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Introduction & Aims of the Thesis

During the last decade multifunctional polymers have been used in developing

controlled release systems, peroral peptide delivery and bioadhesive platforms for buccal,

nasal, vaginal and oral drug delivery. Multifunctional polymers should have have good

bio- or mucoadhesive properties. They can prolong the residence time of the drug

delivery system at the site of drug absorption. They can increase the contact between

delivery system and absorbing mucosa, resulting in a concentration gradient which can

favour drug absorption. Drug delivery systems based on multifunctional polymers can be

applied on specified mucosal tissues, such as the nasal, buccal and vaginal mucosa, to

improve and enhance the bioavailability of the drug. Multifunctional polymers are

supposed to improve the absorption of peptides across mucosal surfaces by increasing the

permeability of epithelial tissues and inhibiting proteolytic enzymes. In principle,

multifunctional polymers are hydrophilic macromolecules with good swelling properties.

Because of these physical properties, they have matrix forming properties and can be used

in sustained drug release systems (1Leuβen, 1996).

In this doctoral thesis multifunctional polymers were prepared by grafting starches

with poly(acrylic acid). Two grafting methods to obtain the starch-g-poly(acrylic acid)

copolymers were evaluated: 60Co irradiation and chemical modification. A second series

of multifunctional polymers was prepared by freeze-drying or spray-drying

starch/carboxylated polymer mixtures.

The starch-g-poly(acrylic acid) copolymers, the freeze-dried and spray-dried

starch/carboxylated polymer mixtures were evaluated as potential excipients for oral

peptide delivery. The in vitro inhibition potency of the polymers towards the proteolytic

enzyme trypsin was investigated. As most proteolytic enzymes have Ca2+ or Zn2+ at their

active sites and as a reduction of extracellular Ca2+ concentration results in an opening of

the tight junctions the calcium and zinc ion binding capacity of the multifunctional

polymers was determined. (Insulin was used as model peptide in in vivo studies.)

In the second part of the thesis, the starch-g-poly(acrylic acid) copolymers, the

freeze-dried and spray-dried starch/carboxylated polymer mixtures were evaluated as
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potential buccal and vaginal bioadhesive drug carriers. The ex vivo bioadhesion

properties and the mucosal irritation potency of the polymers were evaluated.

Testosterone (buccal-systemic absorption), nystatin (buccal-local treatment) and

metronidazole (vaginal) were used as model drugs in in vivo studies.

1Leuβen, Multifunctional polymers for peroral peptide absorption. Doctoral thesis, Leiden University, 1996.
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Chapter 1.1 Synthesis and Process Details

1.1.1 Starch-g-ploy(acrylic acid) copolymers

The starch-g-poly(acrylic acid) copolymers, also named grafted starches, were

synthesised by two different methods: 60Co irradiation and chemical modification. By

irradiation or chemical modification poly(acrylic acid) chains were grafted onto the starch

molecules.

1.1.1.1 Grafted starches synthesised by 60Co irradiation (IR)

These series of starch-g-poly(acrylic acid) copolymers were synthesised at the

Institutes for Applied Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel

by Professor Geresh’ group.

The starch was first pregelatinised by heating a stirred starch slurry in water (5 %

w/v) at 85°C for 30 min. By pregelatinisation the starch granules are gelatinised,

disrupted and solubilised, leading to a clear starch dispersion in water. The dispersion was

cooled to room temperature and the (partially neutralised) acrylic acid monomer (AA)

was added in varying amounts to the stirred starch dispersion. The graft polymerisation

reaction was initiated by γ-rays from a 60Co source (1300 rad/min). By 60Co irradiation

free radicals are formed on the starch backbone and the acrylic acid monomers are

allowed to polymerise and to react with the free radicals, resulting in starch-g-

poly(acrylic acid) copolymers (Figure 1). The starch/acrylic acid mixtures were irradiated

for 24h at room temperature. The gels so formed were cut into small pieces and dried in

air at ambient conditions. Finally, the dried gels were milled to obtain a powder with an

IKA Labortechnic Staufen Mill Type A 10 (IKA, Germany).

Table 1 shows the synthesis details of the 60Co irradiated starch-g-poly(acrylic

acid) copolymers. The irradiated grafted starches received the code IR.
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O

OH

OH

O

CH2OH

n

Starch

+ CH2 = CH - COOH

Acrylic Acid

Starch

(CH2 - CH-)x

COOH

Figure 1: Grafting reaction between starch and acrylic acid initiated by 60Co irradiation.

Polymer code Starch Starch/AA

ratio

Degree of

neutralisation

IR 1 Rice 1:5 1/5

IR 2 Rice 1:5 not neutralised

Table 1: Synthesis parameters of the 60Co irradiated grafted starches (IR).

Rice starch was used as former studies reported better bioadhesive properties with

rice starch based grafted starches than with potato or corn starch as starch source. The

ratio starch/acrylic acid was 1/5. One sample was partially neutralised (1/5), while the

second sample was not neutralised. The acrylic acid solution was neutralised to 1/5 with

NaOH before grafting.

Most starches such as rice, corn and potato are composed of two types of

polysaccharides: amylose and amylopectin.

Amylose is a linear polymer in which anhydroglucose units are linked by α-D-

(1,4) glucosidic bonds to form linear chains. The level of amylose and its molecular

weight vary between different starch types. Amylose molecules are typically made from

200-2000 anhydroglucose units. Aqueous solutions of amylose are very unstable due to

intermolecular attraction and association of neighbouring amylose molecules. This leads

 60CO

  24h
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to viscosity increase, retrogradation and, under specific conditions, precipitation of

amylose particles.

Amylopectin has a branched structure. In addition to α-D-(1,4) glucosidic bonds,

which are present in amylose and the linear segments of amylopectin, the amylopectin

molecule has α-D-(1,6) glucosidic bonds which occur every 20-30 anhydroglucose units.

The level of amylopectin varies between different starch types. Waxy starches contain

almost 100% amylopectin. Aqueous solutions of amylopectin are characterised by high

viscosity, clarity, stability, and resistance to gelling.

Starches from different sources contain different amounts of amylose. Corn starch

contains 28 % amylose, potato starch 20 % and rice starch 18.5%. (Young, 1984)
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1.1.1.2 Grafted starches synthesised by chemical modification

(CM)

The chemical modified starch-g-poly(acrylic acid) copolymers were synthesised

by National Starch and Chemical Company, Bridgewater, New Jersey, USA.

The chemical modified grafted starches were synthesised in two steps. First, the

starch was modified. The starch was reacted with allyl glycidyl ether (AGE) to introduce

olefinic functionality onto the starch polymer backbone (Figure 2). The used AGE

concentration was 0.2 or 0.5%. (Shih et al., 1987)

O

O

OH

OH

CH2OH

n

+ 

Starch

CH2-CHCH 2OCH2CH=CH2

O 

AGE

O

O

OR

OR

CH2OR

n

Starch

R:-H, -CH 2-CHCH 2OCH2CH=CH2

OH

Figure 2: Introduction of olefinic functionality onto the starch by chemical reaction with allyl

glycidyl ether (AGE).

In the second phase of the graft polymerisation process the unsaturated olefinic

groups will polymerise with acrylic acid. The AGE modified starch was cooked in

degassed water to obtain a starch solution. If required, acrylic acid was partially

neutralised in a separate beaker while cooled in an ice water bath. The cooked starch

solution was then mixed with the (partially neutralised) acrylic acid (AA) solution in the

required ratios. The polymerisation process was chemically initiated with potassium

persulfate (K2S2O8) and was performed under nitrogen at 75-80°C. By adding potassium

persulfate free radicals are formed and during the polymerisation process the unsaturated

olefinic groups will first react with the acrylic acid, while acrylic acid monomers will

polymerise into poly(acrylic acid) polymers, so forming starch-g-poly(acrylic acid)



Chapter 1   Multifunctional Polymers
Chapter 1.1   Synthesis and Process Details

8

copolymers (Figure 3). The polymerisation reaction was stopped by adding some drops of

a 1% hydroquinone/ethanol solution. The viscous polymer product was precipitated in

ethanol. After filtering off the ethanol/water fraction, drying and grinding (Cemontec

sample mill, MTI, Selters, Germany – room temperature) a white powder was obtained.

Figure 3: Graft polymerisation process initiated by potassium persulfate.

The chemical modified grafted starches were coded CM. Table 2 gives an

overview of the synthesis parameters of the CM starch-g-poly(acrylic acid) copolymers,

used.

Amioca (National Starch and Chemical Company) is a corn starch consisting

primarily of amylopectin (waxy corn). It is frequently used as a native thickener and

texturizing agent in the food industry. The rice starch used was a native waxy rice starch

(Remyline) and was obtained from Orafti, Tienen, Belgium.
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Polymer code Starch Starch/AA

ratio

[AGE]

%

Degree of

neutralisation

       CM 1 Amioca 1:3 0.2 ½

       CM 2* Amioca 1:3 0.2 ½

       CM 3 Amioca 1:3 0.5 ½

       CM 4 Amioca 1:3 0.5 not neutralised

       CM 5 Amioca 1:5 0.5 ½

       CM 6 Amioca 1:3 0.5 not neutralised**

       CM 7 Amioca 1:3 0.5 not neutralised***

       CM 8 waxy rice 1:3 0.5 ½

       CM 9 waxy rice 1:3 0.5 not neutralised***

      CM 10 waxy rice 1:3 0.5 ¼

      CM 11 waxy potato 1:3 0.5 ½

      CM 12 tapioca 1:3 0.5 ½

Table 2: Synthesis parameters of the chemically modified grafted straches (CM).

(*polymerised to a higher viscosity compared to CM 1)

(**Sodium carboxylate functions were converted to carboxylic acid with diluted HCl)

(***Ion exchange resin used to convert carboxylate groups to carboxylic acid)
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1.1.2 Freeze-dried starch/poly(acrylic acid) mixtures (FD)

The freeze-dried starch/poly(acrylic acid) mixtures were prepared by National

Starch and Chemical Company, Bridgewater, New Jersey, USA.

First, the starch was pregelatinised by jet cooking in a custom made jet cooker.

Temperature was set at 138°C, at a pressure of 3.1-3.2 bar and a flow rate of 1.2-1.5

liter/min. Steam jet cooking is an effective means of rapidly forming an aqueous starch

solution. A slurry of granular starch is brought into contact with high-pressure steam,

leading to the gelatinisation, disruption and solubilisation of the granules (Byars, 2003).

After jet cooking the obtained aqueous starch dispersion was mixed with an aqueous

solution (35% w/w) of a linear poly(acrylic acid) (PAA) (average Mw 250.000) (Sigma-

Aldrich, USA). The aqueous starch/PAA mixture was freeze-dried using a Flexi Dry

MP freeze-dryer (FTS Systems, Stone Ridge, NY, USA) to obtain a powder. After freeze-

drying some powders were additionally heat treated at 120°C during 15 min., intending to

effect cross-linking. (Foreman et al., 2000)

The poly(acrylic acid) used was a linear polymer of acrylic acid monomers with

an average molecular weight of 250.000 (PAA) (Figure 4).

Figure 4: Chemical structure of a linear poly(acrylic acid) (PAA).

The freeze-dried powder mixtures were coded FD. Table 3 gives the process

details of the used freeze-dried starch/PAA mixtures.
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Polymer

code

Starch PAA
(Mw)

Starch/PAA

ratio

Heat

Treated

FD 50/50 Amioca Linear (250.000) 1:1 No

FD 25/75 Amioca Linear (250.000) 1:3 No

FD 50/50 HT Amioca Linear (250.000) 1:1 Yes

FD 25/75 HT Amioca Linear (250.000) 1:3 Yes

Table 3: Details of the freeze-dried starch/PAA mixtures (FD).
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1.1.3 Spray-dried starch/carboxylated polymer mixtures

(SD)

The spray-dried starch/carboxylated polymer mixtures were prepared by National

Starch and Chemical Company, Bridgewater, New Jersey, USA.

As for the freeze-dried starch/PAA mixtures, the starch was first pregelatinised by

jet cooking. The obtained aqueous starch dispersion was then mixed with an aqueous

dispersion of a carboxylated polymer. The aqueous starch/carboxylated polymer mixture

was spray-dried using a Bowen spray-dryer model BE-1393 (Arnold Equipment

Company, Cleveland, OH, USA) to obtain a powder. After spray-drying some powders

were additionally heat treated at 120°C for 15 min. to induce cross-linking. (Ameye et al.,

2003)

As carboxylated polymer a linear poly(acrylic acid) (average Mw 250.000) (PAA)

(Sigma-Aldrich, USA), Carbopol 974P (a cross-linked poly(acrylic acid)) (C 974P) and

sodium carboxymethylcellulose (a cellulose derivate) (CMC) were used.

R

Figure 5. Structure of Carbopol 974P. R = cross-linking agent (allyl pentaerythritol)

Carbopol 974P (C 974P) (BF Goodrich, Cleveland, Ohio, USA) is a synthetic

water-swellable, high molecular weight, cross-linked acrylic acid-based polymer (Figure

5). C 974P is cross-linked with allyl pentaerythritol and is polymerised in ethyl acetate, a

n
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GRAS solvent. Carbopol 974P is a flocculated powder of primary particles. Each

primary particle can be viewed as a three-dimensional network structure of polymer

chains interconnected by cross-links, which result in a molecular weight in the billions.

Carbopol 974P is a pharmaceutical grade polymer and can be used as controlled

release agent in tablets, as bioadhesive agent in buccal, ophthalmic, nasal, intestinal,

vaginal, etc. applications, as a thickener, as suspending and emulsifying agent.

Sodium carboxymeyhylcellulose (CMC) (Sigma-Aldrich, USA) is a sodium salt

of carboxymethylcellulose, a semi-synthetic water-soluble polymer in which -CH2COOH

groups are substituted on the glucose units of the cellulose chain through an ether linkage

(Figure 6). The molecular weight (Mw) was 700.000 and the degree of substitution 0.65 –

0.85. It is used as a viscosity controller, thickener, suspending agent and emulsion

stabilizer.

Figure 6. The carboxymethylcellulose structure is based on the β-(1-4)-D-glucopyranose polymer of

cellulose.

National 5730 (National Starch and Chemical Company) is a waxy corn starch

pregelatinised by drum drying. During drum drying the starch is cooked and dried on

heated rolls at the same time. After pregelatinisation a starch is obtained which will

hydrate and swell in cold water.

Ultrasperse A (National Starch and Chemical Company) is a waxy corn starch

pregelatinised according a proprietary of National Starch and Chemical Company.
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Tapioca (National Starch and Chemical Company) is a native starch which has

application in powder and emulsion systems. It is also used in food products because of

its flavour advantage. Tapioca contains 16.7 % amylose (Young, 1984).

The spray-dried starch/carboxylated polymer mixtures were coded SD. Table 4

gives the details of the spray-dried mixtures, used.
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Polymer code Starch Carboxylated

Polymer

Ratio Heat

Treated

SD PAA 50/50 Amioca PAA 50/50 No

SD PAA 50/50 HT Amioca PAA 50/50 Yes

SD PAA 25/75 Amioca PAA 25/75 No

SD PAA 25/75 HT Amioca PAA 25/75 Yes

SD 25/75 HT Amioca Carbopol 974P 25/75 Yes

SD 25/75 Amioca Carbopol 974P 25/75 No

SD 50/50 Amioca Carbopol 974P 50/50 No

SD 60/40 Amioca Carbopol 974P 60/40 No

SD 70/30 Amioca Carbopol 974P 70/30 No

SD 75/25 Amioca Carbopol 974P 75/25 No

SD 80/20 Amioca Carbopol 974P 80/20 No

SD 85/15 Amioca Carbopol 974P 85/15 No

SD 90/10 Amioca Carbopol 974P 90/10 No

SD 95/5 Amioca Carbopol 974P 95/5 No

SD Nat 75/25 National 5730 Carbopol 974P 75/25 No

SD Ultra 75/25 Ultrasperse A Carbopol 974P 75/25 No

SD CMC 50/50 Amioca CMC 50/50 No

SD CMC 50/50 HT Amioca CMC 50/50 Yes

SD CMC 25/75 Amioca CMC 25/75 No

SD CMC 25/75 HT Amioca CMC 25/75 Yes

SD Rice 50/50 waxy rice PAA 50/50 No

SD Rice 50/50 HT waxy rice PAA 50/50 Yes

SD Tap 50/50 tapioca PAA 50/50 No

SD Tap 50/50 HT tapioca PAA 50/50 Yes

Table 4: Details of the spray-dried starch/carboxylated polymer mixtures (SD).



Chapter 1   Multifunctional Polymers
Chapter 1.1   Synthesis and Process Details

16

1.1.4 References

Ameye D., Remon J.P., Foreman P. and Richardson P., Bioadhesive composition

comprising a polysaccharide and a polycarboxylated polymer. PCT Patent WO

03/063839, August 7, 2003.

Byars J.A., Jet cooking of waxy maize starch: solution rheology and molecular weight

degradation of amylopectin. Cereal Chemistry 80 (1) (2003) 87-90.

Foreman P., Richardson P., Tsai J., Remon J.P., Voorspoels J., Ameye D. and Callens C.,

Bioadhesive composition. United States Patent, no. US 6,284,235 B1, September

4, 2001.

Geresh S., Gilboa Y., Peisahov-Korol J., Gdalevsky G., Voorspoels J., Remon J.P. and

Kost J., Preparation and characterization of bioadhesive grafted starch copolymers

as platforms for controlled drug delivery. J. Appl. Polym. Sci. 86 (5) (2002) 1157-

1162.

Shih, Y.-J., Tsai J.J.-H., Chia W.B. and Ray-Chaudhuri D.K., Inverse emulsions. United

States Patent, no. 4,690,996, September 1, 1987.

Young A.H., Fractionation of starch, in: R.L. Whistler, J.N. BeMiller and E.F. Paschall

(Eds), Starch: Chemistry and Technology, Academic Press Inc., 1984, pp. 249-

283.



Chapter 1   Multifunctional Polymers
Chapter 1.2   Scanning Electron Microscopy and Solid State NMR Analysis of Spray-Dried

Amioca/Carbopol 974P Mixtures

17

Chapter 1.2 Scanning Electron Microscopy
and Solid State NMR Analysis of

Spray-Dried Amioca/Carbopol 974P Mixtures

1.2.1 Introduction

The spray-dried Amioca/Carbopol 974P mixtures were analysed using

Scanning Electron Microscopy (SEM) and solid state NMR (Nuclear Magnetic

Resonance) spectroscopy to investigate interactions and miscibility at the molecular level.

The Scanning Electron Microscope (SEM) is designed for direct studying of the

surfaces of solid objects. By scanning with an electron beam that has been generated and

focused by the operation of the microscope, an image is formed. The SEM allows a

greater depth of focus than the optical microscope. For this reason the SEM can produce

an image that is a good representation of the three-dimensional sample. Electromagnets

are used to bend an electron beam. Once the electron beam hits the sample, other

electrons are ejected from the sample and collected by detectors and converted to a signal

that is sent to a viewing screen similar to the one in an ordinary television, producing an

image. Since the SEM uses electrons to produce an image, most conventional SEM's

require that the samples are electrically conductive. In order to view non-conductive

samples, these must be covered with a thin layer of a conductive material (i.e. gold,

platinum) using a sputter coater.

Solid state NMR spectroscopy and relaxometry is a powerful non-invasive and

non-destructive technique to investigate the segmental chain dynamics and molecular

miscibility of polymer blends and copolymers on the nanometer level (Komoroski, 1986;

Schmidt-Rohr and Spiess, 1996; Fedotov and Schneider, 1989; Adriaensens et al., 2002).

Below the glass transition temperatures (Tg), the proton relaxation decay times T1H and

T1ρH provide information about the level of heterogeneity (phase morphology) of a

polymer mixture on the nanometer scale due to the process of proton spin diffusion.

Under the condition of spin diffusion, both proton decay times can be directly related to

the dimensions of the molecular domains. The proton T1ρH decay time (spin-lattice
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relaxation time in the rotating frame), in the order of milliseconds, will be averaged out

over a short distance (in the order of 1-2 nanometer), making it a local property. Since the

T1ρH decay time is sensitive to molecular frequency motions of several tens of kilohertz, it

reflects the motion of short segments in the polymer chain. On the other hand, the T1H

decay time (spin-lattice relaxation time), in the order of seconds, is sensitive to the

spectral density of Larmor frequency motions (here 200 MHz) and is averaged out over a

larger distance (in the order of tens of nanometers), making it a more large-scale

molecular property. The maximum path length L, over which proton-proton spin-

diffusion can occur, is approximately given by

L ≈ (6DTiH)1/2 (1)

in which D is the spin diffusion coefficient (≈10-16m2/s for rigid solids) and TiH the decay

time T1H or T1ρH (McBrierty and Douglas, 1981). Measuring the proton decay times via

the chemical shift selective carbon signals by means of the 13C-CP/MAS (Cross

Polarisation/Magic Angle Spinning) technique allows to obtain information about the

degree of phase separation in polymer mixtures. The TiH decay time, as measured via the

carbon resonances of Amioca® will only be different from this measured via the carbon

resonances of Carbopol® 974P if molecular domains larger than L appear in the mixtures.

1.2.2 Materials

Carbopol 974P (C 974P) was supplied by BF Goodrich (Cleveland, Ohio, USA).

Amioca starch is a National Starch product (National Starch and Chemical Company,

Bridgewater, New Jersey, USA). All other chemicals used were of analytical grade.

1.2.3 Methods

1.2.3.1 Amioca/Carbopol 974P physical mixtures

Amioca/Carbopol 974P physical mixtures were prepared by blending granular

Amioca starch with Carbopol 974P in the required ratios.
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1.2.3.2 Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) pictures were made with a JEOL JSM 5600

LV (JEOL B.V. Europe, Zaventem, Belgium).

The SEM analyses were performed by Bart De Pauw at the Department of

Morphology (Prof. P. Simoens), Faculty of Veterinary Medicine, Ghent University,

Salisburylaan 133, B-9820 Merelbeke, Belgium.

1.2.3.3 Solid-state 13C-CP/MAS NMR

Solid state NMR analyses were performed by Dr. Peter Adriaenssens, Dr. Liesbet

Storme and Prof. Jan Gelan at the Institute for Materials Research (IMO), Division

Chemistry, Limburgs Universitair Centrum (LUC), Univeritaire Campus, Building D, B-

3590 Diepenbeek, Belgium.

Solid-state 13C-CP/MAS NMR spectra were recorded at room temperature on an

Inova 200 Varian spectrometer (Varian, Belgium) operating at a static magnetic field of

4.7 T. Magic angle spinning was performed at 3.1 kHz, making use of ceramic Si3N4

rotors.

1.2.4 Results and Discussion

Scanning Electron Microscopy

Figure 1 is a SEM picture of an Amioca®/Carbopol® 974P physical mixture (75/25

w/w) and shows a clear phase separation between the Amioca® starch granules and the

Carbopol® particles. The dimension of most of the starch granules is in the order of 10

µm, while the Carbopol® particles have dimensions situated between 1 and 10 µm. This

in contrast to a spray-dried Amioca®/Carbopol® 974P mixture with the same composition

(SD 75/25), in which no phase separated Carbopol® particles are observed (Figure 2).

In order to study the miscibility of the individual components, physical and spray-

dried mixtures of Amioca® starch and Carbopol® 974P were studied by 13C-CP/MAS

relaxometry.
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Figure 1. Scanning Electron Microscopy (SEM) picture of an Amioca/Carbopol 974P

75/25 (w/w) physical mixture.

Figure 2. Scanning Electron Microscopy (SEM) picture of a spray-dried Amioca/Carbopol

974P 75/25 (w/w) mixture (SD 75/25).
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Solid-state 13C-CP/MAS NMR spectroscopy and relaxometry

Figure 3 presents a typical 13C-CP/MAS spectrum of a spray-dried and physical

mixture of Amioca® starch and Carbopol® 974P (75/25 w/w). The signals of Amioca®

can be assigned as follows: the resonance around 100 ppm to the glycosidic carbon C1,

this around 60 ppm to C6, this around 79 ppm to C2 and those around 71 ppm to C3-C5

(Kalinowski et al., 1984). The signals of Carbopol® 974P appear around 22-50 ppm

(backbone methine and methylene) and 178 ppm (carbonyl carbon). It has to be noticed

that, independently of the mixture composition, the Amioca® C2 resonance (79 ppm) is

more resolved in the spray-dried mixtures as compared to the physical mixtures. This is a

first spectroscopic indication that points to a different interaction between Amioca® and

Carbopol® in the spray-dried and physical mixtures.

Figure 4 shows a plot of the T1H decay times as a function of the mixture

composition for physical mixtures of Amioca® starch and Carbopol® 974P. Independently

on the mixture composition, the T1H decay time obtained via the Carbopol® carbon

resonances is different as compared to the one observed via the Amioca® carbon

resonances.
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Figure 3. 13C-CP/MAS spectrum of a 75/25 (w/w) mixture of Amioca® starch

and Carbopol® 974P prepared by (a) spray-drying and (b) physical blending.
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Figure 4. The T1H relaxation decay time (s) as measured via the Amioca® carbon

signals ( ) and Carbopol® 974P signals ( ) vs. the composition (% w/w) of the

physical mixture.

Figure 5. The T1H relaxation decay time (s) as measured via the carbon signals of

Amioca® starch ( ) and Carbopol® 974P ( ) vs. the composition (% w/w) of the

spray-dried mixture.
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Figure 5 shows a plot of the T1H decay time as a function of the mixture

composition for the spray-dried mixtures of Amioca® starch and Carbopol® 974P. As

compared to the physical mixtures, the relaxation behaviour of the spray-dried mixtures is

clearly different. Independently on the mixture composition, all signals of the carbon

spectrum, these of Amioca® as well as those of Carbopol®, show the same T1H decay time

of which the value equals this of pure spray-dried Amioca® within experimental error.

In order to study the miscibility of Amioca® starch and Carbopol® 974P in the

spray-dried mixtures on the nanometer length scale, also the T1ρH decay times were

determined. Figure 6 shows a plot of the T1ρH decay times as a function of the mixture

composition for the spray-dried mixtures. The same situation as for T1H holds for the

mixtures with high Amioca® content (≥ 50% w/w). A single T1ρH decay time, for all

signals in the carbon spectrum, is observed. A completely different situation occurs for a

lower Amioca® content mixture (≤ 25% w/w). Although the observed T1ρH decay times

do not coincide with those of the pure components, the T1ρH decay times found via the

carbon resonances of Amioca® are clearly different from those obtained via the

Carbopol® signals.

Figure 6. The T1ρH relaxation decay time (ms) as measured via the Amioca®

carbon signals ( ) and Carbopol® 974P signals ( ) vs. the composition (%

w/w) of the spray-dried mixture.
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In the physical mixtures, the T1H decay time obtained via the Carbopol® carbon

resonances is, independently on the mixture composition, clearly different from this

observed via the Amioca® carbon resonances (Figure 4). This means that both

components in the mixtures have to be phase separated into molecular domains of which

the length scale exceeds several tens of nm. Based on the Carbopol® T1H decay time and

equation 1, it can be concluded that although the average size of the Carbopol® domains

decreases upon lowering the Carbopol® content, it still exceeds 30 nm for the low

Carbopol® content (15% w/w) mixture and 35 nm for the high Carbopol® content (75%

w/w) mixture. This is completely in agreement with the observation of large scale phase

separation in the SEM pictures (Figure 1).

With respect to the physical mixtures, the spray-dried mixtures behave completely

different. Independently on the mixture composition, all signals of the carbon spectrum,

these of Amioca® as well as those of Carbopol®, show the same T1H decay time of which

the value equals this of pure spray-dried Amioca® (Figure 5). This means that the process

of spin-diffusion transfers the Carbopol® magnetisation efficiently toward Amioca®

where it decays with the same time constant as the Amioca® magnetisation. Therefore, it

can be concluded that if molecular domains of Carbopol® are present in the spray-dried

mixtures, their dimension should be smaller than 25 nm (equation 1). Concerning the T1ρH

relaxation (Figure 6), a similar T1ρH decay time is observed for all signals in the carbon

spectrum for the SD 50/50 mixture. This means that both components of the mixture

seem to be homogeneously mixed (L = 1.2 nm for a T1ρH of 2.5 ms). Taking the high

Carbopol® content into account, this can only be explained by the formation of a film of

Carbopol® around the Amioca® granules. The same conclusion holds for the SD 75/25

and 85/15. A completely different situation starts to appear for higher Carbopol® contents.

Starting from 75% w/w Carbopol® 974P the T1ρH decay times found via the carbon

resonances of Carbopol® are clearly different from those obtained via the Amioca®

signals. It can be concluded that phase separation starts to take place for higher contents

of Carbopol® (≥ 75% w/w) resulting in molecular domains of Carbopol® that must exceed

1.5 nm. As a matter of fact, the Carbopol® domain size should be situated between 1.5 nm

(T1ρH) and 25 nm (T1H). If we assume that the Amioca® granules are still surrounded by a

film of Carbopol®, this means that the film thickness has to exceed 1.5 nm. Another

explanation can be found in phase separated Carbopol® nano-particles in addition to film

formation, as shown in Figure 7.
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Figure 7. Scanning Electron Microscopy (SEM) picture of a spray-dried

Amioca/Carbopol 974P 25/75 (w/w) mixture (SD 25/75). A phase separated

Carbopol 974P nano-particle is marked with the black arrow.

1.2.5 Conclusion

Scanning electron microscopy and solid state NMR spectroscopy and relaxometry

analysis, revealed that by spray-drying Amioca starch/Carbopol 974P mixtures,

Carbopol films are formed around the starch granules. At higher Carbopol

concentrations (75% w/w), individual Carbopol nano-particles can be found in addition

to film formation.
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Chapter 2.1 Introduction

2.1.1 Oral peptide and protein delivery

Recent advances in the structural elucidation of numerous natural peptides and

proteins, in the understanding of their role in several physiological processes and in the

use of biotechnological and recombinant DNA techniques for the production of a wide

variety of biologically active peptides and proteins which are therapeutically applicable

have stimulated considerable interest in establishing peptides and proteins as drugs in

therapy. In most cases such compounds are indicated for chronic therapy where they will

need to be administered by an appropriate delivery system. Different possible routes of

peptide and protein administration, avoiding the parenteral route, are still investigated.

They include nasal, transdermal, pulmonal, buccal and oral routes. (Lee, 1991; Lueβen et

al., 1994)

Several challenges confront the delivery of peptide and protein drugs. A major

challenge in using peptides and proteins as drugs is preservation of their structural

integrity until they reach their sites of action, which are often remote from the site of

administration. Another challenge in peptide and protein drug delivery, which is closely

related to the first, is to understand the magnitude of the enzymatic barrier in degrading

peptides and proteins that are administered orally, buccally, nasally, transdermally, etc.

An understanding of the nature of this barrier is essential to the development of

metabolically stable analogues, to the selection of protease inhibitors to control

proteolytic activity, to the selection of a delivery route and to formulation of peptide and

protein drug delivery systems. A third challenge is to overcome the resistance of the

mucosal membranes to the penetration by peptide and protein drugs. This requires an

understanding of the mechanisms of peptide and protein absorption from the mucosal

routes and the development of effective and safe absorption promoters. (Lee, 1991)

The oral route is more accepted by patients than any of the other mentioned

alternative routes. Successful oral peptide and protein delivery can only be achieved by

taking care of the particular physiological conditions of the gastro-intestinal tract. The
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stomach displays a very unfavourable environment for peptides and proteins due to the

low pH and high proteolytic activity. The main absorption barriers are shown in Figure 1.

Figure 1: Schematic representation of the physiological barriers against

peptide and protein absorption. (Lueβen, 1996)

Firstly, the metabolic barrier plays an important role by inactivating the peptide

drug before it reaches its site of absorption. It consists of luminal proteases (such as

trypsin, α-chymotrypsin, elastase, carboxypeptidase), brush border peptidases which are

incorporated or attached to the membrane of epithelial cells and cytosolic enzymes. From

these enzymes the luminal and the brush border enzymes play the most important role in

the digestion of peptide drugs. Cytosolic enzymes are more relevant in the case of

internalisation processes of the peptide drug into the epithelial cell such as endo- and

transcytosis. The second barrier is presented by the paracellular epithelial integrity of the

intestinal mucosa. Hydrophilic macromolecules, such as peptides, will most likely choose

the paracellular route rather than the permeation through the lipophilic cell membranes.

Passive diffusion of substances in between the cells is controlled by the integrity of

intercellular junctions, such as tight junctions. Thirdly, the mucus, covering the epithelial

cell surface, forms an efficient barrier against the diffusion of peptide drugs. The

continuous secretion of glycoproteins into the intestinal lumen creates a highly viscous
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gel which viscosity strongly increases in direction towards the cell surface. (Lueβen,

1996)

In general, poor absorption of peptides across mucosal surfaces is caused by the

high polarity and high molecular weight of this class of compounds and their

susceptibility to proteolytic degradation by luminal, brush border and cytosolic enzymes.

Intestinal absorption is further reduced by the hostile environment in the gastro-intestinal

tract caused by stong pH-extremes.

Next strategies for the oral absorption of peptides and proteins have been described:

• Use of absorption enhancers, such as surfactants, bile salts, fatty acids, chelating

agents, and salicylates (Aungst et al.).

Mesiha et al. (2002) investigated the hypoglycemic effect of orally given insulin

using different bile salts as absorption promoters in rabbits. Significant

hypoglycemic effects were achieved when insulin was orally given with palmitic

acid combined with the bile salt in the form of aqueous fatty acid dispersions. The

order of hypoglycemic enhancement was deoxycholate > cholate > glycholate >

glycodeoxycholate > taurodeoxycholate > no bile salts. Hosny et al. (2002)

studied the hypoglycemic effect of enteric-coated capsules containing sodium

salicylate as absorption enhancer in dogs. 25-30% reduction in plasma glucose

levels and a relative hypoglycemia of 12.5% relative to subcutaneous insulin

injection could be achieved.

• Use of enzyme inhibitors.

Lane et al. (1998) evaluated the effects of protease inhibitors aprotinin, bacitracin

and soybean trypsin inhibitor (STI) on insulin stability and absorption in a

perfused rat gut model. STI was less effective than bacitracin or aprotinin in

promoting insulin stability. In line with these results, bacitracin and aprotinin

produced higher plasma insulin levels than STI. Guggi et al. (2003) investigated in

vitro the efficacy of chitosan-inhibitor conjugates towards calcitonin degradation

by intestinal serine proteases. Protease inhibitors, Bowman-Birk inhibitor and

elastatinal, were covalently attached to chitosan, resulting in polymer-inhibitor

conjugates which showed excellent inhibitor efficacy towards trypsin/α-
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chymotrypsin and elastase, respectively, and were able to reduce significantly the

digestion of calcitonin caused by these proteases.

• Encapsulation of the drug in particular carriers.

