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Chapter 1

Introduction

This thesis deals with the analysis of exposures to xenobiotic substances
and their e®ects on human beings. The term xenobiotic covers all or-
ganic compounds that are foreign to the organism under study. This last
century many new drugs with expected curative and palliative e®ects
have lead to a major reduction in mortality and morbidity at all ages.
As a result life expectancy has increased dramatically. Also, in many
geographical areas, the earlier patterns of large epidemics and famine
have been largely relieved, whilst in other areas the very same problems
seem intractable. The improvement of well being has gone hand in hand
with a drastic expansion of the industry. Not only the food production
industry has grown but also a whole business has emerged aimed at
improving the social condition of many people. The discovery of new
technologies, new products, has exposed human beings to new and often
not so well understood compounds (drug residue, fertilizer, pesticides,
dioxins, PCB, ...). Co®ee is a good example; over 1200 di®erent com-
pounds are identi¯ able in the natural product called co®ee which was
just another weed until the 18th century when the co®ee craze hit Eu-
rope. As a consequence, we are daily exposed to hundreds of chemical
compounds. Most of them are unlikely to have a major e®ect on health
but this huge diversity in chemical compounds with their own way of
action, combined with individuals who are highly variable ( health sta-
tus, diseases, age, race, ...) makes it di±cult to assess the e®ectiveness
and/or toxicity of the products.

Health scientists have routinely made decisions about the extent to
which human exposure to chemical compounds is bene¯ cial, hazardous
or negligible. These decisions commonly focus on a target group, for
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example, the general population of a country, patients su®ering from a
particular disease, a highly exposed sub-population, or speci¯ c individ-
uals with some characteristics in common, such as children. Individuals
within a target group are likely to face di®erent levels of exposure due
to di®erences in behavioral patterns (food consumption, working envi-
ronment, adherence to prescribed therapy, ...), or physiological charac-
teristics (absorption, distribution, drug metabolism, ...), or even over
time. These di®erences contribute to the variability in health outcomes
among individuals. At the beginning of the 20th century the expert de-
cisions were largely a subjective qualitative assessment of evidence from
individual case reports. Today judgments on drug e±cacy and contam-
inant control are quantitatively guided with the help of the science of
statistics. One synthesizes logical relationships, estimated magnitudes
of e®ects and residual variation based on information contained in a
given sample of chosen size.

When examining a dose-e®ect relationship, actual exposure to the stud-
ied chemical compound can be seen as the main driver of outcomes. As a
consequence, uncontrolled variation in exposure will lead to variation in
outcomes and will thus result in less powerful statistical tests. Therefore,
researchers aim to study subgroups of the general population consisting
of `standardized' subjects with predictably high exposure levels. The
hope is then to highlight a `signi¯ cant average e®ect' on a sizable sam-
ple of the studied population. Indeed economic pressures on sample size
often force the researcher to reduce variability as much as possible. How-
ever in this \ideal" world, one looses representativeness and restricts ob-
servation to a narrow fraction of the outcome distribution and often loses
important information. Further, for most of the xenobiotic substances,
it would be an utopia to assume that in general ambulatory subjects are
exposed to a constant dose over time. This thesis shows that assuming
regular exposure and steady state in ambulatory subjects can result in
biased conclusions concerning the pharmacokinetic/pharmacodynamic
properties of the compounds. On the other hand, it suggests that using
reliable measures of exposure, as observed in a more general population
can result in a clinically relevant pharmacologic model that improves
the information retrieved from a given number of subjects.
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1.1 Chemical compound exposure

In modern society, humans are continuously exposed to numerous (sev-
eral hundreds of thousands) chemical compounds. The exposure hap-
pens mainly via three di®erent routes : continuous environmental expo-
sure (daily exposure to air and/or food pollutants), intermittent expo-
sure to speci¯ c products (war, occupational, smoking, accidental food
contamination, ...) and, ¯ nally, prescribed drug exposure. While for the
two ¯ rst exposure routes health hazards are expected, the last route of
exposure has usually been studied in detail within clinical trials and is
only put into e®ect when a good balance between health bene¯ t and
adverse reactions is anticipated.

The impact on human health of environmental factors (daily exposure)
can only be assessed through epidemiological studies. Since serious
health outcomes show a low prevalence rate and are usually observed
only after a long period of time, the number of people that must be
monitored to detect an average increase is huge. Acknowledging the
many possible interactions between the chemical compounds present in
the environment, the study of their health hazard would require involv-
ing close to the entire world population in epidemiological studies. Not
only is this prohibited by practical, ethical and economic reasons but
within such large scale epidemiological studies it would be impossible to
control for potential confounding factors.

When an incident of exceptionally high exposure occurs, it constitutes a
unique opportunity to study in detail the biomedical e®ects of the xeno-
biotic substance in question. As an example, we will study exposures
to dioxin-like substances during a short food contamination episode in
Belgium. Our work however focuses mainly on exposures that happen
through drug prescription in general.

Fortunately prescription drugs are a more common subset of exposure
to xenobiotics and will be considered in more detail through several
examples. In drug development, except for early phase studies where the
patient is treated in hospital, patients tend not to take their medicine
exactly as planned by the trialist. This lack of adherence results in a
natural experiment in variation of drug exposure that can take a number
of forms. The patient can be non persistent and drop out of the trial
treatment, take none of the medicine whilst pretending to do so, forget
to take the treatment from time to time, or take it at the wrong time.
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1.1.1 Variation in exposure

The ¯ rst problem we run into when discussing variation in exposure is
one of terminology. Many terms exist and have been used interchange-
ably in the literature, e.g. compliance, duration, persistence, adherence,
acute phase, drop out, ... As with any scienti¯ c undertaking, a sound
taxonomy, with explicit de¯ nitions, is essential for scienti¯ c progress.
To de¯ ne the variation in exposure, we follow Urquhart's (Urquhart and
Vrijens 2001) perspective and take a leaf from Aristotle. He viewed the
drama as having three parts: a beginning, a middle, and an end. This
stunningly obvious construct is nevertheless a good taxonomic starting
point for describing variation in exposure, which also has these three
main parts. The beginning is the time when a person is exposed to
the studied chemical compound. The middle is the continuous exposure
over time once that exposure has started. The end is an abrupt stop
to the middle phase. The beginning and the end are abrupt changes
in exposure at certain points in time. Usually, the beginning and end
of an exposure can be predicted (prescription of a medication, decision
to stop a medication, change in occupational exposure, relocation, food
contamination crisis, ...).

In drug development, variation in exposure is controlled in designed clin-
ical trials. Early phase studies are usually carried out within hospitals
where variation in exposure is imposed and can be well controlled. Vari-
ation within-patients (drug escalation, cross over, ...) as well as between-
patients (study groups with di®erent doses, di®erent regiments, ...) is of
interest. This constitutes usually the basis of dose-¯ nding through de-
tailed traditional pharmacokinetic/pharmacodynamic studies. In later
stage clinical development, when patients are treated for longer periods
of time and multiple doses are prescribed, accurately recorded timing of
repeated dosing is essential for accurate and precise estimation of the
pharmacokinetic and pharmacodynamic properties of drugs.

In traditional ambulatory pharmacotherapy, once the drug has been pre-
scribed, any variation in drug exposure is due to the patient (intentional
variation or not). Therefore a speci¯ c taxonomy has been developed
in this ¯ eld. The beginning is the patient's acceptance, or not, of the
recommended treatment. The middle is the patient's execution of the
prescribed dosing regimen. The end occurs when treatment is discon-
tinued, which in the trial setting is called \dropping out of treatment".
The ¯ rst and third phenomenon in the occurrence are a dichotomous
outcome at a single point in time, whereas the second is in general a
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continuous process over time, thus precluding a single, quantitatively
useful parameter to cover all three. However, the literary notion of \ad-
herence", may be useful as a blanket term for all three, provided that
it be generally recognized that \poor adherence" may mean problems
with any or all of the three. Thus, beneath \adherence", we have:

²Acceptance, the dichotomous beginning,

²Execution, the continuous middle,

²Discontinuation, the dichotomous end.

Time is not to be overlooked, for it is a factor of paramount importance.
The event is discontinuation, but the duration of execution {persistence{
is a crucial measure.

1.1.2 Measuring exposure

While a study of the action of chemical compounds ideally relies on
precise exposure assessments, in practice, it is di±cult to collect reliable
data over time. Measuring exposure is the ¯ rst step to achieve this.
Retrospective and/or prospective methods are used.

²Retrospective data collection
The most commonly used retrospective method is self report.
However the reliability and validity of self reports is highly vari-
able (Waterhouse et al. 1993, George et al. 2000, Arnsten et al.,
2001). When the questionnaire covers a long period of exposure
time, we ¯ rst face potential in°uences of elapsed time. This is es-
pecially true if detailed daily exposure is requested. Furthermore
intentionally biased responses (face-saving, potential pro¯ t in ex-
aggerating the toxic exposure, ...) is an important source of bias
in this type of study. In practice, retrospective data collection via
questionnaires, while still broadly used, is prone to producing inac-
curate measures of long term exposure and can seriously confound
the analysis and interpretation of exposure-response relationship.
For some chemical compounds it is sometimes proposed to assess
previous exposure via plasma concentrations. A measure of drug
concentration in plasma is usually expensive and re°ects exposure
that occurred only during a preceding time-window, the width
of which is ca. 3 times the plasma half-lives of the compound.
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For compounds with long half-life (usually pollutants) this assess-
ment can be used to summarize long term average exposure but
cannot identify variation in exposure and cannot distinguish be-
tween short acute exposure and long background contamination.
Knowing that 78 % of the drugs in therapeutic use have plasma
half-lives that are less than 12 hours with 61 % of the plasma
half-lives less than 6 hours (Hardman et al. 2001), this method
restricts its estimate to the narrow intervals of time just prior to
scheduled visits. Furthermore, we note that `white-coat adher-
ence', the phenomenon whereby the patient improves adherence
immediately before the consultation, can substantially exaggerate
estimates of adherence outside this narrow interval of time just
prior to a scheduled visit. As an alternative to plasma concen-
trations, measurements of biological e®ects are sometimes used.
While it provides a quantitative assessment and is usually less
expensive than plasma concentrations, incidental biological e®ects
are not always present and are highly variable across human be-
ings. Finally the so-called pill-counts, where the trialist counts
the returned tablets, have been used extensively as a routine ad-
herence measure in clinical trials. The technique is simple, cheap
and non-invasive but provides only an average adherence sum-
mary over a given period of time. This method fails to distinguish
between a regular taker and someone who balances periods of
underdosing with periods of overdosing. Further pill-counts have
often been shown to over-estimate patient adherence (Waterhouse
et al. 1993, Pocock SJ and Abdalla M 1998). In summary retro-
spective data collection is only reliable for single day (or average
longer period) exposure assessment and faces then the di±culty
of interpretation. Having a single-point value does not readily
improve the interpretation of exposure-response data nor does it
translate easily into a plan of sensible intervention.

²Prospective data collection
Direct observation of exposure is the gold standard but is resource-
intensive, requires continuous on-ward residence and thus may not
have external validity for routine daily life. It is often used in ani-
mal studies or for restricted early drug development human stud-
ies. Prospective diaries are inexpensive but have been shown to
be inaccurate and biased for similar reasons than for retrospective
patient self report. Finally with the advent of micro electronic cir-
cuitry, electronic monitoring has become feasible. Electronic real
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time monitoring allows unparalleled accuracy and convenience in
assessing not only how much the exposure was, but also when it
happened. It delivers long term temporal data and re°ects the
variation in exposure over time. It is usually easy to use but cost
and reliability vary. Continuous monitoring of drug containers
openings make the unobtrusive assessment of continuous medica-
tion intakes possible, yielding patterns of dosing history over time.
However, each opening and closing of the monitor is recorded as
a presumed dose, which obviously does not prove drug ingestion.
Nevertheless, the view exists that electronic drug monitoring is a
quite accurate surrogate of drug exposure because exceptional and
sustained commitment is required to create a false record of good
adherence (Urquhart and de Klerk 1998). This is especially true
for long term drug monitoring. This kind of continuous monitoring
results in a large amount of complex data and appropriate statis-
tical analyses must be developed in order to deal optimally with
them. Several classes of problems will be presented in this thesis;
methodological answers will be proposed, applied and discussed.

1.2 The therapeutic cascade

The duration and intensity of an exposure is arbitrary and can have a
completely di®erent e®ect depending on the chemical compound. There-
fore, understanding the relationship between exposure and blood con-
centration (pharmacokinetics, PK) and between blood or plasma con-
centration and biological e®ect (pharmacodynamics, PD) is important.
It drives the rational development and the safe and e®ective use of a
therapeutic agent as well as the regulation of tolerated intake of pollu-
tants. In Figure 1.1, we schematically represent the biotransformation
process between xenobiotic exposure and response.

To characterize these relationships and their variability adequately, stud-
ies in a representative population, using a relatively large number of
subjects, are needed. However, for practical and ethical reasons, exten-
sive pharmacokinetic and pharmacodynamic studies in large numbers
of subjects representative for the population exposed are usually not
possible. One must therefore derive pharmacokinetic and pharmacody-
namic relationships based on sparse data (few data points per patient)
collected under unbalanced designs. This rationale for population ap-
proaches in clinical evaluation was recognized already in the early papers
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by Sheiner (Sheiner and Ludden 1992) in which this methodology was
¯ rst proposed.

In spite of this obvious need, the application of the population approach
was for many years quite limited. The main reasons being the complexity
of the statistical methodology, the lack of available software and the need
for relevant exposure assessment.

Xenobiotic exposure
(Drug or Toxin exposure)

?

PK : Absorption, distribution, metabolism
(Tissue drug concentration)

?

PD : Drug action on cellular process
(Measurable biological e®ect)

?

Clinical response
(E®ect on patient health)

Figure 1.1: The therapeutic cascade

The chapters of this thesis illustrate several steps of the therapeutic
cascade. They were motivated by real problems, emerging from data
gathered to answer important scienti¯ c questions. Practical existing
problems related to variation in exposure and related e®ects were pro-
vided by Aardex, Abbott, Eli Lilly, M.S.D., Servier, and the Belgian
ministry of public health and will be described further in the thesis.

Whatever the design, experiments assessing exposure over time are usu-
ally expensive, demanding resources and generally resulting in large data
bases. These e®orts could be wasted if the design or analysis was not
optimally performed. Traditionally, textbooks on exposure mainly deal
with the situation where average values or basic summary statistics are
considered. Summarizing the exposure history in a few measures may
lose too much information to detect relevant exposure patterns and es-
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pecially changes over time. We found it necessary to go further and draw
inference that exploits enough of the data in a way that captures the
temporal evolution of exposure. This issue will be illustrated through-
out this work. Then inclusion of richly detailed information on exposure
can improve considerably the understanding of exposure-e®ect on hu-
man health. However if not done appropriately, it could confound the
conclusions. As will be shown in this thesis, including the variability in
exposure input may lead to much more precise and less biased pharma-
cologic and/or toxicological parameters.

1.3 Structure of the thesis

In Chapter 2, we investigate several summary measures that highlight
di®erent dimensions of adherence patterns and the drug context in which
they may be meaningful. Further, we examine conditional and marginal
models that enable comparisons of the full pattern of daily dosing indi-
cators for subjects between groups. This highlights the need for detailed
data in order to develop more powerful statistical methods to compare
drug exposure between randomized treatments over time.

In chapter 3 we present methods for predicting patient compliance over
time. To predict compliance outcomes, we use an auto-regressive model
for binary data. We handle frailty by a normal distribution for random
slopes and a random intercept. Model validation as well as two di®erent
types of clinically relevant model prediction are described and further
discussed.

In chapter 4 we introduce the bases of population pharmacokinetics
and discuss patient adherence to prescribed therapy as a leading source
of variability in pharmacokinetic response. We quantify the impact of
observed drug variation in population pharmacokinetic studies through
simulations. Finally we conclude that when it is possible to observe and
record irregular drug intake times, a substantial amount of precision in
the pharmacokinetic parameters is retrieved from the same number of
data points.

In chapter 5 we move on to estimate pharmacodynamic parameters,
from just a few outcome measures on a sample of patients who are
partial adherers. We investigate the information matrix for hierarchical
nonlinear models and con¯ rm that a substantial reduction in bias and
gain in precision can be expected by observing irregular drug intake.
Here we ¯ nd support for the claim that nonadherence, as a rich natural
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experiment of dosing variation, can be a blessing rather than a curse
from the information/learning point of view. In general, the estimators
of pharmacokinetic/pharmacodynamic parameters bene¯ t greatly from
information that enters through greater variation in the drug exposure
process.

In chapter 6 we investigate the e®ect of patient's adherence to prescribed
therapy on response assuming that adherence is non selective. In a ¯ rst
step we estimate individual pharmacokinetic parameters using a one
compartment model and adjusting for observed dosing intakes. Then
we relate pharmacological action to plasma concentration of drugs. We
applied the methodology to the HIV ¯ eld where it constitutes a ¯ rst
attempt to individualize therapy for the patient. Finally we derived a
new adherence summary variable, inspired from the third moment of the
interdose interval distribution, that allows to estimated a direct relation
between dosing histories and response.

In chapter 7 we move on to estimate the true therapeutic biological
e®ect of the treatment active component when potential selectivity is
expected. The methodology focus on causal inference in randomized
trials for comparing two active treatments. The method is applied to an
antidepressant trial where a strong psychologic adherence e®ect can be
expected on outcome.

In chapter 8, we introduce two dimensional Monte Carlo simulations as
an appealing technique to combine data collected from di®erent sources.
Between-subjects variability and uncertainties due to non optimal data
collection or biased sampling design are then propagated in two distinct
dimensions allowing for proper interpretation. Simulation is hereby not
a substitute for mathematics but an approach to calculation, resampling,
similar to using bootstrap, for estimating the variance of a complicated
point estimator. A simulation approach frees us from certain technical
constraints to derive a probable causal relationship between exposure
and outcome.

Finally, in the last chapter, we discuss the general ideas highlighted
through the thesis and give topics for future research.
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Comparing adherence
patterns between randomized

treatments

When two equally e±cacious drugs enter the market, the one with the
better adherence is likely to be used by more patients. Special man-
agement of the drug delivery system may produce increased adherence.
In this chapter we analyze a trial of a single drug dosing prescription
with patients randomized to either daily self monitoring of the outcome
(blood pressure) or not. The study used Medication Event Monitor-
ing Systems (MEMS, Aardex Ltd.) to record each exact time and date
when a patient opened the pill container. No established method is
available for comparing these high-dimensional adherence patterns be-
tween groups. This paper investigates several summary measures that
highlight di®erent dimensions of the pattern and the drug context in
which they may be meaningful. Further, we examine conditional and
marginal models that enable comparisons of the full pattern of daily
dosing indicators for subjects between the groups. We found no simple
di®erence in average adherence levels, but we found an interesting inter-
action between treatment and time : similar adherence existed initially
among patients in both randomized groups, with a stronger decline over
time for patients who did not monitor their blood pressure. We discuss
how a balance between simplicity of interpretation and e±ciency of data
use may be sought in this case.
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2.1 Introduction

The likely crucial role of treatment adherence in the e®ectiveness of
therapy and its potential to compete with other available drugs has be-
come increasingly clear, both at the pharmacologic and at the clinical
level (Cramer et al. 1989, Efron and Feldman 1991, Cramer and Spilker
1992, Sheiner and Rubin 1995). Many clinical trials, therefore, carefully
measure adherence with assigned treatment, particularly when the trial
is designed to evaluate the e®ect on adherence of di®erent prescribed dos-
ing strategies. Medication Event Monitoring Systems (MEMS, Aardex
Ltd.), a relatively novel technique, record for each patient a series of
exact times and dates at which the drug container was opened (\drug
intakes") over the course of the study. The resulting data provide a
detailed source of information on drug-taking behavior that must be
summarized comprehensibly so it can be used to compare formally ad-
herence between randomized groups. No standard method of comparison
is available. In this paper we analyze MEMS data from a randomized
clinical trial in which adherence was an outcome of interest. All patients
in this trial received the same blood pressure reducing agent, enalapril,
prescribed at one tablet of 20 mg a day. Patients were randomized to
perform daily self-home-measurement of blood pressure or not. This
paper looks at the daily pattern of drug intake to answer, the question
\Does the prescription of daily self-home-measurement of blood pressure
improve patient adherence ? ".

In the next section we describe the trial and MEMS data in more detail;
section three examines a range of simple summary statistics; section
four models the full pattern of daily dosing on a binary scale of yes/no,
and compares the treatment groups. We discuss the advantages and
disadvantages of conditional and marginal modeling in this context. We
have found that the intermediate strategy of modeling weekly adherence
recovers the essence of the detailed picture we had discovered earlier,
with the added advantage of easier direct summaries for inspection by
the physician.

2.2 Description of the trial

Six hundred twenty-eight patients with high blood pressure ( 9̧5 mmHg)
were assigned to an initial daily treatment with one tablet of enalapril at
breakfast and randomized to self-measurement or no self-measurement
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of blood pressure at home (309 and 319 patients, respectively). The
hemodynamic e®ects of the drug are seen within one hour of a single
oral dose and the action of once-daily dosing lasts for about 24 hours.
The two randomized groups were comparable with respect to sex, age,
systolic blood pressure (SBP), diastolic blood pressure (DBP), pulse,
and weight.

Patients randomized to the Home Measure Group were asked to measure
their blood pressure every morning before taking the medication. They
received a form to transcribe SBP, DBP, and pulse each day. The trial
coordinator supplied the apparatus (a Bosoprestige automatic) at the
start of the trial, with directions for use. Measures were to be taken
in the sitting position after ¯ ve minutes of rest. Basic notions about
SBP, DBP, pulse, variations in those measures, etc., were taught to the
patients randomized to this group.

Patients have ¯ ve scheduled visits with a physician. The ¯ rst three are
of interest for this chapter.

²Visit 1, at day 1 : Extensive baseline data, including SBP, DPB,
and pulse, were collected from both groups. Randomization was
performed. For the Home Measure Group the physician took two
blood pressure measurements : once using his own apparatus and
once using the patients apparatus.

²Visit 2, after 2 weeks : The physician recorded SBP, DBP, pulse,
and reported symptoms.

²Visit 3, after 6 weeks : The same parameters were recorded as
at Visit 2. Further, if the treatment was not e®ective, the physi-
cian was instructed to prescribe hydrochloro thiazid in addition
to enalapril. A medication switch was speci¯ ed at Visit 3 when
the average of the last ¯ ve home measures was greater than 90
mmHg for the patients in the Home Measure group and when the
o±ce measure of DBP was greater than 90 mmHg in the group
randomized to No Home Measure.

This paper focuses on the period between Visit 1 and Visit 3, the time
one can observe the e®ect of home measures for patients on enalapril,
unconfounded by the di®erent allocation rule for hydrochloro thiazid.
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2.3 Measuring adherence

Irrespective of randomization, a subpopulation of 127 patients from both
randomized groups (66 from the Home Measure Group and 61 from the
No Home Measure Group) was chosen for evaluation of adherence us-
ing an electronic pillbox, the MEMS device. In practice, some of the
physicians most likely to be able to collaborate with a more demand-
ing treatment protocol were chosen to give MEMS to all their recruited
patients. The child proof cover of the MEMS bottle contains a micro-
processor that records the date and time of each opening. All monitors
were returned for data retrieval (there was one missing data point be-
cause of a technical problem). Before entering the study, each patient
gave informed consent, following the guidelines of the ¯ rst International
Symposium on adherence Monitoring, Heidelberg, 1988.

Adherence data are obtained as listings of consecutive dates and times
of individual container openings. As a basic visual description of the
data, we have graphed each patients pattern of drug intake from Visit 1
to Visit 5.

We observed vastly di®erent adherence patterns among patients. Broadly,
we saw two main types of adherers (also discussed in the next section):
the punctual adherers, as exempli¯ ed by the patients in ¯ gure 2.1 (A
and B), and the less regular adherers, as seen in ¯ gure 2.1 (C). Patient
A, an extremely punctual adherer, takes the drug, every day at nearly
the same time. Patient B, also quite a regular adherer, has a periodic
trend in behavior: the drug intake happens later on weekend days.
Patient C, on the other hand, has a lot of gaps between intake days,
has one day of double dosing, and shows large variability in the timing
of drug intake.

2.4 Summary statistics for adherence

Before modeling the detail of adherence patterns, we consider simple
statistics that summarize one aspect of the patient's adherence history.
We discuss the merits of six di®erent measures. Figure 2.4 displays a
series of two-by-two plots for the six summary measures.

2.4.1 Percentage of Prescribed Dosing Days with Correct Intake

The percentage of days with accurate dose intake is de¯ ned as follows:
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Ci1 =
Number of days with `correct' intake for subject i

Number of prescribed dosing days for subject i

Where the Number of days with `correct' intake is the number of days
during which the prescribed number of doses was taken. For the study
at hand, the numerator is thus the number of days with one and only
one drug intake. The higher this percentage, the better adherence. In
practice this adherence summary statistics is often de¯ ned as \correct
dosing".

This statistic captures some measure of closeness to \correct adherence".
Depending on how the latter is de¯ ned, it may re°ect the degree of reg-
ularity in lifestyle. However this summary measure gives no information
concerning the timing of dose intake, it does not distinguish between
days of overdosing and days of underdosing and thus, this focus on cor-
rect adherence may not capture deviations most relevant to the drug
action.

2.4.2 Percentage of Prescribed Dose Taken

This measure, though often close to the previous one, focuses on the
dose actually received :

Ci2 =
Number of doses taken by subject i

Number of prescribed doses for subject i

For patients with overdosing, multiple doses in one day are added up,
thus this percentage can be larger than 100%. For once daily prescrip-
tion, the number of prescribed doses is equal to the number of treatment
days. A good adherer will have a percentage near 100%. Higher or lower
percentage indicates \poor adherence". Several authors have used this
measure to study the causal e®ect of adherence or to obtain an e±-
cacy measure (Efron and Feldman 1991, Fischer-Lapp and Goetghebeur
1999).

This measure re°ects the average dose received over a given period and
hence also the total dose over that period. It accounts for period of time
without drug intake and double dosing. However, it fails to distinguish
between a regular taker and someone who balances periods of underdos-
ing with periods of overdosing and it captures no information about the
precise timing of drug intake.
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Figure 2.1: Individual patient adherence. The horizontal axis displays the days
since study entry. The vertical axis gives the time of drug intake on a 24-hour
clock. The digits from 0 to 6 are used as a plotting symbol to characterize the
day of the week (0 = Sunday, 1 = Monday,..., 6 = Saturday). The vertical line
represents the third visit.
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Figure 2.2: DBP reduction against adherence.

Figure 2.2 plots achieved DBP reduction by Visit 3 against the percent-
age of prescribed dose taken. A lowess curve (Cleveland 1979) drawn
through the points spots at most a weak association over the range of
observed adherence levels.

Figure 2.3 is a scatter plot of the percentage of dose taken (Ci2) against
the percentage of prescribed dosing days with correct dosing (Ci1). Be-
low the horizontal 100% line for the percentage of prescribed dose, we
observe a strong positive correlation between the two summary measures
(r = 0:92;n = 107). Above this line, we observe a negative correlation
(r = ¡ 0:89;n = 20). The two points on the top of the ¯ gure are consis-
tent with expectation and are not outliers.

2.4.3 Percentage of Drug Holidays

We de¯ ne a \drug holiday" as a period of at least d (d¸1) days without
drug intake (that is, without MEMS opening). The statistic counts the
number of such gaps among the prescribed days, ignoring the exact
length of each individual gap :

Ci3 =
Number of drug holidays for subject i

Number of prescribed dosing days for subject i
:
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Figure 2.3: Percentage of prescribed dose taken against the percentage of pre-
scribed days with correct dosing.

Where the number of prescribed dosing days for subject i is the number
of days between the ¯ rst intake and the day of the third visit for patient
i. The lower this percentage, the better adherence.

This measure captures a feature important for a drug that could have a
serious rebound e®ect (the sudden appearance of undesired e®ects after
discontinuation of a drug). To decide on the length d in the numerator,
one can rely on pharmacologic insights. For instance, for certain drugs,
drug holidays of three or more consecutive days of no dosing may be
hazardous to a patients life (Petri and Urquhart 1994). The main dis-
advantage is that the measure ignores double dosing and precise timing
of drug intake.

2.4.4 Time Variability in Drug Intake

The three summary measures de¯ ned so far do not account for the pre-
cise timing of drug intake; they consider only the number of medication
events each day. The following continuous adherence summary provides



Comparing adherence patterns between randomized treatments 19

a measure of the timing variability of intake :

Ci4 =

P
k j tik ¡ median(ti) j

Number of prescribed dosing days for subject i

The number of prescribed dosing days for subject i is de¯ ned above,
median(ti), is the median times of drug intake on a 24-hour clock for
patient i (ti = (ti1; :::; tiKi)). k indexes the MEMS openings which hap-
pen at times tik, where k = 1; :::;Ki (Ki = Total number of MEMS
openings for patient i). For median dosing time near midnight we con-
sider the day to end at 3 a.m. If during one day no dose was taken, we
took tik ¡ median(ti) = 12 hours. For double doses, there are two tik's
contributing to the numerator, but the denominator is unaltered. In this
way, both phenomena, underdosing and overdosing, though opposite in
nature, add extra variability to the timing pattern. Thus, the lower this
percentage, the better the adherence. Such measure will be interpreted
in light of the duration of action of a drug. In the present study the
drugs hemodynamic action starts at about one hour after intake and
lasts for about 24 hours. Drug intake time schedule is thus of prime im-
portance. This measure accounts for the timing of drug intake. Double
dosing cannot compensate drug holidays as in Ci2. However absolute
deviation is symmetric around zero and the measure is not proportional
to the amount of drug taken. While intuitively appealing for assessing
the precise timing of drug intake, this measure is di±cult to generalize
for multiple doses per day regimen.

2.4.5 Percentage of \Too Short" or \Too Long" Dosing Intervals

We introduce a separate measure for periods of \overdosing" (interval
too short) and periods of \underdosing" (interval too long). Rather than
averaging over the deviations in timing from the median, this measure
looks at the number of deviations that exceed a crucial or meaningful
threshold of dosing intervals that are either too short or too long. As
one such measure, we de¯ ne for each patient the percentage of dosing
intervals shorter than ±l hours and the percentage of dosing intervals
longer than ±u hours. Suppose that tik is the kth MEMS opening time
for patient i. Then, we de¯ ne a vector of dosing intervals for patient
i: dik = ti(k+1) ¡ tik; k = 1; :::;Ki ¡ 1 and the two measures can be
formulated as follows:

Ci5A =

P
k Ind(dik < ±l)

Ki ¡ 1
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Ci5B =

P
k Ind(dik > ±u)

Ki ¡ 1

Where Ind() is the event indicator.

The measures make a clear distinction between periods of overdosing
and underdosing. Combining these measures with outcome data al-
lows for identi¯ cation of potential rebound e®ects. Figure 2.4 shows
a strong correlation between Ci5B and the four ¯ rst adherence sum-
maries (Ci1; :::; Ci4). Since Ci5A is less correlated with those measures,
it may add substantial extra information to highlight di®erences be-
tween groups. The correlation between Ci5A and Ci5B is relatively low
(r=0.37), indicating that patients having a high percentage of dosing
intervals that are too long are not simply the same patients with a large
percentage of dosing intervals that are too short. One of the main dis-
advantages is that a meaningful choice of cuto® points must be made.
For this particular study we took the prescribed dosing interval of 24
hours plus minus 25%, resulting in ±l = 18 and ±u = 30. A discussion
based on two summary measures can be di±cult to interpret. To avoid
the latter, some authors (Claxton et al. 2001) have combined the two
summaries :

Ci5 =

P
k Ind(±l · dik · ±u)

Ki ¡ 1

The combined adherence summary is then labelled \dose timing".

For an alternative measure, rather than summing over just the number
of intervals in excess of 30 hours, one may choose to add up the total
time spent in excess of 30 hours before the next dose and divide this by
the number of treatment days. These measures relate to one another
like median and mean; here, the longest intervals count most. Because
in this example, results from this approach were very similar to the
observations on Ci5A and C15B, we do not report them.

2.4.6 Median and Quantiles of Dosing Intervals

As a ¯ nal summary measure capturing the variability in timing between
doses we chose the Median and the 5th and 95th percentiles of the
dosing intervals of each patient. Using the same notations as before and
denoting (di = (di1; :::; diKi¡1)), we de¯ ne:

Ci6A = median(di)
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and

Ci6B = Q05(di)

Ci6C = Q95(di)

The 5th and 95th percentiles re°ect extremes of the dosing interval dis-
tribution. As before, we observe that patients with a large 95th per-
centile are di®erent from the patients with a low 5th percentile. The
median of the dosing intervals shows a low variation among subjects
and thus it is not a good way to describe varying adherence levels. Some
authors choose the mean of the dosing intervals, but because this statis-
tic is in some sense equivalent to the percentage of drug taken, it adds
nothing new.

