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“Een doctoraat…..wie haalt het nu in godsnaam in zijn hoofd om eraan te beginnen?” Die vraag heb 

ik me de voorbije vijf jaar ettelijke keren gesteld. En ik niet alleen, daar ben ik zeker van. Het 

antwoord was al die tijd vrij evident voor mij: “je moet er goed zot voor zijn”. Maar nu de finale 

versie van mijn doctoraatsthesis hier uitgeprint naast mij ligt, en ik al een pak verstandiger ben 

geworden, zou ik dit even willen bijschaven: “je moet er goed zot voor zijn….maar ook omringd zijn 

door fantastische mensen! Hoogtijd dus om mijn bedankings-lijstje eens te overlopen…. 

Eerst en vooral zou ik mijn twee promotoren willen bedanken, Prof. dr. apr. Jo Demeester & Prof. dr. 

apr. Stefaan De Smedt, voor de kans die ik gekregen heb om dit doctoraatsonderzoek binnen hun 

fantastische onderzoeksgroep te mogen uitvoeren. Jo, je mag fier zijn op de enorme uitbreiding die 

het labo de afgelopen jaren heeft meegemaakt, zowel op het vlak van medewerkers, als wat de 

uitrusting betreft. Stefaan was diegene die het vijf jaar geleden waagde om een totaal vreemd 

individu (volgens hem dan toch) binnen te halen op zijn labo. Zo’n individu dat er feitelijk zelfs nog 

niet aan dacht om überhaupt te gaan doctoreren….Stefaan, bedankt voor het Memobead-voorstel, ik 

hou er een geweldige ervaring aan over! Ik ben me ervan bewust dat ik niet je gemakkelijkste 

doctoraatstudent ben geweest, maar hoop van harte dat je goede herinneringen koestert aan de 

voorbije periode en aan deze thesis. Beiden heel veel succes nog met het labo. 

Zoals de meesten onder jullie weten, heb ik een groot deel van mijn doctoraatsperiode parttime 

doorgebracht in het verre Boom, bij The M-Team. Ik herinner me nog hoe ik daar als groentje, net 

van de unief en (dus) heel onwennig, terecht kwam tussen de afvaardiging van Tibotec, collega’s met 

net dat ietsje meer ervaring....werken, lachen, zweten, roepen & tieren, pintjes, boterhammekes 

opeten tussen ’T Ruimerken en de schoorsteen,…we hebben het daar allemaal meegemaakt. Het 

Memobead-tijdperk heeft me wetenschappelijk & technologisch veel bijgeleerd, maar heeft me 

bovenal een groep fantastische vrienden opgeleverd. Chris, jij hebt me van in het begin gegidst, 

bedankt voor de boeiende gesprekken! Zoals je kan zien, heb ik je raad strikt opgevolgd: “Wie 

SCHRIJFT, die BLIJFT”. Het vervolg van dit boek ga ik wel ergens anders schrijven…Philip, mijn ‘senior’ 

collega met ‘junior’ karakter…vriestemperaturen trotserend om nanuscuul werk tot laat in de nacht 

uit te voeren…de Zwitsers kunnen nog wat van je leren! Marc, ‘fysica-informatica-en ga zo maar 

verder top-specialist’, jouw gedrevenheid en jouw oog voor detail zou iedere wetenschapper moeten 

hebben, je mag er zeker fier op zijn! Walter, jij bent pas op het einde in de picture gekomen, maar 

het is alsof we elkaar al jaren kennen. Bedankt om de serieuze momenten af te lossen met een goeie 

mop of uw gelach, en voor de toffe gocart- en cafémomenten. Guy, bedankt om het laden en lossen 

(bijna) volledig te automatiseren…ik heb er veel tijd mee gewonnen! Hopelijk vind je er nog iets op 

om ook je verbouwingen thuis te automatiseren… Lies, als vreemde eend in de bijt, stond je wel best 

je mannetje, moet ik toegeven… Jij zal ongetwijfeld gekende zaken tegenkomen in deze 

thesis…bedankt voor alle hulp!  Memobead Technologies is ondertussen jammer genoeg opgedoekt, 

maar het doet goed om dit M-team zo nu en dan nog eens terug te zien…ik kijk al uit naar ons 

volgend cafébezoekje…. 

En na het Memobead-tijdperk kwam ik fulltime hier in Gent terecht. Heel kort heb ik eraan getwijfeld 

om te stoppen met dit project, maar gelukkig heb ik dat niet gedaan en ligt die thesis er nu. Bepaalde 

mensen hebben me bij deze beslissing enorm geholpen… bedankt hiervoor, zonder jullie had ik dit 

dankwoord nooit kunnen schrijven :-) 
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Ik heb de voorbije jaren 5 verschillende bureaus bemand op het 2e verdiep van het FFW (weliswaar 

sequentieel, niet parallel, zo ijverig ben ik nu ook weer niet), niet zo’n slecht gemiddelde, nietwaar? 

Sommige collega’s hebben een deel van dat bureautraject met mij gevolgd, anderen ben ik onderweg 

kwijtgeraakt, en met nog anderen ben ik uiteindelijk de laatste maanden van mijn doctoraat beland 

in onze make-over bureau, daar helemaal achteraan op de gang…Bij Bart en Farzaneh ben ik gestart. 

Bart, onze lab-manager van het jaar, jij verricht bergen werk in (en ver buiten) het labo….bedankt 

voor de vele bestellingen, verhuizingen,…, maar niet in het minst voor de toffe momenten! Farzaneh, 

I really enjoyed our collaboration during the past years. Although you have recently left your second 

home, you will always be in my mind. Good luck to you and your family! Vervolgens heb ik de 2 K’s in 

mijn bureau binnengehaald, 2 zeer serieuze top-wetenschappers (beiden op weg naar een top-

doctoraat), maar buiten de science nét ietsje minder serieus….Koen en Kevin, bedankt voor de 

geestige bureaumomenten, ik heb het trouwens ook enorm geapprecieerd dat jullie de 

‘huishoudelijke’ gesprekken tijdens de middagpauze af en toe eens in een andere richting hebben 

geduwd :-) Nathalie, jij hebt nog enkele jaren voor de boeg, maar met jouw inzet zal dat ongetwijfeld 

ook goed aflopen. Als er iemand is, die (bijna) altijd straalt, ben jij het wel. Bedankt daarvoor, en het 

ga je daar nog heel goed! 

Met andere collega’s heb ik niet de eer gehad om mijn bureau te kunnen delen. Ine, voor jou komt 

de eindstreep nu wel echt heel dichtbij, nog even doorzetten, en dan…verder genieten van de 

welverdiende rust! Veel geluk met je verdere plannen, thuis en in het labo! Broes, Chaobo & Bart, de 

jonge mannen van den overkant, die volgens mij allemaal het talent hebben om het nuttige aan het 

aangename te koppelen, veel succes nog met jullie ambtstermijn hier! Marie-Luce, jij bent nu echt 

wel vertrokken met je project, maak er iets moois van. Bedankt voor de leuke babbels tussendoor! 

En dan is er nog duracell-Dries, de vent van alle emoties…..hij zou naar het schijnt voor 3 doctoraten 

gaan, heb ik in de wandelgangen gehoord…Dries, ik weet niet hoe je het doet, maar het is fantastisch 

om je zo tegen 300 per uur bezig te zien! Bedankt om af en toe wat leven in het labo te brengen, 

maar ook voor de serieuzere momenten tussendoor. Kevin, jij bent nu echt vertrokken met je 

academische carrière, veel succes ermee. Katrien, Joanna & Zanna, de (euh) vrouwen van de 

overkant, veel geluk in al jullie ondernemingen. Hendrik, Oliwia en Geertrui, jullie zijn net gestart en 

moeten jullie weg nog wat vinden….hopelijk hebben jullie binnen 4 à 5 jaar hetzelfde gevoel als ik nu!  

Administratie, het is nooit mijn ding geweest. Gelukkig werd ik bijgestaan door twee fantastische 

krachten! Katharine en Bruno, jullie verdienen een speciale plaats…ik heb jullie de voorbije jaren de 

zwaarste beproevingen zien doorstaan. Zonder jullie zou het er heel wat chaotischer aan toegaan op 

het tweede en derde verdiep van het FFW. Bedankt voor het verzorgen van al mijn paparassen-werk!  

Ondertussen hebben al een aantal andere collega’s me het voorbeeld getoond en inmiddels andere 

oorden opgezocht: Tinneke, Niek, Bruno & Barbara, het ga jullie allemaal heel goed. Lies, de voorbije 

maanden hebben we je lach op het labo gemist. Hopelijk zet je er daar in Brussel ook af en toe de 

boel mee op stelten. Veel geluk met je (klein)mannen! Roos, met jouw gedrevenheid was je dé 

referentie van het labo. Ook jij bent niet ver gelopen. Ik wens je alle succes toe in je verdere 

onderzoek (maar dat zal zeker geen probleem zijn), en bovenal veel geluk met je gezin. Sofie, onze 

outsider, bedankt dat we jouw gang mochten inpalmen, hopelijk heb ik je niet al te veel gestoord 

met het heen en weer lopen naar de printer. Jouw relativeringsvermogen, je gelukkig zijn, en je 
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inspanningen voor je gezin, familie en vrienden…zijn fijn om te zien. Ook voor jou eindigt het doc-

verhaal bijna, heel veel succes nog de komende tijd. 

Enkele mensen hebben mijn doctoraat vanuit een andere hoek gevolgd… 

Mama & papa, jullie hebben de voorbije 30 jaar enorm veel betekend voor mij. Dit doctoraat had er 

zonder jullie nooit geweest. Ik vind het fantastisch om jullie trots te zien op hun zoon….wie had dat 

verwacht hé?! Maar weet dat ik minstens even trots op jullie ben. Bedankt voor de fantastische 

kindertijd en jeugdjaren die ik bij jullie heb mogen doorbrengen…en bedankt dat Stan daar nu ook 

eens van mag proeven! 

En dan zijn er nog die 2 grote zussen en die ene kleine zus…ook jullie bedankt voor de leuke tijd die 

we meegemaakt hebben. Door jullie werd ik meerdere malen in de watten gelegd, dankzij jullie 

mocht ik, als enige jongen, altijd veel meer, en mede dankzij jullie wederhelften mag ik mezelf al 

ettelijke malen nonkel noemen. Hoewel we ondertussen allemaal onze eigen weg gevonden hebben, 

is het fijn jullie nog zo vaak te kunnen zien. Emilyn, Sybelle, Xander, Hannelore, Kobe, Cato en 

Mattis: bedankt voor jullie speelse inbreng. Lybellia, ook jij moet nog een eindje afleggen, je peter 

zal er altijd voor je zijn… 

Verder zou ik ook heel graag mijn bebonne, bompa, oma en nonkel Luc willen bedanken voor de 

fantastische jaren, ook al kunnen ze dit niet meer meemaken. Opa, bedankt om mij het voorbeeld te 

geven! Ook al hebben we nu hetzelfde diploma, ik denk niet dat ik kan tippen aan je farmaceutische 

kennis. Tante, ook jij bedankt voor alle fijne herinneringen en de hechte vriendschap. Het is 

onmogelijk om hier iedereen een staande ovatie te geven, maar ter attentie van onze beide families, 

onze fantastische vriendenkring, en het op-en-top Bolas-team: vanaf nu mis ik geen enkel feestje, 

bijeenkomst, en training meer. Oei, misschien iets te voorbarig om dat zo te zeggen… 

 

Lien, jij weet als geen ander welke weg ik de voorbije 5 jaar doorwandeld hebt. Bedankt om mijn 

klaagzangen af en toe aan te horen, bedankt voor de klusjes thuis, en bedankt voor je geduld bij het 

uitblijven van de renovatie van de gang, de afwerkingen van de ramen, de ontbrekende spotjes – en 

de rest ga ik hier niet aan iedereen zijn neus hangen -, de voorbije maanden waren ook voor jou niet 

altijd even evident. En nog maar eens merk ik hoe graag ik je wel zie! Lieve Stan, hoewel je op dit 

moment totaal niet beseft wat je mama en papa zo allemaal uitspoken, wil ik ook jou enorm 

bedanken. Niet alleen omdat je me de tijd geeft dit dankwoord af te werken, nu je hier zo stil, 

dromend, naast me ligt, maar vooral omdat je aanwezigheid, je glimlach, je gebrabbel, je knijpjes, je 
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General Introduction 

Aim and Outline of 

this Thesis 

 

In answer to the ever-increasing need in biomolecular research and clinical diagnostics to 

carry out many assays simultaneously in one tube, several microcarrier-based multiplex technologies 

(suspension arrays) have arisen in the past few years. Simultaneous detection of different target 

molecules that are present in one sample, is possible by incubating the sample with a mixture of 

differently encoded microcarriers, each carrying another probe which can specifically interact with 

one of the targets. This means that each target will bind to a differently encoded microcarrier. When 

the targets are caught, several methods exist to label those ‘positive’ microcarriers. By means of this 

label, and by means of the code, it becomes possible to verify whether a target was caught at its 

surface, and which target was caught, respectively. Those multiplex measurements work 

quantitatively, because the more a certain target is present in the sample, the more targets will bind 

to their corresponding microcarrier. Five years ago, our research group proposed the use of spatial 

selective photobleaching, as an alternative method for the development of digitally encoded 

microcarriers, which were called ‘memobeads’. It was suggested that this method could overcome 

the multiplexing limitations of existing technologies. The present study aimed to optimize the surface 

characteristics of those memobeads, and to verify whether they could then be applied to multiplex 

protein tests and nucleic acid tests. Furthermore, it was investigated in which way these memobead 

assays (and in general the assays performed with every kind of suspension arrays) could be improved 

to make them more efficient and sensitive. 

Chapter 1 explains the pro’s and contra’s of multiplexing in molecular research and clinical 

diagnostics, and overviews the current available technologies thereto, with a detailed focus on 

suspension arrays. Because memobeads are basically composed of simple polystyrene (PS) 

microcarriers, a special emphasis is applied to overview the several methods that are used to allocate 

multiple functions to this kind of microcarriers. Besides the development of optimal encoding 

methods for generating suspension arrays, a major challenge of this field is the labeling of targets 

that are caught at the surface of the microcarriers. Because no effort has yet been done in literature 

to summarize the present methods, chapter 1 is closed with a short overview of labeling 
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technologies that were already applied and those that could be applied to suspension arrays. 

Because present commercial methods for the production of magnetic PS microcarriers impede their 

encoding by means of spatial selective photobleaching, we proposed a novel magnetic coating 

strategy that was based on the Layer-by-Layer (LbL) technology (Chapter 2), and proved that those 

LbL coated microcarriers could be efficiently encoded and decoded. Furthermore, their stability was 

investigated, and they were used for quantitative multiplex protein detection in complex samples, 

such as serum and plasma (Chapter 3), and in order to demonstrate their applicability to nucleic acid 

tests, we developed a proof-of-concept of SNP genotyping by combining this platform with the oligo 

ligation assay in Chapter 5. So far, little research has been done to improve the sensitivity of 

suspension arrays. One way to obtain a more sensitive platform, is by increasing the signal-to-noise 

ratio (S/N), which can be done by using signal amplification methods. To this end we explored in 

Chapter 4 whether the enzymatic Tyramide Signal Amplification method (TSA) could be applied to 

the memobead platform, and suggested its applicability to any other kind of suspension array. 

Another way is by improving the interaction between capture probes and targets. Recent progress in 

microfluidics technologies is expected to strongly support the development of miniaturized analytical 

devices, where suspension arrays (with bound probes) can come in close contact with the sample 

(with targets), which will shorten the analysis time of those (bio)analytical assays. In Chapter 6, we 

launched the debate on the ‘added value’ that could be expected by (bio)analysis with multiplex 

suspension arrays in microfluidic devices, and focus on the challenges that exist to integrate the 

present detection platforms for suspension arrays in microfluidic devices, and on promising micro-

technologies for down-scaling the detection units, in order to obtain compact miniaturized 

suspension arrays. We started some preliminary tests to support this idea by studying the kinetics of 

protein-interaction at the surface of memobeads that were integrated in a microchip, and compared 

those results with the conventional assay in a micro-centrifuge tube (Chapter 7). 
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ABSTRACT 

 

Already some decades, microparticles have played an important role as solid support in biological 

molecular research, drug discovery, and in vitro molecular diagnostics because of their important 

properties such as a high surface-to-volume, flexible handling, and easy fabrication. Advanced 

fabrication & coating technologies have meanwhile been developed that produce microparticles at 

high rate with a lot of functionalities, which has opened new applications, such as in multiplexing 

assays.  Multiplexing, which aims to measure several analytes at once, have been introduced in those 

fields because they lower the expenditures by reducing the amount of material and reagents needed, 

they offer an alternative for existing labor-intensive procedures, and they often provide results with 

higher quality. This chapter introduces the fabrication of highly multi-functional microparticles, and 

overviews the state-of-the-art of multiplexing methods and the role of microparticles therein. A 

special emphasis is made on the microparticle encoding methods, and on target labeling methods in 

microparticle-based multiplex assays. 
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CHAPTER 1 

INTRODUCTION  

 

 

 

MICROPARTICLES 

 

 

An old tool in molecular diagnostics. 

Microparticles (beads, microspheres) are micron-sized, mostly spherical objects that are 

produced from a wide variety of materials (such as glass, silica, gold, silver, latex, polystyrene, 

polyacrylamide, dextran, etc.), and are available in a wide range of sizes (from a few nanometers to 

hundreds of micrometers). Microparticles have been used for decades in molecular research and 

clinical diagnostics. More than fifty years ago, the first immunoassays based on microparticles were 

developed, starting with the latex agglutination test (LAT), aimed to detect antibodies and high-

molecular-weight antigens, which is still widely used due to its simplicity and cost-effectiveness 1 2. 

For the detection of antigens, antibody coated beads are used that are able to capture the antigens. 

Because multivalent antibodies are used, which recognize different epitopes on the antigens, 

antibodies that are bound to different microparticles can bind via another epitope the same antigen. 

In this way, aggregates are formed between multiple antigens and multiple antibody-attached 

microparticles, which are clearly visible to the eye without any sophisticated or expensive device 

(Figure 1). Since the discovery of the LAT, more and more microparticles were used in biomolecular 

tests, where they act as carriers or solid supports, such as in immunoassays and cell separation, in 

site-specific drug delivery systems, and in affinity separation of biological entities, or as (chemical, 

scattering, magnetic, or fluorescent) labels, such as in nuclear medicine for diagnostic imaging, in 

studying the phagocytic process, etc. 3,4. Microparticles became so important, because their benefits 

are several: the large binding capacity due to the high surface-to-volume ratio (inversely proportional 

to the diameter) of particle suspensions enables larger binding capacity compared to traditional test 

tubes or micro well-plates; the mobility of microparticles increases the speed of assays and makes 
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separation and/or enrichment possible 5; but the most important benefit is that they can have 

different surface properties for specific applications (see next paragraph).  

 

 

Figure 1: Principle of the Latex Agglutination Test, the first application of microparticles for immunoassays. Latex 
microparticles are coated with polyvalent antibodies (Ab) and mixed with a sample. If antigens of interest (Ag) are present in 
the sample, they will be captured by the antibodies, and as a result clumps of aggregated microparticles are formed. 

 

 

Depending on their nature, microparticles have good chemical, physical and light stability 

properties, and the capacity to absorb and retain fluorescent dyes. They often can be made magnetic 

and their surface can be easily chemically modified to carry functional groups, such as carboxylic 

acids, amines, hydroxyl groups and others. Those functional groups can be used for covalent binding 

of biomolecules (proteins, oligonucleotides, drugs, enzymes…). It is therefore not surprising that a 

whole set of different microparticles is available for research and diagnostic applications, which is 

reflected in the high number of microparticle manufacturers (Table 1). 

 

Table 1: List of notably microparticle manufacturers. 

Company Website Particle core 

business 

Seradyn products (Thermo Fisher Scientific Inc.) www.seradyn.com No 

Gerlinde Kisker GbR www.kisker-biotech.com No 

MagnaMedics GmbH www.magnamedics.com Yes 

Bangs Laboratories, Inc. www.bangslabs.com Yes 

Duke Scientific Corp. (Thermo Fisher Scientific Inc.) www.dukescientific.com Yes 

Spherotech, Inc. www.spherotech.com Yes 

http://www.seradyn.com/
http://www.kisker-biotech.com/
http://www.magnamedics.com/
http://www.bangslabs.com/
http://www.dukescientific.com/
http://www.spherotech.com/
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Polymer Laboratories (part of Varian, Inc.) www.polymerlabs.com No 

R&D Systems www.rndsystems.com No 

Dynal Biotech (part of Invitrogen, Inc.) www.invitrogen.com No 

Polysciences, Inc. www.polysciences.com No 

Bioclone, Inc. www.bioclon.com No 

Microparticles GmbH www.microparticles.de Yes 

PolyMicrospheres (part of Vasmo, Inc.) www.polymicrospheres.com Yes 

Promega, Corp. www.promega.com No 

Ademtech www.ademtech.com Yes 

Corpuscular Inc. www.microspheres-nanospheres.com Yes 

Chemicell GmbH www.chemicell.com Yes 

 

 

Polystyrene (PS) microparticles. 

 

Production of (PS) microparticles 

 

The particles most commonly used in biomolecular research and in medical applications are 

made of polystyrene (PS). This material playes a critical role in pharmaceutical and biomedical 

research since years (for instance as basic material of Petri dishes, test tubes,…), because it is an inert 

material with a low relative density (~ 1.05) that can be easily manufactured, modified and sterilized. 

PS microparticles are mainly produced in batch-mode, uniformly and at high amounts, by a so-called 

emulsion polymerization process with styrene as monomer, which occurs as follows (Figure 2) 6. The 

addition of an emulsifier, such as sodium dodecyl sulphate or kalium laurate, to a water solution of 

the monomer stabilizes the monomer droplets by the formation of micelles: the emulgator 

surrounds the droplets with the polar head oriented to the water, and the apolar tail to the inner of 

the droplet. In the next step a polymerization initiator such as benzoyl peroxide is added. Benzoyl 

peroxide produces benzoyl radicals at high temperatures. Those free radicals are very reactive and 

attack the double binding of styrene, to form another radical species, which on its turn can react with 

a styrene molecule, to begin chain propagation. The result is the polymerization of the styrene 

molecules in the droplet. Chain termination results from the collision of the growing chain species 

with another one, or with a primary free radical. In this way, very uniform particles of about 0.5-3 µm 

are formed. 

After removing the detergent, larger particles are made by seed emulsion polymerization, 

which is the stepwise growing of smaller core microparticles by polymerization of monostyrene 

http://www.polymerlabs.com/
http://www.rndsystems.com/
http://www.invitrogen.com/
http://www.polysciences.com/
http://www.bioclon.com/
http://www.microparticles.de/
http://www.polymicrospheres.com/
http://www.promega.com/
http://www.ademtech.com/
http://www.microspheres-nanospheres.com/
http://www.chemicell.com/
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molecules on their surface in the presence of the initiator, but without any additional detergent. 

Although this is the most conventional fabrication procedure, a lot of alternatives/variations exist 5; 

as an example, cross-linked polystyrene can be used instead of the linear state in order to make the 

microparticles more resistant to organic solvents. 

 

 

Figure 2: Conventional emulsion polymerization process of monostyrene in the production of PS microparticles. Micelles are 
formed by the addition of an emulsifier to a aqueous solution of monostyrene. Benzoyl peroxide produces benzoyl radicals at 
high temperatures that attack the double binding of monostyrene to form another radical species which on its turn react with 
a monostyrene molecule, to begin chain propagation. 

 

 

Functionalization of PS microparticles 

 

PS microparticles are often produced with a functionalized surface coating of active chemical 

groups in order to make them more hydrophilic (because the hydrophobicity of PS often favors 

microparticle clumping) or for covalent attachment of biomolecules. Several approaches can be used 

for the functionalization of microparticles, which can be categorized as ‘during particle synthesis’ and 

‘after particle synthesis’ methods (Table 2): 

- If potassium persulphate (K2S2O8) is used as initiator, the surface will consist of sulphate 

groups. In a similar way, other functionalized surfaces can be obtained by using other 

functionalized initiators. 

- Second, a functionalized surface can be obtained by using a functionalized monomer in 

the emulsion polymerization process. Co-polymerization with methyl acrylic acid (MAA) 

for instance results in a carboxylated surface. 

- Third, functionalization is also possible via the ‘swelling procedure’: PS microparticles of a 

few micrometer are suspended during 24 hours in an hydrophobic chlorodecane 

solution, which forces the particles to swell and pores are formed. Subsequently, 
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monostyrene and a functionalized monomer, such as MAA, are added at the same time, 

which enter the pores, but because MAA is hydrophilic, it will appear mostly at the outer 

side of the microparticles. In the final step, polymerization takes place at a temperature 

of 70 °C in the presence of the initiator benzoylperoxide 7. 

- Another way to obtain functionalized microparticles, is to modify the surface of the 

microparticles chemically by final coating with a functionalized monomer. A carboxylated 

surface can be obtained for instance with a coating of a carboxyl functionalized 

monomer via its alkyl chains, which consist of two to eight carbons in length depending 

on the type of the monomer used. The density of the functional groups can be adjusted 

by varying the amount of monomer used for coating. 

- Finally, the Layer-by-Layer modification can be used to coat charged functionalized 

polymers on the surface of oppositely charged microparticles. A detailed overview of this 

approach, which is based on electrostatic interactions, is given in Chapter 2. 

 

Table 2: Functionalization of polystyrene microparticles. 

During particle synthesis After particle synthesis 

Use of functionalized inititiator Coating with functionalized monomer 

Co-polymerization with functionalized monomer Swelling method 

 Layer-by-Layer coating 

 

 

 

Fluorescent PS microparticles 

 

Fluorescent PS microparticles can be applied as standards for flow cytometry and 

microscopy, as tracers in flow measurements, for the detection and analysis of biomolecules, etc. 5,8. 

They can be created by incorporation of fluorescent molecules or nanoparticles during or after the 

synthesis of the microparticles. The first one occurs by co-precipitation of the fluorophores and the 

monomers during the polymerization process. The latter one can be categorized in internal and 

external fluorescent encoding. Internal fluorescent encoding is usually accomplished by swelling the 

microparticles into a solution of (lipophylic) fluorophores in organic solvents (‘swelling procedure’, as 

previously described). This leads to the diffusion of the fluorophores into the inside of the 

microparticles. The microparticles are then transferred to a aqueous solution, where they shrink so 

that the fluorophores are entrapped. Fluorescent microparticles can also be created by adsorbing 

fluorescent semiconductor nanocrystals (quantum dots) into the porous structure of mesoporous 
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microparticles (internal encoding) 9 7,10, and on the surface of dense magnetic polystyrene 

microparticles (external encoding) 11. External fluorescent encoding of microparticles is also achieved 

by covalently linking fluorescent dyes to the functionalized surface of microparticles, or by layer-by-

layer (LbL) assembly of core-shell type microparticles with shell-embedded dyes or nanoparticles 12. 

 

 

Biomolecule coupling to PS microparticles 

 

Biomolecules can be bound via passive adsorption, via covalent coupling to functional groups 

or via intermediary coated binding proteins at the surface of PS microparticles. 

 

Passive adsorption 

Passive adsorption is based primarily on hydrophobic interactions (Van der Waals) between 

the polymer surface and hydrophobic parts of the ligands, or on electrostatic interactions between 

charged parts of the ligands and the charged surface of the particles (e.g. epoxy, hydroxyl, sulphate, 

or dimethylamino microparticles), or on both. Ligands, whose attachment is due in part to ionic 

interactions, are affected by the conditions of the environment in which they are suspended, and pH 

changes are more likely to result in desorption than if the attachment was made solely via 

hydrophobic interactions. Low molecular weight proteins (such as haptens) that might not adsorb 

well on their own, can be covalently bound to other proteins that adsorb well 13. Disadvantageous to 

passive adsorption is the random (and often incorrect) orientation of the ligand molecules resulting 

in a loss of their biological activity (e.g. antibodies bound via their variable and antigen-recognition 

part), which is not the case when ligands are coupled covalently. It is known that only ~10% of the 

antibodies might be preserved for capturing one antigen from solution, when they are passively 

adsorbed to the surface 14 . 

 

Covalent coupling 

Carboxyl polystyrene and amino polystyrene particles are very useful for covalent 

attachment, although hydroxyl- and epoxide microparticles are also possible (Figure 3). In fact, many 

strategies exist for covalent coupling, which is more precisely controllable and compatible with low 

ligand coating concentrations compared to passive adsorption. More ligand can be coupled, and the 

coated microparticles are more temperature stable 15. Passive adsorption can result in overloading 

and leaching of bound ligands, an issue in production of tests that would be influenced by leaching of 

minute quantities of probes from the particles over time (such as for multiplexed tests, see later) 16. 

In a lot of immunoassays, detergents (necessary to avoid non-specific binding) can also remove 
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adsorbed probes and finding the balance is rather difficult. Another advantage of covalent coupling is 

that it makes the use of spacer molecules possible between the microparticle and the ligand, which 

can increase sensitivity 17 and makes flexible attachment of different probes with one chemistry 

possible. The most conventional method for covalent coupling makes use of water soluble 

carbodiimide as a coupling agent to react carboxylgroups with amines to form stable amidebounds, 

as will be explained in a further chapter. 

 

 

 

Figure 3: Main microparticle surface coatings and coupling procedures for the covalent attachment of DNA (left) and protein 
probes (right). Note that some strategies can be used for both types (middle). 
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Intermediary coated biomolecules 

A third approach to couple biomolecules is by using microparticles that are pre-coated 

(covalently or via passive adsorption) with binding proteins, such as protein A or G, and streptavidin. 

Although the latter one is very user-friendly, it necessitates the biotinylation of the probes, which can 

affects the reactivity of the probes. Another drawback that we have observed with our study is the 

non-specific interaction of target DNA molecules with steptavidin-coated microspheres, making this 

approach less efficient for nucleic acid tests than covalent attachment. 

 

 

Magnetic PS microparticles 

 

Biological and biomedical applications of magnetic-particle technology have been employed 

widely for DNA, RNA, protein, and cell separations in genomic, proteomic, and immunological 

research. Many reviews have been published on the use of magnetic-particle technology in genomics 

and proteomics, drug discovery, biomedicine, and clinical applications 18. For the fabrication of 

magnetic PS microparticles, magnetically responsive material is added to a polystyrene matrix by 

either of two processes: either it is entrapped during the polystyrene polymerization process (or 

during the polymerization process on core particles, Figure 4), or it is attached to, or incorporated in 

the microparticles after polymerization, for instance by means of the ‘swelling method’ (as explained 

in a previous paragraph) 10. The particles are then usually overgrown in either case, in order to 

encapsulate the magnetic material and to provide functional groups on the surface. Instead of the 

addition of magnetic material to polystyrene microparticles, the opposite case in which a thin layer 

of polystyrene is coated onto a magnetic crystal is also possible, but then the microparticles are not 

spherical and not uniform in size. With both types of magnetic microparticles, it is important that the 

magnetic material is completely encapsulated in order to prevent leaching of the iron complexes, 

which can cause problems in biological applications. In our study, polystyrene microparticles are 

made magnetic by incorporation of magnetic nanoparticles on the surface of the particles by means 

of the LbL approach (Chapter 2) 19. An extra coating with polymer layers fully encapsulates the 

magnetic nanoparticles. 
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Figure 4: Electron microscopy of a transversal section of a magnetic microsphere with a diameter of 40 µm. The magnetic 
nanoparticles were entrapped during the polymerization of monostyrene on top of polystyrene core particles. As a result, the 
magnetic nanoparticles are only present at the outer layer of the microparticle. 

 

 

This short overview demonstrates that multiple functionalities (fluorescence, magnetism, 

functional groups) can be easily introduced in PS microparticles. Note that we have focused on PS 

microparticles, because they form the backbone of our work. Nonetheless, a lot of those strategies 

can be used on microparticles that are made from other materials as well.  Although the 

functionalities are listed separately in the previous paragraphs, several of them can be applied at 

once. As an example, in our study the Layer-by-Layer approach has been used to achieve 

multifunctional microparticles that are magnetic, as well as functionalized (Chapter 2). 

 

 

New functions of microparticles in molecular diagnostics. 

Due to the substantially amount of research and development in microparticle technology, 

new types of microparticle-based assays have emerged during the last decade, where the analysis of 

target molecules is performed on the surface of a single particle, often combined with advanced 

optical detection technologies: flow cytometric assays, fluorometric microvolume assays (FMAT), 

luminescent oxygen channeling assays (LOCI), and multi-analyte detection assays 20,21. The latter one 

forms the backbone of our study. Before we go into detail on this topic, we first introduce the 

multiplexing concept in biomolecular research and clinical diagnostics. 
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MULTIPLEXING 

 

Multiplexing tests. 

Healthcare providers and governments world-wide increasingly recognize the power of 

diagnostics to reduce the cost and enhance the efficiency of total health management: rapid, 

adequate, highly sensitive, targeted diagnostic tests are the key to successful and cost-effective 

modern treatment options and provide the means to monitor diseases at various stages, because the 

costs of treatment are often high. Current molecular diagnostics are primarily single-analyte tests 

designed around a single analyte associated with a disease state (also called ‘monoplex assays’). 

Those kind of test are usually performed in single test tubes or separate wells of a microtiterplate or 

on single test strips. 

The intent of multiplexing is to measure several analytes simultaneously 22. A multiplex 

diagnostic assay is at the simplest level a combination of independent assays. In this case, the 

addition or withdrawal of individual tests has no effect on the previous results. Those kind of tests 

increase efficiency (lower reagent consumption, faster analysis etc), which provides a significant cost 

benefit (see Figure 5 left side). 

 

 

Figure 5: Multiplexing of tests is used to increase the efficiency (in case of independent tests) or to achieve results with 
higher quality (dependent tests) or both. 
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At the more complex level, however, a multiplexed diagnostic assay combines variables to 

provide one single result (multivariable tests, see Figure 5 right side). Multivariable tests are 

enabling new advanced diagnostics: several variables are combined to provide a single disease-

specific result that no single variable could provide. Those kind of tests increase the diagnostic range 

of a test. Their power is the combination of variables that do not have sufficient diagnostic power on 

their own into an integrated result that does. The next examples support this assertion: 

- Pattern recognition methods are increasingly used (by means of cluster analysis): this is a 

computer-assisted technique to unravel complex and high-density data, in order to make 

associations between multiple analytes and diseases/symptoms. The use of cluster analysis, 

for instance, has yielded promising results in the understanding of the function of 

autoantibodies 23. 

- Cytokine biology provides the perfect example of the inadequacy of individual monoplex 

protein measurements 24,25. The complexity of cytokine networks, arise from their multi-

functionality: they show properties as redundancy (different cytokines share similar functions 

depending on the situation) and pleiotropy in their activity (a particular cytokine may have 

different effects in different circumstances and can act on a number of different cell types 

rather than on a single one); they often are produced in a cascade reaction in which one 

cytokine stimulates or inhibits its target cells to produce additional cytokines or to express 

receptors for other cytokines (receptor transmodulation by up- and down-regulation of several 

genes and their transcription factors). Cytokines are also characterized by considerable 

ambiguity, meaning that they tend to have multiple target cells and multiple actions. They can 

act synergistically (acting together and increasing the effect of one another) or antagonistically 

(opposite activities). Because the activity of an individual cytokine is not only determined by its 

abundance, but depends also on the effects of interacting cytokines, the measurement of a 

general cytokine profile has a more intrinsic value than the analysis of a single one 24. 

- A particular area in which the importance of multiplexing in biomarker research has been 

demonstrated is heart disease assessment. The cardiac risk has been evaluated in the past by 

the total cholesterol amount. Later on, other biomarkers were added (HDL, LDL, etc.) and it 

was seen that the more markers were taken into account, the more accurate the assessment 

of the cardiac risk was. 

- In genomics testing, it is known that single (monoplex) nucleic-acid measurements can 

lead to false conclusions, such as for example in studies of transcriptional regulation or 

heritability of complex traits 26. 
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Growth of multiplexing. 

 

 

Figure 6: The growing interest in multiplexing thinking. Cumulative number of manuscripts, yearly published in the Pubmed 
database, containing the keywords ‘multiplexing’ or ‘suspension array’ (as on September 2th, 2008). 

 

Multivariable tests enable the analysis of patterns of results. This is very important, because, 

as explained in the previous paragraph, many disease-related processes are multi-factorial, involving 

the abnormal expression of multiple genes or the activity of multiple proteins. This field became very 

important, since the sequencing of the human genome had produced an enormous amount of 

genomic data, in which diagnostic and prognostic biomarkers were, and still are, exponentially 

discovered. Biomarkers provide a deeper insight into the molecular biology of diseases and move 

healthcare to a more efficient level in which a disease is not only recognized by its phenotype, but 

also understood at the molecular level. Theranostics was born, which provides the potential for an 

individual patient to be diagnosed according to his genetic background profile and, based on the 

diagnosis, treated with therapeutics designed to work on specific molecular targets  27.  

 

A biomarker can be defined as a characteristic that is objectively measured and evaluated as an 

indicator of normal biologic or pathogenic processes or pharmacological responses to a therapeutic 

intervention.a 

 

                                                           

a
 FDA Office of Biostatistics, 2006 
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In the past, the detection of multiple biomarkers was done by performing multiple monoplex 

assays in parallel, but, besides that those tests were very expensive and required a lot of sample 

material (with the chance that there was not enough material to measure all analytes of interest), 

the inter-assay variation often made correct interpretation almost impossible. To this end, next-

generation molecular diagnostics were needed based on novel automated & miniaturized 

technologies, advanced detection technologies and ultra-sensitive quantitative multiplexing 

platforms to perform the correct parallel screening of a large number of biomarkers simultaneously 

28.  Because such biomarkers provide direct information about genotypic and/or phenotypic changes 

associated with specific diseases or responses to treatment, multiplexed biomarker analysis has also 

become an important tool in preclinical drug development, and patient monitoring during clinical 

trials. Biomarker assays are indeed increasingly used throughout the process of disease 

management. A well-developed example is the use of HIV tests, including probe-based nucleic acid 

tests (NATs) and immunotests for viral genotyping, in the management of AIDS patients. The growth 

in multiplex thinking in biomolecular research is reflected in the increasing amount of published 

papers regarding multiplexing (Figure 6), and its importance in molecular diagnostics is proven by its 

compound annual growth rate of 26% b. To this end it has become the most dynamic market 

segment in medical diagnostics.  

 

 

Impact of miniaturization on multiplexing. 

Multiplexing is a term derived from the telecommunication and computer sciences, where it 

refers to a process where multiple analog message signals or digitally data streams are combined 

into one signal over a shared medium. The aim is to share an expensive resource and to avoid using 

too many wires. For example, in telecommunications, several phone calls may be transferred using 

only one wire. In biological molecular research, drug discovery, and in vitro molecular diagnostics, 

multiplexed assays have been introduced by the same driving forces: they lower the expenditures by 

reducing the amount of material and reagents needed, and they offer an alternative for existing 

labor-intensive procedures. Reduced sample volume is of great importance for all those applications 

where only minimal amounts of samples are available (e.g. analysis of multiple tumor markers from a 

minimum amount of biopsy material, analysis of minimum amount of blood from newborns, prenatal 

diagnosis…). Besides those aspects, however, the key to the success of multiplexing in those fields 

was miniaturization. Miniaturization of analytical techniques has become a dominant trend in life 

                                                           

b
 From market report ‘Multiplexed Diagnostics 2008’ (Select Biosciences). 
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sciences, primarily driven by the need to minimize costs by reducing the consumption of expensive 

reagents and by increasing throughput through automation 29. 

 

 

Figure 7: Evolution of micro-well plate technology. Correlation between sample volume and plate density (adapted from 30). 
As the density of the wells increases, more and more robotics are needed for the liquid handling. 

 

The trend of miniaturization is clearly demonstrated by the evolution that the micro-well 

plate underwent in high-throughput screening (HTS) 30; this established field within the 

pharmaceutical industry has undergone a progression from 96-well plates through to 1536-well 

plates thanks to many technological advances in micro-well plate fabrication methods, liquid 

handling robotics and detection technology. Interestingly, the size of the plate didn’t change 

(meaning that the sample density increased), but the volume of the wells significantly decreased 31, 

and as a result, reagent costs are typically 100 times lower and assay volumes have dropped to a few 

micro-liters (Figure 7) 32. The development of micro-plate technology is very innovative and dynamic, 

and many companies are involved: even extremely low-volume 3456-well plates have meanwhile 

been reported 33. This evolution made it possible that more tests can be handled in the same amount 

of time and space, while using less reagents per test. But, although the throughput is significantly 

increased, leading corporations are still only capable of screening some 100 000 compounds per day. 

Thereby, micro-well plates have their limitations too: first of all, the miniaturization process of those 

plates in the way it occurred during the past is limited by the physical constraints of delivering small 

volumes to wells. Fluid handling becomes extremely difficult at smaller scales; advanced robotics are 
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already needed to deliver micro-liter amounts to high-density micro-well plates. Secondly, not all 

assays can be miniaturized; some assays will suffer degradation in signal-to-noise ratio upon 

miniaturization. Thirdly, advanced robotic systems that handle those plates require a lot of space 33. 