Sakuma et al. (1997) synthesised polysterene nanoparticles to increase the oral

absorption of salmon calcitonin (sCT). The hypocalcemic effect after oral

administration of a mixture of salmon calcitonin and polysterene nanoparticles in

rats depended greatly on the administration schedule. Halved doses given 40 min.

apart, enhanced markedly the sCT absorption. Minimun blood ionised clacium

levels of 70% of the initial concentrations were obtained. Chung et al. (2002)

encapsulated insulin in ‘nano-cubicle’ particles, produced by dispersion of a liquid

formula in water, as carriers for peroral peptide delivery. Orally given ‘nano-

cubicles’ encapsulating insulin to streptozotocin-induced diabetic rats, increased

the serum insulin concentrations significantly compared to the basal

concentrations during 4 to 6h. Cournarie et al. (2002) evaluated the biological

activity and bioavailability of insulin given orally as insulin-loaded nanocapsules

in streptozotocin-induced diabetic rats. Thirty minutes to 1 h after oral

administration, significant plasma levels of insulin were detected, but no decrease

of glycemia was observed.

• Peptide analogues.

Based on the knowledge of the specificities and location of enzymes present in the

gastro-intestinal tract, it is possible to identify the most vulnerable bonds in the

structure of a therapeutic peptide and then to make chemical modifications to the

peptide to prevent cleavage by intestinal enzymes (Woodley, 1994). Analogues of

vasopressin (a nonapeptide) with a significant anti-diuretic effect have been

synthesised. Potentiation and prolongation of biological responses have been

achieved for enkephalins (pentapeptides with analgesic properties) by designing

synthetic analogues (Lee et al., 1991). But, these strategy seemed to be limited to

small peptides (10-12 amino acids) (Woodley, 1994).

Another approach consists in the use of mucoadhesive multifunctional polymers.

Such polymers are multifunctional macromolecules which are both able to increase the

permeability of epithelial tissues and simultaneously to inhibit proteolytic enzymes. With
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their mucoadhesive properties, these polymers are expected to make close contact to the

mucosa, thereby creating locally high drug concentrations in specified regions, improving

and enhancing the bioavailability of the drug.

Chitosan, a linear polysaccharide derived by N-deacetylation of the natural

polymer chitin, and its quaternised derivative N-trimethyl chitosan chloride have shown

to be able to enhance the absorption of hydrophilic and macromolecular compounds

across intestinal epithelia by interacting with components of the tight junctions, leading to

opening of the paracellular transport route. (Thanou et al., 2001; Jonker et al., 2002)

Lueβen (1996) evaluated the effect of the mucoadhesive cross-linked poly(acrylic

acid)s carbomer (Carbopol 934P) and polycarbophil on the proteolytic activity of

intestinal enzymes, such as trypsin, α-chymotrypsin and carboxypeptidases. Carbomer

and polycarbophil were able to inhibit trypsin, α-chymotrypsin and carboxypeptidase A.

Carbomer was found to be more efficient to reduce proteolytic activity than

polycarbophil. The pronounced binding properties for bivalent ions such as calcium and

zinc was found to be a major reason for the observed inhibitory effect (Lueβen et al.,

1996). It was shown that carbomer was able to influence the permeability of epithelial

cell monolayers in vitro. The depletion of extracellular Ca2+ was presumed to play the

major role in opening the tight junctions and establishing paracellular transport. It was

concluded that poly(acrylates) may be promising excipients to protect peptide drugs from

intestinal degradation. In combination with their low toxicity they were expected to be

suitable excipients to improve the peroral delivery of peptides (Borchard et al., 1996).



Chapter 2   Multifunctional Polymers for Oral Peptide Drug Delivery
Chapter 2.1  Introduction

33

2.1.2 In vitro evaluation of multifunctional polymers: Trypsin

inhibition and Calcium & Zinc ion binding

The enzymatic barrier is by far the most important of the multitude of barriers

limiting the absorption of natural peptide and protein drugs from the gastro-intestinal (GI)

tract. The enzymatic barrier is well designed to efficiently digest proteins and peptides to

a mixture of amino acids and small quantities of peptides consisting of two to six amino

acid residues prior to the appearance in portal circulation. In the GI tract, hydrolysis of

peptides and proteins can occur at several sites: luminally, at the brush border and

intracellularly. Protein and peptide digestion is initiated by pepsins, which are most active

at pH 2-3 but which become inactive at a pH above 5. Although they are capable of doing

so, pepsins rarely degrade proteins and peptides to amino acids. The partial digestion that

results is then acted upon by pancreatic proteases in the duodenum and beyond. These

proteases consist of trypsin, α-chymotrypsin, elastase and carboxypeptidase A. The first

three are endopeptidases, whereas the last is an exopeptidase. The three endopeptidases

have evolved to complement each other in cleaving almost all the internal peptide

linkages likely encountered in a wide spectrum of peptides and proteins. Trypsin prefers

to cleave peptide bonds near basic amino acids such as arginine and lysine. By contrast,

α-chymotrypsin preferentially cleaves peptide bonds near hydrophobic linkages such as

leucine, methionine, phenylalanine, tryptophan and tyrosine. Elastase complements the

other two proteases by cleaving peptide bonds near alanine, glycine, isoleucine, leucine,

serine and valine (peptide bonds of amino acids bearing smaller, unbranched,

nonaromatic side chains). Carboxypeptidase A is a C-terminal exopeptidase. These

pancreatic enzymes are responsible for only 20% of the enzymatic degradation of

ingested peptides and proteins. The remainder of the degradation occurs upon contact

with proteases of the brush border or following entry into the cell (cytosolic proteases).

(Lee et al., 1991)

It is clear that trypsin plays a key role in initiating the degradation of orally

administered peptide drugs and in activating the zymogen forms of a lot of pancreatic

peptidases (Woodley, 1994). Many proteases have bivalent cations as calcium and zinc as

essential co-factors within their structure. The endopeptidases trypsin and α-

chymotrypsin are Ca2+ containing proteases, elastase is a zinc metalloprotease, while
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carboxypeptidase A belongs to the group of Zn2+-dependent exopeptidases (Lueßen et al.,

1996). Several research groups have reported that the complexation of Ca2+ or Zn2+ from

proteolytic enzymes reduces or totally inhibits the proteolytic activity in the lumen. The

complexation of Ca2+ and Zn2+ by poly(acrylic acid) formulations (e.g. Carbopol 934P)

can be advantageous for peptide and protein drugs to prevent intestinal degradation and to

enhance absorption. (Lueβen et al., 1995; Akiyama et al., 1996; Ooya et al., 2002)

Figure 1. Schematic representation of the trans- and paracellular

pathway in transporting epithelia with the tight junction.

The absorption barrier in the intestine is represented by epithelial cell membranes

interconnected by tight junctions. The intactness of the tight junctions is linked to the

presence of Ca2+ and Mg2+ ions. The reduction of extracellular Ca2+ concentration can

result in an opening of the tight junctions, allowing paracellular peptide drug transport

(Borchard et al., 1996). The so-called paracellular pathway is the aqueous pathway along

the intercellular space of cells, which is restricted by tight junctions at the apical side of

the cells. The aqueous nature of this pathway makes it the favourable route of transport

across cell layers for hydrophilic compounds such as peptide and protein drugs, avoiding

crossing the lipophilic cell membrane. The transport of the compounds via this route is by

passive diffusion through the intercellular space. The main limitation in this transport is

Paracellular
pathway

Transcellular
pathway
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the size of the tight junctional “channel” (Figure 1). The tight junction is a proteinaceous

structure at the apical side of the intercellular space interconnecting the cell membranes

of two adjacent cells. One of the main functions attributed to the tight junctions is to form

a restriction in the permeability of solutes and water via the paracellular way. (Noach et

al., 1994).

A critical ion necessary for the integrity of the tight junctions is Ca2+. Reduction

of the extracellular Ca2+-concentration results in an opening of the tight junctions. The

mucoadhesive poly(acrylic acid) Carbopol 934P (carbomer) was able to influence the

permeability of epithelial cell monolayers in vitro by depletion of extracellular Ca2+.

Taking the additional capabilities of Carbopol 934P to inhibit proteolytic enzymes and

its mucoadhesive properties into consideration, it might be concluded that multifunctional

poly(acrylic acid) formulations can play an important role in the design of drug

formulations for oral peptide drug delivery. (Borchard et al., 1996)

As the most proteolytic enzymes have Ca2+ or Zn2+ at their active sites and as a

reduction of extracellular Ca2+ concentration results in an opening of the tight junctions,

the in vitro inhibition potency of the newly synthesised starch-g-poly(acrylic acid)

copolymers and freeze-dried / spray-dried starch/carboxylated polymer mixtures towards

the proteolytic enzyme trypsin and the Ca2+ and Zn2+ ion binding capacity of these

multifunctional polymers was investigated.
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Chapter 2.2 Optimisation of an
In Vitro Procedure for the Determination

of the Enzymatic Inhibition Potency of
Multifunctional Polymers

2.2.1 Introduction

The two major barriers to peptide and protein absorption from the gastro-intestinal

tract are enzymatic degradation and permeation across the intestinal epithelium. To

overcome these barriers several approaches have been tried: coadministration of peptides

with protease inhibitors and absorption enhancers, structural modifications of the peptide

to prevent proteolytic attack, and carrier systems to protect the peptide from enzymatic

attack and to release the drug at the site of the gut most favourable for absorption (Walker

et al., 1999).

As peptides and proteins will most likely choose the paracellular route rather than

the permeation through the lipophilic cell membranes, the luminal and membrane bound

enzymes play the most important role in their digestion. Luminal enzymes such as the

endopeptidases trypsin and α-chymotrypsin, often initiate the degradation of perorally

administrated peptides. A variety of exopeptidases, such as carboxypeptidases and

aminopeptidases, which are mainly embedded in the brush border membrane of the

intestinal epithelium, but are also present in the lumen of the gut, will further digest the

resulting fragments. (Lueßen et al., 1994; Lueßen et al., 1996; Woodley, 1994)

Several studies have already investigated the potency of multifunctional polymers

to inhibit the proteolytic enzyme trypsin using an in vitro trypsin inhibition test. It has

been shown that the mucoadhesive poly(acrylates) Carbopol 934P and polycarbophil

were able to inhibit some proteolytic enzymes like trypsin, due to Ca2+ depletion from the

enzyme structure (Lueßen et al., 1996). The calcium binding capacity of poly(methacrylic

acid) grafted with poly(ethylenegycol) (P(MAA-g-EG)) was related directly to a

significant ability to inhibit the enzyme trypsin (Madsen and Peppas, 1999). In another

study it was concluded that the trypsin inhibition by Carbopol® 934P was due to an
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enzyme-polymer interaction (Walker et al., 1999). However, in the described inhibition

assays the enzymatic reaction was never biochemically optimised.

In the present study an in vitro trypsin activity assay was biochemically optimised

and validated for the evaluation of the inhibition capacity of newly synthesised starch-g-

poly(acrylic acid) copolymers and freeze-dried / spray-dried starch/carboxylated polymer

mixtures.

2.2.2 Materials and Methods

2.2.2.1 Materials

Trypsin (TPCK treated from bovine pancreas), N-α-benzoyl-L-arginine-ethylester

(BAEE), N-α-benzoylarginine (BA) and 2-[N-morpholino]ethane-sulfonic acid (MES)

were purchased from Sigma-Aldrich, Bornem, Belgium. Carbomer (Carbopol 934P) was

a gift from BF Goodrich (Cleveland, Ohio, USA). All other chemicals used were at least

of analytical grade.

The buffer system used in the trypsin inhibition study was a 50 mmol/l 2-[N-

morpholino]ethane-sulfonic acid (MES) / KOH buffer, pH 6.7, containing 250 mmol/l

mannitol.

2.2.2.2 HPLC analysis

HPLC analysis was performed with a HPLC system consisting of an isocratic

HPLC pump (type L-7110, Merck-Hitachi, Darmstadt, Germany), an injector with a loop

of 20 µl (Valco 6 channel injector, Valco Instruments Corporation, Houston, USA), a UV

detector (type L-7400, Merck-Hitachi, Darmstadt, Germany) and a software interface

(type D-7000, Merck-Hitachi, Darmstadt, Germany). Data were calculated with the

software package ‘HPLC System Manager’ (Merck-Hitachi, Darmstadt, Germany). The

column was a Lichrosorb 7 RP 18 column (100 x 3.0 mm) equipped with a RP precolumn

(10 x 2 mm) (Chrompack, Antwerpen, Belgium). The mobile phase, used as an isocratic

eluent, consisted of 86 % (v/v) 10 mmol/l ammonium acetate buffer pH 4.2 with 10
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mmol/l triethylamine and 14 % (v/v) acetonitrile. The analysis was performed at room

temperature.

Amounts of 20 mmol/l N-α-benzoyl-L-arginine-ethylester (BAEE), the model

substrate for trypsin, were dissolved in the polymer preparation containing 0.25 % (w/v)

Carbopol 934P dispersed in a 50 mmol/l MES/KOH buffer, pH 6.7, with 250 mmol/l

mannitol. The pH of the test medium was 6.7 and was within the optimal activity range of

trypsin, which is between pH 6 and 9 (Scharpé et al., 1997). At time zero 30 Enzymatic

Units trypsin/ml (enzymatic activity determined according the Enzymatic Assay of

Trypsin used by Sigma-Aldrich, Bornem, Belgium) were added to the polymer

preparation, after which the solution was incubated at 37 °C for 1 h. 50 µl of sample was

withdrawn at predetermined time intervals and diluted in 1.0 ml 0.1M HCl to stop the

trypsin activity. The degradation of the substrate BAEE was studied by following the

formation of the metabolite N-α-benzoylarginine (BA) by HPLC with UV detection at

253 nm. BA concentrations were calculated from a calibration curve of BA standards in

distilled water. The retention time of the metabolite peak was 1.3 min after injection of 20

µl at a flow rate of 0.75 ml/min.

The degree of trypsin inhibition was expressed by the Inhibition Factor (IF):

IF = reaction ratecontrol  / reaction ratepolymer

The IF is defined as the ratio of the reaction rate of the metabolite concentration

time curve for the enzymatic reaction carried out without polymer (control) and with

polymer, respectively. The reaction rate was calculated by linear regression analysis of

the N-α-benzoylarginine (BA) concentration versus reaction time.

2.2.2.3 BAEE-Carbopol® complex

Formation of a complex between substrate and poly(acrylic acid) was

quantitatively determined by filtration of polymer preparations containing different
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BAEE concentrations over Ultrasart D 20 filters with a cut off value of 20.000 (Sartorius

AG, Göttingen, Germany).

Amounts of N-α-benzoyl-L-arginine-ethylester (BAEE) varying from 0 to 30

mmol/l were dissolved in the polymer preparation containing 0.25 % (w/v) Carbopol

934P dispersed in a 50 mmol/l MES/KOH buffer, pH 6.7, with 250 mmol/l mannitol.

After filtration, BAEE concentrations in the filtrate were spectrophotometrically analysed

at 253 nm by means of a Perkin Elmer Lambda 12 UV-VIS double beam

spectrophotometer (Zaventem, Belgium). BAEE concentrations were calculated from a

calibration curve of BAEE standard solutions in the MES/KOH buffer (pH 6.7 + 250

mmol/l mannitol). Coefficients of variation on the filtration method were < 5%.

2.2.3 Results and Discussion

Trypsin inhibition assays have been described by Lueβen et al. (1996), Madsen

and Peppas (1999) and Walker et al. (1999). However, in these assays the enzymatic

reaction was not biochemically optimised. The used substrate concentrations were too

low in proportion to the enzymatic activities or the enzymatic activity was too high for

the used substrate concentration, so that the metabolite concentration versus time curves

reached very fastly a plateau or post-steady state because of exhaustion of the substrate.

Although Walker et al. (1999) stated that the formation of BA from BAEE in the presence

and absence of Carbopol® 934P was constant over the period assayed, it is incorrect to

describe these test conditions as the linear or steady state part of the metabolite versus

time curve. Formation of the metabolite BA was followed by HPLC analysis (Lueβen et

al., 1996; Madsen and Peppas, 1999) or by change in absorbance at 252 nm (Walker et

al., 1999), where there is an interference of the substrate BAEE with BA. The degree of

trypsin inhibition was expressed by the Inhibition Factor which was defined as the ratio of

the AUC value of the metabolite concentration versus time curve for the reaction without

polymer (control) and with polymer, respectively (Lueβen et al., 1996; Madsen and

Peppas, 1999) or as a percentage of the control (Walker et al., 1999). Such an AUC value

is obtained by integrating at varying reaction orders until the enzyme becomes inactive or

the substrate is exhausted. When the shapes of the curves are not identical, great
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uncertainties in data interpretation occur. These different trypsin inhibition assays make it

very difficult to evaluate and to compare trypsin inhibition capacities.

In the present study a validated HPLC method was used to analyse BA

concentrations and the enzymatic reaction was biochemically optimised.

2.2.3.1 Validation of the HPLC method

The HPLC analysis method was validated based on the International Conference

Harmonisation (ICH) Harmonised Tripartite Guidelines for validation of analytical

procedures (1994). The following validation characteristics were considered: specificity,

linearity, accuracy, precision, detection and quantification limit.

2.2.3.1.1 Specificity

Specificity is the ability to assess unequivocally the analyte in the presence of

other (interfering) components.

Specificity was assessed by comparing the chromatograms of N-α-

benzoylarginine (BA) in distilled water (standard of the calibration curve) (a), in a control

sample (b) and in a polymer sample (c) under inhibition test conditions (Figure 1). From

Figure 1 it is clear that no interfering peaks could be observed. Thus, it was concluded

that the method was specific for the determination of the metabolite N-α-benzoylarginine

as there was no interference of the substrate BAEE, the enzyme, the buffer solution or

dispersed polymer. The retention time of the N-α-benzoylarginine peak was 1.3 min after

injection.
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Figure 1. Chromatograms of N-α-benzoylarginine (BA) in distilled water (standard of the calibration

curve) (a), in a control sample (b) and in a polymer sample (c) under inhibition test conditions.

N-α-benzoylarginine (BA)

N-α-benzoylarginine (BA)

(c)

(b)

N-α-benzoylarginine (BA)(a)
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2.2.3.1.2 Linearity

The linearity of an analytical procedure is its ability – within a given range – to

obtain test results, which are directly proportional to the concentration of analyte in the

sample.

Calibration curves of N-α-benzoylarginine (BA) were prepared in distilled water

over a range from 0.01 mM to 0.4 mM (5 concentrations). A blank was included in the

calibration curve. During validation and analysis different calibration curves were

determined. Table 1 gives the slope, the Y-intercept and the determination coefficient

(R2) of the mean regression line (n = 6) determined within one day and over different

days. The mean value (n = 6), the standard deviation (SD) and the coefficient of variation

(CV) are given.

Within 1 day variation Day-by-day variation

mean SD CV (%) mean SD CV (%)

Slope 6284682 16375 0.26 6295749 26008 0.41

Y-intercept 12672 1791 14.14 11928 2317 19.42

R2 0.9999 0.0001 0.0074 0.9998 0.0001 0.0086

Table 1. Slope, Y-intercept and determination coefficient of the mean regression line (n = 6) determined

within one day (within 1 day variation) and over different days (day-by-day variation).

From Table 1 it is clear that the relationship between response and concentration

was linear and reproducible. The determination coefficients of all measured calibration

curves were all higher than 0.9997 with coefficients of variation lower than 0.01%, both

for within 1 day and day-by-day variation. The coefficients of variation on the slopes

were lower than 0.5%.

2.2.3.1.3 Accuracy

The accuracy of an analytical procedure expresses the closeness of agreement

between the true value and the value found and is expressed as the percent agreement

between the mean determined value and the true concentration.

The accuracy was investigated at three concentration levels on standards

containing a known BA amount covering the range of the calibration curve: 0.02 mM –
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0.1 mM and 0.3 mM. The three concentration levels were submitted to the normal

inhibition test procedure and were measured without polymer (control) and in presence of

the reference polymer Carbopol 934P (polymer). Each concentration was determined six

times. The mean accuracies ± standard deviations (SD) are listed in Table 2.

Accuracy (%)

   [BA] Control Polymer

0.02 mM 90.98 ± 0.82 88.37 ± 0.88

0.10 mM 100.12 ± 0.64 98.69 ± 0.98

0.30 mM 98.85 ± 1.01 97.06 ± 1.46

Table 2. Accuracy (%) measured without polymer (Control) and in presence of

the reference polymer (Polymer). (n = 6, mean ± SD)

All mean values were within ± 15% of the actual concentration. (Acceptance

criteria: within 15% of the actual value, Shah et al., 1992)

2.2.3.1.4 Precision

The precision expresses the closeness of agreement between repeated

determinations of the same sample. Precision may be considered at three levels:

repeatability, intermediate precision and reproducibility. Repeatability or intra-assay

precision expresses the precision under the same operating conditions over a short

interval of time. Intermediate precision expresses within laboratory variations such as

different days, different analysts, different equipment, etc. Reproducibility expresses the

precision between different laboratories (inter-laboratory). Precision is expressed as the

coefficient of variation (%) of a series of measurements of the calibration standards.

Here, all analyses were performed in the same laboratory, so only the repeatability

(within one day) and intermediate precision (day-to-day) were evaluated.

The repeatability and intermediate precision were calculated on six calibration

curves (n = 6). The standard deviation (SD) and coefficient of variation (CV) were

calculated. (Table 2, Table 3)
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[BA] Repeatability

mM Mean ± SD CV (%)

0.01 0.0080 ± 0.0001 2.02

0.05 0.0499 ± 0.0003 0.29

0.10 0.1019 ± 0.0003 0.29

0.25 0.2518 ± 0.0013 0.48

0.40 0.3985 ± 0.0007 0.34

Table 2. Repeatability. (n = 6) (mean ± standard deviation (SD) and coefficient of

variation (CV))

[BA] Intermediate Precision

mM Mean ± SD CV (%)

0.01 0.0079 ± 0.0002 2.97

0.05 0.0499 ± 0.0004 0.40

0.10 0.1019 ± 0.0004 0.30

0.25 0.2519 ± 0.0017 0.76

0.40 0.3984 ± 0.0009 0.45

Table 3. Intermediate precision. (n = 6) (mean ± standard deviation (SD) and

coefficient of variation (CV))

As well for repeatability as for intermediate precision, all coefficients of variation

did not exceed 15%. (Acceptance criteria: CV < 15%, Shah et al., 1992)

2.2.3.1.5 Detection and quantification limit

The detection limit of an analytical procedure is the lowest amount of analyte in a

sample which can be detected but not necessarily quantitated as an exact value, while the

quantification limit is the lowest amount which can be quantitatively determined with

suitable precision and accuracy.
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The detection limit was determined by the analysis of samples with known

concentrations of analyte and by establishing the minimum level at which the analyte

could be reliably detected (CV < 20%) (Vermeire, 1998). The detection limit was 0.003

mM (CV = 12.25%, n = 10).

The quantification limit was determined by the analysis of samples with known

concentrations of analyte and by establishing the minimum level at which the analyte

could be quantified with acceptable accuracy and precision. The quantification limit was

0.010 mM: accuracy < 15% of the actual concentration and precision around the mean

value < 15% CV (n = 10). (Shah et al., 1992)

2.2.3.2 Biochemical optimisation of the enzymatic reaction

Several substrate (BAEE) concentrations and enzymatic activities of trypsin were

evaluated aiming at extracting the linear or steady state part of the metabolite versus time

curve of the enzymatic degradation reaction (Figure 2, Figure 3).

The reaction rate during steady state provides more consistent information about

the initial rate of the enzymatic degradation than the AUC values, reported by Lueβen et

al. (1996) and Madsen and Peppas (1999), which can only give an estimation of the

average rate. As the initial rate is a better measure for the enzyme activity the Inhibition

Factor (IF) is more accurately described by the ratio of reaction rates. By using the curves

described by Walker et al. (1999), it is difficult to determine the correct inhibition

strength by the reaction rates.

Working at steady state conditions has the advantage that both free enzyme and

enzyme-substrate complex concentrations remain constant and that there is a constant

decrease of free substrate and increase of product (Figure 2).

According to the Michaëlis-Menten theory v =  V x S0  / (Km + S0), in which v is

the degradation rate as function of substrate concentration at t=0 (S0), V is the maximum

degradation rate and Km is the Michaëlis-Menten constant of BAEE.
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Figure 2: The steady state in enzyme kinetics. The concentrations of

substrate [S], enzyme-substrate complex [ES] and product [P] vary with

time. After a very brief initial period , [ES] reaches a steady state in which

ES is consumed approximately as rapidly as it is formed. During steady

state decrease of free substrate and increase of product is constant.

(Mathews and Van Holde, 1996)

A BAEE concentration of 20 mmol/l and a trypsin activity of 30 Enzymatic

Units/ml (enzymatic activity determined according the Enzymatic Assay of Trypsin used

by Sigma-Aldrich, Bornem, Belgium) were used. As the Michaëlis-Menten constant

equals 0.05 mmol/l (Barman, 1969), working at a substrate concentration of 20 mmol/l

corresponds to 99.8% of the maximal reaction rate, and hence the degradation rate is

independent of substrate concentration. With a substrate concentration of 20 mM BAEE

and a trypsin activity of 30 Enzymatic Units/ml the determination coefficients for the

control (without polymer) and the polymer were never below 0.999 and 0.995,

respectively. Using enzyme activities between 0 and 40 Enzymatic Units/ml the reaction

rate was directly proportional to the enzyme concentration (determination coefficient of

0.9999).
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Figure 3: Formation of N-α-benzoylarginine (BA) due to the degradation of N-α-

benzoyl-L-arginine-ethylester (BAEE) by trypsin in presence of Carbopol 934P

(carbomer) 0.25 % (w/v) , and without any polymer (control) . (n = 3, mean ±

SD)

Now the Inhibition Factor can be defined as the ratio of the reaction rate of the

metabolite versus time curve without polymer (control) and with polymer (Figure 3). In

the case of Carbopol® 934P the IF was 2.7.

IF = reaction rate control  / reaction rate polymer

2.2.3.3 BAEE - Carbopol complex

During the optimisation of the trypsin inhibition test formation of an ion complex

in the MES/KOH buffer, pH 6.7, with 250 mmol/l mannitol, between the substrate BAEE

and the carboxylic groups of the poly(acrylic acid) was observed. The formation of the

complex was concentration dependent, reached a plateau at 20 mmol/l BAEE and was

visually observed as with an increasing concentration of BAEE a higher degree of

cloudiness of the solution was seen (Figure 4).
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Figure 4: Formation of a concentration dependent complex between 20 mmol/l N-

α-benzoyl-L-arginine-ethylester (BAEE) and 0.25 % (w/v) Carbopol 934P.

After filtration a control sample (without polymer) containing 20 mM BAEE, 0 %

complexation was found, indicating there was no binding of BAEE to the membrane

during filtration.

When comparing the linear progress functions of metabolite formation (BA)

during 1 h of a control sample containing 20 mM and 12.86 mM (20 mM – 35.71 %

complexation) substrate BAEE, respectively, similar reaction rates were obtained. The

reaction rates were 0.0052 (20 mM) and 0.0053 (12.86 mM). Also in presence of 0.25%

(w/v) Carbopol 934P, no differences in reaction rates were observed. 20 mM and 12.86

mM BAEE resulted in a reaction rate of 0.0019 and 0.0018, respectively.

Thus, as long as there is an excess of the substrate present in the given reaction

circumstances and the maximal reaction rate is approached, the influence of this complex

formation between substrate and polymer on the enzymatic reaction is nihil. Nevertheless

when performing enzyme inhibition tests this complex formation has to be taken into

consideration.
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2.2.4 Conclusion

An in vitro trypsin inhibition test procedure was biochemically optimised and

validated. This method allows to characterise, evaluate and compare the in vitro trypsin

inhibition strength for most multifunctional polymers. The measurements are carried out

in steady state conditions at 99.8% of the maximal reaction rate. Hence the Inhibition

Factor (IF), defined as the ratio of reaction rate without polymer to the reaction rate with

polymer, is a good measure of the in vitro inhibitory capacity of multifunctional polymers

towards gastro-intestinal proteolytic activity.
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Chapter 2.3 Trypsin Inhibition,

Calcium and Zinc Ion Binding Study

2.3.1 Introduction

As already mentioned, the two major barriers for successful oral peptide delivery

are enzymatic degradation and permeation across the gastro-intestinal epithelium. The

potential of the grafted starches and the freeze-dried / spray-dried starch/carboxylated

polymer mixtures as excipients for oral peptide and protein delivery was in vitro

evaluated by measuring the trypsin inhibition potency and the Ca2+ and Zn2+ binding

capacity of these multifunctional polymers. Carbopol 934P was used as a reference

polymer.

2.3.2 Materials

Trypsin (TPCK treated from bovine pancreas), N-α-benzoyl-L-arginine-ethylester

(BAEE), N-α-benzoylarginine (BA) and 2-[N-morpholino]ethanesulfonic acid (MES)

were purchased from Sigma-Aldrich (Bornem, Belgium). Carbopol 934P (C 934P) and

Carbopol 974P (C 974P) were a gift from BF Goodrich (Cleveland, Ohio, USA).

Calcium chloride dihydrate (CaCl2.2H2O) and zinc chloride (ZnCl2) were purchased from

Merck Eurolab (Leuven, Belgium). All other chemicals used were at least of analytical

grade.

2.3.3 Methods

2.3.3.1 Trypsin inhibition study

The in vitro trypsin inhibition potency of the multifunctional polymers was

determined using an optimised and validated trypsin inhibition assay (Chapter 2.2)
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(Ameye et al., 2000) and was compared to Carbopol 934P, the reference polymer

(Lueßen et al., 1996).

Amounts of 20 mmol/l N-α-benzoyl-L-arginine-ethylester (BAEE), the model

substrate for trypsin, were dissolved in the polymer preparation containing 0.25 % (w/v)

polymer dispersed in a 50 mmol/l MES/KOH buffer, pH 6.7, with 250 mmol/l mannitol.

At time zero 30 Enzymatic Units trypsin/ml (enzymatic activity determined according the

Enzymatic Assay of Trypsin used by Sigma-Aldrich, Bornem, Belgium) were added to

the polymer preparation, after which the solution was incubated at 37 °C for 1 h. 50 µl of

sample was withdrawn at predetermined time intervals and diluted in 1.0 ml 0.1M HCl to

stop the trypsin activity. The degradation of the substrate BAEE was studied by following

the formation of the metabolite N-α-benzoylarginine (BA) by HPLC with UV detection

at 253 nm.

HPLC analysis was performed with a HPLC system consisting of an isocratic

HPLC pump (type L-7110, Merck-Hitachi, Darmstadt, Germany), an injector with a loop

of 20 µl (Valco 6 channel injector, Valco Instruments Corporation, Houston, USA), a UV

detector (type L-7400, Merck-Hitachi, Darmstadt, Germany) and a software interface

(type D-7000, Merck-Hitachi, Darmstadt, Germany). Data were calculated with the

software package ‘HPLC System Manager’ (Merck-Hitachi, Darmstadt, Germany). The

column was a Lichrosorb 7 RP 18 column (100 x 3.0 mm) equipped with a RP precolumn

(10 x 2 mm) (Chrompack, Antwerpen, Belgium). The mobile phase, used as an isocratic

eluent, consisted of 86 % (v/v) 10 mmol/l ammonium acetate buffer pH 4.2 with 10

mmol/l triethylamine and 14 % (v/v) acetonitrile. The retention time of the metabolite

peak was 1.3 min after injection of 20 µl at a flow rate of 0.75 ml/min. The analysis was

performed at room temperature.

The degree of trypsin inhibition was expressed by the Inhibition Factor (IF). The

IF is defined as the ratio of the reaction rate of the metabolite concentration time curve for

the enzymatic reaction carried out without polymer (control) and with polymer,

respectively. The reaction rate was calculated by linear regression analysis of the N-α-

benzoylarginine (BA) concentration versus reaction time. The determination coefficients

of the linear progress functions during 1h of incubation time were > 0.995.
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IF = reaction ratecontrol  / reaction ratepolymer

The IF values were statistically compared to the reference polymer using a non-

parametric Kruskal-Wallis test followed by a post hoc Dunn procedure at a significance

level of p < 0.05. (Rosner, 1995)

2.3.3.2 Calcium and Zinc ion binding study

The capability of the starch-g-poly(acrylic acid) copolymers and the freeze-dried

starch/poly(acrylic acid) mixtures to bind the bivalent ions Ca2+ and Zn2+ was

investigated at pH 6.7 and pH 6.0, respectively, and was compared to Carbopol 934P (C

934P). The multifunctional polymers were dispersed at a concentration of 0.25% (w/v) in

a 50 mM MES/KOH buffer, pH 6.7 or 6.0 (without mannitol). To a homogeneous

polymer dispersion a buffered CaCl2.2H2O solution or a ZnCl2 solution in 0.01 N HCl

was added to each preparation to give a final Ca2+ or Zn2+ concentration of 20 mM, and

the samples were incubated for 2h at 37°C. After incubation the samples were centrifuged

at 2578 g for 45 min. (Tehtnica Centric 322 A, Novolab, Belgium). The Ca2+ and Zn2+

content in the supernatant was analysed by atomic absorbance spectroscopy. The

measurements were performed on a Perkin-Elmer 280 flame atomic absorbance

spectrometer (Perkin-Elmer, Zaventem, Belgium) in an air-acetylene flame. The

absorption line used was 422.7 nm for Ca2+ and 213.9 nm for Zn2+. The Ca2+ and Zn2+

content in the supernatant was quantified by means of a calibration curve [0 – 20 mg

Ca2+/l or 0 - 0.875 mg Zn2+/l]. For calcium, standards and supernatant dilutions were

prepared in distilled water, for zinc in 0.01 N HCl. The amount of polymer-bound

calcium and zinc ions was calculated from the difference between the total amount of

calcium or zinc ions added and the amount of free Ca2+ or Zn2+ measured in the

supernatant.

The decrease in pH after binding of zinc ions to the polymer was followed by

measuring the pH of the supernatant with a Consort SP28X electrode (Consort, Belgium).
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2.3.4 Results and Discussion

2.3.4.1 Trypsin inhibition study

The enzymatic inhibition potency of the newly synthesised starch-g-poly(acrylic

acid) copolymers and the freeze-dried / spray-dried starch/carboxylated polymer mixtures

was measured and compared to Carbopol 934P (C 934P).

The poly(acrylates) polycarbophil and Carbopol 934P were shown to be able to

inhibit the enzymatic activity of the Ca2+-containing serine proteases trypsin and α-

chymotrypsin and the Zn2+-dependent exopeptidases carboxypeptidase A and cytosolic

leucine aminopeptidase. The pronounced binding properties of polycarbophil and C 934P

for the bivalent cations Ca2+ and Zn2+ was demonstrated to be a major reason for the

observed inhibitory effect. These polymers were found to be able to deprive Ca2+ and

Zn2+ from the enzyme structures, thereby inactivating the enzyme activity (Lueßen et al.,

1996). Graft copolymer networks of poly(methacrylic acid-g-ethylene glycol) (P(MAA-g-

EG)) could inhibit trypsin but to a lesser extent than C 934P and polycarbophil. The

copolymers showed significant but again less binding of calcium ions compared to the

above-mentioned poly(acrylates) (Madsen and Peppas, 1999).

The trypsin inhibition factors (IF) of the chemically modified (CM) and 60Co

irradiated (IR) grafted starches are presented in Table 1 and Figure 1.