2.5 Results

The ¯ rst four summary measures (Ci1; :::; Ci4) show a distribution that
is skewed to the left and bring to light a population of punctual ad-
herers and some less regular ones. For example, ¯ gure 2.5 presents a
histogram of the percentage of prescribed dose taken. Figure 2.4 shows
bivariate associations between (Ci1; :::; Ci5). For clarity in plots, we took
the square root of the time variability in drug intake, Ci4. Except for
the percentage of dosing intervals that are too short (Ci5A), all those
summary measures show a strong correlation in this study. In absolute
value, the lowest reported correlation among them is 0.73 (n=127). De-
pending on the goal of the study and the nature of the drug, one can
choose the more appropriate measure.

None of the six measures discussed shows a signi¯ cant di®erence between
randomized groups at the nominal 5% level. Although the measures
provide a well-understood, simple description, patient adherence can
vary in many di®erent ways over time. Summarizing the history in just
a few measures may lose power to detect relevant di®erences in adherence
patterns. The next logical step is to draw inference using a simple test
that exploits enough of the data in a way that captures the temporal
evolution. The next sections describe relevant methodology.
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Figure 2.4: Two-by-two scatterplots of some summary measures of adherence
for the patients in the No Home Measure group.
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Figure 2.5: Histogram of the percentage of prescribed dose taken (Ci2).

2.6 Comparing daily binary adherence between ran-
domized groups

2.6.1 Pattern of Binary Data

Our aim is to estimate the causal e®ect of randomized treatment on
an informative measure of adherence. Because adherence to prescribed
therapy measures the extend to which a person's behavior coincides with
medical advice, it covers both a behavior and a measure. One in°uenc-
ing the other, delivers raw data that have a complex structure with un-
usual correlation patterns of dosing intervals and it is not obvious how
to analyze them. Rather than study detailed patterns of adherence, we
summarize the adherence pattern in a sequence of binary data indicating
whether yes (1) or no (0), at least one dose has been taken on each con-
secutive day. This coding retains much of the temporal structure in the
individual patterns, but not exact times of drug doses. We assume that
di®erent patients have independent sequences, but that the measures
belonging to one patient may not be independent. Furthermore, we ac-
count for the possibility of a systematic trend in adherence over time and
an e®ect of the day of the week (DOW ) on adherence. Patients were



24 Chapter 2

scheduled to return to the physician for the third visit after 6 weeks. For
77 (66%) of the 127 patients, the third visit took place within the ¯ rst
6 weeks. In order to compare both groups on a reasonable number of
patients over the full time period studied, we considered the individual
time series of the 50 remaining patients up to 42 days (= 6 weeks) only.
We have found that when only a few patients have been observed over
a great number of time points, they can be extremely in°uential in a
simple parametric model for the time dependence of adherence.

2.6.2 A Conditional Model

First, we implement a model conditional on past adherence for Zit the
yes/no drug indicator for patient i at day t, allowing for feedback from
output to output, for a main treatment e®ect and ¯ rst order interactions.
We consider the following model:

logit(P (Zit = 1 j Zit¡1; :::; Zi1;Hit)) = ®0tTi +

1̄Zit¡1 + 2̄Zit¡2 + : : :+

¯011DOWi(t) + f(t; º) +

°0Xi +

±0Ti ¤(Xi; Zit¡1; Zit¡2; : : :);

(2.1)

where Hit contains the information on baseline covariates and exogenous
time dependent covariates. Ti is a dummy indicator for the random-
ized \treatment" assigned to individual i (i.e., enalapril with or without
Home Measures). The ::: refer to possible further steps retained for the
feedback from output to output (using time series terminology), DOW
refers to the day of the week (6-variate dummy), f(t; º ) is a function
parameterized by º representing the time trend in adherence, Xi con-
tains the baseline covariates (sex, age, DBP, pulse), and the last term
allows for an interaction between the group and the other covariates in
the model. We interpret the parameters as follows:

1. ®t can, in general, have a di®erent parameter for each observed
value of t. It then estimates non parametrically a time-dependent
e®ect of treatment. Clearly, one pays for leaving the dependence
on t unspeci¯ ed by using a large number of degrees of freedom in
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the data. Modeling a parametric dependence on t can easily be
done and may sometimes be more desirable.

2. j̄ relates to the post-randomization variable Zi;t¡j which may
in its own right already capture some or most of the e®ect of
treatment. This parameter expresses the dependence of a person's
daily adherence on his own past adherence behavior.

3. ¯11 expresses a constant (across time, individuals and groups) ef-
fect of the day of the week, a covariate external to the observed
process.

4. º expresses the average evolution (across individuals, and groups)
of adherence over time since entry into the study within the para-
metric form of f .

5. ° expresses the usual e®ect of baseline covariates on adherence at
day t. One should remember however, that this is after adjusting
for previous adherence. In other words, a given X could set the
baseline adherence standard but not enter into the picture after
that, implying a parameter value that is zero.

6. Given the di®erent meaning of adherence in both groups, we found
it necessary to allow in principle for an interaction between the
covariates in°uencing adherence and treatment.

For the initial time points where Zi;t¡j is not available, we propose a
reduced right-hand side and allow initially for time-speci¯ c parameters
° and ±there.

2.6.3 Model Selection and Results

First, we observed a strong association between past adherence and the
current adherence of the same patient. An analysis of variance table
supports maintaining in the model indicators for adherence over the six
previous days. Table 2.1 shows six days is a clear cuto® point for the
deviance reduction. We next used a backward selection beginning from
the most exhaustive model proposed above. At each step, we deleted
the variable showing the smallest contribution to the model until all
the variables remaining in the model were signi¯ cant at the 0.05 level.
Higher order e®ects and interactions between the remaining independent
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Table 2.1: Deviance Table for Selecting Past adherence (Note: Zi;t¡j is the
yes/no drug indicator for patient i at time t ¡ j)

Residual
Residual Deviance DF

Variable Deviance DF Reduction Reduction p-value

NULL 2038 3394
Zi;t¡1 1854 3393 184 1 < 0:0001
Zi;t¡2 1744 3392 110 1 < 0:0001
Zi;t¡3 1716 3391 28 1 < 0:0001
Zi;t¡4 1697 3390 18 1 < 0:0001
Zi;t¡5 1678 3389 19 1 < 0:0001
Zi;t¡6 1645 3388 34 1 < 0:0001
Zi;t¡7 1641 3387 4 1 0:0559
Zi;t¡8 1635 3386 6 1 0:0115
Zi;t¡9 1634 3385 1 1 0:2980

variables were subsequently analyzed and retained in the model if signif-
icant at the 0.05 level. This leads to modeling linearly the dependence
of treatment e®ect on time t. Thus, in the notation of ®t, we can omit
the subscript t. As shown in Figure 2.6 this is reasonable after day six,
which is where the full conditional model starts. Table 2.2 presents the
¯ nal model. The day of the week a®ects adherence. Speci¯ cally, the
probability of taking a drug on a Sunday tends to be lower than the
other days.

Two parameters (® and±) in Equation 2.1 refer directly to the treatment
e®ect. We found a signi¯ cant interaction between time and treatment.
Interactions between treatment and other covariates were not retained
because they did not reach the 0.05 signi¯ cance level. Thus, after con-
ditioning on initial adherence behavior, we ¯ nd an additional signi¯ cant
e®ect of treatment on adherence since ®6= 0. When patients start the
treatment, the probability of taking the daily drug is similar for patients
in both the Home Measure and the No Home Measure Groups with a
similar adherence behavior over the past six days. Over time, however,
this probability decreases in both groups. The decrease in the No Home
Measure Group is signi¯ cantly stronger (p < 0:05 for the interaction)
than in the Home Measure Group.

Figure 2.6 presents a visual representation of the model estimation (af-
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Figure 2.6: Daily percentage of adherers over time in both randomized groups.
The dots represent daily percentages of adherers in each group. They are joint
per group by broken lines. Full lines represent the logistic model ¯ t of Table 2.2.
In the observed range of days from randomization they look quite linear
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Table 2.2: Parameter Estimates for Conditional Model (Note: Zi;t¡j is the
yes/no drug indicator for patient i at time t ¡ j and DOW (k) is an indicator
for day k: 1=Monday, ..., 6=Saturday)

Estimated Standard Coe±cient/
Variable Coe±cient Error Standard Error

INTERCEPT -2.04 0.33
Zi;t¡1 1.09 0.17 6.59
Zi;t¡2 1.36 0.16 8.31
Zi;t¡3 0.58 0.18 3.15
Zi;t¡4 0.64 0.18 3.51
Zi;t¡5 0.62 0.18 3.32
Zi;t¡6 1.01 0.18 5.77
DOW(1) 0.21 0.22 0.95
DOW(2) 0.37 0.23 1.62
DOW(3) 0.38 0.23 1.63
DOW(4) 0.48 0.24 2.01
DOW(5) 0.25 0.23 1.12
DOW(6) 0.12 0.22 0.53
Time*Home Measure Group -0.011 0.007 -1.54
Time*NO Home Measure Group -0.020 0.006 -3.11
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ter adjusting for other covariates, including past adherence). Since we
maintain indicators for past adherence over the six previous days, the
reduced right-hand side model estimation is presented between day 6
and day 42.

In summary, the model estimates adherence to be less in the No Home
Measure Group than in the Home Measure group.

2.6.4 Generalized Estimating Equation (GEE) Type Approach

Because model 2.1 conditions on past adherence, parameters may not
capture the full e®ect of randomized treatment. For this reason, it can
be more relevant to ask about the marginal e®ect of treatment and
other external covariates on outcome at a given day : E(Zit j Ti;Xi; :::).
Several methods have been proposed for this; see, for instance, (Bonney
1987, Prentice 1988, Zhao and Prentice 1990, Lipsitz et all. 1991, Carey
et al. 1994, Diggle et al. 1994). We used the GEE method (Diggle et
al. 1994) to ¯ t the following model :

logit(P (Zit = 1 j Hit)) = ®0tTi + ¯011DOWi(t) + f(t; º ) +

°0Xi +±0Ti ¤Xi: (2.2)

The same covariates as those retained in the ¯ nal model of the condi-
tional regression yield marginal parameters which turn out very close
to their conditional counterparts. A modeling procedure considering all
the explanatory variables was impracticable in this setting. For long
time series, the current implementation of the GEE approach may not
converge (Diggle et al. 1994). Extensions of this are the topic of ongoing
statistical research. Alternatively, we have examined the marginal e®ect
of a summary vector of treatment adherence as, for instance, weekly
total dose taken. That is, we considered:

Di = (Di1; : : : ;Di6) =

Ã
7X

t=1

Zit; : : : ;
42X

t=36

Zit

!

a vector of the weekly total doses consumed. In comparison to the yes/no
daily indicator, this last outcome measure has the advantage of taking
double dosing events into account. On the other hand we now have
a 6-dimensional rather than 42 dimensional summary of the observed
adherence patterns. We use the Poisson distribution to model those
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count data. Since the number of time points is small and each outcome
can theoretically be any discrete number, a marginal model becomes
more appealing.

In terms of the mean model, since observations are collected at regular
weeks similarly for each patient, we can specify the marginal expectation
as follows :

log(E(Dit j Hit)) = x0it¯:

Speci¯ cally in our situation, to estimate the overall treatment e®ect we
use the following model:

log(E(Dit j Hit)) = ®0tTi + f(t) + °0Xi +±0Ti ¤Xi: (2.3)

After summation, the day of the week e®ect no longer enters, but we
still expect the marginal means of Di to depend on Ti, Xi and the week
f(t).

Estimations of the coe±cients in Equation 2.3 can be obtained by solving
¯ rst a GEE equation of the following form :

NX

i=1

Ã
@¹Di

@¯

!0
V¡1
i

³
Di ¡ ¹Di

´
= 0 (2.4)

with ¹Di = E(Di). Vi, the working covariance matrix for Di, is a
function of the marginal means and perhaps of additional q parameters
®, i.e.:

(Vi)kl = Cov (Dik; Dil) = '(¹Dik ; ¹Dil ;®) (2.5)

Where k; l = 1; : : : ; 6, k6= l and ' is a know function. Since inference on
¯ xed e®ects is quite robust regarding the de¯ nition of the working co-
variance matrix, we chose the exchangeable covariance structure, which
makes computations easier. It is de¯ ned as follows :

(Vi)kl =

(
®; k; l = 1; :::; 6 and k6= l
1; otherwise

(2.6)

The correlation parameters ® may then be estimated by simultaneously
solving Equation 2.4 and
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Table 2.3: Parameter Estimates for the GEE Model

Estimated Standard Coe±cient/
Variable Coe±cient Error Standard Error

INTERCEPT 1.93 0.016
Treatment(Ti) (No Home) 0.048 0.026 1.87
Week*Home Measure Group -0.0081 0.004 -1.98
Week*No Home Measure Group -0.0271 0.008 -3.16

NX

i=1

µ
@ í

@®

¶ 0
H¡1
i (Wi ¡ ´ i) = 0; (2.7)

where Wi = (Di1;Di2;Di1;Di3; : : : ;Di5;Di6),
Hi = diag(V ar(Di1;Di2); V ar(Di1; Di3); : : : ; V ar(Di5;Di6)),
and ´ i = E(Wi).

We ¯ tted this model using the S-PLUS function from Statlib by V.
Carey (1994). Table 2.3 presents estimated coe±cients of the model
retained after backward selection from the most exhaustive model pro-
posed above. Here again we modeled the dependence of treatment e®ect
linearly over time t. At the start of the study, we observe that the weekly
number of drugs taken tends to be a little higher for patients in the No
Home Measure Group than for patients in the Home Measure Group.
Over the weeks, however, this number decreases in both groups; the
decrease is signi¯ cantly stronger (p < 0:05) in the No Home Measure
Group. The dose intake per week is now estimated to be reduced by
exp (-0.008) = 99 % in the Home Measure Group and exp (-0.027) =
97 % in the No Home Measure Group. We ¯ nd these results easier to
interpret than the reduction in daily odds measured in the previous anal-
ysis. For example, for a patient in the No Home Measure Group, dose
intake after 6 weeks is estimated to be reduced by (0:97)6 = 83 % (94 %
in the Home Measure Group). Thus, if we suppose that the patient
starts the study taking 7 drugs a week, after 6 weeks the weekly esti-
mated number of drug intake is 5.8 (6.6 in the Home Measure Group).
The model con¯ rms the visual picture we obtained in Figure 2.7. In
line with daily intake, modeling weekly adherence con¯ rms the decrease
in adherence over time and has retained su±cient detail to detect the
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Figure 2.7: Average number of study pills taken each week in both randomized
groups.

di®erent rates of decline between both randomized groups. When incor-
porating the extra information on double dosing, we estimate a slight
di®erence in the intercept: The No Home Measure Group appears to
take more pills initially.

2.7 Comment

The conditional model presented above can be used to investigate the
e®ect on adherence of other covariates which may be time varying or
not. We illustrate it by studying the association between patient's age
and adherence. In the No Home Measure group, the age of the patients
ranges between 39 and 82 years with a mean age of 63 years. In Table 2.4,
we present the results from the ¯ tted conditional model 2.1 allowing on
top of the Markov dependencies a marginal e®ect of age, weekend and
their interaction.

The probability to take a medication on weekends is estimated to be
lower than on a week day. The adherence to the treatment tends to
decrease with age but we found a signi¯ cant interaction between age and
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Table 2.4: Parameter Estimates for Conditional Model (Zi;t¡j is the yes/no
drug indicator for patient i at time t¡ j, Weekend is a binary indicator: 0=week
day, 1=weekend day and age is in years)

Estimated Standard Coe±cient/
Variable Coe±cient Error Standard Error

INTERCEPT -1.15 0.65
Zi;t¡1 1.30 0.25 5.27
Zi;t¡2 1.27 0.24 5.20
Zi;t¡3 0.51 0.28 1.83
Zi;t¡4 1.32 0.25 5.20
Zi;t¡5 -0.28 0.32 -0.88
Zi;t¡6 1.29 0.26 5.05
Weekend -2.30 0.85 -2.72
Age -0.02 0.01 -1.81
Weekend * Age 0.03 0.01 2.29

weekends. In conclusion, the negative e®ect of weekends on adherence
disappears for older people. This con¯ rms the idea that younger people
tend to go out on weekends and then forget their prescribed medication,
while for older people the di®erence between week days and weekend
days is probably less pronounced. Here again, we see the importance
of drawing inference by exploiting enough of the data in a way that
captures the temporal evolution.

2.8 Discussion

Although medication event monitoring systems have brought new accu-
racy and detail in measurement of adherence, most statistical methods
that deal with MEMS data use only very simple summary measures like
the percentage of total dose taken or mean and standard deviation of
dosing intervals (Kass et al. 1986, Cramer et al. 1989, Psaty et al. 1990,
Kruse and Weber 1990, Petri and Urquhart 1994). In this paper, we
introduced a larger set of simple summary measures that capture well-
de¯ ned relevant features of the adherence pattern. Furthermore, we have
shown how a much more detailed summary can lead to a well-understood
and informative analysis using recent methodology implemented in S-
PLUS and derived packages. In the di®erent one- and multi-dimensional
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summary measures for adherence information, we have strived to bal-
ance the simplicity of a meaningful synthesis against enough informa-
tion. Known or hypothesized characteristics of the drug under study will
generally drive the choice, but some principles hold quite generally for
classes of chemical drugs. The distinction between the behavioral focus,
timing variability, total dose, and local and global underdosing or over-
dosing are elements to consider. For the trial we analyzed, none of the
univariate summary measures revealed a di®erence between randomized
groups; however, analyzing the binary dosing pattern over time showed
a clear and meaningful di®erence, with implications for future practice.
We believe that such binary summary combined with a marginal ap-
proach that allows for within-patient correlations is particularly suited
for this type of analysis. One could argue that a multinomial response
per day, with categories 0,1 and more than 1, would also re°ect patterns
of overdosing. Although in theory such a model could be ¯ t using a
similar approach, we found too few instances of double dosing in our
study to make this meaningful. In between the day-to-day model and
the univariate summaries lies the vector of weekly summaries. We found
that a weekly summary measure captured the important distinguishing
features and could more easily deal with more than one dose per day.
Such data can be ¯ t with fewer parameters, as the models do not need
to include a day-of-the-week e®ect. The resulting parameters are easier
interpreted.
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On predicting future patient
compliance from its past

Clinical practice, clinical trials design and structural mean estimation
for the causal e®ect of observed exposure in randomized trials, may
bene¯ t greatly from good predictors of future compliance based on a
patients past measurements. While conditional and marginal models
were developed in the previous chapter to describe such patient adher-
ence general patterns over time, prediction is the harder problem. This
paper proposes to extend the methods to allow for prediction based
on di®erent data structures. To predict compliance outcomes, we use
an auto-regressive model for repeated binary data. We handle frailty
through a normal distribution for the random slopes and random in-
tercept. The ¯ rst challenge is to ¯ nd relevant measures of prediction
error which can subsequently be minimized. We discuss several such
measures. Model validation as well as two di®erent types of clinically
relevant model predictions are developed next. The approach is applied
to analyze a clinical trial studying the compliance of patients su®ering
from major depressive disorders treated with selective serotonin reup-
take inhibitors (SSRI).
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3.1 Introduction

Actual exposure to treatment, a consequence of adherence, is typically
not the primary outcome of a drug trial. The double status which
such post-randomization pattern embodies is part of the reason. At
the same time consequence of treatment assignment and driver of treat-
ment e®ect, it su®ers from possible selectivity: the fact that `natural'
or treatment-free outcomes are spontaneously associated with observed
dose-timing patterns. Several authors argued that adherence is reason-
ably seen as an attribute of the patient irrespective of treatment, i.e. a
pre-randomization variable (Efron and Feldman 1991). Others have con-
tested this (Lee et al. 1991), neither standpoint has convincingly been
backed up with lots of data in a wide range of disease areas and for a
wide range of scienti¯ c questions. If compliance were an attribute, good
predictions of future patterns should be possible from a run-in period on
placebo. Such predictions can in turn serve as an instrument to get at es-
timated compliance-response curves (White and Pocock 1996, Goetghe-
beur and Lapp 1997, White and Goetghebeur 1998) and to evaluate any
shift in post-randomization adherence between two treatments. Clinical
practice (Cramer and Spilker 1991), clinical trial design (Cramer and
Spilker 1991, Lim 1992) and structural mean estimation for the causal
e®ect of observed exposure in randomized trials (Goetghebeur and Lapp
1997), may bene¯ t greatly from good patient speci¯ c predictors of future
compliance. Models for prediction can be mere extrapolation or based
on long term observations in di®erent data sets with similar patients.

In this paper we work with detailed information provided by electronic
monitors of drug-intake events. Data from a typical clinical trial involv-
ing MEMS devices (Medication Event Monitoring System, Aardex Ltd.)
consist of one list per patient containing dates and times of consecutive
openings of a pill container. These raw data have a complex structure
with unusual correlation patterns of dosing intervals. There is no stan-
dard approach to their analyses. In most simple regimen studies, rather
than studying exact time patterns of compliance, it is satisfactory to
summarize compliance patterns as a sequence of binary data indicating
whether yes (1) or no (0), at least one dose has been taken during each
consecutive scheduled dosing period. Conditional and marginal models
were developed to describe such patient adherence general patterns over
time (Vrijens and Goetghebeur 1997, Girard et al. 1998, Smith and
Diggle 1998). However none of those models were designed speci¯ cally
for prediction. The current paper investigates predictability of patient
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adherence with an anti depressive agent using an existing data base. In
section 2, we describe a clinical example that we will use to illustrate the
proposed methodology. In section 3, the statistical analysis approach is
presented and implemented. Model validation as well as two di®erent
types of clinically relevant model predictions are developed. The results
and methodology are discussed in section 4.

3.2 Clinical example

We analyze data from a controlled clinical trial designed to study ad-
herence pro¯ les of ambulatory patients su®ering from major depressive
disorders treated with selective serotonin reuptake inhibitors (SSRI).
The double blind study included 76 patients aged 22 to 44 years. After
a wash-out placebo lead-in period, patients were randomized to °uox-
etine or paroxetine once a day. They were then followed for 6 weeks
during acute phase. Two visits were scheduled during the acute phase.
The ¯ rst one, 2 weeks after starting treatment and the second one 4
weeks later. Finally patients entered a 4 month period called mainte-
nance phase. During this phase, a monthly visit was scheduled. Individ-
ual adherence was assessed during the whole trial period using MEMS
devices. All patients started intake following randomization. Because
they are of di®erent physical dimensions, we ¯ nd it necessary to develop
separate prediction models for the persistence and compliance. This pa-
per focuses on modeling compliance as a daily pattern of indicators of
whether yes or no the patient took any dose that day. We found too
few instances of double dosing to warrant an ordinal variable per day.
Several patients (29%) dropped out during the study leaving 54 patients
to study their compliance, uncounfounded by the di®erent persistence
length. We study the level of intake during 93 days (3 ¯ rst months of
the maintenance phase) among those who are still taking the drug. In
¯ gure 3.1 we present the percentage of compliers over time during the
maintenance phase and in ¯ gure 3.2 the individual cumulative number
of doses taken over time. Since the drug was prescribed once a day the
ideal patient dosing history is the diagonal line. Horizontal segments in-
dicate the presence of drug holidays (i.e. extended time period without
drug).
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Figure 3.1: Observed proportion of compliers over time (days since random-
ization).
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perfect complier
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3.3 Auto-regressive model for binary compliance data

Methods acknowledging the dependence among successive compliance
binary responses of an individual in a repeated measurements situations
have already be developed (Vrijens and Goetghebeur 1997). However
none of those models were designed speci¯ cally for prediction. In the
current paper we move on to investigate predictability of dependent daily
patterns of binary compliance data. Two types of such dependencies can
be expected: those arising from heterogeneity among individuals, often
called frailty, and those from serial correlation over time. Serial corre-
lation can be accommodated by conditioning on previous observations,
e.g. ¯ tting Markov chains by standard logistic models.

Let yik represent the yes/no drug indicator for patient i on day k. A
model accounting for frailty and serial correlation can be written as:

(́pik) = ík = ®0i + yi(k¡1)®1i + yi(k¡2)®2i + :::; (3.1)

and
®i »MVN(®;°):

Where pik = P (Yik = 1 j Yi(k¡1); Yi(k¡2); :::; Yi1;®i), (́:) is the logit link
function and ®;° are a set of ¯ xed parameters to be estimated.

Conditional on the random e®ect ®i, the probability of a particular
compliance pattern, yi, is assumed to be the product of the conditional
probabilities of each of the ni binary responses, namely

g(yi j ®i) =
niY

k=1

e íkyik

(1 + e ík)
:

Thus the marginal probability of this pattern is given by

h(yi j ®;°) =

Z +1

¡1
:::

Z +1

¡1
g(yi j ®i)Á(®i;®;°)d®i:

The log-likelihood for the pattern from the N patients can then be writ-
ten as

log
QN
i=1 L(yi j ®;°) =

PN
i=1 l(yi j ®;°)

=
PN
i=1 log[h(yi j ®;°)]

=
PN
i=1 log[

R+1
¡1 :::

R+1
¡1 g(yi j ®i)Á(®i;®;°)d®i]

There is no closed form solution for the values ® and ° at which the
above integral reaches a maximum. If a single random intercept is used
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(®0i), the random e®ect can be eliminated by applying integrated likeli-
hood techniques. We use Gaussian quadrature to numerically evaluate
the above likelihood integral for a vector of random e®ects. Letting Á(:)
take a normal parametric form, the integrated likelihood becomes:

NX

i=1

log[
QX

q=1

g(yi j ®0; ° £Bq)A(° £Bq)]

where Bq and A(Bq), q = 1; :::; Q are the Q ¯ xed quadrature locations
and weights, respectively, and the scale parameter ° represents now the
standard deviation of the mixing distribution. When random regression
coe±cients for the Markov chain are investigated the parameters become
more di±cult to estimate and an MCMC approach is preferable. Win-
BUGS (Gilks et al. 1996) version 1.3 was used to analyze the random
parameters models. Convergence of the Gibbs sampler was evaluated by
visual inspection of the trace plots of the population parameters in Win-
BUGS. When the chain was thought to be stable, a formal diagnostic
using the Raftery and Lewis (Gilks et al. 1996) methods was carried out
using the Coda macro under S-PLUS. At least ¯ ve thousand iterations
were collected after convergence had been achieved for estimates of the
parameters. We note that modeling serial correlation by conditioning
can account for a considerable proportion of the heterogeneity. There-
fore it is important to estimate which part is attributable to each of the
two components.

3.3.1 Model validation

In order to estimate the level of the random e®ect(s), for a particular
patient, we used the expected a posteriori value of the parameter. Using
WinBUGS, the expected a posteriori value of the random e®ect are
immediately available while after numerical integration equation 3.2 was
used:

®̂0i = E(®0i j Yi) =
1

h(yi)

Z +1

¡1
®0ig(yi j ®i)Á(®i; ®̂°̂)d®i: (3.2)

These can be calculated using Gaussian quadrature as previously men-
tioned.

Having estimated the parameters based on all data, we set out to check
whether the model actually ¯ ts the data (goodness-of-¯ t). For this
purpose we check the ¯ t of the di®erent conditional models f(yik j
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yi(k¡1); :::; yi1) in turn by calculating E(yik j yi(k¡1); :::; yi1) under the
model and contrasting it with the observed values. Thus at each point
in time we assume that previous compliance is known as observed and
we are checking whether the data at each point in time ¯ t the condi-
tional distributions. This results in a unique deviance labelled \1-step
Deviance" in the sequel. To assess the goodness of the joint ¯ t, the ana-
lytical solution is hard to ¯ nd but we proceed in a practically convenient
way as follows. Based on the estimated random e®ect, one can estimate
a ¯ rst day outcome as a random drawn from the expected Bernouilli
variable. Then plugging in this value as input into the auto regressive
model , we estimate the second day outcome based on the distribu-
tion conditional on this information, and so forth for longer sequences
of compliance. Since stochastic imputation is used at each step of the
conditional model, the estimated sequence ŷik and thus the di®erent
conditional models f(yik j ŷi(k¡1); :::; ŷi1) are not unique. We repeated
the simulation 100 times to evaluate the modeled distribution. For each
simulation, the discrepancies between the observed and estimated com-
pliance patterns is assessed through the deviance as described previously
and the subject average deviance is reported (Joint Deviance) in column
3 of the following tables. We note that this technique is closely related to
`Baysian predictive distribution'. It represents our current estimation of
the compliance patterns (yik) taking into account both the uncertainty
about the value of the parameters and the residual variability about
(yik) when the parameters are known.

To acknowledge dependence in future patterns, we inspect the Euclidean
distance between observed and predicted numbers of drug holidays (pe-
riod of time without drug intake) of speci¯ ed length. When studying
patient's compliance, it can be clinically more relevant to focus on the
dependencies among the missed doses than to be confused by the whole
correlation structure. Because the percentage of drug taken (taking com-
pliance) is an often used compliance summary, we found it relevant to
estimate also the mean of the Euclidean distance between observed and
predicted sequences. The results for the model validation are presented
in table 3.1 for di®erent length of the Markov order.

3.3.2 Model prediction

In the previous section, parameter estimation was based on all avail-
able data collected over 93 days (3 months). In this section we wish to
evaluate the ability of the model to predict new data. This approach
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Table 3.1: Model validation

Markov 1-step Joint Taking Drug holiday of length
Order Dev. Dev. Compliance 1 2 3 4 5

Fixed e®ect models

1 3010 4276 0.20 18.7 16.3 14.5 13.1 12.0
2 2788 4538 0.21 19.3 16.8 14.9 13.4 12.6

Random intercept models

0 2383 2383 0.028 2.6 3.4 3.9 4.2 4.4
1 2337 2434 0.031 2.9 3.1 3.3 3.5 3.7
2 2323 2460 0.035 3.3 3.5 3.5 3.5 3.6

Random parameters models

1 2224 2520 0.036 3.3 2.6 2.6 2.6 2.8
2 2227 2507 0.038 3.5 3.0 2.9 2.9 3.0
3 2229 2507 0.039 3.6 3.1 3.2 3.0 3.1

is conceptually di®erent from the goodness-of-¯ t question addressed be-
fore. While the latter is a measure of the ¯ t to the same data on which
the model parameters were based, here we intent to assess the ¯ t to
future observations drawn from the same population under similar cir-
cumstances.

To study properties of predictors of new observations, two types of pre-
dictions were investigated as illustrated in ¯ gure 3.3. First we based
our model estimation on 31 days of observed compliance and predicted
the next 3 months. This is for example the situation when in a clinical
trial setting, a group of patients are observed during a run-in period and
the future of the trial must be predicted. The results of this prediction
approach are presented in table 3.2 for di®erent lengths of the Markov
order of the ¯ tted model. In a next step we estimate the in°uence of the
length of the run-in period used for parameter estimation. In table 3.3
we ¯ tted the ¯ rst order Markov prediction model with random param-
eters estimated on 31, 21 and 11 days of compliance data. The model
was then used to predict the next 3 months of compliance.

Another way to look at prediction is to suppose that a group of patients
are already observed on the therapy and we want to predict the compli-
ance of a new similar patient based on patient speci¯ c initial compliance
data. In this situation the prediction model is derived from all data on
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Figure 3.3: Schematic illustration of the two prediction types investigated.
Patient compliance patterns over time are schematically represented by the
horizontal dotted lines. The bold boxes indicate the data that are used to
estimate the parameters of the prediction model for the two types of prediction
described.