Fourthly, evaporation becomes a significant issue in open low-volume wells, which can cause more 

sample-to-sample variability. Another drawback is “wicking” and bridging of liquid between wells due 

to capillary action 34. To this end, emerging methods in the field of multiplexing, that have the 

potential to dramatically increase the amount of data, were developed without the restriction of 

micro-well plates. 

 

 

Multiplexing summary 

Previous paragraphs have demonstrated the importance of multiplexing in biomolecular 

research and diagnostics, due to the benefits that have been arisen with the introduction of this 

technology. Table 3 summarizes the advantages of a multiplex analysis. However, before a multiplex 

test is accepted, a lot of challenges have to be overcome during its development, from which an 

overview is shown in Table 4. 

 

Table 3: Advantages of multiplexing 

Parameters Reason 

Internal quality control The nature of multiplexing methods supports the use of internal quality control checks 

Patient benefit Less sample needed 

Adequacy Cytokines are the perfect example of inadequacy of monoplex measurements 

Single nucleic-acid measurements can lead to spurious conclusions 
26

 

Efficiency Much less reagent consumption 

No need to aliquot samples 

Much less hands-on time, e.g. for a 10-plex tenfold less 

Flexibility Technology can be easily customized to user’s specific bioassay 

Versatility Versatility increases dramatically, as bioassays (including, nucleic acids, antigen-antibody 
binding, enzymes, and receptor-ligand) can be assayed simultaneously on one instrument 
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Table 4: Disadvantages of multiplexing 

Parameters Reason 

Cross-reactivity / Non-

specificity 

The more targets that have to be multiplexed, the higher the risk for cross-reactivity. 

Cross-reactivity is one of the most important issues that has to be circumvent when 

developing a multiplexed protein detection assay 

One condition for all targets All targets have to react optimally in the same conditions (pH, protein content, surfactant 

content, ionic strength,...) 

Sensitivity (*) Sometimes, monoplex assays are more sensitive 

Sometimes there is no good multiplex alternative (e.g. sensitive gene-expression via 

monoplex qPCR compared to less sensitive gene-expression via multiplex microarrays) 

Failure If a multiplex assay fails (e.g. a ten-plex), the whole assay has to be repeated. When one 

monoplex assay out of ten fails, only that one has to be repeated 

 

 

(*) Important remark! Strictly speaking, the term ‘sensitivity of an assay’ is defined as the 

capability of the assay to detect differences in concentration of the analyte of interest. As shown in 

Figure 8A, assay A is more sensitive than assay B, because a certain increase in concentration results 

in a higher increase in response in case of assay A, compared to assay B. In this thesis, however, the 

term ‘sensitivity of an assay’ refers to the lower limit of detection (LOD) of this assay. This is shown 

in Figure 8B. Assay A is more sensitive than assay B, because assay A detects lower concentrations of 

the analyte of interest than assay B (although the two standard curves have the same slope). We 

have used the latter definition, because it is commonly used in this way in the literature. 

 

 
Figure 8: The term ‘sensitivity’ as it should be theoretically used (A, the capability of an assay to detect differences in 
concentrations), and as it is used in this thesis (B, the capability of an assay to detect lower concentrations). 
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MULTIPLEXING TECHNOLOGIES 

 

Several multiplexing technologies have been developed during the last twenty years for 

genomics and proteomics applications. This section categorizes the most important technologies: the 

principal multiplexing methods for nucleic acid detection are multiplex PCR and DNA-array, and for 

protein detection, protein-arrays and mass spectrometry, although some other platforms exists (such 

as two-dimensional gel electrophoresis used for protein identification 35). Note that there is not 

always a clear separation between those categories, because some of those technologies are often 

combined in order to increase the level of multiplexing, or the sensitivity of the assays. 

 

 

Multiplex qPCR. 

PCR (polymerase chain reaction) is an enzymatic target amplification method in which an 

undetectable single copy or a few copies of a piece of DNA are exponentially amplified into millions 

or more copies that are detectable via post-PCR processing (Figure 9). Real-time quantitative PCR 

(qPCR), in which the amplification process is followed by means of fluorescent dyes or probes and 

does not need post-PCR processing, has been established in many diagnostic situations (viral titer 

estimations, GMOs detection) and procedures as a quick and extremely sensitive method. Real-time 

qPCR makes use of one primer set (unique to a single sequence of DNA in a mixture of total DNA) in 

order to amplify that sequence. 
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Figure 9: Schematic overview of the PCR reaction. The reaction consist of a series of 20 to 40 repeated cycles. Each cycle 
consist of 2-3 discrete temperature steps. First step: denaturation at 94-98°C; second step: annealing of the primers at 50-65 
°C; third step: extension/elongation around 70-75°C. The DNA fragment is exponentially amplified, resulting in 2n copies 
after n cycles. Amplified DNA fragments can be detected using for instance post-PCR gel electrophoresis or in real-time 
using fluorescent dyes or probes during the PCR reaction.   

 

 

Multiplex PCR is a variant of PCR which enables simultaneous amplification of many targets 

of interest in one reaction by using more than one pair of primers 36,37. Multiplex PCR often requires 

an extra post-PCR step for fragment analysis. One technique uses multiple, unique primer sets within 

a single PCR mixture to produce amplicons of varying sizes specific to the different DNA sequences of 

interest. Those PCR amplicons are distinguished by fractionation by size and visualized and quantified 

after separation by gel electrophoresis (e.g. using ethidiumbromide or fluorescent dyes) 36. 

Drawbacks of this (labor-intensive) procedure is that annealing temperatures for each of the primer 

sets must be optimized to work correctly within a single reaction, and amplicon sizes, i.e., their base 

pair length, should be different enough to form distinct bands when visualized by gel electrophoresis. 

Several other methods have been introduced to perform size fractionation, such as multiplex 

amplifiable probe hybridization (MAPH) 38, Quantitative multiplex PCR of Short fluorescent 
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Fragments (QMPSF) 39, multiplex ligation-dependent probe amplification (MLPA) 40, and non-

fluorescent multiplex PCR coupled to high performance liquid chromatography (NFMP-HPLC) 41, from 

which some employ capillary electrophoresis (usually with fluorescence detection) 38-40,42, others 

high-performance liquid chromatography (HPLC, fluorescence or non-fluorescence detection) 41. Tens 

of targets can be multiplexed with those methods. A theoretical higher degree of multiplexing can be 

achieved by a recently described strategy which detects PCR amplicons by hybridization on 

microarrays: the advantage is that the fragments don’t have to be differently sized, because 

discrimination is based on their sequence 43. Other methods analyze multiplex PCR amplicons 

carefully by sequencing or by MALDI-TOF Mass Spectrometry 44. A more accurate quantitative 

estimation of products can be obtained by the use of different fluorescently labeled primers for each 

unique sequence (no post-PCR fragment analysis) 45. Apart from issues of cost-efficiency, the major 

problem of this so-called ‘color multiplexing’ is the limited multiplexing capacity, because the current 

availability of only four to five channels for the simultaneous detection of different fluorophores. This 

degree of multiplexing can be somewhat enhanced by combining color multiplexing with Tm (melting 

temperature) multiplexing, which has been demonstrated by Wittwer et al. 46. Although it is probably 

the most sensitive multiplexing technique for genomics applications, multiplex PCR assays are 

unfortunately tedious and time-consuming to establish, requiring lengthy optimization procedures. 

Obviously, each additional target also adds another level of complexity to the assay when it comes to 

primer dimerization and mispriming 47. 

 

 

Mass spectrometry. 

 ‘Shotgun’ mass spectrometry is the technology of choice for rapid, and cost-effective 

proteomic surveys today, and is based on the conversion of intact proteins into fragments of 

different peptides, which is then followed by their volatilization, and by the measurement of their 

mass-to-charge ratio (m/z ratio) and their intensity. Finally, off-line protein identification occurs by 

comparison with a database of peptides 48. Mass spectrometry is ideal for initial proteomic surveys - 

it is semi-quantitative and therefore only used for identification of gross differences in expression 

(≥fivefold!) -, but has some limitations for quantitative protein measurements: 1) The usefulness of 

the technology for measuring low abundant or ‘rare’ proteins, such as cytokines, is limited because 

its analytical sensitivity for multiplexed measurement is much lower than ELISA. 2) Although it is 

applicable to many sample types, extensive sample preparation is often necessary. 3) Furthermore, 

labile proteins can degrade during sample preparation or storage greatly impairs protein 

identification. 4) Databases often contain false positives, due to incomplete or inaccurate database 
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entries, imprecision in m/z ratio measurement, or non-specific peptide cleavage. 5) Due to some 

technical and experimental variation, mass spectrometry is limited in use to experiments in which all 

the samples are run in a single batch. Significant improvement in sensitivity and variation, however, 

is obtained by using ‘multiplexed reaction monitoring’. This approach has the potential to extend the 

applicability of mass spectrometry to multiplexed protein measurement in human samples 49. 

Although mass spectrometry is mainly used for protein research, genomics applications were also 

described. It has been used in several SNP detection methods (hybridization, invasive cleavage, and 

single base extension), often in combination with multiplex PCR 50,51. In order to overcome current 

multiplexing limitations of multiplex PCR for instance, recently, MassTag PCR has been proposed, 

which uses primers that are conjugated by a photocleavable linker to commercial available molecular 

tags of different molecular weight (a library of 64 distinct tags has been established). After separating 

amplified products from unincorporated primers, tags are released by UV irradiation and analysed by 

mass spectrometry. The identity of the amplified sequence is determined by its tag 52.  This approach 

has been commercialized as the iPlex genotyping technology from Sequenom, Inc 

(www.sequenom.com). 

 

 

Planar (micro)arrays 

 

Figure 10: Multiplexing by means of A/ planar microarrays with microspots of probes, and B/ encoded microparticles. For a 
critical comparison between the two technologies, we refer to Table 6. 

 

Multiplexed nucleic acid solution reactions, such as multiplex PCR, necessitates separation of 

the analytes for their identification. Although they benefit from optimal reaction kinetics (due to the 

free mobility of the molecules), their degree of multiplexing is rather low. In order to monitor the 

expression of many genes at once, DNA microarrays were designed, which consist of a fixed array of 

thousands of microscopic spots of DNA oligonucleotides, often called features or probes, each 

http://www.sequenom.com/
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containing picomoles of a specific DNA sequence 53,54. The identity of the probe is determined by its 

location on the chip (Figure 10A). DNA microarray assays are based on the principle of the specific 

recognition of nucleic acids for complementary sequences. The solid surface can be glass, plastic or a 

silicon chip. Multiple technologies exist for the fabrication of microarrays, including (non contact ink-

jet) printing or spotting, photolithography using pre-made masks, and photolithography using 

dynamic micromirror devices 55. In spotted microarrays, such as the non contact ink-jet spotting 

developed by Agilent, the probes are oligonucleotides, cDNA or small fragments of PCR products that 

correspond to mRNAs. The probes are synthesized prior to deposition on the array surface and are 

then "spotted" onto the glass. Although oligonucleotide probes are often used in "spotted" 

microarrays, they are mainly produced by synthesizing short oligonucleotide sequences directly onto 

the array surface using photolithography instead of depositing premade intact sequences: light and 

light-sensitive masking agents are used to create a sequence one nucleotide at a time across the 

entire array. Each applicable probe is selectively "unmasked" prior to bathing the array in a solution 

of a single nucleotide, then a masking reaction takes place and the next set of probes are unmasked 

in preparation for a different nucleotide exposure. After many repetitions, the sequences of every 

probe become fully constructed. Photolithography can be done using pre-made masks, as done by 

Affymetrix (GeneChips), or using dynamic micromirrors, as done by Roche (NimleGen technology). 

DNA microarrays are now available to detect DNA by comparative genomic hybridization, to probe 

the entire genome at the level of RNA expression by gene expression profiling, and to probe large 

segments of the genome for mutation analysis by single nucleotide polymorphism analysis 

(genotyping). In contrast to multiplex PCR, microarrays have a much higher multiplexing power, but 

suffer from lower sensitivity. To this end the two technologies are often combined: pre-screening by 

means of microarrays to detect important features, followed by sensitive PCR analysis of those 

features. 

 

Table 5: Short list of notably DNA and/or protein microarray manufacturers. 

Company Website DNA/protein array 

Affymetrix www.affymetrix.com Yes/ No 

ArrayIt www.arrayit.com Yes/No 

Agilent technologies www.agilent.com Yes/ No 

Asper Biotech www.asperbio.com Yes/ No 

Biacore (GE Healthcare) www.biacore.com Yes/Yes 

CombiMatrix www.combimatrix.com Yes/ Yes 

Eppendorf www.eppendorf-biochip.com Yes/ No 

Febit www.geniom.com Yes/ No 

http://www.affymetrix.com/
http://www.arrayit.com/
http://www.agilent.com/
http://www.asperbio.com/
http://www.biacore.com/
http://www.combimatrix.com/
http://www.eppendorf-biochip.com/
http://www.geniom.com/
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Nimblegen Systems (Roche) www.nimblegen.com Yes/ No 

Pamgene www.pamgene.com Yes/Yes 

XCeed Molecular (former MetriGenix) www.xceedmolecular.com Yes/No 

Zyomyx www.zyomyx.com No/Yes 

 

The goal of DNA microarrays was initially to offer an answer on the limitation of multiplexing 

genomic tools such as Southern, Northern or Western blots, but its basic concepts have been applied 

during the last decade in proteomics for the determination and quantification of a large number of 

proteins 56-59. Meanwhile,  some protein microarray platforms are already commercially available 

(Table 5). The development of protein arrays, however, has been slower than DNA arrays due to the 

complexity of protein immobilization and interactions as compared to the principles of DNA 

hybridization 60-62. Protein microarrays can be considered as the next-generation high-throughput 

successor of the conventional protein array systems with a low multiplexing level, which include 

multiplex microspots on polystyrene microplates and nitrocellulose membranes, and linear 

immunoblot systems on nitrocellulose membranes (LIA tests). Multiplex microspot assays are based 

on the technique originally devised by Ekins 63. Genometrix pioneered the printing of dot-arrays in 

96-well plate format 64. This technology is commercially available as the SearchLight platform from 

Pierce Biotechnology Inc. (www.piercenet.com). 

Microarray technology, and in general every planar array platform, struggles with at least 

two important shortcomings, including: 1) the interaction process (hybridization or immunoaffinity) 

between the probes and targets requires very long incubation times, because of slow reaction 

kinetics due to the lay-out of the assay (one of the probes is attached to a fixed surface) 65,66. In 

addition molecules in low concentration have to travel large distances in order to find their 

appropriate probes and it is known that probes can be released during these prolonged incubation 

by solution-dependent cleavage 67. This issue can be partially solved by the use of slides coated with 

a three-dimensional gel in which the probe/target interaction kinetics are more similar to solution-

phase 68, or by applying sample fluid flows instead of a fixed sample on top of the array, which is 

achieved by the use of active mixing chambers (69, www.biomicro.com), and the use of flow trough 

devices (70, www.pamgene.com) and microchannels (71,72, www.xceedmolecular.com), but the 

kinetics are still far from solution kinetics. 2) microarrays need a large amount of sample material, 

because the array has to be completely covered with sample to interact with all probes. 

 

 

http://www.nimblegen.com/
http://www.pamgene.com/
http://www.xceedmolecular.com/
http://www.zyomyx.com/
http://www.piercenet.com/
http://www.biomicro.com/
http://www.pamgene.com/
http://www.xceedmolecular.com/
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Suspension arrays 

Microparticles can also be used as solid-supports in multiplexed analysis to detect several 

target molecules at once. By uniquely encoding microcarriers for each analyte, the analytes can be 

tracked by decoding and identifying individual microparticles (Figure 10B). 

In combinatorial chemistry, ‘active’ encoding is often used: in a split-and-mix synthesis, 

individual microparticles take independent pathways through a series of reaction vessels, and by 

actively encoding the microparticles during each step of the reaction, it is possible to record the 

reaction history and thereby identifying the products attached to them . Active encoding is possible 

by the covalent attachment of detectable chemical tags (such as DNA oligonucleotides, peptides, 

secondary amines, haloaromatics molecules) to the support microparticles during each step of the 

split-and-mix synthesis (chemical encoding) 73. DNA is for instance often used to encode peptide 

libraries, because the chemistries for synthesizing both are similar . The microparticles are often 

called ‘biobarcodes’, because they are encoded by biomolecules, that need to be released and 

analyzed at the moment of decoding: encoding DNA molecules are detected on a planar array or by 

sequencing after PCR amplification. Although those biobarcodes can be produced in high amounts 

and high multiplexing levels can be achieved, the decoding methods are time-consuming, expensive, 

and complicated compared with the decoding of optically encoded microparticles. Another drawback 

is the occurrence of falsely encoded particles, because the synthesizing methods produce sometimes 

artifacts. The group of Trau demonstrated another way for ‘actively’ encoding combinatorial 

libraries: during each step of the split-and-mix synthesis, a specific amount of fluorescent 

nanospheres (which code for that specific step) was adsorbed via colloidal forces onto the 100 µm 

sized support microspheres on which the compounds are synthesized. This type of encoding was 

called ‘colloidal encoding’ 74-76. They demonstrated this encoding principle by adsorbing different 

combinations of 20 differently dyed nanospheres. 

‘Active’ encoding, which can only be used in the field of combinatorial chemistry, is a totally 

different approach for the encoding of microparticles than ‘fixed’ encoding which is applied in 

diagnostics. Although some well-written reviews were published on this matter 77-80, the next section 

gives a brief overview 81,82. Instead of summarizing them by type of encoding (optical, chemical, 

graphical or digital, electronic, and physical encoding), we have tried to categorize suspension arrays 

by the technologies that are used to decode them. In general three decoding platforms are used: 

flow (cyto)meter platforms, optical reading platforms and fibre optic platforms. 
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Flow (cyto)meter platform 

 

Most of the suspension arrays described in literature are composed of polymer 

microparticles that are internally doped with one or more fluorophores or chromophores. Those 

dyes become entrapped by the ‘swelling method’ as described previously. Microspheres with unique 

spectral properties are obtained by trapping dyes with different emission spectra at different 

concentrations 83-86. Optical encoding, as this is called, is the basis for different commercially 

available platforms. Such optically encoded particles are analysed by flow (cyto)meters 87. Particle 

analysis rates as high as 10 000 s-1 are possible. The flow (cyto)meter measures both the spectrum 

and/or the intensity of the colors/fluorophores which make up the code of a particle as well as a 

(spectrally different) fluorescence signal at the surface of a particle (in case of a positive reaction). 

Flow (cyto)meters identify individual particles at high speed 88,89. At this moment the xMAP® 

technology (Luminex Corp) is being used in a wide range of applications, as in the screening for and 

detection of single nucleotide polymorphisms, human cytokines, viruses, infectious diseases, cystic 

fibrosis, allergens, and kinases 82,90 87,91-97 . By encoding 5.6 µm polystyrene microparticles with two 

different dyes at ten different concentrations, they compose a set of 100 unique microparticles 98 

(Figure 11A). Those particles are decoded by a flexible analyzer based on the principles of flow 

cytometry. Although this technology has been used for a lot of applications, other applications need 

a higher level of throughput, thus a higher amount of microparticles that can be distinguished. In 

theory, more codes can be generated by incorporating more than two dyes and/or by using more 

intensity levels (the number of codes = Nm-1, where N is the number of intensity levels and m is the 

number of dyes), but remaining problems include finding enough encoding elements and the logistics 

of manufacturing so many different encoded microparticles in large amounts 82. In practice, this 

number is indeed much lower by a lot of parameters: the dyes have to be compatible with the 

swelling process, meaning that not every dye can be used, and the doping process is not always 

perfectly reproducible, because small differences in bead diameter or composition alter the dyeing 

efficiency, and it becomes even more difficult with a higher number of dyes and concentrations 99. 

Some of these issues could be circumvented by the introduction of new manufacturing methods, for 

instance using flow focusing methods, as recently described by the group of Flores-Mosquera 100. 

Note, however, that the costs of the decoding instrument (which is in fact a flow cytometer that has 

been adapted to be compatible with the dyes), also increases with the number of dyes that is used, 

making this decoding method probably too expensive for a high-throughput level. A similar encoding 

strategy has been developed and distributed by Becton Dickinson (BD) Biosciences, but in this case 

one dye is incorporated at different concentrations 101. Although the level of multiplexing that can be 

achieved is almost 10 times lower than that of the xMAP® technology, this technology has also been 
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used in many applications, because the customer doesn’t need an extra bead analyzer for the 

decoding the microparticles, but can use conventional flow cytomers that are equipped with a 

488nm laser and 576 and 670 emission filters. Optical encoding can also be achieved by 

incorporation of semiconductor quantum dots (QD) into or on the surface of microspheres 102. This 

can be done during synthesis, or after synthesis by means of the ‘swelling method’, or by adsorption. 

QDs have a lot of advantages compared to organic dyes: they can be excited with one excitation 

wavelength and have narrow emission peaks of about 30 nm with almost no overlap, are brighter, 

and more resistant against photobleaching. The result is that a less expensive flow cytometer 

instrument can be used with only one excitation light source 103,104. This technology has been 

commercialized by Quanum Dot Corp (meanwhile acquired by Invitrogen). Organic dyes, fluorescent 

nanoparticles and/or QDs can also be coated in concentric shells around a core microparticle by 

means of the Layer-by-Layer technology. This has been shown by the group of Caruso 12. Nanoplex 

Technologies uses a totally different approach to spectrometric encode microparticles. SERS-

Nanotags are silica-encapsulated gold nanoparticles, with a defined Raman-active optical reporter 

molecule attached, that deliver the superior detection performance of Surface-Enhanced Raman 

Spectroscopy 105 . 

 

By using more advanced flow (cyto)meters, not only fluorescence but also the size and the 

refractive index can be detected.  106 Note that particles may also be identified by use of their 

physical characteristics, such as their size and refractive index (“physical encoding”). DiaSorin 

manufactured the Copalis system, in which particles are encoded by their size and detected in an 

advanced flow cytometer. 3D Molecular Sciences manufacturers FloCodes, which are particles with 

different shapes for multiplexing goals. With physical encoding, however, only a low level of 

multiplexing can be achieved. 

 

Sometimes several encoding methods are used at once in a single particle in order to 

increase the level of multiplexing 107. As an example, the group of Klimant recently incorporated four 

encoding features in microparticles: bead size, luminescence brightness of beads, luminescence 

lifetime, and dual lifetime referencing, and could create bead libraries with an estimated number of 

840 different classes 108,109. 
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Figure 11: A The Luminex xMAP system consist of a set of 100 microspheres, each microsphere having a unique ratio of two 
fluorescent dyes. The microspheres are identified individually in a rapidly flowing fluid stream that passes by two laser 
beams: one reveals the colour code of the bead, and one quantifies the biomolecular reaction by measuring the fluorescence 
intensity of the reporter molecule. B Electronic radio frequency microchips from PharmaSeq coated with oligonucleotide 
probes. Each microtransponder is an integrated circuit composed of photocells, memory, clock and antenna. The 
microtransponder stores information identifying the sequence of an attached oligonucleotide probe in its electronic memory. 
Detection occurs with a high-speed flow fluorometer modified to detect radio frequency. (a is reproduced with permission 
from http://www.luminexcorp.com, and b with permission from http://www.pharmaseq.com) 

 

 

A totally different approach is the use of light-powered 100 µm x 250 µm x 250 µm 

microtransponders, called electronic radio frequency microchips, which comprises an integrated 

circuit connected to a photovoltaic cell and an antenna (Figure 11B). This type of encoding is called 

“electric encoding”. A serial number is stored electronically and allows identifying the probe which is 

attached to the surface of a transponder. Such electronically encoded microcarriers are also analysed 

by high-speed flow (cyto)meters modified to detect radio frequencies 110. Because the memory 

capacity of such transpondors is very high, other information then ‘barcodes’ can be stored: to this 

end those microparticles have been used as anti-counterfeiting agents too. 

http://www.pharmaseq.com/
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A flow (cyto)meter can rapidly process optically/ physically/ electronically encoded particles 

making it a popular reading platform for multiplexing. However, it has also several disadvantages, 

including (i) the lack of portability as flow meters are bulky, (ii) the cost (especially when multiple 

lasers and detectors are needed) and (iii) the potential interference between the fluorescence from 

the fluorophores which make up the code and the fluorescence generated at the surface of the 

particles in case of a positive reaction. 

 

 

(Fluorescence) Microscope platform. 

 

Flow cytometry based platforms are often based on optical encoding methods, which rely on 

the detection of one or more optical signals and their translation in a ‘code’. Because the encoding 

(doping) process always causes some errors, microparticles that are fabricated in the same batch, 

always show some variation in fluorescence intensity of one or more dyes, and therefore variation 

too in the ratio between the dyes; hence there is uncertainty on the code. When analyzing those 

particles by flow cytometry, particles with the same code appear as a cloud of dots, not as a single 

dot. In order to avoid overlap between two clouds (and thus misclassification), the number of 

intensity levels and dyes is limited. Therefore, optical encoding is limited to low multiplexing level. 

An alternative approach to analyze particles is the use of a (fluorescence) microscope, 

especially when the particles are graphically encoded. Graphically encoded particles rely on the 

patterning of optical elements in or at the surface of the microcarriers. Because the code is ‘digital’, 

each particle is absolutely distinguishable from another. This means that those particles are 

applicable to medium and high level multiplexing levels, as far as the fabrication methods admit to 

generate high amount of encoded particles. 
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Figure 12: A/ Confocal fluorescent microscopy image of particles, internally barcoded by means of spatial selective 
photobleaching. The particles are 40 µm in diameter. B/ SEM image of 100 µm particles, encoded by fabrication of a 
nanostructured pattern on the surface; the pattern is read by detecting the spatial distribution of laser light diffracted by the 
tag. C/ The UltraPlex platform; a mixture of differently encoded aluminum rods, bar-coded by a dry-etching technique. The 
particles are 100 μm in length. D/ VeraCode, a cylindrical glass particle measuring 240 microns in length by 28 microns in 
diameter, inscribed with a unique digital holographic code. (B is reproduced with permission from ref [64], and C with 
permission from http://www.illumina.com) 

 

 

As Figure 12 shows, different graphically encoded carriers have been reported 111-115, 116,117 

117-120. In contrast to optically encoded microcarriers, graphically encoded ones are often ten to some 

hundreds of microns in diameter or length, because the size needs to fit the ‘digital’ code (see Figure 

12). Most of them do not use fluorescent dyes for the encoding. Hence, a broader range of 

fluorescence wavelengths remains available for target labeling. Graphically encoded particles often 

require a well defined orientation to become accurately decoded while some types also require 

decoding at high resolution. This makes optical reading platforms, which decode the microcarriers in 

rest, more suitable than flow (cyto)meters in which the carriers flow through the detection area. 121 

Microbarcodes, produced by Corning, are made by fusing glass blocks doped with rare-earth ions in a 

predetermined order and drawing out the product into a ribbon fiber with a cross-section of 20x100 

µm which is thereafter cut into micrometer sized sections. An advantage is that all colors can be 

excited with only one wavelength (the number of codes corresponds to Ns/2 where N is the number 

of colors and s is the number of glass blocks). Nanoplex technologies (meanwhile acquired by 

Oxonica) has developed striped metal nanobarcodes particles (NBCs) of about 500 nm by sequential 

electrochemical deposition of gold and silver in mesoporous aluminium templates 122. The power of 

this technology is that the particles are intrinsically encoded by virtue of the difference in reflectivity 

http://www.illumina.com/
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of adjacent metal stripes. Just as a conventional barcode is read by measuring the differential 

contrast between adjacent black and white lines using an optical scanner, individual NBC are read by 

measuring the differential reflectivity between adjacent metal stripes within a single particle using a 

conventional optical microscope. The production rate is much higher that for microbarcodes, but 

because of their relatively high density vigorous mixing is required in order to keep them in 

suspension, which can damage them. Besides gold and silver also other metals can be used, which 

increases the number of codes that can be generated with this technology (the number of codes 

corresponds to Ns/2 where N is the number of metals and s is the number of stripes). Pronostics 

(former Smartbead  Technologies Ltd) fabricated patterned holes in aluminum rods (100x10x1 µm) 

with semiconductor microfabrication methods (UltraPlex platform, Figure 12C) 123. The production 

rate is very high (one wafer makes up millions of particles at once), theoretically millions of codes can 

be generated, and decoding is done with simple light microscopy, making this approach very 

attractive. 3D Molecular Sciences designed polymer particles that are encoded via lithographic 

technology: they use UV light to optically burn a pattern of holes into polymer wafers that are coated 

with a negative photoresist. Different patterns are obtained using different masks. A disadvantage, 

however, is the size of the particles (500 x 300 x 25 µm). Using holographic techniques, Illumina 

developed a cylindrical glass particle measuring 240 microns in length by 28 microns in diameter that 

is inscribed with a unique digital holographic code (VeraCode system, Figure 12D). Diffractive 

encoding was also developed by the group of Morgan, where the surface of 100 µm sized SU-8 

particles was provided with a nanostructured pattern (Figure 12B); the pattern is read by detecting 

the spatial distribution of laser light diffracted by the tag 124. Our group has reported “spatial 

selective photobleaching” as a new method to digitally encode fluorescent microspheres. Digital 

codes (such as a bar code, a dot code…) can be written in the central plane of fluorescent polystyrene 

microspheres (called memobeads, Figure 12A) by localized photobleaching of the fluorescent 

molecules 125. Clearly, as microspheres are free to rotate in the assay tube, to be able to read the 

digital code (at the end of the assay) the microspheres must be properly oriented with respect to the 

focal plane of the microscope. For this purpose we have suggested loading the  microspheres with 

ferromagnetic particles (e.g. CrO2). In theory, an unlimited number of codes can be generated by the 

latter two techniques. Recently, an innovative technology that combines particle synthesis and 

encoding and probe incorporation into a single process using continuous-flow lithography has been 

proposed by Pregibon et al. The authors use a simple dot-coding scheme to generate particles that 

can bear over a million (220) codes 126. As explained by Wilson et al., besides using a static microscopy 

platform, theoretically, graphically encoded microcarriers could also be decoded and analyzed by 

means of flow cytometry. Amnis Corporation combined flow cytometry with imaging hardware in 

their ImageStream 100, which is like a flow cytometer, but the traditional detectors have been 
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replaced by a sensitive CCD camera that acquires up to six independent images (brightfield, darkfield, 

and four colors) at a rate of 100 particles per second. Such instrument could be used to analyze 

graphically encoded microparticles 82 (Figure 13). 

 

 

Figure 13: The ImageStream100 is a novel technology that combines the fluidics of a flow cytometer with a method that 
allows individual cells and particles to be imaged as they pass the detector. It is designed to image objects in flow with high 
sensitivity, image fidelity, and in multiple simultaneous imaging modes. Fluorescence, side scatter, and transmitted light from 
cells are imaged by an objective lens and relayed to a spectral decomposition element, which divides the imagery into 6 
spectral bands located side-by-side across the CCD camera. The ImageStream 100 could be used to read graphical codes 
and detect fluorescent reporter molecules bound to their surface (Courtesy of Amnis – www.amnis.com). 

 

Note that not only graphically encoded microcarriers but also the optically and physically 

encoded carriers described above can be analysed by optical reading platforms. As an example, 

recently Gao and Nie described the use of QD encoded particles read out by a (conventional) optical 

imaging platform. 85 A special technology has been developed by Swartzman et al., which was called 

‘fluorometric microvolume assay technology’ (FMAT) and employs a unique macro confocal imaging 

system that automatically focuses and scans fluorescently encoded microparticles at the bottom of a 

well-plate 127. Note that graphically encoded microparticles have already shown potential in different 

application fields 114,118,128,129. 
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Optical fibre platform. 

 

 

 

 

Figure 14: A/ Overview of the Illumina Inc. fibre-optic platform: 3 micron particles self assemble in uniform microwells etched 
into the surface of fiber optic bundles (96-sample Array Matrix) or planar silica slides (multi-sample BeadChip). B/ Decoding 
process of Illumina’s BeadArray technology. (A) Schematic of the sequential hybridization process for a single particle. In 
stage 1, a complementary fluorescently labeled decoder oligonucleotide hybridizes to the oligonucleotide capture probe that 
is attached to the particle. The fluorescent signal is read by imaging the entire array. The array is then dehybridized, and the 
process is repeated for two more stages. (B) A scanning electron micrograph of an array of particles, artificially colored to 
represent three sequential hybridization stages (note that the particle circled in yellow has the color signature GRG or code 
010). (C) Colors are assigned to individual decoder oligonucleotides in each stage to produce a unique combination across 
stages. (Part A with permission from www.illumina.com and part B with permission from ref [73]) 

 

Illumina developed particle-based fibre optic arrays which make use of ‘optical fibres’ to 

decode color encoded 3 micron silica particles. An optical imaging fibre consists of thousands of 

hexagonally packed, micrometer-sized individual optical fibres (Figure 14) 130,131. By dipping the 

etched end of the fibre directly in the sample of encoded particles, the wells are filled with particles 

by self-assembling. The other end of the fibre bundle is coupled to an imaging fluorescence system 

that independently resolves each fibre, while simultaneously viewing the entire array (Figure 14A). 

Although the encoded particles are positioned in an array, their identities are known from their 

spectral properties 132. To overcome some encoding limitations, recently Illumina devised a novel 

approach (randomly ordered high-density DNA arrays, the ‘Beadarray’) 133. A different set of 

oligonucleotide ‘tag’ sequences is coupled to each particle (the “code”); after self-assembling of the 

particles on the array, decoding of the particles occurs by sequential hybridizations with different 

dye-labeled decoding (complementary anti-tag) solutions (Figure 14B) 134. This Beadarray competes 

with the flat surface microarrays for high-throughput analysis of genes and gene products. The main 

http://www.illumina.com/
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problem is that the location of the microspheres is random and to this end the array has to be 

decoded before it can be used. Another issue is that this method is very time-consuming and 

required a lot of oligonucleotides to be synthesized. 

 

 

MEMOBEAD TECHNOLOGY 

 

 

As described in previous section, our group proposed spatial selective photobleaching as an 

alternative encoding method for the production of a suspension array. Because of the importance of 

this method related to the present study, this section describes the principle behind it in more detail. 

 

 

Figure 15: Encoding microcarriers by spatial selective photobleaching. Examples of several geometries that are bleached at 
the central plane of 40 µm sized fluorescent microcarriers. Figure adapted from 125.  

 

Photobleaching is a photo-induced process where fluorescent molecules lose their 

fluorescent properties, resulting in a fading of the fluorescent color. Spatial selective photobleaching 

refers to the photobleaching of certain regions in a fluorescent material, such as in a fluorescent 

microcarrier. Any geometry can be bleached, at a certain depth in that microcarrier by using a 

confocal scanning laser microscope (CSLM) modified for this purpose (Figure 15). There are only two 

requirements for the microcarrier. First, it has to be sufficiently transparent for the laser light to get 

inside the microsphere. Second, the fluorescent molecules should be fixed in the material. 
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Otherwise, the bleached code will fade away over time because of diffusion of the fluorescent and 

bleached molecules. 

 

 

Figure 16: Encoding microcarriers by means of spatial selective photobleaching. A/ To demonstrate the possibility of intensity 
encoding, a barcode was bleached at the central plane of a 45 μm microcarrier using eight different bleaching levels. B/ A 
barcode was bleached at the central plane of a 28 μm microsphere using two intensities (bleached and unbleached) and two 
widths (1.06 μm and 2.12 μm). Figure adapted from 125. 

 

The method of spatial selective photobleaching has been applied in the past to microcarriers 

made of several materials, such as polystyrene, argogel (polyethylene glycol grafted polystyrene), 

and dextran (and other common polymer bead materials are also expected to work well). This 

encoding technology has important advantages. As the encoding method is applicable to regular 

polystyrene microspheres that have been common to screening applications for many years, it has a 

major advantage in that users can benefit from the current extensive knowledge on performing 

bead-based assays, eliminating the need for the development of new special chemistries. Because 

the code is written inside the microcarriers, it is protected from the environment. The code is digital, 

meaning that it does not carry any uncertainty, or in other words, if at time zero ‘code 1’ is 

photobleached, exactly the same code will appear as a ‘code 1’ that is photobleached on another 

moment, which is not the case with the previously mentioned ‘color encoding’ methods. The number 

of unique codes that can be generated is virtually unlimited and depends on three aspects, the first 

obviously being the space available inside the microsphere. The second aspect is the resolution of 

the writing beam primarily depending on the characteristics of the CLSM. Finally, the number of 

codes is determined by the number of different widths and intensities that are employed in the 

encoding scheme, as demonstrated in Figure 16. This minimal encoding time is not a fundamental 

limit to the bleaching process, but an instrument dependent parameter. 
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Figure 17: Magnetic orientation of a magnetized ferromagnetic microcarrier, encoded with an arrow.(i) An arrow was 
bleached at the central plane of a magnetized ferromagnetic microcarrier to visualize its orientation.(ii–viii) Subsequently, a 
sequence of confocal images (1 image every 2 seconds) was taken to record the movement of the microcarrier while being 
subjected to an external randomly moving magnetic field. The microcarrier follows precisely the movement of the external 
magnetic field. When the magnetic field returns to its original orientation, the microcarrier is observed to do the same 
(compare images i and viii). Images ii to vii represent the situation of the microcarrier being subjected to an assay during 
which it will be randomly oriented. Image viii demonstrates the possibility at readout time to correctly reorient the microcarrier 
such that the encoded pattern becomes clearly visible again. 

 

Because two-dimensional codes are written inside three-dimensional microcarriers, the 

microcarriers have to be oriented in the appropriate position for a correct read-out of the code. This 

is possible by using microcarriers that are coated with ferromagnetic nanoparticles. By applying an 

external magnetic field at the encoding step, those magnetic nanoparticles are magnetized, so that 

there exists a relationship between the direction of the code and the direction of the magnetic 

moment. At the decoding step, the microcarriers can obtain the same orientation by applying a weak 

external magnetic field with the same orientation relative to the laser light, thus bringing the code to 



CHAPTER 1 - INTRODUCTION 

 
45 

the correct readout position (Figure 17). Chapter 2 of this thesis describes the optimal magnetic 

coating procedure of polystyrene microcarriers. 

 

 

TO BEAD OR NOT TO BEAD? 

 

It is widely accepted that microparticle technology has several advantages to flat surface 

microarray technology, regarding for instance the flexibility in test panel, the reproducibility of 

attached probes, and improved kinetics. Table 6 summarizes the main dissimilarities between the 

two multiplexing platforms. The previous paragraph has demonstrated the tremendous increase in 

microparticle encoding methods and applications during the last decade. The question remains, 

however, whether microparticle technology will replace the flat microarray technology, as the latter 

one did in past with the micro-wellplate technology (Figure 18).   

 

 

Table 6: Flat surface microarray versus suspension arrays (adapted from 28). Commercially systems are indicated with [x]. 

Feature Flat surface microarrays Suspension microarrays 

Substrate Glass (
135

, [A]) 

Silicon ([B]) 

Plastic ([C], [D], [E]) 

Gold 
136

 

PDMS
137

 

Polystyrene beads (
98,125

,  [M], [N], [O], [P] ) 

Metal (aluminium) nanoparticles (
122,123

[Q] [R]) 

Semiconductor nanocrystals ([S]) 

Silicon ([T]) 

Glass ([U], [V]) 

SU-8 
124

 

Surface modification Polymer coating 

Metal coating 

Gel coating 
68

 

Membrane layer (Schleicher & 
Schuell) 

Direct derviatization 

Polymer coating [P] 

Probe deposition In situ synthesis: mask-guided [B] 

In situ synthesis: maskless [Z] 

Contact printing 

Noncontact spotting [D] 

Affinity or covalent binding in solution (batch) 
[several] 
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Probe identification X,y coordinates Particle encoding 

- Optical (
98

, [N], [S], [M]) 

- Chemical ([W]) 

- Graphical (
122-125

, [P] [Q] [R] [X]) 

- Electronic ([T]) 

- Physical ([Y], [Z]) 

Incubation Static [several] 

Mixing [several] 

Mixing [several] 

Detection Confocal scanning (Genetix, Axon, 
Affymetrix) 

Resonance light scattering ([F]) 

Surface plasmon resonance ([G]; [H]) 

Cantilever technology ([I]) 

Planar waveguide detection ([J]) 

Mass spectrometry 

MALDI ([K]) 

SELDI ([L]) 

Flow cytometry ([O] [T], [N]) 

Fibre optics ([M] [W]) 

Imaging system (
123

[P], [S], [R], [V] 

Raman spectroscopy (
105

) 

Time resolved fluorometry (
138

) 

Production at the same 
time 

Relatively low number Hundreds till millions of microparticles 

Reproducibility of 
attached probes 

Relatively low; variation in spot 
density with spotting methods 

High; produced in batches of millions of 
microparticles 

Surface chemistry Same for all probes on one array Probes attached in separate batches via a variety 
of methods before mixing 

Flexibility for adding 
probes 

Low High 

Binding kinetics Limited by diffusion (partly solved by 
some adaptations) 

Efficient mixing 

Degree of multiplexing High (> 100 000) Low [several] / Medium [several] / High [W] 

Sample throughput Low Medium 

Statistics Each feature = datapoint; only few 
features per analyte 

Each microparticle = datapoint; many 
microparticles for each analyte -> high quality 

Know-how A lot of know-how; lots of  references Rather new technology; less references 

Costs Relatively expensive for medium and 
low throughput 

Cheaper for medium and low throughput 

[A], ArrayIT; [B], Affymetrix; [C]: Nanogen, [D]: Agilent; [E]: Caliper; [F]: Genicon Sciences; [G]: Biacore, [H]: 
XanTec, [I]: Protiveris, [J]: Zeptosens, [K]: Sequenom, [L]: Ciphergen, [M]: Illumina old system, [N]: BD 
Cytometric BeadArray, [O]: Luminex corp.; [P]: Biocartis SA (former Memobead technologies); [Q]: Smartbead 
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technologies; [R]: Nanoplex; [S]: Quantum Dot Corp; [T]: PharmaSeq; [U]: Veracode from Illumina; [V]: 
Corning’s microbarcodes; [W]: Illumina new system; [X]: 3D Molecular Sciences; [Y]: Copalis from DiaSorin; [Z]: 
FloCodes from 3D Molecular Sciences; [Z]: Nimblegen. 