Polymer Inhibition Factor Polymer Inhibition Factor

C 934P 2.74 ± 0.19 CM 7 2.16 ± 0.12

CM 1 1.90 ± 0.04 CM 8 1.88 ± 0.03

CM 2 2.02 ± 0.08 CM 9 2.06 ± 0.05

CM 3 2.23 ± 0.06 CM 10 1.85 ± 0.06

CM 4 1.96 ± 0.12

CM 5 / IR 1 2.01 ± 0.06

CM 6 1.88 ± 0.03 IR 2 1.88 ± 0.05

Table 1. Inhibition Factors of the chemically modified (CM) and 60Co irradiated (IR) grafted

starches. (n=3, mean ± SD)
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Figure 1. Inhibition Factors of the chemically modified (CM) and 60Co irradiated (IR) grafted

starches. (n=3, mean ± SD)

The trypsin inhibition factors of all chemically modified grafted starches (CM)

were significantly lower than for C 934P. The differences in IF between the chemically

modified grafted starches were not remarkable. Neither the origin of the starch (corn or

rice starch), the AGE concentration (0.2 or 0.5%), the ratio starch/acrylic acid (1:3 or 1:5)

or the degree of acrylic acid neutralisation or neutralisation technique after synthesis

showed any influence on the IF. All tested chemically modified grafted starches showed

IF values around 2. Polymer CM 5 was not evaluated due to precipitation problems

during testing.

Also, the 60Co irradiated grafted starches (IR) showed a trypsin inhibition which

was significantly lower than for C 934P, but comparable to the chemically modified

starches.

From all tested multifunctional polymers only the freeze-dried starch/poly(acrylic

acid) (starch/PAA) mixtures showed inhibition factors comparable to the reference

polymer C 934P. (Table 2, Figure 2)
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Polymer Inhibition Factor Polymer Inhibition Factor

C 934P 2.74 ± 0.19 SD PAA 50/50 2.05 ± 0.03

SD PAA 50/50 HT 2.00 ± 0.03

FD 50/50   3.03 ± 0.64 * SD PAA 25/75 2.02 ± 0.19

FD 50/50 HT    3.80 ± 0.40 * SD PAA 25/75 HT 2.15 ± 0.16

FD 25/75 2.25 ± 0.08 SD 25/75 2.05 ± 0.05

FD 25/75 HT   2.65 ± 0.12 * SD 25/75 HT 2.14 ± 0.11

Table 2. Inhibition Factors of the freeze-dried (FD) / spray-dried (SD) starch/carboxylated polymer

mixtures. (n=3, mean ± SD)

[*no significant difference with C 934P (Kruskal-Wallis/Dunn test, p < 0.05)]

The IF values of the freeze-dried starch/poly(acrylic acid) 50/50 mixture, both

heat treated or non-heat treated, and the heat treated 25/75 mixture were not significantly

different from the reference polymer. The freeze-dried polymers with a starch/PAA ratio

of 50/50 showed higher IF than those with a 25/75 ratio. Heat treatment (120°C, 15 min)

after freeze-drying resulted in a higher IF.
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Figure 2. Inhibition Factors of the freeze-dried (FD) / spray-dried (SD) starch/carboxylated

polymer mixtures. (n=3, mean ± SD)

[*no significant difference with C 934P (Kruskal-Wallis/Dunn test, p < 0.05)]
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The spray-dried starch/poly(acrylic acid) mixtures (SD PAA) showed all a lower

IF than the reference polymer C 934P, but comparable values to the grafted starches (CM

and IR). The inhibition factors of mixtures containing a linear poly(acrylic acid) (PAA) in

the same ratios were higher after freeze-drying than after spray-drying. Heat treatment

after spray-drying had no influence on the trypsin inhibition potency. The use of the

cross-linked Carbopol 974P (C 974P) or the linear PAA in the spray-dried mixtures did

not result in different inhibition factors.

2.3.4.2 Calcium and Zinc ion binding study

The amount of calcium and zinc ions bound to the polymers is shown in Table 3

and Figure 3.

Lueβen et al. (1996) and Madsen and Peppas (1999) reported a Ca2+ binding

capacity at pH 6.7 for Carbopol 934P (C 934P) of 240 mg and 167.5 mg Ca2+/g

polymer, respectively. In the present study the binding capacity for calcium ions for the

reference polymers Carbopol 934P and Carbopol 974P (C 974P) was 204 and 207 mg

Ca2+/g polymer, respectively. The Zn2+ binding capacity for C 934P and C 974P was 374

and 390 mg Zn2+/g polymer, respectively.

As a control, Carbopol 974P was included in the calcium and zinc ion binding

study to compare its ion binding capacity with Carbopol 934P. Carbopol 934P and

974P are both pharmaceutical grade cross-linked poly(acrylic acid) polymers. C 934P is

cross-linked with allyl sucrose and is polymerised in benzene. C 974P is cross-linked with

allyl pentaerythritol and is polymerised in ethyl acetate. C 974P was manufactured as an

alternative to C 934P to meet the stricter requirements for toxicity and health. It was

polymerised in ethyl acetate, a GRAS solvent, so avoiding toxic benzene residues. C

934P and C 974P have similar rheological properties. Both polymers had a similar Ca2+

and Zn2+ binding capacity: C 934P bound 204 mg Ca2+ and 374 mg Zn2+ per gram, while

C 974P 207 mg Ca2+ and 390 mg Zn2+ per gram polymer (Table 3).
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Polymer mg Ca2+ bound/

g polymer

mg Zn2+ bound/

g polymer

C 934P 204.3 ± 1.7 374.4 ± 8.2

C 974P 207.3 ± 4.8 389.6 ± 3.5

CM 1 81.9 ± 4.3 232.9 ± 12.2

CM 2 100.5 ± 6.9 239.6 ± 16.1

CM 3 83.5 ± 3.7 217.0 ± 2.3

CM 4 10.0 ± 2.0 81.9 ± 2.3

CM 5 70.0 ± 1.8 175.9 ± 8.3

CM 6 93.9 ± 4.5 204.5 ± 24.3

CM 7 81.7 ± 2.8 262.7 ± 8.5

CM 8 75.8 ± 3.5 168.8 ± 45.5

CM 9 63.0 ± 5.3 232.8 ± 12.5

CM 10 94.2 ± 3.4 235.5 ± 7.1

IR 1 149.1 ± 1.5 306.3 ± 18.4

IR 2 181.8 ± 5.2 332.2 ± 6.2

FD 50/50 92.9 ± 4.1 203.1 ± 36.9

FD 50/50 HT 104.0 ± 4.6 208.5 ± 20.0

FD 25/75 163.3 ± 2.0 350.9 ± 8.3

FD 25/75 HT 162.2 ± 2.5 333.6 ± 32.0

Table 3. Ca2+ and Zn2+ binding capacity of the chemically modified (CM) and 60Co

irradiated (IR) grafted starches and the freeze-dried starch/poly(acrylic acid) mixtures

(FD). (n=3, mean ± SD)

A same tendency in Ca2+ and Zn2+ binding capacity for all tested polymers was

observed (Figure 3). The affinity for calcium and zinc ions was for all tested

multifunctional polymers lower compared to Carbopol 934P. The lower affinity of the

chemically modified (CM) and 60Co irradiated (IR) grafted starches for these bivalent

ions was not surprising as the density of ionised carboxylic groups is much lower in these

polymers. This explanation was also given by Madsen and Peppas (1999) for the lower

binding capacity of their P(MAA-g-EG) gels.
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Figure 3. Ca2+ and Zn2+ binding capacity of the chemically modified (CM) and 60Co irradiated

(IR) grafted starches and the freeze-dried starch/poly(acrylic acid) mixtures (FD). (n=3, mean ±

SD)

From Figure 3 it is clear that only the 60Co irradiated copolymers and the freeze-

dried mixtures with a starch/poly(acrylic acid) 25/75 ratio approached the Ca2+ and Zn2+

binding capacity of C 934P.

All chemically modified grafted starches showed a comparable Ca2+ and Zn2+

binding between 63 and 101 mg Ca2+/g polymer and 169 and 263 mg Zn2+/g polymer,

except the non-neutralised chemically modified starch (CM 4), which only bound 10 mg

Ca2+ and 82 mg Zn2+/g polymer. The type of used starch (corn or rice starch), the AGE

concentration (0.2 or 0.5%), the ratio starch/acrylic acid (1:3 or 1:5) and the degree of

neutralisation or the neutralisation techniques after synthesis had no dramatic influence

on the Ca2+ and Zn2+ binding capacity. Only between the non-neutralised sample (CM 4)

and the partially neutralised starches a major difference in ion binding capacity was

observed, although CM 4 could inhibit the proteolytic enzyme tryspin to the same extent

compared to the other CM grafted starches (Figure 1). One should expect that a non-

neutralised sample could bind more ions compared to a partially neutralised grafted

starch. However, complexation of bivalent ions by these multifunctional polymers does

not only depend on the degree of grafting, it also depends on the accessibility of the

carboxylate functions (Kriwet and Kissel, 1996). Maybe, the lower ion binding capacity
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of CM 4 can be explained by a lower grafting degree or less accessibility of the

carboxylic acid functions, or due to both.

For the irradiated grafted starches no remarkable differences were observed in

Ca2+ and Zn2+ binding capacity between the partially and non-neutralised polymers,

although, as expected, the non-neutralised polymer showed both for Ca2+ and Zn2+ a

higher affinity.

For the freeze-dried polymers the ratio starch/poly(acrylic acid) 25/75 resulted in a

much higher ion binding capacity compared to the 50/50 ratio, due to the higher

poly(acrylic acid) concentration. Heat treatment after freeze-drying did not influence the

Ca2+ or Zn2+ binding capacity.

All tested polymers showed a certain in vitro trypsin inhibition activity. Only the

freeze-dried powders approached or even exceeded the in vitro trypsin inhibition potency

of the reference polymer Carbopol 934P. Madsen and Peppas (1999) stated that their

non-linear metabolite versus time profiles showed a decrease of degradation activity of

trypsin with time and that this time dependency was an indication of a complex pattern of

different kinetic parameters and that trypsin inhibition was more than just a rapid

enzyme-inhibitor interaction. Lueβen et al. (1996) reported that trypsin inhibition by

poly(acrylates) could be ascribed to deprivation of Ca2+ ions out of the trypsin structure,

which leads to autodegradation of the enzyme. However, in this study the polymer with

the highest inhibition factor (FD 50/50 HT) did not show the highest Ca2+ binding

capacity. Besides, the irradiated starches showed lower IF values compared to the freeze-

dried polymers, but had comparable Ca2+ and Zn2+ binding capacities. So, the trypsin

inhibition potency can not be related to the Ca2+ binding capacity of the polymers alone.

Many other mechanisms can play a role in the trypsin inhibition by multifunctional

polymers: Ca2+ deprivation as described by Lueβen at al. (1996), enzyme-polymer

interaction which reduces the free trypsin concentration and in part denaturates the

enzyme (Walker et al.,1999) and a reduction of the pH below the optimum pH values of

the pancreatic enzymes (Bai et al., 1996). A decrease of the pH in the supernatant after

incubation with ZnCl2 was observed (Figure 4). The decrease of the pH showed a similar
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pattern of the Zn2+ binding capacity of the polymers. This pH reduction might contribute

to the inhibition of pancreatic enzyme activity as described by Bai et al. (1996).
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Figure 4. Zn2+ binding capacity compared to the decrease of pH in the supernatant. (n=3, mean ±

SD)

Poly(acrylates) are thought to enhance paracellular transport of peptides such as

insulin by a reduction of free extracellular Ca2+ concentration (Jung et al., 2000). The

complexation of calcium ions by polycarbophil was found to be depending on the

accessability of the carboxylate functions in the polymer (Kriwet and Kissel, 1996). In

this study the calcium binding capacity increased with the degree of neutralisation (CM 3

– CM 4). For the chemically modified starches the Ca2+ and Zn2+ binding capacity was

also depending on the degree of grafting with poly(acrylic acid) functions. From all tested

polymers the irradiated starches and the freeze dried starches FD 25/75 and FD 25/75 HT

showed the highest binding capacity for the bivalent ions Ca2+ and Zn2+, which makes

these polymers promising excipients to enhance the in vivo paracellular permeability for

orally administered peptide drugs.



Chapter 2   Multifunctional Polymers for Oral Peptide Drug Delivery
Chapter 2.3   Trypsin Inhibition, Calcium and Zinc Ion Binding Study

66

2.3.5 Conclusion

Newly synthesised starch-g-poly(acrylic acid) copolymers (chemical modified or
60Co irradiated) and freeze-dried / spray-dried starch/carboxylated polymer mixtures were

evaluated in vitro on their potential as excipients for oral peptide drug delivery. The heat

treated freeze-dried powders showed the highest in vitro trypsin inhibition potency, which

was comparable or even higher than for the reference polymer Carbopol 934P. The

calcium and zinc ion binding study showed that the freeze-drying and the 60Co irradiation

method could result in multifunctional polymers with the highest ion binding capacity.

The combination of a high proteolytic inhibition and a pronounced binding ability for the

bivalent ions calcium and zinc makes these polymers promising excipients for a

successful oral peptide and protein drug delivery.
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2.3.6 Addendum: In vivo insulin absorption after oral

administration

In vivo insulin absorption after oral administration of spray-dried

Amioca/Carbopol 974P based insulin formulations, was studied in rabbits and in dogs.

Insulin was delivered orally in rabbits using mini-tablets based on SD PAA 25/75

and SD 25/75, respectively. Insulin (50 IU per tablet) (Sigma-Aldrich, Bornem, Belgium)

was mixed with the spray-dried powder, colloidal silica (0.2% w/w) (Alpha Pharma,

Nazareth, Belgium) and sodium stearyl fumarate (1% w/w) (Edward Mendell Co. Inc.,

NY, USA). The mixture was compressed to mini-tablets on a Korsch compression

machine (Type EK0, Berlin, Germany) equipped with 2 mm flat punches, at a pressure of

4.4 kN. The weight and the diameter of the tablets were 10 mg and 2 mm, respectively.

An enteric coated (cellulose acetophtalate in acetone) gelatin capsule was filled with 10

mini-tablets (= 500 IU insulin per dose). One capsule was administered orally to New

Zealand white rabbits (n = 4, 2.98 ± 0.10 kg), fasted during 16 h before administration,

according to the protocol described by Callens et al. (2003). Blood samples were taken

from the ear veins and analysed using an Enzyme-Linked Immunosorbent kit (Diagnostic

Systems Laboratories, USA). Blood glucose levels were measured immediately after

blood collection with Glucotouch test strips (Lifescan, Beerse, Belgium). Over a period of

8 hours no increased insulin serum levels nor a decrease in blood glucose was observed,

although the high dose of 500 IU insulin used.

Insulin was administrated orally to dogs formulated in a lyophilised powder based

on SD 80/20 and SD 25/75, respectively, and filled in an enteric coated capsule. The

lyophilised formulation was prepared according to Callens et al. (2003). These authors

reported an insulin bioavailability above 10% after nasal delivery of a lyophilised insulin-

SD 25/75 formulation. One gram of the spray-dried powder was dispersed in distilled

water and neutralised to pH 7.4 using a 2 M NaOH solution. After neutralisation, an

insulin solution (Actrapid HM 100, Novo-Nordisk, Bagsvaerd, Denmark) was added to

obtain a dose of 1 IU insulin per mg powder. The dispersions were lyophilised in an

Amsco-Finn Aqua GT4 freeze-dryer (Amsco, Brussels, Belgium). The lyophilised

powder was filled in enteric coated (cellulose acetophtalate in acetone) gelatin capsule in
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order to obtain a dose of 6 IU/kg. The dogs (n = 3, 38.0 ± 1.8 kg) were fasted during 12 h

before administration. Insulin serum concentrations and blood glucose were measured as

described above. Again no increased insulin serum levels nor a decrease in blood glucose

was observed.

It is difficult to explain why no insulin was absorbed from the gastro-intestinal

tract. Several problems are encountered during oral insulin delivery such as insulin

stability in the gastro-intestinal tract, digestion by proteolytic enzymes and a poor

absorption over the intestinal epithelium. From these trials, it is clear that in vitro

inhibition and ion binding studies can be used to make a first selection of potential

excipients, but they can not be used to predict in vivo absorption data. After a selection of

potential excipients for oral peptide delivery, it is even more important to evaluate and

optimise different formulation possibilities with respect to peptide stability in and

absorption from the gastro-intestinal tract.
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Chapter 3.1 Introduction

3.1.1 Bioadhesion

The term bioadhesion refers to any bond formed between two biological surfaces

or a bond between a biological and a synthetic surface. In the case of bioadhesive drug

delivery systems, the term bioadhesion is typically used to describe the adhesion between

polymers, either synthetic or natural, and soft tissues (i.e. buccal mucosa). Although the

target of many bioadhesive delivery systems may be a soft tissue cell layer (i.e. epithelial

cells), the actual adhesive bond may form with either the cell layer, a mucous layer or a

combination of the two. In instances in which bonds form between mucus and polymer,

the term mucoadhesion is used synonymously with bioadhesion. In general, bioadhesion

is an all-inclusive term used to describe adhesive interactions with any biological or

biologically derived substance, and mucoadhesion is used only when describing a bond

involving mucus or a mucosal surface. (Chickering and Mathiowitz, 1999)

The mechanisms responsible for the formation of bioadhesive bonds are not

completely clear. Most research has been focused on analysing bioadhesive interactions

between polymer hydrogels and soft tissues. The process involved in the formation of

such bioadhesive bonds has been described in three steps: (1) wetting and swelling of the

polymer to permit intimate contact with the biological tissue, (2) interpenetration of

bioadhesive polymer chains and entanglement of polymer and mucin chains and (3)

formation of weak chemical bonds between entangled chains (Duchêne et al., 1988;

Ponchel et al., 1991). It has been stated that at least one of the following polymer

characteristics are required to obtain bioadhesion: (1) sufficient numbers of hydrogen-

bonding chemical groups (-OH and –COOH), (2) anionic surface charges, (3) high

molecular weight, (4) high chain flexibility and (5) surface tensions that will induce

spreading onto the mucous layer (Peppas and Buri, 1985). Each of these characteristics

favours the formation of bonds that are either chemical or mechanical.

Types of chemical bonds include strong primary bonds (i.e. covalent bonds), as

well as weaker secondary forces such as ionic bonds, van der Waals interactions and
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hydrogen bonds. Both types of interactions have been exploited in developing

bioadhesive drug delivery systems. Although systems designed to form covalent bonds

with proteins on the surface of epithelial cells may offer strength advantages, three factors

limit the usefulness of such permanent bonding. First, mucous barriers may inhibit direct

contact of polymer and tissue. Second, permanent chemical bonds with the epithelium

may not produce permanently retained delivery devices because most epithelial cells are

exfoliated every 3 to 4 days. Third, biocompatibility of such binding has not been

thoroughly investigated and could pose significant problems. For these reasons, many

have focused on developing mucoadhesive systems that bond through either van der

Waals interactions or hydrogen bonds. Although individually these forces are very weak,

strong adhesions can be produced through numerous interaction sites. Therefore,

polymers with high molecular weight and high concentrations of reactive, polar groups,

such as –COOH and –OH functions, tend to develop intense mucoadhesive bonds.

(Chickering and Mathiowitz, 1999)

Mechanical bonds can be thought of as physical connections between surfaces,

similar to interlocking puzzle pieces. Macroscopically, they involve the inclusion of one

substance in the cracks or crevices of another. On a microscopic scale, they can involve

physical entanglement of mucin strands with flexible polymer chains and/or

interpenetration of mucin strands into a porous polymer substrate. The rate of penetration

of polymer strands into mucin layers is dependent on chain flexibility and diffusion

coefficients of each. The strength of the adhesive bond is directly proportional to the

depth of penetration of the polymer chains. Other factors that influence bond strength

include the presence of water, the time of contact between the materials, and the length

and flexibility of the polymer chains. (Chickering and Mathiowitz, 1999)

The same theories of adhesion that were developed to explain and predict the

performance of glues, adhesives and paint can be and have been applied to bioadhesive

drug delivery systems. In general, five theories have been adapted to the study of

bioadhesion: the electronic, absorption, wetting, diffusion and fracture theories. Some are

based on the formation of chemical bonds, whereas other focuses on mechanical bonds.

(Chickering and Mathiowitz, 1999)
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The hypothesis of the electronic theory relies on the assumption that the

bioadhesive material and the target biological material have different electronic

structures. On this assumption, when the two materials come in contact with each other,

electron transfer occurs causing the formation of a double layer of electrical charge at the

bioadhesive-biologic material interface. The bioadhesive force is believed to be due to

attractive forces across this electrical double layer. The electrical theory has produced

some controversy regarding whether the electrostatic forces are an important cause or the

result of the contact between the bioadhesive and the biological surface.

The adsorption theory states that the bioadhesive bond formed between an

adhesive substrate and tissue or mucosa is due to van der Waals interactions and

hydrogen bonds. Although these forces are individually weak, the sheer number of

interactions can as a whole produce intense adhesive strength. The adsorption theory is

the most widely accepted theory of adhesion.

The wetting theory was developed predominantly in regard to liquid adhesives

such as a bioadhesive gel. Using the wetting theory, it is possible to predict the ability of

various bioadhesives to spread over biological tissues and the intensity of the bioadhesive

bonds.

According the diffusion theory interpenetration and entanglement of bioadhesive

polymer chains and mucous polymer chains produce semi-permanent adhesive bonds.

The fracture theory is perhaps the most applicable theory for studying

bioadhesion through mechanical measurements. This theory analyses the forces required

to separate two surfaces after adhesion.

In mucoadhesion, the adhering surface is a mucous membrane. Mucous

membranes line the wall of various body cavities such as the oral, vaginal cavity or the

gastro-intestinal and the respiratory tract. They are either single-layered epithelium (i.e.

the stomach, small and large intestine, bronchi) or multi-layered stratified epithelium (i.e.

oral cavity, vagina). The former contain goblet cells, which secrete mucus directly onto

the epithelial surfaces, while the latter contain, or are adjacent to tissues containing,

specialised glands such as salivary glands that secrete mucus onto the epithelial surface.
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The major components of mucus, present as a gel layer adherent to the mucosal surface,

are mucin glycoproteins, lipids, inorganic salts and water, the latter accounting for more

than 95% of the gel weight, making it a highly hydrated system. The mucin glycoproteins

are the most important components of the mucus gel, resulting in its characteristic gel-

like, cohesive and adhesive properties. The thickness of this mucus layer varies on

different mucosal surfaces from 50 to 450 µm in the stomach to 0.7 µm in the oral cavity.

The major functions of mucus are protection and lubrication. (Smart, 1999)

The largest group of mucosal-adhesive materials are hydrophilic macromolecules

containing numerous hydrogen bond-forming groups as carboxyl (i.e. poly(acrylic acid)s,

Carbopols) or amine (i.e. the chitosans) functions. These are called “wet” adhesives as

they are activated by moistening. (Smart, 1999)

In many descriptions of the interactions between mucoadhesive materials and a

mucous membrane, two basic steps have been identified: contact stage and consolidation

stage. (Smart, 1999)

During the contact stage, an intimate contact is formed between the mucoadhesive

and mucous membrane. The mucoadhesive and the mucous membrane initially have to

form a close contact with each other. In some cases, these two surfaces can be readily

brought together by placing and holding a delivery system (i.e. bioadhesive tablet) within

the oral cavity or vagina.

During the consolidation stage, various physicochemical interactions occur to

consolidate and strengthen the adhesive joint, leading to prolonged adhesion. The

mucoadhesive point can be considered to contain three regions (Figure 1): the

mucoadhesive, the mucosa and the interfacial region, consisting at least initially of

mucus.

Figure 1. The three regions within a mucoadhesive joint. (Smart, 1999)
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Adhesive joint failure will normally occur at the weakest component of this joint

(Figure 2). For weak adhesives this will be the mucoadhesive-mucus interface; for

stronger adhesives this will initially be the mucus layer but later may be the hydrating

mucoadhesive material. (Smart, 1999)

Figure 2. Possible regions of mucoadhesive joint failure. (Smart, 1999)

The strength of the adhesive joint will depend on the cohesive nature of the

weakest region. For strong mucoadhesion, when a substantial mucus layer is present, an

increase in the cohesive nature of this gel is necessary. There are two theories of how this

gel strengthening occurs. One is based on a macromolecular interpenetration effect. In

this theory, described by Peppas and Mikos (1990), the mucoadhesive molecules

interpenetrate and bond by secondary interactions with mucus glycoproteins (Figure 3).

Figure 3. The interpenetration theory: interaction between a

mucoadhesive polymer and mucin glycoprotein. (Smart, 1999)
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The second theory says that consolidation arises from the ability of dry or partially

hydrated mucoadhesive drug delivery systems (i.e. bioadhesive tablet formulations) to

swell and dehydrate mucus gels and that this water movement drives the consolidation of

the adhesive joint. (Smart, 1999)

3.1.2 Buccal drug delivery

The oral cavity has been investigated as a potential site for local and systemic

drug delivery since more than 10 years. The oral cavity forms a convenient and easily

accessible site for drug delivery.

The advantages of buccal drug delivery systems (i.e. patches, tablets) for local

therapy of the oral mucosa can be easily described. Some inflammatory or infectious

conditions of the mucosa, such as aphthae, herpes- or Candida-related stomatitis or

physical injuries are most typically treated with local anesthetics, antimycotics,

disinfectants, antiviral agents or corticosteroids. Buccal drug delivery systems have many

advantages compared to the conventional therapies by means of oral gels and liquids.

With these formulations the affected tissues are exposed to but a minor fraction of the

drug dose for very short periods of time and most of the time no effective drug level is

present at the site of action. In contrast, buccal drug formulations are applied directly to

the affected mucosal region and have the potential to supply the site of action with

effective drug levels and sustain these levels over a long period of time. (Guo and

Cremer, 1999)

Amongst the various routes of systemic drug delivery, oral route is perhaps the

most preferred to the patient. However, peroral administration of drugs has disadvantages

such as hepatic first pass metabolism and enzymatic degradation within the gastro-

intestinal tract, that prohibit oral administration of certain classes of drugs (i.e peptides,

proteins, hormones, etc.). Consequently, other absorptive mucosae are considered as

potential sites for drug administration. Transmucosal routes of drug delivery (i.e. the

mucosal linings of the nasal, rectal, ocular, vaginal and oral cavity) offer distinct

advantages over peroral administration for systemic drug delivery. These advantages

include possible bypass of first pass effect, avoidance of presystemic elimination within



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

77

the gastro-intestinal tract, and, depending on the particular drug, a better enzymatic flora

for drug absorption. (Shojaei, 1998)

The oral cavity has a number of features that make it a desirable site for drug

delivery, including a rich blood supply that drains directly into the jugular vein, bypassing

the liver and thereby protecting the drug from first pass metabolism. Furthermore, the oral

transmucosal drug delivery avoids pre-systemic elimination in the gastro-intestinal tract

and the oral cavity is highly acceptable by patients. These factors make the oral mucosal

cavity a very attractive and feasible site for systemic drug delivery.

3.1.2.1 The oral cavity

The oral mucosa can be distinguished according to five major regions in the oral

cavity: (de Vries, 1991a)

- the floor of the mouth (sublingual region)

- the buccal mucosa (cheeks)

- the gum (ginigiva)

- the palatal mucosa

- the inner side of the lips.

Within the oral mucosal cavity, delivery of drugs can be classified into three

categories: (de Vries, 1991a)

- sublingual delivery, which is systemic delivery of drugs through the

mucosal membranes lining the floor of the mouth

- buccal delivery, which is drug administration through the mucosal

membranes lining the cheeks (buccal mucosa)

- local delivery, which is drug delivery into the oral cavity.

3.1.2.2 Structure of the oral cavity

The oral cavity is lined with mucous membranes with a total area of 100 cm². The

oral mucosal tissues consist of a superficial layer of squamous epithelium covered with
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mucus. At the proximal side the epithelium is bound to a connective tissue layer, called

the lamina propria, by the basal lamina (1 µm), which separates the two layers (Figure 4).

Figure 4. Schematic cross section through oral mucosa. (de Vries,

1991a)

The mucous membranes are protective tissues and not primarily meant for drug

absorption. The epithelium serves as a mechanical barrier, protecting the underlying

tissues, whereas the lamina propria acts as a mechanical support and also carries the

blood vessels and the nerves. Within the epithelium different layers can be distinguished.

The inner, undifferentiated layer is called the stratum basale. Differentiation starts in the

stratum suprabasale. In the stratum filamentosum cells excrete their contents to the

intercellular space and differentiation is complete in the stratum distendum. Underneath

the lamina propria a very loose submucosa can be present, depending on the membrane

region. In case a submucosa is present, the oral mucosa is flexible. Where it is absent

(gingiva) or fibrous (hard plate) the mucosa is fixed in position. (de Vries, 1991a)

The mucous membranes show differences in structure, thickness and blood flow,

depending on their location within the oral cavity. Figure 5 shows the different oral

mucosae and their nature with respect to tissue keratinisation.
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Figure 5. Schematic reproduction of an ‘open’ oral cavity showing the

keratinised (white) and the non-keratinised (grey) regions. (de Vries,

1991a)

Oral mucosae are divided into three types: masticatory, lining and specialised

mucosa. The specialised mucosa is found at the top surface of the tongue, but is of minor

importance for drug absorption. The major difference between masticatory and lining

mucosa is the presence or absence, respectively, of a keratinised top layer as part of the

epithelium. (de Vries, 1991a)

In regions subjected to the mechanical forces of mastication – masticatory

mucosa, such as the gingiva and hard palate – the epithelium is keratinised. In keratinised

epithelium the surface layer is flattened, dehydrated, mechanically tough and chemically

resistant. The outermost layer of keratinised epithelium is the stratum corneum and

consists of an orderly array of flattened hexagonal cells, which are completely filled with

aggregations of cytokeratins bounded by a cell envelope and surrounded by a complex

mixture of lipids such as ceramides, cholesterol and fatty acids, extruded by the

membrane-coating granules. These lipids are associated with the barrier function to the

absorption of drugs. The turnover, necessary to stabilise the mucosal function and

integrity, is 5 to 8 days. (Wertz and Squier, 1991; Wertz et al., 1993)

The lining mucosa is present in regions of the oral cavity that are stretched or

compressed during speech and mastication. Lining mucosa is found in the buccal and

sublingual area and at the inner side of the lips. The lining mucosa is non-keratinised and

the surface is less able to resist mechanical abrasion, but is flexible. In non-keratinised

epithelium, the accumulation of lipids and cytokeratins is less. The cells of the stratum



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

80

distendum flatten out towards the surface of this cell layer and the remaining layers, i.e.

stratum granulosum en stratum corneum, are not present. In the superficial layers the cell

membranes become more thickened, but nevertheless non-keratinised epithelium appears

to be more permeable than keratinised tissue. Non-keratinised epithelium contains a large

amount of polar lipids, such as glycosylceramides. (Wertz and Squier, 1991; Wertz et al.,

1993)

In addition to the differences in epithelial structure, there are also differences in

epithelial thickness. From Table 1 it can be seen that gingiva and floor of the mouth are

comparable in thickness, whereas buccal epithelium is almost four times as thick.

The oral mucosa is highly vascularised. The blood supply to the oral tissues is

delivered principally via the external carotid artery, which branches into the lingual, the

facial and the maxillary arteries. The lingual artery supplies blood to the tongue and the

sublingual and gingival areas, whereas the facial artery supplies blood to the soft palate

and the lips. Hard palate and cheeks are supplied with blood by the maxillary artery.

Blood from the capillary beds is collected by three main veins, which finally flow into the

internal jugular vein. The blood flows through the different oral tissue are presented in

Table 1. Buccal tissue is most perfused. Besides the permeability of the epithelium, the

blood flow through a particular type of tissue is very important for drug absorption. (de

Vries, 1991a)

Tissue Structure Epithelial thickness

(µm)a

Flow

(ml.min-1.cm-2)b

Buccal non-keratinised 500-600 2.40

Sublingual non-keratinised 100-200 0.97

Gingival keratinised 200 1.47

Palatal keratinised 250 0.89

Table 1. Oral epithelium characteristics. a Thickness of human oral epithelium, b Blood flow in

oral mucosa of the rhesus monkey (de Vries, 1991a)
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3.1.2.2.1 Saliva and mucus

The oral membranes are covered with mucus and continuously provided with

fresh serous and mucous saliva. Saliva is essential in the prevention of oral mucosal cells

from dehydrating and acts as a lubricant during the swallowing of food. The major

salivary glands are the parotic, submandibular and sublingual glands. The submandibular

and sublingual glands are situated in the lower region of the oral cavity whereas the

parotic glands lie just below the ears, having its duct in the upper part of the cavity

between cheek and upper jaw. Besides these major glands, there are small and minor

glands on the tongue, the buccal, sublingual mucosa and on the palate.

Gland Normal Stimulated Consistency

Parotic 25% 60% serous

Submandibular 70% 30% serous/mucous

Sublingual 5% 2% serous/mucous

Table 2. Saliva production of the major salivary glands. (de Vries, 1991a)

The amount of saliva produced throughout the day can be up to 1 litre. The saliva

flow in rest is ± 0.5 ml/min, but can increase up to 7 ml/min upon stimulation

(mechanically (pressure) or chemically (smell, taste)). The parotic glands produce only

25% of the total amount of saliva during rest, but is increased to 70% upon stimulation.

These glands produce serous saliva, whereas the secretions of the other major glands is

rather mucous (Table 2). The mucous secretions are viscous due to the presence of high

molecular glycoproteins (mucins), while the serous secretions are aqueous and contain

low molecular weight glycoproteins. Saliva contains 99.4% water and some important

inorganic compounds like calcium, phosphate and bicarbonate ions. The pH varies

between 5.8 and 7.1, and can be raised to 7.4 upon stimulation, due to an increase of

bicarbonate content. The saliva secretion rate depends on gender, age, time of the day,

illness and emotional condition. With increasing age, a decrease in saliva secretion can be

observed. Saliva flow in women appears to be less than in men. It is the salivary fluid

which is available to hydrate oral mucosal dosage forms. A main reason behind the

selection of hydrophilic polymeric matrices as vehicles for oral mucosal drug delivery

systems is this water rich environment of the oral cavity. (de Vries, 1991a; Voorspoels,

1997; Shojaei, 1998)
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Mucins are the major components of mucus. Mucus is a highly viscous water-

insoluble material that covers the mucosae as a protective film. Mucins from the saliva

and other saliva compounds are absorbed to the oral mucosal surface and form a multi-

layered structure. Mucus contains 95% water, 0.5 to 5% glycoproteins and small amounts

of mineral salts (1%), proteins and lipids (0.5 to 1%). The major part of these

glycoproteins are mucins which are responsible for the viscosity and adhesive properties

of mucus. Mucin consists of a protein core with covalently attached oligosaccharide side

chains. At the terminal ends of these oligosaccharides sialic acid or fucose are located.