Table 3.2: Model prediction

Markov 1-step Joint Taking Drug holiday of length
Order Dev. Dev. Compliance 1 2 3 4 5

Random intercept models

0 2656 2656 0.077 7.1 8.1 8.5 8.1 7.7
1 2549 2698 0.077 7.1 7.4 7.6 7.3 7.1
2 2503 2698 0.078 7.3 7.2 7.3 7.1 6.9

Random parameters models

1 2553 2687 0.077 7.2 6.8 6.9 6.8 6.5
2 2514 2703 0.080 7.4 7.0 7.1 6.8 6.6
3 2553 2723 0.079 7.3 6.7 6.8 6.7 6.5
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Table 3.3: model prediction type 1 - First order Markov

Nb days 1-step Joint Taking Drug holiday of length
used Dev. Dev. Compliance 1 2 3 4 5

Random intercept model

31 2549 2698 0.077 7.1 7.4 7.6 7.3 7.1
21 2636 2844 0.085 7.9 6.9 7.1 7.1 7.0
11 2714 3024 0.121 11.2 10.6 10.7 10.4 10.2

Random parameters model

31 2553 2687 0.077 7.2 6.8 6.9 6.8 6.5
21 2696 2875 0.092 8.6 7.0 6.8 6.6 6.4
11 2727 3173 0.138 12.8 11.3 10.9 10.4 10.0

all but one of the patients. This rule is then applied to predict the omit-
ted patient. Evaluation of this cross-validation approach is typically
computationally intensive. For each patient left out, model parameters
have to be re-estimated. For cross-validation, much faster results can
be obtained by considering a quadratic approximation of l(i)(µ) with
(µ = (®;°)), the log likelihood obtained after deleting the i-th case
(Cook and Weisberg 1995),

l(i)(µ) ' l(i)(µ̂) + (µ¡ µ̂)T l0(i)(µ̂) +
1

2
(µ¡ µ̂)T l00(i)(µ̂)(µ¡ µ̂)

where the elements of l0(i)(µ̂) and l00(i)(µ̂) are de¯ ned as follows

[l0(i)(µ̂)]m =
@l(i)(µ)

@µm
j
µ=

^µ
and [l00(i)(µ̂)]mn =

@2l(i)(µ)

@µm@µn
j
µ=

^µ
:

If ¡ l00(i)(µ̂) is strictly positive de¯ nite, the quadratic approximation is
uniquely maximized at

µ̂
1
(i) = µ̂¡ (l00(i)(µ̂))¡1l0(i)(µ̂)

the one-step approximation to µ̂(i). Denoting by
P

(i) the summation

over all but the ith patient, we have in general

@l(i)(µ)

@µm
=
X

(i)

1

h(yi j µ)

@h(yi j µ)

@µm
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Table 3.4: model prediction type 2 - First order Markov

Nb days 1-step Joint Taking Drug holiday of length
used Dev. Dev. Compliance 1 2 3 4 5

Random intercept model

31 2530 2675 0.08 7.4 7.8 8.0 7.6 7.3
21 2614 2775 0.08 7.8 7.3 7.4 7.3 7.2
11 2678 2853 0.10 9.2 8.6 8.8 8.7 8.6

Random parameters model

31 2596 2713 0.08 7.2 7.0 7.1 6.8 6.5
21 2710 2880 0.09 8.3 6.9 6.7 6.4 6.2
11 2776 2957 0.11 9.9 8.5 8.3 8.1 8.0

@2l(i)(µ)

@µm@µn
=
X

(i)

[
1

h(yi j µ)

@2h(yi j µ)

@µm@µn
¡ 1

h2(yi j µ)

@h(yi j µ)

@µm

@h(yi j µ)

@µn
]

Denoting íqk = Xik¯+ °Bq, with Bq from the Gauss-Hermite approx-
imation, the derivatives of the individual marginal likelihood can be
approximated for the logit link as

2
6664

@h(yijµ)
@µm

=
PQ
q=1

Pni
k=1

yik+(yik¡1)e íqk

1+e íqk

@ íqk

@µm
g(yi j µ; Bq)A(Bq)

@2h(yijµ)
@µm@µn

=
PQ
q=1

Pni
k=1[yik+(yik¡1)e íqk

1+e íqk

@ íqk

@µm

@g(yijµ;Bq)
@µn

¡
e íqk

(1+e íqk )2

@ íqk

@µn

@ íqk

@µm
g(yi j µ; Bq)]A(Bq)

If µ̂(i) is not too di®erent from µ̂ and l(i)(µ) is locally quadratic, the
one-step estimator should be close to the fully iterated value (Cook and
Weisberg 1995). Applied to our data, its computation time was just 1
percent of the original time and corresponding results are presented in
table 3.4.

As with observed compliance data, we ¯ nd it useful to plot the cumula-
tive predicted number of doses taken over time against time (days). In
¯ gures 3.4, each plot represents for a given patient the observed com-
pliance (full line) and simulated predictions (dotted lines). The model
used for prediction is the type 1, ¯ rst order Markov random parame-
ters model estimated on 31 days. We conclude that the model predicts
compliance well.
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Figure 3.4: Prediction assessment for 6 individual patients
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3.4 Discussion

Having distinguished 3 qualitatively di®erent dimensions of adherence:
acceptance, execution and discontinuation, we have set out to study
and predict the patterns of drug exposure over time during the execu-
tion phase (compliance). While being a summary of the available data,
depending on the pharmacodynamics of the drug, the daily binary rep-
resentation of the drug intake is usually seen as a relevant measure. In
this study we found it relevant to base our daily compliance assessment
on the daily drug indicator. For drugs with shorter half-lives, the timing
of the intake can be used in the rule to dichotomize the daily compliance.

Model validation and two di®erent types of prediction were investigated.
Four di®erent loss functions help assess the model ¯ t and the quality of
predictions. After model validation, we conclude that three months of
binary patient compliance data can be summarized in just a few parame-
ters per patient without loosing much information. A random slope and
intercept improve the model, especially when drug holidays are to be
predicted. With this model, the average goodness-of-¯ t error in `taking
compliance' is less than 4 percent and as indicated by the number of drug
holidays predicted, the relevant dependencies among the observations
are reasonably well captured. The proposed model-based prediction of
compliance, uses parameters derived from measurements of a patient's
prior compliance. In the setting of this trial, both prediction techniques
deliver similar results. This ¯ nding will be di®erent when considering a
longer follow-up during which a time trend in compliance is seen. When
31 days were used for prediction, the average prediction error in taking
compliance is 8 percent and the relevant dependencies among the ob-
servations remain reasonably predicted as illustrated in ¯ gure 3.4 for 6
di®erent patients. We note that, to check whether the predictions ac-
tually ¯ t the data, a variety of di®erent statistics (loss functions) can
be investigated. We proposed and discussed 4 di®erent ones that are
relevant in the present settings. The choice will in general depend upon
the drug under study and the goal of the medical researcher.

We feel that the issues raised by considering adherence to therapy as
an attribute of the patient are somewhat more complex than usually
argued. There is probably no clear dichotomous answer. Having split
the adherence in a persistence and a compliance components will help
to understand this complex process. Results presented here indicate
that the compliance of some patients is intrinsically better than of oth-
ers. This di®erence corresponds to the importance of the random e®ects
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(frailty) in the models studied. These results support the idea that once
a patient accepts to take a drug, he enters into a daily routine that is
probably closely linked to his lifestyle. Some patients are intrinsically
better compliers than others. The end of this continuous process oc-
curs when the patient takes a new decision. The discontinuation can
eventually be in°uenced by the drug itself (adverse reactions, sickness
improvement, relapses, ...) and perhaps is not an attribute of the pa-
tient. The prediction of the time to discontinuation based on baseline
data has to be investigated drugs/diseases speci¯ cally and is the topic
of further research.



Chapter 4

The impact of patient
adherence in pharmacokinetic

studies

A successful drug is not just a molecule and a formulation but a unit
dose and a dosing regimen. To establish these, it is necessary to know at
what rates the drug is absorbed and eliminated from the body and what
the therapeutic window is for plasma concentration. Pharmacokinetics
is the mathematics of the time course of absorption, distribution and
elimination of drugs in the body. To establish this, exhaustive studies,
with directly observed drug intake and intensive blood sampling, are
traditionally undertaken early in drug development. However, studies
in early phases of drug development are usually small, very well con-
trolled and not representative of the general population. Therefore it is
necessary to investigate the pharmacokinetic properties of the drug in all
phases of clinical development. Large scale, intensive pharmacokinetic
sampling in ambulatory patients is resource demanding, very costly and
di±cult to implement. It is in this context that population pharma-
cokinetics becomes practically appealing but still raises methodological
problems. In population pharmacokinetic studies, one observes just a
few concentration measures spread out in time, on a sizable sample of
the target population. One thus moves beyond more traditional designs
where a nonlinear model is ¯ t to (a series of) data from a single patient,
measured frequently under controlled conditions over a small period of
time. Advantages of the population method include the potential to es-
timate between-patient variation in pharmacokinetic parameters as well
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as the ability to measure the more realistic impact of drugs when taken
over a longer period of time. A disadvantage stems from the fact that,
naturally, one needs not only good measures of concentration but also
reliable information on the drug dosing history at those measuring times.
Often the latter has been lacking. The population PK literature warns
against the naive assumption that patients are in steady state, as an
overestimation of adherence may lead to seriously biased estimates (Gi-
rard et al. 1996, Vrijens and Goetghebeur 1999). Studies of simulated
adherence behavior have helped quantify the problem with naive adher-
ence estimators and pointed towards a solution. In this chapter we look
at actually observed adherence patterns recorded via electronic moni-
toring in a clinical trial (Bovet et al. 1997). We simulate a documented
pharmacokinetic model from the hypertensive literature on top of these
and come to some interesting ¯ ndings. In this clinical trial the problem
of nonadherence is much more dramatic than simulated adherence pat-
terns suggested so far. The systematic errors made by adherence naive
estimators can be corrected when using timing explicit hierarchical non-
linear models and accurate information on a number of previous dose
timings. When it is possible to observe irregular drug intake times in a
well controlled study (with monitoring of the drug intakes), a substantial
amount of precision is retrieved from the same number of data points.
In general, the estimators of pharmacokinetic parameters bene¯ t greatly
from information that enters through greater variation in the drug ex-
posure process. Here we ¯ nd support for the claim that nonadherence
as a rich natural experiment of dosing variation can be a blessing rather
than a curse from the information/learning point of view.
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4.1 Introduction

Pharmacokinetic studies aim to describe the kinetics of absorption, dis-
tribution and elimination of a drug in the body after drug administra-
tion. It is one area where even the simplest statistical model is nonlinear
whilst repeated (correlated) measures over time are the rule, not the ex-
ception: reasons enough to aim for e±ciency in observation and data
analysis.

When plasma concentrations are observed following drug intake in just
one or a few chosen subjects, the role of statistics is reduced to dealing
with small errors of observation around a deterministic concentration-
time curve for a number of separate individuals (Gibaldi and Perrier
1982). No attempt is made to formally aggregate these few curves and
estimate the population variation in concentration pro¯ les after a ¯ rst
drug intake. In a next phase, several consecutively scheduled drug in-
takes are studied where a small reservoir of drug builds up slowly in
the body (compartments) until a regular oscillating pattern of plasma
concentrations indicates that `steady state' is reached. The body has ar-
rived at a limiting state where an optimal drug e®ect is hopefully being
produced. A good kinetic model for the absorption and elimination of
the drug can help understand drug action and guide a range of medical
decisions (Vozeh et al. 1996). Since the work of Sheiner and Beal in the
70's (Sheiner and Ludden 1992), the ¯ eld of population pharmacokinet-
ics (and pharmacodynamics), based on hierarchical nonlinear statistical
analysis, has found increasing application in drug development. A useful
discussion of the statistical issues can be found in Davidian and Giltinan
(1995). Pharmacokinetic study is feasible on a larger scale by embed-
ding it in phase III trials, and measure plasma concentration each time
a hospital visit is scheduled during follow-up.

In this scenario, fewer concentration measures are taken on a larger num-
ber of patients. Furthermore, one has typically lost direct observation
of the last or previous dose intake, and certainly of the longer history
of intake. Statistical analyses have tended to ignore the longer intake
history and only consider information about the last dose intake whilst
assuming that patients have been in steady state for a while before the
blood is taken. This assumption works well in populations of near per-
fect adherers with prescribed regimens. However, electronic monitoring
systems (MEMS, Aardex Ltd.) have repeatedly revealed that intakes
of patients are not as regular as one might hope (Cramer et al. 1990,
Urquhart 1994). Consistent with an irregular exposure process is the fact
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that established pharmacokinetic/pharmacodynamic (PK/PD) models,
when applied to population observations, show more convergence prob-
lems than expected: as if the model does no longer ¯ t the data. Also, the
between- and within-patient variation is large, suggesting some source
of major variation that has not been accounted for. Several authors
have acknowledged this problem and pointed out the dangerous impact
nonadherence may have on standard population PK/PD analysis and
its naive interpretation.

In this chapter, we review the literature on the topic highlighting prob-
lems and the potential of newer approaches. Section 2 examines the
literature to ¯ nd population PK analyses ignoring nonadherence, and
some initial approaches towards incorporating it. Section 3 introduces
one PK model in more detail, that will serve as an illustration through-
out the chapter. We found no documented use of actually observed drug
intake histories along with PK measures. Therefore section 4 simulates
plasma concentration pro¯ les, based on documented PK models and
actually observed adherence patterns in the context of a clinical trial.
Several statistical approaches towards data analyses are implemented
on these data sets in section 5. New approaches allowing for time de-
pendent dosing are proposed and compared to traditional methodology.
Finally, the results are presented in section 6 and discussed in section 7.

4.2 Patient adherence to the prescription is a leading
source of variability in PK response

Variability in dosing due to patient nonadherence is often seen as a ma-
jor source of variation in drug response in both clinical trials and medical
practice (Cramer and Spilker 1991, Efron and Feldman 1991, Harter and
Peck 1991, Goetghebeur and Pockok 1993, Urquhart 1998). The phar-
macokinetic literature too presents erratic adherence with prescribed
therapy as a major concern (Antal et al. 1989, Cramer 1990, Rubio
et al. 1992, Jerling et al. 1994, Urquhart 1994, Girard et al. 1996,
Vanhove et al. 1996, Vozeh et al. 1996, Wang 1996, Kastrissios and
Blaschke 1997, Urquhart 1998, Wang 1998) and an often overlooked as-
pect in drug development. Pharmacokinetic studies intend to model the
`output', i.e. plasma concentrations at various times, as a function of the
`input': amount and timing of each preceding drug dose. The analysis
of retrospectively collected data on dosing behavior (input) su®ers from
the reliability of patient recall being suspect, and has been known to
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yield biased estimates of the pharmacokinetic parameters and markedly
upward biased estimates of both inter- and intra- individual variability
(Antal et al. 1989, Girard et al. 1996). Antal and co-workers (1989)
assessed the impact of di®erent data collection schemes on the quality of
input data for model ¯ tting. They conclude that good estimates of pop-
ulation pharmacokinetic parameters can be obtained with data arising
from clinical trials provided accurate measures of drug administration
histories and time(s) of sampling are recorded. Since then, electronic
monitoring systems enable much better collection of this information.
Such devices record the exact date and time of each opening of a drug
container. The assumption that each such opening corresponds to one
dose ingestion is often reasonable. To use these data, however, presents
new methodological and practical challenges linked to the large imbal-
ance between extensive input data available from the MEMS device and
sparse output data characteristic of population pharmacokinetic stud-
ies. Girard and co-workers (1996) investigated six di®erent strategies for
summarizing dosing information. Some yield nearly the same parameter
estimates as using complete records but reduce drastically the comput-
ing time. It becomes thus feasible to integrate nonadherence information
using standard methods and available software.

In practice, retrospective data collection via questionnaires is still
broadly used. This method, however, is prone to producing inaccurate
measures of adherence (Urquhart 1994) and can seriously confound the
analysis and interpretation of the adherence-exposure-response relation-
ship (Kastrissios and Blaschke 1997). Perhaps even more unfortunate
it has lead in practice to deleting large numbers (up to 50%) of pa-
tients from analyses due to missing information on the dosage schedule
(Grasela et al. 1993, Jerling et al. 1994).

A procedure that is currently in use to overcome this problem is to select
patients with good adherence during a run-in period and to further stim-
ulate adherence by pill counts, digital drug dispenser, patient diaries,
¯ nancial support, adherence counselling, ... Others (Vander Stichele
1991, Urquhart 1998) protest that using observational data, under a
wide range of adherence patterns, is an underestimated opportunity to
study the o®set of drug action as dosing lapses occur on the patients
own initiative. Especially when it appears unethical to impose random
drug holidays, the introduction of MEMS devices within experimental
studies would enable one to switch from arti¯ cial dose-response designs,
typically done by varying the dose and holding constant the interval
between doses, towards more realistic adherence-response designs where
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patients hold the dose constant and vary the interval (Urquhart 1998).

Our results will show that estimating pharmacokinetic parameters based
on actually observed adherence patterns can yield much more precise
parameter estimates than estimation within a population of perfect ad-
herers.

4.3 A population pharmacokinetic model

In this section we describe the population PK model that will be laid
on top of dose-timing patterns in the next section. We need a structural
model that relates concentrations over time to an individual's pharma-
cokinetic parameters and a statistical model that describes the joint
distribution of pharmacokinetic parameters between individuals as well
as the variation of observed measures around an individuals curve. We
start from a clinical trial describing the PK/PD modeling of anti hyper-
tensive response to amlodipine (Donnelly et al. 1993).

Absorption (a)
compartment

Central (c)
compartment

- -
ka ke

Va Vc

£
£
£
££±

Dose

Figure 4.1: One compartment open model with as parameters, the volume
of the absorption compartment (Va), volume of the central compartment (V ),
absorption rate (ka) and elimination rate (ke).

They describe the pharmacokinetics of the drug assuming that the drug
enters the body by an apparent ¯ rst order absorption process, is elim-
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inated by a ¯ rst order process and distributes in the body according
to a one-compartment model. The latter depicts the body as a single
kinetically homogeneous unit. A ¯ rst order elimination process assumes
that the rate of elimination of drug from the body at any time is pro-
portional to the amount of drug in the body at that time. This simple
model is illustrated in ¯ gure 4.1 and is broadly used for pharmacoki-
netic analysis of drugs that distribute relatively rapidly throughout the
body. The model parameters are thus, ratio of volume to bioavailability
(V=F ), elimination rate constant (ke) and absorption rate constant (ka).
In this paper, we assume that 100% of the oral dose reaches the systemic
circulation (F = 1) and denote by V the volume of the central compart-
ment. For patient i on oral therapy prescribed at one 5 mg dose per
day, let Ci(t) and Ca;i(t) be the typical value of concentration at time
t in the central and absorption compartment, respectively. Let further
t0;i indicate start of study (no dose yet) and td;i = t1;i; t2;i; ::: the dosing
time of dose number d = 1; 2; ::: with td;i · t < td+1;i. Then in recursive
form, the model relating plasma concentration at time t to drug history
and concentrations at the previous intake times is given by (Davidian
and Giltinan 1995):

8
>>>><
>>>>:

Ci(t) = Ca;i(td;i)
(ka)i

(ka)i¡(ke)i
fe¡(ke)i(t¡td;i) ¡ e¡(ka)i(t¡td;i)g

+ Ci(td;i)e
¡(ke)i(t¡td)

Ca;i(td;i) = Ca;i(td¡1;i)e
¡kai(td;i¡td¡1;i) + Dose

(V )i
(4.1)

with starting conditions:

8
><
>:

Ci(t0;i) = 0

Ca;i(t0;i) = 0;

Note that the volume of the absorption compartment, Va, has canceled
out of the recursive concentration equation and is not speci¯ ed.

For the simulations presented in the next section, we assume log-normal
statistical models for the between-patient variability in ke and V as
follows:

(ke)i = ke £e 1́;i ; (V )i = V £e 2́;i ; (4.2)

where V and ke are the population parameters and the between-patient
random e®ects, 1́;i and 2́;i have a multivariate normal distribution,
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with means 0 and variance-covariance matrix:
Ã

0:09 ¡ 0:02
¡ 0:02 0:09

!
:

Because few samples are typically collected during the absorption phase,
it is common practice to estimate ka as a ¯ xed parameter across the
population. We ¯ xed the population parameters at the values proposed
by Donnelly et al. (1993):

V = 1550(liters); ke = 0:02(hour¡1); ka = 0:29(hour¡1):

Finally, the model allows for log-normal within-patient variation as fol-
lows:

ci(t) = Ci(t)e
²i(t) (4.3)

with independent ²i(t) »N(0; 0:01).

4.4 Observed nonadherence and plausible e® ects

For a set of 60 patients (Bovet et al. 1997) electronically monitored
(MEMS) adherence patterns are observed over a median follow-up time
of 271 days (minimum = 58 days, maximum = 460 days). Figure 4.2
summarizes the group's adherence by showing for each patient the ac-
cumulated number of doses against time. With a prescription of one
dose per day, the perfect adherer is represented by a straight line with
equation: \accumulated number of doses = time". Horizontal segments
indicate the presence of drug holidays (i.e. extended time periods with-
out drug intake), and segments making an angle with the horizontal axis
larger than 45o indicate multiple dosing. This plot depicts over time the
percentage of prescribed dose taken, a popular measure for analysis.
Since each patient is represented by a broken line and those lines over-
lap sometimes, it is di±cult to determine the course of a given patient.
Ideally one would use a di®erent color for each patient. Nevertheless,
from the plot we learn that underdosing is much more common than
overdosing.

To show the impact of perfect adherence with assigned regimen (Sce-
nario 1), normal timing errors (Scenario 2) and true observed adherence
(Scenario 3) on population PK estimation we simulate plasma concen-
tration curves on top of each of the adherence scenarios (dosing histories
Di). Speci¯ cally for each patient we consider:
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Figure 4.2: Adherence summary plot: accumulated number of doses over time
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²Scenario 1 (prescribed simulated intake): the drug is taken ex-
actly every 24 hours as prescribed for the same length as the
observed period.

²Scenario 2 (simulated intake): the intervals between drug intakes
are generated from normally distributed values with mean 24 and
standard deviation 12. The CV is then 0.5 as proposed by Nony
and co workers (1998) in their simulations. However when a nega-
tive value was generated for the dosing interval, we set it equal to
zero, representing a double intake at that time.

²Scenario 3 (observed intake): actually observed dosing intervals
(Bovet et al. 1997) are used as recorded by the MEMS devices.

Then, we generate the concentration curves from the one compartment
PK model with parameter set (ka; ke;i; Vc;i). Speci¯ cally, we consider for
each of the 60 individuals:

1. One draw (ke;i; Vc;i) from the joint distribution (4.2) between in-
dividuals.

2. The scenario-speci¯ c dosing history Di, combining it with the pa-
rameter set and random observation errors as in equations (4.3)
to generate a concentration curve over time.

3. A set of selected observations at discrete times, 3 to 11 random
time points (hospital visits) which are drawn under certain prag-
matic constraints. The times must come after one month of pre-
scribed therapy, cannot fall within the same week and are ignored
if associated with a plasma concentration lower than 1 ng/ml. For
each scenario, one plasma concentration measure is considered per
visit.

In summary, the data vector per individual i consists of ni time points
Ti = (t1; :::; tni) at which concentrations in the central compartment,
Ci = (c1; :::; cni), are recorded along with the dosing information, Di.
For the three scenarios we generated 100 data sets of 60 individuals,
each time regenerating steps 1 and 3 in an independent random fash-
ion. Figure 4.3 shows, for three typical patients, how the concentrations
simulated on top of observed MEMS adherence patterns (Scenario 3)
deviate dramatically from what would be seen if patients took the drug
as prescribed (Scenario 1). They are also much more irregular than the
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Figure 4.3: Concentration pro¯ les simulation for three typical patients given
the three proposed scenarios

concentration curves induced by the simulated timing errors (Scenario
2).

Having generated concentrations at `true' observation times, we now
consider three di®erent strategies for using the dosing information (in-
put):

²Strategy T: We observe the exact intake time for just the previous
dose before blood sampling. This happens for instance when a
dose is given in hospital a few hours before blood sampling and no
recording of previous dosing histories is used.

²Strategy E: This strategy is similar to the previous one but we
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do not assume that the last dose was given in hospital. Then the
patient is asked about the timing of last intake and the reported
time since last dose is likely subject to errors. We consider that
recent dose intake is easier to remember than earlier ones, hence
we simulate larger errors for longer time elapsed since last dose, as
follows:

time since last dose = (exact time since last dose)eÃ

where Ã»N(0; 0:09).

²Strategy +: Assuming electronic monitoring was used, we consider
as model input the seven previous dosing event records.

The corresponding `data sets' are labelled T, E, and + in ¯ gures and
tables.

Three adherence scenarios and 3 strategies of time recall account for 9
di®erent combinations.

4.5 Estimation method

Given a well speci¯ ed hierarchical nonlinear model, one can use the
linearization approach described in Davidian and Giltinan (1995) to es-
timate its parameters. Let for instance yi be the outcome variable Ci

and let ²i be the (ni£1) vector of random intra-individual errors for in-
dividual i. The hierarchical nonlinear models described in the previous
sections may be written, for i = 1; :::;N , as

(
yi = fi(µi;Ti) +²i ²i j ´ i »N(0;Ri)
µi = M + ´ i ´ i »N(0; ¡ )

(4.4)

where ¡ is a (k£k) covariance matrix and Ri depends on i only through
its dimension. In the PK model we assumed the multiplicative error
model y¤i = f¤i (µi;Ti)e

²i , so we based its estimation on the log trans-
formed model ln(y¤i ) = ln(f¤i (µi;Ti)) +²i. Since the individual param-
eters were assumed to be log normally distributed, let µi represent the
logarithm of the individual parameters, and M and ¡ be their mean and
variance-covariance respectively. Model (4.4) can then be rewritten

yi = fi(M + ´ i;Ti) + R
1=2
i (M + ´ i)»i (4.5)
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where R
1=2
i (M + ´ i) is the Cholesky decomposition of Ri and explicitly

indicates its dependence on M and ´ i. A Taylor series expansion of (4.5)
in ´ i about ´ oi close to ´ i, retaining the two ¯ rst terms in the expansion
for the mean response vector and the leading term of the expansion of
the residuals, yields

yi ¼ fi(M + ´ oi ;Ti) + Bi(M + ´ oi ;Ti)(´ i ¡ ´ oi ) + R
1=2
i (M + ´ oi )»i

= fi(M + ´ oi ;Ti) ¡ Bi(M + ´ oi ;Ti)´
o
i + Bi(M + ´ oi ;Ti)´ i +²oi

(4.6)

where Bi(M+´ oi ;Ti) = ±fi(µi;Ti)

±µi
j´ i=´ oi is the (ni£k) matrix of deriva-

tives of fi(µi) with respect to µi evaluated at µi = M + ´ oi . As in the
linear hierarchical case, the random e®ects ´ i and within-individual er-
rors ²oi now enter the model in the same linear, additive fashion. There-
fore, estimation follows from an iterative generalized least squares type
algorithm in two steps (Lindstrom and Bates 1990):

²In a ¯ rst `pseudo data' step, given the current estimate of the vari-
ance components (intra- Ri and inter- individual ¡ ), joint estima-
tion of the random and ¯ xed e®ects (´ i and M) can be realized
by jointly minimizing the sum of the negative log of the condi-
tional density of the random e®ects for given M and twice the
negative log likelihood for M for given ´ i. We note that this is
accomplished by specifying an augmented nonlinear least squares
problem analogous to the linear case. The estimates of the ¯ xed
e®ects at this step will be used in the next step to specify the non
systematic part of the model.

²Estimation of the variance components and ¯ xed e®ects is then
accomplished by a generalization of the maximum likelihood tech-
nique for linear models to the nonlinear case using equation (4.6).

Iterating this process to convergence will yield the ¯ nal estimates.

Because it is current practice, we start by estimating parameters under
the assumption that patients are in steady state at the time of their
hospital visit and the last dose intake is the only one that is recorded.
Steady state is theoretically acceptable since the ¯ rst visit happens at
least one month after starting the prescription. At steady state, the
recursive equation set (4.1) can be simpli¯ ed and the structural model
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can be rewritten as:

CSSi (t) =
Dose

(V )i

(ka)i
(ka)i ¡ (ke)i

f 1

1 ¡ e¡(ke)i¿
e¡(ke)it ¡ 1

1 ¡ e¡(ka)i¿
e¡(ka)itg

(4.7)

where CSSi (t) is the typical value of concentration for patient i at time
t after previous dose. Observations ci(t) show an error around outcome
following equation (4.3) but we note that taking the logarithm of both
sides of this expression results in a model that is linear in ²i(t); this
was used in further analyses. Following the original protocol, the dosing
interval ¿and the dose are assumed ¯ xed at 24 hours and 5000 ¹g
respectively, also ka is treated as ¯ xed across the population. We will
call this approach `Naive Steady State Estimation' (NSSE) and use it
to analyze the data issued from the three scenarios with (strategy E)
and without (strategy T) error on the `observed' time interval since last
dose.

With the observation of complete dosing histories (strategy +), the es-
timation approach uses data with seven previous dose intake records for
each of the 3 adherence scenarios and assumes steady state beforehand.
The recursive model given by equation (4.1) was then considered. We
use the same assumption to model the within-patient variability as in
the NSSE approach. We call this approach `Timing Explicit Estimation'
(TEE).

The model used for estimating the concentration in the central compart-
ment cannot distinguish between the parameters sets: (V; ka; ke) and
(V ke=ka; ke; ka). Previous studies on amlodipine suggest that kaÀ ke
and this is imposed here to solve the ambiguity.

In practice, to estimate population PK studies, starting values are taken
from early PK studies where the parameters are estimated on a few sub-
jects who are intensively sampled. To speed up computations within the
simulation context, starting values were chosen to be the exact popu-
lation parameters perturbed by a normal random variable with mean 0
and variance 0.25. In case of non convergence, a non invertible matrix,
or unrealistic covariance estimates, the ¯ tting procedure was repeated
ten times by changing the starting values.
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Table 4.1: Convergence rates

Scenario
Strategy 1 2 3

T 100 96 99
E 100 97 97
+ 100 100 100

4.6 Results

Figure 4.4 displays for each of the 9 di®erent data types box plots sum-
marizing the 100 parameter estimates. The horizontal lines indicate true
median values used for data generation.

Under NSSE, we encountered some convergence problems under strate-
gies 2 and 3 but as shown in table 4.1, convergence was achieved in at
least 96% of the cases.

Comparing E and T results shows, as expected, that errors in time recall
yield less accurate estimates. The impact on V and ke is particularly
striking under the regular scenario 1.

In terms of bias, NSSE works reasonably well with 1T, but serious biases
occur everywhere else. As already pointed out by Wang and co-workers
(1996), it is clear that the increase in variability due to nonadherence
cannot be explained by a perfect adherence multiple dose model. In most
population pharmacokinetic studies, parameter estimates that relate pa-
tient characteristics to pharmacokinetic parameters, here clearance and
volume, have the greatest relevance. We ¯ nd that those parameters
are clearly biased when NSSE is used for data sets incorporating real
observed adherence (i.e. scenario 3 T and E), it also signi¯ cantly overes-
timates the within-patient variability (denoted sd in the ¯ gures). TEE
on data sets with seven previous dosing records and assuming steady
state beforehand yields results closest to the truth for all parameters
when applied to scenario 3. This ¯ nding suggests that from an infor-
mational point of view the ideal situation is not intake history perfectly
coinciding with the prescription but a correctly measured variation in
drug exposure timing which is independent of the individual PK param-
eters, and is clearly seen when comparing scenario 1T and 3+ through
the density plots from the simulated point estimates in ¯ gure 4.5. Den-
sities have narrower spread and are centered closer to the `true' value
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Figure 4.4: Box plot summaries the PK parameter estimates from 100 pseudo
data sets; nine scenario/estimation strategies are labelled on the horizontal axis;
the horizontal line in each plot denotes median values used for data generation
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after applying TEE on real adherence data. In the same vein, Antal
and co-workers (1989) noted that observing concentrations at irregular
times since last dose also helped enrich the observed information. The
opposite happens for example when the last dose is taken in hospital
and blood samples are drawn at a ¯ xed time interval thereafter.

Using computer simulation methods, di®erent authors (Girard et al.
1996, Wang et al. 1996, Nony et al. 1998) assessed the variation in
pharmacological e®ects when adherence with the prescribed treatment
is a homogeneous process over time (similar to our strategy 2). Compar-
ing our results with theirs, we ¯ nd higher pharmacokinetic variability
with real observed nonadherence data. In a recent paper, Lunn and
Aarons (1997) claim that factors in°uencing inter occasion variability
are either unmeasurable or unknown. Based on what we see, we suggest
that variation in adherence over time induces high within-patient vari-
ability in exposure and could be an important source of variation of an
individual's naively estimated PK parameters between dosing occasions.
This situation is for instance suggested under scenario 3 for the second
patient represented in ¯ gure 4.3. It would be interesting to reconsider
the problem of Lunn and Aarons incorporating MEMS information.

We ¯ nally note that typically in studies relying on patient recall of tim-
ing, on top of the biases due to incorrect exposure assumptions, a high
percentage (up to 50%) of patients tend to be discarded in ¯ nal analyses
because the requested information is not available. Because such miss-
ing data need not to arise `at random' an even more serious bias could
result from such pharmacokinetic/pharmacodynamic investigations.