 

 

In genomics, following the decoding of the human genome, we were and still are looking for 

technologies that are capable to obtain more and more information from smaller sample volumes. At 

this moment, the most popular approach to quantify an enormous amount of DNA targets is the 

planar array technology. In genomics, nowadays planar microarrays can be considered as the most 

popular tool for whole genome screening. Regarding the multiplexing level, so far, none of the 

suspension array systems can compete with the planar microarray technology, and regardless of the 

advantages of suspension array technology with respect to hybridization kinetics, planar arrays will 

remain the method of choice to this purpose as long as no efforts are undertaken in the field of 

suspension arrays to generate an ultrahigh amount of encoded microcarriers efficiently and at an 

acceptable time scale 139. Those suspension arrays, however, provide the potential for probing 

segments of the genome (instead of the whole genome) in a customized way, using capture tags that 

locate specific oligonucleotide sequences to specific array elements 140 and are therefore recognized 

as an economical alternative for the high-cost planar microarray technology at the medium 

throughput screening level. Because suspension arrays have the potential to accommodate the 

simultaneous detection of some tens of SNPs, they are well suited for the detection of 

heterogeneous genetic disorders caused by numerous mutations (such as cystic fibrosis). They can 

also be useful for studying highly polymorphic systems (such as the human major histocompatibility 

system, HLA), for testing risk panels (cancer, infectious diseases, thrombosis,…), and for newborn 

screening panels 141. To this end, planar microarrays are nowadays mainly applied in high-throughput 

research and only few examples were found in literature where commercially available planar 

microarray platforms were applied at the medium throughput level (Nanogen, Osmetech, Randox, 

MetriGenix, PamGene, Biosite, High Throughput Genomics, and Panomics). We believe that within 

the next years, both technologies will be used next to each other in the genomics field depending on 

the application: high or medium throughput. 
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Figure 18: Evolution of tests from single-tube monoplex assays, via monoplex microwell-plate assays, to multiplex planar 
microarray assay and multiplex suspension array assays. The question remains whether suspension arrays are going to 
replace the planar microarray technology in future. 

 

There are indications that future diagnostics will involve measuring several types of 

biomarkers (DNA, RNA and protein) simultaneously. This need the development of DNA/RNA/protein 

microarrays that are capable of assaying proteins and nucleic acid molecules simultaneously, in order 

to get information at the genomics, transcriptomics, and proteomics level. Because of the flexibility 

in chemistry for the attachment of probes, suspension arrays will become very important tools for 

this matter. As will be overviewed in the next paragraph, tests can made more sensitive via target- 

and/or signal amplification. Target amplification of DNA is for instance possible by means of PCR as 

described previously (Figure 9). So far, however, no target-amplification methods exist for proteins, 

and in order to make immunoassays more sensitive, signal amplification methods have to be used 

(see next paragraph). To this purpose,  immunoassays using nucleic acid labels were developed, 

where the results are amplified and read via PCR. Because such tests would allow immunoassays and 

nucleic acid tests to be performed on a single platform using the same detection strategy, flexible 

platforms as suspension array will play a critical role. 

Instead of the threat of innovative suspension arrays, the question is whether planar 

microarrays will not be replaced in future by other advanced technologies. Multiplexing is indeed 

very challenging, and for some applications it might be never as successful as their monoplex 

counterparts. The use of microarrays for instance as high-throughput platform for gene expression 

analysis is well-known, and the only reason therefore is that qPCR technology nowadays still is a low-

throughput technology. But novel qPCR technologies in the field of microfluidics are under 
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development that have an incredible high throughput capacity and the sensitivity and accuracy of 

conventional qPCR platforms. Those monoplex technologies rely on the parallel qPCR analysis of 

hundreds till thousands of samples against hundreds till thousands of genes. Examples are the 

OpenArray system from Biotrove (www.biotrove.com) 142, the Biomark system from Fluidigm 

(www.fluidigm.com) 143, the Smartchip from Wafergen (www.wafergen.com), and the 384 XHTS from 

StokesBio (www.stokesbio.com). Highly likely, those platforms, and not suspension arrays, will 

become the method of choice for high density gene expression analysis and will replace conventional 

flat microarrays in this field. The reason that those parallel monoplex microfluidic gene expression 

tests will replace planar arrays, is the quality (sensitivity) of the data, which will be of greater 

importance than the advantages of multiplex microarray tests (such as less sample consumption etc). 

Microfluidics will also be introduced in the proteomics field, but as in this field no technology exist 

that relies on target amplification, it will continue to benefit from the advantages of multiplex assays. 

To this end it is expected that microfluidics technologies will not replace multiplex assays, but instead 

thereof, their combination will be promising in order to bring this proteomics field to a higher level of 

sensitivity and efficiency. Chapter 6 overviews this integration in more detail. 

 

 

 

TARGET LABELING IN MULTIPLEXED SUSPENSION ARRAYS 

 

A common feature of all nucleic acid and protein detection assays on planar microarrays and 

suspension arrays is the use of labels, which are typically molecules that fluoresce or produce a color 

to indicate probe-target interactions. Sensitivity might be one drawback of multiplexing, but this can 

be solved by the use of signal amplification methods, as it occurs in monoplex assays too (as in ELISA 

for instance). Although usually less potent than target amplification (such as amplicon generation in a 

polymerase chain reaction), signal amplification methods became very important in multiplexed 

suspension arrays for protein detection. With no target amplification equivalent to PCR available for 

proteins, the sensitivity of protein-(immune)assays is still far below that of nucleic acid tests. Signal 

amplification methods lead to an improved sensitivity. Considering that some of these techniques 

can be further combined with improved detection methods, there is a possibility that the sensitivity 

gap between nucleic acid assays and immunoassays will be reduced. 

 

Some signal amplification methods can be applied simultaneously to all features on the 

array, DNA or protein. Most of the methods have been developed specifically for signal amplification 

http://www.biotrove.com/
http://www.fluidigm.com/
http://www.wafergen.com/
http://www.stokesbio.com/
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on planar microarrays, such as the use of liposomes, nanoparticles, magnetic beads, and gold 

nanoparticles. Signal amplification systems for suspension arrays, however, are more challenging, 

because the microparticles randomly move through the sample. To this end only those methods in 

which the product of the amplification reaction is localized in the region where the reaction is 

initiated (and not diffuses), can be applied simultaneously to planar microarrays and suspension 

arrays. This section overviews labeling methods that have been applied on suspension arrays, and 

also labeling methods that might be compatible with suspension arrays, but not yet proven. 

 

In bead-based immunoassays, immobilized antibodies trap their specific corresponding 

antigens from the sample solution. The bound antigens can be detected through a direct labeling 

approach (fluorophores are covalently attached to the antigen) or through a sandwich immunoassay 

approach (using a pair of capture and detection antibodies that recognize two non-overlapping 

epitopes of the antigen). In the latter approach, the detection antibody can be directly linked with a 

fluorophore. This is, however, a rather expensive and difficult approach (all detection antibodies in a 

multiplex assay have to be efficiently conjugated with fluorescent molecules), and in order to avoid 

this, other strategies have been proposed. 

 

 

Figure 19: Target labeling by means of the ZenonTM labeling method. A/ Fluorophore conjugated Fab fragments bind to the 
Fc portion of the detection antibody. B/ The Zenon labeling scheme. An unlabeled IgG is incubated with the Zenon labeling 
reagent. The labeled Fab fragment binds and unbound Fab fragments are bound by the addition of a nonspecific IgG. The 
addition of nonspecific IgG prevents cross-labeling of the Fab fragment in later steps. Note that the Fab fragment used for 
labeling could also be coupled to a biotin, instead of a fluorophore, so that final labeling can occur with fluorescent 
streptavidin. Because this method makes use of a mechanism inherent to protein interactions, it cannot be used for DNA 
analysis. 
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The ZenonTM technology uses fluorescently labeled Fab fragments of antibodies to label 

detection antibodies all at once with the same fluorophore (Figure 19). Although this approach is 

goaled for labeling multiplex assays, in our research we observed a relatively high amount of non-

specific (background) labeling, probably because the Fab fragment were transferred from ‘positive' 

microparticles to the detection antibodies at the surface of ‘negative’ microparticles, and the 

sensitivity was therefore troublesome.  A better choice is the use of biotinylated detection antibodies 

which can react on their turn in a final step with fluorescently labeled streptavidin (Figure 20). An 

additional advantage is the little gain in signal amplification, because one streptavidin molecule is 

labeled with 3 fluorophores on average. Meanwhile, this approach has been applied already many 

times to several suspension array platforms and has become the standard method in microcarrier-

based multiplex analysis 144. 

 

 

 

Figure 20: Target labeling by means of biotinylated detection antibodies and fluorophore conjugated streptavidin. Note that 
the biotin/streptavidin affinity can be used for DNA analysis, for instance for labeling captured biotinylated target sequences 
on microcarriers. 

 

 

The same method is more or less applied to microparticle-based hybridization assays: 

immobilized capture probes (oligonucleotides, cDNA…) hybridize with complementary (parts of) 

target molecules. The bound target molecules can be detected through a direct labeling approach by 

the incorporation of fluorophores into the target strand (for instance fluorescently labeled 

polymerase chain reaction products obtained by using fluorescent probes in the PCR reaction) or 

indirectly via biotinylation of the target molecule and fluorophore-conjugated streptavidin 90. 
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Rolling circle amplification (RCA) 

 

In its original formulation, the rolling circle amplification reaction (RCA), which was used for 

mutation detection, involves numerous rounds of isothermal enzymatic synthesis in which DNA 

polymerase extends a primer that is hybridized to a circular DNA probe of several dozen nucleotides, 

by continuously progressing around the DNA minicircle probe to replicate its sequence over and over 

again. This process easily yields in one hour up to several thousands of sequence-complementary 

tandem repeats of the original DNA minicircle 145,146. Some years ago, the RCA strategy has been 

proposed as an alternative to conventional multiplex immunoassays on microparticles with an 

improvement in detection limit for human cytokines up to 100-fold 147. In this so-called immunoRCA 

(Figure 21), the 5’ end of an RCA primer is attached to the detection antibody. After formation of the 

sandwich construct, this short DNA sequence anneals to a single-stranded DNA circle. In the presence 

of RCAT DNA polymerase and nucleotides, the rolling circle reaction extends the double-stranded 

annealed sequence. By including biotinylated dNTPs, biotin moieties are incorporated into the 

growing DNA strand, which can be detected by means of fluorphore-conjugated streptavidin. Rolling-

circle amplification is a technique applicable to both nucleic acid and protein suspension arrays. 

Commercial suspension array kits are now available from Qiagen (LiquiChip technology). 

 

 

 

Figure 21: Target labeling by means of immuno Rolling Circle Amplification (immunoRCA). The 5’ end of a primer is attached 
to the detection antibody. Obviously, RCA can also be used for DNA detection on microcarriers. 
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Nanoparticles 

 

Kim and Park have used magnetic nanoparticles for a duplex detection of proteins 

immobilized via a sandwich assay on two different fluorescent one micrometer sized microparticles 

(Figure 22 B). Binding of the protein of interest resulted in deflection of the microparticles in a 

magnetic field, and because the velocity of the microparticles was proportional to the protein 

concentration, quantitative measurements were possible over a dynamic range of about 3 logs 148. 

Hall et al. demonstrated one decade ago the use of fluorescent particulate labels to enhance the 

sensitivity of sandwich immunoassays at the bottom of 96-well plates 149. The group of Haugland 

applied such nanospheres to solution-phase amplifications for the detection of cell surface receptors 

by flow cytometry 150. Although it has never been demonstrated before, particulate nanolabels could 

be applied to microparticle-based protein and DNA assays too as depicted in Figure 22 A. In this 

context, we can also refer to the use of QDs and other types of semi-conductor nanocrystals as 

nanolabels (commercialized by Invitrogen). 

 

 

 

Figure 22: Target labeling by means of fluorescent nanoparticles (A), and magnetic nanoparticles (B). In the latter case, the 
microcarriers are deflected in a magnetic field if the protein of interest was present the sample, with a velocity that is 
proportional to the concentration of the protein. The detection antibodies can be directly covalently linked to the 
nanoparticles, or indirectly via biotin moieties to streptavidin coated nanoparticles. Note that nanoparticles can also be 
coupled to oligonucleotides, so that this labeling method can be used for DNA analysis too. 

 

 

Liposome signal amplification 

 

Excellent reviews are available in literature that describe the use of liposomes to amplify the 

signal in immunoassays 151. Liposomes are phospholipid vesicles that entrap hundreds of thousands 

of marker molecules to provide a large signal amplification and enhanced sensitivity, three orders of 

magnitude greater than conventional single fluorophore detection. Liposome signal amplification 

has been demonstrated on microparticle-based immunoassays too (Figure 23) 152. Although the 
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application in multiplexed system to our knowledge has never been described, it should be 

applicable to both nucleic acid and protein suspension arrays. 

 

 

 

Figure 23: Target labeling by means of liposome signal amplification. Note that liposomes can also be coupled to 
oligonucleotides, so that this labeling method can be used for DNA analysis too. 

 

 

Branched DNA 

 

Branched DNA (bDNA) or DNA dendrimers are complex, branched molecules built from 

interconnected DNA monomeric subunits that were originally developed to detect DNA or RNA 

targets sensitively in a micro-well format. Meanwhile, important commercial platforms were 

developed based on the bDNA technology for testing HIV-1 and HCV viral load 153. Lowe et al. 

demonstrated the use of 3DNA dendrimers in order to increase the signal-to-noise ratio for 

fluorescence detection of multiple target DNA molecules captured on different microparticles in a 

multiplex assay. A 3DNA dendrimer is composed of two DNA strands that share a region of sequence 

complementarity located in the central portion of each strand. When the two strands anneal to form 

the monomer the resulting structure has a central double-stranded 'waist' bordered by four single-

stranded 'arms'. This 'waist' plus 'arms' structure comprises the basic 3DNA monomer. The assay 

resulted in a 10-fold fluorescence amplification compared to single-step labeling method with 

fluorophore-conjugated streptavidin 154. The group of Lohman have adapted the branched DNA 

(bDNA) technology to flow cytometry and suggested the possibility of performing multiplex analysis 

(Figure 24) 155. This bDNA technology has been recently successful applied to the xMAP® platform for 

parallel quantitative gene expression profiling 156 and is in meanwhile commercially available 

(distributed by Panomics). To our knowledge, no multiplex protein detection assays exist based on 

the bDNA technology. 
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Figure 24: Target labeling by means of branched DNA (bDNA) technology. mRNA of interest hybridizes to capture probes 
that are coupled to the surface of the microcarrier. Conjugation probes, bDNA, and biotinylated probes are then added, 
which forms a complex at the surface. Finally fluorophore conjugated streptavidin is added which binds to the biotin residues 
and labels the surface. Note that this technology can also be used for the detection of DNA molecules. 

 

 

 

Molecular beacons 

 

For the detection of nucleic acids by flow cytometry, Horejsh et al. suggested the use of 

‘BeadCons arrays’ (molecular beacon-conjugated beads), generated using different bead sizes and 

molecular beacons in different fluorophore colors 47. Molecular beacons are single-stranded 

oligonucleotides possessing a probing loop sequence (usually 15 to 30 nucleotides in length) 

embedded within complementary arm sequences (usually 5 or 6 nucleotides long). The probe 

sequence is chosen to be complementary to a specific target sequence that is present in the nucleic 

acid to be detected. The arm sequences form a hairpin stem that keeps a terminal fluorophore 

(covalently linked to one end of the oligonucleotide) and a terminal quencher molecule (covalently 

linked to the other end of the oligonucleotide) in close proximity in the absence of nucleic acid 

molecules that are complementary to the loop. Due the close proximity, a FRET reaction occurs, and 

as a result, no fluorescence occurs. When a molecular beacon encounters a target molecule, 

however, a probe-target hybrid with the loop will be formed, that results in a conformational 

reorganization that forces the quencher and fluorophore away from each other, restoring 

fluorescence (Figure 25) 157. 
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Figure 25: Target labeling by means of molecular beacons. As long as no target sequence is present that is complementary 
to the loop sequence, the complementary arm sequences are hybridized bringing the fluorophore and the quencher molecule 
in close proximity. A FRET reaction occurs, that results in no fluorescence. If a complementary arm sequence is present, it 
will hybridize to the loop sequence, that forces the fluorophore and the quencher molecule away from each other, resulting in 
fluorescence. 

 

 

Catalyzed reporter deposition (CARD) 

 

The group of Walt developed the use of imaging fibres for multiplexed assays, and in order to 

increase the sensitivity, they applied the enzyme-catalyzed reporter deposition (CARD) method to 

this platform 158. This method relies on the use of horseradish peroxidase (HRP) conjugated detection 

antibodies that catalyze the deposition of a substantially amount of fluorescent tyramine residues on 

the bead surface around the site of enzyme activity, which result in a substantially amount of 

fluorescence (Figure 26). A detailed description of this method, which is also called Tyramide signal 

amplification (TSA),  is given in chapter 4. Because this strategy makes use of the affinity between 

biotin and streptavidin, and because biotin residues can be easily build in DNA sequences, this 

enzymatic amplification method is applicable to nucleic acid analysis too. 
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Figure 26: Target labeling by means of the enzyme-catalyzed reporter deposition technology. Horse radish peroxidase 
(HRP) conjugated streptavidin binds to biotinylated detection antibodies. In the next step, HRP converts inactive fluorophore 
conjugated tyramide residues in the presence of H2O2 to an activated intermediary radicalair state. In this unstable state, the 
residues can interact with electron rich moieties that are present in the proximity of the enzyme. Electron rich moieties can be 
found in proteins (antibodies or other proteins that are used as a blocking agent in the assay and which bound therefore to 
the surface of the microcarrier).   

 

 

Summary of the labeling methods 

 

Table 7 briefly summarizes the application fields of the main target labeling methods that can 

be applied to suspension arrays. 

  

Table 7: Labeling technologies that are compatible with multiplex microparticle-based assays. 

Labeling technology Application Signal enhancement 

 protein DNA  

Direct labeling of biomolecule * * - 

Zenon
TM

 technology * - - 

Fluorescent streptavidin * * + 

3DNA dendrimers * * +++ 

Branched DNA - * +++ 

Molecular beacons - * - 

CARD/TSA * * +++ 

Magnetic nanoparticles * * na 

Fluorescent particulate labels * * ++ 

Fluorescent Liposomes * * ++ 

Rolling circle amplification * * +++ 
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ABSTRACT 

 

In the field of medical diagnostics there is a growing need for inexpensive, accurate and quick 

“multiplexing” assays. By making use of encoded microparticles, such assays allow simultaneously 

determining the presence of several analytes in a biological sample. The microparticles under 

investigation in this study are encoded by writing a digital dot- or barcode in their central plane. This 

chapter evaluates to what extent a “multifunctional” coating can be applied around the digitally 

encoded microparticles by the layer-by-layer (LbL) technology. We show that a LbL coating 

containing CrO2 nanoparticles allows (a) an optimal (optical) readout of the dot- and bar codes, (b) a 

perfect orientation of the microparticles, necessary to be able to read the code and (c) an optimal 

coupling of capture probes to the surface of the microparticles. 
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CHAPTER 2 

MULTIFUNCTIONAL LAYER-BY-LAYER 

COATING OF MICROCARRIERS 

 

 

 

INTRODUCTION 

 

Driven by the human genome project, an increasing number of genes related to diseases 

have been discovered. As a result, tools are needed to carry out inexpensive, accurate and quick 

genetic diagnostic analyses. In recent years, “multiplexing” diagnostic assays have been developed. 

While a “monoplex” assay aims to measure the binding of a single analyte in the biological sample to 

its receptor, a multiplexing assay aims to measure simultaneously the binding of several analytes in 

the biological sample to their respective receptors 1.  

Multiplex technologies are divided into two categories, “flat surface arrays” and “suspension 

arrays” 
2
. To the first category belong the well known DNA microarrays, using the x,y-coordinates of 

spots of single-stranded DNA (called probes) on a glass plate to identify which DNA targets are 

present in a sample 3. Despite the success of DNA microarrays, they lack efficient reactions between 

the probes and the targets due to, among other reasons, slow diffusion of the target DNA molecules 

towards the probes on the flat surface 4. Furthermore, flat microarray technology struggles with 

localization problems upon miniaturization while its use has also been limited by the high cost of the 

microarray consumables and the instruments. Suspension arrays have a number of advantages 

compared to flat microarrays, regarding for instance the attachment of probes, the flexibility in 

composing a test panel, improved kinetics 5-8. 

The second category, suspension arrays, uses encoded micron sized particles for 

multiplexing; the code identifies which probe is bound to the surface of the microparticles. Targets 
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present in the biological sample will bind to their corresponding microparticles that are added to the 

sample. By decoding the microparticles that show a positive reaction, the target molecules that are 

present in the sample can be identified. 

Various strategies have been applied to encode microparticles: spectrometric 6, electronic 6, 

physical 
9-11

, and graphical encoding 
12,13

. Each of the encoding technologies has its strengths and 

weaknesses, as reviewed by Braeckmans et al. 
14

 Our group has reported “spatial selective 

photobleaching” as a new method to digitally encode fluorescent microspheres 15. As Figure 1A and 

Figure 1B show, digital codes (like a bar code, a dot code…) can be written in the central plane of 

fluorescent polystyrene microspheres (called memobeads) by localized photobleaching of the 

fluorescent molecules. Clearly, as microspheres are free to rotate in the assay tube, to be able to 

read the digital code (at the end of the assay) the microspheres must be properly oriented with 

respect to the focal plane of the microscope (Figure 1C). For this purpose we have suggested loading 

the  microspheres with ferromagnetic particles (e.g. CrO2) 
15. Ferromagnetic materials become 

magnetized in an external magnetic field and remain magnetized for a period after the material is no 

longer in the field (a net magnetic moment is present in the absence of the external magnetic field, 

called remanence, or “magnetic memory”). The encoding process of the microspheres in this study 

consists of two steps, a writing step (i.e. the photobleaching process) and a magnetizing step, during 

which the CrO2 loaded microspheres are exposed to an external magnetic field sufficient to provide 

them with a magnetic memory. The microspheres are fixed on a grid during the encoding process to 

avoid rotation between the two steps. At the decoding step, the ferromagnetic microspheres are 

again exposed to a (weak) magnetic field with the same orientation as the first one (relative to the 

direction of the laser light). In the presence of this weak magnetic field, the ‘remanent’ nanoparticles 

tend to align with the magnetic field, so they will turn the microspheres at which surface they are 

fixed. The magnetic forces enable the orientation of the microspheres into such a position that the 

code can be read (the code is present in a plane perpendicular to the direction of the laser light).
15

 A 

software program can detect the orientation of the code within that plane, so that one magnetic 

field component is enough for the orientation of the microspheres. 

Various methods have been developed for the production of magnetic microspheres. They 

include the deposition of nanoparticles in polymer particles by dispersion copolymerization of 

polymers in the presence of magnetic nanoparticles 16 or by ‘activated swelling’ 17. Some groups 

reported the use of block copolymer systems for the controlled formation of a homogeneous 

nanoparticle pattern on a planar surface 18,19; the pattern formation of nanoparticles on flat surfaces 

seemed to be perfectly tunable via this approach 20. Bhat et al. reported another interesting method 

to fine-tune the number density of nanoparticles on a planar substrate by tailoring of attachment 

http://en.wikipedia.org/wiki/Magnetism
http://en.wikipedia.org/wiki/Magnetic_field
http://en.wikipedia.org/wiki/Magnetic_field
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points on that substrate 
21

. To our knowledge none of these last two approaches has been applied to 

microspheres. Skirtach et al. could control the distribution of nanoparticles within polyelectrolyte 

capsules by polymers 
22

.    

With the aim of properly orient digitally encoded microspheres, we examine in this chapter 

whether memobeads can be coated with sub 500 nm CrO2 nanoparticles by Layer-by-Layer (LbL) 

technology which is based on the alternate adsorption of oppositely charged 

polyelectrolytes/nanoparticles onto a charged substrate 23-25. The major aims are to evaluate 

whether the magnetic LbL coating is indeed multifunctional in the sense that the LbL coating (a) 

allows positioning the memobeads for decoding, (b) does not optically interfere with the encoding 

and reading process and (c) allows a high and homogeneous loading of the surface of the 

microspheres with probes. 

 

 

 

Figure 1: Confocal images of the central plane of non-magnetic fluorescent microspheres encoded with respectively a bar 
code (A) and a dot code (B). The scale bar is 10 µm. (C) The encoded microsphere has to be properly oriented at the time of 
decoding in order to be able to read the entire code; At position 1, the code is tilted with respect to the microscope focal 
plane and only the intersection of the code with the focal plane will be visible. At position 2, the entire code is visible because 
it coincides with the focal plane. 
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MATERIALS & METHODS 

 

Materials. 

Non-magnetic and ferromagnetic green fluorescent carboxylated polystyrene microspheres 

(39 µm in diameter) were purchased from Spherotech (Libertyville, Illinois, USA). Poly (allylamine 

hydrochloride) (PAH, MW ~ 70 000 g/mol), sodium poly (styrene sulfonate) (PSS, MW ~ 70 000 

g/mol) and poly (acrylic acid) (PAA, MW ~ 450 000 g/mol) were obtained from Sigma Aldrich 

(Steinheim, Germany). A 5’-Cy5-terminal 3’-amino-terminal labeled 29-mer oligonucleotide was 

purchased from Eurogentec (Seraing, Belgium). Bovine serum albumine (BSA) and 2-[N-

morpholino]ethanesulfonic acid (MES) were purchased from Sigma, PBS Dulbecco’s from Invitrogen 

(Merelbeke, Belgium) and Tween-20 from Calbiochem (Darmstadt, Germany). EDC (1-ethyl-3-(3-

dimetyl aminopropyl) carbodiimide HCl) was obtained from Perbio Science (Erembodegem, 

Belgium). Tris(hydroxymethyl)-aminomethan-hydrochlorid (Tris-HCl), p-nitrophenyl phosphate 

disodium salt (hexahydrate) and disodium carbonate were purchased from Merck (Darmstadt, 

Germany). Inulin solution: 10% (w/v); degree of polymerization = 11. Biotinylated alkaline 

phosphatase was purchased from New England BioLabs Inc. (Ipswich, Boston, USA). 

 

Layer-by-Layer coating of the microspheres. 

PAH and PSS stock solutions were prepared in 0.5M NaCl (2 mg/ml). PAA was dissolved in 

0.5M NaCl to a final concentration of 1 mg/ml. 1 ml of the (stock) suspension of non-magnetic 

(green fluorescent, carboxylated, 39 µm) microspheres (approx. 400 000 microspheres/ml) was 

centrifuged at 450 rpm for 1 minute. The supernatant was aspirated and the microspheres were 

washed with a 0.05% Tween-20 solution (in deionized water). After resuspension of the 

microspheres, the centrifugation and washing procedure was repeated a second time. 
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Figure 2: Schematic representation of the LbL coating of microspheres. Oppositely charged polyelectrolytes are sequentially 
adsorbed on the negatively charged non-magnetic polystyrene microspheres (PAH = poly (allylaminehydrochloride); PSS = 
poly (styrenesulfonate); PAA = poly (acrylic acid)). Ferromagnetic chromium dioxide nanoparticles (CrO2 NP, <450 nm) are 
added in between two PAH layers. 

 

As illustrated in Figure 2 the non-magnetic microspheres were LbL coated by suspending 

them in 1 ml PAH solution; the suspension was continuously vortexed (1000 rpm, 25°C) for 15 min. 

The non-adsorbed PAH was removed by repeated centrifugation and washing. Subsequently, the 

microspheres were dispersed in deionized water containing the sub 500 nm chromium dioxide 

nanoparticles (CrO2 NP) which were obtained by filtration of a chromium dioxide nanoparticle 

dispersion through a membrane filter with 450 nm pores. The size of the CrO2 NP was measured 

with a Zetasizer Nano ZS (Malvern, Worcestershire,UK). The microsphere dispersion was 

continuously shaken for 15 min and the excess of CrO2 NP was removed by repeated 

centrifugation/washing steps. The third, fourth… polyelectrolyte layer was applied in a way similar to 

the first layer. Finally the microspheres are coated with 6 layers in the following order: PAH / CrO2 

NP / PAH / PSS / PAH / PAA. 
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These LbL coated microspheres were resuspended in 1 ml of deionized water and 

subsequently encoded (see below). 

 

Encoding of the microspheres. 

The LbL coated micropsheres were encoded by spatial selective photobleaching as previously 

described 15. An in-house-developed encoding device was used, being a microscopy platform 

equipped with an Aerotech ALS3600 scanning stage, a SpectraPhysics 2060 Argon laser and an 

Acousto-Optic-Modulator (AA.MQ/A0.5-VIS, A.A-Opto-Electronique, Orsay Cedex, France). The 

encoding process consists of two steps, a writing step (i.e. the photobleaching process) and a 

magnetizing step, during which the CrO2 loaded microspheres are exposed to an external magnetic 

field sufficient to provide them with a magnetic memory. The microspheres are fixed on a grid 

during the encoding process to avoid rotation of the micropsheres between the two steps. 

 

Coupling of oligonucleotides to the LbL coated microspheres. 

5’-amino-terminal oligonucleotides were covalently attached to the (PAA) carboxyl groups at 

the surface of the microspheres by one-step carbodiimide chemistry. In brief, approximately 10 000 

microspheres were washed three times with 100 µl 0.4M MES buffer (0.05% Tween-20, pH of 5) and 

centrifuged. The oligonucleotides were coupled by incubating the micropsheres in 7.5 µl EDC 

solution (100 mg/ml in 0.4M MES buffer, immediately used after preparation) to which 3 µl 

oligonucleotides (33 µM) and 7 µl MES buffer were added. The reaction was allowed to proceed for 

one hour in an Eppendorf thermomixer (at 1500 rpm, 20°C). Subsequently, the microspheres were 

washed three times with 100 µl “assay buffer” (1% BSA, 0.05% Tween-20 in PBS, “blocking step”). 

They were finally washed another three times with 100 µl hybridization buffer (5 mM Tris-HCl, 0.5 

mM EDTA, 1.0 M NaCl) and stored in 200 µl hybridization buffer (± 50 000 microspheres/ml) at 4°C. 

 

Confocal and scanning electron microscopy imaging of the microspheres. 

The memobeads were analyzed using a Bio-Rad MRC 1024 confocal laser scanning system 

(Bio-Rad, Hemel Hempstead, UK) equipped with an inverted microscope (Eclipse TE300D, Nikon, 

Japan). Images were captured with a Nikon Plan Apochromat 60x water immersion objective lens 

(NA of 1.2, collar rim correction) and with a Nikon Plan Apochromat 10x objective lens (NA of 0.45) 



CHAPTER 2 – MULTIFUNCTIONAL LAYER-BY-LAYER COATING OF MICROCARRIERS 

 

 

77 

using the 488 nm laser line from the argon-ion laser and the 647 nm laser line from the Ar/Kr laser. 

For the orientation of the memobeads, a weak external magnetic field was applied with the same 

orientation as the magnetic field applied during the encoding process (relative to the direction of the 

laser light). In the presence of this weak magnetic field, the ‘remanent’ nanoparticles tend to align 

with the magnetic field, so they will turn the microspheres (at which surface they are fixed) into a 

position that the code can be read (the code is present in a plane perpendicular to the direction of 

the laser. The average contrast of the dot code can be defined by the following equation: 
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where  i = a code segment (i.e. a dot) 

   n = total number of code segments (i.e. number of dots) 

   C = fluorescence intensity (C max,i and C min,i as shown in Figure 8) 

 

The coefficient of variation (CV; in %) equals the standard deviation (SD) divided by the 

average contrast (expressed as a percent). The standard deviation on the average contrast was 

calculated as: 
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To determine the average red fluorescence of one microsphere (due to coupled Cy5-

conjugated oligonucleotides) a region of interest (ROI) was drawn around the microsphere and the 

red fluorescence within the ROI was measured using the Matlab 7.1 version equipped with home-

made imaging processing software. The average red fluorescence of each microsphere was defined 

as the average of the fluorescence of all pixels within the ROI. The intra-microsphere coefficient of 

variation (CV; in %) equals the intra-microsphere standard deviation (SD) divided by the average red 

fluorescence (expressed as a percent). The intra-microsphere standard deviation on the red 

fluorescence was calculated as: 
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where  i = a pixel within the ROI 

   n = number of pixels within the ROI 

   x = fluorescence of a pixel within ROI 

 

Scanning electron microscopy (SEM) measurements on memobeads were carried out using a 

Quanta 200 FEG FEI scanning electron microscope operated at an accelerating voltage of 3 kV. A 

drop of memobeads suspension was deposited onto a silicon wafer and dried under nitrogen stream 

followed by sputtering with gold before analysis. 

 

Coupling of streptavidin and biotinylated alkaline phosphatase to LbL coated microspheres and 

lyophilization of the microspheres. 

Streptavidin molecules were covalently attached to the (PAA) carboxyl groups at the surface 

of the microspheres by the two-step carbodiimide-method. In brief, approximately 400 000 

microspheres (in 800 µl of “activation buffer”: 0.1M Na2HPO4/NaH2PO4, 0.05% Tween-20, pH 6.3) 

were activated with 100 µl EDC (50 mg/ml); at the same time the active intermediate was stabilized 

with 100 µl sulfo-NHS (50 mg/ml). Note that the storage and handling of EDC has to be done under 

proper conditions (EDC is very sensitive to moisture). The microspheres were then washed twice 

with 0.05 M MES-buffer (0.05% Tween-20, pH 5) and centrifuged (4000 rpm, 30 seconds). 

Subsequently the streptavidin molecules were coupled by incubating the microspheres in 1 ml 

streptavidin solution (1 mg/ml) for 2 hours in an Eppendorf Thermomixer (250 rpm). Finally the 

microspheres were washed twice with “assay buffer” (1% BSA and 0.05% Tween-20 in PBS) to avoid 

non-specific binding to un-reacted coupling places later on (“blocking step”). The streptavidin coated 

microspheres were stored in 2 ml “assay buffer” (± 200 000 microspheres/ml) at 4 °C. A sample of 

100 000 microspheres was added to 100 μl biotinylated alkaline phosphatase (0.5 mg/ml), and 

incubated during 1 hour on a rocker at 250 rpm. The microspheres were then washed for 3 times 

with 200 μl assay buffer in order to remove any excess of free phosphatase molecules. They were 

then washed twice with 100 µl Tris-buffer, resuspended in 100 µl Tris-buffer, and finally diluted with 

100 µl inulin solution (10% w/v in distilled water) or with distilled water.  The microspheres were 

subsequently immersed into liquid nitrogen for 10 seconds, and immediately thereafter lyophilized 

in a Lyovac GT4 lyophilisator with the conditions described in Table 1. 
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Table 1: Procedure and settings of the lyophilization process. 

Process Temperature (°C) / pressure 

(mBar) 

Duration (minutes) 

Start -45 - 

First drying -45 / 0.8 - 1.0 800 

Second drying 0 / 0.1 - 0.2 

10 / 0.1- 0.2 

120 

420 

 

Alkaline phosphatase quality control test. 

The lyophilized microspheres were resuspended into 200 µl assay buffer (100 000 

microspheres/200 µl) and, subsequently, 2 μl of this suspension was added to 150 μl of substrate 

solution (p-nitrophenyl phosphate disodium salt (hexahydrate) dissolved in 0.1M Tris-HCl at 0.1% 

w/v and pH=8.4). They were allowed to incubate for exactly thirty minutes. The reaction was 

stopped by adding 20 μl of 2 M Na2CO3, which immediately changes the pH of the solution so that 

the enzyme is not active anymore. The microspheres were then centrifuged, and a volume of 120 μl 

of the supernatant of was transferred to one well of a 96-well plate. The absorbance was read out in 

a plate reader by excitation with 405 nm wavelength light. 

 

Coupling of human TNF-α antibodies to LbL coated microspheres and lyophilization of the 

microspheres. 

‘Capture’ antibodies were covalently attached to the (PAA) carboxyl groups at the surface of 

the microspheres by the two-step carbodiimide-method. In brief, approximately 10 000 

microspheres (in 80 µl of “activation buffer”: 0.1M Na2HPO4/NaH2PO4, 0.05% Tween-20, pH 6.3) 

were activated with 10 µl EDC (50 mg/ml); at the same time the active intermediate was stabilized 

with 10 µl sulfo-NHS (50 mg/ml). The microspheres were then washed twice with 0.05 M MES-buffer 

(0.05% Tween-20, pH 5) and centrifuged (4000 rpm, 30 seconds). Subsequently the antibodies were 

coupled by incubating the microspheres in 30 µl antibody solution (83µg/ml) for 2 hours in an 

Eppendorf Thermomixer (250 rpm). Finally the microspheres were washed twice with “assay buffer” 

(1% BSA and 0.05% Tween-20 in PBS) to avoid non-specific binding to un-reacted coupling places 

later on (“blocking step”). The microspheres were stored in 200 µl “assay buffer” (± 50 000 

microspheres/ml) at 4 °C. Approximately 500 microspheres were resuspended into 200 µl assay 

buffer. The tubes were then submersed during a few seconds in liquid nitrogen, and immediately 
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thereafter freeze-dryed following conditions described above in Table 1. They were then stored at 

4°C. Instead of assay buffer (BSA), several other cryoprotectants (lactose, sucrose, glycerol, trehalose 

dihydrate) and distilled water were also used. The same procedure was followed for those vials. 

 

Quality control test with AF647® labeled antibodies. 

A volume of 100 µl AlexaAFluor
®
 647 labeled goat anti-mouse antibody solution (2 µg/ml) 

was added to 100 microspheres and incubated during 1 hour on a rocker at 250 rpm. The red 

fluorescence was detected as described above. 

 

 

RESULTS AND DISCUSSION 

 

Ferromagnetic coating of the microspheres by surface polymerization. 

Figure 3 shows confocal images of a ferromagnetic fluorescent polystyrene microsphere 

which was commercially available. According to the manufacturer’s information, the magnetic 

surface-polymerized microspheres are prepared by entrapping CrO2 particles mixed with styrene 

(monomer) at the surface of pre-made polystyrene microspheres by polymerization of the styrene.  

 

 

 

Figure 3: Confocal optical sections of a magnetic surface-polymerized encoded microsphere (ø = 39 µm). The dot code is 
written in the central plane of the microsphere (0 µm). Magnetic particles at the surface of the microspheres (leftmost image) 
result in shaded areas (indicated by the circles), even in the central plane (rightmost image). The scale bar is 20 µm. 

 

Clearly, the surface of such ‘surface-polymerized’ microspheres is not homogeneously 

covered with the magnetic particles; at certain locations even large aggregates of CrO2 particles can 
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be present. It is important for both encoding and decoding, that the microspheres are sufficiently 

transparent to the laser light and the emitted fluorescence. The CrO2 aggregates, however, locally 

attenuate the laser light and fluorescence. In addition, the chromium dioxide aggregates also cause 

the appearance of “shadows” in the inner part of the microspheres. Figure 4B shows an electron 

microscopy image of those microspheres. CrO2 particles are indeed present at the surface of 

magnetic surface-polymerized microspheres, with polystyrene units in-between, but they are, 

however, not totally covered with polystyrene, and the surface is rather rough compared to the 

smooth surface of non-magnetic microspheres (Figure 4A). 