Some chains can contain sulphate groups. In contrast to these heavily glycosylated

regions, mucin molecules also contain ‘naked’ regions. These regions are involved in

intermolecular cross-linking via disulfide bonds due to the cysteins found in these parts of

the molecules. In addition to disulfide cross-links, physical entanglement and secondary

bonding also play a role in the formation of the mucus gel. It may be stated that mucus

has excellent properties to act as a substrate in mucoadhesion due to its nature as a

hydrated network of linear, flexible, random coil mucin molecules that is cross-linked

(disulfide bonds and physical entanglement) and negatively charged (completely ionised -

except at very low pH - sialic acid and sulphate groups). (Voorspoels, 1997; de Vries,

1991b)

3.1.2.3 The oral cavity as a site for drug delivery

3.1.2.3.1 Buccal mucosa as a site for drug delivery

There are two categories of systemic drug delivery within the oral cavity

(sublingual and buccal). Selecting one over another is mainly based on anatomical and

permeability differences that exist among the various oral mucosal sites. The sublingual

mucosa is relatively permeable, giving rapid absorption and acceptable bioavailabilities

of many drugs, and is convenient, accessible, and generally well accepted (Harris and

Robinson, 1992). Sublingual dosage forms are of two different designs, those composed

of rapidly disintegrating tablets, and those consisting of soft gelatin capsules filled with

liquid drug. Such systems create a very high drug concentration in the sublingual region

before they are systemically absorbed across the mucosa. The buccal mucosa is

considerably less permeable than the sublingual area, and is generally not able to provide
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the rapid absorption seen with sublingual administration. However, besides the

permeability other factors such as blood flow has also to be taken in account. Bloodflow

through the buccal mucosa is higher than through the sublingual. Moreover, because of

the smaller salivary flow in the buccal area, compared to the sublingual region, wash out

of drug is less in the buccal area (de Vries, 1991a). The buccal mucosa is the more

preferred route for systemic transmucosal drug delivery. The buccal mucosa is less

permeable and is thus not able to give a rapid onset of absorption, but more suitable for a

sustained release oral transmucosal delivery of less permeable molecules. (Shojaei, 1998)

3.1.2.3.2 Buccal drug absorption

The are two permeation pathways for passive drug transport across the oral

mucosa: paracellular and transcellular routes. Permeants can use these two routes

simultaneously, but one route is usually preferred over the other depending on the

physicochemical properties of the diffusant. Since the intercellular spaces and cytoplasm

are hydrophilic in character, lipophilic compounds would have low solubilities in this

environment. The cell membrane, however, is rather lipophilic in nature and hydrophilic

solutes will have difficulty permeating through the cell membrane due to a low partition

coefficient. Therefore, the intercellular spaces pose as the major barrier to permeation of

lipophilic compounds and the cell membrane acts as the major transport barrier for

hydrophilic compounds. Since the oral epithelium is stratified, solute permeation may

involve a combination of these two routes. The route that predominates is generally the

one that provides the least amount of hindrance to passage. (Shojaei, 1998)

3.1.2.4 Buccal dosage forms

Many different dosage forms are suitable for buccal drug delivery such as tablets,

patches, lozenges, sprays, hydrogels, chewing gums, powders and solutions. Most of

these formulations will allow absorption through various parts of the oral cavity and will

provide leakage into the gastro-intestinal tract by swallowing. In order to restrict the drug

uptake to the buccal mucosa, mucoadhesive tablets or patches can be used.

Hydroxypropylcellulose, hydroxyethylcellulose, polyacrylic resins, carboxy-
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methylcellulose, polyvinylalcohol, polyvinylpyrrolidone, polyethyleneglycol, glycerin,

agar and some oils are excipients that can be used in the manufacture of buccal

formulations. Mixing with the active ingredient is succeeded by direct compression into

tablets or patches, or formulation through a granulation step. In the case of multi-layered

tablets or patches, the mucoadhesive layer can be separated from the drug-containing

layer or a backing layer may be added to obtain an uni-directional release system.

(Hoogstraate and Wertz, 1998)

Bioadhesive tablets can be used for the local delivery of antimycotics such as

miconazole (Bouckaert et al., 1992, 1993), nystatin or clotrimazole (Knapczyk, 1992),

sodium fluoride (Bottenberg et al., 1992) or corticosteroids (Mumtaz and Ch’ng, 1995).

The bioadhesive tablet used by Bouckaert et al. (1992, 1993) and Bottenberg et. al (1992)

were obtained by direct compression of a physical mixture of 5% Carbopol 934P with a

waxy corn starch. Knapczyk (1992) described a chitosan based bioadhesive carrier,

obtained by direct compression too. Mumtaz and Ch’ng (1995) prepared a triamcinolone

bioadhesive tablet based on different ratios poly(acrylic acid-2,5-dimethyl-1,5-

hexadiene)/hydroxypropylmethylcellulose. Ahuja et al. (1998) formulated a bucco-

adhesive tablet of metronidazole for the local treatment of oro-dental infections. The

bucco-adhesive tablet was prepared by compression of a mixture of the drug, Carbopol

934P, a cellulose ether derivative, mannitol and flavouring and sweetening agents. A

buccal tablet formulation, based on spray-dried chitosan microparticles, containing the

antimicrobial agent chlorhexidine was investigated by Giunchedi et al. (2002). All the

above mentioned bioadhesive formulations, are single-layered tablets giving a

multidirectional release in the oral cavity, which is likely in local oral treatment (Figure

6).

Minghetti et al. (1998) developed a two-layer bucco-adhesive acitretin tablet for local

treatment of buccal keratinisation disorders. The inferior layer provided the bioadhesive

properties (Carbopol 934P and hydroxypropylmethylcellulose (HPMC)), while the

upper layer was a slow-release matrix, based on HPMC and lactose, containing the drug.

Voorspoels et al. (1996) developed a buccal bioadhesive tablet for transmucosal

systemic testosterone delivery in hypogonadal men. The bioadhesive carrier used was the



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

85

same multidirectional release matrix used by Bouckaert et al. (1992, 1993). A bucco-

adhesive nifedipine tablet was formulated by Varshosaz and Dehghan (2002) for the

treatment of angina pectoris and hypertension. The tablets were obtained by direct

compression of a bioadhesive mixture based on carboxymethylcellulose and Carbopol

934P. Singh and Ahuja (2002) developed a bucco-adhesive tablet of diltiazem

hydrochloride (angina pectoris, hypertension), based on a physical mixture of Carbopol

934P and HPMC. Choi et al. (2000) formulated an omeprazole (gastric acid secretion-

inhibitor) buccal bioadhesive tablet, prepared by compressing the drug with sodium

alginate and HPMC as bioadhesive agents.

Tsutsumi et al. (2002) investigated the buccal absorption of ergotamine tartrate (migraine

treatment) from a bioadhesive tablet system, consisting of a adhesive backing and a drug

core aiming at a unidirectional release (Figure 6). Alur et al. (1999) developed a

unidirectional release buccal bioadhesive tablet for the transmucosal sustained delivery of

chlorpheniramine (an anti-histaminic drug) by coating the tablet with Cutina on all but

one face. With a unidirectional release tablet the drug will only be absorbed over the

mucosa on which the tablet is placed (i.e. the buccal mucosa). This results in a smaller

absorbing surface, but on the other hand no drug is lost by swallowing.

Park and Munday (2002) developed and evaluated a biphasic buccal adhesive tablet for

nicotine replacement. The biphasic tablet formulation contained a fast releasing layer and

an adhesive controlled release layer.

Figure 6. Unidirectional and multidirectional bioadhesive drug delivery systems.

(DeGrande et al., 1996)



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

86

A mucoadhesive delivery system with a backing layer on one side can be used for local as

well as systemic transmucosal drug delivery (Figure 6). Such a backing layer avoids

sticking of the tablet to the finger during application in the oral cavity. Atrix Laboratories

developed such a bioerodible mucoadhesive drug delivery system (BEMA).

Aftac is a Japanese brand of mucoadhesive tablets for the treatment of

inflammations in the mouth (Haas and Lehr, 2002). Tibozole (Tibotec-Virco) is a

miconazole nitrate mucoadhesive tablet used for the treatment of oro-pharyngeal

candidiasis, a common opportunistic infection in people with AIDS.

Nitrogard (Forest Pharmaceuticals, Inc.) is a nytroglycerin transmucosal buccal

extended release tablet available on the U.S. market. It is used to relieve the pain of and to

prevent angina attacks. Buccastem (Reckitt & Colman) is a prochlorperazine maleate

mucoadhesive buccal tablet and is used for the treatment of nausea, vomiting and

migraine. Suscard Buccal (Pharmax, UK) is a prolonged release mucoadhesive buccal

tablet of glyceryl trinitrate and is used in the treatment of angina pectoris.

Buccal patches are flexible and their shape is directly adapted to the structure of

the oral cavity. A disadvantage is that patches have to be removed after drug delivery,

while buccal tablets erode completely. The most patient friendly patches are ellipsoid in

shape and have a surface of 1-3 cm², although they may be up to 10-15 cm². (Smart,

1993) Buccal patches can be used for systemic transmucosal drug delivery as well as for

local treatment in the oral cavity. Depending on the backing, uni- or multidirectional

release patches can be formulated (Figure 6).

Buccal patches consisted of a mucoadhesive drug reservoir formulation attached to an

inert backing were described by Anders and Merkle (1989) and Nagai and Konishi

(1987). 3M Pharmaceuticals developed a buccal patch (Cydot) that can be used as a

uni- or multidirectional drug delivery system, based on a mixture of polyisobutylene and

Carbopol 934P. (DeGrande et al., 1996)
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3.1.2.5 Buccal peptide and protein delivery

In recent years, the buccal mucosa has been investigated as a potential site for

controlled delivery of macromolecular therapeutic agents, such as peptides and proteins.

The buccal mucosa offers an alternative route to the conventional, parenteral

administration. The buccal route is good accessible, has a low enzymatic activity

compared to the gastro-intestinal tract and avoids first-pass effect. However, peptides and

proteins are generally not well absorbed through mucosae because of their molecular size,

hydrophilic nature and the low permeability of the membrane. Peptide and protein

transport across the buccal mucosa occurs via passive diffusion. Several approaches to

improve buccal absorption of peptides and proteins have been described. They include the

use of penetration enhancers, the addition of enzyme inhibitors, molecular modification

or specific drug delivery systems such as bioadhesive delivery systems. (Veuillez et al.,

2001)

Venugopalan et al. (2001) evaluated bioadhesive polymeric nanoparticles for the

buccal delivery of insulin, while Yang et al. (2001) investigated the effects of various

transmucosal absorption enhancers on buccal insulin delivery. Cui et al. (2002) reported

buccal transmucosal delivery of calcitonin from mucoadhesive films.



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

88

3.1.3 References

Ahuja A., Khar R.K. and Chaudhry R., Evaluation of buccoadhesive metronidazole

tablets: microbiological response. Pharmazie 53 (4) (1998) 264-267.

Alur H.H., Pather S.I., Mitra A.K. and Johnston T.P., Transmucosal sustained-delivery of

chlorpheniramine maleate in rabbits using a novel, natural mucoadhesive gum as

an excipient in buccal tablets. Int. J. Pharm. 188 (1999) 1-10.

Anders R. and Merkle H.P., Evaluation of laminated muco-adhesive patches for buccal

drug delivery. Int. J. Pharm. 49 (1989) 231-240.

Bottenberg P., Cleymaet R., De Muynck C., Remon J.P., Coomans D. and Slop D.,

Comparison of salivary fluoride concentrations after administration of a

bioadhesive slow-release tablet and a conventional fluoride tablet. J. Pharm.

Pharmacol. 44 (1992) 684-686.

Bouckaert S., Schautteet H., Lefebvre R.A., Remon J.P. and van Clooster R., Comparison

of salivary miconazole concentrations after administration of a bioadhesive slow-

release buccal tablet and an oral gel. Eur. J. Clin. Pharmacol. 43 (1992) 137-140.

Bouckaert S., Lefebvre R.A., Colardyn F. and Remon J.P., Influence of the application

site on bioadhesion and slow-release characteristics of a bioadhesive buccal slow-

release tablet of miconazole. Eur. J. Clin. Pharmacol. 44 (1993) 331-335.

Chickering D.E. and Mathiowitz E., Definitions, Mechanisms, and Theories of

Bioadhesion, in: E. Mathiowitz, D.E. Chickering III and C.-M. Lehr (Eds), Drugs

and the Pharmaceutucal Sciences, Vol. 98, Bioadhesive Drug Delivery Systems:

Fundamentals, Novel Approaches and Development, Marcel Dekker Inc., New

York, 1999, pp. 1-10.

Choi H.-G., Jung J.-H., Yong C. S., Rhee C.-D., Lee M.-K., Han J.-H., Park K.-M. and

Kim C.-K., Formulation and in vivo evaluation of omeprazole buccal adhesive

tablet. J. Control. Release 68 (2000) 405-412.

Cui Z. and Mumper R.J., Buccal transmucosal delivery of calcitonin in rabbits using thin-

film composites. Pharm. Res. 19 (12) (2002) 1901-1906.



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

89

de Vries M., Boddé H.E., Verhoef J.C. and Juninger H.E., Developments in buccal drug

delivery. Crit. Rev. Ther. Drug Carrier Sys. 8 (3) (1991a) 271-303.

de Vries M.E., Buccal drug absorption & development of mucoadhesive polymer

systems. Proefschrift, Rijksuniversiteit Leiden, 1991b.

DeGrande G., Benes L., Horrière F., Karsenty H., Lacoste C., McQuinn R., Guo J.-H.,

and Scherrer R., Specialized oral mucosal drug delivery systems: Patches, in: M.J.

Rathbone (Ed), Oral mucosal drug delivery, Marcel Dekker Inc., New York, 1996,

pp. 285-317.

Duchêne D., Touchard F. and Peppas N.A., Pharmaceutical and medical aspects of

bioadhesive systems for drug administration. Drug Dev. Ind. Pharm. 14 (2&3)

(1988) 283-318.

Giunchedi P., Juliano C., Gavini E., Cossu G. and Sorrenti M., Formulation and in vivo

evaluation of chlorhexidine buccal tablets prepared using drug-loaded chitosan

microspheres. Eur. J. Pharm. Biopharm. 53 (2002) 233-239.

Guo J.-H. and Cremer K., Development of Bioadhesive Buccal Patches, in: E.

Mathiowitz, D.E. Chickering III and C.-M. Lehr (Eds), Drugs and the

Pharmaceutucal Sciences, Vol. 98, Bioadhesive Drug Delivery Systems:

Fundamentals, Novel Approaches and Development, Marcel Dekker Inc., New

York, 1999, pp. 541-562.

Haas J. and Lehr C.-M., Developments in the area of bioadhesive drug delivery systems.

Expert Opin. Biol. Ther. 2 (3) (2002) 287-298.

Harris D. and Robinson J.R., Drug delivery via the mucous membranes of the oral cavity.

J. Pharm. Sci. 81 (1992) 1-10.

Hoogstraate J.A.J. and Wertz P.W., Drug delivery via the buccal mucosa. PSTT 1 (7)

(1998) 309-316.

Knapczyk J., Antimycotic buccal and vaginal tablets with chitosan. Int. J. Pharm. 88

(1992) 9-14.

Peppas N.A. and Mikos A.G., Kinetics of Mucus-Polymer Interactions, in: R. Gurny and

H.E. Junginger (Eds), Bioadhesion – Possibilities and Future Trends,

Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1990, pp. 65-85.



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

90

Minghetti P., Colombo A., Montanari, L., Gaeta G.M. and Gombos F., Buccoadhesive

slow-release tablets of acitretin: design and ‘in vivo’ evaluation. Int. J. Pharm. 169

(1998) 195-202.

Mumtaz A.M. and Ch’ng H.-S., Evaluation of bioadhesive buccal tablets containing

triamcinolone acetonide in healthy volunteers. Int. J. Pharm. 121 (1995) 249-254.

Nagai T. and Konishi R., Buccal/gingival drug delivery systems. J. Control. Release 6

(1987) 353-360.

Park C.R. and Munday D.L., Development and evaluation of abiphasic buccal adhesive

tablet for nicotine replacement therapy. Int. J. Pharm. 237 (2002) 215-226.

Ponchel G. and Duchêne D., Development of a bioadhesive tablet, in: M. Szycher (Ed.),

High Performance Biomaterials, Technomic Publishing Company, Lancaster, PA,

1991, pp. 231-242.

Shojaei A.H., Buccal Mucosa As A Route For Systemic Drug Delivery: A Review. J.

Pharm. Pharmaceut. Sci. 1 (1) (1998) 15-30.

Singh B. and Ahuja N., Development of controlled-release buccoadhesive hydrophilic

matrices of diltiazem hydrochloride matrices of diltiazem hydrochloride:

Optimization of bioadhesion, dissolution, and diffusion parameters. Drug Dev.

Ind. Pharm. 28 (4) (2002) 431-442.

Smart J.D., Drug delivery using buccal-adhesive systems. Adv. Drug Del. Rev. 11 (1993)

253-270.

Smart J.D., The Role of Water Removement and Polymer Hydration in Mucoadhesion,

in: E. Mathiowitz, D.E. Chickering III and C.-M. Lehr (Eds), Drugs and the

Pharmaceutucal Sciences, Vol. 98, Bioadhesive Drug Delivery Systems:

Fundamentals, Novel Approaches and Development, Marcel Dekker Inc., New

York, 1999, pp. 11-24.

Tsutsumi K., Obata Y., Nagai T., Loftsson T. and Takayama K., Buccal absorption of

ergotamine tartrate using the bioadhesive tablet system in guinea-pigs. Int. J.

Pharm. 238 (2002) 161-170.

Varshosaz J. and Dehghan Z., Development and characterization of buccoadhesive

nifedipine tablets. Eur. J. Pharm. Biopharm. 54 (2002) 135-141.



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.1  Introduction

91

Venugopalan P., Sapre A., Vernkatesan N. and Vyas S.P., Pelleted bioadhesive polymeric

nanoparticles for buccal delivery of insulin: preparation and characterization.

Pharmazie 56 (3) (2001) 217-219.

Veuillez F., Kalia Y.N., Jacques Y., Deshusses J. and Buri P., Factors and strategies for

improving buccal absorption of peptides. Eur. J. Pharm. Biopharm. 51 (2001) 93-

109.

Voorspoels J., Orale mucosale absorptie van geneesmiddelen via een bioadhesieve tablet.

Doctoral thesis, Ghent University, 1997.

Voorspoels J., Remon J.P., Eechaute W. and De Sy W., Buccal absorption of testosterone

and its esters using a bioadhesive tablet in dogs. Pharm. Res. 13 (8) (1996) 1228-

1232.

Wertz P.W. and Ssuier C.A., Cellular and molecular basis of barrier function in oral

epithelium. Crit. Rev. Ther. Drug Carrier Syst. 8 (3) (1991) 237-269.

Wertz P.W., Swartzendruber D.C. and Squier C.A., Regional variation in the structure

and the permeability of oral mucosa and skin. Adv. Drug Deliv. Rev. 12 (1993) 1-

12.

Yang T.Z., Zhang Q., Chen D.B. and Nagai T., Comparison of the effects of various

transmucosal absorption enhancers on buccal insulin delivery: in vitro and in vivo

studies. STP Pharm. Sci. 11 (6) (2001) 415-419.



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.2   Ex Vivo Bioadhesion Measurement

92

Chapter 3.2 Ex Vivo Bioadhesion
Measurement

3.2.1 Introduction

As a first step in the pharmaceutical evaluation of the newly prepared

multifunctional polymers, described in Chapter 1 Multifunctional Polymers, as potential

bioadhesive drug carriers, the bioadhesive properties were measured using an ex vivo

bioadhesion test method. The bioadhesion measurements were performed on placebo

tablets according to a method previously described by Bouckaert (1994).

3.2.2 Materials and Methods

3.2.2.1 Materials

Drum Dried Waxy Maize (DDWM) was supplied by Cerestar (Vilvoorde,

Belgium). Carbopol 974P (C 974P) was supplied by BF Goodrich (Cleveland, Ohio,

USA). Amioca, Ultrasperse A and National 5730 were National Starch products

(National Starch and Chemical Company, Bridgewater, New Jersey, USA). Sodium

stearyl fumarate (NaSF) was given by Edward Mendell Co. Inc. (New York, USA). All

other chemicals used were at least of analytical grade.

3.2.2.2 Production of tablets

For the bioadhesion measurements the powders were mixed with sodium stearyl

fumarate (1%; w/w) as a lubricant and compressed on a Korsch compression machine

(Type EK0, Berlin, Germany) equipped with 7 mm flat punches, at a pressure of 9.8 kN.

The tablet weight was 100 mg.

The physical mixtures (PM) were prepared by physical blending, using pestle and

mortar, granular Amioca starch and Carbopol 974P. Tablets were prepared as

described above.
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The reference formulation consisted of a physical mixture of 5% (w/w) Carbopol

974P, 94% (w/w) DDWM and 1% NaSF (Bouckaert et al., 1993; Voorspoels et al., 1996).

The reference tablets were prepared as described above.

3.2.2.3 Ex vivo determination of bioadhesion

The bioadhesive properties of the multifunctional polymers were determined on

placebo tablets according to the validated ex vivo bioadhesion method developed and

described by Bouckaert (1994).

The apparatus consisted of a tensile testing machine (type L1000R, Lloyd

Instruments, Segenworth, Fareham, UK), equipped with a 20 N load cell. Porcine gingiva,

the test substrate, was obtained at the slaughterhouse where they were excised directly

after slaughtering. The mucosa was stored at –20°C in isotonic buffered saline pH 7.4

(2.38 g Na2HPO4.H2O, 0.19 g KH2PO4, 8.0 g NaCl made up to 1000 ml with

demineralised water).

The porcine gingival tissue was attached with cyanoacrylate glue (Loctite®, Belgium) to a

lower Teflon support, while the tablet was attached to an upper aluminium punch. After

hydrating the mucosa with 15 µl of the isotonic phosphate buffered saline, the tablet was

Figure 1. Schematic presentation of the ex vivo

bioadhesion test set-up.

a is the superior cross-sectional bar which can be

moved up and down.

b is the aluminium upper punch, connected to the

superior cross-sectional bar, on which the tablet is

attached with cyanoacrylate glue.

c is the Teflon support on which the porcine gingiva

(± 1 cm²) is glued. The Teflon support is fixed in a

37°C thermostatic beaker, filled with an isotonic

buffered saline pH 7.4 solution after contact between

tablet and the porcine mucosa.
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fixed on the mucosa applying a force of 0.5 N for 5 min. After the initial contact, the

thermostatic beaker (37°C) was filled with 125 ml isotonic buffered saline pH 7.4 at

37°C. Next, the tablet and mucosa were pulled apart at a speed of 5 mm.min-1 until a

complete rupture of the tablet-mucosa bond was obtained. Figure 1 gives a schematic

presentation of the used test set-up.

With the test method, the adhesion force and the work of adhesion can be measured when

tablet and tissue are pulled apart. Adhesion force (N) and the work of adhesion (mJ) were

determined as the height and the area under the curve of the force vs. extension diagram,

respectively. Figure 2 shows such a force vs. extension diagram.

The bioadhesion results were compared to a reference formulation, a physical mixture of

5% C 974P, 94% DDWM and 1% NaSF (Bouckaert et al., 1993; Voorspoels et al., 1996).

3.2.2.4 Statistical analysis

Statistical analysis was performed on the work of adhesion results. Statistically

significant differences between the different multifunctional polymers were determined

using a one-way ANOVA. The data were tested for normal distribution with a

Kolmogorov-Smirnov test. The homogeneity of variances was tested with the Levene’s

test. The data were transformed to their logarithm, except for the carboxymethylcellulose

Figure 2. Force vs. extension diagram

recorded during an ex vivo bioadhesion test.

Line A-B shows the descent of the upper

punch with the bioadhesive tablet.

Line B-C shows the phase after initial contact

where tablet and mucosa were pressed

together with a force of 0.5 N for 5 min.

Line C-D depicts the phase where tablet and

mucosa were pulled apart with a speed of 5

mm.min-1.
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spray-dried samples. To compare the work of adhesion values of the different

multifunctional polymers to a reference formulation, a Bonferroni test with p < 0.05 as

significance level was used. To compare the different multifunctional polymers to each

other, a multiple comparison was performed using a Scheffé test with p < 0.05 as

significance level. The computer program SPSS version 10.0 was used for the statistical

analyses.

3.2.3 Results and Discussion

As already mentioned in Chapter 3.1 Introduction, the bioadhesion phenomenon

seems to be a composite of two mechanisms: a chemical interaction between the

functional groups of the polymers and the mucus and a mechanical interpenetration of

polymer chains into the mucus. Although adhesion force and work of adhesion values

follow mainly the same tendencies and both parameters should be considered for a

complete description of bioadhesion, previous studies by Bouckaert (1994) and

Voorspoels (1997) using the same ex vivo bioadhesion method as used in this study,

showed that the work of adhesion is a better parameter to compare the bioadhesion data.

The work of adhesion is, generally considered, more accurate to quantify bioadhesion

(Maggi et al., 1994). Ponchel et al. (1987) described that the energy of the rupture of the

bioadhesive bond is more indicative of both chemical interactions and mechanical chain

interpenetrations. Therefore, statistical analysis was only performed on the work of

adhesion data.

3.2.3.1 60Co irradiated (IR) and chemically modified (CM) grafted

starches

The ex vivo bioadhesion results for the 60Co irradiated (IR) and the chemically

modified (CM) starch-g-poly(acrylic acid) copolymers are shown in Figure 3. The

bioadhesion values are compared to a reference formulation (REF). The reference

formulation is a physical mixture of 5% (w/w) Carbopol 974P, a cross-linked

poly(acrylic acid), and 95% (w/w) DDWM, a drum dried waxy maize starch. This non-

irritating bioadhesive carrier was shown to be effective in local buccal delivery of the



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.2   Ex Vivo Bioadhesion Measurement

96

antimycotic drug miconazole (Bouckaert et al., 1993) as well as in transmucosal

testosterone delivery (Voorspoels et al., 1996).

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

RE
F

IR
 1

IR
 2

CM
 1

CM
 2

CM
 3

CM
 5

CM
 7

CM
 8

CM
 1

0

CM
 1

1

CM
 1

2

A
dh

es
io

n 
Fo

rc
e 

(N
)

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

W
or

k 
of

 A
dh

es
io

n 
(m

J)

Adhesion Force (N)
Work of Adhesion (mJ)

Figure 3. Ex vivo bioadhesion results – Adhesion Force (N) and Work of Adhesion (mJ)

– for the 60Co irradiated (IR) and chemically modified (CM) grafted starches compared to

a reference formulation (REF). (mean ± SD, n = 10)

The two 60Co irradiated grafted starches showed higher bioadhesive values both

for adhesion force and work of adhesion than the reference tablet. The non-neutralised IR

2 performed better than the Na+ partially neutralised IR 1, but the work of adhesion

values were not significantly higher (Scheffé, p < 0.05). IR 2 showed compared to the

reference for work of adhesion significantly higher values (Bonferroni, p < 0.05).

In summary one can say that grafted starch synthesised by 60Co irradiation, using a

starch/acrylic acid ratio 1 to 5, showed better ex vivo bioadhesive properties compared to

a reference formulation. The non-neutralised sample performed better compared to a

partially neutralised one.

Within the group of the chemically modified grafted starches, an Amioca based

copolymer (CM 3) performed better than when waxy rice starch (CM 8), waxy potato

starch (CM 11) or tapioca (CM 12) was the starch basis. For the waxy rice starch the
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difference was not significant, but the waxy potato and tapioca based grafted starches

showed significant lower work of adhesion values compared to an Amioca grafted

starch (Scheffé, p < 0.05).

When we compare CM 1, CM 2 and CM 3, which are all three Amioca based grafted

starches, it is clear that a longer polymerisation process time (CM 2 compared to CM 1)

and a higher AGE concentration (CM 3 to CM 1) resulted in higher bioadhesive

capacities, but the differences were not significant (Scheffé, p < 0.05). The three CM

grafted starches showed comparable work of adhesion results compared to the reference

formulation (Bonferroni, p < 0.05).

Using a higher acrylic acid (AA) concentration in the grafting-polymerisation process

(CM 5 – starch/AA ratio 1/5) resulted in significant lower bioadhesive properties (CM 3 –

ratio 1/3) for the finally obtained grafted starch (Scheffé, p < 0.05).

The conversion of a partially (½) neutralised sample (CM 3) to a non-neutralised grafted

starch by means of an ion exchange resin (CM 7) resulted in a powder with lower

bioadhesive capacities, although not significantly (Scheffé, p < 0.05).

Partial neutralisation of the AA to ½ (CM 8) or ¼ (CM 10), did not result in remarkable

differences in bioadhesion values.

Sample CM 4 (poor compressibility properties), CM 6 (large granules) and CM 9

(transparent films) could not be tested as they could not be compressed into tablets.

Summarising: The best bioadhesive properties were obtained with an Amioca based

grafted starch, a 0.5% AGE concentration, a starch/AA ratio of 1/3 and half-neutralised

AA (CM 3).

3.2.3.2 Freeze-dried starch/poly(acrylic acid) mixtures (FD)

Figure 4 shows the ex vivo bioadhesion results of the freeze-dried

starch/poly(acrylic acid) (starch/PAA) mixtures. Again the values are compared to the

above mentioned reference formulation (REF).

Only the heat-treated 25/75 powder (FD 25/75 HT) performed better than the

reference formulation and showed a significantly higher work of adhesion (Bonferroni, p

< 0.05). The work of adhesion values for the FD 50/50 and FD 50/50 HT sample were

even significantly lower compared to the reference (Bonferroni, p < 0.05).
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The freeze-dried Amioca/PAA mixtures with a higher linear PAA content (FD 25/75

and FD 25/75 HT, respectively) showed significantly higher adhesion values than the

mixtures containing 50% PAA (FD 50/50 and FD 50/50 HT, respectively) (Scheffé, p <

0.05).

Heat treatment after freeze-drying did increase the bioadhesive properties, but only for

the 25/75 mixture. The heat-treated FD 25/75 HT performed significantly better than the

non-heat-treated FD 25/75 (Scheffé, p < 0.05).

It has to be noticed that the FD 50/50 samples did not have good compressibility

properties. The obtained tablets were very soft and fragile. During the ex vivo

bioadhesion test the tablets swelled as individual particles, which came loose from the

tablet. These problems were not observed with the FD 25/75 powders.
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Figure 4. Ex vivo bioadhesion results – Adhesion Force (N) and Work of

Adhesion (mJ) – for the freeze-dried starch/poly(acrylic acid) mixtures

(FD) compared to a reference formulation (REF). (mean ± SD, n = 10)

Summarising: The freeze-dried mixture with the highest PAA content (75%) and

additionally heat-treated after freeze-drying showed the best bioadhesive properties (FD

25/75 HT).
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3.2.3.3 Spray-dried starch/carboxylated polymer mixtures (SD)

3.2.3.3.1 Spray-dried starch/poly(acrylic acid) mixtures

Figure 5 shows the ex vivo bioadhesion results of the spray-dried

starch/poly(acrylic acid) (starch/PAA) mixtures. The values are compared to the above

mentioned reference formulation (REF).
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Figure 5. Ex vivo bioadhesion results – Adhesion Force (N) and Work of Adhesion (mJ) – for

the spray-dried starch/poly(acrylic acid) mixtures (SD) compared to a reference formulation

(REF). (mean ± SD, n = 10)

By spray-drying starch/poly(acrylic acid) mixtures, the best bioadhesive

properties were obtained with Amioca starch (SD PAA 50/50). Using rice starch (SD

Rice 50/50) the bioadhesive capacities were still good and not significantly different from

SD PAA 50/50, but with tapioca as starch basis (SD Tap 50/50) the work of adhesion

values were significantly lower compared to SD PAA 50/50 (Scheffé, p < 0.05). SD PAA

50/50, SD PAA 25/75 and SD Rice 50/50 showed significantly higher work of adhesion

compared to the reference formulation (Bonferroni, p < 0.05).

There was no significant difference between a 50% and a 75% poly(acrylic acid) sample.

The additional heat treatment after spray-drying had a negative, but no significant

influence on the bioadhesive properties. (Scheffé, p < 0.05)
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In summary: the best bioadhesive properties were obtained with a non-heat treated

Amioca/PAA mixture containing 50 or 75% PAA.

3.2.3.3.2 Spray-dried starch/sodium carboxymethylcellulose mixtures

The ex vivo bioadhesion results of the spray-dried starch/sodium

carboxymethylcellulose (starch/CMC) mixtures are shown and compared to the reference

formulation (REF) in Figure 6. In Figure 6 sodium carboxymethylcellulose (CMC) is also

compared to poly(acrylic acid) (PAA) as carboxylated polymer source in the spray-dried

mixtures.

The best bioadhesive properties were obtained with a non-heat-treated 50/50

sample (SD CMC 50/50), which showed significantly higher work of adhesion compared

to the reference (Bonferroni, p < 0.05). As with the PAA samples, a higher concentration

of the carboxylated polymer did not increase the bioadhesive capacity and an additional

heat treatment after spray-drying resulted for the SD 50/50 CMC sample in significantly

lower work of adhesion values (Scheffé, p < 0.05).
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Figure 6. Ex vivo bioadhesion results – Adhesion Force (N) and Work of

Adhesion (mJ) – for the spray-dried starch/sodium carboxymethylcellulose

mixtures (SD CMC) compared to a reference formulation (REF) and to a spray-

dried starch/poly(acrylic acid) 50/50 mixture (SD PAA 50/50). (mean ± SD, n =

10)
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Sodium carboxymethylcellulose (SD CMC 50/50) or poly(acrylic acid) (SD PAA

50/50) as carboxylated polymer in a 50/50 spray-dried mixture gives no significant

differences in bioadhesion values. Both samples showed good bioadhesive properties and

performed significantly better than the reference formulation (Bonferroni, p < 0.05).

Although, it has to be noticed that the tablets obtained with the CMC-mixtures were of

poor quality. The strength of the tablets was too low compared to their bioadhesive

capacities, which sometimes resulted in a horizontal crack of the tablet during the

adhesion test. A higher CMC content and heat treatment after spray-drying worsened the

tablet strength problem. The heat-treated 25/75 sample (SD CMC 25/75 HT) could even

not be tested as the tablets were too soft and fragile. This problem was not encountered

with the spray-dried starch/PAA mixtures.

3.2.3.3.3 Spray-dried starch/Carbopol 974P mixtures

Figure 7 shows the ex vivo bioadhesion results of the spray-dried Amioca

starch/Carbopol 974P mixtures. The values are compared to the above mentioned

reference formulation (REF).

All spray-dried Amioca starch/Carbopol 974P mixtures showed a comparable

or better bioadhesive capacity compared to the reference formulation. The Carbopol

974P (C 974P) content ranged from 5 to 75% (w/w).

There was no significant difference in bioadhesive capacity between the heat treated SD

25/75 HT and its non-heat treated equivalent SD 25/75. As an additional heat treatment

after spray-drying had no (positive or negative) effect on the bioadhesive properties, all

other samples were not additionally heat treated.

Increasing the C 974P concentration up to 15% resulted in increasing bioadhesion values.

The spray-dried Amioca/C 974P mixtures containing 15% or more Carbopol showed

all significantly higher work of adhesion values compared to the reference formulation

(Bonferroni, p < 0.05). Increasing the C 974P concentration above 15% up to 75% did not

result in significantly higher bioadhesion values (Scheffé, p < 0.05). This observation is in

accordance with Bouckaert and Remon (1993) and Park and Munday (2002). The

bioadhesive properties of the 95/5 and 90/10 mixtures were not significantly (Bonferroni,

p < 0.05) different compared to the reference tablet.
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Figure 7. Ex vivo bioadhesion results – Adhesion Force (N) and Work of Adhesion (mJ) – for

the spray-dried Amioca starch/Carbopol 974P mixtures (SD) compared to a reference

formulation (REF). (mean ± SD, n = 10)

Mucoadhesion is, after the formation of an intimate contact between

mucoadhesive and mucus, dependent on the hydration, swelling and interpenetration of

the mucoadhesive polymers with the mucus macromolecules becoming so physically

entangled. Secondly, polymer and mucus interact with each other via non-covalent bonds

such as hydrogen bonds (Duchêne et al., 1988). Work of adhesion is suggested to be

dependent on the interpenetration of the Carbopol chains into the mucus, while the

adhesion force is considered to be dependent on the formation of hydrogen bonds

between the functional groups of the bioadhesive and the mucus (Park and Munday,

2002). Increasing the Carbopol concentration and thus increasing the number of

functional groups resulted up to 15% C 974P in better bioadhesive properties, but over

15% more functional groups did not significantly increase bioadhesion (Scheffé, p <

0.05).