4.7 Discussion

Population PK studies have the great advantage of enabling the study
of drug concentrations in a representative sample of patients who take
the drug over a possibly long period of time. Statistical methodology
that enables accurate determination of population characteristics based
on data sets with few observations per subject are thus important for
PK/PD research. Unfortunately, exposure histories are often poorly
recorded and the extent of nonadherence tends to get underestimated.
Adherence data shown here, come from patients who are assigned to
hypertensive medication for a period close to one year. In shorter run-
ning phase III trials, one may hope for a lesser degree of nonadherence
but this is not guaranteed. Accurate observation of drug intake history
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PK Parameter estimates under scenarios 1T (full lines) and 3+ (mixed lines);
the vertical line in the plots denotes median values used for data generation
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remains key. Electronic monitoring systems may help in this process
and perhaps even ultimately rescue population PK/PD studies. How-
ever electronic monitoring of dosing histories has not often been used
in practice. Results from the presented simulations have re-emphasized
that traditional modeling assuming a priori steady state incurs the risk
of yielding biased and imprecise estimates. They also showed that better
estimates of population PK parameters can be obtained from irregular
intake times than from perfect adherence to a prescribed schedule. This
consideration suggests that the trial designer might chose to assign drug
intake at irregular times in well controlled PK trials.

The implemented TEE assumed steady state prior to the seven dosing
records included in the analysis. We investigated an additional estima-
tion strategy (labelled `-' in ¯ gures 4.6 and 4.7) assuming no dose was
taken beforehand. Not surprisingly, the latter resulted in less accurate
estimates for scenario 1 and 2 (see ¯ gure 4.6), but very similar estimates
for scenario 3 (see ¯ gure 4.7). The level of robustness is quite encourag-
ing but of course depends on the length of the number of previous dosing
histories used compared to the half-life of the drug studied (Girard et
al. 1996). Patient adherence in practice lies somewhere in between the
`non' and the `perfect' taker and perhaps better estimates could be ob-
tained by assuming a steady state prior to the seven dosing events using
as `steady' dose, the assigned dose multiplied by an average adherence
measure (Vrijens and Goetghebeur 1997).

This chapter showed data generated under the popular assumption that
absorption rate ka is ¯ xed. Such assumption however is made more out of
mathematical convenience than biological plausibility. For completeness,
we ran additional simulations generating similar data but with random
ka. Related results will be presented in the next chapter. When the
estimation model nevertheless assumed ¯ xed ka, we still recovered the
average population ka as one would hope. However, since the estimation
model did not account for an added source of variation, this emerged in
the form of overestimated variation in other components.



68 Chapter 4
50

0
15

00

1- 1+ 2- 2+ 3- 3+

V

Scenario/Strategy

0.
1

0.
3

1- 1+ 2- 2+ 3- 3+

ka

Scenario/Strategy

0.
02

0.
08

1- 1+ 2- 2+ 3- 3+

ke

Scenario/Strategy

26
30

34

1- 1+ 2- 2+ 3- 3+

Cl

Scenario/Strategy

0.
09

0.
12

1- 1+ 2- 2+ 3- 3+

sd

Scenario/Strategy

0.
0

0.
20

1- 1+ 2- 2+ 3- 3+

var(V)

Scenario/Strategy

0.
0

0.
20

1- 1+ 2- 2+ 3- 3+

var(ke)

Scenario/Strategy

-0
.1

5
0.

0

1- 1+ 2- 2+ 3- 3+

covar(V,ke)

Scenario/Strategy

-1
.0

0.
5

1- 1+ 2- 2+ 3- 3+

corr(V,ke)

Scenario/Strategy

Figure 4.6: Box plot summaries the PK parameter estimates from 100 pseudo
data sets; 3 scenario combined with strategy - and + are labelled on the hori-
zontal axis; the horizontal line in each plot denotes median values used for data
generation



The impact of patient adherence in pharmacokinetic studies 69

•

•

• •

•
•

•

•

•

•
•

•

• •
•

•

••

•

••
•

•

•

••
•

•

•
•

•

•

•

•

•

•
•

•

•

••

•

••

•

•
••

•

•
•

•

•

•

•

•

•

•

•
•

•

•
•

•

•

• •

•
•

•
•

•

•

•

•

•
•

•

•

• • •

•

•

••

•

•

•

•

•
•

••

•

••
•

••

V

3-

3+

1300 1400 1500 1600 1700

14
00

16
00

•
•
•

•
•

•

•• •••
•

•
•

•••
••

••

•

•

•
•
•

• •

•

••
•

•

•

••

•

•

•

•

•

• •

• •
•

•

•

•

•
• •

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•
•

•

• •

•

•

•

•

•
•

••
•

•

•

•

••

•
•

•

•

•

•

•

•

•

•
•

•

•

•

ka

3-

3+

0.25 0.30 0.35

0.
25

0.
30

0.
35

•

•

•
•

•
•

•

•

•
•

•

•

•
•

•

•

• •
•

•

•

•• •

••

•

•
••

•

•
•

•
•

•

•

•

•• •

•

•
•

•

•

•

•
••

•

•• •

•

•
•

•

•

•

•

•

•

•

•
•

• •••

•
•

•

•

•
•

•

•
•

•

•

•

•

•
•

•
•

•

•

•
•

•

• •

•

•

•

•

• •

ke

3-

3+

0.017 0.019 0.021

0.
01

7
0.

02
0

•
• •

•

•

•
•

•
•

•
•

•
••

••

•

•

•

•
• •

•

•

•

•

•

•
•

•
•
••

•
• •

•

• •

•

•

•

••

•

•

•

•

•

• • •
•

•

•
•

•
•

•
•

•

•

• •

•

•

•

•

•

• •

•
•

•
•

•
•

•

• •
•

• ••
•

•

•

•
•

•

•

•
•

•

•
•

•

•

•

•

sd

3-

3+

0.090 0.100 0.110

0.
09

0
0.

10
5

Figure 4.7: Comparison of strategies - and + for four PK parameter estimates
under scenario 3; the lines in each plot denote median values used for data
generation



70 Chapter 4



Chapter 5

Irregular drug intake reduces
bias and improves precision in

PK/PD population studies

The next natural step is to study the pharmacodynamic (PD) properties
of the drug on top of the PK results derived in the previous chapter.
In this context, a pharmacodynamic model describes the relationship
between concentration and e®ect in an individual. A common modeling
approach is to relate a single measure of drug exposure, like the area un-
der the concentration-time curve, to a single measure of drug e®ect, e.g.
time to maximum e®ect. In contrast, and in line with previous chapter,
we will focus on PD modeling approaches that relate the entire time
course of drug concentration to the time course of drug e®ect. Popula-
tion PK/PD studies the variability between-individuals in drug concen-
tration and pharmacological e®ect when standard dosage regimens are
assigned. They constitute a scienti¯ c basis for the determination of the
optimal dosage of a new drug. Population PK/PD relies on relatively
sparse data, but has the great advantage of studying a representative
sample of patients who take the drug over a possibly long period of time.
We con¯ rm the problem of biased PK/PD estimators in the presence of
partial adherence with assigned treatment as it occurs in practice. We
propose a global solution by using timing explicit hierarchical nonlinear
models and accurate information on a number of previous dose timings.
In practice, electronic monitoring methods enable reliable estimation of
ambulatory patient's drug dosing histories. Especially for nonlinear PD
estimation we found that not only bias is reduced but higher precision is
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retrieved from the same number of data points when non-selective irregu-
lar drug intake times occur in well controlled studies. We apply methods
proposed by Mentr¶e et al. (1997) to investigate the information matrix
for hierarchical nonlinear models. This con¯ rms that a substantial gain
in precision can be expected due to irregular drug intakes. Intuitively
this is explained by the fact that regular takers experience a relatively
small range of concentrations which makes it hard to estimate any de-
viation from linearity in the e®ect model. We conclude that estimators
of PK/PD parameters can bene¯ t greatly from information that enters
through greater variation in the drug exposure process.
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5.1 Introduction

Careful characterization of the dose-response relationship of a drug is an
essential feature of drug development. Early clinical pharmacology stud-
ies certainly provide a clue to the correct dose but they have rarely been
followed up with studies designed to explore dose-response relationship
in the clinical setting. The present research was part of an European
project that aimed to design a new clinical trial for the estimation of the
pharmacodynamic parameters for a novel negative chronotropic agent
for the prevention of myocardial ischaemia. Since we found no docu-
mented use of actually observed drug intake histories along with PK
and PD measures, we investigated the properties of such model strate-
gies based in part on simulated data. The hope is that ultimately, a
better understanding of patient-speci¯ c PK/PD and realistic adherence
patterns will lead to a better choice of dosing, and a more nearly optimal,
cost-e±cient treatment of patients.

In this chapter we move on to estimate pharmacodynamic parameters,
from just a few outcome measures on a sample of patients, who are par-
tially adherent with a ¯ xed dosing assignment. The estimation problem
is harder as the PD model derives its model input from estimated PK
parameters. We start by deriving steady state equations for a PD model
which builds an Emax model on concentrations in an e®ect compartment
added to the PK model (Holford and Sheiner 1981).

Next we compare estimators which assume steady-state with adherence-
explicit estimation under two scenarios: perfect regular adherence and
drug intake behavior as observed in the clinical trial. Besides a study of
bias, we evaluate precision building on expressions for the information
matrix which Mentr¶e et al. (1997) derived for the nonlinear mixed e®ects
model. To assess the potential impact of irregular drug intake, we con-
sider ranges of e®ect concentrations reached under regular and irregular
drug intake and show how they in°uence an individuals contribution to
the information matrix.

In Section 2, we describe the family of PK/PD models studied through-
out the chapter. In Section 3 we consider documented PK/PD models
(Holford and Sheiner 1981, Gibaldi and Perrier 1982, Reid and Meredith
1990, Donnelly et al. 1993) and study derived plasma concentration and
e®ect pro¯ les for a range of plausible parameters through simulation.
Several analysis approaches are implemented and compared on these
datasets in Section 4. Section 5 presents a method for the evaluation
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of the information matrix and uses it to assess the gain in information
when estimating PD parameters from non regular drug intake. Detailed
results are presented in Section 6 and further discussed in Section 7.

5.2 Population PK/PD models

Generalizing the concepts of the previous chapter, the complete popu-
lation PK/PD model consists generally of two parts. First, a structural
model expresses a systematic expected e®ect outcome over time in func-
tion of a dosing pattern and an individual's pharmacokinetic, pharma-
codynamic parameters. Second, a statistical model describes the joint
distribution of pharmacokinetic and pharmacodynamic parameters be-
tween individuals as well as the variation of observed e®ects around the
individuals expected e®ect evolution over time. As an example, we re-
consider the model ¯ tted in a clinical trial studying the PK/PD of anti
hypertensive response to amlodipine (Donnelly et al. 1993).

As previously described the open, one-compartment model with ¯ rst or-
der absorption and ¯ rst order elimination has as parameters the volume
of the central compartment Vc (liters), elimination rate ke (hour ¡1)
and absorption rate ka (hour ¡1). To allow for a lag-time in the
concentration-e®ect relationship (PD model) a standard PK model is
augmented by an \e®ect" compartment (Holford and Sheiner 1981) as
illustrated in ¯ gure 5.1. Parameter (ke0) of the e®ect model describes a
constant removal rate of drug from the e®ect compartment and charac-
terizes the phase lag between the change in plasma drug concentration
and its e®ect.

The observed e®ect over time, E(t), is systolic blood pressure (SBP)
reduction, and can be modeled as follows :

E(t) = Á(Ce(t);µ) = Á[(Ã¤Cc)(t);µ] (5.1)

where Á is a known function depending on unknown parameters µ and
relates the PK response at the e®ect site, Ce, to the PD e®ect. Ã
accounts for the non equilibrium between the measured PK response,
i.e. Cc(t), and the actual PK response at the e®ect site, Ce(t). In
practice, the only outcomes that are directly measured at one or more
points in time t are the concentration in the central compartment Cc(t)
and the e®ect E(t). The symbol ¤indicates the convolution integral,
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Figure 5.1: One compartment open model augmented by an e®ect compartment
with as parameters, the apparent volume of the absorption compartment (Va),
of the central compartment (Vc), and of the e®ect compartment (Ve), ¯ rst-order
absorption rate constant (ka), ¯ rst-order elimination rate constant (ke), and
equilibration rate constant (ke0)

i.e.,

Ce(t) = (Ã¤Cc)(t) =

Z t

0
Ã(t ¡ u)Cc(u)du: (5.2)

In general, Ãcan have various biological interpretations. For instance, it
can represent the transfer of a drug from one physiological site to another
or the transformation of the drug into a metabolite responsible for the
measured e®ect. For the PD model Á almost all practical applications
make use of one of three forms which are, with increasing complexity:

-the linear model E(t) = µ0 ¡ µ1 £Ce(t);

-the Emax model E(t) = µ0 ¡ µ1£ Ce(t)
µ2+Ce(t)

;

-the sigmoid Emax model E(t) = µ0 ¡ µ1£ Ce(t)µ3
µ
µ3
2 +Ce(t)µ3

:

(5.3)

The PD model combined with the PK model of the previous chapter,
yield a model for the observable concentration in the central compart-
ment and the e®ect.
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5.3 PK/PD model and plausible e® ects

For patient i on oral therapy prescribed at one 5 mg dose per day, let
Cc;i(t), Ca;i(t) and Ce;i(t) be the typical value of concentration at time t,
measured in hours since ¯ rst dosing, in the central, absorption and e®ect
compartment, respectively. Then in recursive form, the model relating
plasma concentration at time t to drug history and concentrations at
the previous intake time is given by:

8
>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Ce;i(t) = Ce;i(td;i)e
¡ke0;i(t¡td;i)

+ Cc;i(td;i)
ke0;i

ke;i¡ke0;i (e
¡ke0;i(t¡td;i) ¡ e¡ke;i(t¡td;i))

+ Ca;i(td;i)ke0;ika;i£
[ e

¡ke0;i(t¡td;i)

(ka;i¡ke0;i)(ke;i¡ke0;i) + e
¡ke;i(t¡td;i)

(ka;i¡ke;i)(ke0;i¡ke;i)
+ e

¡ka;i(t¡td;i)

(ke;i¡ka;i)(ke0;i¡ka;i) ]

Cc;i(t) = Ca;i(td;i)
ka;i

ka;i¡ke;i fe
¡ke;i(t¡td;i) ¡ e¡ka;i(t¡td;i)g

+ Cc;i(td;i)e
¡ke;i(t¡td;i)

Ca;i(td;i) = Ca;i(td¡1;i)e
¡ka;i(td;i¡td¡1;i) + Dose

Vc;i

(5.4)

with starting conditions:

8
>>>>><
>>>>>:

Ce;i(t0;i) = 0

Cc;i(t0;i) = 0

Ca;i(t0;i) = 0;

where t0;i indicates start of study (no dose yet), td;i = t1;i; t2;i; ::: is the
dosing time of dose number d = 1; 2; ::: with td;i · t < td+1;i . Note
that the volume of the absorption compartment, Va, cancels out of the
recursive concentration equation and is not speci¯ ed. The unknown
parameters are thus ka;i; Vc;i; ke;i and ke0;i.

According to Donnelly et al.(1993), the e®ect, in this case Systolic Blood
Pressure (SBP) change from baseline, is then related to the drug con-
centration in the e®ect compartment by means of a nonlinear Emax
model.

Ei(t) = Á(Ce;i(t);µi = (Emax;i; C50;i)) =
¡ Emax;i £Ce;i(t)

C50;i + Ce;i(t)
: (5.5)



Irregular drug intake reduces bias and improves precision in PK/PD
population studies 77

Concentration

E
ffe

ct

0 10 20 30 40

-8
0

-6
0

-4
0

-2
0

0

Figure 5.2: Evolution of the e®ect, E(t), in function of the concentrations,
C(t), according to an Emax model with parameters Emax = 80 and C50 = 4

Assuming µ1 = Emax;i ¸0, the model describes a decrease in SBP with
increasing drug concentration in the e®ect compartment. The parameter
Emax;i can be interpreted as the maximum e®ect for an individual and
µ2 = C50;i as the concentration in the e®ect compartment at which half
of the maximum e®ect is reached. We assume no baseline e®ect (µ0 = 0).
Figure 5.2 presents equation (5.5) graphically.

The combined PK/PD models lead to a structural model for the ob-
servable concentration in the central compartment and the e®ect. The
model allows for within-patient variation as follows:

ci(t) = Cc;i(t)e
²1;i(t)

ei(t) = Ei(t) + ²2;i(t)
(5.6)

with independent ²1;i(t) »N(0; 0:1) and ²2;i(t) »N(0; 3).

Next, the joint distribution of PK/PD parameters follows a log normal
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distribution. Speci¯ cally,

ka;i = ka £e 1́;i

ke;i = ke £e 2́;i

Vc;i = Vc £e 3́;i

ke0;i = ke0 £e 4́;i

Emax;i = Emax £e 5́;i

C50;i = C50 £e 6́;i ;

(5.7)

where ka ,ke ,Vc, ke0, Emax and C50 are the population parameters. The
between-patients random e®ects, ´ i = ( 1́;i; :::; 6́;i) have a multivariate
normal distribution, with mean 0 and variance-covariance matrix:

0
BBBBBBB@

0:09 0 0 0 0 0
0 0:09 ¡ 0:02 0 0 0
0 ¡ 0:02 0:09 0 0 0
0 0 0 0:09 0 0
0 0 0 0 0:09 0:045
0 0 0 0 0:045 0:09

1
CCCCCCCA
:

A negative covariance (¡ 0:02) was found between Vc and ke and a pos-
itive one (0.045) between Emax and C50. Other parameters were con-
sidered independent. The population parameters are also ¯ xed at the
values proposed by Donnelly et al. (1993):

Vc = 1550(liters) ke = 0:02(hour¡1) ka = 0:29(hour¡1)

ke0 = 0:52(hour¡1) Emax = 80(mmHg) C50 = 4(ng=ml):
(5.8)

To show the impact of perfect adherence with an assigned regimen of
1 pill per day (Scenario regular) as opposed to true observed adher-
ence (Scenario irregular) on population PK/PD estimation we simulate
plasma concentration curves and e®ect pro¯ les on top of each of the
adherence scenarios (dosing histories). Speci¯ cally for 60 patients we
consider:

²Scenario r: the drug is taken exactly every 24 hours as prescribed
for the same length as the observed period. This scenario is similar
to scenario 1 in the previous chapter but here we used a random
ka.

²Scenario i: actually observed dosing intervals (Bovet et al. 1997)
are used as recorded by the MEMS devices and described in the
previous chapter. This scenario is similar to scenario 3 in the
previous chapter, with random ka.
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We generate the concentration and e®ect curves from the one com-
partment PK model augmented by an e®ect compartment (5.4) and the
Emax PD model (5.5) with parameter set (ka;i; ke;i; Vc;i; ke0;i; C50;i; Emax;i).
Speci¯ cally, we consider for each of the 60 individuals:

1. One draw (ka;i; ke;i; Vc;i; ke0;i; C50;i; Emax;i) from the joint distribu-
tion between individuals.

2. The scenario-speci¯ c dosing history Di, combining it with the pa-
rameter set and random observation errors as in equations (5.6)
to generate a concentration and an e®ect curve over time.

3. A set of selected observations at discrete times, 3 to 11 random
time points (hospital visits) which are drawn under certain prag-
matic constraints. The times must come after one month of pre-
scribed therapy, cannot fall within the same week and are ignored
if associated with a plasma concentration lower than 1 ng/ml. For
each scenario, one plasma concentration and one e®ect measure
are considered per visit.

In summary, the data vector per individual i consists of ni time points
Ti = (t1; :::; tni) at which concentrations in the central compartment,
Ci = (c1; :::; cni), and e®ects, Ei = (e1; :::; eni) are recorded along with
the dosing information (Di).

For both scenarios we generated 100 data sets of 60 individuals, each
time regenerating steps 1 and 3 in an independent random fashion.

5.4 Estimation methods

To estimate parameters of a well speci¯ ed hierarchical nonlinear model,
one can use the linearization approach (Davidian and Giltinan 1995) to
maximize the full likelihood describing PK and PD outcomes. However
this approach frequently encounters convergence problems due to the
complexity of the combined PK/PD model. The data are therefore
typically analyzed sequentially. The two stage strategy analyzes PK data
¯ rst. Then individual PK parameters are estimated and ¯ xed before
¯ tting PD data. We will further compare both approaches.
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Steady model

When the last dose intake is the only one that is recorded and the
assumption is made that patients are in steady state at the time of their
hospital visit, the recursive equations describing plasma concentrations
over time can be simpli¯ ed. Concentrations in the central and e®ect
compartments at steady state can be expressed in closed form as (proof
is given in appendix):

CSSi (t) =
Dose

Vc;i

ka;i
ka;i ¡ ke;i

f 1

1 ¡ e¡ke;i¿
e¡ke;it¡ 1

1 ¡ e¡ka;i¿
e¡ka;itg; (5.9)

CSSe (t) = D
Vc

1
1¡e¡ka¿ f(ka; ke; ke0; t)

+ D
Vc
f(ka; ke; ke0;¿) e¡ke0t

(1¡e¡ka¿ )(1¡e¡ke0¿ )

+ D
Vc

kake0
(ka¡ke)(ke¡ke0)

(e¡ke0t(1¡e¡ke¿ )¡e¡ket(1¡e¡ke0¿ ))(e¡ke¿¡e¡ka¿ )

(1¡e¡ke¿ )(1¡e¡ke0¿ )(1¡e¡ka¿ )

(5.10)
where

f(ka; ke; ke0; t) = kake0 [ e¡ke0t
(ka¡ke0)(ke¡ke0) + e¡ket

(ka¡ke)(ke0¡ke)
+ e¡kat

(ke¡ka)(ke0¡ka) ]:

Combined with equation (5.5) this de¯ nes the structural PD model for
the observed e®ect at steady state. Estimation based on the Traditional
`naive steady state' assumption is applied to the data issued from the
regular dosing scenario (r) and irregular dosing scenario (i) and labelled
respectively `rT' and `iT' in the results.

Recursive model

When the data include complete dosing histories one is led to the com-
plete recursive model (equation 5.4) to model the concentrations in the
central and e®ect compartments. One saves computation time with neg-
ligible loss in accuracy (Girard et al. 1996) by explicitly including only
the seven previous dose intake records (Di) and assuming steady state
before that. This `timing explicit' estimation on data following irregular
dosing scenario (i) is labelled `i+' in the sequel.
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Further details of the estimation procedure

We argued before that few samples are typically collected during the
absorption phase, which leads to the common practice of treating ka as
constant across the population. Similarly for ke0, which accounts for the
non-equilibrium observed between the central and the e®ect compart-
ment. Hence the data below are generated from random ka and ke0's
but are analyzed as if they were ¯ xed.

The model for concentrations in the central compartment cannot distin-
guish between parameter sets, (Vc; ka; ke) and (Vcke=ka; ke; ka). Previous
studies on amlodipine suggest that ka À ke and this is imposed here to
solve the ambiguity.

In our simulations, starting values were exact population parameters
perturbed by a normal error with variance 0.25. Unrealistically large
values, i.e. Emax > 500(mmHg) and/or C50 > 50(ng=ml) were consid-
ered a sign of non-convergence or convergence to a local maximum only.
In case of non convergence, convergence to a local maximum, a non-
invertible matrix, or unrealistic estimates, the ¯ tting was repeated ¯ ve
times by changing the starting values. We used the NLME macro (ver-
sion 3.2, available from http://nlme.stat.wisc.edu/) for S-PLUS (version
4.5) to implement this. The code of the NLME macro was adapted in
order to implement the recursive models.

5.5 Assessing the gain in PD-information from irregu-

lar intake

According to (5.5) and (5.6), the relationship between the predicted
e®ect and the concentration in the e®ect compartment is assumed to be:

Ei(Ti) = Á(Ce;i(Ti);µi) +²2;i

=
¡eln(Emax;i)£ Ce;i(Ti)

eln(C50;i)+Ce;i(Ti)
+²2;i

(5.11)

where ²i is a ni-vector of normally distributed errors with zero mean
and variance-covariance matrix Ri which depends on i only through its
dimension.
In our simulations, we let µi = (ln(Emax;i); ln(C50;i)) be normally dis-
tributed with mean vector and variance-covariance matrix respectively
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given by:
M = (ln(Emax = 80); ln(C50 = 4))

¡ =

Ã
0:09 0:045
0:045 0:09

!
:

(5.12)

The block of the Fisher information matrix I corresponding to the 5 ef-
fect parameters (M and ¡ ) is denoted Ie and based on the data obtained
from N individuals, it can be written as (Mentr¶e et al. 1997):

Ie =
NX

i=1

Iei =
NX

i=1

Ã
IeMi 0

0 Ie¡i

!
(5.13)

where IeMi is the 2 £2 information matrix for the mean vector M and
Ie¡i is the 3£3 information matrix for the (1,1), (1,2), and (2,2) elements
of the covariance matrix ¡ . Let Bi be the ni £2 Jacobian matrix

Bi(µi;Ti) = ±
±µi
Á(Ce;i(Ti);µi)

= [
¡eln(Emax;i)Ce;i(Ti)

eln(C50;i)+Ce;i(Ti)
;
eln(Emax;i)eln(C50;i)Ce;i(Ti)

(eln(C50;i)+Ce;i(Ti))2
]0:

(5.14)

It can be shown (Mentr¶e et al. 1997) that in ¯ rst order approximation:

IeMi = ¡ ¡1[¡ ¡ fBi(M;Ti)
0R¡1

i Bi(M;Ti) + ¡ ¡1g¡1]¡ ¡1: (5.15)

A simple algorithm derives Ie¡ from IeM as follows. Let for two indices
k and l (l · k), k²l be de¯ ned as k²l = l+ k(k ¡ 1)=2. The k²l;m²n
element for the matrix Ie¡i , for k = 1; :::; p; l · k;m = 1; :::; p; n · m is
then given by:

[Ie¡i ]k²l;m²n = 2¡±kl2¡±lmf[IeMi ]l;m[IeMi ]k;n + [IeMi ]l;n[IeMi ]k;mg (5.16)

where ±kl = 1 if k = l and 0 otherwise.

To examine the PD information gain due to irregular intake, we focus
on a `typical patient' whose parameters equal the population medians
(5.8). When such patient achieves a perfectly regular intake, the steady
state Ce(t) ranges between 5.84 and 7.36 (ng/ml). A di®erent dose-
timing typically increase the observed concentration range. This is seen
in ¯ gure 4.2 as well as ¯ gure 5.3 where we have plotted for each patient
the expected SBP reduction as a function of the concentration in the
e®ect compartment for perfect takers and for observed dosing histories.
As often reported (Urquhart 1994, Vrijens and Goetghebeur 1997), we
face much more under- than over- dosing.
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Figure 5.3: Pro¯ le plots of the SBP reduction in function of the concentration
in the e®ect compartment. The ¯ rst picture is as realized by perfect adherers,
the second one is based on observed adherence

This phenomenon stretches the range of observed concentrations towards
smaller concentrations, whilst only few high concentrations are observed.
Hence to quantify the contribution of a single `non adherent' patient to
the information matrix, we consider di®erent sets of observed concen-
trations as described in ¯ gure 5.4.

For the evaluation of a typical patient who under-doses, we consider the
concentration range of a perfect adherer (labelled SEQ1) ranging from
5:84 to 7:36 ng=ml and stretch it sequentially (SEQ2-SEQ5) towards 0,
reducing the lowest concentration by 1 ng=ml each time. We consider
then 10 concentrations at equally spaced intervals within those de¯ ned
ranges. For a typical patient who overdoses, we consider again the ref-
erence interval of a perfect adherer (SEQ6=SEQ2) but now simply add
one observation at a systematically 1 ng=ml higher concentration result-
ing in SEQ7-SEQ19 respectively. In (SEQ 21-24) both such under- and
over-dosing are considered by combining SEQ2-SEQ5 and SEQ7-SEQ10
respectively. For reference purposes, SEQ20=SEQ6=SEQ1=interval of
a perfect adherer.
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Table 5.1: Convergence rates

rT iT i+

PK 98% 98% 100%
PD conditional on PK 43% 71% 99%
Simultaneous PK, PD 63% 91% 94%

5.6 Results

5.6.1 Simulated datasets

Figures 5.5 (PK) and 5.6 (PD) display for each of the 6 di®erent com-
binations of dosing histories and estimation methods box plots summa-
rizing the estimates from 100 pseudo data sets. In each plot we present
three scenario/estimation strategies with two implementations: sequen-
tial and simultaneous PK/PD estimation. The horizontal lines indicate
true median values used for data generation.

As far as the PK part of the model goes, results for sequential esti-
mation process are very similar to the one reported in the previous
chapter. Small changes can be expected from the simultaneous model-
ing as same PK-information is then borrowed from e®ect-data thru the
complete data model. In summary, PK results with random ka indeed
con¯ rm ¯ ndings of the previous chapter. The increase in variation due
to nonadherence cannot be explained by a perfect adherence multiple
dose model. Timing explicit estimation (strategy +) applied to irregu-
lar drug intake (scenario i) yields results closest to this truth for all PK
parameters.

In what follows, we focus on new results for PD.

Whereas traditional naive steady state estimation applied to perfect
adherers (rT) worked reasonably well for PK estimation, it gives the
worst PD estimates. In addition, we encountered much more conver-
gence problems under rT and the box plots represent only the relatively
small proportion (about 50 %) of estimators that converged. Table 5.1
shows the convergence rates.

Surprisingly and in contrast with the PK situation, even iT yields a
higher percentage of convergence and more precise PD estimates than
rT. This indicates that the `exact' model for perfect adherers contains
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less information than a steady state approximation for irregular drug
intakes. Timing explicit estimation (+) on data sets with seven pre-
vious dosing records, assuming steady state beforehand, yields results
closest to the truth for all parameters when analyzing irregular intake.
Comparing rT with i+, we observe to what extent estimators have a
narrower spread and are centered closer to the `true' value after ap-
plying timing explicit estimation on real adherence data. Simultaneous
PK/PD estimation yields slightly more precise PD estimates than does
the two stage method. When naive steady state estimation is used to
analyze observed adherence (iT) , the within-patient variability in e®ect
measurements is substantially overestimated, just as for PK.

5.6.2 Gain in information

Figure 5.7 shows in the ¯ ve ¯ rst plots for each sequence (as de¯ ned in
¯ gure 5.4) the standard deviation of the diagonal elements of the in-
formation matrix (Ie). They are computed as the square root of the
diagonal elements of the inverse of the information matrix. The three
last plots represent the values of the determinant of the information ma-
trix for the mean, for the variance-covariance and the combined matrix
respectively.

Sequences 21 to 24 are the most plausible in practice. One sees clearly
that the standard deviation decreases and a substantial gain in informa-
tion can be expected from irregular dosings. The three last plots show
that this gain is growing faster when delaying intake time (underdosing:
SEQ 2-5) than when shortening the dosing interval (overdosing: SEQ
7-20).

To show that those qualitative results continue to hold when C50 is larger
than the observed concentration range, we repeated the exercise for an
hypothetical value of C50 = 10 ng/ml. Figure 5.8 still shows a clear
decrease in the standard deviation of all parameters. We thus conclude
that substantial information can be gained from irregular dosings. This
intuitively follows from the fact that regular drug intake restricts the
observational concentration range as illustrated in ¯ gure 5.3.

5.7 Discussion

The complex structure of nonlinear hierarchical models used for pop-
ulation PK/PD makes it hard to examine the in°uence certain design
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features may have on the information matrix. We have adapted the
theory developed by Mentr¶e et al. (1997) to examine the impact of non
regular drug intake patterns on the PK/PD information. Focusing on
adherence patterns which occur in practice, we studied the in°uence of
those patterns under the assumption that they evolve independently of:
a) the PK/PD parameters of the patient, and b) the random highs or
lows of the concentration and e®ect measures at the times of measure-
ment. The latter are not satis¯ ed when partial adherence is selective
(Fischer and Goetghebeur 1999). In those cases, also the dose-timing-
speci¯ c analysis presented here will lead to biased results. It is generally
expected that adherence is less selective when patients su®ering from
an asymptomatic disease and are treated with an asymptomatic drug.
Sometimes selectivity can be eliminated by adjusting for baseline covari-
ates like sex, age or gene information.