Figure 5 shows the result of the decoding of both a non-magnetic (Figure 5A) and a magnetic 

(surface-polymerized) (Figure 5B) microsphere carrying a dot code in its central plane. Note that 

both microspheres were decoded immediately after the encoding process, thus without any 

movement/rotation of the microspheres between the encoding and decoding step. The fluorescence 

intensity is measured along the dot code (right panels). While the dot code can be read perfectly in 

Figure 5A, in Figure 5B, the shadows partially obscure the bleached code segments and do not allow 

clear visualization of the code. 

 

 

 

Figure 4: Electron microscopy images of A/ Non-magnetic PS microsphere, and B/ Magnetic surface-polymerized 
microsphere. The latter one has a rough surface due to the presence of the magnetic nanoparticles. 
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Figure 5: Decoding of non-magnetic (A) and magnetic surface-polymerized (B) microspheres. Left column: confocal images 
of the central plane of the microspheres. Middle column: magnification of the encoded area. Right column: fluorescence 
intensity profile measured along the code. In Figure B, the shadows partially obscure the bleached code segments and do 
not allow clear visualization of the code. Decoding was performed immediately after the encoding process, thus without any 
movement/rotation of the microspheres between the encoding and decoding step. 

 

 

Figure 6 shows red fluorescent images of both non-magnetic (Figure 6A, left panel) and 

magnetic (surface-polymerized) microspheres (Figure 6B, left panel) loaded at their surface with red 

(Cy5) labeled 29-mer oligonucleotides. Compared to the surface of the non-magnetic spheres (Figure 

6A), the red fluorescence at the surface of the magnetic (surface-polymerized) microspheres (Figure 

6B) seems less homogeneous. It indicates that the surface of the magnetic spheres was not 

homogeneously covered with the red labeled 29-mer oligonucleotides. The right panels in Figure 6 

show scanning electron microscopy images of the surface of the microspheres; chromium dioxide 

particles seem present in the outer surface of the magnetic surface-polymerized microspheres, 

which was also observed in Figure 4B; hence we expect no polystyrene (and thus no carboxyl groups) 

at those regions in the surface, which very likely explains why their surface is not homogeneously 

covered with 29-mer oligonucleotides (Figure 6, left panel). 
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Figure 6: Red fluorescence microscopy images (left) and SEM images (right) of non-magnetic microspheres (A), magnetic 
surface-polymerized microspheres (B) and magnetic LbL coated microspheres (C) after the coupling of Cy5-labeled 29-mer 
oligonucleotides. The scale bar in fluorescence microscopy images is 100 µm while it is 20 µm in the SEM images. Even 
though the laser power to excite Cy5 was approximately 7.5 times less in A and C (compared to B), the red fluorescence at 
the surfaces of the carriers is less intense in the case of the magnetic surface-polymerized microspheres (B). In B 
aggregated CrO2 NP are heterogeneously spread over the surface and partially present outside the surface. The CrO2 NP at 
the surface of LbL coated microspheres (C) are not as sharp as those at the surface of magnetic surface-polymerized 
microspheres (B), very likely due to the fact that they are covered with extra polyelectrolyte layers. 
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Ferromagnetic coating of the microspheres by layer-by-layer technology. 

The observations in Figure 5 and Figure 6 clearly show the need to design polystyrene 

microspheres that (a) are sufficiently magnetic without having chromium dioxide aggregates at their 

surface (to avoid shadows) and (b) can be homogeneously loaded with capture probes. Therefore, as 

schematically shown in Figure 2, six layers of poly-electrolytes and ferromagnetic chromium dioxide 

nanoparticles were applied by layer-by-layer (LbL) technology on the surface of the polystyrene 

microspheres 25. CrO2 NP, smaller than 0.45 µm (as obtained by the filtration of a chromium dioxide 

nanoparticle dispersion through a 0.45 µm pore-filter), were added in between two PAH layers; in 

order to obtain carboxyl groups at the surface, the final layer in the LbL coating was PAA. 

 

 

Figure 7: Confocal images of the top surface and the central plane of non-magnetic, magnetic surface-polymerized and 
magnetic LbL coated microspheres. Not-aggregated CrO2 NP are homogeneously distributed over the surface of magnetic 
LbL coated microspheres. Hence, shaded areas are not present in the central plane. The scale bar is 50 µm. 
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Figure 8: Normalized fluorescence intensity profiles of identical dot codes written in the central plane of non-magnetic 
microspheres (A; 3 spheres were encoded), magnetic surface-polymerized microspheres (B; 3 spheres were encoded) and 
magnetic LbL coated microspheres (C; 3 spheres were encoded). Normalized values were calculated as the ratio between 
the fluorescence intensity and the maximum fluorescence intensity along the dot code. Decoding was performed immediately 
after the encoding process, thus without any movement/rotation of the microspheres between the encoding and decoding 
step. 

 

As the confocal microscopy images of the top surface of the microspheres (Figure 7, left 

panels) show, when applied by LbL coating the CrO2 NP  seem more homogeneously distributed over 

the surface of microspheres, without the occurrence of aggregates. This was confirmed by SEM 

images (see Figure 6, right panel). Especially, shadows in the central plane of the LbL coated 

microspheres were not observed (Figure 7, right panels) which facilitates a correct decoding. Figure 
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8 shows the (normalized) fluorescence intensity profiles of a dot code written in both non-magnetic, 

magnetic surface-polymerized and magnetic LbL coated microspheres. Note that all microspheres 

were decoded immediately after the encoding process, thus without any movement/rotation of the 

microspheres between the encoding and decoding step. Clearly, the dotcode written in magnetic LbL 

coated microspheres (Figure 8C) is much more uniform compared to the dot code written in 

magnetic surface-polymerized microspheres (Figure 8B). This observation is supported quantitatively 

by the information in Table 2.  

 

Table 2: Contrast values (and corresponding coefficients of variation, CV) measured along the dot code intensity profiles of 
Figure 8. 

Non-magnetic microspheres Magnetic surface-polymerized 

microspheres 

Magnetic LbL coated microspheres 

Contrast CV (%) Normalized 

minimum 

Contrast CV (%) Normalized 

minimum 

Contrast CV (%) Normalized 

minimum 

0.153 18 0.112 0.079 27 0.051 0.083 15 0.062 

0.141 16 0.100 0.068 46 0.005 0.094 11 0.077 

0.171 12 0.133 0.066 38 0.017 0.105 9 0.086 

Normalized minimum = code segment which minimal differs from un-bleached local background fluorescence= 

min
max,

min,max,







 

iC

iCiC

 

 

The average contrast for the different kinds of beads is reported together with the 

corresponding coefficient of variation. Table 2 also shows the “normalized minimum”, which is the 

lowest contrast value found in the dot code. The profiles of the codes written in the central plane of 

the surface-polymerized microspheres exhibit a very high CV (37% on average), compared to that of 

non-magnetic microspheres (15% on average), due to the presence of code segments that are 

almost indistinguishable from the unbleached background fluorescence (which can also be seen in 

Table 2 from the ‘normalized minimum’ values). The CVs along the dot code profiles measured in the 

magnetic LbL coated microspheres, however, are 12% on average, which is far below that of the 

magnetic surface-polymerized microspheres and similar to the non-magnetic microspheres. Here all 

code segments are clearly distinguishable from the unbleached local background fluorescence, as 

can be seen in Table 2 from the ‘normalized minimum’ values. 

Note that in these experiments, 39µm sized polystyrene microspheres are used. The LbL 

coating procedure can be applied on microspheres with other sizes as well. The minimal size of the 

microspheres is especially determined by the length of the code which has to been written in the 
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microspheres. For more information regarding the length of the code, we refer to Braeckmans et al. 

15
   

 

 

Figure 9: A magnetic LbL coating of the microspheres allows bringing the microspheres into a correct readout position. (a) 
Confocal image of the central plane of a magnetic LbL coated microsphere just after being encoded with a bar code; during 
the encoding process the microspheres were exposed to a strong magnetic field in order to provide them with a remanent 
magnetic direction. (b-h) Confocal images of the central plane of the microsphere while randomly moving. (i) Confocal image 
of the central plane of the microsphere upon bringing the microsphere back in a (weak) magnetic field: it turns to its original 
orientation (compare images A and I) which permits reading the code. The scale bar is 20 µm. 

 

Positioning of magnetic LbL coated microspheres in a magnetic field. 

Figure 9 shows a magnetic LbL coated barcoded polystyrene microsphere exposed to a 

magnetic field: the CrO2 NP in the LbL coating and the magnetic field bring the bar code to the 

position allowing readout of the code. We note that the CrO2 NP (a) keep their magnetic memory, as 

expected, and (b) are immobilized in the LbL coating which is also a requirement to be able to 

properly orient the micropsheres upon applying the magnetic field for decoding. The fact that the 

CrO2 NP are sufficiently fixed on the microspheres is not surprising since they are strongly bound by 

electrostatic interactions with the polycations of the LbL coating (Figure 2). 
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On one hand, smaller CrO2 NP allow a more uniform readout of the code because the 

shadows in the central plane are less pronounced. On the other hand, the force required to turn the 

microspheres into the appropriate position, which is related to the size and amount of the magnetic 

CrO2 NP, should be strong enough to overcome the interaction forces between the microsphere and 

the glass surface of the recipient. Figure 10 shows polystyrene microspheres that were LbL coated 

with CrO2 NP differing in size (respectively < 100 nm, < 220 nm and < 450 nm). The CrO2 NP were 

obtained by filtration of a chromium dioxide nanoparticle dispersion through respectively a 100 nm, 

220 nm and a 450 nm pore-filter. When coated with CrO2 NP smaller than 220 nm, the positioning of 

the microspheres, upon applying a magnetic field, did not always work perfectly. This means that the 

total magnetic force of the sub 220 nm sized nanoparticles, coated on one microparticle, was not 

high enough to turn around the relative huge microparticle. Conversely to the positioning of 

microspheres coated with larger CrO2 NP, which took place immediately upon applying the magnetic 

field. We concluded that the preferred size range of the CrO2 NP is between 220 and 450 nm. 
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Figure 10: Confocal images of the top surface and the central plane of magnetic surface-polymerized microspheres (A) and 
magnetic LbL coated microspheres (B,C and D). The latter ones were coated with CrO2 NP with different sizes (B: < 100 nm; 
C: < 220 nm and D: < 450 nm). The smaller the CrO2 NP, the fewer shadows at the central plane. However, when coated 
with CrO2 NP, smaller than 220 nm, the positioning of the microspheres did not always work perfectly. The scale bar is 50 
µm. 
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Capturing oligonucleotides at the surface of LbL coated encoded microspheres. 

Figure 6B and Figure 6C (left panels) show fluorescence images of both magnetic surface-

polymerized and magnetic LbL coated microspheres loaded at their surfaces with Cy5 labeled 29-

mer oligonucleotides. Unlike the surfaces of surface-polymerized micropsheres, the surfaces of the 

LbL coated ones seem more homogeneously covered with Cy5 labeled oligonucleotides. This is most 

likely due to the fact that the CrO2 NP at the surface of the microspheres were also coated with PAA 

(Figure 2), providing the whole surface of the beads with carboxyl groups. From the SEM images in 

Figure 6 one can clearly see that the CrO2 NP are coated with extra polymer layers: the particles do 

not look so sharp (Figure 6C, right panel) as when they are not covered (Figure 6B, right panel). This 

is also confirmed in Table 3, where the red fluorescence intensity values at the surfaces of non-

magnetic, magnetic surface-polymerized and magnetic LbL coated microspheres is analyzed. The 

magnetic LbL coated microspheres have an intra-microsphere CV on their red fluorescent signal 

around 40%, which is similar to that of the non-magnetic microspheres. The magnetic surface-

polymerized ones, however, show CVs of approximately 70-90%, indicating that the probes are 

inhomogeneously loaded across the surface. The magnetic LbL coated microspheres also have an 

increased loading capacity, as can be seen from the average red fluorescence which is 4 times higher 

than that of the non-magnetic ones. While the non-magnetic and LbL coated microspheres have a 

similar inter-microsphere CV (respectively 14.2% and 13.8%), the magnetic surface-polymerzied 

microspheres show a higher inter-microsphere CV of around 27%. In addition, the average red 

fluorescence of the latter ones is approximately 50 times less than that of the magnetic LbL coated 

microspheres. Clearly, besides the improved visibility of the code, the LbL coating of the 

microspheres also increases the capacity (and quality) to load probes (like oligonucleotides) at the 

surface, which can be easily explained by the fact that LbL coating results in a higher number of 

carboxyl groups at the surface. 

 

 

Table 3: Analysis of the coupling of Cy5-labeled 29-mer oligonucleotides to the carboxyl groups at the surface of 7 surface-
polymerized microspheres and 7 LbL coated microspheres. Although the power of the laser to excite Cy5 was approximately 
7.5 times less in the case of the non-magnetic and the magnetic LbL coated microspheres (compared to the magnetic 
surface-polymerized microspheres), the red fluorescence at the surface is less intense in case of the magnetic surface-
polymerized microspheres. 

Non-magnetic microspheres Magnetic surface-polymerized 

microspheres 

Magnetic LbL coated microspheres 

Average 

fluorescence 

CV (%) Average 

fluorescence 
a
 

CV (%) Average 

fluorescence 

CV (%) 

40.5 39.3 39.0 80.1 179.3 37.4 
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49.3 39.9 24.4 65.1 130.7 42.9 

47.4 37.7 27.0 84.3 172.3 37.5 

42.6 38.0 22.3 68.6 176.3 38.3 

56.1 36.1 27.1 60.8 167.2 41.1 

40.0 33.0 38.2 96.6 138.4 47.8 

40.8 39.1 26.3 90.5 118.4 40.8 

41.0 31.4 20.1 81.6 175.6 47.5 

a
 7.5 times higher excitation 

 

The stability of the LbL coated microspheres. 

The stability of the LbL coated microspheres can be seen from different points of view. First 

of all, regarding their use in multiplex assays, they should be decodable at any time. Degradation or 

loss of the code must not happen at all. In the past, chemical and light stability experiments that 

were performed on non-magnetic microspheres have shown that the code was resistant against 

several chemical solvents, and that the code was stable for at least several months when the 

microspheres were continuously exposed to daylight, respectively. This in contrast to color-encoded 

microcarriers (such as xMAP microparticles) that have to be handled in the dark as bleaching of the 

fluorophores by prolonged exposure to light results in false codes 26. Another issue of such 

microcarriers is the possibility of misclassification due to storage 
27

. Meanwhile we have introduced 

the LbL modification of those microspheres. Because this modification does not affect the 

fluorescence properties of the core microspheres (the coating is only applied at the surface of the 

microspheres), we can presume that those results also hold for the LbL coated microspheres. 

Secondly, one has to be concerned also about the stability of the LbL coated surface. Because the 

latter one is functionalized, any damage by external factors could influence the coupling of 

biomolecules, which could directly affect their use in multiplex assays, even if the code would still be 

readable. 

In order to get an idea about the strength of the LbL coated microspheres, they were 

challenged by autoclaving and freeze-drying. The autoclaving of those microspheres is important 

when they would be used as cell-carriers (for the development of cell libraries on a suspension 

array), as has been demonstrated by Fayazpour et al. 28 In order to allow the growth of cells at the 

surface of the encoded microspheres, it would be recommended to make use of sterile batches of 

encoded microspheres. Figure 11 shows the decoding of LbL coated memobeads before and after an 

autoclaving process during 20 minutes, and demonstrates that the autoclaving has no negative 

effect on the decoding of the memobeads, which indicates that neither the polystyrene core matrix 
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of the microspheres, nor the LbL coating and the magnetic orientation of the CrO2 NP have been 

destroyed. Indeed, changes in the LBL coating or displacement of the magnetic nanoparticles would 

have led to problematic orientation of the beads in the magnetic field, making the read-out of the 

code impossible. As is shown by Fayazpour et al., cells can easily bind to and grow at the surface of 

the microspheres 
28

. 

 

Figure 11: Confocal image of encoded memobeads (A) before and (B) after autoclaving. 

 

Lyophilization on the other hand is a process that is often applied for the preparation of 

research and diagnostic reagent kits for prolongation of their storage time period by protecting them 

against hydrolysis and contamination, and for their flexible transport. The basic principle of 

lyophilization is the removal of water molecules from materials via sublimation (at a critical 

temperature/pressure point, a solid state of a material can be converted into its gas state). The 

composition and structure of the material will stay intact, when this dehydration process is carefully 

applied. Lyophilization of the LbL coated microspheres was done as described above (Table 1). 

Different parameters were tested, such as the physical properties of the microspheres, the 

resistance of the code, and the activity of coupled biomolecules (alkaline phosphatase, antibodies). 

 

Figure 12: Absorbance as a function of the concentration of alkaline phosphatase (ng /10 µl) which was prior to the quality 
test lyophilized in 5% inulin (A) or water (B), or non-lyophilized (C). Two different batches were analyzed (A and B). 
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To test the activity of ‘free’ alkaline phosphatase (AP) after free-drying, several AP dilutions 

(diluted in water or 5% inulin solution) were lyophilized, and their activity was subsequently tested 

and compared with no lyophilized control samples by means of the AP quality test: 150 µl substrate 

solution was added to 10 µl of each dilution. Linear fittings were applied to the data points, as 

shown in Figure 12 (Left and right graphs show two independent replications for each condition). As 

expected, when lyophilized without any protecting agent (samples B), the activity of the enzyme 

decreased enormously and the enzyme is almost totally destroyed. In the presence of a protecting 

agent such as 5% inulin (samples A), however, the enzyme activity equaled that of fresh made non-

lyophilized enzyme dilutions (samples C), meaning that the lyophilization did not destroy the enzyme 

activity at all. Table 4 shows the activity of immobilized AP that is coupled to LbL coated 

microspheres, after they were a) lyophilized in a 5% inulin solution and then stored for 2 days at 4°C, 

b) lyophilized in water and then stored for 2 days at 4°C, and c) not lyophilized but only stored for 

two days at 4°C. The activity was compared with that of control microspheres, which were 

microspheres that were tested for AP activity, immediately after immobilization of AP. The activity 

decreased in all cases, but lyophilization seems to be the best option; up to 70% of the activity of 

freshly made microspheres could be maintained when lyophilization was performed in the presence 

of a protecting agent such as 5% inulin. Remarkably, lyophilization in water still preserves half of the 

activity, while free enzyme molecules were almost totally destroyed when they were lyophilized in 

water (Figure 12). This means that the surface of the microspheres protects the enzymes in one or 

another way, probably due to the fact that the enzyme molecules are densely packed near each 

other. 

Table 4: Activity of alkaline phosphatase coupled to microspheres as a function of their storage condition. 

Types of microspheres Absorbance ratio’s between the 

microspheres and control 

microspheres
a
 

Microspheres lyophilized in 5% inulin solution and stored for 2 days at 4°C 69.7 

Microspheres lyophilized in water and stored for 2 days at 4°C 47.5 

Non-lyophilized microspheres that are immediately stored for 2 days at 4°C   30.4 

    
A
 Fresh made microspheres that were immediately tested for their enzymatic activity. 

 

It was also tested whether lyophilized LbL coated microspheres maintain their ability to 

capture antigens. To this end, LbL coated microspheres were coupled with mouse IgG antibodies, 
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subsequently lyophilized and immediately thereafter stored for 2 days at 4°C. They were then 

incubated with a solution of red fluorescently labeled goat anti-mouse IgG antibodies. As a control, 

non-lyophilized LbL coated microspheres were used, that were stored for 2 days at 4°C. Figure 13 

shows red fluorescent images of the microspheres. More or less the same amount of red 

fluorescence can be observed on the lyophilized and non-lyophilized microspheres in the figure (this 

was confirmed by image analysis), meaning that an equal amount of goat antibodies was caught on 

both types. This differs from the AP results (Table 4), which showed that the enzyme (coupled to 

non-lyophilized microspheres) probably degraded during the 2 days storage period at 4°C, while the 

activity of antibodies might be less affected by this storage. More qualitative results are shown in 

Figure 14. Three different batches of LbL coated microspheres were coupled with mouse IgGs and 

each batch was then stored in three different ways for 2 days (4°C, -20°C, and 4°C after 

lyophilization) before quality control, which was done again by testing the affinity reaction with red 

fluorescently labeled goat anti-mouse IgG antibodies. No significant differences were observed 

between the three batches and between the different storage conditions of each batch, which 

shows that the storage condition does not remarkably influence the affinity of the coupled 

antibodies, at least after 2 days of storage. 

 

 

Figure 13: Binding of red fluorescent goat anti-mouse antibodies to lyophilized and non-lyophilized microspheres that were 
coupled with mouse antibodies. 
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Figure 14: Stability of three different batches lyophilized LbL coated microspheres, coupled with mouse IgGs (A, B, C). 
Affinity of the antibodies for coupling red fluorescently labeled goat anti-mouse IgG antibodies was determined immediately 
after storage for 2 days at 4°C, at -20°C, and at 4°C after lyophilization of the microspheres. Note that the measurements 
were normalized to the measurement of red fluorescent control microspheres, that stably emit red fluorescence. 

 

It has been shown so far that LbL coated microspheres, coupled with antibodies, can be 

lyophilized with preservation of their affinity for corresponding biomolecules (‘antigens’). The 

storage was carried out, however, only for 2 days, and much longer storage periods might be 

expected when applying such microspheres in research and/or diagnostic kits. In order to get an idea 

about the impact of the storage time after lyophilization, four different batches of lyophilized 

microspheres, previously coated with mouse antibodies, were stored at 4 °C. After one, two, and 

three weeks, a sample of each batch was tested for its activity to bind to red fluorescently labeled 

goat anti-mouse IgGs. Figure 15 shows that no significant difference could be observed within this 

time period for any of the batches. 
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Figure 15: Stability of four different batches lyophilized LbL coated microspheres, coupled with mouse antibodies (A, B, C 
and D). Affinity of the antibodies for coupling fluorescently labeled anti-mouse antibodies was determined immediately after 
lyophilization, and after one, two, and three weeks storage at 4°C. Note that the measurements were normalized to the 
measurement of red fluorescent control microspheres, that stably emit red fluorescence.     

 

Finally, the capacity of several other cryoprotectants (5% solutions), to protect LbL coated 

mouse IgG coupled microspheres during the lyophilization process, was tested. As can be seen in 

Figure 16, the activity of the microspheres to catch goat anti-mouse IgGs was in each case 

maintained for at least 2 weeks after lyophilization. Based on the fluorescent signals in Figure 16, the 

optimal cryoprotectant for the microspheres seems to be the bovine serum albumin, although this 

experiment was only performed once. No real differences can be observed between the other 

cryoprotectants, which is not remarkable since even lyophilization in distilled water maintains the 

activity. 
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Figure 16: Stability of LbL coated microspheres, coupled with mouse antibodies (A, B, C) and lyophilized in 5% solutions of 
different cryoprotectants. Affinity of the antibodies for coupling fluorescently labeled anti-mouse antibodies was determined 
immediately after lyophilization and after a storage for 2 weeks. Note that the measurements were normalized to the 
measurement of red fluorescent control microspheres, that stably emit red fluorescence. 

 

 

 

CONCLUSIONS 

 

A ‘multifunctional’ layer-by-layer coating, containing CrO2 NP, was applied at the surface of 

digitally encoded microspheres. We showed that the LbL coating allows (a) an optimal (optical) read 

out of the codes, (b) a perfect orientation (within pixel accuracy (0.7 µm/pixel) of the microspheres 

(leading to a correct decoding) and (c) an optimal coupling of capture probes to the surface. Thus far 

the potential of LbL coating has been explored in a number of scientific fields like e.g. drug delivery 

29,30,30,31, for corrosion protection 32, and for the production of biosensors 33. To our knowledge this is 

one of the first studies that experimentally demonstrate that LbL technology indeed allows the 

application of coatings with various advanced functionalities. The LbL coated microspheres can be 
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autoclaved and lyophilized without degradation of the code, and their capacity to react with 

biomolecules remained after lyophilization. We are currently investigating whether the LbL coatings 

surrounding the microspheres would also allow us to quantitatively measure analytes (like proteins 

and nucleic acids) in biological samples such as serum and blood. 
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ABSTRACT 

 

Since a couple of years the “Layer-by-Layer” (LbL) technology is widely investigated for the coating of 

flat substrates and capsules with polyelectrolytes. In this chapter, LbL polyelectrolyte coatings 

applied at the surface of digitally encoded microcarriers were evaluated for the quantitative, 

sensitive and simultaneous detection of proteins in complex biological samples like serum, plasma 

and blood. LbL coated microcarriers were to this end coupled to capture antibodies which were used 

as capturing agents for the detection of tumor necrosis factor (TNF-α), P24 and follicle stimulating 

hormone (FSH). It was found that the LbL coatings did not disassemble upon incubating the 

microcarriers in serum and plasma. Also, non-specific binding of target analytes to the LbL coating 

was not observed. We showed that the LbL coated microcarriers can repeatedly detect TNF-α, P24 

and FSH down to the pg/ml level, not only in buffer, but also in serum and plasma samples. 

Microcarrier-to-microcarrier intra-tube variations were less than 30% and inter-assay variations less 

than 8% were observed. This chapter shows also evidence that the LbL coated  digitally encoded 

microcarriers are ideally suited for assaying proteins in “whole” blood in microfluidic chips which are 

of high interest for “point-of-care” diagnostics. 
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CHAPTER 3 

LAYER-BY-LAYER COATED DIGITALLY 

ENCODED MICROCARRIERS ALLOW 

SENSITIVE QUANTIFICATION OF PROTEINS IN 

SERUM AND PLASMA 

 

 

INTRODUCTION 

Immunoassays, like radio-immunoassays, immunoprecipitation assays and enzyme-linked 

immunosorbent assays (ELISAs), are routinely used in medical diagnostics. ELISAs can be considered 

as the golden immunoassay assay to quantify soluble analytes (antigens) in human samples. As more 

and more protein disease markers are discovered there is a growing need to analyze more types of 

(diagnostic) proteins. ELISAs, however, are not convenient to answer this growing need because (a) 

each protein marker has to be analyzed individually, (b) there is a high consumption of reagents and 

biological samples and (c) it is a labor-intensive and time-consuming technique. To this end, fast, 

inexpensive, accurate immunoassays with increased sensitivity using smaller sample volumes are 

under development.  

Over the last decade, “multiplexing” immunoassays were developed 1. While a “monoplex” 

immunoassay aims to measure the binding of one analyte, present in the biological sample, to its 

receptor, a multiplexing immunoassay aims to measure simultaneously the binding of several 

analytes in the biological sample to their respective receptors. This multiplex approach allows faster 

analysis of a high number of protein markers and both the sample and reagent consumption is 

considerably reduced. 
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Multiplex immunoassay-technologies are divided into respectively “flat surface arrays” and 

“suspension arrays”. To the first category belong the protein microarrays, which use the x,y-

coördinates of the spots of capture probes (antibodies) on a glass plate to identify which targets 

(antigens) are present in a sample 2-4. Like DNA microarrays, protein microarrays, however, struggle 

with localization problems of the capture antibodies upon miniaturization and slow reaction kinetics 

(as the diffusion of the antigens in the sample to the capture antibodies is time-consuming) 
5-7

. The 

use of protein microarrays has also been limited by the high cost of both the microarray 

consumables and the instruments. Suspension arrays may have a number of advantages compared 

to the flat microarrays regarding for instance the reproducibility of the attachment of probes, the 

flexibility in surface chemistry, the flexibility in panel of tests, and improved kinetics 
5,8,9

. Suspension 

arrays use encoded micron sized particles for multiplexing; the code allows knowing which capture 

antibody is bound to the surface of the microcarriers 
8,10,11

. Antigens present in the biological sample 

will bind to their corresponding microcarriers which are added to the sample. Fluorescent labeling of 

the bound antigens can be obtained in different ways, e.g. ‘directly’ by fluorescently labeled 

detection antibodies or ‘indirectly’ by using fluorescently labeled or enzyme-labeled reporter 

molecules that bind to the detection antibodies 
12-14

. Decoding of the ‘positive’ microcarriers (i.e. 

those microcarriers which show fluorescently labeled antigens at their surface) subsequently allows 

knowing which antigens are present in the sample. The microcarrier-based platforms are gaining 

popularity because they can detect antigens as sensitively and as reproducibly as the traditional 

ELISAs 15-20. Current applications of microcarrier-based assays include detection of immunoglobulins 

21
 and cytokines 

16,18-20,22,23
, the analysis of single nucleotide polymorphisms 

24
, DNA methylation 

profiling 25 and gene expression 26. 

Our group introduced the encoding of fluorescent polystyrene microspheres (of about 40 µm 

in size) with a digital barcode by means of “spatial selective photobleaching” (Figure 1, B and C) 
27

. 

The thus encoded microspheres were called “memobeads”. To optimize the surface characteristics 

of memobeads we recently proposed to coat their surface with poly-electrolytes by the “Layer-by-

Layer” (LbL) approach 
28

. The LbL coating is based on the alternate adsorption of oppositely charged 

polyelectrolytes onto a charged substrate (Figure 1 A) 29-32. The LbL coating of the surface of the 

memobeads was proven to be “multifunctional” in the sense that it (a) allows positioning of the 

memobeads for decoding, (b) does not optically interfere with the encoding and reading process and 

(c) allows a high loading of the surface of the microparticles with capture probes (like proteins and 

DNA molecules) 33. 
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Figure 1: (A) Schematic representation of the detection of proteins with LbL coated memobeads. Proteins (antigens) are 
captured from the medium by means of capture antibodies bound to the surface of the encoded microcarriers. To detect the 
bound proteins biotinylated detection antibodies are used. The detection antibodies are labeled with AlexaFluor 647 
conjugated streptavidin. (B) Example of a 39µm sized microcarrier digitally encoded with a barcode. (C) Example of a 39µm 
sized microcarrier digitally encoded with a dotcode. 

 

A major aim of the encoded memobeads is to use them in protein multiplexing. To our 

knowledge it has never been evaluated whether LbL coatings are suitable to bind capture probes 

(antibodies) in such a way that they allow quantitative protein (antigen) analysis. To this end, in this 

chapter we investigate whether LbL coated memobeads allow sensitive and precise detection of 

proteins, not only in buffer but also in complex biological samples like serum and plasma. Clearly, for 

this purpose the LbL coating should remain stable in the serum/plasma which contains many types 

of charged compounds that may interfere with the LbL coating. Also, non-specific binding to the LbL 

coating should be avoided. In addition we investigate whether the LbL coated memobeads allow 

performing protein multiplexing in “whole” blood without “washing” (separating) the memobeads 

from the blood at the time of read out of the microcarriers. “Whole blood analysis” is a challenging 

objective in the field of diagnostics. 
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MATERIALS & METHODS 

 

Materials.  

Non-magnetic fluorescent carboxylated microspheres (CFP-40052-100, ø = 39 µm) were 

purchased from Spherotech (Libertyville, Illinois, USA). Poly (allylamine hydrochloride) [PAH; 28,322-

3], sodium poly (styrene sulfonate) [PSS, MW ~ 70 000; 24,305-1] and poly (acrylic acid) [PAA, MW ~ 

45 000; 18,128-5] were obtained from Sigma Aldrich (Steinheim, Germany). The polymers were 

dissolved into 0.5 M sodium chloride (31434, Sigma Aldrich, Seelze, Germany). Bovine serum 

albumine (BSA, A-7906) and 2-[N-Morpholino]ethanesulfonic acid (MES, M-8259) were purchased 

from Sigma (Bornem, Belgium), PBS Dulbecco’s (14190-094) from Gibco and Tween-20 (655204) 

from Calbiochem. EDC (1-ethyl-3-(3-dimetyl aminopropyl) carbodiimide HCl, 22980) was obtained 

from Perbio Science (Erembodegem, Belgium); desiccated and stored at -20°C. Sulfo-NHS (N-

hydroxysulfosuccinimide sodium salt, 106627-54-7) was purchased from Sigma Aldrich (Steinheim, 

Germany); desiccated and stored at 4°C. Purified anti-human TNFα (551220), recombinant human 

TNFα (551838) and biotinylated mouse anti-human TNFα (554511) were purchased from BD 

Pharmingen (Erembodegem, Belgium). AlexaFluor® 647 labeled streptavidin (S21374) was purchased 

from Molecular Probes (Inc. Invitrogen™, Eugene, Oregon, USA). Rat Follicle Stimulating Hormone 

(FSH), purifed anti-rat FSH antibody, biotinylated anti-rat FSH antibody, blanc and unknown serum 

samples and ELISA buffer were a gift from Biocode-Hycel
TM

 (Luik, Belgium). P24, purified anti-P24 

antibody, biotinylated anti-P24 antibody and blanc plasma samples were a gift from BioMaricTM 

(Ghent, Belgium). 

 

Layer-by-Layer coating of the microspheres. 

A schematic overview, as well as the procedure of the Layer-by-Layer modification is 

described in Chapter 2. 

 

Encoding of the microspheres. 

The encoding process is described in Chapter 2. 
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Coupling of capture antibodies to the LbL coated microspheres. 

‘Capture’ antibodies were covalently attached to the (PAA) carboxyl groups at the surface of 

the microspheres by the two-step carbodiimide-method 
34

. In brief, approximately 10 000 

microspheres (in 80 µl of “activation buffer”: 0.1M Na2HPO4/NaH2PO4, 0.05% Tween-20, pH 6.3) 

were activated with 10 µl EDC (50 mg/ml); at the same time the active intermediate was stabilized 

with 10 µl sulfo-NHS (50 mg/ml). Note that the storage and handling of EDC has to be done under 

proper conditions 35. The microspheres were then washed twice with 0.05 M MES-buffer (0.05% 

Tween-20, pH 5) and centrifuged (4000 rpm, 30 seconds). Subsequently the antibodies were coupled 

by incubating the microspheres in 30 µl antibody solution (83 µg/ml) for 2 hours in an Eppendorf 

Thermomixer (250 rpm). Finally the microspheres were washed twice with “assay buffer” (1% BSA 

and 0.05% Tween-20 in PBS) to avoid non-specific binding to un-reacted coupling places later on 

(“blocking step”). The microspheres were stored in 200 µl “assay buffer” (± 50 000 microspheres/ml) 

at 4 °C.  

As described above, the microspheres were incubated in a 83 µg/ml antibody solution. This 

seemed to be the optimal antibody concentration as a higher antibody concentration did not result 

in a higher loading of the microspheres with antibodies (as observed from measurements using 

AlexaFluor 647 labeled antibodies; data not shown). All of the coupling reactions described above 

were performed at room temperature. 

 

Assay procedure. 

As described below in detail, proteins (antigens) were captured on the LbL coated 

microspheres carrying the capture antibodies. The bound proteins were detected by means of 

biotinylated detection antibodies and AlexaFluor 647 (AF647) conjugated streptavidin, as illustrated 

in Figure 1A. The concentration of biotinylated detection antibody and AF647 conjugated 

streptavidin used for detecting the bound proteins was optimized (data not shown): lower 

concentrations resulted in a decrease of the fluorescence intensity, while higher concentrations did 

not further increase the signal. Note that incubations with AF647 conjugated streptavidin were 

performed protected from light. All of the following steps were performed at room temperature. 

For the detection of TNF-α and P24 in a monoplex assay, approximately 100 microspheres, 

coated with capture antibody, were incubated for 1 hour in 100 µl of standard dilutions spiked with 

respectively TNF-α and P24 (Eppendorf Thermomixer, 250 rpm, 25°C). The dilutions were made in 
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assay buffer, serum or a plasma/buffer mixture, respectively. After 1 hour incubation the 

microspheres were washed with assay buffer. As illustrated in Figure 1, the microspheres were 

subsequently incubated for 1  hour in 100 µl of a biotinylated detection antibody solution (8 µg/ml in 

assay buffer). Finally, the microspheres were washed three times with assay buffer. The labeling of 

the bound detection antibodies with AF647 conjugated streptavidin was done as described below. 

For the simultaneous detection of TNF-α and P24 in the duplex assay, approximately 300 

(encoded) microspheres were used; one third of the microspheres (bearing a dotcode encoding for 

TNF- α) was coated with capture antibody against TNF- α, one third (bearing a dotcode encoding for 

P24) with capture antibody against P24 and one third of the microspheres (bearing a dotcode 

encoding for a control) did not bear antibodies (“control microspheres”). The rest of the procedure 

was done as described above. 

For the detection of FSH, approximately 100 microspheres, coated with capture antibodies, 

were incubated for 2 hours in respectively 25 µl standard dilutions spiked with FSH (in ELISA buffer) 

or 25 µl of unknown serum samples. 100 µl of biotinylated detection antibodies (8 µg/ml in assay 

buffer) was added. The microspheres were subsequently washed three times with assay buffer. 

Labeling of the bound detection antibodies was always done with AF647 conjugated 

streptavidin. The microspheres were incubated for 1 hour in the dark in 100 µl  AF647 conjugated 

streptavidin solution (8 µg/ml). Next, the microspheres were washed three times with 100 µl PBS. 

 

Calibration curves. 

Lyophilized TNF-α, P24 and FSH was reconstituted in respectively assay buffer, ELISA buffer, 

serum or plasma. For each protein, 6 to 9 serial dilutions were made. 

The calibration curves were calculated by the GraphPad Prism software. The 4-parameter 

logistic equation (4-PL) was used to obtain the most precise determination of the protein 

concentration 36: 

  cxd

ab
ay

*101 




 

where x is the logarithmic of the protein concentration, y is the response (i.e. the red 

fluorescence at the surface of the microcarriers), a is the estimated response at zero protein 
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concentration (i.e. the “zero calibrator”), b is the estimated response at infinite protein 

concentration, c is the slope of the tangent midpoint and d is the logarithmic of the midrange 

protein concentration. 

The R
2
-value of the calibration curves together with back-calculations of the standards were 

used to measure the “goodness of fit”. The latter is done by calculating the concentration of each 

standard and then comparing it to the expected concentration using the formula: calculated 

concentration/expected concentration * 100. 

The lower limit of detection (LOD) of a protein was defined as the concentration 

corresponding to the median fluorescence intensity (MFI) plus 3 times the standard deviation of the 

“zero calibrator”. The inter-assay variability was defined as the coefficient of variation (CV; in %) on 

the average value of repeated measurements on identical samples performed at different days. 

 

Microscopy on the microspheres. 

The LbL coated encoded microspheres were decoded using a pseudo-confocal Perkin-Elmer 

CSU-10 scanning unit mounted to an inverted Zeiss microscope equipped with an objective 40x lens 

(NA 0.6) and a cooled Hamamatsu ORCA-ER charge coupled device (CCD) camera. Excitation took 

place with laser light (488nm). Imaging Technology PC-DIG framegrabber boards took care of image 

transfer from the CCD camera to the computer. 

The (red) AlexaFluor 647 fluorescence at the surface of the microcarriers was measured with 

the same instrument, but excitation took place with a halogen lamp. A 647nm LP filter was put in 

front of the lamp to obtain the optimal wavelength. To determine the red fluorescence of a 

microcarrier, a region of interest (ROI) was drawn around the microcarrier and the red fluorescence 

within the ROI was measured using the Matlab 7.1 version equipped with home-made imaging 

processing software. The red fluorescence of each microsphere was defined as the mean of the 

intensity of all pixels within the ROI. 
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RESULTS 

 

Detection of  TNF-α in buffer by LbL coated microcarriers. 

LbL coated microspheres, carrying TNF-α (capture) antibodies, were incubated in different 

TNF-α standard solutions, prepared in buffer. Following the procedure as depicted in Figure 1, they 

were further incubated with biotinylated detection antibodies and AlexaFluor 647 conjugated 

streptavidin. This is the preferred detection method in bead-based assays as (a) biotinylation of 

antibodies is well-known chemistry 
37,38

, (b) approximately three dyes per steptavidin molecule are 

present which results in a (small) amplification of the signal, compared to the use of fluorochrome 

conjugated antibodies, and (c) conjugates with streptavidin give much lower background than those 

with neutralite-avidin 39. 

 

 

Figure 2: Quantitative analysis of TNF-α spiked in buffer. A) Red fluorescence at the surface of the LbL coated microcarriers 
as a function of the TNF-α concentration (A.U. = arbitrary units). Each datapoint is the average value of the red (surface) 
fluorescence of about 20 LbL coated microcarriers (CV’s varied between 4% and 26%). A non-linear four-parameter plot 
accurately fits the data. The lower limit of detection (LOD) equaled 10 pg/ml. B) The red fluorescence of the microspheres 
was measured immediately (▲), 5 (♦), 10 (■) and 20 days (●) after the assay, respectively. R2 values of the non-linear four-
parameter plots range from 0.97 to 0.99 and standard recovery was between 70% and 130% for all standards. Inset: 
representation on a log-log plot: F-tests on the slopes (p=0.9992) and Y-intercepts (p=0.549) of the 4 fitted linear curves 
yielded no significant differences between the curves measured at the different time points. The pooled slope equaled 0.90 
and the pooled Y-intercept equaled 3.72. 

 

As Figure 2A shows, the red fluorescence at the surface of the LbL coated microspheres is 

proportional to the TNF-α concentration in the sample. A non-linear four-parameter logistic plot was 

proven to accurately fit the values. Other immunodetection methods reveal the same type of trend 
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in the relation between the signal and the antigen concentration 
40

. The inset in Figure 3A shows a 

linear fitting applied on the data. 