Scanning electron microscopy and solid state NMR spectroscopy and relaxometry

analysis, described in Chapter 1.2, showed that by spray-drying Amioca

starch/Carbopol 974P mixtures, Carbopol films are formed around the starch granules.
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From a molecular point of view, film formation can explain the performance of the

different spray-dried Amioca/Carbopol 974P mixtures in the ex vivo bioadhesion test.

The significantly increased adhesion properties, starting from a Carbopol concentration

of 15 % (SD 85/15), can probably be explained by an optimal balance between Carbopol

coated and non-coated surface areas on the Amioca granules. Amioca granules are

thought to be completely surrounded by Carbopol in the spray-dried mixtures containing

25% or more C 974P (Chapter 3.3 Mucosal Irritation Test using Slugs). Increasing the C

974P concentration above 15% and thus complete C 974P coating of the Amioca

granules did not significantly increase the bioadhesive properties of the spray-dried

mixtures. The slightly, but not significantly, increased bioadhesion values for the SD

25/75 mixture can be explained by individual Carbopol 974P nano-particles in addition

to an increased film thickness. Film thickness is probably also increased with increasing

C 974P contents in the mixtures SD 85/15 – SD 50/50, but a complete coating or an

increased film thickness had no additional positive effect on bioadhesion.

In Figure 8 Amioca (SD 75/25) is compared to National 5730 (SD Nat 75/25)

and Ultrasperse A (SD 75/25 Ultra) as starch in a 75/25 spray-dried starch/C 974P

mixture.
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Figure 8. Ex vivo bioadhesion results – Adhesion Force (N)

and Work of Adhesion (mJ) – for spray-dried starch/Carbopol

974P mixtures with Amioca, National 5730 and Ultrasperse

A as starch, respectively. (mean ± SD, n = 10)
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National and Ultrasperse are both pregelatinised waxy corn starches. Amioca

is a native waxy corn starch, but is pregelatinised by jet cooking before spray-drying

(Chapter 1 Multifunctional Polymers). From the graph, it is clear that by using different

types of waxy corn starch in a spray-dried 75/25 mixture similar bioadhesive properties

were obtained. There was no significant difference between the three types of starches

used (Scheffé, p < 0.05). The first selected Amioca starch seemed, in comparison with

other waxy corn starches, to be a good choice.

3.2.3.3.4 Poly(acrylic acid) (PAA), sodium carboxymethylcellulose (CMC) or

Carbopol 974P (C 974P) as carboxylated polymer in a spray-dried

Amioca starch/carboxylated polymer mixture

Figure 9 compares poy(acrylic acid) (PAA), sodium carboxymethylcellulose

(CMC) and Carbopol 974P (C 974P) as carboxylated polymer in a spray-dried Amioca

starch/carboxylated polymer mixture.
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Figure 9. Ex vivo bioadhesion results – Adhesion Force (N) and

Work of Adhesion (mJ) – for spray-dried (SD) Amioca

starch/poly(acrylic acid) (PAA), sodium carboxymethylcellulose

(CMC) and Carbopol 974P 50/50 mixtures. (mean ± SD, n = 10)

There are no significant differences in work of adhesion values between the spray-

dried mixtures prepared with three different types of carboxylated polymer (Scheffé, p <
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0.05). Although, as mentioned above CMC resulted in tablets of poor quality. Therefore

CMC can not be used as carboxylated polymer in spray-dried mixtures with starch. With

PAA and C 974P that problem was not encountered.

3.2.3.4 Freeze-drying versus spray-drying

The ex vivo bioadhesion results of freeze-dried (FD) and spray-dried (SD)

Amioca/Carbopol 974P 50/50 and 25/75 mixtures are compared in Figure 10.
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Figure 10. Ex vivo bioadhesion results – Adhesion Force (N) and Work of

Adhesion (mJ) – for freeze-dried (FD) and spray-dried (SD) Amioca

starch/Carbopol 974P 50/50 and 25/75 mixtures. (mean ± SD, n = 10)

From the graph, it is clear that by spray-drying powders are obtained with better

bioadhesive properties than after freeze-drying the same mixtures. SD 50/50 and SD

25/75 showed significantly higher work of adhesion values compared to FD 50/50 and

FD 25/75, respectively (Scheffé, p < 0.05).

As already mentioned, by freeze-drying a 50/50 mixture the obtained powder had

poor compression properties and the tablets swelled into individual particles. The

powders obtained by spray-drying had very good compression properties and after

hydration a homogeneous gel layer was formed on the tablet surface, which progressed to

the core of the tablet.
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3.2.3.5 Influence of spray-drying on bioadhesive capacities

To evaluate the influence of the spray-drying process on the bioadhesive

capacities of Amioca starch/Carbopol 974P mixtures, the ex vivo bioadhesive

properties of spray-dried mixtures were compared to their equivalent physical mixtures.

The bioadhesion results are shown in Figure 11.
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Figure 11. Ex vivo bioadhesion results – Adhesion Force (N) and Work of Adhesion (mJ) –

for spray-dried Amioca starch/Carbopol 974P mixtures (SD) compared to their equivalent

physical mixtures (PM), respectively, and to a reference formulation (REF). (mean ± SD, n =

10)

It is clear that the bioadhesive capacities of Amioca/Carbopol 974P mixtures

were improved by spray-drying. All spray-dried mixtures showed significantly higher

work of adhesion values compared to their equivalent physical mixtures (Scheffé, p <

0.05). The 5% C 974P physical mixture (PM 95/5) showed significantly lower adhesion

values than the reference (Bonferroni, p < 0.05), also containing 5% Carbopol. This can

be explained by the difference in used starch. Drum dried waxy maize starch (DDWM),

used in the reference formulation, and Amioca, used in the physical mixture, are both

waxy corn starches, but DDWM is a pregelatinised starch, while the Amioca was a

granular starch. In water, pregelatinised starches will hydrate and swell faster than

granular starches. As hydration and swelling of the polymer is an important step in the

formation of bioadhesive bonds between mucus/mucosa and polymer, it could be
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expected that DDWM showed better bioadhesive properties than the granular Amioca

(Bouckaert, 1994). It should be noticed that the Amioca in the spray-dried mixtures was

pregelatinised by jet cooking. After pregelatinisation not only the bioadhesive properties

are increased, but the starch can also be easier dispersed in water, which was required

before spray-drying.
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3.2.4 Conclusion

Grafted starches prepared by 60Co irradiation as well as by chemical modification

showed good ex vivo bioadhesive properties and some of them are potential bioadhesive

drug carriers.

By freeze-drying starch/poly(acrylic acid) mixtures, only the powders containing

75% (w/w) poly(acrylic acid) showed good compression properties and performed good

during the ex vivo bioadhesion test.

There was no difference observed in bioadhesive capacity between poly(acrylic

acid), sodium carboxymethylcellulose (CMC) or Carbopol 974P as carboxylated

polymer in spray-dried starch/carboxylated polymer mixtures. However, the CMC based

powders showed a very poor compression behaviour and can not be used in buccal

bioadhesive tablet formulations.

It was observed that the powders obtained by spray-drying starch/poly(acrylic acid)

mixtures showed better bioadhesive properties compared to the freeze-dried ones.

The most promising bioadhesive powders were obtained by spray-drying Amioca

starch/Carbopol 974P mixtures. By spray-drying the bioadhesive capacities were

significantly improved compared to equivalent physical mixtures of Amioca and

Carbopol 974P.
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Chapter 3.3 Mucosal Irritation Test
using Slugs

3.3.1 Introduction

The last decades the development of bioadhesive platforms for mucosal drug

delivery has received considerable attention. Several bioadhesive formulations were

developed for buccal, nasal, ocular, gastro-intestinal, vaginal and rectal drug delivery.

Mucoadhesive polymers increase the residence time at the mucosal application site.

Therefore, it is important to evaluate the possible adverse effects of these formulations on

the mucosal surfaces. The efficacy of drug delivery systems containing polymers

including poly(acrylic acid)s and cellulose derivatives have been extensively described

(Chapter 3.1 Introduction – Buccal dosage forms). However, only limited toxicological

data are available for these formulations and there exists no standard method to evaluate

the possible adverse effects of bioadhesives on mucosal tissue. A variety of in vivo and in

vitro models were used to investigate the irritation potential of these formulations. The in

vitro biocompatibility of different bioadhesive polymers was assessed by the cytokine

release from Callu-3 cells (Witschi and Mrsny, 1999). The ocular irritation potential of

ophthalmic adhesive delivery systems was evaluated in rabbits (Srividya et al., 2001).

The in vivo nasal toxicity of Carbopol971P was assessed in rabbits and the ciliotoxicity

was evaluated using primary human nasal epithelial cells (Ugwoke et al., 2000).The

cellular effect of different chitosan polymers was investigated using Caco-2 monolayers

and the influence on the ciliary beat frequency was determined with chicken embryonal

trachea (Tengamnuay et al., 2000).

In general the use of vertebrates as test organism has been severely criticised

based on ethical and financial considerations. The concept of the three Rs (refinement,

replacement and reduction) stimulates the development of alternative methods such as in

vitro methods and the use of ‘lower’ organisms (invertebrates, plants and micro-

organisms) as test organism (Balls et al., 1995).

The mucosal irritation test using the slug Arion lusitanicus as model organism has

been validated with reference molecules as an alternative test for screening the irritation

potential of chemicals in solutions (Adriaens and Remon, 2002). The body wall of slugs
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consists of a single-layered epithelium containing ciliated cells, cells with microvilli and

mucus secreting cells. Slugs produce mucus to protect their skin against damage. A

previous study showed that the irritation potential of bioadhesive formulations could be

estimated with the mucosal irritation test using slugs (Callens et al., 2001). Adriaens et al.

(2003) described that the mucosal irritation test using slugs can be used as a reliably and

reproducible alternative method to study the biocompatibility of bioadhesive powder

formulations. The amount of mucus produced by the slugs during a repeated contact

period is a measure for irritation. Membrane damage can be estimated from the release of

proteins, lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) from the body

wall of the slugs.

In the present study the irritation potential of different multifunctional polymers

described in Chapter 1 was evaluated with the mucosal irritation test using slugs.

3.3.2 Materials and Methods

3.3.2.1 Chemicals

Drum dried waxy maize starch (DDWM) was obtained from Eridania-Béghin Say,

Cerestar (Vilvoorde, Belgium) and Carbopol 974P (C 974P) from BF Goodrich

(Cleveland, OH, USA). Benzalkonium chloride was purchased from Sigma-Aldrich

(Bornem, Belgium). All other reagents used were of analytical grade.

3.3.2.2 Test procedure mucosal irritation test

The mucosal irritation test according to the methodology described by Adriaens

and Remon (1999) was modified for the bioadhesive powders (Callens et al., 2001).

Figure 1 gives a schematic description of the test procedure. Untreated slugs were

used as negative controls (blanks) while slugs treated with DDWM/benzalkonium

chloride (DDWM/BAC 95/5) were used as positive controls. The slugs were placed daily

on 20 mg powder during 30 min. for 5 successive days.
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Figure 1. Schematic description of the alternative mucosal irritation test

procedure using slugs.

20 mg bioadhesive
powder is weighed
in a petri dish.

The slugs are placed
daily on 20 mg
powder during 30
min. for 5 successive
days.

The amount of mucus produced
during each contact period was
measured by weighing the petri
dishes with the test substance
before and after the 30 min.
contact period.

After each 30 min. contact period
the slugs were transferred to a
fresh petri dish containing 1 ml
PBS. After 30 min. and 60 min.
the PBS was collected and
analysed for proteins and the
enzymes LDH and ALP.
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For each powder formulation 5 slugs were used. The amount of mucus produced during

each contact period was measured by weighing the petri dishes with the test substance

before and after the 30 min. contact period. The mucus production was expressed as % of

the body weight. After each 30 min. contact period the slugs were transferred to a fresh

petri dish containing 1 ml phosphate buffered saline solution (PBS). After 30 min. the

PBS was collected with a micropipette and the slugs were placed in a fresh petri dish

containing 1 ml PBS which was collected after 60 min. Then again the slugs were

transferred in a fresh petri dish, 1 ml PBS was added and collected after 60 min. After

sampling the slugs were placed in a petri dish on a membrane filter (cellulose acetate 0.45

µm, Sartorius AG, Germany) moistened with 2 ml PBS until the next contact period. The

PBS samples were analysed for the presence of proteins, LDH and ALP released from the

body wall.

The total protein concentration present in the PBS samples was determined with a

NanoOrangeTM protein quantitation kit (Molecular Probes, Leiden, The Netherlands) and

expressed in µg/ml per g body weight. The NanoOrangeTM reagent allowed accurate

protein determination in a concentration range between 10 ng and 10 µg/ml. The

fluorescent measurements were carried out on a fluorometer (Kontron Intruments SFM

25, Van Hopplynus, Brussels, Belgium) using excitation/emission wavelengths of

485/590 nm. Bovine serum albumine was used as a standard.

The lactate dehydrogenase activity (LDH, EC 1.1.1.27) was measured with an enzyme kit

(DG 1340-K, Sigma Diagnostica, Belgium) and expressed as U/l per g body weight. The

LDH reagents measure the enzyme activity based on the optimised standard method

recommended by the German Society for Clinical Chemistry (1970, 1971, 1972). The

LDH activity measurements were conducted on a Cobas Mira Plus analyzer (ABX,

Brussels, Belgium).

The alkaline phosphatase activity (ALP, EC 3.1.3.1) was measured with an enzyme kit

(DG 1245-K, Sigma Diagnostica, Belgium) and expressed in U/l per g body weight. The

ALP reagents measure the enzyme activity based on the optimised standard method

recommended by the German Society for Clinical Chemistry (1970, 1971, 1972). The

ALP activity measurements were conducted on a Cobas Mira Plus analyzer (ABX,

Brussels, Belgium).
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3.3.2.3 Statistical analyses

For the statistical analysis the total mucus production, the mean protein, the mean

LDH and the mean ALP release were calculated. Statistically significant differences

between the different treatments were determined using a one-way ANOVA. The data

were tested for normal distribution with a Kolmogorov-Smirnov test. The homogeneity of

variances was tested with the Levene’s test. If the variances were found not to be equal

the data were transformed to their logarithm. To compare the effects of the different

treatments a multiple comparison was performed using a Scheffé test with p < 0.05 as

significance level. Acceptance criteria for the negative and positive controls were

determined by calculating the prediction interval to contain future observations. For all

the statistical analyses the computer program SPSS version 10.0 was used.

3.3.2.4 Test validity

Acceptance criteria for the negative (NC) and positive control (PC) were

established to provide criteria for test validity. A lyophilised mixture of DDWM/BAC

(95/5) was selected as a positive control. Previous research showed that this mixture

induced severe membrane damage resulting in an increased mucus production, reduction

in body weight and the release of protein and enzymes from the body wall of the slugs

(Callens et al., 2001). Untreated slugs were used as negative control. The data of 8

repeated tests with the NC and PC were used to calculate the 95% prediction intervals to

contain future observations. The results of the tested mucoadhesive polymers were only

accepted if the following conditions were satisfied: the mean of the total mucus

production (n=5) after a repeated 30 min. contact period was < 2% for the NC and > 10%

for the PC slugs. Additionally none of the NC slugs may show LDH and ALP release.

(Adriaens et al., 2003)
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3.3.3 Results and Discussion

Some caution should be made about the interpretation of the mucus produced by

the slugs. Upon contact with the body wall of the slugs dry powder formulations can

absorb water by dehydration of the mucosal tissue which will be reported as an increased

mucus production compared to untreated (blank) slugs. Therefore, the effect of the

different multifunctional polymers on the mucus production was also compared to slugs

treated with pure drum dried waxy maize starch (DDWM). The non-irritating potential of

DDWM on buccal, nasal and ocular mucosal tissue has been reported by several authors

(Callens et al., 2001; Bottenberg et al., 1991; Bouckaert et al., 1993; Bouckaert et al.,

1996 and Ceulemans et al., 2001). DDWM was also non-irritating for the slugs as the

mucus production was mainly the result of hydration of the dry bioadhesive powder

formulations. The total mucus production and the mean protein release for 20 repeated

experiments with DDWM treated slugs were not significantly different (Scheffé, p <

0.05) (Table 1).

3.3.3.1 60Co irradiated (IR) and chemically modified (CM) grafted

starches

The results of the mucosal irritation test for the 60Co irradiated (IR) and

chemically modified (CM) grafted starches are summarised in Table 1.

All three grafted starches showed a significant increased mucus production

compared to the blank slugs and the DDWM treated slugs. Moreover, the total mucus

production was comparable to the positive control (PC) slugs. There was no significant

difference in the amount of mucus produced between the 60Co irradiated (IR) and the

chemically modified (CM) grafted starches. The non-neutralised irradiated grafted starch

(IR 2) showed a higher mucus secretion compared to the partially neutralised IR 1, but

not significantly. The protein release profiles of the slugs treated with the different grafted

starches were increased compared to the blank slugs and the DDWM slugs, although not

significantly. Only the positive control slugs exhibited a significantly increased protein

release and the protein release increased with a repeated contact period. IR 2 and CM 3

induced the release of cytosolic LDH, which is a sign of membrane damage, no ALP
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release was detected. Only the PC slugs induced both cytosolic LDH and membrane

bound ALP release.

Total MP Mean protein

release

Mean LDH

release

Mean ALP

release

N

(%)a (µg/ml.g) (U/l.g) (U/l.g)

Blank (NC) -0.3 ± 1.4 12 ± 10 - - 30

DDWM 3.6 ± 1.3 a 11 ± 7 a - - 20

DDWM/BAC 95/5

(PC) 18.7 ± 4.8 b 145 ± 83 b 6.37 ± 5.30 0.46 ± 0.58 30

IR 1 19.2 ± 2.4 b 22.05 ± 23.24 a - - 5

IR 2 23.4 ± 5.1 b 21.34 ± 16.73 a 0.26 ± 0.58 - 5

CM 3 23.9 ± 5.2 b 14.73 ± 7.64 a 0.17 ± 0.37 - 5

Table 1.Effect of the 60Co irradiated (IR) and chemically modified (CM) grafted starches on the

endpoints of the mucosal irritation test. (mean ± S.D)
a Treatment belongs to the same group as the DDWM slugs (P > 0.05, Scheffé test)
b Treatment belongs to the same group as the PC slugs (P > 0.05, Scheffé test)

MP: mucus production in % (w/w) of the body weight

The results indicated that the 60Co irradiated (IR) and the chemically modified

(CM) grafted starches were irritating to the mucosal tissue of the slugs since they induced

an increased mucus production which is a sign of irritation. However no significantly

increased protein release was detected, IR 2 and CM 3 induced the release of LDH from

the slugs body wall, which is an indication of membrane damage and thus severe

irritation. When using these grafted starches in bioadhesive formulations to be applicated

on mucosal surfaces, i.e. the buccal mucosa, one has to take into account the irritating

potential of these polymers. The mucosal irritation test has shown that the 60Co irradiated

and chemically modified grafted starches tested are excluded as mucoadhesive carriers.
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3.3.3.2 Spray-dried Amioca/poly(acrylic acid) and

Amioca/Carbopol 974P mixtures

The results of the mucosal irritation test for the spray-dried starch/poly(acrylic

acid) mixtures (SD PAA) are summarised in Table 2.

All the spray-dried mixtures induced a significant increased mucus production

compared to the blank slugs and the slugs treated with DDWM. The amount of mucus

produced increased with an increasing PAA concentration and the powders containing

75% (w/w) PAA showed comparable amount of mucus production compared to the

positive control (PC) slugs. Heat treatment after spray-drying had no effect on the mucus

production. The protein release profiles of the slugs treated with the different mixtures

were comparable with the blank and the DDWM treated slugs. Only the positive control

slugs exhibited a significantly increased protein release and the protein release increased

with a repeated contact period. Enzyme release was only detected for the positive control

slugs.

Total MP Mean protein

release

Mean LDH

release

Mean ALP

release

N

(%)a (µg/ml.g) (U/l.g) (U/l.g)

Blank (NC) -0.3 ± 1.4 12 ± 10 - - 30

DDWM 3.6 ± 1.3 a 11 ± 7 a - - 20

DDWM/BAC 95/5

(PC) 18.7 ± 4.8 b 145 ± 83 b 6.37 ± 5.30 0.46 ± 0.58 30

SD PAA 50/50 9.2 ± 3.7 9 ± 5 a - - 5

SD PAA 50/50 HT 9.7 ± 3.5 7 ± 5 a - - 5

SD PAA 25/75 14.1 ± 2.5 b 11 ± 2 a - - 5

SD PAA 25/75 HT 12.7 ± 2.0 b 13 ± 3 a - - 5

Table 2:Effect of the spray-dried starch/poly(acrylic acid) mixtures (SD PAA) on the endpoints of the

mucosal irritation test. (mean ± S.D)
a Treatment belongs to the same group as the DDWM slugs (P > 0.05, Scheffé test)
b Treatment belongs to the same group as the PC slugs (P > 0.05, Scheffé test)

MP: mucus production in % (w/w) of the body weight
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The results of the study indicated that the used PAA concentrations were irritating

to the mucosal tissue of the slugs since all tested spray-dried Amioca/PAA mixtures

induced an increased mucus production, which is a sign of irritation, however no

increased protein and enzyme release was detected. The irritation potential increased with

an increasing PAA content in the spray-dried mixtures.

The effects of the spray-dried Amioca starch/Carbopol 974P (C 974P) mixtures

on the endpoints of the mucosal irritation test are shown in Table 3.

Total MP Mean protein

release

Mean LDH

release

Mean ALP

release

N

(%)a (µg/ml.g) (U/l.g) (U/l.g)

Blank (NC) -0.3 ± 1.4 12 ± 10 - - 30

DDWM 3.6 ± 1.3 a 11 ± 7 a - - 20

DDWM/BAC 95/5 (PC) 18.7 ± 4.8 b 145 ± 83 b 6.37 ± 5.30 b 0.46 ± 0.58 30

SD 95/5 3.7 ± 0.8 a 5 ± 4 a - - 5

SD 90/10 4.8 ± 2.5 a 12 ± 15 a - - 10

SD 85/15 5.9 ± 1.7 a 13 ± 8 a - - 5

SD 80/20 5.3 ± 1.7 a 11 ± 6 a - - 15

SD 75/25 12.0 ± 3.2 b 17 ± 10 a - - 5

SD 70/30 12.4 ± 2.0 b 11.2 ± 5.4 a - - 5

SD 60/40 17.0 ± 2.2 b 28 ± 30 a 0.70 ± 0.85 b - 5

SD 50/50 18.5 ± 8.3 b 27 ± 20 a 1.17 ± 1.13 b - 5

Carbopol 974P 21.4 ± 3.7 b 55 ± 30 b 0.43 ± 0.30 - 5

Table 3:Influence of the spray-dried Amioca starch/Carbopol 974P mixtures (SD) and pure

Carbopol 974P on the endpoints of the mucosal irritation test. (mean ± S.D)
a Treatment belongs to the same group as the DDWM slugs (P > 0.05, Scheffé test)
b Treatment belongs to the same group as the PC slugs (P > 0.05, Scheffé test)

MP: mucus production in % (w/w) of the body weight

All the spray-dried mixtures induced a significant higher total mucus production

compared to the untreated slugs. However, the total mucus production induced after

treatment with mixtures containing up to 20% C 974P was similar as in the DDWM

treated slugs. The mucus secretion induced by the mixtures containing 25% (w/w) C 974P
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or more was significantly higher than for the DDWM treated slugs and was comparable to

positive control (PC) treated slugs. The spray-dried mixtures had no additional effect on

the protein release in comparison with the DDWM treated slugs. However, the spray-

dried mixtures containing 40% (w/w) or more C 974P induced the release of cytosolic

LDH, which is a sign of membrane damage on the slugs’ body wall. Pure Carbopol

974P induced cytosolic LDH release and a comparable protein release to the PC treated

slugs.
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Figure 2. Overview of the influence of the spray-dried Amioca/Carbopol 974P mixtures (SD),

pure DDWM, pure Carbopol 974P (C 974P) and DDWM/BAC 95/5 (positive control,

PC) on the endpoints of the mucosal irritation test.

The spray-dried Amioca/C 974P mixtures containing 25% and 30% (w/w)

Carbopol 974P induced slight irritation of the mucosa as was demonstrated by the

increased mucus secretion but no additional effect on the protein and enzyme release was

detected. The spray-dried mixtures with 40% (w/w) or more C 974P induced LDH, which

indicates membrane damage and severe irritation. On the other hand, the spray-dried

Amioca/Carbopol 974P mixtures containing up to 20% Carbopol 974P induced no

irritation of the mucosal tissue of the slugs and are safe mucoadhesive carriers. (Figure 2)
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Scanning electron microscopy and solid state NMR spectroscopy and relaxometry

analysis, described in Chapter 1.2, showed that by spray-drying Amioca

starch/Carbopol 974P mixtures, Carbopol films are formed around the starch granules.

Film formation can probably explain the mucosal irritation results from a molecular point

of view. Total mucus productions after treatment with spray-dried mixtures containing

25% or more C 974P and pure C 974P belonged all to the same group and were

significant higher compared to the DDWM treated slugs. Starting at a concentration of

25% C 974P (SD 75/25) the Amioca granules are probably completely surrounded by

Carbopol. When the slugs are brought into contact with these powders the contact

surface is 100% C 974P, resulting in irritation of the slugs’ mucosa. Increasing the C

974P content above 25%, and thus an increased film thickness, and pure C 974P did not

induce a significantly higher total mucus production, confirming this hypothesis. Spray-

dried mixtures containing up to 20% C 974P are non-irritating, as the Amioca granules

are not completely surrounded with C 974P and as the ratio Carbopol coated and non-

coated surface areas on the Amioca granules is to small to induce mucosal irritation.

When comparing linear poly(acrylic acid) (PAA) (SD PAA 50/50) and cross-

linked poly(acrylic acid) Carbopol 974P (C 974P) (SD 50/50) used in spray-dried

Amioca starch/poly(acrylic acid) mixtures, the irritation potential of the cross-linked

poly(acrylic acid) C 974P on mucosal tissue was more pronounced. SD PAA 50/50

induced only an increased mucus production, while no enzyme release was detected. SD

50/50 resulted in a higher mucus production and cytosolic LDH release, which indicates

membrane damage. The explanation for the higher irritation potential of the cross-linked

Carbopol 974P can probably be found in the higher molecular weight of the cross-linked

polymer, which is in the billions, compared to the linear PAA (Mw 250.000). A higher

molecular weight poly(acrylic acid) contains more carboxylic acid functions (-COOH),

which are mainly responsible for the irritating effect.
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3.3.3.3 Influence of spray-drying on the mucosal irritation potency of

Amioca/Carbopol 974P mixtures

The effect of spray-drying Amioca/Carbopol 974P mixtures on the mucosal

irritation potential was investigated by comparing spray-dried mixtures containing 5, 10

and 25% (w/w) Carbopol 974P with their equivalent physical mixtures (Table 4). Since

a Carbopol 974P concentration of 25% (w/w) induced a significant increased mucus

production compared to pure DDWM, only mixtures containing up to 25% (w/w)

Carbopol 974P were tested.

Total MP Mean protein

release

Mean LDH

release

Mean ALP

release

N

(%)a (µg/ml.g) (U/l.g) (U/l.g)

Blank (NC) -0.3 ± 1.4 12 ± 10 - - 30

DDWM 3.6 ± 1.3 a 11 ± 7 a - - 20

DDWM/BAC 95/5 (PC) 18.7 ± 4.8 b 145 ± 83 6.37 ± 5.30 0.46 ± 0.58 30

SD 95/5 3.7 ± 0.8 a 5 ± 4 a - - 5

PM 95/5 1.7 ± 1.8 a 7 ± 10 a - - 5

SD 90/10 4.8 ± 2.5 a 12 ± 15 a - - 10

PM 90/10 2.8 ± 1.0 a 6 ± 2 a - - 5

SD 75/25 12.0 ± 3.2 b 17 ± 10 a - - 5

PM 75/25 6.9 ± 2.5 a 7 ± 5 a - - 5

Table 4:Influence of spray-drying Amioca starch/Carbopol 974P mixtures (SD) compared to

physical mixtures (PM) on the endpoints of the mucosal irritation test. (mean ± S.D)
a Treatment belongs to the same group as the DDWM slugs (P > 0.05, Scheffé test)
b Treatment belongs to the same group as the PC slugs (P > 0.05, Scheffé test)

MP: mucus production in % (w/w) of the body weight

Within the group of the spray-dried mixtures the 75/25 ratio showed a

significantly increased mucus production compared to the 90/10 and 95/5 ratio, while the

physical mixtures belonged all to the same group.

There was no significant difference in mucus production between the spray-dried

and physical blended mixtures at the respective ratios, although an increased mucus

production was observed for the spray-dried mixtures compared to their equivalent
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physical mixtures, respectively. The protein release profiles of the slugs treated with the

different spray-dried or physical blended mixtures were comparable with the blank and

DDWM treated slugs. Only the positive control (PC) slugs exhibited a significantly

increased protein release. Also enzyme release was only detected for the PC slugs.

The mixing process (spray-drying vs. physical blending) had no significant effect

on the irritation potency of Carbopol 974P, although spray-dried mixtures induced a

slightly higher mucus production compared to equivalent physical mixtures.

From a molecular point of view this can be explained by the C 974P film

formation around the Amioca granules during spray-drying (Chapter 1.2). When the

bioadhesive powders are brought into contact with the slugs’ mucosa, it is mainly (partial

coating) or 100% (total coating) Carbopol 974P which will make direct contact with the

mucosa, resulting in an increased irritative effect. In an Amioca/Carbopol 974P

physical blend both components are homogeneously mixed and divided in the mixture.

Irritation studies in other models also indicated that Carbopol was well tolerated

when it was used in small amounts (< 10%). Buccal and ocular tablets containing 5%

Carbopol together with non-irritating DDWM were well accepted by volunteers

(Bottenberg et al., 1991; Bouckaert et al., 1996 and Ceulemans et al., 2001). A buccal

erodible tablet containing 7.5% Carbopol 974P induced no irritation over a period of 6

hours in human volunteers (Khanna et al., 1997). Daily administration of neutralised and

lyophilised DDWM/Carbopol 974P (90/10) during four weeks did not induce irritation

of the nasal mucosa in rabbits (Callens et al., 2001). Rectal nicotine formulations with a

Carbopol concentration below 10% did not have any cytotoxic effect on Caco-2 cells

(Dash et al., 1999) and suppositories containing 10% Carbopol 934P administered to

rabbits for 5 days did not irritate the tissue (Yahagi et al., 2000).
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3.3.3.4 Correlation between the mucosal irritation test using slugs and

in vivo irritation potential in dogs

To investigate the correlation between the results of the alternative mucosal

irritation test using slugs and the irritation potential in vivo, SD PAA 50/50 and SD PAA

25/75 were evaluated as a buccal bioadhesive tablet in dogs (n = 2). One tablet was

adhered daily on the gingiva above the right upper canine for one week.

SD PAA 25/75 resulted in irritation of the buccal mucosa after 4 days of

application, while the SD PAA 50/50 showed the first signs of irritation after 6 days

(Figure 3). As observed with the alternative mucosal irritation test, a higher PAA

concentration resulted also in dogs in a higher degree of mucosal irritation, observed as

an earlier onset of irritation. These data prove that the mucosal irritation test using slugs

can be used as a reliably alternative method to study the biocompatibility of bioadhesive

powder formulations.

Figure 3. Irritation of the dogs buccal mucosa after application of a SD PAA

50/50 bioadhesive tablet.

Sign of irritation

Application site
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3.3.4 Conclusion

It can be concluded that grafted starches prepared by 60Co irradiation or chemical

modification both induce irritation of mucosal tissues.

Spray-dried starch/poly(acrylic acid) mixtures containing 50 and 75% (w/w)

poly(acrylic acid) were irritating on mucosal surfaces and the irritation potential increased

with increasing poly(acrylic acid) concentrations. In vivo evaluation in dogs confirmed

these findings.

Spray-dried Amioca starch/Carbopol 974P mixtures containing up to 20%

Carbopol 974P did not show a distinct sign of irritation. These powders can be

incorporated in bioadhesive formulations without risk of irritation and are potential safe

bioadhesive carriers.
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Chapter 3.4 Buccal Testosterone Absorption
from a Bioadhesive Tablet

3.4.1 Introduction

The buccal absorption of testosterone from a bioadhesive tablet formulation based

on a 60Co irradiated or chemically modified grafted starch or on a freeze-dried

starch/poly(acrylic acid) mixture was investigated in vivo in dogs.

In a previous study, a non-irritating buccal bioadhesive drug carrier was

developed containing a physical mixture of 5% cross-linked poly(acrylic acid), Carbopol

974P, with a thermally modified starch (Bouckaert and Remon, 1993). This buccal drug

carrier has been shown to be effective for local (miconazole) delivery (Bouckaert et al.,

1993) as well as for systemic drug delivery. Voorspoels et al. (1996) studied the buccal

absorption of testosterone from this erodible bioadhesive tablet in dogs. They concluded

that the application of a buccal bioadhesive tablet with 60 mg testosterone in dogs

sustained plasma levels which were significantly higher than those obtained after the oral

administration of the same dose of testosterone.

Testosterone (Figure 1), the main

circulating androgen in men, is secreted

predominantly by the testes. Normal serum

concentrations are 10 – 35 nmol/l, and show

a circadian variation with peak

concentrations in the morning (Bremmer et

al., 1983; Place and Nichols, 1991). In

extragonadal tissues, circulating testos-

terone is enzymatically converted to

dihydrotestosterone.

O

OH

Figure 1. Chemical structure of testosterone.

When administered orally or parenterally, testosterone is rapidly absorbed and

metabolised by the liver resulting in a very short circulating half-life. Nowadays,

testosterone esters, such as testosterone proprionate, enanthate or decanoate), are injected
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intramuscularly. They are more lipophilic than testosterone and are absorbed slowly when

injected as an oil solution or suspension, yielding testosterone concentrations greatly

above normal levels during the first days after administration, but they do not produce

daily variation in testosterone concentrations. Testosterone undecanoate is an orally

active ester formulated in a lipid-soluble preparation that is absorbed directly into the

lymphatic system, thereby avoiding first-pass metabolism in the liver (Conway et al.,

1988). However, because of the poor bioavailability of testosterone, the levels of

circulating testosterone obtained with such treatment are unpredictable (Conway et al.,

1988; Bagatelle and Bremner, 1996). Transdermal testosterone delivery, either via a patch

or a gel, can yield physiological concentrations of testosterone and a circadian pattern

close to that of healthy men (Meikle et al., 1996; Dobs et al., 1999). However,

transdermal patches often cause local skin irritation (Arver et al., 1997; Parker and

Armitage, 1999) and testosterone gels must be applied over a large surface area of the

skin, which is not patient friendly (Wang et al., 2000).