Whereas population PK analysis is more and more reported in the liter-
ature, combined population PK/PD analyses are less often seen because
of problems with hysteresis loops, lack of convergence, unrealistic pa-
rameter estimates, ... Recent recommendations in the ¯ eld (Aarons et
al. 1996) teach the researcher to stimulate adherence by digital drug dis-
pensers, patient diaries, pill counts, ¯ nancial support, adherence coun-
selling, a run-in period to preselect the good adherers, ... This practice
aims to include `standardized' patients which are close to the `ideal' per-
fect adherer. However, we have shown that regular drug intake restricts
observations to a narrow window of the concentration-e®ect relation-
ship. This is much more important for nonlinear PD models than for
compartmental PK models. In the former case, this often results in lim-
ited information which may prevent ¯ tting of the appropriate model.
This is particularly true when `hard nonlinearities' occur, which may
be expected at the beginning or at the end of the dosing period, e.g.
rebound e®ects when dosings stop (Kleinbloesem et al. 1987, Houston
and Hodge 1988, Psaty et al. 1990, Gilligan et al. 1991, Rosenbaum
et al. 1998). Our results suggest that acknowledging actual dose tim-
ing as observed in current practice may help solve the problem. In-
deed, estimators of PK and particularly PD parameters can gain serious
precision from information that enters through greater variation in the
drug exposure process. In practice patients do naturally vary the dosing
interval and electronic monitoring of a wide range of over- and under-
dosing patterns is an underestimated opportunity to observe and model
realistic concentration-e®ect relationships. Alternatively one might use
the results of the present research to design independent irregular in-
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take schedules under controlled conditions where perfect adherence can
be imposed (Du®ull et al., 2001). Knowing that 78 % of the drugs in
therapeutic use have plasma half-lives that are less than 12 hours, our
simulations based on a half-life of 36 hours are conservative in their
assessment of the impact of irregular intakes.

5.8 Appendix

In this appendix we derive steady state equations for the one compart-
ment open model augmented by an e®ect compartment. If yi(t) repre-
sents the quantity of drug in compartment i = (a; c; e) at time t after
dosing, then according to ¯ gure (5.1) the di®erential equations describ-
ing the rate of change over time of drug in the three compartments is
given by 8

><
>:

dya(t)
dt = ¡ kaya(t)

dyc(t)
dt = kaya(t) ¡ keyc(t)

dye(t)
dt = k1eyc(t) ¡ ke0ye(t)

(5.17)

where ka; ke and ke0 are apparent ¯ rst order rate constants of trans-
fer between compartments and assuming k1e <<< ke. To describe the
time course of the amount of drug in the body after drug intake, equa-
tions (5.17) must be integrated. The method of Laplace transforms will
be employed. The transform of (5.17) is

8
><
>:

sya(t) ¡ ya(t = 0) = ¡ kaya(t)
syc(t) ¡ yc(t = 0) = kaya(t) ¡ keyc(t)
sye(t) ¡ ye(t = 0) = k1eyc(t) ¡ ke0ye(t)

(5.18)

where s is the Laplace transformation, and (t = 0) indicates the intake
time. For a single dose (D), where ya(t = 0) = Dose and yc(t = 0) =
ye(t = 0) = 0, rearrangement of (5.18) yields

ye(t) =
Dk1eka

(s+ ke0)(s+ ka)(s+ ke)
(5.19)

which when solved using a table of Laplace transforms gives

ye(t) = Dk1eka [ e¡ke0t
(ka¡ke0)(ke¡ke0) + e¡ket

(ka¡ke)(ke0¡ke)
+ e¡kat

(ke¡ka)(ke0¡ka) ]
(5.20)

The concentration of drug in the e®ect compartment (Ce) is then derived
by dividing ye by the e®ect compartment volume (Ve). At equilibrium,
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the rates of drug transfer between the central and e®ect compartments
are equal, i.e.

k1eyc(t) = ke0ye(t) (5.21)

or
k1eVcCc(t) = ke0VeCe(t) (5.22)

or
k1e

Ve
=
ke0Ce(t)

VcCc(t)
=
ke0
Vc
Kp(t) (5.23)

where Kp(t) is the partition coe±cient and was set equal to 1 in this
paper.

Then rearranging (5.20) will yield:

Ce(t) = D
Vc
Kp(t)ke0ka [ e¡ke0t

(ka¡ke0)(ke¡ke0) + e¡ket
(ka¡ke)(ke0¡ke)

+ e¡kat
(ke¡ka)(ke0¡ka) ]

(5.24)

For multiple doses (D), rearrangement of (5.18) yields

ye(t) =
ye(t = 0)

(s+ ke0)
+

yc(t = 0)k1e

(s+ ke0)(s+ ke)
+

ya(t = 0)k1eka
(s+ ke0)(s+ ka)(s+ ke)

(5.25)

which when solved using a table of Laplace transforms gives

ye(t) = ye(t = 0)e¡ke0t

+ yc(t = 0) k1e
ke¡ke0 (e¡ke0t ¡ e¡ket)

+ ya(t = 0)k1eka [ e¡ke0t
(ka¡ke0)(ke¡ke0) + e¡ket

(ka¡ke)(ke0¡ke)
+ e¡kat

(ke¡ka)(ke0¡ka) ]

(5.26)

Dividing both sides by the apparent volume of the e®ect compartment
(Ve) and assuming (5.23) will yield the following concentration-time re-
lationship in the e®ect compartment

Ce(t) = Ce(t = 0)e¡ke0t

+ Cc(t = 0)Kp(t)
ke0

ke¡ke0 (e¡ke0t ¡ e¡ket)

+ Ca(t = 0)Kp(t)ke0ka [ e¡ke0t
(ka¡ke0)(ke¡ke0) + e¡ket

(ka¡ke)(ke0¡ke)
+ e¡kat

(ke¡ka)(ke0¡ka) ]

(5.27)

We note that for mathematical convenience, the concentration in the
absorption compartment is de¯ ned as the amount of drug in that com-
partment divided by the volume of the central compartment, however
this quantity is di±cult to interpret biologically.
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For drugs administered in a constant dose at regular intervals (¿),
Gibaldi and Perrier (Gibaldi and Perrier 1982) have shown that, at the
time of the N th dose, the concentrations in the absorption and central
compartment are respectively given by

(
Ca(N) = D

Vc
1¡e¡Nka¿
1¡e¡ka¿

Cc(N) = D
Vc

ka
ka¡ke [1¡e¡Nke¿

1¡e¡ke¿ ¡ 1¡e¡Nka¿
1¡e¡ka¿ ]

(5.28)

It can be shown by simple algebra that the concentration in the e®ect
compartment at the time of the N th dose is given by

Ce(N) = D
Vc
kake0[ e¡ke0¿

(ka¡ke0)(ke¡ke0) + e¡ke¿
(ka¡ke)(ke0¡ke) + e¡ka¿

(ke¡ka)(ke0¡ka) ]

£g(ka; ke0; N ¡ 1)

+ D
Vc

kake0
(ka¡ke)(ke¡ke0)(e¡ke0¿ ¡ e¡ke¿)

£fe¡ke¿g(ke; ke0;N ¡ 2) ¡ e¡ka¿g(ka; ke0;N ¡ 2)g
(5.29)

where g is de¯ ned as follows

g(k1; k2; N) =
PN
i=0

PN¡i
j=0 e

¡ik1¿e¡jk2¿

For prolonged periods of dosing, a steady state is reached when the
amount of drug in the body reaches a level where the input rate equals
the output rate. The equation describing the time course of the drug in
the e®ect compartment at the plateau or steady state, can be obtained
by setting N to 1. Then g can be rewritten as

g(k1; k2;N) =
PN
i=0

PN
j=0 e

¡ik1¿e¡jk2¿ ¡
NX

i=1

NX

j=N¡i+1

e¡ik1¿e¡jk2¿

| {z }
!0 if N!1

»(1 + e¡k1¿ + :::+ e¡Nk1¿)(1 + e¡k2¿ + :::+ e¡Nk2¿)

» 1¡e¡Nk1¿

1¡e¡k1¿
1¡e¡Nk2¿

1¡e¡k2¿

» 1
1¡e¡k1¿

1
1¡e¡k2¿

Assuming N is large, substituting Ca(N), Cc(N) and Ce(N) for initial
concentrations at (t = 0) in (5.27) will yield

CSSe (t) = D
Vc

1
1¡e¡ka¿ f(ka; ke; ke0; t)

+D
Vc
f(ka; ke; ke0;¿) e¡ke0t

(1¡e¡ka¿ )(1¡e¡ke0¿ )

+D
Vc

kake0
(ka¡ke)(ke¡ke0)

(e¡ke0t(1¡e¡ke¿ )¡e¡ket(1¡e¡ke0¿ ))(e¡ke¿¡e¡ka¿ )
(1¡e¡ke¿ )(1¡e¡ke0¿ )(1¡e¡ka¿ )

(5.30)
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where

f(ka; ke; ke0; t) = kake0 [ e¡ke0t
(ka¡ke0)(ke¡ke0) + e¡ket

(ka¡ke)(ke0¡ke)
+ e¡kat

(ke¡ka)(ke0¡ka) ]
(5.31)



Irregular drug intake reduces bias and improves precision in PK/PD
population studies 91

-1 jjjjjjjjjj
-2 j j j j j j j j j j
-3 j j j j j j j j j j
-4 j j j j j j j j j j
-5 j j j j j j j j j j
-6 jjjjjjjjjj
-7 jjjjjjjjjj j
-8 jjjjjjjjjj j
-9 jjjjjjjjjj j
-10 jjjjjjjjjj j
-11 jjjjjjjjjj j
-12 jjjjjjjjjj j
-13 jjjjjjjjjj j
-14 jjjjjjjjjj j
-15 jjjjjjjjjj j
-16 jjjjjjjjjj j
-17 jjjjjjjjjj j
-18 jjjjjjjjjj j
-19 jjjjjjjjjj j
-20 jjjjjjjjjj
-21 j j j j j j j j j j j
-22 j j j j j j j j j j j
-23 j j j j j j j j j j j
-24 j j j j j j j j j j j

Ce(ng=ml)

SEQ

Figure 5.4: Observed concentrations in the e®ect compartment; SEQ 1, 6, 20
refer to the perfect drug taker; SEQ 2-5 and 7-19 represent respectively under-
adherence and over-adherence; SEQ 21-24 represent a combination of under-
and over-adherence.



92 Chapter 5
15

00
30

00

rT iT i+ rT iT i+

V

Scenario/Strategy

0.
2

0.
8

rT iT i+ rT iT i+

ka

Scenario/Strategy

0.
01

4
0.

02
6

rT iT i+ rT iT i+

ke

Scenario/Strategy

30
40

rT iT i+ rT iT i+

Cl

Scenario/Strategy

0.
10

0.
30

rT iT i+ rT iT i+

sd

Scenario/Strategy

0.
0

0.
8

rT iT i+ rT iT i+

var(V)

Scenario/Strategy

0.
0

0.
4

rT iT i+ rT iT i+

var(ke)

Scenario/Strategy

-0
.8

-0
.2

rT iT i+ rT iT i+

covar(V,ke)

Scenario/Strategy

-1
.0

0.
5

rT iT i+ rT iT i+

corr(V,ke)

Scenario/Strategy

Figure 5.5: Box plot summaries the PK parameter estimates from 100 pseudo
data sets; three scenario/estimation strategies are labelled on the horizontal
axis (rT: regular intake assuming steady state, iT: irregular intake assuming
steady state, i+: irregular intake assuming the recursive model). The two stage
estimators are shown in the 3 ¯ rst box plots while results from the simultaneous
estimation process are in the 3 last box plots of each ¯ gure; the horizontal line
in each plot denotes median values used for data generation
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steady state, i+: irregular intake assuming the recursive model). Two stage
estimators are shown in the 3 ¯ rst box plots while results from the simultaneous
estimation process are in the 3 last box plots of each ¯ gure; the horizontal line
in each plot denotes median values used for data generation
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Chapter 6

Modeling the association
between adherence and viral

load in HIV-infected patients

The primary objective of this paper is to investigate the e®ect of ad-
herence to prescribed therapy on virologic response measured repeat-
edly over time in HIV patients. To this end observations on viral load
assessed in cp/ml are categorized into 4 clinically meaningful states,
[0 ¡ 50[, [50 ¡ 400[, [400 ¡ 2000[, [2000 and up. A time-dependent con-
tinuation ratio model is used to analyze longitudinal individual ordinal
responses. The main challenge lies in modeling dependencies over time
and using the information in the data e±ciently to establish a dynamic
relation between observed adherence and viral load. Among the several
measures of adherence investigated, two account speci¯ cally for long pe-
riods of time without intake. One is derived from the third moment of
the inter-dose interval while the second re°ects internal drug exposure
using pharmacokinetic features. The approach is applied to a clinical
trial involving 35 patients who were followed over 12 months. The data
show a signi¯ cant relation between patient adherence and virologic re-
sponse.
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6.1 Introduction

The last years, we experienced a revolution in HIV treatment. New
tests that can accurately measure levels of HIV in blood became com-
mercially available. Resulting data showed plasma viral load to be the
strongest predictor of the risk of progression to AIDS and death (Mel-
lors et al. 1996, Hughes et al. 1997, Marchner et al. 1998, Delta
Coordinating Committee 1999). New drugs, including potent protease
inhibitors (PI's) also became available. The new treatments, however,
are not a cure for HIV disease. While many patients are bene¯ ting from
treatment, others are not or have experienced only a temporary bene¯ t.
There are several reasons why treatment fails. Poor patient adherence to
therapy is the most cited (Montaner et al. 1998, Paterson et al. 2000),
and indeed a probable cause for many of the treatment failures. The
study of why and how HIV antiretroviral treatment fails is important
for the development of new treatment strategies for those patients for
whom therapy is currently failing.

The statistical methods presented in this paper were motivated by clin-
ical studies reporting measurements of human immunode¯ ciency virus
(HIV) RNA in plasma from HIV-infected subjects. Typically, techni-
cal measurements in the assay lead to measurements that are either
left or right censored. For example, the assay can have a quanti¯ able
range from 50 to 75,0000 copies of RNA per milliliter of plasma (cp/ml).
Outside this range, quanti¯ cation is unreliable or the virus may not be
detectable. Review of recent reports from HIV clinical trials shows that
a common analytic approach is to replace left censored values by im-
puted values, for example replacing values < 50 cp/ml by 49 cp/ml.
Modeling then proceeds as if these are the actual values. The statistical
literature warns against this kind of imputation, and methods acknowl-
edging censored observations have been recommended (Hughes 2000).
Furthermore, measurement error and/or large within-patient variations,
especially at higher viral load levels, have to be taken into account when
interpreting the results from traditional methods. While a continuous
scale is often appealing, in the ¯ eld of HIV there are clinically meaning-
ful cut points in viral load reduction that are used in practice. The goal
is to eliminate the virus but in practice 50 cp/ml is the detection limit.
A viral load < 50 is considered a successful response with the current
assessment technology (ultra-sensitive assay). However an outcome of
49 versus 1 makes a big di®erence for the time the virus needs to repli-
cate to a substantial infection level and hence for the protective ability
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of the drug and its forgiveness for treatment lapses. Until early 1999,
the lower quanti¯ able limit was < 400 cp/ml and, therefore, this level
remains meaningful to clinicians. Finally a viral load between 400 and
2,000 cp/ml is traditionally considered as a partial response to the ther-
apy. Therefore, an average decrease of 500 cp/ml will have a di®erent
medical interpretation if it is a reduction from 20; 000 cp/ml than if it
is from 1; 000 cp/ml. This paper intends to use a clinically meaningfully
categorized measure of viral load and provides a model for analyzing
the repeated ordinal responses. The model allows one to estimate the
e®ect of explanatory variables and especially patient adherence not only
on success rate (viral load < 50), but also on the rate at which patients
progress through the infection.

The proposed model helps to assess how drug exposure adherence pat-
terns, thru viral load levels, explain treatment failure and thus provides
a rationale and a focus for an adherence intervention strategy.

6.2 Study design and data

A phase II, randomized, open-label, multi-center, multi-country study
was conducted to assess the safety, tolerability, pharmacokinetics and
anti-viral activity of high dose lopinavir (one dose a day regimen{QD)
and standard dose lopinavir (two doses a day regimen{BID) with ad-
ditional ritonavir in thirty eight protease inhibitor and non-nucleoside
reverse transcriptase inhibitor-experienced HIV-infected subjects. For
three patients, adherence data were not available, resulting in 35 evalu-
able subjects. Eighteen were randomized to QD (5 females) and 17 to
BID (4 females). The baseline visit included a discussion of the impor-
tance of adherence to the study drug administration schedule and details
of the lopinavir regimen to which the subject has been randomized. Sub-
jects were then instructed to begin their dispensed regimen the following
day. Adherence to the subject's assigned regimen was discussed during
each following study visit. Subjects returned to the clinic for viral load
assessment at week 4, 8, 12, 16, 20, 24, 32, 40 and 48. Blood samples
were collected for measurement of lopinavir and ritonavir levels at day
21 for intensive PK measurements and then at weeks 8, 16, 24, 48 for
trough PK, where the blood sampling is assumed to be taken before the
next scheduled dose ingestion. At each of those visits the timing of the
last dose intake (or two last doses for BID regimen) was recorded on a
diary by the patient and reported to the study monitor.
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Figure 6.1: Schematic illustration of the study design. Dotted vertical lines
represent visit dates with viral load assessment. Solid lines represent visit
dates with viral load assessment and PK sampling. The star indicates the
intensive PK sampling on day 21.

For the \intensive PK" at day 21, a ¯ rst blood sample was collected at
arrival to the center (0-hour), immediately prior to the morning dosing.
Then a standardized breakfast was served with the morning dose and
¯ nally blood samples were successively collected after 2, 4, 6, 8, 12 and
24 (only for QD) hours. Study design is illustrated in ¯ gure 6.1

6.3 Adherence to the prescribed therapy

Protease inhibitor adherence was assessed using an electronic monitor.
Medication Event Monitoring System (MEMS, Aardex Ltd.) record for
each patient a series of exact times and dates at which the drug container
is opened over the course of the study. As a basic visual description of
the data, we have graphed each patient's pattern of drug intake com-
bined with the PK and viral load information as illustrated in ¯ gure 6.2
for a single subject. Visits with viral load observation are represented by
vertical lines, while the blood sampling times are represented by stars.
Actual viral load values (cp/ml) and lopinavir trough concentrations
(ng/ml) are shown on the top and lower bottom lines of the plot respec-
tively. The combined data provide a detailed source of information on
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Figure 6.2: Individual patient adherence. The horizontal axis displays the
dosing days relative to study entry. The vertical axis gives the time of drug
intake on a 24-hour clock. The digits from 0 to 6 are used as plotting symbols
to characterize the day of the week (0=Sunday, 1=Monday, ..., 6=Saturday).
Vertical lines represent the viral assessment visit. The stars represent the PK
sampling day and time. The bottom line of numbers the blood concentration
(ng/mL) of ABT-378/r at trough and the line above it shows viral load (cp/ml)
respectively.
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drug-taking behavior, pharmacokinetics and pharmacodynamics. Fig-
ure 6.2 shows the viral load declining systematically over time until it
becomes undetectable on day 82 after which it stays stable.

Several adherence summary statistics have already been proposed (Vri-
jens and Goetghebeur 1997) and are widely used in the literature. In the
sequel, we investigate the percentage of prescribed doses taken (taking
compliance), the percentage of prescribed dosing days with the correct
number of doses taken (correct dosing) and the percentage of prescribed
dosing days with dosing intervals within the prescribed inter dose in-
terval [±0 - 3 hours;±0 + 3 hours] (timing compliance), where ±0 is the
prescribed dosing interval. For example, ±0 = 12 hours for a BID med-
ication. In this study we found it useful to introduce a new adherence
summary statistic derived from the observed dosing intervals. The mea-
sure intends to penalize more severely for larger dosing intervals or in
other words longer drug holidays. If we denote by ±ik the kth observed
dosing interval for the ith patient, then ±¤ik is the corresponding standard-
ized dosing interval de¯ ned as ±¤ik = ±ik¡±0

±0
. Thus for a perfect adherer,

±¤ik = 0 for all k. While the mean standardized dosing interval contains
information pertaining to dosing interval discrepancies, higher moments
of the within-patient distribution of ±¤ik, like variance and particularly
skewness, are relevant. The variance can be interpreted as a measure
of the irregularity in drug intake over time while skewness to the right
points to longer drug holidays. We considered for a given patient i,

CDi = (
1

ni

X

i

(±¤ik)
3)1=3; (6.1)

the cubic distance between the observed and prescribed rather than aver-
age standardized dosing intervals. Compared to the Euclidean distance
it lets dosing intervals which are too short be compensated by dosing
intervals which are too long.

6.4 Internal exposure

Since we focus on long term e®ects of adherence on viral load (monthly),
we choose to ignore short term kinetic detail and use a single com-
partment model rather relying on more complex but uncertain model-
ing. We model the macroscopic kinetic behavior of the drug by a one-
compartment model with ¯ rst-order absorption and ¯ rst-order elimina-
tion. We consider then the volume of the central compartment (V ), elim-
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ination rate constant (ke) and absorption rate constant (ka) as model
parameters. For parameter estimation we used all available lopinavir
concentration data, hence from the intensive blood sampling day as well
as from the trough concentration sampling. We use the conditional ¯ rst-
order method developed by J. Pinheiro and D. Bates as implemented in
NLME v3 (S-PLUS 2000) to ¯ t the nonlinear compartmental model. By
including all available data over time, estimation is more representative
of long term drug activity under real circumstances. We assumed log
normal models for the between-patient variability in ke and V while ka
was treated as ¯ xed across the population due to limited observations
during the absorption phase. When modeling steady state concentra-
tions based on just the timing of the last dose (QD) or the two last doses
(BID) as model input, the numerical procedure to maximize the likeli-
hood does not converge. This non-convergence is likely due to a con°ict
between the steady state assumption and the true data generating mech-
anism. The problem is solved by using the detailed records of the dosing
history prior to the blood sampling. For repeated dosing, the patient's
estimated concentration at time t, labelled the internal exposure IEt
in the sequel, can be recursively estimated by solving the set of di®er-
ential equations associated with a one compartmental model (Gibaldi
and Perrier 1982). Estimates of individual pharmacokinetic parameters
(kai, kei and Vi) were derived using the expected a posteori value of the
random e®ects and are then combined with observed dosing histories to
simulate IEt pro¯ les over time. Such pro¯ le is illustrated for a single
patient in ¯ gure 6.3. To summarize internal exposure over an observed
time period, we used the median value, the total time and percentage
of time that the IEt falls below the EC50{the average concentration at
which half of the maximum e®ect is reached.

6.5 Modeling the viral load

To interpret a patient's viral load evolution, we found it useful to stage
the patient clinically. Based on popular threshold values in the HIV
¯ eld, we stage it as follows: [0¡ 50[; [50¡ 400[; [400¡ 2000[ and [2000¡
1[. The ordinal response yit thus indicates one of four HIV states for
patient i at time t. A natural model for these events compares the
probability of belonging to each given category with the probability of
belonging to any of the lower categories. Thus, as graphed in ¯ gure 6.4
the three last categories are compared to the ¯ rst one, the last two to
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Figure 6.3: Individual patient internal exposure. The vertical lines represent
the visit dates when viral loads were assessed

the second, and the third to the last. We thus consider the probability
of improvement conditional on the present position. For an ordinal
response with 4 categories, there are now 3 comparisons (c = 1; 2; 3)
to make. Alternatively, one can start from the bottom of the scale, and
describe the probability of deteriorating one step further on the scale,
given the present position (graphically presented on the right hand side
of ¯ gure 6.4).

The model describes the probability of moving further on the scale, given
the present position. The continuation ratio model has the advantage of
being a simple decomposition of a multinomial distribution, with param-
eters that can be estimated by applying a standard logistic regression to
the 3 reconstructed subtables making the comparisons described above
(Agresti 1990). Technically, to ¯ t the separate logistic models, we denote
by yc=it the transformed binary response corresponding to the cth com-

parison involving the tth event for the ith patient. Speci¯ c binary coding
of yc=it is given in tables 6.1 and 6.2 for the two modeling strategies.

With this reparametrization, the original multinomial distribution be-
comes a product of three binomial distributions and the model can be
written:
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Figure 6.4: Schematic representation of the probabilities in a continuous ra-
tio model. Two models, one for improvement and one for deterioration are
presented separately. For both models the three comparisons are labelled
c = 1; 2; 3.

Table 6.1: yc=it coding for the improvement model. The coding is unde¯ ned in
the empty cells

yit
c [0 ¡ 50[ [50 ¡ 400[ [400 ¡ 2000[ [2000 ¡ 1[

1 1 1 1 0
2 1 1 0
3 1 0
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Table 6.2: yc=it coding for the deterioration model. The coding is unde¯ ned in
the empty cells

yit
c [0 ¡ 50[ [50 ¡ 400[ [400 ¡ 2000[ [2000 ¡ 1[

1 0 1 1 1
2 0 1 1
3 0 1

(́pc=it) = C0it®+ X0it¯+ Yit¡1° + ±Zi (6.2)

where pc=it = P (Yc=it = 1 j Cit;Xit; Yit¡1; Zi), (́:) is the logit link func-
tion, ®, ¯, ° , ±are a set of ¯ xed parameters to be estimated, Cit repre-
sents the dummy indicators for the comparison subtables, Xit potential
explanatory variables, and the two last terms account for dependencies
among individuals. The model allows one to estimate the e®ect of ex-
planatory variables, not only on the rate of success (viral load < 50),
but also on the rate at which patients progress through the viral load
categories. By studying interactions between explanatory variables and
the comparison subtables we can test whether their e®ect is identical
across the categories.

For each patient, we have a sequence of ordinal responses over time.
When estimating model parameters we must consider the dependence
among successive responses of an individual. Two types of dependence
are expected: those arising from heterogeneity among individuals, of-
ten called frailty, and those from serial correlation over time within an
individual. A possible approach to handle frailty is by incorporating
individual-speci¯ c normal random e®ects into an event-speci¯ c binary
logistic model (Dos Santos and Berridge 2000). To this end we assume
that on the scale of the logit link function ,́ each subject's probability
of response is shifted according to the subject-speci¯ c value Zi, drawn
from a Standard Normal random variable with unit variance. ± is then
the standard deviation of the patient random e®ect. Serial correlation
can be modeled by ¯ tting Markov chains to the transformed binary data.
In such model, the present response at any time point is made condi-
tional on that in the previous time period. Conditioning can happen
on the lagged value of the binary response (Yc=it¡1), but interpretation
is easier if the lagged ordinal response (Yit¡1) variable is used directly
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Table 6.3: Number of observations in each state

State Nb observations

1 : [0 ¡ 50[ 195
2 : [50 ¡ 400[ 81
3 : [400 ¡ 2000[ 30
4 : [2000 ¡ 1[ 46

as an explanatory factor variable (Lindsey et al. 1997). The additional
e®ect of covariates and especially patient adherence can then be tested
through the X0it¯ term in the model.

6.6 Results

Table 6.3 gives the number of available observations that were collected
among the 35 patients who completed the 12 months observation period.

To detect dependence among repeated responses we ¯ rst ¯ t reference
models assuming independence. The ¯ rst column of table 6.4 shows
results of ¯ tting such models which completely ignore the fact that sev-
eral responses have been observed on each patient. To handle frailty,
a patient-speci¯ c random e®ect has been incorporated into the model
whose results are shown in column 2. We used Gaussian quadrature to
numerically maximize the likelihood. On the other hand serial correla-
tion is allowed by letting the response on the previous visit be an ex-
planatory variable for the next. The corresponding deviances are given
in the third column of the table. The last column gives results when
frailty and serial correlation are jointly incorporated.

Table 6.4 reveals that serial correlation is the main source of stochastic
dependence among successive responses for the same individual. Het-
erogeneity among individuals accounts only for a very small proportion
of the dependence. Our serial correlation model does the job of taking
dependence into account and it is not necessary to take the additional
heterogeneity among individual into account. Furthermore since we had
a baseline viral load observation, we do not loose the ¯ rst observation
by introducing such lagged variables as explanatory variables. In this
particular situation, the model can be ¯ tted by standard logistic regres-
sion after a simple restructuring of the data. This maneuver will become
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Table 6.4: Deviance table

Serial Frailty and
Model deviance Independent Frailty correlation serial correlation

Improvement model
Null model 581.5 554.1 404.5 400.2
Correct dosing 579.3 553.7 402.8 398.9
Taking compliance 577.2 552.1 396.6 392.7
Timing compliance 581.5 553.9 403.8 399.7
Cubic distance 581.5 573.9 388.9 384.7
Median 572.1 548.9 395.7 395.8
% time(IE < EC50) 575.7 548.8 392.1 387.4
time(IE < EC50) 576.0 550.1 389.2 386.0

Deterioration model
Null model 581.5 559.1 418.1 413.5
Correct dosing 578.4 558.6 411.4 408.5
Taking compliance 574.8 555.8 401.5 398.5
Timing compliance 581.1 559.0 414.9 411.3
Cubic distance 571.9 554.2 389.1 388.3
Median 571.1 559.3 402.0 403.4
% time(IE < EC50) 573.3 553.5 392.9 391.1
time(IE < EC50) 574.0 554.7 390.6 389.7
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Figure 6.5: model based probabilities of improvement (decreasing curves) and
deterioration (increasing curves)

especially convenient when more data will become available and larger
database will be under investigation.

Two adherence explanatory variables perform signi¯ cantly better than
the other ones, the cubic distance and the amount of time during which
the internal exposure of a patient falls below the EC50. Both measures
are strongly in°uenced by drug holidays{one or more days without drug
intake. The amount of time during which the internal exposure falls
below the EC50 has the advantage of a nice pharmacologic interpretation
but su®ers from the practical necessity of collecting blood concentration
measures. The cubic distance establishes a direct relation between the
dosing histories and the viral load observation, but su®ers from a more
di±cult interpretation. The model ¯ tted conditional probabilities of
improvement and deterioration are graphically presented in ¯ gure 6.5.

The decreasing curves represent the probabilities of improvement in
function of the cubic distance, while the increasing curves are the prob-
abilities of deterioration. The model ¯ tted is conditional on past as-
sessment of the viral load staged in four categories. This condition is
expressed by the type of the lines that indicate the virologic state in
which the patient was at the previous visit. When the cubic distance
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Table 6.5: Probabilities estimated directly from the continuous ratio models

Improvement Deterioration
model model
P (< 2000) P (¸50)
P (< 400 j< 2000) P (¸400 j¸50)
P (< 50 j< 400) P (¸2000 j¸400)

increases, the probability of improvement drops substantially quickly
while the probability of deterioration increases. The relation between
the time that the internal exposure remains below the EC50 delivers a
very similar ¯ gure and is not reported here.

The model parameters are ¯ tted through a decomposition of the multi-
nomial distribution, therefore the estimated probabilities are not only
conditional on past viral load history and adherence but also on the
subtables used for the construction of the model. Conditional on past
viral load history and adherence, the probabilities directly estimated
by the continuous ratio models and plotted in ¯ gure 6.5 are given in
table 6.5. They can be misleading for direct medical interpretation.
Denoting a1 = 2000, a2 = 400, and a3 = 50 allows us to derive the
marginal multinomial probabilities using the recursive equations 6.3:

(
P (< ai) = P (< ai j< ai¡1)P (< ai¡1); for i = 2; 3
P (¸ai) = P (¸ai j¸ai+1)P (¸ai+1); for i = 1; 2

(6.3)

Those can then be used to estimate patient speci¯ c marginal chances of
improvement or deterioration conditional on his past viral load history
and adherence patterns.

6.7 Discussion

As we emphasized in the introduction, we wanted to investigate the
e®ect of patient adherence to therapy on an individual-speci¯ c viral
load response. We found it appropriate to categorize the viral load in
a clinically meaningful way. The categorization proposed is not unique
and other cut points could be investigated. The essential feature of
this structure is that `improvement' or `deterioration' is judged only
when there has been a substantial change in viral load, thus lifting the
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discussion out of the range of error in the test for viral load, and out of
the range of changes too small to have any evident clinical meaning.

The model proposed can deal with repeated ordinal data and especially
with uncommon measurement times and unequal numbers of repeated
measures for each patient. The two main forms of stochastic dependence
among viral load on a individual (frailty and serial correlation) were
studied. Acknowledging for serial correlation takes this dependence into
account.

A one compartmental pharmacokinetic model adjusted for observed dos-
ing histories, ¯ tted the sparse data on lopinavir concentration well. Fur-
ther, viral load was signi¯ cantly related to plasma concentration of the
drug. However, the most signi¯ cant PK-derived predictor, the time
that the IE falls below the EC50, appeared not very sensitive to the
between-patient variability in pharmacokinetics. It is largely driven by
longer non-dosing periods (drug holidays). This explains why for this
particular drug, the patient-speci¯ c pharmacokinetics could usefully be
replaced by a common summary of patient speci¯ c adherence patterns,
the cubical distance.

While the internal exposure approach allows for a direct interpretation
of the adherence variable, the cubical distance has its own advantages
for comparing the impact of adherence on viral load unconfounded by
the kinetic properties of the drugs studied. This will especially be useful
to assess the forgiveness of the drugs for lapses in dosing. Rewriting
equation 6.1 as ( 1

ni

P
i sign(±¤ik) j ±¤ik jF )1=F , one can de¯ ne di®erent

orders of central moment and see F > 0 as a measure of the degree of
forgiveness. Higher values for F will identify more forgiveness drugs.
As illustrated in ¯ gure 6.6, the described approach allows one to assess
not only the drug speci¯ c degree of forgiveness for improvement but
also for deterioration. We conclude that lopinavir is more forgiving for
deterioration than in the improvement phase. When more data will
become available on di®erent drugs, we shall be able to compare the
degree of forgiveness between the compounds.