In Figure 2A the red fluorescence at the surface of the microspheres was measured 

immediately after the assay. To test the stability of the LbL coating and the “capture antibody/TNF-

α/detection antibody/AlexaFluor 647 conjugated steptavidin” construct at the surface of the 

microcarriers, the red fluorescence of the microcarriers was also measured at 5, 10 and 20 days after 

the assay (instead of immediate read out as in Figure 2A). Figure 2B shows that the microcarriers 

keep their red fluorescence indirectly indicating that the antibody-antigen construct remains stable 

at the surface of the microcarriers for at least 20 days. It also indicates that the LbL coating does not 

disassemble within this time interval which is not surprising since LbL coatings have been reported to 

be very stable 
41

. 

 

Figure 3: Quantitative analysis of TNF-a spiked in serum. Each datapoint is the average value of the red (surface) 
fluorescence of 4 to 13 LbL coated microcarriers (CV’s between 6% and 28%). A non-linear four-parameter plot accurately 
fits the data (R2 = 0.98 and standard recovery was between 77% and 117% for all standards). The LOD equaled 16 pg/ml. 
Inset: representation on a log-log plot. 

 

Detection of TNF-a in serum and plasma by LbL coated microcarriers. 

For diagnostic purposes, the stability of the LbL coated microcarriers in more complex media 

like serum and plasma is important, as well as their ability to detect antigens in those media. Figure 

3 shows the outcome of TNF-α measurements by LbL coated microcarriers in not diluted sera spiked 

with TNF-α. A non-linear four-parameter logistic plot was again proven to accurately fit the values 

(R2 = 0.98). As expected, a slightly lower sensitivity was observed than in buffer; the LOD in serum 
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equaled 16 pg/ml compared to 10 pg/ml in buffer, because serum contents generally suppress the 

antibody-antigen interaction 
42

. 

 

 

Figure 4: Quantitative analysis of TNF-a spiked in plasma/buffer matrix (50/50; v/v). Each datapoint is the average value of 
the red (surface) fluorescence of 9 to 16 microspheres (CV’s between 7% and 29%); so there seems no significant difference 
in intra-tube variation whether the LbL coated memobeads are used in buffer, serum or plasma. A non-linear four-parameter 
logistic plots accurately fits the data (R2 = 0.98 and standard recovery was between 70% and 130% for all standards). The 
LOD equaled 23 pg/ml. Inset: representation on a log-log plot. 

 

It is well known that during the separation of serum from blood one may lose some proteins 

of interest which should obviously be avoided in the case of low-abundant proteins. It is therefore 

preferred to analyze plasma (or even “whole” blood) instead of serum. Figure 5 shows the outcome 

of TNF-α measurements by LbL coated microcarriers in a plasma/buffer mixture (50/50; v/v) spiked 

with TNF-α. Clearly, compared to buffer and serum (respectively Figure 2 and Figure 3), in plasma 

the red fluorescence measured at the surface of the microcarriers is lower while also the sensitivity 

is not as high as in buffer and serum (the LOD equals 23 pg/ml). Indeed, plasma compounds may 

non-specifically interfere with the antibody-antigen binding, a phenomenon that was also observed 

with other cytokines and in other bead-based assays. 

As can be concluded from the low LOD values, there is almost no red fluorescence on the LbL 

coated microspheres (carrying TNF-α capture antibodies) incubated in the “zero calibrator”, 

indicating that biotinylated antibodies and AlexaFluor 647 labeled streptavidine do not bind 

aspecifically to the surface of the microcarriers. Also, control experiments in which microcarriers 

without capture antibodies were dispersed in TNF-α spiked in buffer, serum, and plasma, 

respectively, all showed the same negligible red fluorescence after adding biotinylated TNF-α 
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antibodies and AlexaFluor 647 labeled streptavidin (data not shown). It indicates that, even in serum 

and plasma, the LbL coating itself does not aspecifically bind detection antibodies and/or 

fluorescently labeled streptavidin molecules. 

 

Figure 5: Quantitative analysis of P24 spiked in plasma/buffer matrix (50/50; v/v). Each datapoint is the average value of the 
red (surface) fluorescence of 11 to 14 microspheres (CV’s between 12% and 29%); this means that the variation seems 
target independent. A non-linear four-parameter logistic plot accurately fits the data (R2 value = 0.95 and standard recovery 
was between 92% and 106% for all standards). The LOD equaled 34 pg/ml. Inset: representation on a log-log plot. 

 

Detection of P24 in plasma/buffer mixtures by LbL coated microcarriers. 

P24 is a major core protein of the human immunodeficiency virus encoded by the HIV gag 

gene. It is of interest to detect P24 at a very early stage of the infection in order to start drug 

therapy. P24 is currently analyzed by ELISA 43. Figure 5 shows the outcome of P24 measurements in 

plasma/buffer mixtures (50/50; v/v) spiked with P24. As was the case for TNF-α, the red 

fluorescence at the surface of the LbL coated microspheres is proportional to the P24 concentration 

in the sample. A non-linear four-parameter logistic plot was proven to accurately fit the values. The 

LOD equals 34 pg/ml. 
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Figure 6: Quantitative duplex analysis of P24 (▲, code 9) and TNF-α (●, code 23) spiked in plasma/buffer matrix (25/75; 
v/v). Negative control microspheres without capture antibody were included in the test (■, code 14). Each datapoint is the 
average value of the red (surface) fluorescence of 6 to 13 microspheres (CV’s between 4% and 22%). A non-linear four-
parameter logistic plots accurately fit the data (R2 value = 0.95 and standard recovery was between 92% and 106% for all 
standards). The LOD equaled 15 and 18 pg/ml for respectively P24 and TNF-α. Inset: representation on a log-log plot. 

 

TNF-α and P24 multiplex measurements in plasma/buffer mixtures by LbL coated microcarriers. 

As described in the introduction, the purpose the LbL coated encoded microcarriers is to use 

them for multiplexing. We subsequently evaluated the potential of LbL coated microcarriers to 

measure simultaneously TNF- and P24 in a plasma/buffer mixture (25/75; v/v). To this end 3 types 

of encoded LbL coated microcarriers were simultaneously dispersed in the TNF-, P24 spiked 

plasma/buffer mixtures: to one type of microcarriers (with a “TNF- dot code”; see inset in Figure 6) 

TNF- antibodies were coupled, the second type of microcarriers (with a “P24 dot code”; see inset in 

Figure 6) was loaded with P24 antibodies while the third type of microcarriers (with a “control dot 

code”) did not carry antibodies. 

Figure 6 shows the outcome of the simultaneous measurement of TNF- and P24 in spiked 

plasma/buffer (25/75; v/v) samples. As observed in the monoplex assays (Figure 4 and Figure 5), a 

quantitative relationship is seen between the red fluorescence at the surface of the P24 and TNF- 

microcarriers and the P24 and TNF- concentration in the samples. The specificity was confirmed 

under monoplex conditions; microcarriers bearing TNF- capture antibodies showed negligible red 

fluorescence after being dispersed in P24 spiked plasma samples, while microcarriers bearing P24 
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capture antibodies showed negligible red fluorescence after being dispersed in TNF- spiked plasma 

(results not shown). It seems that, for a given P24 and TNF- concentration in the sample, the red 

fluorescence of the microcarriers in the duplex assay (Figure 6) exceeds the one of the microcarriers 

in the monoplex assay (Figure 4 and Figure 5). This is probably due to less interference with plasma 

proteins as a 25/75 (v/v) plasma/buffer mixture was used in Figure 6 while a 50/50 (v/v) 

plasma/buffer mixture was used in Figure 4 and Figure 5. 

 

FSH measurements in clinical serum samples by LbL coated microcarriers. 

In the experiments above the potential of LbL coated microcarriers was evaluated in 

buffer/serum/plasma samples which were spiked with respectively P24 and TNF-. We subsequently 

tested whether the LbL coated microcarriers can specifically and precisely measure a protein target 

(FSH) in (“real, unknown”) serum samples. 

 

 

Figure 7: A) Quantitative analysis of FSH spiked in ELISA buffer (▲) and determination of FSH concentration in 4 unknown 
samples (○) (extrapolation process: 4 vertical lines). B) The same assay was repeated 4 times (▲, ■, ▼ and ♦). Each 
datapoint is the average value of the red (surface) fluorescence of 15 to 34 microspheres (CV’s between 8% and 23%). Four-
parameter logistic plots accurately fit the data (R2 between 0.9999 and 1 and standards recovery was between 92 and 120% 
for each standard). The LOD equaled between 0.9 and 1.5 ng/ml. Inset: representation on a log-log plot. 
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Table 1: The FSH concentration in four different mouse serum samples measured with the LbL coated microcarriers (by the 
extrapolation process visualized in Figure 7B). a 

Samples A B C D Average (ng/ml) SD CV% 

1 3.0 2.6 2.9 2.8 2.8 0.2 7.1 

2 5.7 5.1 5.9 5.1 5.4 0.4 7.4 

3 10.1 9.6 10.1 9.7 9.9 0.3 3.0 

4 19.1 18.4 18.3 20.8 19.2 1.1 5.7 

a
 Each sample was analysed four times (A, B, C and D). SD is the standard deviation on the average concentration; CV (in %) 

is the coefficient of variation (i.e. the standard deviation divided by the mean). 

 

Typically, when quantitatively assaying an analyte in serum samples by ELISA, an internal 

calibration curve is first made by the use of sera spiked with (known) concentrations of the analyte 

of interest. The same procedure is applied in bead-based assays 18. The concentration of the analyte 

in the “unknown” sample is then extrapolated from the calibration curve. Figure 7A shows the FSH 

calibration curve and the extrapolation of the signal as measured in the 4 unknown samples (1 to 4 

in Figure 7A). The whole assay was repeated 4 times to test its repeatability. Figure 7B shows the 4 

calibration curves and the 4 measurements on the 4 unknown samples. Clearly, the calibration 

curves do not differ significantly. The inter-assay variability for each of the unknown samples was 

very low (CV below 8%, see Table 1) which is comparable with the variability observed in other bead-

based assays 18,44,45. All together Figure 7B indicates that the LbL coated microspheres can measure 

repeatedly the FSH concentrations in sera. Note that only 25 µl serum was needed to obtain those 

repeatable results. 

 

Influence of the number of LbL coated microcarriers on the sensitivity of the analysis. 

It has been reported that the number of microcarriers used in a (bead-based) assay may 

profoundly affect the sensitivity and the dynamic range of the assay. This is explained by the fact 

that the proteins (antigens) present in the sample will be distributed over a larger surface in case a 

higher number of microcarriers is used, which lowers the average (red) surface fluorescence per 

microcarrier. 
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Figure 8: The influence of the number of LbL beads used in the assay on the red fluorescence at the surface of LbL coated 
memobeads incubated with different dilutions of TNF-α. Main graph: red fluorescence intensity as a function of the spiked 
concentrations of TNF-α; respectively 4000 (▼), 1000 (▲) and 100 (■) memobeads were used. In the case of 4000 
memobeads, there are too few data points to fit a 4-parameter logistic equation. Inset: fluorescence as a function of the 
number of memobeads for different TNF-α concentrations. 

 

Figure 8 shows the red fluorescence at the surface of the LbL coated microcarriers dispersed 

in TNF-α solutions (in buffer); the number of LbL microcarriers in the assay was varied (between 100 

and 4000). Clearly, for a given TNF-α concentration, the lower the number of beads used in the 

assay, the higher the red fluorescence at the surface of the LbL coated microcarriers. Thus, the 

number of LbL microcarriers used strongly determines both the sensitivity and the dynamic range of 

the assay. For example, with 1000 memobeads in the assay, a significant difference between 32 and 

125 pg/ml can not be detected anymore, while this remains possible when only 100 memobeads are 

used in the assay. 
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Figure 9: Multiplexing in “whole” blood using LbL coated (encoded) microcarriers. The analysis of the microcarriers was 
performed while the microcarriers remained in the blood (thus without prior wash steps). Differently encoded LbL coated 
microspheres were coupled to IL-12 capture antibodies, IL-2 capture antibodies or TNF-α capture antibodies. A mixture of 
encoded TNF-α-, IL-2-, IL-12- and blanco-microcarriers (i.e. microcarriers without capture antibody) was incubated during 3 
hours in a whole blood sample spiked with TNF-α and IL-2 (together with the biotinylated detection antibodies and the AF647 
conjugated streptavidin). Top row: transmission image showing the microcarriers suspended between blood cells. Middle 
row: red fluorescence image of the microcarriers; only the surface of the TNF-α and IL-2 microcarriers turns red fluorescent 
as the samples where only spiked with TNF-α and IL-2. Bottom row: green fluorescence confocal image of the microcarriers 
which reveals the code. 

 

Potential use of LbL coated microcarriers for protein analysis in “whole” blood. 

As outlined in the introduction, the encoded LbL coated microcarriers under investigation in 

this study can be easily decoded by means of a fluorescence microscope (equipped with a semi-

confocal module). To this end, for decoding it is sufficient to put the microcarriers in a glass 

bottomed recipient under a microscope; for this type of encoded microcarriers, microcapillaries are 

not needed to align the microcarriers to pass in front of the detector. Such microcapillaries (like in a 

flow cytometry apparatus) are used e.g. in the decoding of spectrometrically encoded microcarriers 

14. As assaying in “whole” blood, instead of in serum or plasma, would be a clear advantage for 

different reasons we subsequently studied whether the code in the LbL coated microcarriers and the 
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red fluorescence at their surface could be detected with this easy read-out system while the 

microcarriers remain in blood. 

Figure 9 shows the outcome of a multiplex assay in whole blood spiked with TNF-α and IL-2 

without separating (washing) the LbL coated microcarriers from the blood sample. The encoded 

microcarriers, the biotinylated detection antibodies and the AlexaFluor 647 streptavidin were 

simultaneously incubated for 3 hours in the blood samples spiked with TNF-α and IL-2. Note that in 

Figure 2 to Figure 8 detection antibodies and AlexaFluor 647 conjugated streptavidin were added 

step per step while in Figure 9 an “all-in-one” procedure was used as the microcarriers, detection 

antibodies and fluorescent streptavidin were simultaneously added to the blood sample. We 

observed the following. (a) The digital code of the microcarriers could be still accurately decoded 

while the microcarriers were in blood (bottom row in Figure 9); (b) It was still possible to measure 

the red fluorescence at the surface of the microcarriers (middle row in Figure 9). Thus, the blood 

cells and blood plasma did not hinder the decoding and the quantification process. 

 

 

Discussion 

 

Bead-based assays become more and more attractive for the analysis of proteins because, 

compared to ELISAs, they are faster and less-expensive and have a broader dynamic range, while 

they have the same specificity and reproducibility 
18,42,46

. Also, less sample is needed 
19,47

. This study 

shows that microcarriers Layer-by-Layer coated with poly-electrolytes, as shown in Figure 1, allow 

quantitative measurements of TNF-α, down to 10 pg/ml in buffer, 16 pg/ml in serum and 23 pg/ml in 

a plasma/buffer mixture which comes close to the LOD reported for commercially available humane 

cytokine bead-based assays which can detect concentrations down to a few picograms cytokine per 

ml 16,48. One could wonder what the advantage of the Layer-by-Layer coating then is. The LbL 

technology is a flexible approach to modify surfaces, e.g. in this study the LbL coating is bifunctional: 

the LbL coating incorporates magnetic nanoparticles (needed to properly orient the carriers for 

decoding) without the formation of aggregates while it also provides the surface of the carriers with 

a large number of carboxylgroups homogeneously spread over their surface, which improves the 

intra-tube variation. We have proven that the LbL coated microcarriers can repeatedly measure 

other proteins like P24 and FSH in complex samples as well; The lower limit of detecting P24 in the 
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plasma samples was 34 pg/ml which is certainly an acceptable value when compared with the 

commercially available fourth-generation P24 ELISA assays which measure down to 10 pg/ml 
49

. We 

observed inter-assay variation coefficients below 8%, which is comparable with other bead-based 

assays 18,44,45. Note that there remains room to further improve the sensitivity of the LbL coated 

beads, e.g. by making use of other antibody kits (it is well known that both the LOD as well as the 

dynamic range of a multiplex bead-assay is highly dependent of the quality of the capture and 

detection antibody) 15. For diagnostic purposes, besides the sensitivity also the stability of the LbL 

coated microcarriers in serum and plasma is important. However, the LbL coated microcarriers did 

not show non-specific interactions with the serum/plasma proteins; no degradation of the LbL 

coating has been observed. 

We showed that the number of LbL coated microspheres in the protein assay may affect 

profoundly the sensitivity. The same finding was observed by Kohara et al. 50 who used microcarriers 

for DNA assaying, while other authors did not experience significant differences in sensitivity when 

changing the number of microcarriers 
39

. The higher sensitivity when lowering the number of 

microcarriers is due to the fact that a higher number of antigens become coupled per microcarrier 

which results in a stronger red fluorescence of the microcarrier. Some authors argue, however, that 

a sufficiently high number of microcarriers should be used to precisely determine the concentration 

of the antigen, especially in low antigen concentrations, and to shorten the confidence interval 51. In 

our study the red surface fluorescence of only some tens of microcarriers was measured per antigen 

concentration. Though, the inter-bead variation for beads incubated within the same well was 

acceptable (CV between 4 and 30%) and comparable to bead-based assays in which a higher number 

of beads was used 42,52. 

 We observed that the LbL coated microcarriers are stable for at least 20 days after the assay. 

This means that the red fluorescence of the surface of the microcarriers has not to be read out 

immediately after the assay, as long as the microcarriers are kept in the dark. We found before that 

the code in the microcarriers is very light stable when the memobeads are stored in day light (this 

period is even longer when the beads are stored in the dark; unpublished results). Hence, the 

stability of the code is not the limiting factor. It has been reported that spectrometrically encoded 

beads (which are loaded with a mixture of fluorophores which encodes the beads) lack stability: in 

this study the decoding of such beads becomes problematic after 1-month storage at 4°C after 

antibody coupling, although no other literature confirms this observation 52. Furthermore, such 

beads should also be handled in the dark  as bleaching of the fluorophores by prolonged exposure to 

light results in false codes 39. 
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 The detection of antigens in “whole blood” instead of in serum and plasma is highly 

desirable in the field of diagnostics. Indeed, assaying in whole blood would shorten the processing-

time and lower the costs, two main issues in diagnostic and research settings. Additionally, in whole 

blood the assay was performed in a more physiological environment as during the preparation of 

serum and plasma, the antigen may be degraded  or adsorbed and even antigen cellular production 

is possible 
15

. This study (Figure 10) showed that the red fluorescence at the surface of the LbL 

coated microcarriers can be measured even when the beads remain in whole blood. Importantly, 

while being in blood, also the digital code in the beads can be perfectly read out; Although blood is 

significantly more viscous than water and blood cells are extensively present, the orientation of the 

LbL coated microcarriers in blood by applying a magnetic field (which is necessary for the decoding 

of the microcarriers) remains possible. We conclude that the digitally encoded LbL coated 

memobeads are good candidate materials to be used in near-patient testing which aims at rapid and 

simultaneous diagnosis of many antigens in whole blood while the patient is in the doctor’s cabinet.  

Importantly, the encoding of microcarriers by means of photobleaching provides them with 

a digitally accurate code. As the decoding of such microcarriers occurs with 100% certainty, it means 

that, theoretically, one microcarrier per antigen type in the assay would be sufficient. Other bead 

encoding technologies do not permit the use of a very small number of microcarriers as errors may 

occur in the decoding process which necessitates a statistical analysis of the decoding result of a 

larger number of microcarriers to obtain the correct code. It means that, typically, at least 100 

microcarriers per antigen type are used in the assay. Considering the fact that a low number of 

digitally encoded microcarriers per antigen in the assay is sufficient and considering the increase in 

sensitivity when performing assays with a very small number of microcarriers (see above), one may 

conclude that the LbL coated microcarriers described in this chapter are well suited for assaying 

biological samples in microfluidic chips 
53

 which are loaded with a limited number of the encoded 

beads. Assaying in microfluidic chips may have a number of advantages. It is for instance well-known 

that (bio)chemical reactions occur much faster in a microfluidic environment 
54-56

. Those chips, 

however, often lack multiplexing capabilities. The use of the digitally encoded LbL coated 

microcarriers in microfluidic based devices could give new opportunities for “point-of-care” micro 

total analysis systems (µTAS). 
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CONCLUSION 

This study shows that LbL coatings, loaded with capture antibodies, at the surface of digitally 

encoded microcarriers allow the quantitative and sensitive detection of proteins, like TNF-α, P24 and 

FSH, not only in buffer but also in complex media like serum and plasma. When incubated in serum 

or plasma the LbL coatings remain stable at the surface of the microcarriers while non-specific 

binding of serum/plasma molecules to the capture antibody loaded LbL layers was not observed. 

Importantly, we observed that (a) the digital code of the microcarriers could be still accurately 

decoded and (b) the red fluorescence at their surface could be quantified even when the 

microcarriers remained in “whole blood”. These properties make the LbL coated digitally encoded 

microcarriers investigated in this study ideally suited for the simultaneous (multiplexing) assaying of 

proteins in “whole” blood instead of in serum or plasma. We showed that using a lower number of 

LbL coated microcarriers in the protein assay even profoundly improves the sensitivity of the assay, 

an interesting feature when one wants to make use of the microcarriers for assaying in microchips 

which only allow using a rather low number of microcarriers. Based on the observations in this study 

we suggest that the LbL coated digitally encoded microcarriers may be ideally suited for protein 

multiplexing in whole blood making use of microchips. 
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ABSTRACT 

 

This chapter introduces the use of the Tyramide Signal Amplification (TSA) method in multiplex bead-

based immunoassays. Multiple target proteins (cytokines, HIV-1 P24) were analyzed with 

memobeads and xMAP® beads. For both types of beads it was found that the TSA method deposits 

tyramide residues only on the surface of the beads which have bound target proteins, a clear 

requirement in a multiplex assay. The amount of tyramide deposited on the bead’s surface was in 

concordance with the amount of target protein captured at the surface of the beads, being a 

requirement for quantitative multiplex-assays with beads. The TSA method significantly amplifies the 

fluorescence signals on the beads (up to 100 times) resulting in (much) higher signal-to-noise ratios 

which makes it especially attractive for the rapid analysis of target proteins. It was found that TSA on 

beads is applicable as well in real (serum) samples - sub-pg detection of P24 was possible - and works 

perfectly in a multiplex (quadruplex) format. 
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INTRODUCTION 

 

Antibody based immunoassays, like radio-immunoassays (RIA), western blots, 

immunoprecipitation assays, and enzyme-linked immunosorbent assays (ELISAs), are routinely used 

in clinical laboratories for the diagnosis of diseases. Due to improved specificity (by the use of 

monoclonal antibodies instead of polyclonal antibodies) ELISA has become the standard method for 

the sensitive quantification of various soluble analytes 1. The detection limit for ELISA assays usually 

lies between 0.01 and 50 ng/ml of antigen, depending upon the affinity of the (capture) antibody for 

the antigen 2. Because of (a) long incubation times and (b) (sometimes) too low sensitivity, various 

alternative strategies have been developed to improve microplate and membrane based 

immunoassays. One strategy aimed to amplify the detection signal 3,4. As an example, in the 

‘catalyzed reporter deposition technology’ (CARD), as developed more than fifteen years ago by 

Bobrow et al 5,6, the biotinylated detection antibodies are labeled with the streptavidin-horseradish 

peroxidase (HRP) conjugate (Figure 1A). HRP oxidizes biotinylated tyramide residues in the presence 

of hydrogen peroxide resulting in radical species. The activated tyramide residues are then deposited 

on the solid phase by reaction with electron rich moieties of protein molecules (tyrosine, 

tryptophan,…) present in the vicinity of the streptavidin-HRP conjugate at the surface of the solid 

phase. The deposited biotins are subsequently reacted with streptavidin-labeled HRP, thereby 

resulting in the deposition of additional HRP. The net effect is that a single HRP molecule becomes 

surrounded by many HRP molecules. 
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Figure 1: Schematic overview of Tyramide Signal Amplification (TSA) on a flat surface.  A) In a monoplex assay the protein 
of interest (antigen) is detected by the appearance of a color in the well which contains the sample to be analyzed. B) When 
TSA is applied in a multiplex assay the activated tyramide residues have to be bind specifically to the surface of the 
microarray or microcarrier where the analyte is caught. 

 

This technique, which is also called ‘tyramide signal amplification’ (TSA), improved the 

detection limit of membrane immunoassays 25-fold. Meanwhile TSA has been reported by many 

other authors to be a valuable tool for blotting methods, immunohistochemical staining, gene 

expression microarray labeling and in situ hybridization techniques (FISH) 7-9. The CARD method has 

been optimized by Bhattacharya et al., resulting in a detection sensitivity of as few as 800 IgG 

molecules that were blotted on a membrane. The authors introduced to this end high electron rich 

groups in the proteins that were used as blocking agents. 10 The same group could measure down to 

0.1 pg aflatoxin B1 per well in a total incubation time of 16 minutes by using this super-CARD 

approach 11 and recently they up-graded their approach resulting in a rapid (12 minutes) detection 
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with much lower reagent consumption and the same sensitivity 12. The group of Schüpbach recently 

demonstrated the ultrasensitivity of a CARD based ELISA method for the quantification of HIV-1 P24 

and stated that this boosted ELISA, the costs of which are expected to amount to 10-20% of those of 

HIV-1 RNA tests, could be used to improve treatment monitoring in low-resource settings 13,14. 

 

As more and more protein disease markers are discovered there is a growing need to analyze 

more types of (diagnostic) proteins. ELISAs, however, are not convenient to answer this high-

throughput need because (a) each protein marker has to be analyzed individually, (b) there is a high 

consumption of reagents and biological samples and (c) it is a labor-intensive and time-consuming 

technique. To this end, fast, inexpensive, accurate immunoassays with increased sensitivity, using 

smaller sample volumes, are under development. Over the last decade, “multiplex” immunoassays 

have been developed 15. While a “monoplex” immunoassay aims to measure the binding of one 

analyte, present in the biological sample, to its receptor, a multiplex immunoassay aims to measure 

simultaneously the binding of several analytes in a biological sample to their respective receptors. 

This multiplex approach allows faster analysis of a high number of protein markers while both the 

sample and reagent consumption are considerably reduced. 

Multiplex immunoassay-technologies are divided into “flat surface arrays” and “suspension 

arrays”, respectively. To the first category belong the protein microarrays, which use the x,y-

coördinates of the spots of capture probes (capture antibodies) on a glass plate to identify which 

analytes (antigens) are present in a sample 16-20. The use of protein microarrays has been limited by 

the high cost of the microarray consumables and the instruments. Suspension arrays use encoded 

micron sized particles for multiplexing; the code allows knowing which capture antibody is bound to 

the surface of the microcarriers 21-23. Antigens present in the biological sample will bind to their 

corresponding microcarriers which are added to the sample; finally the antigens become 

fluorescently labeled by means of fluorescent detection antibodies. Decoding of the ‘positive’ 

microcarriers (i.e. those microcarriers which show fluorescently labeled antigens at their surface) 

subsequently allows knowing which antigens are present in the sample. The microcarrier-based 

platforms are gaining popularity 24-29. Current applications of microcarrier-based assays include the 

detection of immunoglobulins 30 and cytokines 31,32, the analysis of single nucleotide polymorphisms 

33, DNA methylation profiling 34 and gene expression 35. Compared to flat microarrays, suspension 

arrays may have a number of advantages like for instance a more reproducible attachment of the 

capture probes, a higher flexibility in both surface chemistry and composition of the test panel, and 

improved (‘near-solution’) kinetics 23,36,37. 
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Figure 2: Schematic overview of the detection of antigens (proteins) with microcarriers coated with capture antibodies. A) 
Detection by the ‘standard method’ making use of fluorophore conjugated streptavidin which binds to the biotinylated 
detection antibodies. B) Detection by TSA method: Horse Radish Peroxidase (HRP) conjugated streptavidin binds to the 
biotinylated detection antibodies. Subsequently fluorophore conjugated tyramide (induced by the HRP to an activated state) 
binds to electron rich moieties at the surface of the microcarrier. C) Detection by the adapter TSA method: HRP conjugated 
streptavidin binds to the biotinylated detection antibodies. Subsequently biotin conjugated tyramide (induced by the HRP to 
an activated state) binds to electron rich moieties at the surface of the microcarrier. Finally, fluorophore conjugated 
streptavidin binds to the biotin molecules deposited at the surface of the microcarrier. 
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In 1994 already Ekins stated that an "ultrasensitive" simultaneous detection of multiple 

analytes in one sample would be a methodological challenge 38. Meanwhile multiplex immunoassays 

have become a valuable technique being as sensitive, accurate and reproducible as conventional 

monoplex ELISA, but requiring much lower reagent and sample volumes while reaching, in some 

case, broader dynamic ranges 30,39. However, one challenge remains the application of 

“ultrasensitive” detection methods in multiplexed assays. 

 Analytes captured on the microcarriers are usually detected by fluorophore conjugated 

(detection) antibodies or biotinylated (detection) antibodies (which, on their turn, react with strongly 

fluorescent streptavidin) (Figure 2A) 4,40-42. As is the case for monoplex ELISA, sensitivity could be 

improved by amplifying the signal that is generated at the surface of the solid support upon binding 

of an analyte 43,44. Little research has been done, however, on signal amplification in multiplex assays. 

Indeed, in contrast to monoplex ELISA’s in which all the reactions occur in separated wells, one major 

challenge for signal amplification in multiplex assays is that the (amplified) detection signal should be 

spatially restricted to the surface (on an array or a microcarrier) where the analyte is captured.  

So far, only very few reports mention the use of CARD technology in a multiplexed 

immunoassay (Figure 1B). Bacarese-Hamilton et al. demonstrated higher signals in the detection of 

allergen-specific IgE by a flat protein microarray when the bound allergens were detected by the 

CARD method instead of by conventional fluorophore-conjugated detection antibodies or by 

biotinylated detection antibodies in combination with fluorophore -conjugated streptavidin 45. In 

another study Varnum et al. could detect antigens with a sensitivity as low as sub pg/ml by 

immunoassays on a flat microarray and signal amplification by tyramide deposition 46. Applying CARD 

technology on multiplex bead-based immunoassays, which to our knowledge has been only done by 

Szurdoki et al. 41 for a duplex competitive immunoassay, is even more challenging considering the 

mobility of the microcarriers and thus the higher risk for false positive results; indeed, on an 

(immobile) flat microarray, false positive results may arise through the diffusion of activated 

tyramide molecules to other zones on the array, however, in case of a microcarrier platform (not 

reacted) microcarriers can move to activated tyramide molecules as well.  

Previously our group introduced ‘memobeads’ which are polystyrene beads, surrounded by a 

polyelectrolyte coating, encoded by means of spatial selective photobleaching 47,48. Very recently we 

proved that memobeads allow to detect clinically relevant concentrations of several proteins in 

complex matrices like plasma 40,47,49. In the current paper we explore whether the sensitivity for 

multiplex protein detection by memobeads can be further improved by CARD technology. To 

evaluate whether CARD technology can be applied as well to other types of encoded microcarriers 

we also tested the commercially available xMAP beads and compared the CARD method with the 

standard labeling method used on this platform, which has never been described so far. 
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MATERIALS & METHODS 

 

Materials.  

Non-magnetic fluorescent carboxylated microspheres (CFP-40052-100, ø = 39 µm) 

Fluorescent carboxylated microspheres (CFP-40052-100, ø = 39 µm) were purchased from 

Spherotech (Libertyville, Illinois, USA). Poly (allylamine hydrochloride) [PAH; 28,322-3], sodium poly 

(styrene sulfonate) [PSS, MW ~ 70 000; 24,305-1] and poly (acrylic acid) [PAA, MW ~ 45 000; 18,128-

5] were obtained from Sigma Aldrich (Steinheim, Germany). The polymers were dissolved into 0.5 M 

sodium chloride (31434, Sigma Aldrich, Seelze, Germany). Bovine serum albumine (BSA, A-7906) and 

2-[N-Morpholino]ethanesulfonic acid (MES, M-8259) were purchased from Sigma (Bornem, Belgium), 

PBS Dulbecco’s (14190-094) from Gibco and Tween-20 (655204) from Calbiochem. EDC (1-ethyl-3-(3-

dimetyl aminopropyl) carbodiimide HCl, 22980) was obtained from Perbio Science (Erembodegem, 

Belgium), desiccated and stored at -20°C. Sulfo-NHS (N-hydroxysulfosuccinimide sodium salt, 

106627-54-7) was purchased from Sigma Aldrich (Steinheim, Germany), desiccated and stored at 4°C. 

Purified mouse anti-human TNF-α (551220) and anti-human IL-2 (555051), recombinant human TNF-

α (551838) and human IL-2 (554603), biotinylated mouse anti-human TNF-α (554511) and anti-

human IL-2 (555040) were purchased from BD Pharmingen. Tyramide Signal Amplification Kits 

(T20936 and T20931) were purchased from Invitrogen (Eugene, Oregon, USA).  P24, purified anti-P24 

antibody, biotinylated anti-P24 antibody and blanc plasma samples were a kind gift from BioMaricTM 

(Ghent, Belgium). AlexaFluor® 647 labeled streptavidin (S21374) was purchased from Molecular 

Probes (Inc. Invitrogen™, Eugene, Oregon, USA). Fluorokine MAP Human Base Kit A (LUH000), Human 

IL-1/IL-1F2 Kit (LUH201), Human IL-4 Kit (LUH204), Human IL-5 Kit (LUH205), and Human CXCL8/IL-8 

Kit (LUH208) were purchased from R&D Systems (Minneapolis, USA). 

 

Layer-by-Layer coating of the microspheres 47 

A schematic overview, as well as the procedure of the Layer-by-Layer modification is 

described in Chapter 2. 

 

 

Encoding of the microspheres 

The encoding process is described in Chapter 2. 
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Coupling of capture antibodies to the LbL coated micropsheres 

The coupling procedure has been described in Chapter 3. 

 

Capturing TNF- and P24 by LbL coated microspheres and detection by a “standard procedure” 

As described below in detail, antigens were captured on the LbL coated microspheres 

carrying the capture antibodies during 1 hour incubation (unless otherwise noted). The antigens 

were detected by a “standard procedure” i.e. by means of biotinylated detection antibodies and 

AlexaFluor 647 (AF647) conjugated streptavidin, as illustrated in Figure 2A. The concentrations of 

biotinylated detection antibody and AF647 conjugated streptavidin used for detecting the bound 

antigens were optimized (data not shown): lower concentrations decreased the fluorescence signal, 

while higher concentrations did not further increase the signal. Note that incubations with AF647 

conjugated streptavidin were done in the dark. All of the following steps were performed at room 

temperature. 

For the detection of TNF-α and P24 by the standard procedure, approximately 100 

microspheres, coated with capture antibody, were incubated for 1 hour in 100 µl of standard 

dilutions spiked with TNF-α and P24, respectively (Eppendorf Thermomixer, 250 rpm, 25°C). The 

dilutions were made in assay buffer or serum, respectively. After 1 hour incubation the microspheres 

were washed with assay buffer, and subsequently incubated for 1 hour in 100 µl of a biotinylated 

detection antibody solution (4 µg/ml in assay buffer). Finally, the microspheres were washed three 

times with assay buffer. Labeling of the bound biotinylated detection antibodies was done by 

incubating the microspheres for 1 hour in the dark in 100 µl AF647 conjugated streptavidin solution 

(8 µg/ml). Next, the microspheres were washed three times with 100 µl PBS before analysis. 

 

Capturing TNF- and P24 by LbL coated microspheres and detection by the TSA procedure 

As described below in detail, antigens were captured by LbL coated microspheres carrying 

capture antibodies. The bound antigens were then detected by means of biotinylated detection 

antibodies and the TSA amplification system, as illustrated in Figure 2B. For detailed information 

regarding the TSA kit components (concentrations, buffers…) we refer to the website of the provider 

(http://www.invitrogen.com). Note that incubations with fluorescent analytes were always 

performed protected from light in an Eppendorf Thermomixer at 250 rpm and at room temperature. 

For the detection of TNF-α and P24 in a monoplex assay, approximately 100 antibody coated 

microspheres were used. For the detection of TNF-α in the duplex assay, approximately 200 antibody 

coated microspheres were used; half of them were coated with capture antibodies against human 
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TNF-α, while the other ones carried capture antibodies against human IL-2. The microcarriers were 

incubated with standards and biotinylated antibody mixture under the same conditions as used in 

the standard procedure, as described above. The microspheres were then washed three times with 

assay buffer, and subsequently incubated for 1 hour with 100 µl of streptavidin-HRP (2.5 µg/ml in 

assay buffer), protected from light. The washing procedure was repeated and the microspheres were 

finally incubated with 10 µl of AlexaFluor Tyramide (one-step TSA method) or 10 µl of the Biotin 

Tyramide (two-step TSA method), both at a 1/10 dilution of the stock solution (in amplification 

buffer/0.0015% H2O2), unless otherwise noted. In case of the one-step TSA method, after washing, 

the microcarriers were resuspended in 100 µl PBS/Tween20 before analysis. In case of the two-step 

TSA method, the microcarriers were washed for another three times, before they were resuspended 

in 100 µl AF647 conjugated streptavidin solution (8 µg/ml). After 15 minutes of incubation, the 

washing procedure was repeated and the microcarriers were resuspended in 100 µl PBS/Tween20. 

  

Calibration curves. 

Lyophilized antigens were reconstituted in assay buffer or serum; 6 to 10 serial dilutions 

were made. The calibration curves were calculated by the GraphPad Prism software. The 4-

parameter logistic equation (4-PL) was used to obtain the most accurate determination of the 

protein concentration: 

  cxd

ab
ay

*101 




 

where x is the logarithmic of the protein concentration, y is the response (i.e. the red 

fluorescence at the surface of the microcarriers), a is the estimated response at zero protein 

concentration (i.e. the “zero calibrator”), b is the estimated response at infinite protein 

concentration, c is the slope of the tangent midpoint and d is the logarithmic of the midrange protein 

concentration. 

The lower limit of detection (LOD) of a protein was defined as the concentration 

corresponding to the median fluorescence intensity (MFI) plus 3 times the standard deviation of the 

“zero calibrator”. The inter-bead variability was defined as the coefficient of variation (CV; in %) on 

the average value of measurements on approximately 20 beads. 
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(Confocal) fluorescent microscopy imaging of the microspheres. 

The memobeads were analyzed using a Bio-Rad MRC 1024 confocal laser scanning system 

(Bio-Rad, Hemel Hempstead, UK) equipped with an inverted microscope (Eclipse TE300D, Nikon, 

Japan). Images were captured with a Nikon Plan Apochromat 60x water immersion objective lens (NA 

of 1.2, collar rim correction) and with a Nikon Plan Apochromat 10x objective lens (NA of 0.45) using 

the 488 nm laser line from the argon-ion laser and the 647 nm laser line from the Ar/Kr laser. For the 

orientation of the memobeads, a weak external magnetic field was applied with the same orientation 

as the magnetic field applied during the encoding process (relative to the direction of the laser light). 

In the presence of this weak magnetic field, the ‘remanent’ nanoparticles tend to align with the 

magnetic field, so they will turn the microspheres (at which surface they are fixed) into a position 

that the code can be read (the code is present in a plane perpendicular to the direction of the laser. 

 

Capturing IL-1, IL-4, IL-5 and IL-8 by Luminex microcarriers and detection by the standard 

procedure (Figure 2A) 

The assays below were carried out in a 96-well plate, protected from light at all times. 

Standards of IL-1, IL-4, IL-5 and IL-8 were prepared in calibrator diluent RD6-40. The four Luminex 

microcarrier stock suspensions were mixed by dilution 1/100 in diluents RD6-40 and 50 µl of the 

Luminex microcarrier mixture was incubated with 50 µl of each standard for 2 hours on a microplate 

shaker. Meanwhile, biotinylated detection antibodies were diluted 1/100 in diulent RD6-40. After 

washing the plate three times with 100 µl wash buffer using a vacuum manifold, 50 µl of the diluted 

biotinylated antibody mixture was added to the wells and the plate was incubated for 1 hour. 

Meanwhile, streptavidin-PE was diluted 1/100 in wash buffer. The plate was washed another three 

times, and the Luminex microcarriers were incubated for 30 minutes with 50 µl of the diluted 

streptavidin-PE. The microcarriers were then washed three times and resuspended in 100 µl wash 

buffer. The Luminex microcarriers were subsequently analyzed following the instructions of the 

provider. 

  

Capturing IL-1, IL-4, IL-5 and IL-8 by xMAP® microcarriers and detection by the TSA procedure 

(Figure 2C) 

The xMAP® microcarriers were incubated with standards and biotinylated antibody mixture 

as described above. After washing three times with 100 µl wash buffer, the microcarriers were 

incubated with 50 µl streptavidin-HRP (2 ng/µl) for 30 minutes. The xMAP® microcarriers were then 

washed three times with 100 µl PBS-Tween20 and subsequently incubated with 50 µl of biotin-
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tyramide (1/25 in amplification buffer/0.0015% H2O2) for 30 minutes. After washing with 100 µl wash 

buffer, the xMAP® microcarriers were incubated for another 30 minutes with 50 µl of streptavidin-PE 

(1/100 diluted in wash buffer, same concentration as described above). The microcarriers were then 

washed three times with wash buffer and finally resuspended in 100 µl wash buffer. The Luminex 

microcarriers were subsequently analyzed following the instructions of the provider. 