In the first part of this study, the 60Co irradiated or chemically modified grafted

starches and a freeze-dried starch/poly(acrylic acid) mixture (Chapter 1 Multifunctional

Polymers) were formulated as a buccal bioadhesive tablet, loaded with testosterone as a

model drug, and the pharmacokinetics were evaluated in dogs.

In the second part of this Chapter spray-dried Amioca starch/Carbopol 974P

mixtures were evaluated as potential buccal bioadhesive tablets. Different

Amioca/Carbopol 974P ratios were tested in vivo in dogs as a placebo tablet and the

influence of the Carbopol content on the in vivo adhesion time was investigated. The in

vitro drug release rate was evaluated in an USP III (BioDis) dissolution system by

incorporating 10 mg miconazole nitrate as a marker. Miconazole nitrate is an antifungal

drug and is frequently used in local oral drug delivery systems such as oral gels or

bioadhesive buccal tablets (Bouckaert and Remon, 1993; Bouckaert et al., 1993; Nafee et

al., 2003). The drug loading capacity and bioavailability of a selected spray-dried mixture

was investigated in vivo in dogs using testosterone as model drug.

The dog was used as in vivo animal model. The dog, the monkey and the pig are

suitable animals for drug delivery studies via the buccal mucosa as their buccal mucosa
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has a non-keratinised epithelium, just like the human buccal mucosa (Hoogstraate et al.,

1998). The pig is probably the most suitable model because there are essentially no

differences between human and pig buccal mucosa, but the pig is very sensitive to stress

and has to be sedated during the experiment. It is important that the animal is not sedated

during the experiment as the drug is released by erosion of the buccal bioadhesive tablet,

which is stimulated by the saliva flow and movement of the lips and cheeks. The dog

must not be sedated during the experiments and is generally seen the most appropriate

animal model for buccal drug delivery studies.
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3.4.2 Grafted starches (IR & CM) and freeze-dried

starch/poly(acrylic acid) mixtures (FD)

3.4.2.1 Materials

Testosterone was purchased from Diosynth (Oss, The Netherlands). Carbopol

974P (C 974P) was supplied by BF Goodrich (Cleveland, Ohio, USA). Drum Dried Waxy

Maize (DDWM) was supplied by Cerestar (Vilvoorde, Belgium). Sodium stearyl

fumarate (NaSF) was given by Edward Mendell Co. Inc. (New York, USA). All other

chemicals used were at least of analytical grade.

3.4.2.2 Methods

3.4.2.2.1 Production of tablets

To produce the tablets for the in vivo study the powder was first mixed with

micronised testosterone (60 mg), next the sodium stearyl fumarate (1%) was added as a

lubricant and mixed again. The tablets were compressed on a Korsch compression

machine (Type EK0, Berlin, Germany). The weight and the diameter of the tablets was

200 mg and 9 mm, respectively. The compression force was 14.7 kN.

Because the surface of the powder particles of the irradiated starches was rough

and because the bioadhesive tablets based on these powders swelled as large individual

particles which came loose from the tablet, the IR 1 sample was first lyophilised. After

hydration of the bioadhesive tablets formulated with the lyophilised powder, a

homogeneous gel layer, that will be progressively eroded, is formed around the tablet. To

lyophilise the powder, first a 3 % (w/w) gel in distilled water was formulated. Next the

gel was filled into vials and lyophilised over 24 h in a Finn Aqua GT4 lyophilisator

(Amsco, Brussels, Belgium). Then the lyophilised powder was milled in a powder mill

(Fritsch, Germany). Tablets based on the lyophilised powder for the in vivo study were

produced as described above.
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3.4.2.2.2 In vivo study protocol

The bioavailability of the

selected formulations was determined

according to a previously described

protocol by Voorspoels et al. (1996). The

formulations were tested in 6 castrated

male dogs (weight 34.2 ± 2.2 kg). The

dogs were conscious and fasted from 12

h before until the end of the experiment.

Drinking water was available at libitum.

One tablet was placed on the gingiva

above the right upper canine (Figure 2)

and blood samples were collected before

the administration and 0.5, 1, 2, 4, 8, 12,

16

Figure 2. A bioadhesive tablet sticked on the

gingiva above the right upper canine in the dogs’

mouth.

and 24 h after the administration in heparinised tubes. The blood samples were

centrifuged at 2000 g and the plasma was kept at –20°C until analysis. A time interval of

at least 1 week was respected between each administration. To calculate the absolute

bioavailability, 60 mg testosterone was administered intravenously to each dog. Blood

samples were taken at 0, 2, 5, 10, 20, 30 min. and 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 24 h after

administration. The approval of The Ethics Committee was obtained.

3.4.2.2.3 Testosterone analysis

The testosterone plasma concentrations were determined by chemiluminescent

immunoassay (Immulite Total Testosterone, Diagnostic Products Corporation, Los

Angeles, CA, USA). The analytical sensitivity was 10 ng/dl. The antibody was highly

specific for testosterone, the cross reactivity was 0.79% for androstenedion and 9.1% for

dihydrotestosterone. The interassay coefficient of variation varied between 6.5% and 16%

depending on the concentration level.
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3.4.2.2.4 Pharmacokinetics and in vivo adhesion time

The absolute bioavailability was calculated using the Kinbes software (Proost

and Meijer, 1992). The T>3ng/ml value (time during which the plasma testosterone

concentration was above 3 ng/ml) was calculated from the individual graphs. The in vivo

adhesion time of the bioadhesive tablet was determined visually. Adhesion was

considered to be present until the complete erosion of the tablet.

3.4.2.3 Results and Discussion

Based on the results from the ex vivo bioadhesion measurements (Chapter 3.2)

both 60Co irradiated grafted starches IR 1, lyophilised IR 1 and IR 2, the chemically

modified grafted starch CM 3 and the freeze-dried Amioca/poly(acrylic acid) mixture

FD 25/75 HT were selected to be investigated as potential buccal bioadhesive drug

carriers in a bioavailability study of buccally administered testosterone in dogs.

The mean plasma concentration time profiles of the different formulations are

shown in Figure 3. The absolute bioavailability, the time during which the plasma

testosterone concentration was above the 3 ng/ml target concentration (T>3ng/ml) (Mazer et

al., 1992) and the mean adhesion time are shown in Table 1.

The reference formulation sustained the 3 ng/ml target concentration during 11.3

± 3.9 h and adhered in vivo during 15.7 ± 8.6 h. The chemically modified grafted starch

CM 3 showed a high testosterone plasma peak 2 hours after administration and the time

during which the plasma concentration was above 3 ng/ml was 7.9 ± 2.1 h. The CM 3

tablet adhered in vivo during 9.7 ± 2.7 h. After application of the freeze-dried

Amioca/poly(acrylic acid) mixture FD 25/75 HT the mean plasma concentration time

profile never exceeded the 3 ng/ml level, the T>3ng/ml was 5.0 ± 3.5 h. The tablet based on

FD 25/75 HT adhered in vivo during 10.5 ± 3.1 h. With the non-neutralised IR 2 the mean

plasma concentration time profile never reached the 3 ng/ml target concentration,

although the tablet adhered during 13.7 ± 3.2 h. The partially neutralised IR 1 did not

yield high plasma concentrations, but showed a T>3ng/ml of 8.5 ± 3.9 h and a adhesion time

of 12.5 ± 2.5 h. The mean plasma concentration time profile of the lyophilised IR 1
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fluctuated during 24 h around the 3 ng/ml target concentration. For the lyophilised IR 1

the T>3ng/ml was 13.5 ± 1.3 h and the tablet adhered during 22.0 ± 7.2 h. Only the

lyophilised IR 1 approached the absolute bioavailability value of the reference

formulation (C 974P/DDWM - 5/95). The absolute bioavailability of the other

formulations was between 2.5 and 4.3%. None of the tested formulations showed any sign

of irritation on the dogs gingiva or mucosa after single application.
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Figure 3. Plasma concentration time profiles for the 60Co irradiated grafted starches IR 1, lyophilised

IR 1 and IR 2, the chemically modified grafted starch CM 3 and the freeze-dried

Amioca/poly(acrylic acid) mixture FD 25/75 HT compared to a reference formulation. (n = 6, mean

± SD)

Using chemical modification grafted starches were synthesised that could sustain

the testosterone target concentration during ± 8 h. The formulation based on the

chemically modified starch CM 3 showed a shorter in vivo adhesion time compared to the

reference formulation, which was due to a higher erosion rate. The faster erosion rate of

the CM 3 tablet resulted in a high plasma peak concentration 2 h after administration and

a shorter T>3ng/ml. In case of the irradiated grafted starches, only the IR 1 formulation

provided acceptable T>3ng/ml values. Lyophilisation of the partially neutralised 60Co

irradiated grafted starch IR 1, induced a longer in vivo adhesion time and a higher
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T>3ng/ml. The absolute bioavailability of the lyophilised formulation was similar to that of

the reference formulation. The longer in vivo adhesion time of the lyophilised IR 1

formulation was the result of a slower erosion rate. A bioadhesive tablet formulation with

a slow erosion rate does not provide high peak plasma concentrations, but can sustain

(lower) plasma concentrations over a longer period of time.

Formulation T>3ng.ml
-1

(h)

Fabs

(%)

Adhesion Time

(h)

Reference 11.25 ± 3.86 6.97 ± 3.33 15.67 ± 8.62

IR 1 8.50 ± 3.90 3.90 ± 2.09 12.50 ± 2.51

IR 2 4.00 ± 6.48 2.46 ± 1.10 13.67 ± 3.20

IR 1 lyo 13.50 ± 1.32 6.46 ± 1.92 22.00 ± 7.21

CM 3 7.92 ± 2.11 4.25 ± 2.36 9.67 ± 2.73

FD 25/75 HT 5.00 ± 3.45 2.54 ± 1.11 10.50 ± 3.08

Table 1. Time during which the plasma testosterone concentration was above 3 ng/ml (T>3ng.ml
-1), the

absolute bioavailability (Fabs) and the in vivo adhesion time for the 60Co irradiated grafted starches IR

1, lyophilised IR 1 and IR 2, the chemically modified grafted starch CM 3 and the freeze-dried

Amioca/poly(acrylic acid) mixture FD 25/75 HT compared to a reference formulation. (n = 6, mean

± SD)
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3.4.2.4 Conclusion

The chemically modified grafted starch released the model drug testosterone

rather fast and the 3 ng/ml target testosterone plasma concentration was sustained during

7 h. A partially neutralised grafted starch, synthesised by 60Co irradiation, a lyophilized
60Co irradiated grafted starch and a freeze-dried Amioca/poly(acrylic acid) mixture did

not reach the absolute bioavailability data of the reference formulation, but they did

sustain the target testosterone plasma concentration during 8.5, 13.5, and 5.0 h,

respectively.

Some grafted starches, 60Co irradiated or chemically modified, and a freeze-dried

starch/poly(acrylic acid) mixture showed to be promising buccal bioadhesive drug

carriers for systemic delivery. However, in Chapter 3.3 Mucosal Irritation Test using

Slugs it was concluded that the 60Co irradiated and the chemically modified grafted

starches were irritating to the mucosal tissue of the slugs since they induced an increased

mucus production. In the present study, the tested irradiated and chemically modified

grafted starches did not show any sign of irritation on the dogs gingiva or mucosa after

single application.

It can be concluded that the grafted starches and the freeze-dried

starch/poly(acrylic acid) mixtures have a potential as (buccal) bioadhesive drug carriers,

although they can only be used for single applications and not in chronic treatments.
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3.4.3 Spray-dried Amioca starch/Carbopol 974P mixtures

(SD)

3.4.3.1 Materials

Testosterone was purchased from Diosynth (Oss, The Netherlands). Miconazole

nitrate was obtained from Janssen Pharmaceutica, Beerse, Belgium. Amioca starch is a

National Starch and Chemical Company product, Bridgewater, New Jersey, USA.

Carbopol 974P (C 974P) was supplied by BF Goodrich (Cleveland, Ohio, USA). Drum

Dried Waxy Maize (DDWM) was supplied by Cerestar (Vilvoorde, Belgium). Sodium

stearyl fumarate (NaSF) was given by Edward Mendell Co. Inc. (New York, USA).

Econazole was purchased from Sigma-Aldrich (Bornem, Belgium), methanol HPLC-S

grade was purchased from Biosolve BV (Valkenswaard, The Netherlands) and

tetrahydrofuran (THF) was purchased from BDH, Laboratory Supplies, Poole, UK. All

other chemicals used were at least of analytical grade.

3.4.3.2 Methods

3.4.3.2.1 Production of tablets

For the evaluation of the in vivo adhesion time placebo tablets (100 mg/7 mm)

were used. The powders were mixed with sodium stearyl fumarate (1%; w/w), as a

lubricant and compressed on a Korsch compression machine (Type EK0, Berlin,

Germany) equipped with 7 mm flat punches, at a pressure of 9.8 kN.

The tablets used in the in vitro dissolution study contained miconazole nitrate. For

the tablet production the spray-dried powder was firstly mixed with miconazole nitrate

(10 mg), next the lubricant (1% sodium stearyl fumarate) was added and mixed again.

The tablets were compressed as described above with a tablet weight of 100 mg and

diameter of 7 mm.

To produce the tablets for the in vivo drug loading study the powder was firstly

mixed with micronised testosterone (60 mg), next the sodium stearyl fumarate (1%) was

added and mixed again. The weight and the diameter of the tablets was 100 mg/7 mm
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(60% w/w drug concentration) and 200 mg/9 mm (30% w/w drug concentration) and the

compression force was 9.8 and 14.7 kN, respectively.

3.4.3.2.2 In vivo adhesion time study

The in vivo adhesion time of each formulation was evaluated in 7 castrated male

dogs (weight 29.07 ± 3.25 kg). The dogs were conscious during the whole test period.

One tablet was placed on the gingiva above the right upper canine (Figure 2). The in vivo

adhesion time was followed visually. The in vivo adhesion time was defined as the time

until loss or complete erosion of the bioadhesive tablet.

3.4.3.2.3 In vitro drug release study (USP III)

To evaluate the in vitro drug release from the bioadhesive formulations based on

the different spray-dried Amioca/C 974P mixtures, miconazole nitrate was used as a

model drug (Bouckaert and Remon, 1993; Bouckaert et al., 1993). The dissolution tests

were performed in an automatic reciprocating cylinder dissolution apparatus USP III

(United States Pharmacopeia XXIV, 2000) (VanKel BioDis III Release Rate tester, Cary,

NC, USA). The dip speed was set at 21 dips per minute and the temperature at 37°C. The

dissolution medium (250 ml) was a 0.1 N HCl solution containing 0.5% hydroxypropyl-

β-cyclodextrine (Janssen Pharmaceutica, Beerse, Belgium) in demineralised water (De

Spiegeleer et al., 2001).

Quantitative analysis of miconazole nitrate in the dissolution samples was

performed with a validated HPLC method with UV-detection using econazole as the

internal standard (De Spiegeleer et al., 2001). Analysis was performed with a HPLC

system consisting of a gradient HPLC pump (type L-7100, Merck-Hitachi, Darmstadt,

Germany), a solvent degasser (type L-7612, Merck-Hitachi, Darmstadt, Germany), an

autosampler (type L-7200, Merck-Hitachi, Darmstadt, Germany) equipped with a

Rheodyne injector and an injection loop of 100 µl (Rheodyne, California, USA), a

column oven (type L-7360, Merck-Hitachi, Darmstadt, Germany), a UV detector (type L-

7400, Merck-Hitachi, Darmstadt, Germany) and a software interface (type D-7000,

Merck-Hitachi, Darmstadt, Germany). Data were calculated with the software package
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‘HPLC System Manager’ (Merck-Hitachi, Darmstadt, Germany). The column was a

Lichrospher 100 RP-18 column (125 x 4 mm) equipped with a Lichrospher 100 RP-18

guard column (4 x 4 mm) (Merck, Darmstadt, Germany). The mobile phase, used as an

isocratic eluent, consisted of 75% (v/v) methanol, 20% (v/v) sodium acetate buffer (2.5

mM, pH 5.0) containing 5 mM triethylamine and 5% (v/v) tetrahydrofuran. The eluate

was monitored at 220 nm. The retention time of the econazole and miconazole nitrate

peak was 4.5 and 7.0 min, respectively, at a flow rate of 1.0 ml/min. The analysis was

performed at 25°C.

Calibration samples were prepared in dissolution medium to obtain a standard curve

ranging from 2.5 µg/ml to 50.0 µg/ml. To 1.0 ml of dissolution sample, 1.0 ml of a

methanolic solution of econazole (0.01 mg/ml) was added as internal standard, mixed and

centrifuged at 2578 g for 10 min (Tehtnica Centric 322 A, Novolab, Belgium). 100 µl of

the supernatant was injected onto the HPLC column.

The method was developed and validated by Tibotec-Virco (Mechelen, Belgium)

for dissolution tests on Tibozole buccal tablets containing 10 mg miconazole nitrate.

The standard curves (n=5) were linear with determination coefficients > 0.9995. The

accuracy was < 15% (Shah et al., 1992). All within day (repeatability) and between day

(intermediate precision) (n = 5) coefficients of variation were < 15% (Shah et al., 1992).

The detection limit and quantification limit were 0.48 and 1.48 mg/L miconazole nitrate,

respectively.

The exponential equation Mt/M∞ = ktn which describes the Fickian and non-

Fickian release behaviour of swellable systems that not swell more than 25% of their

original volume, was used to evaluate the drug release mechanism (Ritger and Peppas,

1987). Mt is the amount released at time t, M∞ is the overall released amount, k a release

constant of the nth order. The exponent n gives information about the release mechanism.

n = 0.5 indicates Fickian drug diffusion, while n = 1.0 for drug release controlled by

polymer erosion.
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3.4.3.2.4 In vivo study

The bioavailability of formulations containing 30 and 60% testosterone was

determined according to the study protocol described in 3.4.2.2.2 In vivo study protocol.

The results were compared with reference formulations (DDWM/C 974P; 95/5)

containing the same amounts of testosterone (Voorspoels et al., 1996). 60 mg testosterone

was incorporated in a 100 mg (60% drug concentration) or a 200 mg tablet (30% drug

concentration). The formulations were tested in 6 castrated male dogs (weight 30.0 ± 2.5

kg). Blood samples were collected before the administration and 0.5, 1, 2, 4, 8, 12, 16 and

24 h after the administration in heparinised tubes. To calculate the absolute

bioavailability, 60 mg testosterone was administered intravenously to each dog. The

approval of The Ethics Committee was obtained.

The testosterone plasma concentrations were determined by chemiluminescent

immunoassay (Immulite Total Testosterone, Diagnostic Products Corporation, Los

Angeles, CA, USA) as described in 3.4.2.2.3 Testosterone analysis.

The absolute bioavailability was calculated using the Kinbes software (Proost

and Meijer, 1992) as described in 3.4.2.2.4 Pharmacokinetics and in vivo adhesion time.

The T>3ng/ml value was calculated from the individual graphs. The in vivo adhesion time of

the bioadhesive tablet was determined visually. Statistical analysis was performed on the

absolute bioavailability and T>3ng/ml values. As Pearson correlation coefficients showed

that the data for absolute bioavailability and T>3ng/ml were independent (p > 0.05) of the

subject (dog), statistically significant differences were determined using a one-way

ANOVA post hoc Scheffé test with p < 0.05 as significance level. The data were tested

for normal distribution with a Kolmogorov-Smirnov test. The homogeneity of variances

was tested with the Levene’s test. The computer program SPSS version 10.0 was used for

the statistical analyses.



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.4   Buccal Testosterone Absorption from a Bioadhesive Tablet

140

3.4.3.3 Results and Discussion

3.4.3.3.1 In vivo adhesion time and in vitro dissolution

Figure 4 gives an overview of the in vivo adhesion time in dogs of placebo buccal

bioadhesive tablets based on spray-dried Amioca/Carbopol 974P mixtures with a C

974P content ranging from 5 to 75 % (w/w).

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00

REF

SD 95/5

SD 90/10

SD 80/20

SD 75/25

SD 70/30

SD 60/40

SD 50/50

SD 25/75

Time (h)

Figure 4. In vivo adhesion time for the spray-dried Amioca/Carbopol 974P mixtures

(SD) and the reference formulation (Ref). (n = 7, mean ± SD)

Up to 30% C 974P the in vivo adhesion time increased with increasing C 974P

amounts in the spray-dried mixtures. Over 30% C 974P the in vivo adhesion time

decreased with increasing C 974P concentrations. The ratio Amioca/C 974P 70/30

showed the longest in vivo adhesion time (24.5 ± 8.5 h) and is apparently the optimal

ratio of Amioca starch and Carbopol 974P in terms of in vivo adhesion time. Although

the SD 25/75 mixtures showed the highest ex vivo bioadhesive properties (Chapter 3.2 Ex

Vivo Bioadhesion Measurement), it did not show the longest in vivo adhesion time. The

ex vivo bioadhesion test can be used to evaluate the intrinsic bioadhesive properties and

allows to compare different bioadhesive polymers or formulations, but the test seemed
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unable to predict the in vivo adhesion time probably because the tablet is not subjected to

frictional forces and erosion. The SD 25/75 formulation has high intrinsic bioadhesive

capacities, but the polymer matrix eroded relatively fastly in vivo. This is in accordance

with a previous study showing that a higher Carbopol concentration did not result in a

longer in vivo adhesion time (Bouckaert, 1994).

The in vitro drug release rate was evaluated by incorporating 10 mg miconazole

nitrate as a marker. Miconazole nitrate is a poorly water soluble antifungal drug. It is

frequently used in local oral drug delivery systems such as oral gels or bioadhesive buccal

tablets (Bouckaert and Remon, 1993; Bouckaert et al., 1993; De Spiegeleer et al., 2001;

Nafee et al., 2003).
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Figure 5. In vitro dissolution profiles for the different spray-dried Amioca/Carbopol 974P mixtures

(SD). (n = 6, mean)

The in vitro dissolution profiles are shown in Figure 5. The spray-dried mixtures

containing between 15 and 30% C 974P could all sustain the drug release over 20h. As

well lower as higher C 974P concentrations in the spray-dried mixtures showed a faster in
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vitro miconazole release. The drug release from the spray-dried mixtures with the lowest

C 974P content, SD 95/5 and 90/10, is controlled by polymer erosion, as the diffusional

exponents, n, were 1.01 ± 0.02 and 1.04 ± 0.05, respectively. The drug release was almost

constant in relation to time. The release mechanisms from the spray-dried matrices

containing 15% C 974P or more could not be described by the exponential equation

Mt/M∞ = ktn as the higher C 974P concentrations resulted in matrices which swelled more

than 25% of their original volume. The miconazole release from these matrices was

mainly controlled by diffusion as at the end of the dissolution an almost intact swollen

translucent tablet gel matrix was found. The drug diffusion from the matrices with the

highest C 974P concentrations (SD 60/40, SD 50/50 and SD 25/75) was faster than from

the matrices containing between 15 and 30% C 974P, which sustained the drug release

over the longest period. Drug diffusion through the swollen gel layer took the longest

time for the polymer matrices of spray-dried combinations of 15 to 30% C 974P with

Amioca starch, resulting in the longest sustained release profiles. By increasing the C

974P concentration to 40% or more the diffusion rate of the drug through the polymer

matrix was increased. It is well known that polymer matrices with high contents of

Carbopol exhibit short dissolution times (Khan and Zhu, 1999).

These results were in good correlation with the in vivo adhesion times of placebo

tablets. The in vitro USP III dissolution test can be used to predict the in vivo adhesion

time of buccal bioadhesive tablet formulations based on spray-dried Amioca/Carbopol

974P mixtures.

3.4.3.3.2 In vivo drug loading – bioavailability study

From the above mentioned results it is clear that by spray-drying Amioca

starch/Carbopol 974P mixtures at different ratios a whole range of potential bioadhesive

carriers can be prepared with improved bioadhesive properties. By modifying the C 974P

concentration the in vivo adhesion time of the bioadhesive formulations can be

influenced. As bioadhesive powder formulations are intended to stick to mucous

membranes it is important to evaluate their mucosal irritation potency. In Chapter 3.3.

Mucosal Irritation Test using Slugs the biocompatibility of the spray-dried

Amioca/Carbopol 974P mixtures was evaluated using an alternative mucosal irritation



Chapter 3   Multifunctional Polymers as Bioadhesive Drug Carriers
Chapter 3.4   Buccal Testosterone Absorption from a Bioadhesive Tablet

143

test using slugs. Spray-dried mixtures containing up to 20% C 974P induced no irritation

of the mucosal tissue of the slugs and can be considered as safe bioadhesive carriers. On

the other hand, mixtures containing higher amounts of C 974P induced mucosal irritation

and membrane damage. This makes only the mixtures containing up to 20% C 974P

useful as bioadhesive carriers. Nevertheless, by changing the C 974P content between 5

and 20% the in vivo adhesion time of 100 mg placebo tablets can be varied between 8 and

17 h (Figure 4) and the in vitro miconazole release between 2 and 20h (Figure 5).

The drug loading capacity of the non-irritating spray-dried mixture SD 80/20 was

investigated in vivo in dogs. Testosterone, a lipophilic molecule which is known to be

systemically absorbed over the buccal mucosa (Voorspoels et al., 1996), was used as

model drug to investigate the in vivo bioavailability and drug loading capacity.

Figure 6 shows the mean testosterone plasma concentration time profiles for the

30% and 60% loaded SD 80/20 and the reference formulations (DDWM/C 974P; 95/5).

The absolute bioavailability (Fabs), the T>3ng/ml and the in vivo adhesion time are shown in

Table 2.
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Figure 6. Plasma testosterone concentration time profiles for the 30 and 60% loaded spray-dried

Amioca/Carbopol 974P 80/20 mixture (SD 80/20) compared to a reference formulation (Ref). (n = 6,

mean ± SD)
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SD 80/20 REF

Tablet Weight 100 mg 200 mg 100 mg 200 mg

Drug Load 60 % 30 % 60 % 30 %

Fabs  (%) 14.28 ± 5.12* 11.31 ± 2.77 4.59 ± 2.16 6.97 ± 3.33

T>3ng.ml
-1

  (h) 14.00 ± 1.67* 15.83 ± 5.53 5.00 ± 5.06 11.25 ± 3.86

Adhesion Time  (h) 15.25 ± 2.56* 24.80 ± 5.31 13.00 ± 3.29 15.67 ± 8.62

Table 2. Absolute bioavailability (Fabs), time during which the plasma testosterone concentration was above

3 ng/ml (T>3ng.ml
-1) and the in vivo adhesion time for a 30 and 60% loaded spray-dried Amioca/Carbopol

974P 80/20 mixture (SD 80/20) compared to a reference formulation (REF). (n = 6, mean ± SD)

* significantly higher compared to the similar loaded reference formulation (REF)

For both formulations the in vivo adhesion time decreased with a higher drug

load, but the SD 80/20 formulation adhered for both drug concentrations longer compared

to the reference formulation and resulted in a higher absolute bioavailability for the SD

formulations. The Fabs was for the 60% loaded SD 80/20 formulation significantly higher

than for the similar loaded reference formulation. Also the T>3ng/ml value, which gives a

therapeutic indication (Mazer et al., 1992), was for the spray dried 60% loaded

formulation significantly higher than for the 60% loaded reference formulation. From

these results it is clear that using SD 80/20 as bioadhesive platform the buccal

testosterone delivery was improved compared to a DDWM/C 974P 95/5 formulation

(Voorspoels et al., 1996). Moreover the spray-dried formulation could be loaded with

60% drug without loss of its bioadhesive capacities and without major changes in plasma

concentration time profiles and pharmacokinetic parameters Fabs and T>3ng/ml.
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3.4.3.4 Conclusion

By spray-drying Amioca/Carbopol 974P mixtures at different ratios a range of

potential bioadhesive carriers was obtained with excellent bioadhesive properties. Up to

20% C 974P could be incorporated without any risk of mucosal irritation. By ranging the

C 974P concentration between 5 and 20%, the in vivo adhesion time of placebo tablets

could be varied between 8 and 17h. The data from the in vivo adhesion time study

correlated well with the in vitro miconazole release profiles (USP III dissolution). A

spray-dried Amioca/C 974P 80/20 mixture could be loaded with 60% drug without

loosing its in vivo bioadhesive and pharmacokinetic properties.
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Chapter 3.5 Local Vaginal Drug Delivery
via a Bioadhesive Tablet

3.5.1 Introduction

In this clinical study the single application of a metronidazole vaginal bioadhesive

tablet based on a spray-dried Amioca starch/Carbopol 974P 85/15 (w/w) mixture (SD

85/15) was evaluated in 12 female healthy volunteers. The vaginal bioadhesive tablet is

applied on the uterine cervix and serves as a platform for local vaginal drug delivery. The

in vivo tablet residence time was assessed as well as plasma and local vaginal

metronidazole concentrations. SD 85/15 was selected as bioadhesive carrier based on the

ex vivo bioadhesion (Chapter 3.2 Ex Vivo Bioadhesion Measurement) and mucosal

irritation (Chapter 3.3 Mucosal Irritation Test using Slugs) test results. The spray-dried

Amioca/Carbopol 974P mixture contains 15 % Carbopol 974P and is expected to

adhere better to the uterine cervix compared to a bioadhesive vaginal tablet based on a

pregelatinised starch/Carbopol 974P 95/5 (w/w) physical mixture (Voorspoels et al.,

2002), as the SD 85/15 mixture showed significantly better adhesion properties in ex vivo

bioadhesion measurements. The mucosal irritation study showed that SD 85/15 is a safe

bioadhesive carrier. 20% Carbopol 974P (SD 80/20) is the maximum concentration that

can be used as a non-irritating bioadhesive carrier. SD 85/15 showed comparable ex vivo

bioadhesion values as SD 80/20 and as the vaginal bioadhesive tablet is expected to

adhere on the uterine cervix during several days, a safety margin was taken by selecting

SD 85/15 as bioadhesive carrier.

Bacterial vaginosis (BV), the most prevalent infectious cause of vaginitis, is an

imbalance of the bacterial vaginal flora. In women with BV, the normal vaginal flora is

altered from a predominance of H2O2-producing Lactobacillus species to high

concentrations of anaerobic bacteria, Gardnerella vaginalis, and Mycoplasma hominis

(Joesoef et al., 1999). Bacterial vaginosis induces symptoms of odor, discharge and

irritation in 50% of affected patients. Metronidazole is the drug of choice in the treatment

of bacterial vaginosis, but dosage and duration of therapy are still controversial

(Voorspoels et al., 2002). Nowadays there are two regimen of oral treatment, including
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500 mg metronidazole twice daily for 7 days (Centres for Disease Control, 1989) and a 2

g single dose (Lugo-Miro et al., 1992), however the 7-day regimen is recommended for

the treatment of BV (Joesoef et al., 1999). Bioavailability after oral administration is

almost complete (Hoffmann et al., 1995). However, oral metronidazole has some side

effects, such as gastric intolerance and a sharp metallic unpleasant taste. Hence, there is

growing interest in alternative treatments such as intravaginal clindamycin cream and

metronidazole gel for 5-7 days, which have been proved to be as efficacious as the 7-day

oral regimen (Joesoef et al., 1999). However, these long vaginal applications result in

poor patient compliance. Other alternative treatments are vaginal ovules (single or

multiple administration) (Borin et al., 1999) and vaginal tablets (multiple administration)

(Hoffmann et al., 1995).

Interest has grown in the development of vaginal bioadhesive tablets because of

the advantages of maintaining local drug levels, enabling lower dosing frequency and a

lower amount of drug administered, as well as less systemic side effects (Voorspoels et

al., 2002; Bouckaert et al., 1995; Robinson and Bologna, 1994). In a preliminary efficacy

study where a single 100 mg metronidazole bioadhesive vaginal tablet was administered,

similar cure rates were obtained as for oral metronidazole (500 mg doses daily for 7

days), although only one-seventieth of the drug was administered locally (Bouckaert et

al., 1995). In a second dose finding study different doses of metronidazole in a single

bioadhesive vaginal tablet were compared to a placebo tablet. A cure rate of 64%, 61.5%

and 68% was obtained with 100 mg, 250 mg and 500 mg metronidazole, respectively

(Voorspoels et al., 2002).
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3.5.2 Materials

Metronidazole was purchased from Certa (Braine-l’Alleud, Belgium). Amioca

starch was from National Starch and Chemical Company, Bridgewater, New Jersey,

USA. Carbopol 974P (C 974P) was supplied by BF Goodrich (Cleveland, Ohio, USA).

Sodium stearyl fumarate (NaSF) was given by Edward Mendell Co. Inc. (New York,

USA). Tinidazole was purchased from Sigma-Aldrich (Bornem, Belgium). Methanol

HPLC-S grade and acetonitrile HPLC-S grade were purchased from Biosolve BV

(Valkenswaard, The Netherlands), potassium dihydrogen orthophosphate (KH2PO4) from

VWR International (Leuven, Belgium). All other chemicals used were at least of

analytical grade.

3.5.3 Methods

3.5.3.1 Composition and preparation of the tablets

The tablets were produced by firstly mixing the Amioca/C 974P 85/15 powder

with metronidazole (500 mg per tablet), next sodium stearyl fumarate (1%; w/w) was

added as a lubricant. The mixture was compressed on a Korsch compression machine

(Type EK0, Berlin, Germany) equipped with 20 mm special designed punches, at a

pressure of 19.6 kN. The weight and the diameter of the tablets were 1500 mg and 20

mm, respectively. To increase the adherence to the genital tract, the design of the tablet

was specially shaped to fit better to the uterine cervix. The tablet had a flat bottom and a

concave upper face aiming at an increase of residence time of the tablet.

3.5.3.2 Study protocol

3.5.3.2.1 Volunteers

The study was performed at the Drug Research Unit Ghent (D.R.U.G.), Ghent

University Hospital, De Pintelaan 185, Gent, Belgium. The approval of The Ethics

Committee of the Ghent University Hospital was obtained. Twelve (12) female healthy
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volunteers (age 21 - 39 years, body weight 52 - 74 kg, body height 157 - 179 cm) were

included into the clinical trial, after giving an informed consent.

3.5.3.2.2 Pharmacokinetic protocol

The study was an open uncontrolled 5-day study. At study start, the gynaecologist

applied one bioadhesive vaginal tablet to each volunteer. On day 5, 108h after drug

administration, a vaginal examination to the presence of the tablet or tablet remainings

was performed by the gynaecologist. Remaining parts of the bioadhesive vaginal tablet

were removed. Venous blood samples were taken before and 12h, 24h, 36h, 48h, 60h,

72h, 84h, 96h and 108h after drug administration. At the same time points vaginal swabs

were obtained by the volunteer herself using a standardised vaginal swab (Sterilin vaginal

swab, Copan, Italy). The swabbing procedure was standardised by swabbing depth and

technique and the women were told to insert the swab 5 cm in the vagina as marked on

the swab. The plasma samples and vaginal swabs were stored at –20°C until drug

analysis. At each blood sampling point the volunteers were asked if they lost the tablet.

The in vivo adhesion time of the vaginal tablet was reported as the tablet residence time.