While the main objective of the study was to compare the standard BID
regimen with the high dose QD regimen, we used the data to derive a re-
lation between dosing histories and viral loads. However after adjusting
for the observed dosing histories, no relevant di®erence in improvement
and deterioration probabilities were found between the two regimens.

Several extensions of the model could be investigated when appropriate
data will become available. For example, a trend over time in response



112 Chapter 6

Improvement model

Forgiveness factor F

D
ev

ia
nc

e

2 4 6 8 10

38
9

39
0

39
1

39
2

39
3

39
4

39
5

Deterioration model

Forgiveness factor F

D
ev

ia
nc

e

2 4 6 8 10
39

0
39

5
40

0
40

5

Figure 6.6: Graphical presentation of the deviance in function of the `degree
of forgiveness' F

or interaction between subtable and the adherence variables might be
expected but were not signi¯ cant at the 5 percent level.

The study at hand was part of an adherence programme and thus pa-
tient adherence may not be representative of the general HIV popula-
tion. Regular takers experience a relatively small range of concentration
which makes it hard to estimate deviation from normality in the viral
load model. Estimators of the proposed model parameters could bene¯ t
greatly from information that enters through greater variation in the
drug exposure process (Vrijens and Goetghebeur 2001). This could be
collected on less good adherers as observed in usual practice.

The model proposed in this paper is not only useful to assess how viral
load predictions can help to explain the reasons for treatment failure
but it can also guide the practitioner in how best to focus an adherence
intervention strategy. Anti-HIV medicine has to be taken for life, so this
approach to medication management can bring long-term value.

Finally, this research suggest that monitoring a patient for his adherence
could allow for early detection for patients with extremely hazardous ad-
herence patterns. Consequently, through monitoring of dosing histories,
and perhaps the study of patient pharmacokinetics, the physician could
be able to individualize therapy for the patient, with perhaps lower doses
and less severe side e®ects of treatment. Thereby encouraging long per-
sistence with treatment.



Chapter 7

A structural model to
compare two active

treatments

A randomized clinical trial is designed to answer a relevant clinical ques-
tion. The more simple a trial's design and primary data analysis, the
more likely the answer is robust, enabling results to achieve widespread
understanding and acceptance. The simplicity is lost when some sub-
jects fail to adhere to the prescribed therapy. Claxton et al. (2001)
show that in long term therapy, patient adherence to prescribed drug
therapy is far from optimal. Ignoring this fact leads to problems. Long
term clinical trials can then give rise to an underestimation of the true
biological treatment e®ect which in today's circumstances of pressing
public health need for e®ective medicines is unacceptable. Hence, non-
adherence must be addressed and has the drawback to open large and
well designed trials to criticism. On the other hand it gives the opportu-
nity to study dose-response relationships, which would not be visible if
adherence had been perfect. The latter is a very appealing feature but
unfortunately adherence is an uncontrolled covariate and can be \selec-
tive". For example as illustrated in Efron and Feldman (1991), patients
with better adherence in the placebo group can have better outcomes on
average. Di®erent adherence patterns can \select" di®erent outcomes in
the following ways:

²Feedback selectivity is de¯ ned as the e®ect of disease progression
and/or treatment side e®ects on the patients adherence. In other
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words, changes in patient adherence during the course of treatment
can depend on the disease evolution and/or appearance of side
e®ects during that period. For example, patients can stop the
drug because they feel better or worse. This selectivity will be less
important for asymptomatic diseases and for drugs free of side
e®ect.

²Prognostic selectivity takes place when a baseline prognostic factor
confounds the relation between dose and response. This happens
when the prognostic factor is associated with adherence. Presence
of non trial medicines in secondary prevention studies is a typical
example. Then the measure of adherence with placebo is a sur-
rogate measure of adherence with non trial medicines. The latter
being a potential prognostic factor for outcome, it could confound
the adherence-e®ect relationship. We note that prognostic fac-
tor can be unknown and di±cult to formalize. For example some
psychologic characteristic of an individual could induce some psy-
chologic e®ect on outcome and be correlated with adherence at the
same time.

²Interacting selectivity
Potential interactions between the two above e®ects. Also time-
dependent confounders may occur.

Until now, in this thesis, we assumed that adherence was not selec-
tive and derived dose-response associations from empirical data. Re-
sults from such investigations can only be interpreted as causal when
the above mentioned selection mechanisms are not present. In chap-
ters 4 and 5, when simulating PK/PD data on top of the adherence
patterns, we generated nonselectivity and this was thus not a concern
at the analysis stage. In chapter 6, where we derived an association
between exposure and viral loads. To give a causal interpretation to
this association, we have to assume nonselectivity. Considerations listed
below supports the idea that in this particular ¯ eld, the observed dose-
response relationship, would not be substantially confounded by any
selective mechanism of adherence. 1) It is an asymptomatic disease and
thus no feedback from outcome was anticipated. 2) No psychologic ef-
fect was expected on viral load measures. 3) No association between
PK parameters and adherence was found. 4) side e®ects could in°uence
adherence. For example, the appearance of side e®ects could be corre-
lated with health status of the patient. However, PI treatment achieve
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blood concentrations far above the EC50, and thus their biological e®ect
is very strong. It is expected to outweight any e®ect the forementioned
selectivity might have, making the latter negligible for our analysis.

Moving to the ¯ eld of depression, we observe a strong persistence prob-
lem and the assumption of nonselectivity is unlikely to hold. Depression
is no longer an asymptomatic disease and patients can stop the treat-
ment because they might perceive that treatment is not working or the
opposite, they feel better. Further, in this ¯ eld a strong placebo e®ect
is expected and a psychological component of adherence probably ap-
plies, better adherers are expected to be better patients to begin with.
Those are several reasons to seek proper interpretation of the dose-e®ect
relationships. We must acknowledge that nonadherence is a post ran-
domization variable, imparting to a controlled clinical trial some of the
character of an observational study, where the subjects are no longer
randomly assigned to the observed exposure levels.
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7.1 Introduction

Most clinical trials aim to show superiority of an active molecule com-
pared to placebo. However, the World Medical Assembly recently de-
creed it is no longer ethical to use placebos in any trial situation where
an e®ective treatment exists. One option is to make ever more subtle
distinctions in medical conditions, so as to de¯ ne progressively narrower
areas for which a proven therapy does not exist. The problem with that
approach, aside from its transparency, is that those who invest in clin-
ical trials strive for broader markets. A leading alternative to placebo
control is the active control trials, in which the reference level is an
agent of proven e±cacy. The chief di±culty with that is that results
of a badly executed trial can create the illusion of e®ectiveness. This
prospect leads to the concept of a trial's assay sensitivity (Urquhart
2001) where compliance with prescribed therapy is recognized as the
leading factor that can compromise the credibility of an active control
trial. Imagine a placebo controlled trial in which no participant, for one
reason or another, took any of either the active or the placebo. The
result would be failure to reject the null hypothesis, and the conclusion
that the new medicine doesn't work. In a active control trial in which
the same thing happened, the result would be equivalence of test agent
and proven agent, and the conclusion that the new medicine works.

While this example is extreme, it illustrates the point that one should
adjust analyzes of randomized clinical trials for the fact that not all
patients comply fully with the prescribed treatment. Today's circum-
stances of pressing public health need for e®ective medicines make crit-
ical the avoidance of type II errors. Especially in active control trials,
beside recommended trial sensitivity, it is therefore important to give
insight into the actual treatment e±cacy and e®ect variation across dif-
ferent compliance levels.

Until now, most authors propose causal inference tools for comparing an
active treatment arm with a control arm receiving nothing (Sommer and
Zeger 1991) or placebo (Efron and Feldman 1991, Goetghebeur and Lapp
1997). A comparison of active treatment with placebo has the advantage
that we actually observe the treatment-free response on a random subset
of individuals in the trial. That helps to identify the potential treatment-
free response on patients of di®erent compliance levels on active arm and
estimate the treatment e®ect for given compliance level.

Although the general ideas of Robins (1994) do not require existence
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of an inactive arm, we have seen few implementations of these ideas
in comparing two active treatments. In this chapter, we consider a
clinical trial comparing two di®erent active molecules in the treatment
of depression. In section 2, we start by introducing the clinical example.
In section 3, we de¯ ne an appropriate structural model for this setting,
then discuss identi¯ ability issues and consider the optimal estimator.
Results are presented in section 4 and further discussed in section 5.

7.2 The anti-depressant trial

We illustrate the methodology on data issued from the clinical trial
described in chapter 3 of this thesis. The trial was designed to study ad-
herence pro¯ les of ambulatory patients su®ering from major depressive
disorders treated with selective serotonin reuptake inhibitors (SSRI). Af-
ter a one week run-in period, 76 patients were randomized to °uoxetine
or paroxetine once a day. Adherence to prescribed therapy and Hamil-
ton depression scores were the primary outcomes variables. While an
intent to treat analysis comparing responses between both randomized
groups constitutes the primary trial analysis, the relation between ac-
tual exposure and Hamilton scores is of prime interest. For the current
analysis we focus on data collected during the 6 weeks acute period that
started just after randomization. During this period one can study the
dose-e®ect relationship of both treatments uncounfounded by missing
¯ nal Hamilton scores in the maintenance period due to patient loss of
follow-up.

7.3 A Structural model for 2 active treatments

We consider an active control trial, where patients i are randomized to
one of 2 active treatments, denoted A or B in the sequel. Randomiza-
tion indicators are de¯ ned as : RAi , having value 1 when patient i is
randomized to treatment A and 0 otherwise. Then RBi = 1 ¡ RAi , with
similar interpretation. Formally, we can consider for each subject i both
responses Y A

i and Y B
i following the possible assignment to treatment

A or B respectively. Clearly for each patient i only one of both is ob-
served, the other being the potential response if the patient would have
been randomized to the other treatment group. In addition, we denote
by Y 0

i the potential treatment-free response that is not supposed to be
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observed in an active control trial. CAi and CBi are the (potential) uni-
variate adherence summary measures following assignment to A or B.
Finally, we denote by Xi the vector of baseline covariates

A simple structural model assumes a linear e®ect of dose (adherence)
on the expected outcome on each arm. Subtracting this e®ect from
the outcome should result on average in the expected treatment-free
response, conditional on compliance and baseline characteristics. Hence
we assume :

E(Y A
i ¡ ¯ACAi jXi; C

A
i ) = E(Y 0

i jXi; C
A
i )

and E(Y B
i ¡ ¯BCBi jXi; C

B
i ) = E(Y 0

i jXi; C
B
i ): (7.1)

Note that this model does not parameterize the distribution of CAi and
CBi nor E(Y 0

i jXi; C
A
i ) and E(Y 0

i jXi; C
B
i ).

Estimating equations can be derived from the implied equality:

E(Y A
i ¡ ¯ACAi jXi) = E(Y B

i ¡ ¯BCBi jXi):

Clearly, the two distinct parameters ¯A and ¯B cannot be identi¯ ed,
when E(CAi jXi) = E(CBi jXi); but one can still identify their di®er-
ence: ¯A ¡ ¯B in that case. In this chapter, we develop the case where
E(CAi jXi)6= E(CBi jXi) and thus ¯A and ¯B are separately estimable.

We denote ¯ the vector containing the causal parameters (¯A;¯B) and
¯0 is its assumed true value. Unbiased estimating equations are then
obtained from (7.1) as

nX

i=1

g(RAi ; R
B
i ;Xi)[Hi(¯) ¡ q(Xi)] = 0;

where

Hi(¯) = Yi ¡ RAi ¯
ACAi ¡ RBi ¯

BCBi (7.2)

and E[g(RAi ; R
B
i ;Xi)jXi] = 0. The function q may be any function of

Xi. Semi-parametric e±ciency is obtained with optimal choices of g
and q. g(RAi ; R

B
i ;Xi) is a vector of dimension 2 and the corresponding

matrix is assumed to be of full rank.

Following Robins (1994), the optimal function qopt is

qopt(Xi) ´E[Hi(¯0)jXi]:
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Since E[Hi(¯0)jXi] = E[Y 0
i jXi], the expected treatment-free response,

this is not directly estimable from the data from a trial comparing two
active treatments. A di®erent choice of q(Xi) does not create a sys-
tematic biases, only the precision of resulting estimates su®ers from a
\bad" choice of q. One could approximate qopt by the \best guess" for
expected treatment-free response (e.g. baseline value of the outcome
variable, predictions based on time trends observed in the run-in pe-
riod). Alternatively, one could start with an initial choice of q = q0 and

obtain parameter estimates ^̄ (0)
(q0) ¯ rst, to subsequently estimate qopt

as E[Hi( ^̄ (0)
(q0))jXi].

Given q, the optimal function gopt can be found as follows. Let

"i = "i(¯0) = Hi(¯0) ¡ q(Xi):

Now de¯ ne

wopt;i = wopt(R
A
i ; R

B
i ;Xi) = fE["2

i jRAi ; RBi ;Xi]g¡1;

¹ opt;i = ¹ opt(R
A
i ; R

B
i ;Xi) = E[@Hi(¯0)=@¯0jRAi ; RBi ;Xi];

gopt;i ´ wopt;if¹ opt;i ¡ E[wopt;ijXi]
¡1E[wopt;i¹ opt;ijXi]g

(7.3)

With q having its optimal form qopt, Varfn1=2[Ã̂(qopt;gopt)]g attains the
semi parametric e±ciency bound.

The estimates for all above expectations can be estimated by regression
methods.

Fischer-Lapp and Goetghebeur (1999) showed that in placebo-controlled
trials qopt can be estimated from the placebo group and predictions from
the obtained model used also for the treatment group subjects. In this
case it was realistic to assume that "i had constant variance, given Xi

and the randomization indicator Ri. However, this is no longer true
when comparing two active treatments, because of a much poorer pre-
diction of qopt.

Suppose G is a matrix with ith row (ĝAi ; ĝ
B
i ) and C is a matrix with ith

row (RAi C
A
i ; R

B
i C

B
i ).

Now the estimated parameter vector will have a matrix representation

^̄ = (G0C)¡1G0(Y ¡ q): (7.4)
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Identi¯ ability of the parameters depends on the existence of the inverse
of G0C. The components of G involve conditional expectations of CAi
and CBi , given Xi. For identi¯ ability it is su±cient that:

jCor[E(CAi jXi);E(CBi jXi)]j < 1:

The variance estimator is :

(G0C)¡1 1

n

X

i

fĝopt;i(Hi ¡ q̂opt;i)
2ĝ0opt;ig(G0C)0¡1

at ¯ = ^̄ and where n is the total number of subjects.

If Cor[E(CAi jXi);E(CBi jXi)] ¼ 1, G0C will be nearly singular and the
parameter estimates will be highly correlated and have a high variance.

7.4 Results

7.4.1 Descriptive statistics

The structural mean model described previously allows only for a uni-
variate summary of adherence. We use the percentage of prescribed dose,
actually taken by the patient. However we found it useful to present a
more informative graph depicting the evolution of adherence over time.
Figure 7.1 presents the cumulative number of doses taken against the
days elapsed since randomization. Separate plots are drawn for both
randomized groups. Those plots allows us to distinguish between the
compliance and persistence components of patient adherence. The hor-
izontal line segments reveal that two patients are non persistent in the
°uoxetine group, while 5 are non persistent in the paroxetine group. For
those who persist, we observe a larger variability in compliance under
°uoxetine than under paroxetine as revealed by more substantial devia-
tion from the diagonal line. During the 6-week acute period, the general
patient adherence was relatively high.

Figure 7.2 depicts the evolution of the Hamilton scores over time. Pa-
tients were included at visit 1 if their Hamilton score was greater or
equal to 21. The period between visit 1 and visit 2 is the placebo run-
in period. At visit 2, patients were randomized and started their active
treatment. From then on, we observe the strongest decrease in Hamilton
scores.
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Figure 7.1: Adherence summary plots for both randomized groups.
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Figure 7.2: Evolution of Hamilton scores during the run-in (visit 1 and visit 2)
and acute (visit 3 and visit 4) phases in both randomized groups.
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Table 7.1: Intent to treat analysis. Comparison of Hamilton Scores and Hamil-
ton score di®erences from baseline between both randomized groups.

Hamilton score : visit 4
n mean sd min max p-value

Fluoxetine 37 13.7 8.6 1 31
Paroxetine 39 14.5 7.1 2 31 0.66

Hamilton score :visit4-visit2
n mean sd min max p-value

Fluoxetine 37 -11.6 6.8 -24 1
Paroxetine 39 -9.8 6.3 -22 4 0.26

7.4.2 Intent to treat analysis

In table 7.1 we compare the Hamilton scores and decrease in Hamilton
scores (Hamilton scores at visit 4 - Hamilton scores at visit 2) between
both randomized groups. Observed mean (di®erences) between both
randomized groups are not signi¯ cantly di®erent (t-test) neither are they
clinically relevant. We thus conclude that there is no signi¯ cant di®er-
ence in Hamilton scores between both treatments.

However, this does not imply that the true biological e®ect of both
treatments is equal. A di®erence in adherence between both groups
could bias this interpretation.

To compare adherence patterns between both randomized groups, we use
the methods described in chapter 2. We summarize thus the adherence
pattern as a sequence of binary data indicating whether yes (1) or no (0),
at least one dose has been taken on each consecutive day. A conditional
logistic regression accounting for dependencies within individuals is then
implemented by ¯ tting Markov chains. The model allows to estimate
the e®ect of explanatory variables on adherence. As in chapter 2, on top
of the Markov dependencies, time (in days) since randomization and
weekend were signi¯ cant contributors to the variability in adherence. In
addition two answers collected at baseline through an anti-depressant
adherence questionnaire were predictive for adherence.

²Question 4: My depression is caused by external factors: (1) com-
pletely agree; (2) agree; (3) disagree; (4) completely disagree.

²Question 27: When I am more depressed, I can take more of the
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Table 7.2: Intent to treat analysis. Comparison of adherence patterns between
both randomized groups. Group is coded as follows: 0=°uoxetine, 1=paroxe-
tine.

Estimated Standard Coe±cient /
Variable Coe±cient Error Standard Error

Intercept -1.68 0.37 -4.53
Zi;t¡1 1.52 0.21 7.20
Zi;t¡2 1.30 0.22 5.78
Zi;t¡3 1.20 0.24 5.06
Zi;t¡4 0.75 0.26 2.91
Zi;t¡5 0.94 0.25 3.71
Time -0.02 0.01 -2.43
Weekend -0.92 0.23 -4.06
Question 4 -0.12 0.25 -0.49
Question 27 0.44 0.17 2.55
(Treatment) group -0.03 0.25 -0.13
Question 4:group -0.73 0.35 -2.10
Weekend:group 0.84 0.34 2.45

prescribed dose: (1) completely agree; (2) agree; (3) disagree; (4)
completely disagree.

We found a dichotomous answer to both questions most predictive.
Therefore we coded the answers as follows : 1 if completely disagree
and 0 otherwise. In table 7.2 we present results from the ¯ tted con-
ditional model. Covariates were included in the model according to a
forward selection procedure. We observe a linear decrease in adherence
over time. In the °uoxetine group, patients tend to omit doses during
the weekends. This e®ect cancels out in the paroxetine group. This
explains probably the larger variability in adherence observed in the °u-
oxetine group than in the paroxetine one. Those who do not believe they
can modify they prescribed dosing regimen and take more drugs when
they are more depressed tend to be better adherers. Finally, patients
who deny that their depression is caused by external factors tend to be
worse adherers. This e®ect is especially true for patients randomized to
the paroxetine group.

We note that the di®erences in adherence observed between the two
randomized groups is suggestive of potential selectivity and will further
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allow us to estimate separately ¯A and ¯B in the causal model.

7.4.3 Structural mean model

As the main outcome, we consider here the change in Hamilton score
over the 6-week acute period (Hamilton score at visit 4 - Hamilton score
at visit 2).

In the structural model, the set of baseline covariates Xi includes not
only predictors for adherence but also predictors for treatment free out-
comes. The last ones being di±cult to identify in an active control trial.
WHO well-being score is a good predictor candidate and we found it
useful to include it in the set of baseline covariates. WHO well-being
score is obtained by summing the answers (0 - minimal agreement, 5 -
maximal agreement) to the two following questions collected at visit 2:

²I feel calm and peaceful

²I am full of energy

Using this set of baseline covariates, we estimate parameters of the struc-
tural mean model:

E[Y A ¡ Y 0jX; CA] = ±ACA

in the ¯ rst group and of the model:

E[Y B ¡ Y 0jX; CB] = ±BCB

in the second group, based on estimating equations that are derived
from:

E[Y A ¡ ±ACAjX] = E[Y 0jX] = E[Y B ¡ ±BCBjX]:

The estimates of the parameters of interest, ±A and ±B are presented in
table 7.3.

Correlation between the two estimated coe±cients is estimated to be
0.799.

We see that both parameters are identi¯ able with relatively small vari-
ance. Thus one could conclude a signi¯ cant biological e®ect of treat-
ment : a 100% adherer would experience on average a Hamilton Score
reduction of 8.9 points on °uoxetine, or 6.9 on paroxetine on top of the
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Table 7.3: Causal analysis. Parameter estimates.

Treatment Estimated Standard
Group Coe±cient Error

°uoxetine -8.88 2.89
paroxetine -6.93 2.98
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Figure 7.3: Plot of estimated treatment e®ect against observed adherence levels
(Percent of prescribed dose taken)

placebo e®ect . The absolute di®erence of the e®ect on full adherers is
estimated to be 1.95 (se=1.86), hence no signi¯ cant di®erence can be
found between treatment e®ects at equal adherence levels. The results
are graphically presented in ¯ gure 7.3.

Since we are able to estimate two separate parameters here, we can
also predict potential treatment-free response on each arms, using Y A

i ¡
^̄ACAi and Y B

i ¡ ^̄BCBi respectively, and assuming the proposed simple
model is correct. Figure 7.4 presents for each treatment groups sepa-
rately, observed Hamilton scores at visit 2 and visit 4 as well as back
transformed treatment free Hamilton scores at visit 4. Here one can
clearly depicts the estimated additional e®ect of the active molecule on
top of the placebo e®ect.
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Figure 7.4: Box plots of observed baseline Hamilton score, outcome score and
back transformed treatment-free score

7.5 Discussion

In this chapter we have worked thru a structural model for the e®ect
of treatment actually received, thus making a ¯ rst link between the
more traditional approaches developed in the ¯ rst chapters and a new
school of causal inference emerging in the literature. While we have
added something to the existing literature, we make no attempt to be
complete here. Some observations and practical di±culties encountered
are still worth mentioning.

It is well known that the precision of structural estimators can gain from
good baseline predictors of adherence. Our analysis involved simple
baseline predictors which yielded quite precise estimators nevertheless.
Our intention, however, had been to use results from chapter 3 to pre-
dict patient adherence from the placebo run-in period. This turned out
impossible because the run-in period covered only 7 days and observed
adherence during this period was nearly perfect.

In this trial plasma concentrations of the drug (PK data) were not col-
lected. However in a ¯ eld like depression, where a strong placebo e®ect
is recognized, one should not expect to ¯ nd a better relation between
plasma concentrations and e®ect than between dose taken and e®ect.

In the present work the initial choice for qopt is 0. However, in practice
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this could be estimated from a placebo group previously observed in
similar conditions. Then the predictions from the obtained model could
be used for the treatment group subjects. The necessary data were not
available to us right now. We will investigate this at a later stage.
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Chapter 8

Probabilistic intake
assessment of dioxin-like

substances

This chapter highlights the importance of collecting reliable measure-
ments of exposure to estimate potential e®ects of xenobiotic substances
in crisis situations. Practically, emergency decisions must be taken and
the data are often collected according to suboptimal designs or not at
all. Bias in the sampling scheme and changes in the procedures over
time can invalidate direct conclusions. Probabilistic assessment of ex-
posure becomes then a challenge and simulation an appealing technique
to combine data collected from all sources.

With today's computing technology it is indeed possible to perform real-
istic simulations of potential exposures from multiple sources and even
from multiple compounds. Simulation is hereby not a substitute for
mathematics but an approach to calculation, resampling similar to using
bootstrap for estimating the variance of a complicated point estimator.
Theoretically, if your sample is small enough, you can actually calculate
exactly what the bootstrap distribution is. You could work out what
every possible sample could be and what the probability distribution
would be. In practice, for a reasonably large sample, you just can not
do this. Instead, one runs a simulation of the problem, which provides an
empirical distribution which would be very close to what the theoretical
distribution would be if only one had the time and the ability to per-
form the computation. That is the way in which the simulation actually
overcomes a technical di±culty. Within the context of the therapeutic
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cascade, many of the realistic analysis problems are just too di±cult to
solve analytically in the observational settings (mathematics) or by sim-
pler experimental designs (ethics). A simulation approach frees us from
certain technical constraints to analyze more realistic examples. Numer-
ical simulation, third pillar of research, next to theory and observation
becomes thus necessary when experimentation is impossible.

Probabilistic modeling techniques allow in principle for realistic esti-
mates of exposure and risk by computing the full distribution of po-
tential exposures rather than a single `worst case' average exposure.
However, these techniques require additional considerations regarding
the appropriate input data and models.

In this chapter we propose a 2-dimensional Monte Carlo simulation as a
general approach towards population risk evaluation in the presence of
uncertainties in exposure levels. In traditional probabilistic analyses, the
between-subject variation and associated uncertainties are not separated
but are uni-dimensionally propagated through the exposure model. The
output is then presented as an hybrid distribution possibly leading to
erroneous inferences. Therefore we found it necessary to extend the
traditional Monte Carlo simulation and distinguish between inter subject
variability and parameter uncertainty. The two dimensional approach
thus allows adequate representation the between-subjects variation in
intake and identi¯ cation of potential subgroups at higher risk.

As an illustration, we evaluate the intake dioxin like contaminants via
the food chain during the 1999 Belgian PCB-Dioxin incident.
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8.1 Introduction

In Belgium, in February 1999, PCB oils and dioxins contaminated ani-
mal feed and, from there on, part of the human food chain. This dioxin
incident became public at the end of May 1999 and gave rise to great
concern about possibly serious health e®ects among the population. As
a result, stringent food marketing and export limitations were imposed
by the European Commission, which resulted in a recession for the Bel-
gian food sector. How severely was the Belgian population contaminated
and what risks are associated? In this chapter, we develop methodol-
ogy to answer this question. Speci¯ cally we assess the risk regarding
polychlorinated dibenzo-p-dioxins (PCDD), dibenzofurans (PCDF) and
dioxin-like biphenyls (PCB), the most hazardous part of the contam-
ination. Ideally one would have measured PCDD, PCDF and dioxin-
like PCB concentrations in biological °uids in the general population.
However such projects were not funded because of associated costs and
because it appeared nearly impossible to identify sub-groups of subjects
more exposed than others. The next best thing is to perform a risk
assessment through relevant exposure data representative for the whole
incident period. As it happens, detailed data on the distribution of in-
take of dioxin-like substances via food were not available for the period
February - May. As a result we must rely on data sources with some
uncertain link to the exposure of interest. Hence in our assessment we
must confront two intrinsically di®erent sources of variation: the inter
subject variability and uncertainty in the input parameters resulting
from a non-optimal sampling scheme. In a ¯ rst step, we thus perform
retrospectively a probabilistic exposure assessment based on 1) available
food consumption data, su±ciently representative for the Belgian pop-
ulation during the incident period, and 2) the best estimates available
regarding background and incident-related PCDD, PCDF, and dioxin-
like PCB food contamination. Finally, we use the information on intake
to estimate the variation in body burden of dioxin-like substances in the
Belgian population which, for substances that are slowly eliminated from
the body, form the basis for the health risk assessment. After lengthy
discussions with the authorities this exercise fully started in the spring
of 2000.
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8.2 Daily intake of dioxin like contaminants

The probabilistic assessment of exposure aims to estimate the distribu-
tion of contaminant intake in the population under study. The between-
subject distribution in exposure is important because it will allow us to
identify high risk percentiles of the population. On the other hand, there
is uncertainty in the subject-speci¯ c input parameters both concerning
the consumed food items and their item-speci¯ c contamination level. A
two dimensional Monte Carlo simulation will be developed to separate
both sources of variation.

8.2.1 Model structure

The overall structure of the simulation process is illustrated in the
°owchart given in ¯ gure 8.1.

For each subject i, the average daily intake of dioxin-like contaminants
via food, DIi, is computed according to the equation DIi = Yi=(bwi);
where Yi is the subjects average daily dose over the incident period
(in pg TEQ) and bwi his body weight (in kg). To estimate Yi, we
proceed as follows. We distinguish 9 di®erent fat origins for fat in human
consumption items. Let T indicate the length of the incident period in
days. Then we denote by Xº ;i;t the amount (g) of fat from origin º ,
consumed by subject i, at day t (t = 1; :::; T ), ±º ;i;t is a binary indicator
determining whether the particular food item, Xº ;i;t, is issued from an
incident related production unit (± = 1) or not (± = 0), and Cº ;i;t is
the concentration of the dioxin-like contaminant expressed in pg TEQ/g
fat. The superscript I or B indicates whether the contamination stems
from an incident related production unit or background contamination.
Then, the subject-speci¯ c average daily dose is computed by combining
individual fat consumption data (derived from food consumption data)
and concentrations of the dioxin-like contaminants in the speci¯ c food
items according to equation (8.1):

Yi =
1

T

X

º

X

t

[(Xº ;i;tC
I
º ;i;t)±º ;i;t + (Xº ;i;tC

B
º ;i;t)(1 ¡ ±º ;i;t)] (8.1)

While the model remains deterministic, Xº ;i;t, Cº ;i;t and ±º ;i;t vary ran-
domly between people according to a model derived from several data
sources. The model parameters carry themselves some uncertainties.
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Figure 8.1: Flowchart illustrating the major inputs into the model. For fat
origin º and subject i at time t, we have: 1) food consumption Xº;i;t, 2) ±º;i;t
indicating if product Xº;i;t is issued from an incident related production unit
(1) or not (0), and 3) concentrations of dioxin-like contaminants in food items
in background condition (CBº;i;t) or related to the incident (CIº;i;t). The model
output Yº;i;t, is the subject's average daily dose. For further explanation see
text.
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Monte Carlo simulations allow one to estimate variation in the outcome
Yi by repeating the execution of the model for di®erent generation of
sample values for input parameters. We can identify two types of such
variation. The ¯ rst source of variation is characterized by uncertainties
in the parameters and will be denoted ¿. The second source of variation
is due to variation in characteristics between individuals and variation
in product contamination. It will be denoted »in the sequel. The model
input will be described in detail in the next section. Speci¯ c contribution
to ¿will be clearly stipulated.

8.2.2 Model input

Food consumption data

The only available Belgian study with food intake data at the individual
level based on more than one day{a requirement for the estimation of
within-subject variation in intake{is a survey in adolescents aged 14-18
years, carried out in the spring of 1997. A representative sample of 341
adolescents (both boys and girls) from the region of Ghent in the Dutch
speaking part of Belgium completed a 7-day food diary in a standardized
way (De Henauw et al. 2001). Instructions for the completion of the
structured diary and regular checks for quality and completeness of the
diaries were carried out by experienced dietitians. The check list con-
tained altogether 745 di®erent food items. From these, 527 food items
are characterized as contributing in a measurable way to the fat intake
of this population. For these 527 food items, the total fat content and
the relative content of fat from di®erent origins (vegetable, milk, egg,
pork, beef, chicken, sheep, horse or ¯ sh) is determined on the basis of
di®erent food composition databases (NEVO 1996, NUBEL 1999, Souci
et al. 2000), recipe books and in a limited number of cases also on the
basis of information from the food industry. The available data on food
consumption are translated in a three-dimensional database presenting,
for each combination of fat origin º , subject i and time in days t, the
amount of fat consumed Xº ;i;t (g). It is further assumed that for each
subject food items from the same fat origin, consumed on a single day,
are issued from the same production farm. The food consumption in-
put contributes to the variability »of the simulations proposed. The
subjects with their corresponding food consumption and weight are em-
pirically sampled. Denoting Xº ;i;: = 1

T

P
tXº ;i;t, table 8.1 summarizes

the `observed' between-subjects average daily fat consumption (Xº ;i;:),
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Table 8.1: Average daily fat intake (Xº;i;: in g/day) from di®erent origins, over
7 days, across 341 students.