 

 

 

 

 

 

RESULTS AND DISCUSSION 

 

 

Applying TSA to multiplex assays. 

First we investigated whether the tyramide signal amplification only occurs at the surface of 

‘positive’ memobeads being beads to which antigens became bound; Indeed, in multiplex assays one 

has to avoid that TSA would also occur at the surface of the ‘negative’ (i.e. ‘cross-reaction’). Equal 

amounts of two differently encoded memobeads, carrying respectively (capture) antibodies against 

TNF-α and IL-2, were mixed. Two hundred memobeads of this mixture were subjected to respectively 

100 pg/ml TNF-α in assay buffer, 100 pg/ml IL-2 in assay buffer and a control sample (being assay 

buffer without cytokines). They were subsequently incubated with biotinylated detection antibodies, 

HRP conjugated streptavidin and the AF647 conjugated tyramide substrate solution (following the 

method described in Figure 2B). 
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Figure 3: Two types of differently (dot) encoded memobeads were coupled with respectively antibodies against TNF-α and 
antibodies against IL-2, mixed and subsequently incubated in respectively a 100 pg/ml TNF-α solution (A), a control sample 
(i.e. buffer without cytokines) (B) and a 100 pg/ml IL-2 solution (C). First column: transmission image showing (all) the 
memobeads. Second column: red fluorescence image showing (only) the positive memobeads. Third column: green 
fluorescence image of (all) the memobeads (as explained in Figure 3A memobeads are polystyrene beads stained with a 
green fluorophore). The positive memobeads, as detected by the image analysis software, are stressed with white circles. 
The arrows show confocal images of the middle plane of some beads, which makes the code visible. 

 

 

Row A in Figure 3 clearly shows that, as expected, half of the (200) memobeads become red 

fluorescent (i.e. those ones carrying TNF-α antibodies) upon incubating the memobeads in the TNF-α 

solution; the memobeads carrying IL-2 antibodies do not exhibit any signal (and therefore any 

antigen) at all at their surface. Applying the (200) memobeads to an IL-2 solution gave the opposite 

result (row C in Figure 3). None of the memobeads showed red fluorescence if they were incubated 

in the control sample (row B in Figure 3). When the images were analysed by the software program, 

only those memobeads for which a corresponding antigen was present in the solution revealed red 

fluorescence (and became identified as positive memobeads). The TSA method thus accurately works 

in this duplex assay, in agreement with the previous observation by Szudoki et al. with other 

microcarriers 41. It shows that the activated AF647-tyramide molecules only interact with the surface 

of those microcarriers at which the HRP (and thus the antigen) is present; activated AF647-tyramide 
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molecules do not seem to diffuse into the solution and do not seem to bind to the surface of 

surrounding (negative) microcarriers. 

 

 

Characterizing the optimal TSA conditions 

Part 1: Optimal volume of the tyramide solution 

About one hundred memobeads were incubated for one hour in respectively a 50 and 500 

pg/ml TNF-α solution and subsequently labeled using equal amounts of Tyramide. However, in one 

experiment 25 µl of a 1/100 diluted tyramide stock solution was added (light grey bars in Figure 4A) 

while in another experiment 50 µl of a 1/200 diluted tyramide stock solution was used (dark grey 

bars in Figure 4A). Figure 4A shows higher signals when using the more concentrated tyramide 

solution, both in the 50 as well as in the 500 pg/ml TNF-α solution. It suggests that the diffusion of 

tyramide molecules to the surface of the microcarriers is a limiting factor. In later experiments the 

volume of the diluted tyramide stock solution was kept at 10 µl (as a lower volume did not 

significantly further increase the signal on the memobeads; data not shown) 

 

 

Figure 4: Characterizing the optimal TSA conditions; the y-axis shows the mean red fluorescence signal of the memobeads. 
(A) About 100 memobeads were subjected for 1 hr to a 500 pg/ml (left part) and 50 pg/ml (right part) TNF-α spiked buffer 
solutions and then detected with either a 25 µl 1/100 diluted tyramide stock solution (light grey bars) or a 50 µl 1/200 diluted 
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tyramide stock solution (dark grey bars). (B) About 100 memobeads were subjected for 1 hr to a 63 pg/ml TNF-α spiked 
buffer solution and detected with 10 µl of a diluted tyramide stock solution. The data were normalized to the maximal 
fluorescent signal, as it was obtained from the hyperbolic fitting procedure. (C) About 100 memobeads were subjected for 1 
hr to a 63 pg/ml TNF-α spiked buffer solution. Subsequently they were incubated with 10 µl of a 1/10 diluted tyramide stock 
solution; the incubation time varied between 5 and 60 min. The data were normalized to the maximal fluorescent signal. (D) 
About 100 memobeads were subjected for 1 hr to a 63 pg/ml TNF-α spiked buffer solution and then labeled with 10 µl a of 
1/10 diluted tyramide stock solution; the incubation time with the HRP conjugated streptavidin ranged from 10 to 60 min. The 
data were normalized to the maximal fluorescent signal. 

 

 

Part 2: Optimal concentration of the tyramide concentration 

In a next step we determined which tyramide concentration is the most optimal. About one 

hundred memobeads were incubated in a 63 pg/ml TNF-α solution and detected using 10 µl of 

tyramide solution with varying concentration. Figure 4B shows an increasing fluorescence signal on 

the beads with increasing tyramide concentration; a hyperbolic fitting has been applied to the data, 

showing that 75% of the maximum signal is obtained with a 1/10 dilution of the tyramide stock 

solution which was used in further experiments. 

 

Part 3: Optimal time for incubating the memobeads and the tyramide solution 

About one hundred memobeads were incubated in a 63 pg/ml TNF-α solution and detected 

by the use of 10 µl of a 1/10 diluted tyramide stock solution which was in contact with the 

memobeads for different times. Figure 4C clearly shows that an incubation time of 10 minutes is 

sufficient to allow an optimal signal.  

 

Part 4: Optimal time for incubating the memobeads with HRP-streptavidin  

The incubation of the memobeads with HRP-streptavidin in the experiments in Figure 4 A-C 

above was carried out after washing away not bound TNF-α and detection antibodies and took 1 

hour. As the total assay time will strongly depend on the incubation step with HRP-streptavidin, we 

wondered how long this step should be to obtain an optimal signal on the beads. To this end, about 

100 memobeads were incubated in a 63 pg/ml TNF-α solution and detected using 10 µl of a 1/10 

diluted tyramide stock solution after being incubated with HRP-streptavidin for 10 to 60 minutes. 

Figure 4D shows that a maximal fluorescence signal is already achieved when only incubated for 10 

minutes. Based on the results in Figure 4 A-D it can be concluded that incubation for 10 minutes with 

HRP-streptavidin, followed by an incubation for 10 minutes with 10 µl of a 1/10 diluted tyramide 

stock solution is most time-efficient to get optimal signal on memobeads. This procedure was 

therefore used in further experiments in this paper. 
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Sensitivity of memobeads/TSA for detecting TNF-α in buffer  

Figure 5 shows the mean red fluorescence signal of memobeads carrying TNF-α antibodies 

after being dispersed in TNF-α solutions for different times. A first observation is that TSA on the 

beads allows quantitative measurements. Clearly, the longer the incubation in the TNF-α solutions, 

the higher the signal which is explained by the fact that the TNF-α molecules have longer times to 

diffuse (and bind) to the memobead’s surfaces. Non-linear four parameter logistic equations were 

fitted to the data points and EC50 values ranged from 14.4 to 289.1 pg/ml for incubation times from 

10 to 720 minutes. The memobead/TSA assay seems very sensitive: the minimal detectable 

concentration that was distinguishable from the background signal was 4 pg/ml for 720 minutes of 

incubation, 8 pg/ml for 180 and 60 minutes incubation, and 32.5 pg/ml for 30 and 10 minutes of 

incubation. We were not able to measure a signal at the surface of unreacted control microcarriers 

(background signal) for each of the curves; they were sometimes below the detection limit of the 

instrument. Because this background signal is needed to calculate the LOD (as explained in the 

methods section), it was impossible to define the LOD for those curves. However, in case of the 180 

and 720 minutes of incubation, the LOD equaled 5.6 and 2.5 pg/ml, respectively. 

 

 

Figure 5: Quantitative analysis of TNF-α spiked in buffer. Red surface fluorescence of the memobeads as a function of the 
TNF-α concentration and the incubation time (● = 720, ● = 180, ● = 60, ● = 30, and ● = 10 minutes) (A.U. means arbitrary 
units). Each data point is the average value of the red (surface) fluorescence of about 20 memobeads (inter-bead CV’s 
varied between 12% and 61%). 

 

 

Figure 6 compares the sensitivity and detection range of the TNF-α memobead assay using 

respectively the standard detection method (Figure 2A) and the TSA detection method (Figure 2B). In 
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each analysis 100 memobeads were used. The red fluorescence signal on the memobeads becomes 

much more intense when detection was performed by tyramide instead of by the standard detection 

method. This is true for both incubation times (Figure 6A: 180 minutes and Figure 6B: 720 minutes). 

Four-parameter logistic equations were fitted to the data points of both graphs. In case of 180 

minutes of incubation the EC50 reaches 23.9 pg/ml and 931.2 pg/ml for respectively the TSA and the 

standard detection method, while it equals 14.2 and 691.6 pg/ml for 720 minutes of incubation. 

 

 

Figure 6: Quantitative analysis of TNF-α spiked in buffer by memobeads. The memobeads were incubated with the TNF-α 
for respectively 180 minutes (A) and 720 minutes (B). Red surface fluorescence of the memobeads as a function of the TNF-
α concentration and the detection method: TSA (grey symbols) and standard method with AF647 conjugated streptavidin 
(black symbols; A.U. means arbitrary units). Each data point is the average value of the red (surface) fluorescence of about 
20 memobeads (inter-bead CV’s for standard labeling varied between 1% and 36%, while they varied between 11% and 
57% for TSA). 
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In case the memobeads were incubated with the antigen for respectively 180 and 720 

minutes and detection was done by the standard procedure, the minimal detectable concentration 

was respectively, 32.5 pg/ml and 16.3 pg/ml (the LOD could not be measured because of the reasons 

explained above). The LOD equaled respectively 5.6 pg/ml and 2.5 pg/ml when the TSA method was 

applied, which means at least a 5x gain in sensitivity. 

Interestingly, the minimal detectable TNF-α concentration when memobeads were incubated 

with TNF-α for only 10 minutes and detected by TSA (i.e. 32.5 pg/ml; see Figure 5), equaled the 

minimal detectable concentration when memobeads were incubated with TNF-α for 3 hours but 

detected by the standard procedure (Figure 6A), which means almost 20x gain in speed. TSA on 

memobeads is thus of interest not only to obtain a more sensitive assay but also to obtain faster 

assays. Infectious agents like HIV have to be detected at the earliest stage after infection. This means 

that low abundant antigens have to be detected which necessitates ultrasensitive tests to give the 

fastest and most optimal treatment to infected patients. Rapid diagnosis might be also of importance 

in emergency departments where the remedy is dependent on the diagnosis. 

 

Sensitivity of memobeads/TSA for detecting P24 in serum 

To test the applicability of TSA on (antigen positive) microcarriers in more complex samples 

than buffer, negative sera were spiked with different concentrations of P24, being a major core 

protein of HIV encoded by the HIV gag gene. It is of interest to detect P24 at a very early stage of the 

infection in order to start drug therapy; P24 is currently analyzed by ELISA 50. About 100 memobeads 

were incubated for different times in the spiked sera and detected by TSA using the optimal 

conditions described above. Figure 7 clearly shows sensitive measurements on the order of some 

pg/ml. As also observed in Figure 5 for TNF-α, a longer incubation of the memobeads with P24 

resulted in higher signals. Non-linear four parameter logistic equations were fitted to the data points: 

EC50 values ranged from 2.2 to 64.5 pg/ml for incubation times from 18 to 1 hour. 

Simultaneous analysis of TNF- and P24 in (spiked) sera using memobeads and TSA detection 

was also possible: red fluorescence only appeared on those microcarriers which carried the 

appropriate antibody (data not shown). 
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Figure 7: Quantitative analysis of P24 spiked in serum by memobeads. Red surface fluorescence of the memobeads as a 
function of the P24 concentration and the incubation time (● = 18, ● = 3, and ● = 1 hour(s)) (A.U. means arbitrary units). 
Each data point is the average value of the red (surface) fluorescence of about 20 memobeads (inter-bead CV’s varied 
between 3% and 53%). 

 

 

One-step versus two-steps TSA  procedure 

So far a one-step TSA procedure was applied: AlexaFluor647 conjugated tyramide molecules 

were deposited on the surface of the microcarriers (Figure 2B). As illustrated in Figure 2C, we 

explored whether the TSA detection method could be made even more sensitive by deposition of 

biotin conjugated tyramide molecules on the surface of the microcarriers (first step) followed by the 

binding of AlexaFluor647 conjugated streptavidin (second step). To this end, about 100 memobeads 

were incubated for one hour in TNF-α solutions and subsequently detected by respectively the one-

step and two-steps TSA procedure. Figure 8 shows that the extra step indeed amplifies the 

fluorescence signal which results in a more sensitive test: the EC50 moved from 29.2 pg /ml to 3.5 

pg/ml. Besides further amplifying the signal, this 2-steps approach is also attractive when one is 

interested in the use of other fluorophores; indeed, not all fluorophores are available as tyramide-

conjugates, although they are often available as streptavidin-conjugates. 
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Figure 8: Quantitative analysis of TNF-α spiked in buffer by memobeads by respectively the one-step (following Figure 2B; 
grey symbols) and two-steps TSA procedure (following Figure 2C; black symbols). Red surface fluorescence of the 
memobeads as a function of the TNF-α concentration (A.U. means arbitrary units). Each datapoint is the average value of 
the red (surface) fluorescence of about 20 memobeads (inter-bead CV’s varied between 9% and 63%). 

 

 

TSA on xMAP® beads 

The previous experiments show proof-of-concept that TSA is a sensitive and specific method 

to detect antigens on memobeads which are 39 µm sized polystyrene beads coated with layers of 

polyelectrolytes and chromiumdioxide nanoparticles (see Chapter 2). It would be attractive if TSA 

would be applicable as well to any other bead-based multi-parameter profiling platform. To this end 

we investigated whether TSA could be applied on the xMAP® platform from Luminex Corporation 

which makes use of 5.6 µm red dyed (polystyrene) microspheres and which uses biotinylated 

detection antibodies and phycoerythrine conjugated streptavidin to detect captured antigens (i.e. 

the standard method in Figure 2A). 

First we investigated whether the signal on xMAP® beads as achieved by the standard 

method could be improved by TSA. xMAP® beads were incubated in IL-1 and IL-4 solutions in 

duplicate. In one experiment the beads were further incubated with phycoerythrin-streptavidin, 

following the instructions of the provider. In the other experiment they were incubated with 

streptavidin-HRP, subsequently with biotin-tyramide and finally with streptavidin-phycoerythrin 

(Figure 2C). Importantly, equal amounts of streptavidin-phycoerytrin were added in both 

experiments. Figure 9A clearly shows the enormous gain in signal upon using the TSA method: the 
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EC50 was around 40-50 pg/ml in case of the TSA method, while it was around 900 pg/ml in case of 

the standard method; unfortunately, the negative control microspheres (that do not carry any 

antigen) exhibited somewhat higher signals too, so that the gain in sensitivity is not so explicit. Note, 

however, that the TSA method as used in Figure 9A was not yet optimized for this platform. 

Nevertheless, as shown in Figure 9B, TSA on xMAP® beads results in much higher signal-to-noise 

ratios compared to the standard method, and may thus also be of interest to shorten the total assay 

time. Because equal amounts of fluorescent molecules were applied in both methods, the gain in 

signal is due to a higher deposition- and thus a more efficient use- of the fluorescent molecules. 
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Figure 9: (A) Duplex analysis of IL-1 (●) and IL-4 (■) in buffer with xMAP® beads. Detection by TSA (following Figure 2C; 

grey data points) and the standard method (i.e. detection following the instructions of the provider; black data points). Each 
data point is the average value of the red (surface) fluorescence of about 100 microcarriers (inter-bead CV’s for standard 
labeling varied between 14% and 54%, while they were between 5% and 96% for the TSA labeling method). (B) Mean 

signal-to-noise values. Detection of IL-1 with TSA method (grey solid lines), detection of IL-1 with standard method (black 

solid lines), detection of IL-4 with TSA method (grey dotted lines), detection of IL-4 with standard method (black dotted lines). 

(C) Quantitative analysis of IL-1 after adding IL-1 antibody (●) and IL-4 antibody (■) carrying xMAP® beads to the IL-1 

solutions. Detection by TSA (grey data points) and the standard method (black data points). The IL-4 antibody coated 

microcarriers only exhibit a ‘background’ signal upon increasing the IL-1 concentration. 
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Figure 9A showed a duplex analysis of a solution containing IL-1 using xMAP® beads. We 

repeated the measurements using xMAP® beads carrying IL-1 and IL-4 antibodies but this time only 

IL-1 was present in the sample (Figure 9C). Clearly, IL-1 antibody carrying xMAP® beads light up, 

while the signal of the IL-4 ones is not significantly higher than the (non-specific) background signal. 

It suggests again that the activated tyramide molecules do not diffuse and bind to other 

microcarriers that are present in the surrounding medium. Figure 9C again shows higher background 

values when applying the TSA method so that there is almost no gain in sensitivity with the TSA 

method. 

Figure 10 demonstrates the quadruplex analysis of IL-1, IL-4, IL-5, and IL-8 (spiked in buffer) 

with xMAP® beads. Detection was carried out by the standard method (following the instructions of 

the provider) and TSA, respectively. Tyramide signal amplification significantly amplifies the 

fluorescence signal (and signal-to-noise ratio) for each analyte. The LODs as measured by TSA (0.7, 

1.5, 0.2, and 0.4 pg/ml for respectively IL-1, IL-4, IL-5, and IL-8) were, due to the higher background 

signals, again comparable with the LODs obtained by the standard labeling (as given by the provider). 

 

 

Figure 10: Quadruplex analysis of IL-1 (A), IL-4 (B), IL-5 (C), and IL-8 (D) in buffer by xMAP® beads. The fittings indicate 

the mean red (surface) fluorescence of the beads (left Y-axis) while the single dots are the mean signal-to-noise values (right 
Y-axis). Grey symbols: detection with biotinylated tyramide and phycoerythrin conjugated streptavidin (following Figure 2C). 
Black symbols: detection with phycoerythrin conjugated streptavidin (following instructions of the provider). Each data point is 
the average value of the red (surface) fluorescence of about 100 xMAP® beads. 
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Effect of the Layer-by-Layer coating 

In chapter 2 we already showed the impact of the LbL modification on the coupling density of 

biomolecules: a remarkable higher amount could be loaded on the microspheres. Because the 

surface characteristics of the microspheres would probably also affect the formation of the sandwich 

construct, and the TSA detection (which uses bound proteins to capture activated tyramide 

molecules), we wondered which impact the LbL modification had. To this end, not modified 

microcarriers were compared with LbL modified microcarriers for assaying 5 pg/ml TNF-α in buffer by 

means of the two-step TSA procedure. It is important to notice that exactly the same carboxylated 

microcarriers were used with or without LbL modification. 

 

 

Figure 11: Number of microcarriers (expressed as % of the total amount of microcarriers) as a function of their fluorescence 
intensity. Two types of microcarriers were analyzed: LbL coated and not modified microcarriers. The microcarriers were 
incubated with 5 pg/ml TNF-α and labeled by means of the two-step TSA method. 

 

 

The LbL modified microcarriers yielded higher red fluorescence (MFI: 108.1 ± 24.0 A.U.), 

upon incubation with the same amount of target molecules and detection reagents, than the 

unmodified ones (MFI: 77.0 ± 27.9 A.U.), as shown in Figure 11. This is probably due a) a more 

efficient reaction between antibodies and antigens at the surface of LbL coated microcarriers, or to 

b) a higher surface area (and thus higher amount of capture antibodies and BSA) of LbL coated 
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microcarriers so that more tyramide molecules can be caught, or to c) a combination of both. 

Important to note is that we have seen already in the past higher fluorescent signals on the surface 

of LbL coated microcarriers then on not modified ones (and little more sensitive results with LbL 

coated microcarriers then with not modified ones) when detection was done in the conventional way 

with fluorescent streptavidin, which means that the affinity reaction between the probes/targets 

were more efficiently on the LbL surface. Figure 11 also shows a more narrow fluorescence 

distribution in the case of the LbL coated microcarriers, meaning that LbL results in more precise 

measurements. 

Figure 12 shows the coefficient of variation of the red fluorescence, measured at single 

microcarrier level (note that the red fluorescence is calculated by measuring the mean of several 

pixels within the ROI, as explained in the previous chapters). Less variation is observed in the case of 

the LbL coated microcarriers, than in the case of no LbL modified ones (respectively CV %: 38.9 ± 4.7, 

and 47.9 ± 10.2), which means that the red fluorescence is more homogeneously distributed at the 

surface of the former ones. 

 

 

Figure 12: Number of microcarriers (expressed as % of the total amount of microcarriers) as a function the coefficient of 
variation of the red fluorescence that has been measured at their surface. Two types of microcarriers were analyzed: LbL 
coated and no modified microcarriers. The microcarriers were incubated with 5 pg/ml TNF-α and labeled by means of the 
two-step TSA method. 
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CONCLUSIONS 

 

Multiplex assays are more and more introduced in research and diagnostic labs, because they 

have proven to be as accurate as their monoplex counterparts, while they have lots of advantages. 51-

53. Two multiplex platforms currently exist, based on encoded beads (microcarriers) and microarrays, 

respectively. Detection of antigens at the surface of microcarriers is most often done through the 

binding of biotinylated detection antibodies which, on their turn, are recognized by fluorophore 

conjugated streptavidin 40,42. In the past enzymatic detection methods have proven to increase the 

sensitivity of monoplex assays performed in e.g. wells of a microtiter plate (e.g. ELISAs). However, as 

the converted products freely diffuse in the surrounding medium those methods cannot be applied 

in multiplex bead-based assays as false positive results may arise due to cross-reaction with not 

reacted beads. The TSA method, however, is an enzymatic method, in which the converted 

(fluorescent) product immediately interacts with electron rich groups in the neighborhood of the 

enzyme 5. Because the resulting fluorescence is measured at the location where the targets are 

bound, and not in the surrounding medium, we expected TSA to be suitable in multiplex bead-based 

platforms. This paper shows evidence that TSA method is indeed attractive for the fast and 

simultaneous detection of (multiple) targets in a sample by memobeads and xMAP® beads. 

Compared to currently used detection methods, TSA significantly amplifies the fluorescence signals 

on the beads (up to 100 times) resulting in (much) higher signal-to-noise ratios. TSA on beads is 

applicable in real (serum) samples - sub-pg detection of P24 was possible - and worked perfectly in a 

multiplex (quadruplex) format. 
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ABSTRACT 

This chapter shows that LbL coated memobeads can quantitatively detect DNA molecules. 

First of all, some parameters were investigated that could influence the hybridization of target 

sequences to capture probes that were immobilized on the surface of the microcarriers, such as 

length of the spacer molecule, the direction of the probe/target complex, and the hybridization 

time. An important strength of the memobead platform, compared to other suspension array 

platforms, is that it makes dual-color target labeling possible, which is very attractive for e.g. gene 

expression analysis. Multiple-color labeling might even be possible with this platform, by changing 

the dye inside the microcarriers. Finally, the memobead platform succeeded in genotyping nine 

patient samples for the two single nucleotides polymorphisms of the Apolipoprotein E gene, as it 

was compared to microarray analysis and sequencing, which demonstrates the possibility of using 

the memobeads as a genotyping platform. 
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CHAPTER 5 

MULTIPLEXED SNP GENOTYPING WITH 

LAYER-BY-LAYER COATED DIGITALLY 

ENCODED MICROCARRIERS 

 

 

 

INTRODUCTION 

 

Over the last decade, human genome projects have resulted in an incredible amount of 

genetic information. Among those data, single nucleotide polymorphisms (SNPs) were found, single 

base-pair mutations that occur at a specific site in the DNA sequence and represent the most 

common form of genetic variation and a major cause of many diseases. They are believed to uncover 

the reasons that individuals respond differentially to therapeutics, and further on, SNPs often 

determine host range of pathogens, and will be highly useful in molecular diagnostics and drug 

discovery 
1
. But SNP analysis is used throughout other life sciences including agriculture, food 

testing, identity testing, and pathogen identification 2. Those observations resulted in an incredible 

burst in research for and development of solution-phase molecular methods that could detect and 

type SNPs to improve clinical diagnostics. Among them are single base extension reactions (SBE), 

primer extension reactions, oligo ligation assays (OLA), invader assays, pyro-sequencing, real-time 

polymerase chain reactions (real-time PCRs) 1-5. Because detection of multiple SNPs within a 

sequence offers great advantages, the combination of these SNP typing methods with multiplex 

technologies are of wide interest for SNP genotyping, especially because costs can be substantially 

reduced and throughput increased. Multiplex platforms deliver the solid support, on which the 



CHAPTER 5 –MULTIPLEXED SNP GENOTYPING WITH LAYER-BY-LAYER COATED DIGITALLY ENCODED MICROCARRIERS 

 

 

   160 

multiple final products of the genotyping methods are caught and distinguished, so that no physical 

separation of those products is needed and automation is easily possible, an advance for large scale 

genotyping. Different platforms were developed and introduced in the field of multiplexed SNP 

typing, among which some of them increased revolutionarily the multiplex capability, such as the 

Affymetrix GeneChip array 
6
 and the Illumina BeadArray genotyping technology 

7,8
. The former is the 

standard in the field of the ‘planar’ DNA microarrays, which use the x,y-coördinates of the spots of 

printed capture probe sequences on a glass plate to identify which SNPs were present in a sample. 

However, DNA microarrays cope with localization problems of the capture probes upon 

miniaturization and slow reaction kinetics (as the diffusion of the targets in the sample to the 

capture probes is time-consuming) 
9-11

. Despite the success of the DNA microarrays in whole-genome 

SNP analysis, their use for low density multiplexing has also been limited by the high cost of both the 

microarray consumables and the instruments. Instead of a glass plate, the BeadArray of Illumina 

makes use of micrometer-sized beads and is so far the only bead-technology suitable for high-

density SNP typing. Although this array benefits from near-solution kinetics, the instrument costs 

are, however, too high for low and medium level multiplexing, as was the case for the planar-surface 

microarrays. Because multiple recent studies demonstrate that genetic testing - and more specific 

SNP typing – could have high impact in near-patient diagnostics (personalized medicine), with a main 

focus on infectious disease diagnostics and pharmacogenetic analysis, other technologies are 

required, that are capable to rapidly genotype multiple SNPs at low costs and at low-sample 

throughputs 12. 

The so-called “suspension arrays” are good candidates to fulfill those different criteria 13-16. 

Suspension arrays use encoded micron sized particles for multiplexing goals. Different capture 

probes can be covalently coupled to differently encoded microspheres; the code allows knowing 

which capture probe is bound to the surface of the microcarriers. They have a number of advantages 

compared to the planar microarrays regarding for instance the reproducibility of the attachment of 

the capture probes, the flexibility in surface chemistry, the flexibility in panel of tests, and improved 

kinetics. 
13

 By encoding, each microsphere becomes the address for a single mutation 
17,18

. Specific 

fluorescent target sequences, that are generated by the genotyping assay, can hybridize to their 

corresponding (complementary) capture probe at the surface of a certain microsphere. Decoding of 

the ‘positive’ reacted microcarriers (i.e. those microcarriers which bound fluorescently labeled 

targets at their surface) subsequently allows identification of the SNPs present in the sample. 

Multiple strategies have been proposed to build “suspension arrays” 19-21. Our group introduced the 

encoding of fluorescent polystyrene microspheres (of about 40 µm in size) with a digital barcode by 

means of “spatial selective photobleaching” (see Chapter 2). The thus encoded microspheres were 
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called “memobeads”. 
22

 To optimize the surface characteristics of memobeads we recently proposed 

to coat their surface with poly-electrolytes by the “Layer-by-Layer” (LbL) approach. 
23

 As shown in 

Chapter 2, LbL coating is based on the alternate adsorption of oppositely charged polyelectrolytes 

onto a charged substrate. The LbL coating of the surface of the memobeads was proven to be 

“multifunctional” in the sense that it (a) allows positioning of the memobeads for decoding, (b) does 

not optically interfere with the encoding and reading process and (c) allows a high loading of the 

surface of the microparticles with capture probes (like proteins and DNA molecules). Meanwhile, 

those memobeads were already applied as a platform for sandwich immunoassays and enzyme 

screening 
24

. 

In this study, we demonstrate a proof-of-concept of using memobeads for multiplexed SNP 

genotyping by combination with the solution-phase Oligo Ligation Assay (OLA) genotyping method, 

which is a ligation-dependent PCR method for the detection of known single nucleotide 

polymorphisms (SNPs) in genes 25. The OLA method, which is depicted in Figure 1, has several 

advantages compared to other SNP typing methods: any nucleotide variation at the ligation junction 

can be detected with a single set of assay conditions, the assay has a high specificity, speed, and can 

be automated, making it suitable for large-scale genotyping. Because of the high specificity of the 

ligase, SNPs can be identified with high accuracy, even at low abundance (which is often the case in 

e.g. cancer mutations that are present in a minority of the total target DNA) 26. Suitably designed 

common locus specific and allele specific primers are hybridized to the denatured target DNA, and 

are subsequently ligated to each other provided that the nucleotides are perfectly base-paired to the 

target at the junction (Figure 1) 25,27. Ligated products can be detected by a wide variety of methods, 

like separation with PAGE or capillary tubes, or trapping using biotin-streptavidin interactions or via 

disulfide bonds on microarrays, combined with fluorescent, radioactive or enzymatic detection 28,29.  

The allele specific ligation primers that are used in this chapter, however, contain at their 5’-

terminus zip-codes (with a specific sequence) that are used to hybridize the OLA products, after a 

PCR amplification step, to corresponding zip-code addresses that are attached to the digitally 

encoded microcarriers (Figure 1). The use of artificially made zip-codes - which are designed in such 

a way that cross-hybridization is impossible - as a universal platform for molecular recognition was 

first described by Gerry et al. 26 The ligated product is then amplified and fluorescently labeled by 

means of a PCR which uses two universal primers, one of which is fluorescently labeled (see Figure 

1). Those primers anneal to the tail sequences of the ligated product. This yields consistent results 

among different ligated targets and allows uniform PCR conditions to be used. Since a single base 

mismatch prevents ligation, it is possible to distinguish mutations with high specificity. Using the 

Apolipoprotein E (ApoE) gene as a model system, multiplexed OLA/PCR followed by hybridization to 
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digitally encoded microcarriers was used for genotyping nine clinical samples. The ApoE is a plasma 

protein involved in lipid transport and lipoprotein metabolism 
30

. The ApoE gene on chromosome 19 

exhibits two common polymorphisms that have been associated with both coronary artery diseases 

(CAD) and Alzheimer’s disease 31. The polymorphisms create the 3 allelic isophorms E2, E3 and E4 

which are encoded by Cysteine-Cysteine (Cys-Cys), Cysteine-Arginine (Cys-Arg) and Arginine-Arginine 

(Arg-Arg) at amino acid positions 112 and 158, respectively, resulting from the single base 

substitution of a T to a C at each of these two corresponding sites in the gene (ApoE Cys112Arg and 

ApoE Arg158Cys). 

 

 

MATERIALS & METHODS 

 

Materials.  

Non-magnetic fluorescent carboxylated microspheres (CFP-40052-100, ø = 39 µm) were 

purchased from Spherotech (Libertyville, Illinois, USA). Poly (allylamine hydrochloride) [PAH; 28,322-

3], sodium poly (styrene sulfonate) [PSS, MW ~ 70 000; 24,305-1] and poly (acrylic acid) [PAA, MW ~ 

45 000; 18,128-5] were obtained from Sigma Aldrich (Steinheim, Germany). The polymers were 

dissolved into 0.5 M sodium chloride (31434, Sigma Aldrich, Seelze, Germany). Bovine serum 

albumine (BSA, A-7906) and 2-[N-Morpholino]ethanesulfonic acid (MES, M-8259) were purchased 

from Sigma (Bornem, Belgium), PBS Dulbecco’s (14190-094) from Gibco and Tween-20 (655204) 

from Calbiochem. EDC (1-ethyl-3-(3-dimetyl aminopropyl) carbodiimide HCl, 22980) was obtained 

from Perbio Science (Erembodegem, Belgium); desiccated and stored at -20°C. All oligonucleotide 

were synthesized by Eurogentec (Liege, Belgium). Capture probes were amino (NH2)-modified for 

coupling to carboxylated microcarriers. Capture probes were purified by reverse-phase HPLC. Target 

sequences used for hybridization studies were Cy5 or TexasRed conjugated for fluorescent 

detection. One PCR primer used for genotyping was Cy5 conjugated, the other one unmodified. SNP 

specific ligation primers containing the SNP position were phosphate-modified. The other SNP 

specific ligation primers were unmodified. Before use, all nucleotides were reconstituted in sterile 

distilled, deionized water. We randomly choose 4 zipcode sequences from those described by the 

group of Barany for hybridizing OLA targets to the microspheres 26. 
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Layer-by-Layer coating of the microspheres.  

A schematic overview, as well as the procedure of the Layer-by-Layer modification is 

described in Chapter 2. 

 

Encoding of the microspheres. 

The encoding process is described in Chapter 2. 

 

Coupling of capture probes to the LbL coated microcarriers and encoded memobeads. 

Aminated capture probes were covalently attached to the (PAA) carboxyl groups at the 

surface of the microcarriers by the one-step carbodiimide-method in a total reaction volume of 17.5 

µl. In brief, the microcarriers (suspended in 7.5 µl 0.4M MES buffer) were activated and coupled to 

capture probes by incubation with 7.5 μl EDC (100 mg/ml in 0.4M Mes-buffer – fresh made) and 2.5 

μl capture probe in a thermomixer at 20°C and at 1500 rpm for 1 hour. In order to check which 

coupling concentration was most optimal, 2.5 µl of differently concentrated solutions of Cy5 red 

fluorescent capture probes (CP A and CP B, see Table 1) (between 40 nM and 200 µM) were coupled 

to approximately 500 LbL coated microcarriers. For the coupling of TAG capture probes to the 

encoded memobeads, approximately 500 encoded memobeads were incubated with 2.5 µl of the 

TAG probes (at 33 µM), and for the coupling of the other capture probes to the LbL coated 

microcarriers, approximately 6000 microcarriers were incubated with 2.5 µl of the probes (at 100 

µM). The sequences of the capture probes are listed in Table 1. The microcarriers were then washed 

three times with 100 μl of assay buffer (1% bovine serum albumin, 0.05% Tween-20 in PBS) for 30 

seconds, and they were subsequently washed twice with 100 μl hybridization buffer (5 mM Tris-HCl, 

0.5 mM Titriplex III, 1.0 M NaCl, dH2O). Finally, the coated microcarriers were stored in 200 μl 

hybridization buffer (final concentration = 2500 microspheres / ml) at 4°C. 

 

Hybridization of target probes to the LbL coated microcarriers. 

Approximately 3000 coated microcarriers (suspended in 10 µl hybridization buffer) were 

incubated with 5 µl target probes (35 µM) for 30 minutes at room temperature, unless otherwise 

noted. Before that, the targets were incubated for 2 minutes at 95°C to denature their sequences. 
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The microcarriers were then washed twice with 1x SSC buffer, and finally stored in 40 µl 1x SSC 

buffer before analysis. The sequences of the target probes (TP) are listed in Table 1. 

 

OLA and multiplexed memobead assay. 

The Oligo Ligation Assay, as explained in this section, has been developed and optimized by 

the group of Jurgen Del-Favero (VIB Department of Molecular Genetics, University of Antwerp). PCRs 

of the samples were performed in a total of 20 µl using 20 ng aliquots of sample. The PCR master 

mix included final concentrations of reagents as follows: 1x Titanium
TM

 Taq PCR buffer (Clontech), 

0.1 µl 50x TitaniumTM Taq DNA Polymerase (Clontech), 0.25 mM of each deoxynucleoside 

triphosphate (Invitrogen), 0.5 µM of each PCR primer (apoE-F and R), and 1 M betaine. Standard PCR 

conditions were developed: denaturation for 2 minutes at 95 °C, followed by 35 cycles for 30 

seconds at 95°C, 30 seconds at 68°C, 30 seconds at 72 °C, and final extension for 6 minutes at 72°C. 

The samples were subsequently stored at 8°C. The PCR samples were finally purified with the 

QIAquick PCR Purification Kit (Qiagen). Ligation primers were designed to bind to specific sequence 

regions of the amplified targets on 1 strand of the double-stranded DNA amplicon (LP1, LP2, LP3, 

LP4, LP5 (OLA112R), and LP6 (OLA158R). The sequences are listed in Table 1. Purified PCR product 

was diluted 1/5000 and 1 µl was used for the multiplexed ligation reaction. The ligation reaction was 

done in a total 15 µl volume, consisting of 0.66 fmol/µl of each ligation primer, 10x ampligase 

reaction buffer (Epicentre), and 1U ampligase (Epicentre). The DNA ligation reactions were carried 

out in a thermo cycler as follows: denaturation for 2 minutes at 95°C, followed by 5 minutes at 65°C, 

followed by 19 cycles for 1 minute at 95°C and 5 minutes at 65°C. The ligation product was finally 

stored at 8°C. After the multiplexed ligation reaction, the ligation product was amplified by means of 

a secondary PCR in a total reaction volume of 20 µl. The ligation product was diluted 1/10 and 2 µl 

was used for the PCR reaction. The PCR master mix included final concentrations of reagents as 

follows: 1x TitaniumTM Taq PCR buffer (Clontech), 0.2µl 50x TitaniumTM Taq DNA Polymerase 

(Clontech), 0.25 mM of each deoxynucleoside triphosphate (Invitrogen), 0.5 µM of each PCR primer 

(PP2 and Cy5 conjugated PP1, Table 1). Standard PCR conditions were developed: denaturation for 2 

minutes at 95 °C, followed by 35 cycles for 30 seconds at 95°C, 30 seconds at 60°C, 30 seconds at 72 

°C, and final extension for 6 minutes at 72°C. The samples were subsequently stored at 8°C. For the 

multiplexed detection of the SNPs on the memobeads platform, approximately 125 microspheres 

were used in total reaction volume of 40 µl in a 0.2 ml PCR tube; 25 microspheres (bearing a dotcode 

encoding for the 112T-allele) were coated with the 112T tag probe (CP F’), 25 microspheres (bearing 

a dotcode encoding for the 112C-allele) were coated with the 112C tag probe (CP F), 25 
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microspheres (bearing a dotcode encoding for the 158T-allele) were coated with the 158T tag probe 

(CP F’”), 25 microspheres (bearing a dotcode encoding for the 158C-allele) were coated with the 

158C tag probe (CP F”), and 25 microspheres did not bear any probes (“control microspheres”). The 

target reaction mix contained 4 μl of the ligation product, and 36 μl of fresh made 3.33x SSC buffer + 

0.33% SDS. The target reaction mix was firstly denatured at 98°C for 5 minutes, and thereafter 

immediately placed on ice. The target reaction mix was then added to the bead mixture, vortexed 

for 3 seconds, and incubated for 14 hours on a rotator in a hybridization oven at 60°C. The 

microspheres were finally washed twice with 100 µl of 1x SSC buffer, and resuspended into 40 µl of 

the same buffer. 
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Figure 1: Procedure of single nucleotide polymorphism detection by combination of the Oligo Ligation Assay with 
memobeads. In a first step ligation primers hybridize to the sample DNA and are ligated to each other if they are completely 
complementary to the target sequence. Both ligation primers consist of an allele-specific sequence and a sequence that is 
specific for hybridization with a universal PCR primer. One of the ligation primers also carries an ‘anti-TAG’ sequence ZIP-
code) that is necessary for hybridization to complementary capture TAGs that are coupled to the memobeads. In the next 
step, ligated product are all together amplified and fluorescently labeled in one PCR reaction, using universal PCR primers 
from which one is fluorescently labeled. The fluorescent PCR amplicons are then captured on the memobeads. Different 
alleles are captured on different memobeads, using different TAG-sequences. 
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Microscopy of the microspheres. 