3.5.3.2.3 Quantitative drug analysis

3.5.3.2.3.1 Plasma samples

Quantitative analysis of metronidazole in the plasma samples was performed with

a validated HPLC method with UV-detection using tinidazole as internal standard. HPLC

analysis was performed with a HPLC system consisting of a gradient HPLC pump (type

L-7100, Merck-Hitachi, Darmstadt, Germany), a solvent degasser (type L-7612, Merck-

Hitachi, Darmstadt, Germany), an autosampler (type L-7200, Merck-Hitachi, Darmstadt,

Germany) equipped with a Rheodyne injector and an injection loop of 50 µl (Rheodyne,

California, USA), a column oven (type L-7360, Merck-Hitachi, Darmstadt, Germany), a

UV detector (type L-7400, Merck-Hitachi, Darmstadt, Germany) and a software interface

(type D-7000, Merck-Hitachi, Darmstadt, Germany). Data were calculated with the

software package ‘HPLC System Manager’ (Merck-Hitachi, Darmstadt, Germany). The

column was a Lichrospher 100 RP-18 column (250 x 3 mm) equipped with a
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Lichrospher 100 RP-18 guard column (10 x 2 mm) (Merck, Darmstadt, Germany). The

mobile phase, used as an isocratic eluent, consisted of 85 % (v/v) potassium dihydrogen

orthophosphate (0.002 M, pH 4.8), 7.5% (v/v) methanol and 7.5% (v/v) acetonitrile. The

eluate was monitored at 320 nm. The retention time of the metronidazole and tinidazole

peak was 4.8 and 8.9 min, respectively, at a flow rate of 0.85 ml/min. The analysis was

performed at room temperature.

The HPLC method described by Rajnarayana et al. (2002) was modified and

validated. Calibration samples were prepared by spiking blank plasma with methanolic

metronidazole solutions to become standard plasma concentrations from 0.25 µg/ml to

10.0 µg/ml. To 300 µl of plasma sample, 50 µl of a methanolic solution of tinidazole (1.2

µg/50 µl) was added as internal standard, and shaken well. Then 350 µl of acetonitrile

was added for protein precipitation, mixed and centrifuged at 2578 g for 10 min

(Tehtnica Centric 322 A, Novolab, Belgium). 100 µl of supernatant was mixed with 200

µl mobile phase. 50 µl of this mixture was injected onto the HPLC column.

3.5.3.2.3.2 Vaginal swabs

Quantitative analysis of metronidazole in vaginal swabs was performed using the

USP 24 Official Monograph for metronidazole analysis in tablets (USP XXIV, 2000).

The HPLC method was slightly modified and validated. The HPLC system consisted of a

isocratic HPLC pump (type L-7100, Merck-Hitachi, Darmstadt, Germany), an

autosampler (type L-7200, Merck-Hitachi, Darmstadt, Germany) equipped with a

Rheodyne injector and an injection loop of 10 µl (Rheodyne, California, USA), a UV

detector (type L-7400, Merck-Hitachi, Darmstadt, Germany) and a software interface

(type D-7000, Merck-Hitachi, Darmstadt, Germany). Data were calculated with the

software package ‘HPLC System Manager’ (Merck-Hitachi, Darmstadt, Germany). The

column was a Lichrospher 100 RP-8 column (125 x 4 mm) (Merck, Darmstadt,

Germany). The mobile phase, used as an isocratic eluent, consisted of 80 % (v/v) distilled

water and 20 % (v/v) methanol. The eluate was monitored at 254 nm. The retention time

of the metronidazole peak was 3.0 min at a flow rate of 1.0 ml/min. The analysis was

performed at room temperature.
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Calibration samples from 10.0 to 500.0 µg/ml were prepared in mobile phase.

Each vaginal swab was brought into a test tube containing 2.0 ml mobile phase, shaked

on a IKA MTS 4 shaker (VWR International, Leuven, Belgium) at 1000 rpm for 1 h and

then centrifuged at 2578 g for 10 min (Tehtnica Centric 322 A, Novolab, Belgium). 10

µl of the supernatant was injected onto the HPLC column.

3.5.4 Validation of the HPLC method – Plasma samples

The HPLC analysis method was validated based on the International Conference

Harmonisation (ICH) Harmonised Tripartite Guidelines for validation of analytical

procedures (1994). The following validation characteristics were considered: specificity,

linearity, accuracy, precision, detection and quantification limit.

3.5.4.1 Specificity

Specificity is the ability to assess unequivocally the analyte in the presence of

other (interfering) components.

Specificity was assessed by comparing the chromatograms of blank plasma (a)

and plasma spiked with metronidazole (standard of the calibration curve) (b), both with

tinidazole added as internal standard (Figure 1). From Figure 1 it is clear that no

interfering peaks could be observed. Thus, it was concluded that the method was specific

for the determination of metronidazole with tinidazole as internal standard as there was

no interference of other components. The retention time of metronidazole and tinidazole

was 4.8 min and 8.8 min after injection, respectively.
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Figure 1. Chromatograms of blank plasma (a) and plasma spiked with metronidazole (standard

of the calibration curve) (b), both with tinidazole added as internal standard.

3.5.4.2 Linearity

The linearity of an analytical procedure is its ability – within a given range – to

obtain test results, which are directly proportional to the concentration of analyte in the

sample.

Calibration curves were prepared by spiking blank plasma with a methanolic

metronidazole solution over a range from 0.25 µg/ml – 10.0 µg/ml (6 concentrations). A

blank was included in the calibration curve. During validation and analysis different

calibration curves were determined. The linearity was evaluated by the determination

coefficient R2 of the mean regression line (n = 7). The mean R² was 0.9966 ± 0.0052 and

(b)

(a)
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the coefficient of variation (CV) was 0.52%. It is clear that the relationship between

response and concentration was linear and reproducible.

3.5.4.3 Accuracy

The accuracy of an analytical procedure expresses the closeness of agreement

between the true value and the value found and is expressed as the percent agreement

between the mean determined value and the true concentration.

The accuracy was investigated at three concentration levels on standards

containing a known metronidazole concentration covering the range of the calibration

curve: 0.25 µg/ml – 1.0 µg/ml and 10.0 µg/ml. The three concentration levels were

submitted to the normal analysis procedure. Each concentration was determined six times.

The mean accuracies ± standard deviations (SD) are listed in Table 1.

[metronidazole] Accuracy (%)

0.25 µg/ml 91.95 ± 3.27

1.00 µg/ml 103.83 ± 8.57

10.00 µg/ml 93.08 ± 2.48

Table 1. Accuracy (%). (n = 7, mean ± SD)

All mean values were within ± 15% of the actual concentration. (Acceptance

criteria: within 15% of the actual value, Shah et al., 1992)

3.5.4.4 Precision

The precision expresses the closeness of agreement between repeated

determinations of the same sample. Precision may be considered at three levels:

repeatability, intermediate precision and reproducibility. Repeatability or intra-assay

precision expresses the precision under the same operating conditions over a short

interval of time. Intermediate precision expresses within laboratory variations such as

different days, different analysts, different equipment, etc. Reproducibility expresses the

precision between different laboratories (inter-laboratory). Precision is expressed as the

coefficient of variation (%) of a series of measurements of the calibration standards.
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Here, all analyses were performed in the same laboratory, so only the repeatability

(within one day) and intermediate precision (day-to-day) were evaluated.

The repeatability and intermediate precision were calculated on three calibration

curves (n = 6). The standard deviation (SD) and coefficient of variation (CV) were

calculated. (Table 2 and Table 3)

[metronidazole] Repeatability

µg/ml Mean ± SD CV (%)

0.25 0.27 ± 0.01 14.77

1.00 0.97 ± 0.09 9.86

10.00 10.75 ± 0.28 3.58

Table 2. Repeatability. (n = 6) (mean, standard deviation (SD) and coefficient of

variation (CV))

[metronidazole] Intermediate Precision

µg/ml Mean ± SD CV (%)

0.25 0.25 ± 0.01 13.31

1.00 1.04 ± 0.06 7.35

10.00 9.96 ± 0.15 1.53

Table 3. Intermediate precision. (n = 6) (mean, standard deviation (SD) and

coefficient of variation (CV))

As well for repeatability as for intermediate precision, all coefficients of variation

did not exceed 15%. (Acceptance criteria: CV < 15%, Shah et al., 1992)

3.5.4.5 Detection and quantification limit

The detection limit of an analytical procedure is the lowest amount of analyte in a

sample which can be detected but not necessarily quantitated as an exact value, while the

quantification limit is the lowest amount which can be quantitatively determined with

suitable precision and accuracy.

The detection was determined by the analysis of samples with known

concentrations of analyte and by establishing the minimum level at which the analyte
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could be reliably detected (CV < 20%) (Vermeire, 1998). The detection limit was 0.25

µg/ml (CV = 14.8%, n = 6).

The quantification limit was determined by the analysis of samples with known

concentrations of analyte and by establishing the minimum level at which the analyte

could be quantified with acceptable accuracy and precision. The quantification limit was

0.25 µg/ml: accuracy < 15% of the actual concentration and precision around the mean

value < 15% CV (n = 10). (Shah et al., 1992)

3.5.4.6 Stability of metronidazole in plasma

The stability of metronidazole in plasma at the storage temperature of –20°C was

established by investigating the influence of two freeze/thaw cycles on the analyte

stability at three concentration levels (0.25 – 1.0 – 10.0 µg/ml) according to Shah et al.

(1992). After two freeze/thaw cycles 97.5%, 97.4% and 99.7% of the actual concentration

was found in a 0.25, 1.0 and 10.0 µg/ml metronidazole standard, respectively. (< 15%,

Shah et al., 1992)

3.5.5 Validation of the HPLC method – Vaginal swabs

3.5.5.1 Specificity

Specificity was assessed by comparing the chromatograms of metronidazole in

mobile phase (standard of the calibration curve) (a) and an unknown vaginal swab (b)

(Figure 2). From Figure 2 it is clear that no interfering peaks were observed. Thus, it was

concluded that the method was specific for the determination of metronidazole as there

was no interference of other components. The retention time of metronidazole was 2.9

min after injection.
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Figure 2. Chromatograms of metronidazole in mobile phase (standard of the calibration curve)

(a) and an unknown vaginal swab (b).

3.5.5.2 Linearity

Calibration curves were prepared in mobile phase over a range from 10.0 µg/ml –

500.0 µg/ml (6 concentrations). A blank was included in the calibration curve. During

validation and analysis different calibration curves were determined. The linearity was

evaluated by the determination coefficient R2 of the mean regression line (n = 6). The

mean R² was 0.9999 ± 0.0001 and the coefficient of variation (CV) was 0.01%. It is clear

that the relationship between response and concentration was linear and reproducible.

(a)

(b)
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3.5.5.3 Accuracy

The accuracy was investigated at three concentration levels on standards

containing a known metronidazole concentration covering the range of the calibration

curve: 10.0 µg/ml – 100.0 µg/ml and 500.0 µg/ml. The three concentration levels were

submitted to the normal analysis procedure. Each concentration was determined six times.

The mean accuracies ± standard deviations (SD) are listed in Table 4.

[metronidazole] Accuracy (%)

10.0 µg/ml 96.84 ± 1.27

100.0 µg/ml 96.68 ± 2.35

500.0 µg/ml 100.26 ± 1.44

Table 4. Accuracy (%). (n = 6, mean ± SD)

All mean values were within ± 15% of the actual concentration. (Acceptance

criteria: within 15% of the actual value, Shah et al., 1992)

3.5.5.4 Precision

Here, all analyses were performed in the same laboratory, so only the repeatability

(within one day) and intermediate precision (day-to-day) were evaluated.

The repeatability and intermediate precision was calculated on three calibration

curves (n = 6). The standard deviation (SD) and coefficient of variation (CV) were

calculated. (Table 5 and Table 6)

[metronidazole] Repeatability

µg/ml Mean ± SD CV (%)

10.0 10.33 ± 0.14 1.26

100.0 103.49 ± 2.52 2.23

500.0 498.79 ± 7.11 1.30

Table 5. Repeatability. (n = 6) (mean, standard deviation (SD) and coefficient of

variation (CV))
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[metronidazole] Intermediate Precision

µg/ml Mean ± SD CV (%)

10.0 9.88 ± 0.37 3.93

100.0 97.99 ± 2.27 2.33

500.0 480.55 ± 17.48 3.64

Table 6. Intermediate precision. (n = 6) (mean, standard deviation (SD) and

coefficient of variation (CV))

As well for repeatability as for intermediate precision, all coefficients of variation

did not exceed 15%. (Acceptance criteria: CV < 15%, Shah et al., 1992)

3.5.5.5 Detection and quantification limit

The detection was determined by the analysis of samples with known

concentrations of analyte and by establishing the minimum level at which the analyte

could be reliably detected (CV < 20%) (Vermeire, 1998). The detection limit was 10.0

µg/ml (CV = 4%, n = 6).

The quantification limit was determined by the analysis of samples with known

concentrations of analyte and by establishing the minimum level at which the analyte

could be quantified with acceptable accuracy and precision. The quantification limit was

10.0 µg/ml: accuracy < 15% of the actual concentration and precision around the mean

value < 15% CV (n = 10). (Shah et al., 1992)

3.5.5.6 Recovery

The recovery of metronidazole from spiked swabs was measured at three

concentration levels: 25.0, 50.0 and 200.0 µg/ml. All mean values were within 15% of the

spiked concentration (n = 3). (Shah et al., 1992)
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3.5.6 Results and Discussion

An overview of the in vivo tablet residence time is given in Figure 3. The

individual metronidazole plasma concentration-time profiles after administration of a

single bioadhesive vaginal tablet are shown in Figure 4. The vaginal swab concentrations

are shown in Table 7.
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Figure 3. Individual in vivo residence time of a 500 mg metronidazole vaginal

bioadhesive tablet.

None of the volunteers lost the tablet within the first 48h after application. 17% of

the subjects (n=2) reported having lost the tablet on the third day (48h–72h), while 25 %

(n=3) lost the tablet during the fourth day (72h-96h). 58% of the volunteers (n=7) lost the

tablet on day 5 (96h-108h) (25%; n=3) or did not lose the tablet during the 5-day study

(33%; n=4).

The individual metronidazole plasma concentrations varied between 0.2 and 1.0

µg/ml. For 17% (n=2) of the subjects the metronidazole plasma concentration decreased

to 0.0 µg/ml at 72h, while the plasma concentrations for 25% (n=3) returned back to 0.0

µg/ml after 84h. In 58% (n=7) of the subjects plasma metronidazole concentrations could

still be measured at 108h after application. From these data it is clear that by measuring

metronidazole plasma concentrations the vaginal residence time of the bioadhesive tablet

could be well followed. Only for 2 of the volunteers (subject 2 and 10) the tablet

residence time could be clearly followed by vaginal swabbing (Table 7). The swab

concentrations showed very large person-to-person differences probably as a result of
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Time
h 1 2 3 4 5 6 7 8 9 10 11 12
0 - - - - - - - - - - - -
12 - 328.48 - 27.09 - - - - - 64.17 39.35 -
24 - 476.12 - - - - - - 27.35 118.76 - -
36 - 150.98 - 20.55 - - - 32.16 - 17.49 375.30 -
48 - 378.15 - 24.62 - - - 43.75 36.69 1086.13 570.32 -
60 196.90 19.31 - 33.36 28.71 - - 71.06 18.65 32.37* -* -
72 -* -* - 41.22 21.53 - - -* 33.46 - - -
84 - - - 55.51 138.15 - - - 30.90 - - -
96 - - - 32.30* 968.06 - 39.47 - 95.58 - - 30.75

108 - - 62.59 - 22.09* - 46.57 - 155.63* - - 69.67

Subjects

Quantity of Metronidazole per swab (µg/swab)

Table 7. Quantity of metronidazole determined in the vaginal swabs (µg).

* Tablet lost

‘-‘ = no metronidazole measured
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Figure 4. Individual metronidazole plasma concentration time profiles after administration of a 500

mg metronidazole vaginal bioadhesive tablet.

differences in individual swabbing effectiveness, although the swabbing depth and

technique were standardised. For subject number 2 and number 10 the local vaginal
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metronidazole concentrations could be used to follow the in vivo tablet residence time.

For all other subjects there were one or more swabs wherein no drug was detected

although the tablet still adhered to the uterine cervix, concluding that vaginal swabbing is

not effective in following in vivo adherence of a bioadhesive vaginal tablet. Nevertheless,

the measured swab concentrations confirmed the presence of distinguishable local

metronidazole concentrations.

In Figure 5 mean systemic metronidazole concentrations after oral dosing of a 500

mg immediate release tablet (Hoffmann et al., 1995) are compared to the mean plasma

concentrations measured after single application of a 500 mg metronidazole vaginal

bioadhesive tablet described in this study. After oral administration metronidazole is

rapidly absorbed from the gastro-intestinal tract and reached a mean maximum

metronidazole concentration of 11 µg/ml after 2 hours. The mean metronidazole plasma

concentrations measured with the vaginal bioadhesive tablet never reached 0.5 µg/ml.

The plasma concentration time profiles did not show peak concentrations, but a constant

systemic absorption as long as the tablet adhered to the uterine cervix (Figure 4). The

measured plasma concentrations are comparable to those obtained after vaginal

administration of a film coated 500 mg metronidazole tablet (Hoffmann et al., 1995) and

are of marginal importance for systemic side effects and drug safety. Hoffman et al.

(1995) reported that the absorption into systemic circulation after vaginal administration

of a 500 mg metronidazole film coated tablet yielded mean values of about 30% of an

adequate oral dose, that maximal concentrations are bactericidal only for the most

susceptible anaerobic micro-organisms and are only of minor importance for the

development of microbial resistance.

From the metronidazole plasma concentration time profiles in Figure 4, it is clear

that the used spray dried Amioca/C 974P 85/15 mixture is a suitable bioadhesive carrier

for the local vaginal delivery of metronidazole as for 58% (n=7) of the subjects the drug

release was sustained over 5 days, resulting in prolonged local metronidazole

concentrations after application of a single tablet. In a previous study in bacterial

vaginosis patients, application of a 500 mg metronidazole bioadhesive vaginal tablet

based on a physical mixture of pregelatinised starch and 5% (w/w) Carbopol 974P

resulted in a cure rate of 68% with comparable in vivo tablet residence times to our
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formulation (Voorspoels et al., 2002). The in vivo erosion rate of our spray dried

Amioca/C 974P formulation seemed slower, as for 33% (n=4) of the subjects still parts

of the tablet were present on day 5.
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Figure 5. Mean serum concentration time profile after oral administration of a 500 mg

metronidazole immediate release tablet (M) (n = 16) and mean plasma concentration time profile

after local vaginal administration of 500 mg metronidazole via a bioadhesive tablet (♦) (n = 12).

Systemic absorption of metronidazole from a single bioadhesive vaginal tablet

was about 5 times prolonged compared to a 500 mg oral tablet given twice daily for 7

days recognised as the treatment of choice for BV (Cunningham et al., 1994). A 500 mg

oral dose results in a fast and high peak plasma concentration, but cannot sustain local

drug concentrations. Although cure rates with the 7-day regimen are over 80%, the

frequent occurrence of systemic adverse effects may complicate oral metronidazole

therapy and reduce patient compliance. A safer alternative can be the twice a day

intravaginal administration of a 0.75% metronidazole gel (Hillier et al., 1993). Systemic

exposure is reduced with local vaginal administration, as serum concentrations after

intravaginal administration of 5 g of a 0.75% metronidazole gel (37.5 mg metronidazole)

were only 2% of the concentrations seen after administration of the 500 mg standard dose

(Cunningham et al., 1994). Notwithstanding a cure rate of 81% (Joesoef et al., 1999), a

twice daily vaginal application of a gel or cream is a difficult and time-consuming task,
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resulting in poor patient compliance. A major advantage of a single application of a 500

mg metronidazole loaded bioadhesive tablet is that the tablet can be applied directly after

the clinical diagnosis of bacterial vaginosis, resulting in optimal patient compliance. As

expected with a local metronidazole treatment, none of the volunteers reported related

(systemic) side effects, indicating that the measured plasma concentrations did not induce

metronidazole related side effects. The gynaecologist reported no vaginal lesions. This

proves the good tolerability and the potential of the vaginal bioadhesive tablet as vaginal

drug delivery system. It is also proved that a spray dried Amioca starch/Carbopol 974P

85/15 mixture can be used as such a bioadhesive vaginal carrier. In the future more

research has to be done on tablet shape, tablet weight and drug load aiming to reduce

tablet loss before complete erosion. Also cure rates in patients have to be investigated.

3.5.7 Conclusion

The present study has proved that a spray-dried Amioca starch/Carbopol 974P

85/15 mixture can be used as a bioadhesive vaginal carrier and can prolong the drug

release over 5 days, resulting in prolonged local vaginal drug concentrations. The in vivo

residence time of a vaginal bioadhesive metronidazole tablet was assessed by measuring

plasma concentrations, while local metronidazole concentrations collected by vaginal

swabbing did not reflect tablet adherence due to large person-to-person variabilities in

swabbing effectiveness. The bioadhesive tablet formulation has a large potential as

(vaginal) bioadhesive drug delivery system, although further research is needed for

optimization of tablet shape, tablet weight and drug load.
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Chapter 3.6 Effect of a Buccal
Bioadhesive Nystatin Tablet

on the Device Life of a Provox Silicone

Tracheoesophageal Voice Prosthesis

3.6.1 Introduction

In the present study the efficacy of a buccal bioadhesive nystatin tablet on the

device life of a Provox tracheoesophageal voice prosthesis was investigated in

postlaryngectomy patients. A spray-dried Amioca/Carbopol 974P mixture containing

10% (w/w) Carbopol 974P (SD 90/10) was selected as bioadhesive carrier. The selection

was based on the in vivo adhesion time results obtained in dogs with placebo tablets

(Chapter 3.4 Buccal Testosterone Absorption from a Bioadhesive Tablet), aiming an in

vivo adhesion time of ± 8 h with a drug loaded tablet.

Restoration of speech after total laryngectomy is generally considered to be a

primary task in the rehabilitation of the laryngectomee. Throughout the years, a variety of

alaryngeal voice techniques have been advocated to restore speech and voice. Alaryngeal

speech production requires the establishment of an alternative vibratory source in the

reconstructed pharyngoesophageal region. Esophageal speech and artificial larynges are

known as primary methods of alaryngeal communication. Since the introduction of the

Blom-Singer duckbill prosthesis in 1979, several silicone tracheoesophageal valve

prostheses have been developed with promising results in voice rehabilitation after total

laryngectomy. These one-way valve prostheses allow sufficient shunting of expiratory air

to the esophagus without leakage of esophageal contents into the trachea and compared to

the other methods of voice rehabilitation consistent high success rates of shunt esophageal

speech were obtained. Further research was directed toward the development of a device

that could be easily applied after primary (during the total laryngectomy) or secondary

(after a total laryngectomy) puncture, that enables short-term acquisition of functional

laryngeal speech, and that requires only simple maintenance for optimal performance.
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This resulted in the development of indwelling, biocompatible silicone prostheses with a

low-resistance one-way valve mechanism. (Weissenbruch et al., 1997 a,b)

Device life of the voice prosthesis is known to be limited due to dysfunction of the

valve mechanism and one of the drawbacks of voice prostheses is their limited device life

due to deterioration of the silicone valve. Colonisation and invasion of silicone material

with Candida species has been reported to correlate with valve dysfunction (Mahieu et

al., 1986; Izdebski et al., 1987). The latter may be caused by leakage of esophageal

contents through the prosthesis into the trachea as a result of insufficient valve closure, or

by an increased expiratory airflow resistance during phonation. This will gradually lead to

increased efforts to produce fluent shunt esophageal speech. Topical agents (i.e. lozenges

and semi-solid formulations) might adequately resolve superficial fungal infections, but

must be applied frequently to maintain effective saliva concentrations. Successful

decontamination of the oropharynx with 10 mg amphothericin B lozenges four times

daily was associated with a prolonged device life and lower intratracheal phonatory

pressures, but the frequent daily applications lead to poor patient compliance. Application

of a buccal bioadhesive miconazole slow-release tablet has proven to maintain effective

salivary drug concentrations for 10-12 hours (Bouckaert et al., 1992). A bioadhesive

slow-release tablet diminishes the need for frequent drug applications with lower daily

doses. (Weissenbruch et al., 1997 a,b)

Figure 1. The Provox 2, retained in the tracheoesophageal fistula.
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Although miconazole has been to date the first-choice topical agent for the

prophylaxis of the colonisation of tracheoesophageal voice prostheses by yeasts, Bauters

et al. (2002) questioned its position as preferred prophylactic antimycotic. A broad range

of minimal inhibitory concentrations (MIC) of albicans and non-albicans Candida species

was observed for miconazole, while nystatin showed narrowly distributed MIC values for

all isolates suggesting uniform sensitivity. Based on these findings nystatin was

incorporated in a slow-release buccal bioadhesive tablet in stead of miconazole

(Bouckaert et al., 1992; Weissenbruch et al., 1997b) and the effect of a nystatin

bioadhesive tablet on the Provox device lifetime was investigated. The bioadhesive

carrier used by Bouckaert et al. (1992) and Weissenbruch et al. (1997) is a physical

mixture of 5% (w/w) Carbopol 974P with a pregelatinised starch, in Chapter 3.2 Ex

Vivo Bioadhesion Measurement used as reference formulation. The selected bioadhesive

carrier, SD 90/10, showed comparable ex vivo bioadhesion values and in vivo adhesion

times as for the reference formulation (Chapter 3.4 Buccal Testosterone Absorption from

a Bioadhesive Tablet).

Nystatin is an antifungal agent used to treat a variety of fungus infections, but it is

exceptionally popular to treat skin and mucosal membrane infections (i.e. in the mouth)

caused by varieties of Candida albicans, a yeast-like fungus that is commonly found in

the gastro-intestinal tract. Nystatin is a polyene antibiotic (Figure 2) and works by binding

to sterols in the fungal cellular membrane altering the permeability to allow leakage of the

cellular contents and destroying the fungus. Nystatin is administered by mouth, by means

of vaginal suppositories or tablets, and topically (on the skin), through the use of a cream,

powder, or ointment. Nystatin for oral use is available as a liquid suspension, as tablets,

and as lozenges.

Figure 2. Chemical structure of nystatin, an antifungal polyene antibiotic.
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3.6.2 Materials

Nystatin (5658 IU/mg) and colloidal silica were purchased from Alpha Pharma

(Nazareth, Belgium). Sodium stearyl fumarate (NaSF) was given by Edward Mendell Co.

Inc. (New York, USA). All other chemicals used were at least of analytical grade.

3.6.3 Methods

3.6.3.1 Production of tablets

The tablets were produced by firstly mixing the spray-dried Amioca/Carbopol

974P 90/10 mixture (SD 90/10) with nystatin (100.000 IU per tablet), next 1% (w/w)

colloidal silica was added as a glidant and the mixture was mixed for 5 min. in a Turbula

blender (Type T2A, W.A. Bachofen, Bazel, Switzerland). Finally, sodium stearyl

fumarate (2%; w/w) was added as a lubricant and mixed for 2 min. in a Turbula blender.

The mixture was compressed on a Korsch compression machine (Type EK0, Berlin,

Germany) equipped with 6.5 mm punches, at a pressure of 7.4 kN. The weight and the

diameter of the tablets were 750 mg and 6.5 mm, respectively.

3.6.3.2 Study protocol

The study was performed at the Head and Neck Surgery Department, Ghent

University Hospital, De Pintelaan 185, Gent, Belgium in co-operation with the

Laboratories for Pharmaceutical Technology and Pharmaceutical Microbiology, Ghent

University, Harelbekestraat 72, Gent, Belgium. The approval of The Ethics Committee of

the Ghent University Hospital was obtained.

Nineteen (19) patients (age 42-79 years/ 1 female) who underwent total

laryngectomy and prosthesis insertion were included, after appropriate explanation of the

trial procedures and signature of an informed consent document. All patients received a

new Provox 2 indwelling low-resistance voice prosthesis (Atos Medical AB, Hörby,

Sweden) as a standard outpatient procedure. The patients were selected to start

participation in the trial at the time when replacement of their voice prosthesis was
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required due to internal leakage of esophageal contents and/or increased phonatory efforts

to produce fluent shunt esophageal speech. The device lifetime of the prosthesis was

followed and expressed in days. The voice prosthesis was replaced by a new one when

required due to leakage and/or increased efforts to phonate. The patients were divided at

random into three groups.

Group one (n = 7) cleaned the voice prosthesis locally by means of ten (10) drops

of an oral nystatin suspension (Nystatine Labaz suspension, 100.000 IU/ml, Sanofi-

Synthelabo, Brussels, Belgium) on a brush once a day in the evening. After replacement,

the patients cleaned their new prosthesis in the same way with nystatin oral suspension on

a brush. No other antimicrobial agents were used simultaneously.

Group two (n = 7) cleaned the prosthesis locally by means of ten (10) drops of an

oral nystatin suspension (Nystatine Labaz suspension, 100.000 IU/ml, Sanofi-

Synthelabo, Brussels, Belgium) on a brush once a day in the evening. After replacement

of the voice prosthesis, the patients applied one nystatin bioadhesive tablet per day, after

breakfast, on the gingiva above the upper canine, altering left and right side. Patients with

teeth prostheses sticked the tablet on the inside of the cheek opposed to the gingiva above

the upper canine, altering left and right side. No other antimicrobial agents were used

simultaneously.

The third group (n = 5) was a control group. These patients did not use any anti-

microbial agent to clean their voice prosthesis.

Any occurring adverse effect or complication was recorded. A questionnaire with

possible side effects was included for the patients at each replacement.

The device lifetime of the different groups was statistically compared by one-way

analysis of variance at a significance level of p < 0.05 using a post hoc Scheffé test. The

data were tested for normal distribution with a Kolmogorov-Smirnov test. The

homogeneity of variances was tested with the Levene’s test.

To statistically compare the device lifetime within one group a paired T-test was used at a

significance level of p < 0.05. The computer program SPSS version 10.0 was used for the

statistical analyses.
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3.6.4 Results and Discussion

The device lifetime, expressed in days, of the patients’ voice prostheses in the

three groups are shown in Table 1.

Voice Prosthesis Lifetime

(days)

Period 1

Treatment

Period 2

Treatment
Group 1 (n = 7) nystatin on brush nystatin on brush

112 ± 46 149 ± 119

Group 2 (n = 7) nystatin on brush nystatin bioadhesive tablet

143 ± 42 262 ± 86

Group 3 (n = 5) Control /

83 ± 23 /

Table 1. Voice prosthesis lifetimes, expressed in days, with the different treatments in the three

patient groups. (mean ± sd)

There was no significant difference in the prosthesis lifetime of the first period

between group 1 and group 2, both treated with nystatin oral suspension on a brush (Post

Hoc Scheffé, p < 0.05). The mean prosthesis lifetime of the control group was lower,

however not significantly (Post Hoc Scheffé, p < 0.05), compared to group 1 and 2.

Within group 1 there was no significant difference (Paired T-test, p < 0.05) in lifetime

between the first and the second period. Within group 2, the nystatin bioadhesive tablet

significantly (Paired T-test, p < 0.05) increased the lifetime of the Provox compared to

the local treatment with nystatin on a brush. The bioadhesive tablets were well tolerated

by the patients, no irritation or side effects were reported.

Bauters et al. (2002) reported that the lifetime of prostheses ranged from 2 weeks

to more than 1 year, depending on the personal hygiene and maintenance (i.e. cleaning

with an antimicrobial agent on a brush), with an average lifetime of 4 months (120 days).

These data are in accordance with our findings, namely an average lifetime of 112 and

143 days in the first period of group 1 and 2, respectively, during which the prosthesis

was daily cleaned with nystatin oral suspension on a brush. The relationship between the

colonisation of tracheoesophageal voice prostheses by yeasts, particularly Candida
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species, and their physical deterioration and dysfunction is well described (Bauters et al.,

2002; Weissenbruch et al., 1997 a,b; De Carpentier et al., 1996). This is confirmed in the

present study, as the average lifetime of control group was lower compared to the

nystatin-brush treated group 1 and 2 (1st period). Application of a nystatin bioadhesive

tablet, one per day, significantly increased the lifetime of the Provox indicating that a

sustained release of nystatin in the oral cavity, by erosion of the tablet during ± 8 hours, is

more effective in preventing microbial colonisation of the prosthesis compared to a local

cleaning with nystatin suspension on a brush. By daily application of a nystatin

bioadhesive tablet, the average prosthesis lifetime was increased to almost 9 months (262

days) compared to 4 months (120 days) reported by Bauters et al. (2002). However, daily

application of a bioadhesive tablet is, especially for these post-laryngectomy patients who

are irradiated, an intensive task. Moreover, irradiated patients suffer from mouth dryness

which might prevent the adhesion and erosion of the bioadhesive tablet due to insufficient

hydration. Although this might result in a poor patient compliance, a significant increase

of the Provox lifetime was observed with a daily application of a nystatin bioadhesive

tablet.

3.6.5 Conclusion

Daily application of a nystatin bioadhesive slow-release tablet (100.000 IU per

tablet) significantly increased the lifetime of a Provox voice prosthesis in

laryngectomised patients compared to the conventional local cleaning of the prosthesis

with an antimicrobial agent on a brush. However, patient compliance was rather poor as a

daily application of a bioadhesive tablet is an extra charge for post-laryngectomy patients

and as irradiated patients suffer from mouth dryness.
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Chapter 3.7 Stability Study of a Spray-Dried

Amioca/Carbopol 974P mixture

3.7.1 Introduction

The spray-dried Amioca/Carbopol 974P 80/20 mixture (SD 80/20) was selected

for stability testing according to the USP guidelines (United States Pharmacopeia XXIV,

2000) for accelerated stability testing. SD 80/20 was stored during 12 months as a powder

and as placebo tablets in open containers at 40 ± 2 °C and 75 ± 5 % relative humidity

(RH). The ex vivo bioadhesion, tablet hardness, in vitro drug release and moisture content

were determined as a function of storage time.

3.7.2 Materials

Sodium stearyl fumarate (NaSF) was given by Edward Mendell Co. Inc. (New

York, USA). Miconazole nitrate was obtained from Janssen Pharmaceutica, Beerse,

Belgium. Econazole was purchased from Sigma-Aldrich (Bornem, Belgium), methanol

HPLC-S grade was purchased from Biosolve BV (Valkenswaard, The Netherlands) and

tetrahydrofuran (THF) was purchased from BDH, Laboratory Supplies, Poole, UK. All

other chemicals used were at least of analytical grade.

3.7.3 Methods

3.7.3.1 Storage conditions

SD 80/20 was stored under two different physical forms: as bulk powder and as

tablets. The bulk powder was then compressed to placebo or miconazole tablets, as

described in the next paragraph (3.7.3.2), directly after storage to evaluate ex vivo

bioadhesion/tablet hardness and drug release, respectively.
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The bulk powder and the tablets were stored in an oven (Memmert U 60,

Schwabach, Germany) at 40 ± 2°C in open containers in a sealed chamber above a

saturated NaCl solution to obtain a relative humidity of 75 ± 5 %.

3.7.3.2 Production of tablets

To prepare tablets the SD 80/20 powder was mixed with sodium stearyl fumarate

(1%; w/w) as a lubricant, and compressed on a Korsch compression machine (Type EK0,

Berlin, Germany) equipped with 7 mm flat punches, at a pressure of 9.8 kN. The tablet

weight was 100 mg.