Origin Minimum Median Mean Maximum % without
of fat intake
Chicken 0.00 1.13 1.55 11.08 23 %
Pork 0.00 10.17 11.41 39.36 1 %
Beef 0.00 4.31 4.80 27.11 1 %
Egg 0.00 2.38 2.66 8.95 1 %
Milk 0.01 19.46 20.56 69.99 0 %
Fish 0.00 0.18 0.71 11.07 30 %
Vegetables 6.19 42.67 44.68 111.70 0 %
Sheep 0.00 0.00 0.68 12.50 84 %
Horse 0.00 0.00 0.23 4.61 75 %

and their origin, as estimated from 7 days consumption data for the
students, aged 14-18. While we acknowledge that some approximations
have been made to determine the `observed' fat intake, we consider these
values as given for the sequel. In the discussion section we will return
to the impact of possible uncertainties at this level.

A ¯ rst analysis of the data reveals the importance of ¯ sh in cases of
high intakes of dioxin-like contaminants. For this reason we addition-
ally study a dietary pattern{low in total fat and high in fruit, vegetables
and ¯ sh{simulated on the basis of the dietary guidelines for coronary pa-
tients as issued by the Joint Task Force of European and other societies
on Coronary Prevention (Wood et al. 1998). Table 8.2 presents the con-
sumption data (Xº ;i;: in g/day) for a typical cardiac patient following a
14 day cholesterol poor, ¯ sh rich diet.

The probability that a food item comes from an incident related pro-
duction unit

Incident related production units are farms that received contaminated
animal feed during the incident. ±º ;i;t is then derived according the
following steps:

²According to data received from the Dioxin Cell of the Ministry of
Agriculture and data from o±cial statistics (Nationaal Instituut
voor de Statistiek 2000), the proportion (p0º ) of incident related
production units, was estimated as given in table 8.3.
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Table 8.2: Daily fat intake (Xº;i;: in g/day) from di®erent origins, over 14 days,
in a typical prescribed cholesterol poor, ¯ sh rich diet.

Origin Daily minimum Mean Daily maximum
ofat
Chicken 0.00 1.36 9.68
Pork 0.00 1.15 4.38
Beef 0.00 0.93 2.95
Egg 0.00 1.74 6.11
Milk 5.46 8.60 13.92
Fish 0.00 4.15 19.62
Vegetables 50.89 56.95 107.40
Sheep 0.00 1.80 25.25
Horse 0.00 0.00 0.00

²p0º are estimations on a farm basis, whereas we really need to know
what proportion pº of each product comes from a contaminated
source. To acknowledge uncertainty at the product level, the prob-
abilities pº ;¿ were randomly drawn from a uniform distribution
with probability density function:

f(pº ;¿) =
1

p0º ;l ¡ p0º ;u
where p0º ;l · pº ;¿ · p0º ;u

and the uncertainty ranges p0º ;l; p
0
º ;u are given in table 8.3.

²Furthermore, it is expected that during the dioxin-incident, items
issued from incident related production units were not uniformly
distributed across the population. In other words, it remained
possible that some individuals had nearly continuously access to
food from contaminated production units, while others had less.
Therefore, for each contaminated fat nature º , the inter-subject
variability in the percentage of items consumed from a incident
related production unit is modeled according to a uni-modal, right
skewed, beta distribution. The individual probabilities pº ;¿;i are
then randomly drawn with probability density function given in
equation 8.2.

f(pº ;¿;i) =
p
b1;¿¡1
º ;¿;i (1 ¡ pº ;¿;i)

b2;¿¡1

B(b1;¿; b2;¿)
(8.2)
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Table 8.3: Number of incident related production units and total number of
Belgian production units, estimated percentage and arbitrary chosen minimum
and maximum uncertainty bounds.

Matrix Numbers p0º (%) Range of uncertainty
contaminated/total [p0º;l; p

0
º;u] (%)

Chicken 580/2703 21 10-32
Pork 1934/7487 26 15-37
Beef 184/20775 1 0-5
Egg 175/4786 4 1-15

for 0 · pº ;¿;i · 1, b1;¿; b2;¿ > 0, and B(b1;¿; b2;¿) =
¡ (b1;¿ )¡ (b2;¿ )
¡ (b1;¿+b2;¿ ) :

¡(x) represents the Gamma function, such that, ¡(x) = (x ¡ 1)!.
In order to let our uncertainty cover a large range of potential
distributions, the parameter b1;¿ is randomly drawn between 1 and
10 as illustrated in ¯ gure 8.2, and b2;¿ is derived according to b2;¿ =
b1;¿£(1¡ pº ;¿)=pº ;¿ in order to achieve pº ;¿ as the mean probability
that an item is issued from an incident related production unit.
Due to the structure of the food market, with separate production
and distribution of di®erent food items, we did not introduce a
dependence between food items issued from di®erent fat natures º .

²For each subject i, ±º ;i;t is then drawn from a Bernouilli distribu-
tion with probability pº ;¿;i.

Dioxin-like contaminants

As opposed to drug development where the focus lies in the exposition
to a well de¯ ned chemical compound, accidental exposure is often con-
cerned with several xenobiotic substances. Therefore, in this context, it
is necessary to brie°y describe the contaminants present during the Bel-
gian incident. Dioxins is the general collective term for chlorinated aro-
matic compounds, consisting of a group called polychlorinated dibenzo-
p-dioxins (PCDDs) and polychloro dibenzofurans (PCDFs). The group
of PCDDs consists of 75 congeners (similar but not isomeric molecu-
lar structure), whereas the groups of PCDFs consists of 135 congeners.
PCDDs and PCDFs have been identi¯ ed worldwide in very diverse en-
vironmental media (Safe, 1994). Moreover, they accumulate and bio-
magnify in the food chain due to fat solubility and pronounced resis-
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Figure 8.2: Beta distribution with parameters b1 = 1; :::; 10 and b2 = b1 £(1 ¡
pº;¿)=pº;¿.
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tance towards metabolic degradation. In contrast to the dioxins group
which does not have any known use and is not synthetized intention-
ally, polychlorinated biphenyls (PCBs) had well speci¯ ed commercial
uses such as dielectric, heat-exchange and hydraulic °uids in capacitors
and transformers. Their production has ceased decades ago, but they
are still among the main global contaminants. Chemically, the term
PCBs denotes a family of 209 congeners, which exhibit a wide range of
toxicological properties. Some of them, known as dioxin-like, are po-
tentially the most toxic given their structural similarity to PCDDs and
PCDFs. 2,3,7,8- Tetrachloro dibenzo-p-dioxin (TCDD) is the prototype
for this class of aromatic hydrocarbons which have similar patterns of
toxicity. Because of the need to estimate toxicity, the international com-
munity came up with the concept of toxic equivalency factors (TEFs)
to address and facilitate risk assessment. Toxic potencies of the dif-
ferent congeners are evaluated relative to TCDD and are indicated by
their corresponding TEF values. Dioxin-like contaminants, e.g. PCDDs,
PCDFs and dioxin-like PCBs are then expressed in toxic equivalents
(TEQ = weight£TEF ) concentrations in pg TEQ/g, or intakes as pg
TEQ/kg bw. The consensus TEFs were used (Van Den Berg et al. 1998).
In the sequel, the term \dioxins" will be used for the sum of 2,3,7,8-
chloro-substituted PCDDs and PCDFs, whereas the term \dioxin-like
substances" or \dioxin-like contaminants" will include the dioxins and
the dioxin-like PCBs.

Before the incident, dioxin-like PCBs were never assessed in Belgium.
Since then, new methodological procedures were investigated and out
of 12 dioxin-like PCBs, four congeners (77, 81, 126, and 169) are now
systematically assessed together with PCDDs and PCDFs, in a number
of food items, within an actual Belgian contamination control program
(Focant et al. 2000). Whereas the PCB concentrations in incident re-
lated samples were signi¯ cantly higher than in non-incident related or
background samples, there is no signi¯ cant di®erence in the PCB con-
gener pro¯ les (Dioxin Body Burden Working Group 2001), indicating
that both contaminations originate from a similar source. We, therefore,
rely on the more recent results in order to estimate the ratio r(r > 1)
of the concentration of total dioxin-like substances (Cº ;i;t) to the con-
centrations of PCDDs and PCDFs (cº ;i;t) in fat items of interest for our
intake assessment:

Cº ;i;t = r£cº ;i;t:

Ratios based on dioxin and dioxin-like PCB concentrations < 0:1 pg
TEQ/g fat are excluded. In the simulations, empirical sampling within
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Table 8.4: Concentrations of PCDD and PCDF, expressed in pg TEQ/g fat,
ventilated over the di®erent fat natures, as determined in Belgian and Dutch
food items in background conditions.

Fat nature 1st Qu. Median Mean 3rd Qu. n
Milk 0.79 1.35 1.39 1.79 38
Fish 6.38 12.93 20.23 28.22 68
Horse 4.22 6.48 7.23 10.48 15
Sheep 0.07 0.27 0.67 0.38 5
Vegetables 0.08 0.09 0.09 0.10 6
Chicken 0.13 0.27 0.30 0.38 70
Egg 0.71 1.62 2.29 2.55 16
Pork 0.01 0.05 0.21 0.15 55
Beef 0.90 1.42 1.69 1.87 49

the distribution of ratios is realized separately for each fat origin. For
¯ sh, all samples available had been analyzed for PCDDs, PCDFs and
dioxin-like PCBs. Cº ;i;t could thus be directly sampled.

²When the food item is assumed to come from a non-incident re-
lated production unit, background levels of dioxins (PCDD/F) are
applied. The degree of contamination, cBº ;i;t, is randomly sampled
from the empirical distribution of Belgian and Dutch background
levels (summarized in table 8.4) and contributes to the variability
»of the simulation proposed. Since background levels are quite
similar in samples taken in 1999 and in 2000, background data
from both years are pooled in the analysis.

²As mentioned before, it is hard to get reliable information on inci-
dent related dioxin concentrations. The degree of contamination,
cIº ;i;t in incident related samples represents the concentration of
PCDD, PCDF expressed in TEQ. However, because of high asso-
ciated costs, dioxin analysis were not carried out at random but
were only performed if the PCB analysis exceeded the maximum
tolerated value. Once the incident became public, PCB assess-
ments were realized randomly in all products that enter the food
chain. We are thus confronted with two major uncertainties : 1)
the representativeness of the PCB samples for the period before
the incident was made public and 2) the prediction of TEQ values
from PCB measurements. They are described explicitly here be-
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low. To simplify our notations, for each fat nature º , dioxin and
PCB concentrations measured in sample k will be denoted TEQº ;k

and PCBº ;k respectively.

We derive PCB information from the database from the Ministry
of Agriculture based on an intensive food sampling program for
non-dioxin-like PCBs expressed in weight units as the sum of 7
marker PCBs (28, 52, 101, 118, 138, 153, and 180). From a total
of 42,336 marker PCB analyses carried out during the 1999 control
program, 15,261 originate from incident related production units.
From those, a total of 5,264 originate from basic food items that
directly enter the human food chain and are clearly identi¯ ed with
regard to fat origin º and date of sampling dº ;k. However, not all
5,264 data are representative for the food contamination during
the incident. Figure 8.3 shows that the number of samples from
the initial period, before the incident became public end of May,
is quite limited. Moreover, in chicken and eggs, the food types
that were most contaminated, concentrations decrease in function
of time.

A major uncertainty therefore concerns the concentrations in food
items in the initial period which is most important for our inci-
dent linked exposure assessment. To take this uncertainty into
account, the PCB concentration of a sample, PCBº ;k, is used if
the corresponding date of sampling dº ;k < ¤º ;¿. The arbitrary cut
o® dates ¤º , determining which samples are introduced into the
simulation, are summarized in table 8.5 and graphically presented
in ¯ gure 8.3for each fat nature º . In order to test the sensitivity
of the end result towards this uncertainty, a second, less severe
simulation (B) is run.

{ For eggs and chicken, the end date of sample concentrations
used in simulation A is allowed to vary between May 15 and
July 15. Taking May 15 as the end date, subjects that con-
sumed incident related products are supposed to have con-
sumed mainly highly contaminated eggs and chicken. When
data until July 15 are included, it is assumed that also less
contaminated eggs and chicken had been consumed from inci-
dent related production units. For the less severe simulation
B, the end date of sampling for eggs and chicken is allowed
to vary between June 15 and July 15.

{ For pork, showing a much longer turnover production period,
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Table 8.5: Uncertainty interval about the end date the PCB samples are in-
troduced into the simulation. A and B indicates the two type of simulations
described in the text.

Number of samples included
¤º;¿ Uncertainty interval Min Max
¤Aegg;¿ [May 15 - July 15] 4 302
¤Achicken;¿ [May 15 - July 15] 14 802

¤Begg;¿ [June 15 - July 15] 252 302
¤Bchicken;¿ [June 15 - July 15] 393 802

¤pork;¿ [June 15 - July 15] 19 949
¤beef;¿ [July 15 - December 15] 163 481

the sampling end date for both simulations vary between June
15 and July 15.

{ For beef, where contaminations remained much more stable
over time, for both simulations, it vary between July 15 and
December 15.

In this way a maximum of 2,534 contamination data, out of 5,264,
are used in our simulations. Among these, 221 are simultaneously
analyzed for PCDD and PCDF. For a number of PCB concentra-
tions below time dependent, maximum tolerated concentrations{
identi¯ ed at decreasing concentrations during the course of the
incident, from 1000 ng/g fat down to 200 ng/g fat{the actual con-
centrations are either not reported or they are reported as being
below a given limit: which means that a left censored observation is
reported. Since the dioxin analyses were not carried out randomly
but mainly in samples positive for marker PCBs, dioxin results do
not constitute a random sample from the dioxin concentrations in
the overall food items and they cannot be used for random sam-
pling from the empirical distribution. Therefore, random sampling
is realized in the non-dioxin-like PCB concentrations and, accord-
ing to equation 8.3 the dioxin concentrations are predicted from
the selected marker PCB concentrations:

(
ln(TEQº ;k) = ®0;º + ²º ;k; for censored PCB samples
ln(TEQº ;k) = ®1;º + ¯1;º ln(PCBº ;k) + ²º ;k; else.

(8.3)
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Figure 8.3: Scatter plots of the observed PCB concentrations in incident re-
lated samples over time for the 4 contaminated fat items. The horizontal line
indicates the level of 200 ng PCB/g fat, the maximal tolerated level that was
eventually chosen for marker PCBs. The vertical lines indicate, for each ma-
trix, the minimal and maximal end of the period during which analytical results
were introduced into the simulation (for explanation see text).
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Where ²º ;k » N(0; ¾ º ). ®0;º is thus the mean value for sam-
ples of fat origin º that are censored for the marker PCB value;
®1;º and 1̄;º are the intercept and slope when regressing the
logarithm of the dioxin concentrations in function of the loga-
rithm of the sum of the seven marker PCBs. Typically, techni-
cal measurement in the assay lead to TEQ values that are left
and/or right censored. Therefore, we use parametric regression,
allowing for censored observations in order to estimate the re-
gression parameters. Uncertainty about these parameters, due
to ¯ nite sample size estimation, is re°ected in their covariance
structure ­ . To acknowledge this, we use a multivariate nor-
mal distribution to represent the population mean parameters and
error variance of the log transformed TEQ values. Speci¯ cally,
(®0;º ;¯1;º ; 2̄;º ; ¾ )¿ »MVN((®0;º ;¯1;º ;¯2;º ; ¾ ); ­ ).

Duration of the incident

The exposure assessment presented in this paper is designed to produce
an estimate of the average daily dose during the Belgian dioxin-incident.
It is o±cially accepted that the incident started on February 1 and ended
end of May, 1999. Therefore, we are evaluating a risk of increased intake
during 16 weeks (T = 112 days). Since the period at risk is longer
than the record data we have on food intake, we repeat the latest as
many times as necessary to cover the risk period. Doing this, we ignore
potential within-subject variation over time.

8.2.3 Model estimation

The Monte Carlo simulation of the TEQ distribution runs the model sev-
eral times, each time using di®erent values for each of the input param-
eters. We used two dimensional simulations in order to distinguish two
di®erent sources of variation. First, uncertainty is a property of the ana-
lyst and is characterized by uncertainty in the incident parameters, and
by uncertainty due to sample size. Since there are multiple input param-
eters with uncertainty, one value from each is sampled simultaneously
in each repetition in the simulation. Each Monte Carlo simulation rep-
resents a random uncertainty from an m dimensional uncertainty space,
where m is the number of uncertainties that are inputs in the model.
In order to represent uncertainty over the course of the simulation, 200
draws were taken from the joint uncertain model. Then, for each random
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uncertain vector, the between-subject variation in output was assessed.
This is a property of the system studied and is characterized by vari-
ations in characteristics between individuals (between-subject variation
in food consumption Xº ;i;t and weight), and variations in product con-
tamination (Cº ;i;t, ±º ;i;t). The result is a two dimensional table that
gives, for each uncertainty vector, a set of values for the model output
variable DIi, which can be analyzed as if they were an experimentally
or empirically observed set of data. This enables us to evaluate the cu-
mulative distribution function in the directions of both between-subject
variation and uncertainty.

The estimates of the cumulative distribution function are numerically
more stable than estimates of probability density and are thus more
meaningful. Furthermore, the cumulative distribution function allows
for quantitative insight regarding the percentiles of the distribution. Al-
though the generation of sample values for model input parameters is
probabilistic, the execution of the model for a given set of samples, in
repetition, remains deterministic. The advantage of Monte Carlo meth-
ods, however, is that these deterministic simulations are repeated in a
manner that yields important insights into the sensitivity of the model
to variations in the input parameters, as well as into the likelihood of
obtaining any particular outcome. It allows the modeler to use any type
of probability distribution for which values can be generated on a com-
puter, rather than restricted to forms which are analytically tractable.
All the simulations presented were run using the S-PLUS 2000 software
(Professional release 1, Math Soft Inc).

8.3 Body burden

Having determined the daily intake in background condition as well as
during the incident, the next step is to evaluate the potential e®ect of
the incident on human health. The dioxin-like contaminants of interest
for this study are lipophylic substances, showing a slow metabolic degra-
dation in the organism. They accumulate over time and their kinetic
behavior can be described by a single compartmental model with almost
instantaneous distribution. It is assumed that the doses may be consid-
ered as rapidly absorbed daily pulses. The dose is the dietary intake,
corrected for gastrointestinal absorption. For repeated dosing, the body
burden (bb, in ng TEQ/kg bw) can be recursively estimated according
to equation(8.4):
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bb(day=t) = f £DI + bb(day=t¡1)e
¡ke: (8.4)

Where DI is the daily intake (in pg or ng TEQ/kg bw/d), f is the frac-
tion of the dose absorbed and ke is the constant elimination rate (day¡1).
Following a regular daily intake of a compound, the body burden will
increase over a period of time until an equilibrium, or steady state, is
established. At equilibrium, the amount of compound eliminated each
day exactly equals the intake. The average steady state body burden

(bb
SS

) derived from equation (8.4) is given by:

bb
SS

=
f £DI £t1=2

ln(2)
(8.5)

Where the elimination half life (t1=2) can be expressed in terms of the

elimination rate ke, t1=2 = ln2
ke

, and is considered constant during the rel-
evant lifetime. The values for f and t1=2 for dioxin-like substances are
quite variable between congeners and for many unknown. Since they
are assumed to behave similarly in the organism as TCDD, it is gener-
ally accepted to apply the TCDD values to the whole of the congeners
that play a role in the total TEQ. We used f = 0:5, and t1=2 = 7:5
years (WHO-ECEH-IPCS 2000). Starting at zero body burden at birth
(bb(day=0) = 0), we ¯ rst estimated life time body burdens under back-
ground conditions. As input we used the background daily intake esti-
mated in simulation A (adolescents) up to 50 years of age. At the age of
50, we introduced the background daily intake of dioxin-like substances
estimated in simulation C (coronary patient) to calculate the body bur-
den up to the age of 60. A separate estimation was realized to assess
the increase in body burden due to the dioxin-incident. To this end, two
four month periods{the assumed duration of the dioxin-incident, Febru-
ary till May{of increased intake we are superimposed to the background
situation, one at the age of 16 (intake estimation from simulation A),
and one at the age of 60 (intake estimation from simulation C). In sepa-
rate estimation, both the most likely daily intake at median uncertainty
and a worst case daily intake at 95% uncertainty were introduced in the
calculation.



Probabilistic intake assessment of dioxin-like substances 147

Cumulative Distribution Function

In
ta

ke
 (p

g/
kg

 b
w

.d
ay

)

0 20 40 60 80 100

0
2

4
6

8
10

12

Total
Chicken
Pork
Beef
Egg
Milk
Fish
Other

Percentiles of the between-subject distribution

Figure 8.4: At the median uncertainty level, the inverse cumulative distribution
function is plotted for background fat intake in adolescents, ¯ rst total fat intake
and then for each fat nature separately. For clari¯ cation see insert.

8.4 Results

8.4.1 Monte Carlo simulations of daily intake of dioxin-like sub-
stances via food in background conditions

Background daily intake in the adolescent subgroup

The combination of adolescent food consumption and background food
contamination data (simulation A) led to the daily background intake
of dioxin-like compounds illustrated in ¯ gures 8.4 and 8.5. In these
conditions no uncertainty is introduced into the parameters, the only
uncertainty being due to sample size. Since we performed 1500 replicates
in the simulation of between-subject intake variation, the uncertainty
with regard to background intake becomes negligible and the curve at
median uncertainty can be accepted as the best probabilistic estimation.
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Figure 8.4 represents median uncertainties of the cumulative distribu-
tion functions of intake representing the between-subject variation for
total fat intake and for each fat nature separately. The ¯ gure shows
that an estimated 3% of the adolescent population remains below a
daily intake of 1 pg TEQ/kg bw/day (the lower WHO tolerated daily
intake) for the sum of PCDDs, PCDFs and dioxin-like PCBs; 85% of
the population is estimated to remain below 4 pg TEQ/kg bw/day (the
higher WHO tolerated daily intake). The analysis of each fat nature
separately indicates that a signi¯ cant contribution to the total intake in
background conditions, for the entire population, happens through milk
and milk derived products. In the subjects with higher intakes, above
the 80th percentile, ¯ sh and ¯ sh oils become the major source of intake
of dioxin-like substances. The importance of the other contamination
sources (at the 95th percentile) are, in decreasing order: beef, remaining
sources, egg, pork and chicken. Remaining sources are horse, sheep and
vegetables taken together. It should be stressed that the variation for
each fat nature is estimated independently, therefore the total intake at
a certain percentile is not the sum of the di®erent fat contributions at
that percentile.

A di®erent way to look at the relative magnitudes in variation in intake
and associated uncertainty is presented in ¯ gure 8.5, showing the 5th,
median, and 95th variation percentile of the subject speci¯ c cumula-
tive uncertainty distribution function in intake, as well as the individ-
ual curves for 50 randomly selected adolescents. The between-subject
variation{indicated by the degree of spread across the 5th, median, and
95th percentile{is much greater than the uncertainty about any of the in-
dividuals as indicated by the range covered by any single line. Moreover,
all the subject speci¯ c cumulative uncertainty distribution functions in
intake are fairly horizontal, indicating very small individual uncertainty
in magnitude. The large between-subject variation can thus be inter-
preted as subject speci¯ c risk for di®erent degrees of TEQ dioxin intake.
This means that some people are more prone to high TEQ dioxin intakes
than others. This is linked to the individual amount and nature of fat
consumption.

Background daily intake in the coronary patient

A similar combination of a typical coronary diet and background food
contamination data (simulation C) led to the daily background intake
of dioxin-like compounds{total fat and each fat nature separately{
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Figure 8.5: The full lines correspond to the 5th, median and 95th percentile of
the between-individuals distribution of total background fat intake. At each of
those uncertainty values, the inverse of the cumulative uncertainty distribution
in background intake is shown in the full line, together with the corresponding
functions for 50 randomly selected adolescents in dotted lines.
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Figure 8.6: At the median uncertainty level, the inverse cumulative distribution
function is plotted for background fat intake with the coronary diet, ¯ rst total
fat intake and then for each fat nature separately. For clari¯ cation see insert.

described in ¯ gure 8.6. For similar reasons, as before the curve at
median uncertainty can be accepted as the best probabilistic estima-
tion. The ¯ gure shows that a coronary patient, carefully following the
prescribed diet, remains above the daily intake of 1 pg TEQ/kg bw/day
for the sum of PCDDs, PCDFs and dioxin-like PCBs while only 25%
of patients would remain below 4 pg TEQ/kg bw/day. The analysis of
each fat nature separately reveals the dominant role of ¯ sh in the daily
intake of dioxin-like contaminants with this diet. Increasing the ¯ sh
intake in a coronary patient diet results in a marked increase in dioxin
intake in comparison with the adolescent subgroup. Still milk and milk
derived products remain a signi¯ cant contributor to the total intake. At
the 95th between-subjects percentile, the other contamination sources
are, in decreasing order: remaining sources, egg, beef, chicken, pork,
but all negligible compared to the intake via the ¯ sh.
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Figure 8.7: At 5% (lower dashed line), median (upper full line), and 95% (up-
per dashed line) uncertainty level, the inverse cumulative distribution function
is plotted for incident total fat intake in adolescents. For comparison, corre-
sponding median background total intake curve (lower full line) is added to the
plot. Horizontal dotted lines represents the WHO recommended TDIs of 1 and
4 pg/kg bw/day.

8.4.2 Monte Carlo simulations of daily intake of dioxin-like sub-
stances via food during the Belgian dioxin-incident

Incident daily intake in the adolescent subgroup

Introducing incident contamination data for chicken, egg, pork and beef,
and background contamination data for milk, ¯ sh, vegetables, sheep and
horse in simulation A led to the incident daily intake of dioxin-like con-
taminants illustrated in ¯ gures 8.7 and 8.8. The results presented ac-
knowledge the range of possible uncertainty combinations. In ¯ gures 8.7,
the 5% and 95% uncertainty curves represent the 5% lower and 95% up-
per bound probabilities of exposure to lower or higher degrees of food
contamination.
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Figure 8.7 shows that between-subject variation in incident intake within
this group of adolescents is greater than the uncertainty in the estima-
tion. Nevertheless, uncertainty becomes larger when moving towards
the highest percentiles of intake. During the dioxin-incident, the in-
take of dioxin-like substances by the 50th percentile of adolescents is
estimated to be increased by 0.25 (5% uncertainty), over 0.45 (median
uncertainty) towards 5.96 (95% uncertainty) pg TEQ/kg bw/day. This
increase is accepted to be signi¯ cant since the curve representing the
background intake lays fully below the 5% uncertainty curve during the
incident.

Figure 8.8 represents median uncertainties of the cumulative distribution
functions in intake representing the between-subject variation for total
fat intake and for each fat nature separately. Milk and milk derived
products remain important as source for all adolescents. For most of the
adolescents the moderate increased intake follows the contamination of
chicken, egg, pork and beef. Fish remains an important input for the
higher percentiles. Only from the 90th percentile on, chicken becomes
more important as source and overtakes ¯ sh at the highest percentiles.

Incident daily intake in the coronary patient

Simulation C, now combining the incident and background contamina-
tion data with the coronary diet, led to an incident daily intake of dioxin-
like contaminants illustrated in ¯ gures 8.10 and 8.11. In ¯ gures 8.10,
the 5% and 95% uncertainty curves represent the 5% lower and 95%
upper bound probabilities of exposure to lower or higher degrees of food
contamination. During the dioxin-incident, the intake of dioxin-like sub-
stances via this diet might have increased, at the 50th percentile, by 0.07
(5% uncertainty), over 0.21 (median uncertainty) towards 4.57 (95% un-
certainty) pg/kg bw/day. The lesser degree of increase, in comparison
with the adolescents, results from the greater importance of ¯ sh over
meat in this diet, the ¯ sh contamination staying unchanged during the
dioxin-incident.

Figure 8.11 represents median uncertainties of the cumulative distri-
bution functions in intake for total fat intake and for each fat nature
separately. Fish remains important as source. The overall increased in-
take follows the increased contamination in chicken, egg, pork and beef.
Only from the 95th percentile on, chicken becomes more important as
source and overtakes ¯ sh at the highest percentiles.
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Figure 8.8: At the median uncertainty level, the inverse cumulative distribution
function is plotted for incident fat intake in adolescents, ¯ rst total fat intake
and then for each fat nature separately. For clari¯ cation see insert.
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Figure 8.9: At 5% (lower dashed line), median (upper full line), and 95% (upper
dashed line) uncertainty level, the inverse cumulative distribution function is
plotted for incident total fat intake with the coronary diet. For comparison,
corresponding median background total intake curve (lower full line) is added
to the plot. Horizontal dotted lines represents the WHO recommended TDIs
of 1 and 4 pg/kg bw/day.

Figure 8.10: 5% (lower dashed line), median (upper full line), and 95% (upper
dashed line) uncertainties of the cumulative distribution functions in incident
total fat intake, together with the median background intake curve (lower full
line) in a coronary patient. Horizontal dotted lines represents the WHO rec-
ommended TDIs of 1 and 4 pg/kg bw/day.
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Figure 8.11: At the median uncertainty level, the inverse cumulative distribu-
tion function is plotted for incident fat intake with the coronary diet, ¯ rst total
fat intake and then for each fat nature separately. For clari¯ cation see insert.
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8.4.3 Identi¯ cation of key contributors to the between-subject
variation and associated uncertainty in the intake estima-
tion

In order to improve the understanding and interpretation of the simula-
tion, we intend to identify which inputs \drive" the outcome results. To
this end, key contributors to between-subject variation and associated
uncertainty were identi¯ ed separately.

Between-subject variation : regression analysis

In order to identify the most in°uential inputs with regard to between-
subject variation in intake of dioxin-like substances, we considered the
group of 341 adolescents in a background situation. For each of them
we simulated the dioxin intake across 400 uncertainty replications. As-
suming a log normal distribution, the median uncertainty in intake was
modeled via a regression model. The following potential covariates were
tested: age, gender, and the average daily intakes of the di®erent fat ori-
gins: ¯ sh, pork, beef, milk, chicken, vegetables, eggs, and other. Param-
eters from a multivariate regression were estimated by forward stepwise
regression allowing for ¯ rst order interactions. In line with ¯ gure 8.4,
¯ sh, milk and beef were the main contributors to the between-subject
variation in dioxin intake. Gender e®ect, while identi¯ ed as a signi¯ cant
contributor to dioxin intake in the univariate analysis, does not enter in
the multivariate analysis, probably because di®erences between sexes are
due to the fact that for a same body weight, on average, males consume
more fat than females.

Uncertainty: sensitivity analysis

The simulation introduces four main sources of uncertainty with regard
to the consumption of the possibly contaminated fat natures, chicken,
egg, pork and beef:

1. the probability of consuming food from an incident related pro-
duction unit,

2. the inter-subject variation in the percentage of items issued from
an incident related production unit,

3. the sampling period which is representative for the main contam-
ination period,
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Table 8.6: Comparison of median intakes for the di®erent percentiles of the
adolescent subgroup population between background conditions, incident basal
conditions, and incident conditions skewed towards the high initial contamina-
tion concentrations. For further explanation see text.

Percentile Background Incident 95% uncertainty
median uncertainty simulation A simulation B

1 0.68 1.24 0.79
3 0.93 1.84 1.13
5 1.15 2.11 1.41
25 1.85 4.46 2.22
50 2.53 8.49 3.02
75 3.30 16.91 4.02
95 6.52 47.23 8.43
97 7.47 58.04 10.34
99 9.65 94.62 19.63

4. the regression coe±cients for predicting dioxins from PCB.

In order to identify the most in°uential uncertainties, we ran several
simulations in which all but one uncertainty were set to their central
values. We identi¯ ed the sampling period (uncertainty 3) as by far the
major source of uncertainty. Since no reliable information can guide
us in this choice, we included in the uncertainties of simulation A the
most severe situation, where the period considered as representative for
the incident for chicken and egg data was only until May 15. In other
words, we allowed that chicken and egg products issued from incident
related production units were all highly contaminated. In order to quan-
tify the impact of this uncertainty, we compared this with less stringent
conditions and ran a simulation B where the period considered as repre-
sentative for the incident for chicken and egg data was at least from May
1 till June 15. The 95% uncertainty results of simulations A and B, the
worst cases for each, are given in table 8.6, illustrating the important
impact of the choice of the data period.

In conclusion, the majority of the between-subject variation in the out-
put distribution is attributable to 1) variation in the amount of fat intake
via ¯ sh, milk and beef and 2) the uncertainty in the time period over
which the data are considered representative for the incident.
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8.4.4 Body burden

Figure 8.12 gives a graphical representation of the results obtained.
The ¯ rst body burden estimation accepts a daily intake at the 50th
percentile{simulation A up to the age of 50, simulation C up to the age
of 60{in background conditions; the second estimation accepts a daily
intake at the 95th percentile; the third estimation accepts a daily intake
at the 97th percentile.

