only source of knowledge is experience 
Albert Einstein, physicist 
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Every new beginning comes from some other beginning’s end 
Seneca, Roman statesman and philosopher 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