The tablets used in the in vitro drug release study contained miconazole nitrate.

The tablets were prepared by firstly mixing the SD 80/20 powder with miconazole nitrate

(10 mg), next the lubricant (1% sodium stearyl fumarate) was added and mixed again.

The tablets were compressed as described above with a tablet weight of 100 mg and

diameter of 7 mm.

3.7.3.3 Measurements

Ex vivo bioadhesion, tablet hardness, in vitro drug release and moisture content

were measured before storage (point 0 – p 0) and after 2 weeks, 1 month, 2 months, 3

months, 9 months and 12 months of storage at 40°C/75%RH.

3.7.3.3.1 Ex vivo bioadhesion measurements

Ex vivo bioadhesion was measured on placebo tablets, prepared as described

above, according to the ex vivo bioadhesion method described in Chapter 3.2 - 3.2.2.3 Ex

vivo bioadhesion determination.

Statistical analysis was performed on the work of adhesion values, as work of

adhesion is, generally considered, more accurate to quantify bioadhesion than adhesion

force (Chapter 3.2 – 3.2.3 Results and Discussion). Statistically significant differences

were determined using a one-way ANOVA. The data were tested for normal distribution

with a Kolmogorov-Smirnov test. The homogeneity of variances was tested with the
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Levene’s test. The data of stored tablets were transformed to their logarithm, the data of

stored bulk powder were transformed to their square root. The data were compared to

point 0 (before storage) using a Bonferroni test with p < 0.05 as significance level. The

computer program SPSS version 10.0 was used for the statistical analyses.

3.7.3.3.2 Tablet hardness test

Tablet hardness was measured with a Pharma Test hardness tester (Type PTB 311,

Heinburg, Germany). The test modus was set at 20 N.s-1. Tablet diameter (mm), thickness

(mm) and hardness (N) were measured. Tablets were prepared as described above.

3.7.3.3.3 In vitro drug release

The in vitro drug release was evaluated in an automatic reciprocating cylinder

dissolution apparatus USP III (BioDis) (United States Pharmacopeia XXIV, 2000)

(VanKel BioDis III Release Rate tester, Cary, NC, USA) on tablets containing 10 mg

miconazole nitrate as a marker. Tablets were prepared as described above. Quantitative

analysis of miconazole nitrate in the dissolution samples was performed with a validated

HPLC method with UV-detection using econazole as internal standard. Dissolution and

HPLC method are described in Chapter 3.4 – 3.4.1.1.1 In vitro drug release study (USP

III).

The time for 50% drug release, t50%, was calculated from the mean (n = 6)

miconazole nitrate release profiles.

3.7.3.3.4 Moisture content

The moisture content was measured on SD 80/20 powder using a Mettler DL 35

Karl Fisher titrator (Mettler-Toledo, Beersel, Belgium) equipped with a double platinum

electrode for endpoint determination. Hydranal composite 5 (Riedel-de Haën, Seelze,

Germany), a one-component reagens, was used as titrant solution. The reaction medium

was anhydrous methanol (Riedel-de Haën, Seelze, Germany). The reagens titer
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(theoretical 2 mg H2O/ml) was calibrated and verified with 100% distilled water. Directly

after storage, stored tablets were crushed with pestle and mortar to obtain a powder.

3.7.4 Results and Discussion

3.7.4.1 Moisture content

The moisture content of SD 80/20, stored as bulk powder, is shown in Figure 1.

After 2 weeks of storage the water content increased from 8 to 12 % (w/w). A longer

storage time did only slightly increase the moisture content to a maximum value of 13 %

(w/w). The water content in placebo tablets after 12 months of storage was 9.9 ± 0.4 %

(w/w). The lower water uptake by stored tablets is due to a smaller relative surface of

tablets compared to bulk powder.

Stored as bulk powder

12.0

11.5

13.1

13.0

12.8

8.1

12.2

0 2 4 6 8 10 12 14

point 0

2 weeks

1 month

2 months

3 months

9 months

12 months

Moisture content (%)

Figure 1. Moisture content (% w/w) of SD 80/20, stored as bulk powder, as

function of storage time at 40°C/75%RH. (n = 3, mean ± sd)
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3.7.4.2 Tablet hardness

Tablet hardness, thickness and diameter for SD 80/20, stored as bulk powder and

next tabletted or stored as tablets over a period of 12 months, are given in Table 1 and

Table 2, respectively.

Stored as bulk powder

Time Hardness (N) Thickness (mm) Diameter (mm)

Point 0 136.6 ± 9.6 2.30 ± 0.04 7.08 ± 0.02

1 month 118.4 ± 2.0 2.18 ± 0.03 7.00 ± 0.02

2 months 127.6 ± 4.8 2.15 ± 0.03 6.99 ± 0.02

3 months 130.5 ± 4.9 2.06 ± 0.02 6.91 ± 0.01

9 months 79.8 ± 9.4 2.15 ± 0.03 6.96 ± 0.02

12 months 92.9 ± 5.7 2.11 ± 0.06 6.95 ± 0.02

Table 1. Tablet hardness (N), thickness (mm) and diameter (mm) for SD 80/20, stored as bulk

powder. (n = 6, mean ± sd)

Stored as tablets

Time Hardness (N) Thickness (mm) Diameter (mm)

Point 0 136.6 ± 9.6 2.30 ± 0.04 7.08 ± 0.02

2 weeks 103.8 ± 2.5 2.56 ± 0.03 7.24 ± 0.01

1 month 117.8 ± 7.7 2.53 ± 0.03 7.22 ± 0.01

2 months 110.7 ± 9.7 2.54 ± 0.05 7.24 ± 0.03

3 months 139.2 ± 7.6 2.46 ± 0.02 7.37 ± 0.55

9 months 123.8 ± 14.4 2.47 ± 0.04 7.16 ± 0.03

12 months 117.0 ± 4.6 2.47 ± 0.02 7.20 ± 0.03

Table 2. Tablet hardness (N), thickness (mm) and diameter (mm) for SD 80/20, stored as tablets.

(n = 6, mean ± sd)

Under both conditions, stored as bulk powder or as tablet, the tablet hardness

decreased as a function of storage time. Storage as a powder (93 N after 12 months) had a

much more pronounced negative influence on tablet hardness compared to storage as a

tablet (117 N after 12 months). When the bulk powder was stored at 75% RH, water was

absorbed on the surface of the individual powder particles (3.7.4.1 Moisture content). The

so formed water films affect the compression and prevent inter-particular binding,
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resulting in softer tablets. Water uptake by stored tablets induced small tablet

deformations, which were observed by an increased tablet thickness and diameter (Table

2). These deformations were already measured after 2 weeks and were next stabilised.

Tablets, prepared from stored bulk powder, were tested immediately after compression

and no deformations were observed.

Although storage of bulk powder and tablets at 40°C/75%RH had a negative

influence on the tablet hardness, the tablets still showed after 12 months acceptable

hardness values of 93 N and 117 N, respectively.

3.7.4.3 Ex vivo bioadhesion

The ex vivo bioadhesion results for SD 80/20 tablets as function of time, stored as

bulk powder and next compressed or compressed prior to storage (stored as tablets), are

shown in Figure 2 and Figure 3, respectively.

The ex vivo bioadhesion capacity of SD 80/20 tablets decreased as function of

storage time as well when stored as bulk powder as when stored as tablets. The work of

adhesion was, compared to point zero (before storage), significantly decreased after 1

month for stored bulk powder and after 2 months for stored tablets.

As already described in Chapter 3.1 Introduction, bioadhesion strength depends on the

ability of dry mucoadhesive drug delivery systems (i.e. bioadhesive tablets) to swell and

dehydrate mucus and consolidation of the formed adhesive joint is driven by this water

movement (Smart, 1999). As well the powder as the tablets will take up water during

storage at 75% RH (3.7.4.1 Moisture content). A possible explanation for the decreasing

bioadhesive properties, is a lower swelling and dehydration potential after storage at a

high relative humidity. On the other hand, Voorspoels (1997) reported that it was difficult

to find a correlation between an increased water content and a decrease of the bioadhesive

properties due to tablet deformations (3.7.4.2 Tablet hardness), which negatively

influenced the ex vivo bioadhesion results. However, tablets prepared from stored bulk

powder were compressed and tested immediately after storage and did not show

deformations (Table 1). Nevertheless, it is clear that the bioadhesive properties of the
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Figure 2. Ex vivo bioadhesion results – Adhesion Force (N) and Work of Adhesion

(mJ) – before storage (point 0 – p 0) and after 1 month (1 m), 2 months (2 m), 3

months (3 m), 9 months (9 m) and 12 months (12 m) storage of SD 80/20 as bulk

powder at 40°C/75%RH. (n = 10, mean ± sd)
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Figure 3. Ex vivo bioadhesion results – Adhesion Force (N) and Work of Adhesion

(mJ) – before storage (point 0 – p 0) and after 2 weeks (2 w), 1 month (1 m), 2 months

(2 m), 3 months (3 m), 9 months (9 m) and 12 months (12 m) storage of SD 80/20 as

tablets at 40°C/75%RH. (n = 10, mean ± sd)
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spray-dried Amioca/Carbopol 974P mixture significantly decreased after 1 and 2

month, respectively, when stored at 40°C/75%RH as bulk powder and as tablets.

3.7.4.4 In vitro drug release

The in vitro drug release profiles from a SD 80/20 miconazole nitrate bioadhesive

tablet formulation as a function of storage time are shown in Figure 4 (stored as bulk

powder prior to compression) and Figure 5 (stored as a tablets).
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Figure 4. In vitro miconazole nitrate release profiles from a SD 80/20 bioadhesive tablet

formulation, stored as bulk powder, as function of storage time. (n = 6, mean)

When stored as bulk powder, the in vitro miconazole release already increased

after 1 month of storage. Before storage at 40°C/75%RH the t50% value was 7.5 hours,

while after 1 month these value already decreased to 2.5 hours and after 2 months 50%

miconazole nitrate was released after 0.5h. These in vitro release data clearly indicate

that a spray-dried Amioca/Carbopol 974P mixture has to be stored with caution for

temperature and relative humidity.
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When stored as tablets, the in vitro drug release was stable for the test period of 12

months. The t50% values varied between 7.5 and 9.5 hours. Only a slight tendency of

retardation of drug release as function of storage time could be observed.
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Figure 5. In vitro miconazole nitrate release profiles from a SD 80/20 bioadhesive tablet

formulation, stored as tablets, as function of storage time. (n = 6, mean)

As already mentioned above, due to a larger relative surface bulk powder is more

sensitive for moisture uptake compared to tablets. During storage at 75% RH, the

individual powder particles will absorb water on their surface. The so formed water layers

prevent inter-particular binding, resulting in a lower tablet hardness and faster erosion

times and corresponding dissolution profiles.
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3.7.5 Conclusion

Storage of a spray-dried Amioca/Carbopol 974P mixture at 40°C/75%RH, both

stored as bulk powder and next compressed and stored as tablets from the start, resulted in

a significant decrease of bioadhesive properties due to water uptake and tablet

deformations. The in vitro drug release profiles of stored tablets were stable for the whole

test period (12 months). When stored as bulk powder prior to compression, after 1 month

50% of the drug was released after 2.5 h compared to 7.5 h before storage. Spray-dried

Amioca/Carbopol 974P mixtures, as bulk powder as well as formulated to tablets, have

to be stored under controlled conditions.
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Summary

Multifunctional polymers have been used in developing controlled release

systems, peroral peptide delivery systems and bioadhesive platforms for buccal, nasal,

vaginal and oral drug delivery. Multifunctional polymers are hydrophilic

macromolecules. They have good bio- or mucoadhesive properties, they can prolong the

residence time of the drug delivery system at the site of drug absorption and can increase

the contact between delivery system and absorbing mucosa, resulting in a concentration

gradient which can favour drug absorption. Drug delivery systems based on

multifunctional polymers can be applied on specified mucosal tissues, such as the nasal,

buccal and vaginal mucosa, to improve and enhance the bioavailability of the drug.

Multifunctional polymers are supposed to improve the absorption of peptides across

mucosal surfaces by increasing the permeability of epithelial tissues and inhibiting

proteolytic enzymes.

In this doctoral thesis multifunctional polymers were prepared by grafting starches

with poly(acrylic acid) (Chapter 1.1 Synthesis and Process Details). Two grafting

methods were evaluated: 60Co irradiation and chemical modification. By irradiation and

chemical modification poly(acrylic acid) chains were grafted onto the starch molecules.

Different types of starch, starch/acrylic acid ratios and degrees of neutralisation were

used.

A second series of multifunctional polymers was prepared by freeze-drying or

spray-drying starch/carboxylated polymer mixtures. Amioca (waxy corn) was used as

starch. A linear poly(acrylic acid), a cross-linked poly(acrylic acid) (Carbopol 974P) and

sodium carboxymethylcellulose were used as carboxylated polymers.

In Chapter 1.2 the spray-dried Amioca/Carbopol 974P mixtures were analysed

using Scanning Electron Microscopy (SEM) and solid state NMR (Nuclear Magnetic

Resonance) spectroscopy. SEM and NMR analysis showed that by spray-drying Amioca

starch/Carbopol 974P mixtures, Carbopol films are formed around the starch granules.

At higher Carbopol concentrations (75% w/w), individual Carbopol nano-particles can

be found in addition to film formation.
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The starch-g-poly(acrylic acid) copolymers, the freeze-dried and spray-dried

starch/carboxylated polymer mixtures were evaluated as potential excipients for oral

peptide delivery (Chapter 2 Multifunctional Polymers for Oral Peptide Drug Delivery).

The two major barriers for successful oral peptide delivery are enzymatic degradation and

permeation across the gastro-intestinal epithelium. The in vitro inhibition potency of the

polymers towards the proteolytic enzyme trypsin was investigated. As most proteolytic

enzymes have Ca2+ or Zn2+ at their active sites and as a reduction of extracellular Ca2+

concentration results in an opening of the tight junctions the calcium and zinc ion binding

capacity of the multifunctional polymers was determined.

In Chapter 2.2 an in vitro trypsin activity assay was biochemically optimised and

validated for the evaluation of the inhibition capacity of the multifunctional polymers. In

previously described assays the enzymatic reaction was not biochemically optimised. The

used substrate concentrations were too low in proportion to the enzymatic activities or the

enzymatic activity was too high for the used substrate concentration, so that the

metabolite concentration versus time curves reached very fastly a plateau or post-steady

state because of exhaustion of the substrate. Several substrate concentrations and

enzymatic activities of trypsin were evaluated aiming at extracting the linear or steady

state part of the metabolite versus time curve of the enzymatic degradation reaction. The

inhibition measurements were carried out in steady state conditions and hence the

degradation rate is independent of substrate concentration. The enzyme inhibition potency

was expressed by the Inhibition Factor (IF), which was defined as the ratio of reaction

rate without polymer to the reaction rate with polymer. The IF value is a good measure of

the in vitro inhibitory capacity of multifunctional polymers towards gastro-intestinal

proteolytic activity.

In Chapter 2.3 the potential of the grafted starches and the freeze-dried / spray-

dried starch/carboxylated polymer mixtures as excipients for oral peptide and protein

delivery was in vitro evaluated by measuring the trypsin inhibition potency and the Ca2+

and Zn2+ binding capacity of these multifunctional polymers. Carbopol 934P was used

as a reference polymer. Heat treated freeze-dried starch/poly(acrylic acid) mixtures

showed the highest in vitro trypsin inhibition potency, which was comparable or even

higher than for the reference polymer. The 60Co irradiated or chemically modified grafted

starches showed lower IF values than the reference. Also the spray-dried

starch/poly(acrylic acid) mixtures showed all a lower IF than the reference polymer. The
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use of the cross-linked Carbopol 974P or the linear poly(acrylic acid) in the spray-dried

mixtures did not result in different inhibition factors. The calcium and zinc ion binding

study showed that the freeze-drying and the 60Co irradiation method could result in

multifunctional polymers with the highest ion binding capacity. The combination of a

high in vitro proteolytic inhibition and a pronounced binding ability for the bivalent ions

calcium and zinc makes these polymers promising excipients for a successful oral peptide

and protein drug delivery. However, in vivo studies with insulin as model peptide

revealed that in vitro inhibition and ion binding studies can be used to make a first

selection of potential excipients, but they can not be used to predict in vivo absorption.

After a selection of potential excipients for oral peptide delivery, it is even more

important to evaluate and optimise different formulation possibilities with respect to

peptide stability in and absorption from the gastro-intestinal tract.

The starch-g-poly(acrylic acid) copolymers, the freeze-dried and spray-dried

starch/carboxylated polymer mixtures were evaluated as potential buccal and vaginal

bioadhesive drug carriers (Chapter 3 Multifunctional Polymers as Bioadhesive Drug

Carriers).

In Chapter 3.2 the bioadhesive properties of the multifunctional polymers were

measured using an ex vivo bioadhesion test method and compared to a reference

formulation (physical mixture of 5% Carbopol 974P with a pregelatinised waxy corn

starch). Grafted starches prepared by 60Co irradiation as well as by chemical modification

showed good ex vivo bioadhesive properties. By freeze-drying starch/poly(acrylic acid)

mixtures, only the powders containing 75% (w/w) poly(acrylic acid) showed good

compression properties and performed well during the ex vivo bioadhesion test. There

was no difference observed in bioadhesive capacity between linear poly(acrylic acid),

sodium carboxymethylcellulose (CMC) or Carbopol 974P as carboxylated polymer in

spray-dried starch/carboxylated polymer mixtures. However, the CMC based powders

showed a very poor compression behaviour and can therefore not be used in buccal

bioadhesive tablet formulations. It was observed that the powders obtained by spray-

drying starch/poly(acrylic acid) mixtures showed better bioadhesive properties compared

to the freeze-dried ones. The most promising bioadhesive powders were obtained by

spray-drying Amioca starch/Carbopol 974P mixtures. By spray-drying the bioadhesive
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capacities were significantly improved compared to equivalent physical mixtures of

Amioca and Carbopol 974P.

In Chapter 3.3 the mucosal irritation potential of the different multifunctional

polymers was evaluated with a mucosal irritation test using slugs. It was concluded that

grafted starches prepared by 60Co irradiation or chemical modification both induced

irritation of mucosal tissues. Spray-dried starch/poly(acrylic acid) mixtures containing 50

and 75% (w/w) poly(acrylic acid) were irritating on mucosal surfaces and the irritation

potential increased with increasing poly(acrylic acid) concentrations. In vivo evaluation

in dogs confirmed these findings. Spray-dried Amioca starch/Carbopol 974P mixtures

containing up to 20% Carbopol 974P did not show a distinct sign of irritation. These

powders can be incorporated in bioadhesive formulations without risk of irritation and are

potential safe mucoadhesive carriers. With 25% or more Carbopol 974P the Amioca

granules are probably completely surrounded by Carbopol. When the slugs are brought

into contact with these powders the contact surface is 100% Carbopol 974P, resulting in

irritation of the slugs’ mucosa.

In Chapter 3.4, the buccal absorption of testosterone from a bioadhesive tablet

formulation based on the different multifunctional polymers was investigated in vivo in

dogs and compared to the above mentioned reference formulation. The chemically

modified grafted starch released the model drug testosterone rather fastly. A 60Co

irradiated grafted starch and a freeze-dried Amioca/poly(acrylic acid) mixture did not

reach the absolute bioavailability data of the reference formulation. The grafted starches

and the freeze-dried starch/poly(acrylic acid) mixtures showed to be promising (buccal)

bioadhesive carriers, although, due to their mucosal irritation potential, they can only be

used for single applications and not in chronic treatments. By spray-drying

Amioca/Carbopol 974P mixtures at different ratios a range of potential bioadhesive

carriers was obtained. By ranging the Carbopol 974P concentration between 5 and 20%,

the in vivo adhesion time of placebo tablets could be varied between 8 and 17h. The data

from the in vivo adhesion time study correlated well with the in vitro miconazole release

profiles (USP III dissolution). A spray-dried Amioca/Carbopol 974P 80/20 mixture

could be loaded with 60% drug without loosing its in vivo bioadhesive and

pharmacokinetic properties.

In Chapter 3.5 the single application of a metronidazole vaginal bioadhesive tablet

based on a spray-dried Amioca starch/Carbopol 974P 85/15 mixture was evaluated in
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12 female healthy volunteers. The vaginal bioadhesive tablet is applied on the uterine

cervix and serves as a platform for local vaginal drug delivery. The clinical study proved

that a spray dried Amioca starch/Carbopol 974P 85/15 mixture can be used as a

bioadhesive vaginal carrier and can prolong the drug release over 5 days, resulting in

prolonged local vaginal drug concentrations. The in vivo residence time of a vaginal

bioadhesive metronidazole tablet could be assessed by measuring plasma concentrations.

In Chapter 3.6 the efficacy of a buccal bioadhesive nystatin tablet on the device

life of a Provox tracheoesophageal voice prosthesis was investigated in

postlaryngectomy patients. Aiming at an in vivo adhesion time of ± 8 h, a spray-dried

Amioca/Carbopol 974P 90/10 mixture was selected as bioadhesive carrier. The study

revealed that a daily application of a nystatin bioadhesive slow-release tablet could

significantly increase the lifetime of a Provox voice prosthesis in laryngectomised

patients compared to the conventional local cleaning of the prosthesis with an anti-

microbial agent on a brush.

In Chapter 3.7 the spray-dried Amioca/Carbopol 974P 80/20 mixture (SD

80/20) was selected for accelerated stability testing during 12 months at 40°C and 75%

relative humidity (RH). Storage of SD 80/20 at 40°C/75%RH, both stored as bulk powder

and next compressed and stored as tablets from the start, resulted in a significant decrease

of bioadhesive properties. The in vitro drug release profiles of stored tablets were stable

for the whole test period (12 months). When stored as bulk powder prior to compression,

after 1 month 50% of the drug was released after 2.5 h compared to 7.5 h before storage.

Spray-dried Amioca/Carbopol 974P mixtures, as bulk powder as well as formulated as

tablets, have to be stored under controlled conditions.
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Samenvatting

Multifunctionele polymeren worden gebruikt als excipiëntia voor de ontwikkeling

van gecontroleerde vrijgavesystemen, bij orale toediening van peptiden, en als

bioadhesieve dragers voor buccale, nasale, vaginale en orale toediening van

geneesmiddelen. Multifunctionele polymeren zijn hydrofiele macromoleculen. Sommigen

bezitten goede bio- of mucoadhesieve eigenschappen, verlengen de verblijftijd van het

toedieningssysteem ter hoogte van de absorptieplaats en versterken het contact tussen

toedieningssysteem en mucosa. Toedieningssystemen op basis van multifunctionele

polymeren kunnen aangebracht worden op specifieke mucosale weefsels, zoals de

buccale, nasale en vaginale mucosa, om zo de biologische beschikbaarheid van het

geneesmiddel te verhogen. Multifunctionele polymeren zouden ook de absorptie van

peptiden over mucosale weefsels kunnen verbeteren door het verhogen van hun

permeabiliteit en de inhibitie van proteolytische enzymes.

In dit doctoraatsproefschrift werden multifunctionele polymeren aangemaakt door

het enten (grafting) van poly(acrylzuur) ketens op zetmelen (Hoofdstuk 1.1 Synthesis and

Process Details). Twee verchillende methodes werden geëvalueerd om dergelijke grafted

starches te bekomen: bestraling met een 60Co bron en chemische modificatie. Door

bestraling of door chemische modificatie kunnen poly(acrylzuur) ketens geënt worden op

de zetmeelmolecules. Verschillende zetmeelsoorten, verschillende verhoudingen

zetmeel/acrylzuur en een verschillende graad van acrylzuurneutralisatie werden

geëvalueerd.

Een tweede reeks multifunctionele polymeren werd aangemaakt door het

vriesdrogen of sproeidrogen van mengsels van zetmeel en polymeren met

carboxylfuncties. Amioca (amylopectine maïs) werd als zetmeel gebruikt. Een lineair

poly(acrylzuur), een vernet poly(acrylzuur) (Carbopol 974P) en

natriumcarboxymethylcellulose werden gebruikt als polymeren.

In Hoofdstuk 1.2 werden de gesproeidroogde Amioca/Carbopol 974P mengsels

geanalyseerd met Scanning Electron Microscopy (SEM) en solid state NMR (Nuclear

Magnetic Resonance) spectroscopy. SEM en NMR analyse toonden aan dat tijdens het

sproeidrogen van Amioca zetmeel/Carbopol 974P mengsels, er Carbopol films
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worden gevormd rond de zetmeelgranules. Bij hogere Carbopol-concentraties (75%

w/w), worden naast filmvorming ook individuele Carbopol-nanopartikels

teruggevonden.

De grafted starches, de gevriesdroogde en de gesproeidroogde zetmeel/polymeer

mengsels werden geëvalueerd als potentiële excipiëntia voor orale toediening van

peptiden (Hoofdstuk 2 Multifunctional Polymers for Oral Peptide Drug Delivery). De

twee grootste barrières voor een succesvolle orale peptidetoediening zijn enzymatische

afbraak en de absorptie over het gastro-intestinaal epithelium. De in vitro inhibitie van het

proteolytisch enzyme trypsine door de diverse multifunctionele polymeren werd

onderzocht. Daar de meeste proteolytische enzymes Ca2+ of Zn2+ ionen gebonden hebben

ter hoogte van hun actieve plaatsen en aangezien een reductie van de extracellulaire Ca2+

concentratie de tight junctions kan openen, werd de Ca2+ en Zn2+ bindingscapaciteit van

de multifunctionele polymeren bepaald.

In Hoofdstuk 2.2 werd een in vitro-trypsine-inhibitietest biochemisch

geoptimaliseerd en gevalideerd. In eerder beschreven trypsine-activiteitstesten werd de

enzymatische reactie biochemisch nooit geoptimaliseerd. De gebruikte

substraatconcentraties waren te laag in verhouding tot de enzymatische activiteit of de

enzymatische activiteit was te hoog voor de aanwezige hoeveelheid substraat, met als

gevolg dat de metabolietconcentratie-tijdsprofielen zeer snel een plateau of post-steady

state bereikten door uitputting van het substraat. Verscheidene substraatconcentraties en

trypsine-activiteiten werden geëvalueerd met als doel het lineair of steady state stuk van

de metabolietconcentratie-tijdscurve van de enzymatische reactie uit te vergroten. De

inhibitietesten werden dan uitgevoerd onder steady state condities waarbij de

afbraaksnelheid onafhankelijk is van de substraatconcentratie. De mate van enzyme-

inhibitie werd weergegeven door de inhibitiefactor (IF), die werd gedefinieerd als de

verhouding van de reactiesnelheid zonder polymeer tot de reactiosnelheid in

aanwezigheid van polymeer. De IF-waarde is een goede maat voor de in vitro

inhibitiecapaciteit van multifunctionele polymeren tegenover gastro-intestinale

proteolytische enzymen.

In Hoofdstuk 2.3 werden de grafted starches, de gevriesdroogde en de

gesproeidroogde zetmeel/polymeer mengsels geëvalueerd als potentiële excipiëntia voor

orale toediening van peptiden door het meten van de in vitro trypsine inhibitie- en Ca2+ en
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Zn2+ bindingscapaciteit van deze multifunctionele polymeren. Carbopol 934P werd als

referentiepolymeer gebruikt. Thermisch behandelde gevriesdroogde

zetmeel/poly(acrylzuur) mengsels hadden het grootste in vitro trypsine inhibitiepotentieel,

gelijk aan of zelfs groter dan voor het referentiepolymeer. De 60Co bestraalde en de

chemisch gemodificeerde grafted starches hadden lagere IF-waarden dan de referentie.

Ook de gesproeidroogde zetmeel/poly(acrylzuur) mengsels hadden allen een lagere IF-

waarde dan de referentie. Vernet Carbopol 974P of lineair poly(acrylzuur) in de

gesproeidroogde mengsels gaf geen verschil in inhibitiefactor. De calcium- en

zinkionenbindingsstudie toonde aan dat vriesdrogen en 60Co bestraling resulteerde in

multifunctionele polymeren met de grootste ionenbindingscapaciteit. De combinatie van

een grote in vitro proteolytische enzyme-inhibitie en een uitgesproken

ionenbindingscapaciteit maakt van deze polymeren potentiële excipiëntia voor een

succesvolle orale toediening van peptiden. In vivo studies met insuline als modelpeptide

toonden echter aan dat in vitro inhibitie- en ionenbindingsstudies kunnen gebruikt worden

om een eerste selectie van potentiële excipiëntia te maken, echter zonder predictieve

waarde naar in vivo absorptie toe.

De multifunctionele polymeren werden in Hoofdstuk 3 Multifunctional Polymers

as Bioadhesive Drug Carriers geëvalueerd als buccale en vaginale bioadhesieve dragers.

In Hoofdstuk 3.2 werden de bioadhesieve eigenschappen gemeten met een ex vivo

bioadhesietest en vergeleken met een referentieformulatie (een fysisch mengsel van 5%

Carbopol 974P met een gepregelatiniseerd maïszetmeel). Grafted starches, zowel

aangemaakt via 60Co bestraling als met behulp van chemische modificatie, vertoonden

goede bioadhesieve eigenschappen. Van de gevriesdroogde zetmeel/poly(acrylzuur)

mengsels, had alleen het mengsel met 75% (w/w) poly(acrylzuur) goede compressie-

eigenschappen en vertoonde een goede ex vivo bioadhesie. Er was geen verschil in

bioadhesieve capaciteit tussen lineair poly(acrylzuur), natriumcarboxymethylcellulose

(CMC) of Carbopol 974P in de gesproeidroogde mengsels. De CMC-poeders lieten zich

moeilijk comprimeren waardoor deze niet geschikt zijn voor het formuleren van (buccale)

bioadhesieve tabletformulaties. Gesproeidroogde zetmeel/poly(acrylzuur) mengsels

waren beter adhesief dan de gevriesdroogde. De beste resultaten werden bekomen met de

gesproeidroogde Amioca/Carbopol 974P mengsels. De bioadhesieve capaciteiten van
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Amioca/Carbopol 974P mengsels waren significant verhoogd na sproeidrogen

vergeleken met gelijkaardige fysiche mengsels.

In Hoofdstuk 3.3 werd de mucosale irritatie, geïnduceerd door de verschillende

multifunctionele polymeren geëvalueerd met een mucosale irritatietest op naaktslakken.

De grafted starches, zowel deze gesynthetiseerd via 60Co bestraling als via chemische

modificatie, induceerden beiden irritatie van de mucosale weefsels. Gesproeidroogde

zetmeel/poly(acrylzuur) mengsels met 50 en 75% (w/w) poly(acrylzuur) waren irriterend

voor de mucosa en het irriterend effect werd groter met een stijgende poly(acrylzuur)

concentratie. In vivo evaluatie bij de hond bevestigde dit. Gesproeidroogde

Amioca/Carbopol 974P mengsels die tot 20% Carbopol 974P bevatten, toonden geen

enkel teken van mucosale irritatie. Deze poeders kunnen zonder enig gevaar voor irritatie

in bioadhesieve formulaties worden gebruikt. Bij 25% of meer Carbopol 974P zijn de

Amioca granules meer dan waarschijnlijk volledig omgeven met Carbopol. Wanneer

de slakken met deze poeders in contact worden gebracht, bestaat het contactoppervlak uit

100% Carbopol, met mucosale irritatie tot gevolg.

In Hoofdstuk 3.4 werd de buccale absorptie van testosteron uit een bioadhesieve

tablet op basis van de verschillende multifunctionele polymeren bestudeerd bij de hond en

vergeleken met de hierboven beschreven referentieformulatie. Met een chemisch

gemodificeerd grafted starch werd het modelgeneesmiddel, testosteron, vrij snel

vrijgegeven. Een 60Co bestraald grafted starch en een gevriesdroogd

Amioca/poly(acrylzuur) mengsel konden de absolute biologische beschikbaarheid

verkregen met de referentieformulatie niet evenaren. De grafted starches en de

gevriesdroogde zetmeel/poly(acrylzuur) mengsels bezitten een potentieel als (buccale)

bioadhesieve dragers, alhoewel, daar ze mucosale irritatie induceerden, ze enkel kunnen

gebruikt worden voor éénmalige applicaties en dus zeker niet bij chronische

behandelingen. Door Amioca/Carbopol 974P mengsels te sproeidrogen in

verschillende verhoudingen, bekomt men een brede reeks potentiële bioadhesieve

dragers. Met een Carbopol 974P-concentratie tussen 5 and 20%, kan de in vivo

adhesietijd gevarieerd worden tussen 8 en 17 uur. De in vivo adhesietijden van placebo-

tabletten bij de hond correleerden goed met de in vitro miconazole-vrijstellingsprofielen

bekomen in een USP III dissolutiesysteem. Een gesproeidroogd Amioca/Carbopol

974P 80/20 mengsel kon worden beladen met 60% testosteron zonder verlies van zijn in

vivo bioadhesieve en pharmacokinetische eigenschappen.
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In Hoofdstuk 3.5 werd de éénmalige toediening van een metronidazole vaginale

bioadhesieve tablet, geformuleerd op basis van een gesproeidroogd Amioca/Carbopol

974P 85/15 mengsel, geëvalueerd bij 12 vrouwelijke gezonde vrijwilligsters. De vaginale

bioadhesieve tablet werd op de portio uteri gekleefd en zorgt voor lokale vaginale

metronidazolevrijgave. De klinische studie toonde aan dat een gesproeidroogd

Amioca/Carbopol 974P 85/15 mengsel kan gebruikt worden als bioadhesieve vaginale

drager. De metronidazole vrijgave kon gedurende 5 dagen worden aangehouden. De

verblijftijd van de vaginale bioadhesieve tablet kon worden gevolgd via plasma

metronidazoleconcentraties.

In Hoofdstuk 3.6 werd het effect van een buccale bioadhesieve nystatine tablet op

de levensduur van een Provox spraakprothese onderzocht in gelaryngectomiseerde

patienten. Een gesproeidroogd Amioca/Carbopol 974P 90/10 mengsel werd

geselecteerd als bioadhesieve drager, met als doel een in vivo adhesietijd van ongeveer 8

uur. De studie toonde aan dat een dagelijkse applicatie van een nystatine bioadhesieve

tablet de levensduur van de spraakprothese significant kon verlengen vergeleken met de

conventionele lokale reiniging van de prothese met een nystatinesuspensie.

In Hoofdstuk 3.7 werd het gesproeidroogd Amioca/Carbopol 974P 80/20

mengsel (SD 80/20) geselecteerd voor een versnelde stabiliteitsstudie over 12 maanden

bij 40°C and 75% relatieve vochtigheid (RV). Bewaring van SD 80/20 bij 40°C/75%RV,

zowel als bulk poeder als onder de vorm van tabletten, resulteerde in een significante

daling van de bioadhesieve eigenschappen. De in vitro miconazole-vrijstellingsprofielen

uit bewaarde tabletten waren stabiel gedurende 12 maanden, terwijl de vrijstelling uit

bewaard bulk poeder reeds na 2 weken versneld was. Gesproeidroogde

Amioca/Carbopol 974P mengsels, zowel als bulk poeder als onder de vorm van

tabletten, moeten bewaard worden onder gecontroleerde omstandigheden.