A second run follows for each of those percentiles, but now super im-
posing at the age of 16 the dioxin-incident intakes of simulation A, at
the median and 95% uncertainty levels, and at the age of 60 the dioxin-
incident intakes of simulation C, also at the median and 95% uncertainty
levels.

Changing at the age of 50 from an adolescent daily intake towards that
of the coronary patient produces an increase in body burden at the 50th
percentile, but a decrease at the 95th and 97th percentiles. This distinc-
tion might be arti¯ cial since the coronary patients daily intakes at the
95th and 97th percentiles are most probably underestimations, based
on an assumed rigorous adherence to the theoretical diet. It is further
obvious from the ¯ gure that the temporary dioxin-incident related in-
creases in body burden at the median level of uncertainty are quite low
for each of the percentiles in intake. At the 95% and 97% uncertainty
level a more marked increase in body burden becomes apparent, which
is maintained up to the age of 50.

8.5 Comments and discussion

Material and methods

In traditional probabilistic analyses, where the between-subject varia-
tion and associated uncertainties are not separated and are uni- dimen-
sionally propagated through the exposure model, the output would have
presented an hybrid distribution possibly leading to erroneous inferences.
This helped to adequately quantify the between-subject variation in in-
take that identi¯ ed signi¯ cant sub populations, e.g. people eating ¯ sh,
that merit more focused attention.

The full probabilistic intake assessment has been limited to adolescents,
the only subgroup of the Belgian population for which recent, su±ciently
detailed food consumption data are available. However, previous sur-
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Figure 8.12: The ¯ rst body burden estimation accepts a daily intake at the
50th percentile{simulation A up to the age of 50, simulation C up to the age
of 60{in background conditions (dotted lines); the second estimation accepts a
daily intake at the 95th percentile; the third estimation accepts a daily intake
at the 97th percentile. A second run follows for each of those percentiles, but
now super imposing at the age of 16 the dioxin-incident intakes of simulation
A, at the median (full lines) and 95% uncertainty (dashed lines) levels, and at
the age of 60 the dioxin-incident intakes of simulation C, also at the median
(full lines) and 95% uncertainty (dashed lines) levels. Please remark that the
increase at median level of uncertainty can hardly be seen at this ordinate scale
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veys would indicate that total daily fat consumption in our region is
quite similar in adults as in adolescents (Kornitzer and Bura 1989), as it
is also in the Netherlands (Voedingscentrum 1998). A preliminary anal-
ysis of food consumption habits in 1340 senior Belgian persons (65-92
years) further suggests that fat intake becomes substantially less after
65 years of age, whereas the distribution of fat origin is quite similar to
that in adolescents (Dioxin Body Burden Working Group 2001). There-
fore, the extrapolation to the more general population{as has been done
more especially in the body burden calculation up to the age of 50{
seems acceptable and might even be an overestimation. At the end, the
estimated median fat intakes (see table 8.1) appear to be of the same
order as those estimated for the Dutch general population (Liem and
Theelen 1997). Further we did an attempt to assessed the intake based
on a typical coronary patient.

Our dioxin intake assessment includes PCDDs, PCDFs and dioxin-
like PCBs, leading towards an overall intake expressed in pg TEQ/kg
bw/day. This intake might be somewhat underestimated since for sev-
eral food items background dioxin-like PCB contaminations were only
measured for the non-ortho PCBs, but included PCB 126 and 169,
most important congeners with regard to toxicity (TEF values 0.1 and
0.01). In summing up PCDDs, PCDFs and dioxin-like PCBs, we stay
in line with the Scienti¯ c Committee on Food (SCF) (2000) that stated
that the tolerated daily intake (TDI){and, therefore, also the daily
intake (DI){for 2,3,7,8-TCDD could be extended to include all 2,3,7,8-
substituted PCDDs and PCDFs, and dioxin-like PCBs, each multiplied
by their respective TEF. An important observation is that, during the
dioxin incident, a major part of food items contained levels of dioxin-like
substances that did not exceed background contamination.

Several major uncertainties related to the incident period were taken
into account in the probabilistic assessment. The major uncertainty
was the nearly absence of food samples from between February and
May 1999, before the intensive food monitoring programs started. This
was solved by allowing the worst case approach in simulation A. As
far as the contribution of dioxin-like PCBs towards the total dioxin-
like contamination is concerned, we had to rely mainly on background
data from 2000. It is legitimate to do this because PCB pro¯ le analysis
had shown that the nature of the contamination source was similar in
background as in incident-related conditions.
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Background daily intake of dioxin-like contaminants

Our intake assessment in adolescents at the 50th percentile, 2.53 pg
TEQ/kg bw/d, is quite comparable to the mean daily intake of PCDDs,
PCDFs, and dioxin-like PCBs in Dutch and US male and female ado-
lescents, respectively 2.5 and 2.1 pg TEQ/kg bw/day (Patandin et al.
1999) and 3.5 and 2.7 pg/kg bw/day (Schecter et al. 2001). The Euro-
pean Scienti¯ c Committee on Food (2000) mentions an average intake of
dioxin-like contaminants over di®erent European countries of 1.2 to 3.0
pg TEQ/kg bw/day. Further comparisons, more especially with regard
to higher percentiles of intake, are not possible because the data from
the literature usually report averages and do not address the between-
subject variation issue within a particular group.

Our dioxin intake simulation clearly identi¯ es ¯ sh, milk and other dairy
products as major sources of the Belgian background intake of dioxin-
like contaminants. The question therefore arises whether the ¯ ndings
in this paper warrant any speci¯ c changes in dietary recommendations
in the population at large or in particular subgroups{especially in preg-
nant women as adverse health e®ects in the foetus can occur at the
lowest dioxin doses (WHO-ECEH-IPCS 2000). Further simulations are
currently carried out to address this problem.

Incident related daily intake of dioxin-like contaminants

The median uncertainty curve of the simulated incident intake data rep-
resents the most likely estimate for the intake during the dioxin incident
period, the 95th upper bound uncertainty curve a reasonable worst case.
The uncertainty is markedly higher than in background conditions, due
to the uncertainties inherently linked to food contamination data before
the extent of the contamination became fully understood. The fraction
of the adolescent population with an intake of less or equal to 1 pg
TEQ/kg bw/day decreased from 3% towards 2% during the incident.
The fraction of the population with an intake of less or equal to 4 pg
TEQ/kg bw/day decreased from 85% towards 76% during the incident.

For most of the subjects, the moderate increase in intake during the
incident follows the increase in contamination of chicken, egg, pork and
beef. Fish remains an important input for the higher percentiles. Only
from the 90th percentile on, highly contaminated chicken becomes more
important as source to overtake ¯ sh at the highest percentiles.
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Besides our simulation, only two other groups have tried to assess the
possible increase in intake of dioxin-like substances during the Belgian
dioxin incident (Bernard et al. 1999; Van Larebeke et al. 2001). Their
estimations are not based on detailed food consumption data but on
some, arbitrarily selected, food habits, and on the assumption, possible
but not substantiated, that either 1 g TEQ of PCDD/F (Bernard et al.
1999) or 300 mg TEQ of PCDD/F and 900 mg TEQ of dioxin-like PCB
(Van Larebeke et al. 2001) were introduced into the Belgian food chain
at the start of the incident. By extrapolating dioxin concentrations
and dioxin-like PCBs from a very limited number of samples, heavily
contaminated by PCBs, to the total list of available food items in which
marker PCBs have been measured (Van Larebeke et al. 2001), bias is
introduced. Assuming overall high degrees of contamination in some
particular food items, high exposure rates are obtained which might be
true in some particular real cases, but extrapolation from there to the
more general population remains rather questionable.

Body burden estimation and risk assessment

We only took into account the intake of dioxin-like contaminants via
food. This introduces an underestimation of the body burden, that is,
however, small since it is generally accepted that at least 90% of the
intake of dioxin-like substances occurs via food. We further applied
a single compartmental model with kinetic data from 2,3,7,8-TCDD-
in stead of using more complex, physiologically based, pharmacological
models that include absorption, distribution, binding and elimination
kinetics (Van der Molen et al. 1996, Kreuzer et al. 1997). However,
pharmacokinetic data for the di®erent congeners of interest are incom-
plete and di®erent parameters of the kinetic models are still fraught with
uncertainties. We further started from a zero body burden, not taking
into account the dioxin body burden at birth or the possible high intake
with breast-feeding. A preliminary analysis, starting from literature
body burden data at age 1, indicated that in that approach the equi-
librium body burden was identical to the body burden we calculated.
Finally, we applied the simulated intake of simulation A (adolescents)
from age 0 to age 50. As said before, the limited recent food records for
Belgian adults do not allow a similar intake assessment, but would, nev-
ertheless suggest that intakes are similar or lower than in adolescents.
An intake estimation of dioxin-like substances in US adolescents, adults
and senior persons indeed demonstrated a tendency of lower intakes with
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advancing age (Schecter et al. 2001). The body burdens estimated at
the age of 50 years, therefore, remain a good estimate for most of the
Belgian population.

Our background estimations are quite similar to background body bur-
dens estimated by others. Equilibrium body burdens of 2.38 - 5.95 ng
TEQ/kg bw can be calculated from the average European daily intakes
for PCDD, PCDF and dioxin-like PCBs of 1.2 - 3 pg TEQ/kg bw/day
(Scienti¯ c Committee on Food 2000). Extrapolation from dioxin-like
activity in blood lipids from three di®erent Flemish regions (Schoeters
2000, Staessen et al 2001){assuming 20% body fat-leads to average body
burden values of 5.0 to 9.2 ng TEQ/kg bw for 18 years old, and 6.2 to
8.6 ng TEQ/kg bw for women at 50 to 65 years of age. These literature
data, however, do not address the higher percentiles of their popula-
tions. This similarity provides an indirect validation of our probabilistic
approach, supporting also our extrapolation of body burdens calculated
on the basis of a daily intake in adolescents towards the total popula-
tion. By switching from background intake towards the intake during
the dioxin incident period, we implicitly assume that the individuals at
the 50th, 95th and 97th percentile are the same in background condi-
tions as during the dioxin incident period. This is not so, in fact the
simulations in di®erent conditions and at di®erent levels of uncertainty
are run independently. This means that, by assuming that the most
exposed subjects in background conditions are also the most exposed
subjects during the dioxin incident, we obtain an overestimation of the
body burden and create a worst case situation.

The background and dioxin incident-related body burdens, estimated
from median uncertainty intake simulations, lie around the body bur-
dens that, in the experimental animal, are accompanied by biochemi-
cal and functional e®ects that may or may not lead to adverse e®ects{
e.g., CYP1A1/2 induction, EGF-receptor down-regulation and oxidative
stress (3-10 ng TEQ/kg bw){and by increased viral sensitivity (10 ng
TEQ/kg bw) (Scienti¯ c Committee on Food 2000, WHO-ECEH-IPCS
2000). Even in the worst case estimation, they remain below the body
burdens that were accompanied in the experimental animal with ob-
served increased incidence of adverse health e®ects, e.g., developmental
neurotoxicity (25-37 ng TEQ/kg bw), reproductive toxicity (30-40 ng
TEQ/kg bw), and tumor promoting e®ects (294 ng TEQ/kg bw). For
those e®ects, threshold doses can be accepted below which the risk is
thought to be negligible, without quantifying this extra low risk (Scien-
ti¯ c Committee on Food 2000, WHO-ECEH-IPCS 2000). The incident-
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related median body burden we simulated at median uncertainty, 3.9
ng/kg bw/d, is 5 to 22 times lower than median body burdens attained in
Seveso residents{as extrapolated from the 50th percentile TCDD serum
concentrations, lipid adjusted, among exposed in zone B (94 ppt) and
A (447 ppt) and assuming 20% body lipids (Needham et al. 1997). The
body burden estimated at the 99th percentile, under worst case condi-
tions, e.g., 23.7 ng TEQ/kg bw, is 470 times lower than the body burden
extrapolated from the highest Seveso serum concentrations (56000 ppt)
(Needham et al. 1997). The range of Seveso exposure levels, substan-
tially higher than the Belgian dioxin incident levels, are now accompa-
nied by an increase in cancer mortality (Bertazzi et al. 2001). A trend
of decreased male/female sex ratio became apparent in Seveso from a
body burden of 16 ng TEQ/kg bw on (serum concentration of 80 ppt)
(Mocarelli et al. 2000), which is within the range of body burdens es-
timated for the Belgian population at the higher levels of intake, both
background and incident-related.

Others do not accept a threshold dose for tumor promoting agents like
dioxins and calculate a cancer risk on the basis of a low dose extrapola-
tion. Following the risk estimates from Becher and co-workers (Becher et
al. 1998), a ¯ gure of up to 8,000 extra cancer deaths has been proposed
as a result of the increased dioxin intake during Belgian dioxin incident
(Van Larebeke et al. 2001). However, a prediction in a particular real
life situation, e.g., a short time food contamination incident, based on
upper bound risk estimates deduced from another quite di®erent condi-
tion, high industrial exposures, remains questionable.

Non-dioxin-like PCBs

Our risk assessment is fully based on the quantitative exposure assess-
ment towards dioxin-like contaminants. Non-dioxin-like PCBs were not
included. The reason for that is 1) that the 1999 concentrations present
in Belgian food items in background conditions hardly exist and 2) that
the quantitative hazard assessment of non-dioxin-like PCBs has not been
studied in depth as it has been done for the dioxin-like substances. On
the basis, however, of a very preliminary analysis we would accept that
the main hazard of this kind of food contamination resides in the dioxin-
like substances.
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8.6 Practical conclusions

We performed a probabilistic intake assessment of dioxin-like substances
via food in adolescents, in background conditions and for the 1999 Bel-
gian dioxin incident, leading towards the estimation of the variation in
intake among the general population. During the 1999 dioxin incident,
increases in daily intake were limited for most of the population, but po-
tentially higher for those that regularly consumed highly contaminated
chicken. As a result, body burdens of dioxin-like substances increased
slightly above background levels, except at the highest percentiles of in-
take under worst case scenario conditions. Estimated background and
incident-related body burdens are at levels where, in the experimental
animal, biochemical and functional changes are observed but below lev-
els that are accompanied by an increased incidence of adverse health
e®ects. They are below levels observed in subjects exposed during the
Seveso incident. It is unlikely that the 1999 Belgian dioxin incident
will have an observable impact on public health, but it is not excluded
that the incidence of adverse health e®ects might increase in particular
subgroups of the population with some unusual food habits.
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Discussion and further
research

The introduction listed important methodological challenges which dose-
response analysts face. A number of them were addressed in the 7 chap-
ters of this thesis. The object under scrutiny is complex and controver-
sial. Pathology, disease severity, the active molecule, its dose, its way
of action, ... are so many factors that in°uence the patient's response
to drug that we do not believe that a general analytic approach can ¯ t
all. We investigated separately di®erent classes of problems motivated
by real clinical studies.

In chapters 2 and 3, we started by analyzing time-varying exposure
following nonadherence to prescribed drug therapy. We highlighted the
need for detailed data on exposure and proposed statistical models to
describe its evolution over time.

The phenomenon of nonadherence is often characterized as noise in clin-
ical trials but, chapters 4 and 5 have shown that acknowledging natural
variation in the exposure process is possible and can furthermore solve
a general problem posed by nonlinear systems. Indeed, diversity in tem-
poral patterns of input is needed to allow adequate characterization of
input-output relations.

We applied this methodology in chapter 6 to a clinical trial assessing
viral load decrease in HIV patients. We assume that adherence is not
selective and derive a dose-response association through PK/PD models.

In chapter 7, we move on to seek a causal interpretation of dose-e®ect
relationships in a situation where the assumption of nonselectivity is un-
likely to hold. To this end, we extend existing methodology on structural
models for trial with placebo control to the situation of active control
trials.
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In contrast to world of drug development, in an environmental setting,
one face often the problem of lack of relevant exposure data. Chapter 8
was devoted to this type of exposures. We showed how to derive causal
conclusions in this context acknowledging for potential uncertainties.

Here, we discuss the general ideas highlighted in previous chapters and
give topics for future research.
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Variation in exposure and clinical studies

To preserve the type one error of a randomized trial guidelines recom-
mend and drug regulators require performance of a traditional intent to
treat analysis. Hence patients are analyzed as randomized rather than
on the basis of the amount of medication actually received. However,
results from this type of analysis can be severely a®ected by the ex-
tent to which patients adhere with treatment. Intent to treat analysis
risks underestimation of the true biological e®ect of treatment in the
presence of suboptimal exposure. One solution lies in assessing patient
adherence to prescribed therapy and judging if enough adherence has
been achieved to support relevant conclusions of the trial. An other
solution is to make e±cient use of the observed variation in exposure
to establish a dose-e®ect relationship. From the scienti¯ c point of view,
there is a clear interest in accounting for partial adherence when analyz-
ing and interpreting clinical trials. However, the bias protection o®ered
by proper randomization must be respected as far as possible. Indeed,
the potential bias introduced by considering partial compliance should
be smaller than the bias resulting from the intent to treat analysis. In
the next section, we consider the evaluation of adherence levels per se,
after that we evaluate its link with outcome.

Assessing adherence to prescribed therapy

To draw inference on patient exposure, one must ¯ rst de¯ ne the xeno-
biotic substance in question and measure it. Exposure assessment may
be highly diverse but this thesis supports the idea that reliability of
exposure measurements over time is of prime importance. Several ap-
proaches towards assessing exposure were discussed in the introduction.
We use more detail than pill counts can provide and have found the
added information makes quite a di®erence. Therefore, we focus mainly
on statistical methods to deal with data issued from electronic monitor-
ing (MEMS, Aardex Ltd.) of patient's adherence. MEMS devices record
precise timing of pill box openings but do not prove ingestion. While this
method may underestimate exposure, it could be solved by new pack-
age design. With the advance of electronics more research should take
place on electronic devices that would provide a count of the number
of tablets removed. The size of the devices could be reduced and could
include the recording of more speci¯ c behavioral details. For example,
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one could record if the drug is taken during meals, in combination with
other drugs, ...

We proposed several methods for the analysis of adherence as a time-
varying pattern. However, we may be able to go further in the details.
For example an important problem that was only partially tackled in this
thesis is that the time window of maximum possible treatment e±cacy
must not stretch over the whole treatment period. We could go further
by deriving adherence assessments that give more weight to observations
located in a more relevant time period. Estimation of such weights is
the topic of further research.

Schematically, we discussed the concept of adherence as a combined
persistence phase and compliance process. It would be useful to further
model those two di®erent concepts jointly. Time until discontinuation
(persistence) could be modeled as a time to event outcome. Then a
relevant compliance measure that summarizes patient compliance from
the start of the study until discontinuation could be derived and jointly
modeled. A further extension of the two dimensional structure is to
consider repeated discontinuations for a given patient, representing a
patient who changes his decision over time: starts, stop, starts again,
.... The main challenge here would be to de¯ ne a rule to establish when
a patient takes a new decision and breaks his daily routine.

In clinical trials, an analysis of adherence patterns should routinely be
carried out. First it will indicate if reasonable adherence has been
achieved or if it is worthwhile to investigate an adherence-e®ect rela-
tionship based on available data.

However, even with exhaustive analysis of time varying patterns of
adherence, the di±culty remains to decide how much adherence is
enough. It is obviously a matter that is disease-speci¯ c, drug-speci¯ c,
formulation-speci¯ c and patient-speci¯ c.

In the current context of intent to treat analysis, researchers who want
to validate their ¯ ndings often aim to show that acceptable adherence
was achieved in their clinical trial. Therefore, they could opt for an
overestimation of adherence through pill counts and report an average
adherence level over the whole study period ignoring individual timing
patterns of exposure and pharmacologic properties of the drug.
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Exposure as an explanatory variable in clinical trials

In a clinical trial, if adherence to prescribed drug therapy is variable
and is accurately recorded together with outcome, we can investigate
how treatment e®ect depends on the amount and timing of treatment
actually received. Unbiased answers are hard to derive due to the possi-
bly selective nature of patient adherence to prescribed therapy. Patients
with di®erent adherence patterns can have di®erent outcomes for many
reasons besides variability in the amount and timing of drug adminis-
tration. By studying the association between observed adherence and
outcome from empirical data, we still ignore the true e®ect of `a forced
dose' to the patient. Indeed, study of the dose-e®ect associations in em-
pirical data ignores potential selectivity (as de¯ ned in chapter 7). This
type of analysis can only be interpreted as causal if the selection mecha-
nisms are not present. A detailed analysis of the study adherence would
probably deliver important indications for potential selectivity. What-
ever the selective nature, statistical techniques are essential to disclose
information hidden in the outcome data. They allow complex modeling
of the pharmacological process. If a strong association is found between
adherence and e®ect, further analyses to identify the causal e®ect would
be worthwhile.

In the presence of selectivity, structural models allow one to estimate
the average causal e®ect of the drug for di®ering degrees of exposure.
Speci¯ cally it is possible to estimate the average di®erence in e®ect be-
tween two randomized groups for somebody who would be a perfect
adherer with one of the assignments. As the data contain rather weak
information on causality in the presence of unspeci¯ ed selectivity, one
is typically limited to rather simple structural models. A linear rela-
tion between dose and e®ect is often assumed. Current state of causal
inference methodology has thus other limitations.

In this context, it is getting increasingly di±cult to choose between
methodological and biological complexity. However, the validity of the
methodological approach can in no case be better than the quality of
the data themselves. Having conceptually split adherence into two di-
mensions, persistence and compliance, allows us to re¯ ne the selectivity
discussion. Results presented in this thesis indicate that the compliance
of some patients is intrinsically better that of others. These results sup-
port the idea that once a patient accepts to take a drug, he enters into
a daily routine closely linked to his lifestyle. Future studies enabling
simultaneous monitoring of several drugs, including a placebo, will help
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clarify those ideas. The end of the continuous process occurs when the
patient takes a new decision. The discontinuation can eventually be
in°uenced by the drug itself (adverse reactions, sickness improvement,
relapses, ...) and therefore is probably not an attribute of the patient.
Therefore, to avoid selectivity it is absolutely essential to maintain per-
sistence in the trial as long as possible,which is especially true when
nonpersistence with drug therapy results in trial drop out and no fur-
ther evaluation of the patient is available. Such type of missing value are
clearly not missing at random and could further bias the interpretation
of the results. Some preliminary work has appeared in the literature on
how to treat the simultaneous occurrence of non adherence and missing
outcomes.

Variation in exposure and PK/PD studies

Population pharmacokinetic/pharmacodynamic studies represent one
speci¯ c area where ignoring potential selectivity is the rule, not the ex-
ception. In such clinical trials plasma concentration is an uncontrolled
covariate and can thus be selective, if for example, fast metabolizer
happen to be the poor adherer to start with: reason enough to iden-
tify important source of variation in the process and especially actual
drug exposure. This could then help to identify subgroups responsible
for the selectivity by investigating the relations between adherence to
prescribed therapy and PK parameters. This type of studies tends to
take place in early/mid phase of drug development and thus one still
wants to understand the process of action rather than only proving a
population average e®ect. Selectivity problem in PK/PD studies could
be solved by using concentration-controlled trials (CCT) as proposed by
Sanathanan et al. (1991). In this type of trial, subjects are randomized
to predetermined levels of average plasma drug concentrations. In addi-
tion to safety concerns which strongly suggest the use of CCTs for drugs
with narrow therapeutic windows, sample size and power considerations
favor the choice of CCTs in many situations. CCTs are designed to min-
imize the inter individual PK variability within comparison groups and
consequently decrease the variability in clinical response within these
groups. One can then incorporate a titration design within the exit
rule, to provide su±cient information on the concentration-response re-
lationship. For example increasing the concentration level of the placebo
group and decreasing the concentration level of the treated group. Prac-
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tical constraints have, however, hampered the implementation of these
designs.

Exposure in environmental studies

Since non adherence is a post randomization variable, it imparts to a
controlled clinical trial some of the characteristics of an observational
study, where the subjects themselves decide about their exposure to the
drug. However observational studies face additional di±culties. Com-
pared to clinical trials usually they face more often exposure to multiple
xenobiotic substances. Since it is typically impossible to monitor them
all, it is current practice to assess some of them, assuming they constitute
a surrogate for the total exposure. Because substances with potential
toxic e®ect on health show a long half life, one tends to assess exposure
through a single measurement of blood concentration in time. This ap-
proach can then not distinguish between short term contamination and
long term background exposure and can not identify potential sources of
exposure. In addition in environmental studies, when an incident is the
focus, there is often a huge imbalance between the exposure assessment
before the incident is identi¯ ed compared to after. We show here that
the study of toxic exposure could bene¯ t greatly from a detailed record
of exposure over time.

Simulation

Simulation was considered in chapter 8 to accommodate uncertainty in
exposure measurements in the context of an environmental study. In
drug development the process of action following exposure is much bet-
ter studied and a lot of data is available via well controlled clinical trials.
Nevertheless, we believe the methodology of two dimensional simula-
tions can provide a new tool for instance to communicate with clinicians
about the outcome to expect from the trial facing explicitly the uncer-
tainties inherent to the assumptions. This approach can then be used to
bridge the gap of transfer of knowledge between earlier phases of drug
development and the clinical development of the product acknowledging
potential uncertainty on the bridging links. A well established PK/PD
model can be used to simulate clinical trials. Clinical trial simulation
requires a multi disciplinary e®ort to put the information together. Tra-
ditional sample size and power analysis are part of what one can expect
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from a clinical trial simulation. However, the true value of this method
goes much deeper, allowing to evaluate a broader variety of \what if" sit-
uations and estimate many performance measures quantitatively, rather
than address simple yes/no questions. \What if the patient does not
take the drug as prescribed in an intent to treat trial?" and thus the
impact of nonadherence on trial design (e.g. sample size) can be in-
vestigated via simulation. Such investigation could be done by using
adherence patterns previously recorded in similar settings. Association
between dosing patterns and responses, responsible for potential selec-
tivity, could then be propagated in the uncertainty dimension, leading
to more appropriate interpretation and more realistic sample size es-
timation. Upon identi¯ cation of substantial uncertainty with possible
serious consequences, new study designs should be contemplated. This
technology is pointing far beyond what we now consider power analy-
sis, perhaps towards a second or a third generation of power analysis.
As these tools grow in reliability, acceptance, and sophistication we will
come to expect much more of \power analysis".

Conclusion

In conclusion, we found that the help of careful statistical analysis can
yield a much better understanding of xenobiotic levels in practice and
their causal e®ect on outcome. The work of this thesis added new tools
for several classes of problems which we trust are useful in practice. We
are however well aware that this is not the end of the road. The ultimate
challenge lies in combining, if possible, the sometimes complex biolog-
ically relevant models with causal analysis of practical clinical e®ects.
While we made a start with this, several open problems await further
research.
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Samenvatting

Deze thesis handelt over het analyseren van tijdsafhankelijke bloot-
stellingspatronen en hun impact op uitkomsten relevant voor de menseli-
jke gezondheid. Terwijl lange tijd de precieze blootstelling van mensen
aan heel wat sto®en verborgen bleef zijn in recente jaren geso¯ sticeerde
technieken op de markt gekomen die ons met een weelde aan gede-
tailleerde data overladen. De statistische methoden om uit die data
relevante informatie te distilleren moesten echter nog grotendeels on-
twikkeld worden en vormen het voorwerp van deze thesis. In de kontekst
van klinische studies analyzeren we enerzijds blootstellingspatronen op
zich die we vervolgens voorspellen, anderzijds brengen we die bloot-
stellingen in verband met gezondheidsuitkomsten. We vormen besluiten
over de associatie-patronen en geven aan hoe men de stap naar causale
besluitvorming kan zetten. In tweede instantie zijn we niet blind voor
het feit dat in minder gecontroleerde omstandigheden, bijvoorbeeld bij
een milieu-crisis, data over blootstelling vaak veel schaarser en minder
goed gemeten zijn. In zo'n situatie is het noodzakelijk om de onzek-
erheid over het blootstellingsniveau expliciet onder ogen te zien en op
inzichtelijke wijze te betrekken in een statistische evaluatie van de bloot-
stelling en haar risico's. Ook voor zo'n situatie stellen we een algemene
analysemethode voor. We passen ze toe op beschikbare gegevensbron-
nen voor de Belgische dioxine-crisis in 1999. Een bondig overzicht van
de verschillende hoofdstukken volgt hieronder.

In hoofdstuk 2 hebben we voor verschillende variabelen samengevat welk
aspect van variabele therapietrouw ze belichten en onderzocht in welke
context zij van belang kunnen zijn. Daarnaast onderzoeken we condi-
tionele en marginale modellen om zo herhaalde metingen van dageli-
jkse binaire blootstelling tussen groepen te kunnen vergelijken. Het
hoofdstuk benadrukt de noodzaak om te beschikken over gedetailleerde
gegevens om zo krachtiger statistische technieken te kunnen ontwikkelen
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voor de vergelijking van gerandomizeerde groepen over de tijd.

In hoofdstuk 3 stellen we methoden voor om tijdsafhankelijke therapi-
etrouw te voorspellen. Hiervoor werd een auto-regressief model voor bi-
naire data ontwikkeld. We behandelen 'frailty' met behulp van een nor-
male verdeling voor random 'slopes' met een random 'intercept'. Mod-
elvalidatie en twee verschillende types klinisch relevante voorspellingen
worden beschreven en bediscussieerd.

In hoofdstuk 4 introduceren we de basis van populatie-pharmacokinetiek
en bespreken de invloed van variabele therapietrouw als grootste bron
van variatie in pharmaco-kinetische respons. We kwanti¯ ceren de im-
pact van geobserveerde variabiliteit in populatie-farmacokinetische stud-
ies met behulp van simulatie technieken. We ontwikkelen een methode
om een gedetailleerd blootstellingspatroon en onregelmatige uitkomsten
simultaan te analyseren. We concluderen dat wanneer het mogelijk is
om onregelmatige inname van een geneesmiddel te observeren, een sub-
stantile toename in de precisie van de schatting van pharmaco-kinetische
parameters kan worden bereikt.

In hoofdstuk 5 worden pharmaco-dynamische parameters geschat op ba-
sis van slechts enkele uitkomstmaten in een groep patiÄenten die variabele
therapietrouw vertonen. We onderzoeken de informatie matrix voor
hiÄerarchische non-lineaire modellen en stellen vast dat er tegelijk een
signi¯ cante reductie in vertekening en toename in precisie bereikt kan
worden door het observeren van onregelmatige inname. Dit hoofdstuk
bevestigt de claim dat variabele therapietrouw, als natuurlijk experi-
ment in variatie van doseren, een verbetering kan betekenen vanuit het
informatie standpunt. In het algemeen kan men stellen dat de schattin-
gen van pharmaco-kinetische en pharmaco-dynamische parameters fors
kunnen verbeteren indien de informatie over onregelmatige inname goed
gebruikt wordt.

In hoofdstuk 6 onderzoeken we het e®ect van therapietrouw op respons
onder de aanname dat therapietrouw niet selectief is. Als eerste stap
schatten we de individuele pharmaco-kinetische parameters met behulp
van een n-compartiment model, aangepast voor geobserveerde patronen
van inname. Daarna relateren we de farmacologische werking aan de
plasmaconcentraties. We passen deze methodologie toe in een HIV on-
derzoek als een eerste stap in de richting van een geÄ³ndividualiseerde
therapie voor de patiÄent. Tenslotte ontwikkelen we een nieuwe vari-
abele om therapietrouw samen te vatten, geÄ³nspireerd op het derde mo-
ment van de interdosis-interval verdeling, die toelaat om de relatie tussen
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doseringsgeschiedenis en respons direct te schatten.

In hoofdstuk 7 bekijken we het werkelijke biologische e®ect van het ge-
neesmiddel indien potentiÄele selectiviteit verwacht wordt. De method-
ologie spitst zich toe op causale inferentie in gerandomiseerd onderzoek
bij vergelijking van twee behandelingen. De methode wordt toegepast
op een studie met antidepressiva waar een sterk psychologisch e®ect
verwacht kan worden op respons.

In hoofdstuk 8 introduceren we twee dimensionale Monte Carlo sim-
ulaties als techniek om data uit verschillende bronnen te combineren.
Tussen-subject variabiliteit en onzekerheid door niet optimale datacol-
lectie of een vertekend steekproefplan worden geÄevalueerd onder een ex-
treem en minder extreem scenario. Simulatie is daarbij geen substituut
voor wiskunde maar levert een benadering voor het rekenwerk, vergeli-
jkbaar met de manier waarop de bootstrap methode de variantie van
een gecompliceerde puntschatting helpt berekenen. De simulatietech-
niek geeft ons meer mogelijkheden om complexe causale relaties tussen
blootstelling en uitkomst te evalueren.

Tenslotte bespreken we in het laatste hoofdstuk enkele algemene ideeÄen
die in de hele thesis terugkomen en verwijzen naar onderwerpen voor
verder onderzoek.