The LbL coated encoded microspheres were decoded using a pseudo-confocal Perkin-Elmer 

CSU-10 scanning unit mounted to an inverted Zeiss microscope equipped with an objective 40x lens 

(NA 0.6) and a cooled Hamamatsu ORCA-ER charge coupled device (CCD) camera. Excitation was 

done with laser light (488nm). Imaging Technology PC-DIG framegrabber boards took care of image 

transfer from the CCD camera to the computer. The (red) AlexaFluor 647 fluorescence at the surface 

of the microcarriers was measured with the same instrument, but excitation was done with a 

halogen lamp. A 647nm LP filter was put in front of the lamp to obtain the optimal wavelength. To 

determine the red fluorescence of a microcarrier, a region of interest (ROI) was drawn around the 

microcarrier and the red fluorescence within the ROI was measured using the Matlab 7.1 version 

equipped with home-made imaging processing software. The red fluorescence of each microsphere 

was defined as the mean of the intensity of all pixels within the ROI. 

 

 

RESULTS AND DISCUSSION 

 

Optimization of probe coupling conditions to LbL coated microcarriers. 

It is well-known that the coupling density of probes on microarrays and microparticles 

strongly influences the hybridization kinetics with target molecules 
10,32,33

. Figure 2 shows the effect 

of the concentration of capture probes in the coating solution on the amount of coupled probes. 

Several sequential dilutions of a Cy5 red fluorescently conjugated probe were used (CP A, see Table 

1). It proves that the coupling density can be controlled by varying the probe concentration. An 

increase in red fluorescence is measured at the surface of the microcarriers, which is proportional to 

the amount of bound probes, as a function of increasing probe concentrations. The signal reaches 

thereafter a maximal value at probe concentrations around 3.3 µM, and finally decreases with 

higher probe concentrations. The latter one is remarkable, and not expected, because there we 

couldn’t find any reason why higher probe concentrations result in a less dense surface occupation. 

As far as we know, this has never been described in the literature; in contrast, other research groups 

reported an increase in surface density, which finally reaches a saturation level 33. Although they 

have used different microparticles and coupling methods, there is no reason why this should not 
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happen in our case. The decrease in fluorescence is probably due to a quenching reaction. At certain 

coating concentration, the fluorescent probes become too densely packed at the surface of LbL 

coated microcarries, which brings the fluorophores in too close proximity. LbL coated microcarriers 

exhibit indeed a higher loading capacity than the original non-magnetic microcarriers, as was shown 

in Chapter 2, which was probably the result of 1) a higher density of carboxylic acid groups per unit 

of surface area due to coating with PAA, and 2) a higher surface area due to the incorporation of 

magnetic nanoparticles (as is depicted in Figure 3). Therefore, it might be possible that the probes 

come in too close proximity at high surface densities. If quenching occurs, then this means that the 

maximal fluorescence in Figure 2 does not necessarily correlate to the maximal surface loading. 

Therefore, higher densities might be obtained with coating concentrations that are higher than 3.3 

µM, although less fluorescence is observed. It has been postulated, however, that a too dense 

packaging of probe molecules impedes the hybridization of target molecules, because of steric 

hindrance. Quenching reactions occur when two fluorescent molecules are in close neighborhood 

(distance of a few Angström). As a result, a less efficient hybridization might be expected, if the 

coating concentration is higher than 3.3 µM. Therefore, in the following experiments, capture probe 

concentrations were used around this value.  

 

Figure 2: Titration of 3’ red fluorescently labeled and 5’ aminated capture probes used in the coupling procedure and its 
effect on surface probe densities in two independent experiments (black and grey). The decrease in fluorescence for 
concentrations higher than ~ 3.3 µM is probably due to the quenching of the fluorophores at the surface of the microcarriers, 
because the probes are bound in too close proximity. 
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Note that the previous result was achieved by coupling  a 5’ amino and 3’ fluorescently 

labeled capture probe (CP A). The same result has been observed, however, when coupling a 3’ 

amino and 5’ fluorescently labeled capture probe (CP B, Table 1, results not shown), which means 

that the result is independent of the orientation of the capture probe at the surface of the 

microcarriers. 

 

 

Figure 3: Coupling of probes to microspheres with and without LbL coating. The physical structure of the LbL surface 
probably brings fluorescently labeled probes in too close proximity, with quenching of the fluorophores as a result. 

 

 

Hybridization of complementary oligonucleotides to LbL coated microcarriers. 

Figure 4 shows the titration of a target probe (TP C, Table 1) against a fixed number of 

microcarriers that were coated with capture probes C. The volume of the hybridization mixture was 

kept as low as practically possible (15 µl) in order to increase the relative probe concentration. 

Together with a continuously mixing condition, this improves the hybridization efficiency, as was 

demonstrated by Gerry et al. 
26

 As expected, a quantitative relationship was observed between the 

concentration of the target probe and the fluorescent signal that was measured at the surface of the 

microcarriers. As negative control, non-coated microcarriers were incubated with the highest target 

concentration. No detectable non-specific binding to the LbL coating of those microcarriers was 

observed. This shows that LbL coatings might have potential in genetic tests, provided that sensitive 

measurements are possible. 
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Figure 4: Relative red fluorescence intensity at the surface of the microcarriers as a function of the concentration of the target 
probe. Capture probe coated LbL coated microspheres were incubated with dilutions of the Cy5 labeled complementary 
sequence. 

 

Optimization of hybridization: influence of the spacer length of the capture probes. 

Spacer molecules play an important role in the hybridization of target sequences to probes 

that are fixed on a surface 34. The length of the spacer molecule drastically determines the mobility 

of the capture probes and thus the hybridization with them 35. Generally, the longer the spacer 

molecule, the more the oligonucleotide is spatially removed from the surface, the less it will interact 

with the surface, and thus the more the hybridization kinetics resembles solution-kinetics. 

Hybridization efficiencies were compared in this study between a Cy5 fluorescently labeled target 

probe (TP C) and a capture probe that was coupled via four different spacer molecules (three of 

them were coupled via their 5’ end: CP C with a C6 spacer, CP C’ with a C3 spacer, and CP C” with a 

C12 spacer, and one was coupled via its 3’ end: CP C’” with a C6 spacer) (Table 1). Three 

independent experiments were performed, and because it was important that each of the four tubes 

carried the same amount of target probe within each repetition, one dilution was made which was 

then equally distributed in the four tubes. To avoid irregularities due to different amounts of target 

probes between the three experiments, the average fluorescence of all samples was normalized to 

the average fluorescence of  sample 1 (spacer 1) within each experiment. Figure 5 shows the highest 

hybridization efficiency when the capture probes were coupled via their 3’ terminus to the 

microcarriers. Because the target sequence is labeled at its 5’ end with a Cy5 fluorophore, which 
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comes in close proximity with the surface of the microcarrier during the hybridization of the target 

sequence to the bound capture probe, the higher efficiency might be explained by the fact that the 

Cy5 molecules are a little attracted to the surface of the microcarriers, in which way they facilitate 

the hybridization. This is, however, only a suggestion, and more experiments have to be performed 

to investigate this opinion. Since no fluorescence was observed when the target sequences were 

incubated with control microcarriers (which were not coupled with capture probes), the final 

washing steps are stringent enough to eliminate non-specifically coupled target probes, as was also 

observed in the previous experiment. 

 

 

Figure 5: Influence of the length of the spacer by which the capture probes are coupled to the microcarriers, and the direction 
by which they are coupled, on the hybridization efficiency of target sequences. Three independent experiments were 
performed and to avoid irregularities due to different amounts of target probes between the three experiments, for each 
experiment the mean fluorescent signals were always normalized against the mean signal of the microcarriers that were 
coupled with the CP C capture probe (via a 5’ C6 spacer). The sequences are listed in Table 1. 

 

Comparing the probes that were coupled via their 5’ terminus, it can be seen that the C6 

spacer resulted in the highest hybridization, which can be explained by the fact that probes exhibit 

enough flexibility, while this is probably not true for probes that were coupled via a C3 spacer. On 

the other hand, a C12 spacer probably results in a less efficient hybridization, because, probably, the 

capture probes achieve too much flexibility. They start to bend and can, besides making contact via 
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their 5’ end, also interact with the surface via other parts in their sequence, which has been also 

demonstrated by Southern on planar supports 
36

. Such an inconsistent, but significant effect of the 

length of the spacer on the hybridization efficiency was also observed by the group of Walker, when 

the capture microcarriers (coated with probes) were kept at room temperature before hybridization, 

although other immobilization strategies were used 
35

. They could circumvent this effect by pre-

heating the capture microcarriers at 90°C for 10 minutes immediately before hybridization. A 

increase in hybridization was then observed as the length of the spacer was increased, probably 

because the contact points at other parts in the capture probe sequence were broken by the high 

temperatures  
37

. 

 

Optimization of hybridization: influence of the hybridization time. 

Different concentrations of target probes C (13 µM, 0.13 µM, and 0.013 µM) were hybridized 

to microcarriers that were coupled with the complementary capture probes C (5’ C6 spacer). Target 

hybridization efficiency was measured as a function of the incubation time. It was seen that most of 

the target molecules hybridized already during the first minutes of incubation (Figure 6), with a 

neglected increase in the amount of hybridization for longer incubation times, independent of target 

concentration, as shown by the linear fittings. 

 

Figure 6: Influence of the hybridization time on the hybridization efficiency for three different target concentrations: 13 nM 
(grey circles),  0.13 µM (light grey circles) and 13 µM (dark grey circles). A linear fitting has been applied to the data points, 
which shows that most of the targets already hybridized during the first moments of incubation, and that additional bound 
targets at longer incubation times can be neglected. 



CHAPTER 5 –MULTIPLEXED SNP GENOTYPING WITH LAYER-BY-LAYER COATED DIGITALLY ENCODED MICROCARRIERS 

 

173 

Optimization of hybridization: influence of the degree of probe/target complementary.  

Because most genetic applications of the LbL coated memobeads will rely on the 

hybridization of targets, from which only a part of their sequence is complementary to that of the 

capture probes, it was investigated to which extent the degree of complementarity between probes 

and targets influences their hybridization efficiency. As will be shown later on in this chapter, when 

memobeads are used to capture OLA amplicons, the target sequence is much longer than the 

capture probe sequence, and only a part of the target sequence is used to capture it (see Oligo 

Ligation Assay in Figure 1).  

 

 

Figure 7: A/ Schematic overview of the hybridization between capture and target probes at the surface of a microcarrier. The 
capture probe is coupled via its 5’ end with a C6 spacer molecule. Middle: capture and target probe are equally sized and 
fully complementary. If the target sequence is larger than the probe sequence, a part of the sequence is not complementary, 
and will result in an ‘overhanging’ part at the 5’ end of the capture probe (left), or at the 3’ end of the capture probe (right).  B/ 
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Influence of the degree of complementary between capture and target probes, and the position of the overlap of the not 
hybridized part of the target sequence, on the hybridization efficiency. 

 

The real OLA situation was mimicked here by hybridizing two different (fluorescently 

labeled) 44-mer target oligonucleotides to a 20-mer capture probe (CP D), which resulted in an 

overhang close to the surface of the microcarrier at the 5’ end of the capture probe (when TP D was 

used, Figure 7 A left), or far from the surface of the microcarrier at the 3’ end (when target probe D” 

was used, Figure 7 A right). The hybridization efficiency was compared to that of a fully 

complementary 20-mer target sequence (TP D’, Figure 7 A middle). The sequences can be found in 

Table 1. Three independent experiments were performed, and in order to avoid irregularities due to 

different amounts of target probes between the three experiments, the average fluorescence was 

always normalized to the average fluorescence of one of the samples within each experiment. Figure 

7 B shows that if the overlap of the non-complementary part of the target sequence occurs at the 5’ 

end of the capture probe (which is close to the surface of the microcarrier), then the highest 

fluorescence signal is achieved (which is proportional to the amount of hybridized targets). This 

signal is even a little higher than the mean fluorescence measured at the surface of microcarriers on 

which hybridization occurred between two fully complementary 20-mer sequences (TP D’). As 

already mentioned in a previous paragraph, the reason therefore might be an attraction of the Cy5 

fluorophore to the surface of the microcarrier, which facilitates the hybridization process, although 

this is still a suggestion. Remarkably, in case of an overlap at the 3’ end of the capture probe, the 

fluorescence signal is significantly much lower, meaning that much less targets are hybridized. 

 

Dual color detection with LbL coated microcarriers. 

So far, target probes were always red fluorescently labeled (Cy5), in order to avoid as much 

as possible any cross-talk between the fluorescent reporter molecule and the green fluorescent 

molecule that is used to stain the memobeads (and which is necessary for the encoding technology). 

Cross-talk indeed results in a higher background fluorescence, which should be avoided, especially in 

situations where the intensity of a specific signal is low (e.g. when only a few target molecules have 

been hybridized). Cross-talk between the Cy5 and green fluorescent dye inside the memobeads can 

be avoided by using the correct excitation- and emission filters, as shown in Figure 8. 
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Figure 8: Excitation- (dotted lines) and emission (full lines) spectra of the green fluorescent dye that is used to stain the 
memobeads (green lines) and Cy5 fluorophores (red lines). Cross-talk can be avoided by using the correct excitation- and 
emission filters.    

 

Besides Cy5, however, also other fluorescent dyes might be applied for target labeling, as 

long as their spectrum does not interfere (too much) with the spectrum of the green fluorescent 

memobeads. The encoding of microspheres by means of photobleaching makes use of only one 

fluorescent dye, independently on the number of codes that has to be generated. One encoding dye 

means that a broad part of the spectrum is available for reporter labeling. Therefore, multi-color 

reporter labeling might be an option on the memobead platform, which is not the case on certain 

other platforms, such as e.g. the optical encoding platform developed by Luminex Corp., which uses 

two different fluorescent dyes to generate only 100 codes, as shown in Chapter 1, and which will 

need a third/fourth/… dye to generate even a larger number of codes. Multi-color labeling is 

important for some NATs, such as for gene expression analysis on conventional cDNA microarrays. 

The latter one needs two colors; cDNA from two different conditions (e.g. normal versus disease 

samples) is labeled with two different fluorophores (e.g. Cy3 for normal and Cy5 for disease cDNA) 

38. Several genes are labeled simultaneously in this way. Those differently labeled samples are 

subsequently co-hybridized to a microarray on which probes for the multiple genes are separately 

spotted. After washing, the microarray is scanned at two different wavelengths and the ratio 

between the Cy3 and Cy5 emission signals informs about the relative transcript abundance of each 

gene under investigation: if the ratio Cy3/Cy5 is high, it means that there is less expression in the 

disease sample compared to the normal sample. Oppositely, a low Cy3/Cy5 ratio means a higher 

expression of the gene in the disease samples. When this type of gene expression analysis has to be 

applied to suspension arrays, two color reporter labeling is necessary. 
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Figure 9: Dual-color target labeling. Microcarriers that are encoded with dotcode 1 (closed symbols) and with dotcode 2 
(open symbols) were coupled with capture probes D and capture probes E, respectively. (A) A mixture of those microcarriers 
was incubated with 9 different solutions, composed of two or more Cy5 and/or TexasRed labeled target sequences (added 
sequences are indicated with a ‘+’ symbol). The sequences are listed in Table 1. (B) After hybridization, the observed ratio 
between the Cy5 signal and the TexasRed signal is shown for several microcarriers from each code. Red lines mark-off the 
categories (ratio > 10: only Cy5 signal, ratio < 0.1: only TexasRed signal, 0.1 < ratio < 10: both signals). 

 

As a proof-of-principle, a mixture of two differently encoded memobeads (each coupled with 

different capture probes, respectively CP D and E, Table 1), was incubated with several target 

solutions, composed of mixtures of target probes TP D, D’”, E, and E’ (Table 1). Two reporter dyes 

were used, Cy5 (TP D and TP E) and TexasRed (TP D’” and TP E’). The composition of the solutions, 

and the ratio between the Cy5 and the TexasRed fluorescence that were measured at the surface of 

both types of memobeads, are shown in Figure 9 A, respectively Figure 9 B. 

We were able to retrieve the composition of each solution by means of the Cy5/Texas Red 

ratio and the code of the memobeads. The measurements could be clearly classified into three 
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separate categories. To the first category (Cy5/TR > 10) belong the memobeads to which Cy5-labeled 

target probes specifically hybridized, TexasRed labeled ones not (or only non-specific). The second 

category (0.1 < Cy5/TR < 10) consists of those memobeads that detected both types of targets. 

Finally, the third category (Cy5/TR < 0.1) are the memobeads  that detected TexasRed labeled target 

sequences specifically, but not Cy5 labeled ones. Note that the Cy5/TR ratio is limited to 0.01 and 

100, if no Cy5 fluorescence, respectively TexasRed fluorescence was measured (in order to avoid 

unlimited values). 

The results in Figure 9 proves that dual-color labeling on the memobead platform is possible. 

So far, only green fluorescently dyed memobeads were used, because of their availability. This dye, 

unfortunately, has a broad excitation- and emission-spectrum that is situated in the middle of the 

visible spectrum (Figure 8). Because a lot of commercially available dyes exhibit cross-talk in this 

area, they cannot be applied to the memobead platform at this moment. In other words, the 

memobead platform is actually limited to the use of (far) red fluorescent dyes. The encoding process 

by means of photobleaching, however, is in theory applicable to any other fluorescent molecule, as 

long as it can be incorporated in an immobile fashion inside the microcarriers, and as long as it can 

be bleached within acceptable times. The use of microcarriers that are fluorescently stained with 

fluorophores that can be excited with e.g. UV light or with far red light, could even improve the 

number and types of fluorophores that can be simultaneously used in one memobead-assay. 

 

ApoE genotyping of nine clinical samples. 

Besides for gene expression analysis, multiplexed platforms are ideally suitable for 

genotyping too, because of the high-density information. The memobead platform was therefore 

evaluated as genotyping platform, by combining it with the oligo ligation assay (OLA). The main 

advantage of the latter PCR based assay is the high specificity with which it detects, amplifies and 

labels single nucleotide polymorphisms, as explained in Figure 1, and in the introduction. The ligation 

primers (LP, Table 1) were designed with a target specific sequence, a sequence for universal primer 

hybridization, and an internal tag-sequence which corresponds to a ZIP-code sequence that was 

covalently linked to one of the microcarrier sets (see Figure 1). This assures hybridization of (allele-

specific) OLA amplicons to their corresponding encoded memobeads, so that each different encoded 

memobead detects another allele. 

As a model system, genotyping for Apolipoprotein E (ApoE) was performed. The capture 

probes, ligation primers and PCR primers (listed in Table 1) were designed to detect and differentiate 
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the two single nucleotide polymorphisms of the ApoE gene (ApoE112 and ApoE158). Nine different 

patient samples were evaluated, and the assay was carried out as described in the section materials 

& methods. Figure 10A shows the mean red fluorescence of each set of encoded memobeads, that 

was measured in a region of interest (ROI), as previously described. All samples were correctly 

genotyped (compared to the golden standard ‘sequencing’ results of the same patients; data not 

shown), although some signals do not differ that much from the background signal. Note that this 

problem might be avoided by calculating the correlation value between all pixels within the ROI and 

all pixels within a predefined ring structure that surrounds the ROI, as shown in Figure 10C. A clear 

separation between positive and negative measurements can be defined in this way, even for low 

signals. The mean red fluorescence remarkably varied between the different samples, probably due 

to varying yields in the PCR reactions, and/or varying incorporation of fluorophores, which has been 

previously described in the literature 
39

. The result was also compared with that obtained on a 

microarray platform (Figure 10B). The same capture probe sequences were therefore spotted on the 

latter one, and the OLA amplicons were then hybridized to this microarray. Figure 10 shows a good 

agreement between the results that were obtained with both platforms. Only one allele was 

differently measured on both platforms (sample 4, 112C), probably due to a less efficient 

hybridization on the microarray. Figure 10B again shows remarkable variations in absolute red 

fluorescence between the different samples that were measured on the microarray platform, which 

means that the variation is not introduced by irregularities during the hybridization process, but is 

rather related to the OLA assay itself. 
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Figure 10: Simultaneous detection of SNP112 and SNP158 associated with the ApoE gene from nine different clinical 
samples with the memobead platform (upper graph) and with a microarray platform (middle graph). Lower graph: correlation 
value between all pixels measured within the ROI and all pixels measured in a predefined ring structure that surrounds the 
ROI, for all signals shown in the upper graph (memobead platform). Cont = control, which is a microcarrier with no 
complementary tag-sequence in the case of the memobead platform (upper and lower graph) and a spot with no 
complementary tag-sequence in the case of the microarray (middle graph).  
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CONCLUSION 

This study shows evidence that LbL coated microcarriers can quantitatively detect DNA 

molecules. We showed that the length of the spacer molecule by which capture probes are attached 

to the microcarriers, plays an important role in the hybridization efficiency of targets probes thereto. 

It has been observed that hybridization occurred very fast on the surface of the microparticles; 

almost maximal hybridization was achieved within a few minutes. Remarkably, the efficiency 

increases with higher lengths till a maximal efficiency is reached with a certain length of the spacer. 

A longer spacer length result in a worse efficiency, probably because the capture probe interacts too 

much with the surface of the microcarrier. A few results raised the question whether Cy5 

fluorophores are attracked to the surface, and thereby influence the hybridization of Cy5 labeled 

target probes. This still has to be investigated in future. An important strength of the memobead 

platform, compared to other suspension array platforms, is that it makes dual-color target labeling 

possible, which is very attractive for e.g. gene expression analysis. Multiple-color labeling might be 

possible with this platform, by changing the dye inside the microcarriers. Finally, a proof-of-concept 

has been launched that demonstrated the possibility of using the memobead platform for 

genotyping. Nine clinical samples were correctly genotyped for two polymorphisms of the 

Apolipoprotein E gene. 
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ABSTRACT 

 

In the field of medical diagnostics there is a growing need for inexpensive, accurate, and quick high 

throughput assays. On one hand, recent progress in microfluidics technologies is expected to strongly 

support the development of miniaturized analytical devices, which will fasten (bio)analytical assays. 

On the other hand, a higher throughput can be obtained by the simultaneous screening of one 

sample for multiple targets (multiplexing) by means of encoded particle-based assays. Multiplexing 

at the ‘macro’ level is nowadays common in research labs and is expected to become part of the 

clinical diagnostics. This chapter aims to debate on the ‘added value’ we can expect by (bio)analysis 

with particles in microfluidic devices. Technologies to (a) decode, (b) analyse, and (c) manipulate the 

particles are described. A special emphasis is on the challenges which exist to integrate currently 

existing detection platforms for encoded microparticles in microdevices, and on promising 

microtechnologies for down-scaling the detection units, in order to obtain compact miniaturized 

particle-based multiplexing platforms. 
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CHAPTER 6 

SYNERGISM BETWEEN PARTICLE-BASED 

MULTIPLEXING AND MICROFLUIDICS 

TECHNOLOGIES MAY BRING DIAGNOSTICS CLOSER 

TO THE PATIENT 

 

 

 

INTRODUCTION 

 

Many automated systems have been introduced in the field of medical diagnostics to allow a 

more rapid and efficient collecting of data from the substantially amount of samples that hospitals 

daily deal with. However, such automated equipment is mostly not suitable for use in small 

diagnostic and research laboratories and for decentralized point-of-care testing, as they require 

highly qualified personnel, are often non portable and/or too expensive. Hence, there is an 

increasing need for (a) accurate, (b) quick, (c) miniaturized, and (d) cheap innovative tools which 

should bring medical diagnostics closer to the patient.  

There is no doubt that the recent progress in microfluidics technologies will strongly support 

the development of miniaturized analytical devices 1. Microfluidics involves the manipulation, 

transport, and analysis of fluids in micrometer-sized channels. A “liquid microspace” has 

characteristic features which differ from the properties of a “liquid bulk”: high interface-to-volume 

ratio, small heat capacity and, especially, short diffusion distances. The latter is a useful property in 

analysis, because the time a molecule needs to  diffuse from point a to point b is proportional to the 

square of the distance between a and b 2; While it takes several hours to overcome 1 cm, it only 

takes tens of seconds to overcome 100 µm.  
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The microfluidic concept has today already evolved in promising analytical ‘lab-on-a-chip’ 

(LOC) tools. 3 The LOC concept, or “micro total analysis systems” (µTAS) as it is today commonly 

referred to was proposed in the early 1990s by Manz et al.4 Since that time the field has bloomed 

and branched off into many areas with different applications such as single molecule analysis 5, single 

cell processing and analysis 6, biological and chemical analysis 7-14, point of care testing 15,16, clinical 

and forensic analysis 17, molecular and medical diagnostics 18-21, combinatorial chemistry 22 and drug 

discovery 23. The fact that LOC systems are compact, which allows automation of complex tasks, 

makes them very attractive 24. 

A higher throughput in (bio)analysis can be obtained (a) by parallel screening of multiple 

samples for one target, (b) by the simultaneous screening of one sample for multiple targets 

(multiplexing) or (c) by a combination of both, as recently reviewed by Situma et al. 25. In 

microfluidics, a higher throughput is currently obtained by parallel screening of a number of samples 

in a number of channels in one device. Sato et al. 26 constructed a device with branching 

multichannels that allow four samples to be processed simultaneously. The assay time for four 

samples took 50 minutes instead of 35 min for one sample in a single-channel assay. A further way to 

realize higher throughput analysis in microfluidic devices is by multiplexing i.e. the simultaneous 

detection of multiple analytes in a sample present in one channel. Kartalov et al. reported a multi-

antigen microfluidic fluorescence immunoassay which measures up to 5 analytes for each of 10 

samples in a 100-chamber polydimethylsiloxane (PDMS) microchip 27. Multiplexing at the ‘macro’ 

level is nowadays common in research labs and is expected to become part of the clinical diagnostics 

28-30. Both “planar arrays” (often called “microarrays”) and “suspension arrays” (particle-based arrays) 

were developed for multiplexing purposes. 

Because microarrays allow (ultra) high density analysis of samples they became standard 

tools for gene expression analysis 31. Multiplexing necessitates an encoding scheme for molecular 

identification; the code allows knowing which capture probe is bound at that particular position on 

the array and therefore also which analyte is analyzed. Whereas planar arrays strictly rely on spatially 

positional encoding, particle-based arrays have used a great number of encoding schemes that can 

be classified as optical, graphical, electronic or physical 32,33. Particle-based arrays benefit from (a) 

“near-solution” kinetics -which means that the kinetics between a molecule bound to the surface of a 

particle and a free molecule equals those between two free molecules-, (b) lower instrument related 

costs, (c) higher sample throughput and (d) good quality control by batch synthesis 34,35. When 

compared with microarrays, particle-based arrays offer a more flexible choice of the “probe-set”; the 

detection of extra targets only implies the addition of extra microparticles to the sample while in 

case of microarray-assaying a new microarray has to be made. Particle-based arrays are especially 

most favored over microarrays when rather a modest instead of a very high number of targets has to 
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be simultaneously analyzed. This feature may explain the recent exponential increase of particle-

based applications at the ‘macro’ level 28. 

Currently, multiplexing at the microlevel is mainly done by combining flat surface microarrays 

with microchannels. Delehanty and Ligler 36 used non-contact microarray printing to immobilize 

biotinylated capture antibodies at discrete locations on a avidin-coated microscope slide and 

processed the samples with a six channel flow module. Assays were completed in 15 minutes. The 

group of Delamarche combined concepts of micromosaïc immunoassays and microfluidic networks 

to detect C-reactive protein (CRP) and other cardiac markers 37,38. By using 20 µm by 10 µm sized 

channels (5 mm in length), CRP was detected in 10 minutes in only one microliter of human plasma 

down to concentrations of 30 ng/ml. So far only few examples have been reported on multiplexing 

by particles in microfluidic devices 39. One of the problems is that the implementation of the 

detection systems, currently used to analyze particles in macro-assays, into microfluidic devices is 

not straightforward. 

This chapter aims to debate on the ‘added value’ we can expect by (bio)analysis with 

particles in microfluidic devices. Technologies to (a) decode, (b) analyze and (c) manipulate the 

particles are described. Also, an interdisciplinary effort is made to overview possibilities for the 

integration of different processes like decoding and sorting of encoded particles. 

 

 

STRATEGIES TO DECODE MICROPARTICLES 

 

For an overview of the particle encoding technologies and the strategies to decode particles, 

we refer to Chapter 1. Additional information can be found in some excellent reviews on this matter 

32,33,40,41. 
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MULTIFUNCTIONALITY OF MICROPARTICLES IN MICROFLUIDIC DEVICES  

 

Especially attractive and powerful is that particles in microfluidic based assays may have 

different functionalities, as outlined below. 

 

Particles offer a huge analytical surface. 

Clearly, when compared with flat supports, three dimensional particles offer a huge surface 

which should improve the (bio) chemical reaction rates. Already one decade ago, Zammatteo et al. 

demonstrated faster nucleic acid hybridization kinetics when DNA-probes were coated on the 

surface of 4.5 µm sized particles instead of on the surface of the wells of microtiterplates 42. Because 

the microparticles continuously move in the surrounding fluid (a very dynamic process), the reactions 

at their surface follow “near solution” kinetics. (Spherical) microparticles also have a high surface-to-

volume ratio, which enables reactions to be performed in smaller volumes without confessing to a 

smaller reaction surface. This again leads to a smaller diffusion distance and a shorter analysis time. 

Interestingly, even in microfluidic devices, hybridization kinetics are faster if the probes are coupled 

to the surface of particles instead of the walls of the microchannels, as recently shown by Kim et al. 

43. The authors showed the analysis of 2 µl volumes of samples on the order of a few minutes with 

flow rates of some hundreds of nanoliters per second. Not only hybridization reactions, but also 

protein-protein reactions take advantage of the size effect of the liquid microspace. Sato et al. 

demonstrated that the reaction time between antibodies and antigens coupled to the surface of 45-

µm polystyrene particles in a microfluidic device is 1/90 of the time needed in a conventional 

microtiterplate 44. The overall analysis time was shortened from 24 hours to less than 1 hour and 

troublesome operations could be substantially limited. Worth mentioning is that new technologies 

are in progress which offer high flexibility for surface coating of microparticles which will further 

broaden their molecular applications 34,45. 

 

Particles allow mixing. 

Another advantage is that particles allow mixing, which is important for (bio) chemical 

reactions. Because of the dimensions, the Reynolds number of fluid flows in microfluidic devices is 

extremely small (usually less than 1). This means that the flow profile is laminar and that molecular 

transport only occurs by diffusion, which is relatively time-consuming despite the rather small 

dimensions involved in the assay. The lack of turbulence makes mixing in microdevices a very 

challenging issue. Liu et al. have shown that oscillating the sample within a microchip accelerates the 



CHAPTER 6 – SYNERGISM BETWEEN PARTICLE-BASED MULTIPLEXING AND MICROFLUIDICS TECHNOLOGIES MAY BRING DIAGNOSTICS 

CLOSER TO THE PATIENT 

 
193 

hybridization of nucleic acids to their probes spotted on the bottom of the channel 46. As much as 5 

times signal improvement was achieved with sample oscillation after 15 minutes of hybridization. 

Similar conclusions on hybridization kinetics using conventional microarrays were made by Pappaert 

et al.; they showed that a shear-driven flow reduces the analysis time (from 16 hours down to 30 

minutes) 47. The effect of sample oscillation could be improved even further by using microparticles 

which were continuously moved around in the sample to cause a local turbulent flow. This has been 

demonstrated by Seong et al. 48 who studied how enzymes, immobilized on microparticles, convert 

their substrates. Herrmann et al. recently described a microfluidic ELISA (enzyme-linked 

immunosorbent assay) reaction at the surface of microparticles, using about 106 paramagnetic 

particles of 1 µm in diameter, trapped into a reaction chamber with dimensions of 6 mm x 2 mm x 50 

µm and showed that mixing by applying an external magnetic field enhances the reaction speed 49. 

  

Particles allow sorting. 

This is an important feature as particles allow the (a) enrichment of molecules of interest 

from complex samples, (b) separation of cells, viral particles and bacteria from a large population,…50 

Technical aspects related to sorting of samples with particles in microfluidics will be considered in 

Chapter 4. 

 

Particles are very practical. 

Particles are also of interest from a practical point of view. E.g. it is much easier to ‘handle’ 

(detect, trap, transport) microparticles than single molecules in microfluidic systems. Also, modifying 

the surface of microparticles is an easier process than modifying the walls of a microchannel in a 

chip. The surface of microparticles can be easily modified off-chip. Adding extra probes to an existing 

microfluidic based assay can simply be done by adding microparticles carrying the probes; No new 

device has to be produced. By adding more or less microparticles it is also straightforward to change 

the total capture surface (related to the number of probe molecules) in the assay; note that the total 

capture surface of a flat array (in a microwell or microarray) is constant. This can result in higher 

signals on particles than on flat arrays, for instance for enzyme/substrate reactions 42. 

 

(Encoded) particles allow multiplexing. 

This is highly important in situations where the amount of sample is very limited like in e.g. 

the analysis of blood from newborns, tumour tissue from biopsies... Additionally, multiplexing allows 

a more efficient and thereby less expensive use of reagents, and because the different targets are 
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screened simultaneously, they experience equal conditions in each step of the assay procedure. The 

integration of microparticles in microdevices for multiplexing goals is still in its early stage and only 

few publications demonstrated this synergism 39,51,52. Technical challenges related to this integration 

process will be overviewed in a separated chapter. 

 

 

PARTICLE TRAPPING AND SORTING IN MICROFLUIDICS 

 

Propulsion of fluids in microdevices. 

Microfluidics involves the transport, manipulation and analysis of fluids or substances in 

fluids in micrometer-sized channels. Flow in microfluidics can be generated (a) mechanically (by 

pressure), (b) electrokinetically (electroosmotic flow; EOF), (c) by capillary forces or (d) by centrifugal 

forces. The type of propulsion force used is highly dependent on the application, the requested flow 

rate and the material composition of the the microchannel. 

 

 

Figure 1: A pressure driven flow profile at time 0 and at time x after applying pressure. The profile is typically parabolic 
(higher velocities in the centre of the channel). B electrokinetically driven flow profile stays typically pluglike in the time (equal 
velocities in the centre as at the border of the channel) 

 

 

 In Figure 1, a typical pressure driven (e.g. caused by external syringe pumps) and 

electrokinetically driven flow profile is shown. The flow profile is parabolic (higher flow velocities in 

the centre than at the borders of the channel) and pluglike (equal velocities in the centre and at the 

borders of the channel), respectively. A parabolic flow profile can be attractive for the sorting of 

particles as will be further on described. On the other hand, an EOF is preferred for microchip 
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electrophoresis and electrochromatography, because the pluglike flow profile makes a more 

accurate separation possible 53,54. However, to allow EOF the surface of the microchannels has to be 

charged which requires appropriate materials to fabricate the microchannels. Also, EOF requires a 

specific buffer solution which should be compatible with the (bio)chemical assays.  

Propulsion by capillary forces, driven by local heating of a fluid and due to the high heat-

exchange rate in a microchannel, is still in an early stage of development and might not be 

compatible with (bio)chemical assaying in microfluidics as the high temperature can have a negative 

effect on the assay.  

Centrifugal fluidic platforms (called lab-on-a-disc) were recently reviewed by Madou et al. 55 

Due to the rotation speed it is possible to have identical flow rates, to load identical volumes, and to 

have identical incubation times in parallel assay capillaries. Therefore, they have great potential for 

parallel screening 56.  

 

 

Manipulation of particles in microdevices. 

To perform (bio)chemical reactions on a set of particles in microfluidic devices and to take 

full advantage of their multifunctionality (mixing, sorting, multiplexing,.…), they usually have to be 

trapped into a constrained volume inside the chip, while samples and reagents are being flushed 

through the device. Sometimes more ‘selective’ methods are needed which aim to isolate and 

manipulate individual particles. For example, an excellent review on the manipulation of single cells 

in microfluidic devices has recently been published by Toner and Irimia 57; Some of the methods 

described herein are applicable to microparticles as well. However, as certain microparticles have 

unique properties complementary techniques to separate and sort microparticles in microchannels 

exist as well. 

 

Mechanical trapping 

The most straightforward method to trap microparticles is by the use of a mechanical barrier. 

“Mechanical trapping” is only based on the size of the particles. The simplest design is a continuous 

flow-through microchannel that contains a dam structure (Figure 2A) or an array of pillars transversal 

to the direction of the channel, and with gaps in-between the pillars that are smaller than the 

diameter of the particles (Figure 2B) 44. By means of mechanical barriers differently sized particles 

can be separated, however a single particle cannot ‘selectively’ be trapped and separated 58. Another 

inherent problem to mechanical trapping is clogging, especially in narrow channels. As Figure 2 C1 
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and Figure 2 C2 show, to avoid clogging of 5.5 µm sized polystyrene beads, Andersson et al. made 

use of a square filter-chamber (side length is 100 µm) filled with pillars (instead of using pillars in a 

channel; pillars are 3 µm wide with a spacing of 2 µm) surrounded by a waste chamber 59. Mechanical 

trapping of microparticles in a microdevice without clogging is also possible by microcontact printing 

60, but this makes the system comparable with a microarray and thus less flexible. For the analysis of 

new targets, a new (microcontact printed) device has to be made. 

 

 

Figure 2: Schematics of a microchannel that contains a dam structure (A), an array of pillars transversal to the direction of 
the channel (B), and a filter-chamber (C1). The arrows show the direction of the flow. SEM images of the microchip with 
filter-chamber as proposed by Andersson et al. (C2). The pillars are 3 µm wide and 50 µm high with spacing of 2 µm. (Part 
C with permission from ref 59). 

 

 

Magnetic trapping 

 

Magnetic microparticles can also be immobilized and trapped in microdevices by means of 

magnetic forces exerted by an external rare earth magnet 49,61. The relatively large size of such an 

external magnet may, however, complicate a precise handling of the microparticles. This issue has 

recently been solved by using microfabricated 3D magnetic devices positioned in a continuous flow-

through microfluidic chamber (10 mm x 5 mm x 0.1 mm) 62. Magnetic particles between 1 and 5 µm 

in diameter were trapped at flow rates on the order of 10-100 µl/min. Another original concept is the 

manipulation of groups of magnetic particles, described by Rida and Gijs 63. The local rotational 

motion of the particles in a microfluidic flow, generated by an external local alternating magnetic 

field, enhances the interaction between the particles and the liquid: 95% mixing efficiency was 

achieved over a mixing length of 400 µm at flow rates on the order of 5 mm/s. A challenge remains 

the accurate manipulation (and separation) of individual particles by magnetic forces. Note that the 

presence of magnetic material in/on the microparticles is sometimes a limitation because it often 

renders them opaque. 
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Dielectrophoretic trapping 

 

Electrically polarizable microparticles can be manipulated by dielectrophoresis (DEP) 64. 

When such microparticles are subjected to an alternating electric field, a dipole moment is induced 

in the particles. In a non-uniform electrical field the polarized particles experience a dielectrophoretic 

force which may move them to regions of high or low electrical field. The motion depends on the 

particle polarizability compared to the suspending medium. The magnitude and direction of the 

dielectrophoretic force on a particle depends on its dielectric properties too, so that a 

heterogeneous mixture of microparticles in a continuous flow can be spatially separated to produce 

a more homogeneous population in an appropriate electrical field. 

 The separation of microparticles by DEP in a microdevice (DEP migration) has been 

demonstrated by several research groups. Kentsch et al. developed a particle-based assay for the 

detection of viruses in serum 65. Kralj et al. simulated the flow behaviour of spherical particles in a 

DEP based device and verified experimentally the model for DEP sorting of differently sized particles 

66. The separation efficiency can be improved by combining DEP with other physical forces (DEP 

retention); Microparticles mechanically driven through a microdevice by pressure-based flow fields 

can be separated by a dielectrophoretic force perpendicular to the flow, because the particles 

acquire different velocities, due to the parabolic flow profile, depending on their dielectric 

characteristics. This is an example of what is called field-flow fractionation (FFF). In FFF particles 

move in a flow and become separated by an external force, perpendicular to the flow. Particles with 

different properties attain different positions relative to the chamber wall, due to a number of 

possible forces: diffusive, hydrodynamic, gravitational (sedimentational), electrophoretic, dielectric 

and other forces or a combination thereof 67,68. 
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Figure 3: A Schematic overview of the microdevice used in optoelectronic tweezers (OET). Liquid that contains microscopic 
particles is sandwiched between the top indium tin oxide (ITO) glass and the bottom photosensitive surface consisting of 
ITO-coated glass covered with additional layers. The top and bottom surfaces are biased with an a.c. electric signal. A LED 
creates optical images on the digital micromirror display (DMD) which are then focused onto the photosensitive surface 
resulting in a non-uniform electric field for DEP manipulation. B Massively parallel manipulation of single particles by OET. 
(a) 15,000 particle traps are created across a 1.3mm x 1.0mm area. The 4.5-µm sized PS particles experiencing negative 
DEP forces are trapped in the darker circular areas. Single particle resolution is possible because each trap has a diameter 
of 4.5 µm. (b) Three snapshots from the video show parallel transportation of single particles in part of the manipulation area. 
The trapped particles in two adjacent columns move in opposite directions, as indicated by the blue and yellow arrows. (With 
permission from ref 69). 

 

 

DEP forces can be used to manipulate and trap individual microparticles as well. Indeed, by 

microelectrodes it is relatively easy to generate an electric field in a specific area of a microchip (the 

‘particle trap’) with physical dimensions close to the size of the microparticles. Such ‘energy traps’ 

can hold particles against volumetric fluid flow rates of about 10 to 50 µl/min by forces in the sub-

piconewton range 70,71. This technique is generally limited to trapping particles larger than 

approximately 1 µm because Brownian motion makes it difficult to trap smaller ones with sufficient 

accuracy, although some reports did describe the separation of submicron particles 72. For the 

trapping of multiple cells in parallel with single cell resolution, Taff and Voldman developed a DEP 

trap array in which multiple cells can be sorted individually 73. This type of device can be used for 

particle sorting too, and recently the same research group has developed an array, possessing equal 

numbers of rows and columns, which needs only 2√n electrodes to control n traps (which 

significantly simplified fabrication) 71. Another attractive approach that does not require patterned 

electrodes was demonstrated by Chiou et al. who developed a light-induced DEP trap; As Figure 3 

shows, a light image was converted in an electrical field creating local DEP forces 69. Each trap could 

be individually manipulated by programming the projected light images. The authors demonstrated 
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trapping of 4.5 µm sized polystyrene microparticles by parallel manipulation of 15 000 traps on a 1.3 

mm x 1.0 mm area. 

 

Optical trapping 

 

 

 

Figure 4: Illustration of forces that originate from radiation pressure A Consider a high index particle which is displaced from 
the TEMoo beam axis of a mildly focused Gaussian light beam. A typical pair of rays “a” and “b” striking the sphere 
symmetrically about its center is shown. Because most of the rays refract through the particle (resulting in a change in 
momentum of the light), rays “a” and “b” result in forces Fa and Fb in the direction of the momentum change with  Fa > Fb, 
because the intensity of ray “a” is higher than that of ray “b”. Adding all such symmetrical pairs of rays striking the sphere, the 
resultant net force can be resolved into two components, the scattering force component (Fscat) pointing in the direction of 
the incident light, and a gradient component (Fgrad) arising from the gradient in light intensity and pointing transversely 
toward the high intensity region of the beam. B Illustration of the ray diagram of a particle trapped in an optical trap (tweezers 
trap). The focus of the laser (f) is above the center of the particle, creating an upward gradient force, balanced by a 
downward scattering force (not shown), resulting in a stable laser trap. (With permission from ref 74). 

 

 

A fourth way to trap particles without ‘physical contact’ is optical trapping which is based on 

the response of a ‘dielectric’ microparticle to light. If a particle reflects or refracts incident laser light 

(with a ‘Gaussian intensity profile’), it will result in a change in the momentum of the light (Figure 

4A). Conservation of momentum requires that the particle must undergo an equal and opposite 

momentum change. The manipulation of neutral microparticles by a single laser beam that is 

strongly focused through a high NA objective is based on the same forces of radiation pressure, as 

depicted in Figure 4B. In this way the position of a single particle can be easily and accurately 

controlled in three dimensions, whereas in the case of DEP forces the manipulation of the particles is 

limited by the fixed configuration of the electrodes in the chip. The use of the so called ‘optical 

tweezers’ has been demonstrated by the group of Ashkin for the manipulation of individual 

(biological and polymeric) particles without optical damage 74,75. Single beam trapping can nowadays 

also be done by using optical fibres as well 76. 
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Figure 5: (a) Composition of an imaging fiber-based optical tweezer array system. (b) Detailed view on the region of the 
optical tweezer array system. Laser light illuminates a specific number of optical fibers in the array, depending on the 
magnification of the objective lens. All photons are continuously internally reflected on the inner walls of each fiber so that 
light travels down the length of the fiber. The lens elements (glass microparticles) at the end of each illuminated fiber focus 
the light into optical traps. Microparticles flowing into these regions become trapped by these fibers by approximately 12 mW 
of power (flow rate = 3 µm/s). (c) Consecutive images of trapped 4.5 µm sized silica microparticles. (With permission from 
ref 77). 

 

 

To trap multiple particles in parallel, efforts have been made to simultaneously generate 

multiple beams. However, only tens to hundreds of particles could be trapped at once 78. A new 

approach to optically trap (tens of) thousands of microparticles in a single array was recently 

introduced by the group of Walt. The etched fibres of an optical fibre bundle are loaded at the end 

with glass microparticles, which act as spherical lenses. The light that is introduced via the fibre is 

focused by each lens, thereby creating an array of highly focused points of light 77,79 (Figure 5). A 

dense array (~ 5 x 104 traps/mm2 using fibre bundles with 3 µm diameter cores) can be made in this 

way, from which the number of optical traps is determined by the number of fibres in the optical 

fibre bundle. The authors demonstrated trapping of 4.5 µm sized silica particles from a particle 

solution with a flow rate of 3 µm/s and calculated that each particle was trapped with approximately 

12 mW of power.  

 



CHAPTER 6 – SYNERGISM BETWEEN PARTICLE-BASED MULTIPLEXING AND MICROFLUIDICS TECHNOLOGIES MAY BRING DIAGNOSTICS 

CLOSER TO THE PATIENT 

 
201 

 

Figure 6: Two groups (“lobes”) of 3 µm sized particles (two particles per group) are rotated in opposite directions by means 
of optical trapping (the top pair rotates clockwise, the bottom counterclockwise). Those functional structures are able to 
generate a net fluid movement from left to right. A net flow is achieved by repeated and rapid rotations and the direction of 
the flow can be reversed by changing the rotation direction of the lobes. Frames are separated by two cycles to show 
movement of a 1.5-µm colloidal silica tracer particle. (With permission from ref 80). 

 

 

An attractive application of optical trapping in microdevices has been reported by Terray et 

al.; By optical trapping they have succeeded in arranging groups of 3-µm silica microspheres into 

functional structures which could subsequently be activated to generate microfluidic valving and 

pumping with flow rates of about 1 nl/hour 80 (Figure 6). MacDonald et al. used a three-dimensional 

optical lattice to deflect selectively microparticles in a flow of mixed particles in a microdevice, while 

other particles are not hindered and pass straight through. The strength of the interaction between 

the particles and the lattice depends on their optical polarizability. A high sorting efficiency was 

demonstrated, even for throughputs of 25 particles per second 81. 

To obtain a more precise (single particle) trapping, DEP and optical tweezing have been 

combined by Arai et al. They describe a device in which DEP and laser trapping forces are used to 

selectively isolate one single microbe from of a huge population in a microdevice in less than 20 s 82. 

Laser trapping was used to trap the microbe of interest, while DEP forces were applied to exclude 

other objects around the target microbe. Reichle et al. combined DEP and optical tweezing (OT) for 

receptor-ligand interactions on single cells in microdevices 83. Ligands were coupled to particles of 4.1 
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µm in diameter which were brought in contact by OT with the cell (receptors). The latter one was 

held in a DEP cage. 

 

 

 

INTEGRATION OF DECODING AND DETECTION PLATFORMS 

 

Despite the popularity of the conventional flow (cyto)meters for multiplexing, combining 

them with microfluidic chips is, unfortunately, not straightforward; after carrying out the 

(bio)chemical reactions in the chip (the recipient), the particles have to be transferred to the flow 

cytometer (which is also the case when an optical fibre platform would be used) which is not 

desirable. Also, the currently available flow cytometers are relatively expensive, cumbersome 

(difficult to handle because size and weight) and need trained personnel.  

(Fluorescent) microscope reading platforms, which allow both the (fluorescence) analysis of 

the (bio)chemical reaction at the particle’s surface as well as the decoding by simply placing the 

particle containing microfluidic device under a microscope are of high interest. Nevertheless, for that 

purpose some requirements need to be fulfilled. First, the part of the microfluidic device where 

decoding and detection of the particles occurs should be optically transparent and compatible with 

the microscope optics. Besides thin glass also other materials like poly(dimethylsiloxane) (PDMS) are 

used to this end 84-86. Secondly, the movement of the particles must be negligible during image 

acquisition in the case of graphically encoded particles to avoid blurring of the code. This can be 

accomplished by the trapping techniques described above. If the microparticles are located closely to 

each other, parallel detection of multiple particles should be possible. The number of particles 

detected simultaneously will depend on the trapping system, the dimensions of the detection 

chamber, the field-of-view and the size of the particles. Thirdly, suitable dimensions should be 

selected for the particle detection chamber since the encoded particles have to be arranged in a 

monolayer. For example, Yuen et al. developed a microdevice in which glass microbarcodes can be 

arranged next to each other by means of centrifugal forces 87. The device consists of a central 1 mm 

high reservoir, surrounded by a 35 µm high sorting region (less than twice the height of the 20 µm x 

20 µm x 100 µm microbarcodes). The outer side of the sorting region was connected to a network of 

sixty 20 µm wide microchannels (equal to the width of the microbarcodes). After loading a 

suspension of the microbarcodes in the central reservoir, a monolayer of microbarcodes was formed 

in the sorting region by spinning the device. The microchannels stopped the microbarcodes from 

passing through, but acted as a drain for the liquid. The group of Ducree arranged particles in a 
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monolayer within a disk-based detection chamber, which allowed parallel read-out of multiplexed 

particle-based immunoassays 39,88. 

 As mentioned above, apart from microscope reading systems, other types of currently 

available reading instruments are not easily compatible with microfluidic devices. Microtechnology 

research is currently going on to integrate electronics, optics, and detectors in microfluidic devices. 

The next section overviews recent advances in this field. 

 

Micro flow (cyto)meter. 

 

Advances in flow (cyto)metric analysis of cells and particles in microfluidic devices have 

recently been described 89,90. Meanwhile the first commercial microfabricated flow (cyto)meter has 

become commercially available (2100 Bioanalyzer, Agilent Technologies). Similar to conventional 

flow (cyto)meters, micro flow meters require precise fabrication to obtain optimal fluid flows in 

which particles are hydrodynamically focused into a single-file stream. The cost and complexity of 

fabricating fluidic components, traditionally made of glass, can be reduced by using inexpensive 

polymers like PDMS or SU-8 91,92. Although sheath liquid-based hydrodynamic focusing serves as a 

standard technology in both conventional and micro flow (cyto)meters, it requires a large volume of 

sheath liquid to process a very small amount of sample (up to 1L for 1mL of sample) preventing 

further reduction in size and volume of the whole system. It also needs continuous pumping of 

sheath liquid at high flow rates to generate a thin sample stream. Alternatively, ambient air can be 

used 93. 

 

 

Figure 7: (a) Illustration of the origin of 1-D hydrodynamic focusing. The input particle stream is confined on both sides by 
sheath flow resulting in a focusing of the particle stream. (b) Illustration of 2-D focusing of particles in an input sample stream 
by means of dielectrophoresis. 100 nm thin microelectrodes on the top and bottom of the channel push the particles into the 
centre of the microchannel. The electrodes do not influence the fluid flow. (With permission from ref 94). 
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Another attractive approach is to use two-dimensional (2D) focusing of microparticles in a 

microdevice. This is illustrated in Figure 7 where Holmes et al. obtained a cylindrically focused 

particle sample flow (in a device of 40 µm high and 250 µm wide) by means of dielectrophoresis 

(generated by 100 nm thin microelectrodes on the top and bottom of the channel) 94. Latex particles 

with a diameter of 6 µm were detected at a throughput of up to 250 particels per second. 2D 

hydrodynamic focusing in a pressure driven flow was reported by Simonnet et al. 95,96. They 

demonstrated a high-throughput microfluidic device which could analyze as many as 17 000 

particles/s (particle size of 1.9 µm) and had fluorescence detection accuracy comparable with that of 

commercial flow cytometers. Finally focussing can also be obtained electrokinetically 97. Already in 

1999 Fu et al. demonstrated the basic principle of a microfabricated fluorescence-activated cell 

sorter, which could sort fluorescent microparticles at a throughput of approximately 10 particles per 

second 98. Sorting was obtained via electrokinetic flow switching. The same sorting technique was 

later on used by Dittrich et al., where sorting was preceded by reaction and detection on the same 

chip 84. Meanwhile, other flow-switching techniques were introduced: hydrodynamic and valve 

switching 99,100. For more information on this, we refer the interested reader to an excellent recent 

review regarding µFACS systems written by Huh et al. 89. 

 

Light-emitting diodes and detectors. 

 

In the previous chapter it was explained that high throughput screening of encoded 

microcarriers by means of the existing optical reading instruments is possible ‘on a chip’, while the 

optical components, such as the light source, sensors, lenses and waveguides, remain ‘off the chip’. 

In meanwhile, researchers have taken on-chip high-throughput screening systems of encoded 

microcarriers one step further by integrating optics on the chip. The group of deMello reported thin-

film polymer (polyfluorene-based) light-emitting diodes (LEDs) and thin-film organic photodiodes as 

integrated excitation sources and detectors, respectively 101,102. Since the LED is a very small, low-

power, inexpensive device, it can be integrated into microfluidics as a disposable light source. 

Recently, the same group made progress in the fabrication of disposable high quality monolithically 

integrated optical filters 103. Chabynic et al. reported the integration of an optical fiber and a 

fluorescence detector based on a microavalanche photodiode (mu APD) into a microfluidic device 

fabricated in PDMS 104. No transfer optics were necessary, because the pixel size of the mu APD 

matched the dimensions of the channels and the mu APD was incorporated in close proximity to the 
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microchannel. However, in this system there was a lot of light loss because focusing of the LED light 

was not possible on the optical fiber (100 µm diameter) that coupled light into the microdevice, 

resulting in ineffective illumination and insensitive analyses. This can be circumvented, as reported 

by Miyaki et al., by placing the light-emitting face of the LED close to the microchannel by 

incorporation into the chip fabricated through in situ polymerisation: the detection sensitivity was 

comparable to that of laser induced fluorescence 86. Seo and Lee have reported work on a disposable 

integrated device with self-aligned planar microlenses for bioanalytical systems, having LEDs as 

excitation sources and photodiodes as detectors 105. The lenses enable an increased detection 

sensitivity and a reduced time for optical alignments.  

 

Optofluidics. 

In the previous paragraph, the integration of solid state optics in microfluidic devices was 

described, in order to make the device more compact. Meanwhile, a new field of optics has been 

explored, which is called ‘optofluidics‘. This refers to materials which are fabricated through the 

integration of optical components and fluids on the same chip, resulting in optical instruments that 

are fabricated with fluids. Lenses with a perfect curvature (a perfect spherical meniscus) can be made 

for instance from fluid-only devices at much lower cost than solid state optical-quality lenses. 

Recently, a novel microfluidic based lensless imaging technique, termed optofluidic microscopy 

(OFM) has been reported (Figure 8) 106,107. The feasibility of the method was demonstrated by 

imaging of C. elegans. The acquired OFM images are comparable to that obtained with a 

conventional microscope (40× objective lens). The measured resolution limit of the OFM was 490 ± 

40 nm. A high throughput imaging rate of approximately 40 worms/min was achieved, corresponding 

to a sample transport rate of 300 µm/second. Considering encoded particles of around 10 µm, a 

maximal velocity of 30 particles/sec can be achieved. As about 45% of the acquired images were 

rejected due to sample rotation and aggregation, the effective detection velocity will be much lower. 

Especially for graphical encoded particles sample rotation may cause a mistake in read-out of the 

code (e.g. by altering the diffraction pattern). In order to prevent the misinterpretation of the code 

Pregibon et al. added orientation indicators to its graphical encoded fluorescently dyed particles 52. 

For encoded carriers having a magnetic memory, OFM in combination with an external magnetic 

field could be used 45. During imaging with the OFM those particles can be oriented for their code to 

be visible by applying a weak magnetic field. 
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Figure 8: Illustration of the optofluidic microscope (OFM) integrated in a microdevice. The microfluidic channel is 15 µm tall 
and 30 µm wide. The channel is bonded onto a metal layer with an etched nano-aperture array (length = 600 µm, diameter 
apertures = 600 nm, spacing = 5 µm) (a) The device is uniformly illuminated from the top. The target sample flows through 
the channel, and the transmission through each hole is recorded on a linear array sensor (the device can be fabricated 
directly onto a CCD array). The composition of the transmission traces creates a transmission image of the target sample. 
(b) A conventional microscope image of C. elegans is comparable with (c) an optofluidic microscope image of C. elegans. 
The OFM has a measured resolution limit of 490 ± 40 nm. (d) By staggering the holes along the length of the channel, the 
separation between holes can be made equal to the pixel size of the underlying sensor array and enable the unique mapping 
of each hole to a pixel. The lateral displacement of the holes across the channel can be made arbitrarily small and it defines 
the resolution of the microscope. (e) The transmission trace through two representative holes, α and β, on the microscope as 
the sample flows across them. (With permission from ref 107). 
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Optical imaging fibers. 

 

Multiple articles describe the implementation of optical imaging fibres into microfluidics 

86,104. However, the implementation of optical fibre arrays is still under development. The group of 

Walt recently developed the first microfluidic platform equipped with an optical imaging fiber 

microarray capable to detect DNA at the attomolar level. The use of a microfluidic platform enabled 

faster DNA hybridisations, lower sample volumes and a 100-fold more sensitive detection when 

compared with a static platform (where the fiber is submerged in the target DNA sample and 

hybridization occurred by diffusion only): the minimal detectable concentration with the microfluidic 

platform was equal to 10 aM after 15 minutes of hybridization of a 50 µl target DNA sample at flow 

rates of 1 µl/min, compared with 1 pM detection with the static platform after 30 minutes of 

hybridization of a 200 µl target DNA sample  108. As is the case for the microscope reading platforms, 

future developments in order to incorporate multiplexed microparticle arrays, optics, fluidic 

channels, and a detection unit, are necessary before a portable system becomes reality. 

 

 

 

CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 

This review focused on miniaturised multiplexing using encoded microparticles. The 

combination of microfluidic technologies with encoded microparticle-arrays is a very promising lab-

on-a-chip tool, due to the remarkable characteristics of both technologies which complete each 

other. A special emphasis is on the challenges which exist to integrate currently existing detection 

platforms for encoded microparticles in microdevices. Nowadays the flow-cytometer is a very 

popular detection platform for medium-throughput particle-based ‘macroscopic’ multiplexing assays. 

When comparing the opportunities of conventional decoding instruments for miniaturized 

multiplexing, it seems that the microscope reading platforms have a clear advantage over the other 

platforms because the microparticles can remain on the chip for decoding, as long as the microdevice 

is optically transparent. Recent research shows that optical fibres may be usable ‘on-chip’ too. 

However, therefore the fiber (carrying the encoded particles) will have to be inserted in a microchip 

in a sealed way without liquid leakage.  
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Nowadays, developments are going on in the field of microtechnologies in order to down-

scale the decoding unit to the microlevel, which circumvents the use of conventional instruments for 

miniaturized multiplexing. Considerable cost savings can potentially be realized by integrating optics, 

electronics, and detection instruments on-chip, in close proximity to the microchannels carrying the 

multiplexed microparticle-arrays. Although this field is still in its infancy, it will probably result in new 

fundamental concepts for the decoding of miniaturized multiplexed microparticle assays with the 

same throughput as the existing conventional decoding instruments, which will finally replace the 

latter ones. Promising examples are the first generation of micro-flow cytometers, integrated light-

emitting diodes and detectors, and so on. 

Which type of detection system will become popular for multiplexing in microfluidics devices, 

will not only depend on decoding system-associated parameters, like portability, costs, and ease of 

use, but also on, for instance, the level of multiplexing that can be achieved. The latter one depends 

on the encoding way of the microparticles and is mainly defined by the application goal of the 

microparticle-array (genotyping, protein analysis, gene expression analysis…). Advances in encoding 

technologies of microcarriers are expected to result in new multiplexing platforms and will therefore 

certainly influence the future choice of detection/decoding system. 

Finally, the goal of those integrated lab-on-a-chip tools is point-of-care assessment. To this 

purpose, the real challenge will come from the coupling of the decoding modules under investigation 

in this study in an appropriate way on one chip to other advanced modules for sub-tasks, such as 

blood processing, extraction of DNA, RNA or proteins, and so on. In order to bring diagnostics closer 

to the patient, future requirements will also involve progress in non-hardware tools, like data 

acquisition, data management… Research in each of these fields is full of promise, and within the 

next decade, the first prototypes of multiplexed particle-based LOC tools can probably be expected, 

assuming that new nano-engineering technologies are rapidly accepted.       
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ABSTRACT 

Affinity assays that occur at the surface of microcarriers can be made more sensitively by 

using signal amplification methods to increase the signal-to-noise ratio, or by amplifying the reaction 

between probes and target molecules. This chapter challenges the integration of LbL coated 

memobeads in microfluidic channels, to enhance the contact between target molecules and probes 

attached to the surface of microcarriers. The memobeads were immobilized in the microchip by 

means of a dam structure. It is shown that affinity reaction times between proteins are remarkably 

reduced, up to almost 10 times, compared to reaction on microcarriers loaded in a micro-centrifuge 

tube. The integration did not increase the amount of non-specific binding, and decoding of the 

memobeads was also possible in the microchip, although other immobilization strategies, such as a 

DEP cage, might work better for the memobead platform. 
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CHAPTER 7 

INTEGRATION OF MICROCARRIERS IN 

MICROFLUIDIC DEVICES 

 

 

 

INTRODUCTION 

 

As described earlier in this thesis a very large proportion of multiplexing technologies involve 

affinity reaction between capture probes that are immobilized on a solid support and free targets 

(such as solid phase antibody-antigen interactions, DNA hybridization reaction, and receptor-ligand 

interactions). These affinity assays involve probe-target interactions within a reaction volume close 

to the solution/solid phase interface, and display therefore characteristics that differ from probe-

target affinity reactions that occur in solution. Affinity reactions between immobilized probes and 

free target molecules at the macro-level, e.g. at the bottom of a micro-wellplate or at the wall of a 

micro-centrifuge tube, are strongly diffusion-limited, because interactions occur within a distance 

that is less than 100 Å and probably closer to 10 Å, meaning that diffusion is needed to move 

reactants from the total fluid volume to the true interfacial reaction volume 1. As a result, the time 

required to reach equilibrium for such solid-phase affinity reactions is greater than for solution-

phase interactions, and it increases in proportion to the ratio of the volume occupied by the liquid to 

that occupied by the reactive interface (probe coated surface). The equilibrium time in a micro-

wellplate can be enhanced by the introduction of vortex agitation, the use of a porous matrix, or the 

use of microcarriers as the solid-phase. Because microcarriers increase the total reaction surface, it 

takes less time to reach equilibrium compared with reactions at the bottom of for instance a micro-

wellplate 2. As described in the introduction of this thesis, this is one of the advantages of suspension 

arrays compared to planar microarrays. The aim of this chapter is to investigate whether the 
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integration of our microcarriers in a microchannel of a microfluidic chip results in more efficient 

interactions between the capture probe coupled microcarriers and the free target molecules in the 

sample. By introducing the microcarriers in a microchannel, and flushing the sample solution 

through the microchannel, the sample indeed intensively contacts the (surface of the) microcarriers, 

and affinity reactions might reach equilibrium faster, due to a decreased diffusion distance. As the 

diffusion time is proportional to the square of the diffusion distance, this integration should result in 

a drastically decreased reaction time 3. 

 

As a proof-of-concept, we investigate the binding between mouse IgGs that are coupled to 

our microcarriers, and free goat anti-mouse IgG (H+L) antibodies (targets). Because each step in a 

protein quantification assay, as demonstrated in Chapter 3 and 4 of this thesis, is at the simplest 

level based on such affinity interaction between two proteins (capture probe/target of interest, 

target of interest/detection antibody,..), the result of this experiment is valid for each separate step. 

This means that if the equilibrium time is shortened due to this integration, it is valid for every step 

during the formation of the sandwich construct if all steps would be performed in a microchannel, 

which means that the total assay time would shorten equally. Although only protein interactions are 

investigated in our study, the results will also yield for other types of biomolecular assays that are 

diffusion-dependent (e.g. DNA hybridization reactions, receptor-ligand…) 
4
. 

The proof-of-concept of our study is basically an interaction between an antibody and an 

antigen, which resides on some fundamental principles. The first one is the specific and high-affinity 

‘key-lock’ principle between the variable parts of the antibody (‘Fab-domains’) and specific  parts of 

the antigen (which are called ‘epitopes’). The interaction is always based on several non-covalent 

weak physical bindings, such as hydrogen bonds, electrostatic interactions, hydrophobic interactions, 

and Vanderwaals interactions. Secondly, the interaction between the Fab domain and the epitope is 

based on thermodynamic rules, and characterized by a certain strength, that is called the ‘affinity’. It 

is described as the affinity constant, KA, which is a measure of the amount of antibody-antigen 

complexes at equilibrium conditions. Because of the non-covalent nature of the interactions, it can 

be concluded that they are reversible. To study the kinetics of such reactions, one can consider the 

next equilibrium equation: 

 

[Ab] + [Ag] ⇆ [Ab-Ag]    

with [Ab] : concentration antibody, 
  [Ag]: concentration antigen, 

[Ab-Ag]: concentration antibody-antigen construct 
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The forward reaction resembles the formation of the antibody-antigen construct (Ab-Ag), 

while the opposite unbinding reaction resembles the dissociation of the complex into its original 

components, antibody (Ab) and antigen (Ag). At equilibrium, as many amounts of antigen and 

antibody react to antibody-antigen complexes, as complexes dissociate (dynamic equilibrium). 

The time at which equilibrium is set, can be determined by measuring the formation of the 

antibody-antigen complexes. Because the free goat anti-mouse IgG (H+L) antibody is conjugated 

with AF647® in our experiments, the formation of the antibody-antigen construct at the surface of 

the microcarriers can be indirectly followed by the appearance of red fluorescence. The rate for 

binding is proportional to the concentration of antigens and antibodies. Therefore low antigen 

concentrations take the longest to equilibrate, and as a result equilibrium has to be tested with low 

antigen concentrations. We have used four different antigen concentrations, and compared the 

binding event between microcarriers that were incubated in a micro-centrifuge tube, and 

microcarriers that were integrated in a microchannel. The binding event was measured as a function 

of the time after the addition of the antigen solution. The number of complexes increases as a 

function of the time till a plateau is reached (Ymax) at which as many amounts of antigen and 

antibody react to antibody-antigen complexes, as complexes dissociate (dynamic equilibrium). 

Because this value depend on the concentration of antigen used in the experiment, it will be 

different for the four concentrations under investigation. The binding event can then be fitted with 

the next hyperbolic equation: 

Y = 
%50

max .

TX

XY


 

With X = time point after addition of antigen solution 
Y = fluorescent signal (proportional to the formation of Ab-Ag construct  
Ymax =  maximum signal at dynamic equilibrium  
T50% = the time at which half of the amount of antibodies are occupied with antigen 

The T50% value has been used in our experiments, to compare experiments performed at the 

micro- and macro-level, and to compare rates of binding at one level, when adding different antigen 

concentrations. 
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MATERIALS & METHODS 

 

Materials. 

Non-magnetic fluorescent carboxylated microcarriers (CFP-40052-100, ø = 39 µm) were 

purchased from Spherotech (Libertyville, Illinois, USA). Poly (allylamine hydrochloride) [PAH; 28,322-

3], sodium poly (styrene sulfonate) [PSS, MW ~ 70 000; 24,305-1] and poly (acrylic acid) [PAA, MW ~ 

45 000; 18,128-5] were obtained from Sigma Aldrich (Steinheim, Germany). The polymers were 

dissolved into 0.5 M sodium chloride (31434, Sigma Aldrich, Seelze, Germany). Bovine serum 

albumine (BSA, A-7906) and 2-[N-Morpholino]ethanesulfonic acid (MES, M-8259) were purchased 

from Sigma (Bornem, Belgium), PBS Dulbecco’s (14190-094) from Gibco and Tween-20 (655204) 

from Calbiochem. EDC (1-ethyl-3-(3-dimetyl aminopropyl) carbodiimide HCl, 22980) was obtained 

from Perbio Science (Erembodegem, Belgium); desiccated and stored at -20°C. Sulfo-NHS (N-

hydroxysulfosuccinimide sodium salt, 106627-54-7) was purchased from Sigma Aldrich (Steinheim, 

Germany); desiccated and stored at 4°C. Purified mouse anti-human TNFα (551220) was purchased 

from BD Pharmingen (Erembodegem, Belgium).  AF 647® goat anti-muis IgG (H+L) was purchased 

from Molecular Probes (Eugene, Oregon, USA). The microchips and its accessoires were a gift from 

professor Kitamori (Microchemistry Group, Kanagawa Academy of Science and Technology, 

Kanagawa, Japan). 

 

Layer-by-Layer coating of the microcarriers. 

The Layer-by-Layer modification of the microcarriers is described in Chapter 2. 

 

Encoding of the microcarriers. 

The encoding of the microcarriers is described in Chapter 2. 

 

Coupling of capture antibodies to the LbL coated microcarriers. 

The coupling procedure is described in Chapter 3. 
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Microchip fabrication. 

Figure 1 shows a top view and cross section of the used microchip. It has been designed with 

a dam structure necessary to pack a definite amount of the microcarriers in the microchip. The free 

opening at the dam structure was 20 µm, which allows the reagents to pass through the dam, but 

obstructed the microcarriers. The dimension of the channel (60 µm by 60 µm) was kept at less than 

2 times the diameter of one microcarrier (40 µm), allowing an optimal packaging of a single row of 

microcarriers. The details of the microchip fabrication were described elsewhere 5. The chip was 

composed of three quartz glass plates (30 mm x 70 mm), the cover, middle, and bottom plates with 

thicknesses of 1 mm, 100 µm, and 170 µm, respectively. The thickness of the bottom glass was taken 

as low as possible to allow microscopic analysis of the binding events. Two access holes (inlet and 

outlet) of 0.5 mm diameter were mechanically drilled into the cover glass. The cover, middle, and 

bottom plate were attached to each other without any adhesive in an oven at 1150 °C. 

 

 

Figure 1: Left: microchip design - top view and side view. Right: magnification of the dam region. Four of those 
microchannels were fabricated on one microchip. Microchip made by the group of Kitamori (School of Engineering, University 
of Tokyo, Japan). 
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Analytical procedures in the microchip (micro-level). 

 

Figure 2: Assay principle. A/ Mouse IgG coupled microcarriers are loaded in the microchip. B-D/ A solution of AF647® labeled 
goat anti-mouse IgG (H+L) is flushed through the microchip so that it intensively contacts the microcarriers. The appearance 
of red fluorescence is measured with a confocal microscope via the bottom of the microchip in real-time. The red 
fluorescence gradually increases as a function of the incubation time.  

 

Schematic illustrations of our microcarrier-bed system are shown in Figure 2. LbL coated 

microcarriers were pre-coated with mouse IgG capture antibodies, and approximately 25 of them 

were then injected into one microchannel (Figure 2A) by means of a 100 µl Hamilton syringe, which 

was connected to the inlet of the microchip via a fused silica capillary and a stainless steel connector. 

The excess of microcarriers was withdrawn by flushing assay buffer through the channel in the 

opposite direction. After the microcarrier loading process, the microcarrier-containing syringe was 

removed from the system, the chip was connected to a micropump (see next paragraph). 

Subsequently, assay buffer, and a sample containing a certain concentration of red fluorescent 

(AF647®) conjugated goat anti-mouse IgG (H+L) antibodies (Figure 2B) were introduced into the 

micrcarrier packed microchannel at 100 nl per second, successively. The affinity reaction between 

the antibodies at the surface of the microcarriers, was monitored in real-time by measuring the 
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appearance of red fluorescence at the surface (Figure 2 B-D). Therefore red fluorescent images were 

taken every 2 seconds. After the measurements, the microcarriers were removed from the 

microchip by a reverse flow of assay buffer and the microchannel was washed with 0.1 M NaOH 

solution. In that way, the microchip could be used repeatedly. 

 

Apparatus. 

 

 

Figure 3: Overview of the microchip installation. A/ One microchip consist of four equal microchannels with dam structure, B/ 
Microchip mounted in a stainless steel holder. One microchannel is connected with outside via stainless steel connectors and 
capillary tubing, C/ Holder with microchip mounted on the XY-table of the microscope: observation via bottom, and D/ 
Microchip is connected with the micropump via capillary tubing. The liquid flow is controlled with Labview software.   

 

To determine the appearance of red fluorescence at the surface of the microcarriers in the 

microchip in real-time, the microchip was fixed in a stainless steel holder (microchip was sandwiched 

between two plate holders) that was placed on top of the XY-table of a confocal microscope before 

the microcarriers and reagents were introduced (Nikon EZC1 confocal microscope) (Figure 3 A till C). 

The liquid flow during the assay was controlled with a microsyringe pump (Microlab 500B, 

Hamilton) and Hamilton gastight syringes with untreated fused silica capillary tubing and capillary 

column connectors (GL Science, Tokyo, Japan). The fused silica capillary for reagent introduction was 
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connected at one side to the microsyringe pump, and at the outer side to the inlet hole of the 

microchip. The outlet capillary was connected to a waste reservoir (Figure 1). Before the assay, the 

inner walls of the capillaries and the microchannel were blocked with assay buffer (BSA = blocking 

reagent) for a few minutes. A change of supplied reagents could be achieved simply by changing 

syringes in the pump. The micropump was automatically controlled via RS-232 connection with 

Labview-software installed on a notebook (Figure 3D). The software was developed by the group of 

prof. Renaud (Ecole Polytechnique Fédérale the Lausanne, Lausanne, Switzerland) and in-house 

adapted to our application. Figure 4 shows the interface of the software and the block diagram 

behind it. Parameters that can be adjusted are the volume of the syringe, the motion of the syringe, 

and the driver speed. 
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Figure 4: Control of Liquid flow. A/ User interface, B/ Block diagram behind it. 
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Analytical procedures in the micro-centrifuge tube (macro-level). 

The micro-level experiments were compared with similar test performed on microcarriers 

loaded in 500 µl sized micro-centrifuge tubes. In order to be able to measure the fluorescence as a 

function of the time in the latter ones, several tubes were loaded with equal amounts of 

microcarriers (approximately 25 microcarriers), subjected to an equal volume of the target solution 

of AF647® fluorescently labeled goat anti-mouse IgG (H+L) antibodies (100 µl), and allowed to 

incubate on a Rotamax 120 rotator (Heidolph, Duitsland) at 250 rpm for different times.  After 

incubation, excess of not bound AF647® fluorescently labeled goat anti-mouse IgG (H+L) was 

immediately removed by washing that tube for three times with 400 µl assay buffer. The tube was 

then stored at 4°C till all tubes were gathered. Finally, all tubes were analyzed at the end of the 

experiment, and therefore the red fluorescence was not measured in real-time. 

 

Confocal microscopy imaging of the microcarriers. 

The microcarriers were observed using a Nikon C1si confocal laser scanning module attached 

to a motorized Nikon TE2000-E inverted microscope (Nikon Benelux, Brussels, Belgium). Images 

were captured with a Nikon Plan Apochromat 10x objective lens (NA of 0.45) using the 488 nm line 

from an Ar-ion laser for the excitation of the dye loaded in the microcarriers, and the 647 nm line 

from a diode laser for the excitation of AF647®. To determine the average red fluorescence of one 

microcarrier (due to coupled AF647® labeled antibodies) a region of interest (ROI) was drawn around 

the microcarrier and the red fluorescence within the ROI was measured using the Matlab 7.1 version 

equipped with home-made imaging processing software. The average red fluorescence of each 

microcarrier was defined as the average of the fluorescence of all pixels within the ROI.  

For the orientation of memobeads, a weak external magnetic field was applied with the 

same orientation as the magnetic field applied during the encoding process (relative to the direction 

of the laser light). In the presence of this weak magnetic field, the ‘remanent’ nanoparticles tend to 

align with the magnetic field, so they will turn the microcarriers (at which surface they are fixed) into 

a position that the code can be read (the code is present in a plane perpendicular to the direction of 

the laser. For the decoding process, images were captured with a 60x water immersion objective 

lens. 
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RESULTS AND DISCUSSION 

 

Interaction of biomolecules at the micro-level. 

Figure 5 shows the red mean fluorescence intensity of approximately 25 microcarriers 

loaded in the microchannel as a function of the time after loading a certain concentrated solution of 

red fluorescently labeled target molecules (A: 40 µg/ml, B: 4 µg/ml, C: 400 ng/ml, and D: 40 ng/ml) 

at a flow velocity of 100 nl/s. Note that the fluorescence of only one microcarrier is followed as a 

function of the time. The automatic microcarrier detection algorithm that was used so far, was not 

able to detect single microcarriers in one image, because the microcarriers made contact with each 

other when they were arrayed in the channel. Therefore, we had to manually determine a single 

microcarrier. As expected, the fluorescence intensity follows a hyperbolic profile, with a strong 

increase in fluorescence at the first moments (due to the fact that more and more target molecules 

have interacted with the microcarriers) till a plateau phase is reached where equilibrium occurs. 

 

Figure 5: Kinetics of labeling of trapped goat anti-mouse IgG (H+L) with mouse IgG conjugated microcarriers loaded in a 
microchip at input goat anti-mouse IgG (H+L) concentrations of 40 µg/ml, 4 µg/ml, 400 ng/ml, and 40 ng/ml (respectively A, 
B, C, and D). Development of the relative fluorescence signal intensity at the surface of the microcarriers over time. Different 
settings of the microscope were used for each curve, so they cannot be compared as such. Dotted lines represent the 95% 
confidence intervals of the fitting procedure. Note that each data point represent the same microcarrier at another point of 
time (the fluorescence is not averaged). 
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It can be visually observed that the equilibrium is reached faster with the most concentrated 

solutions, which corresponds with theoretical expectations. In order to make the comparison more 

clearly, and because the four graphs in Figure 5 are obtained with different microscope settings, 

Figure 6 shows the normalized datapoints and fittings. Normalization was done against the Ymax value 

that was obtained from the fitting procedure in Figure 5. This was possible, because the error on this 

parameter is acceptable (the standard error on Ymax was less than 5% for each of the 

concentrations), as can be seen from the 95% confidence intervals that are shown in Figure 5 

(dotted lines). Clearly, the higher the concentration of goat anti-mouse IgG antibody in the sample, 

the faster the plateau phase, and thus equilibrium is reached. 

 

 

Figure 6: Kinetics of labeling of trapped goat anti-mouse IgG (H+L) with mouse IgG conjugated microcarriers loaded in a 
microchip at input goat anti-mouse IgG (H+L) concentrations of 40 µg/ml, 4 µg/ml, 400 ng/ml, and 40 ng/ml (respectively 
black, red, blue, and green line). Development of the fluorescence intensity at the surface of the microcarriers over time. The 
fluorescence signals were normalized to the maximum signal for each curve (as obtained from the fitting procedure). This is 
possible because of the narrow confidence intervals on these values. 

 

Table 1 contains the T90% and T50% values of each fitting process, which are the times at which 90%, 

respectively 50% of the maximal signal is reached, showing that the binding event occurs faster at 
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high target concentrations. It takes only some tens of minutes for low goat anti-mouse IgG antibody 

concentrations to reach equilibrium. Remarkably, we didn’t observe almost any difference in 

reaction kinetics between 4000 and 400 ng/ml solutions, for which the reason is still unclear. 

 

Table 1: Summary of the hyperbolic fitting procedure at the micro-level. 

Concentration 

(ng/ml) 

Ymax (A.E.) SE (A.E.) SE (%) T90% (min) T50% (min) 

40 000 100.029 1.962 1.962 3.249 0.362 

4000 99.960 3.109 3,110 28.084 3.108 

400 100.002 3.934 3,934 32.322 3.592 

40 100.000 2.268 2.268 64.971 7.219 

 

 

Interaction of biomolecules at the macro-level. 

Figure 7 shows the red mean fluorescence intensity of approximately 25 microcarriers, that 

are loaded in a micro-centrifuge tube, as a function of the time after incubation with 100 µl of a 

certain concentrated solution of red fluorescently labeled target molecules (A: 40 µg/ml, B: 4 µg/ml, 

C: 0.4 µg/ml, and D: 40 ng/ml). As expected, the fluorescence appears at the surface following a 

hyperbolic profile, with a strong increase in fluorescence at the first moments (due to the fact that 

more and more target molecules have interacted with the microcarriers) till a plateau phase is 

reached were equilibrium occurs. Regarding the effect of the target concentration, the same effect is 

observed as on the micro-level: low concentration take the longest to equilibrate. Equilibrium, 

however, is reached at a much later point of time, compared to the micro-level. The graphs were 

again normalized to the Ymax value that was obtained from the hyperbolic fitting procedure. This was 

possible, because the error on this parameter was again acceptable (the standard error on Ymax was 

less than 10% for each of the concentrations), as can be seen from the 95% confidence intervals that 

are shown in Figure 7 (dotted lines). The result of the normalization is shown in Figure 8. 
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Figure 7: Kinetics of labeling of trapped goat anti-mouse IgG (H+L) with mouse IgG conjugated microcarriers loaded in a 
microcentrifuge tube at input goat anti-mouse IgG (H+L) concentrations of 40 µg/ml, 4 µg/ml, 0.4 µg/ml, and 40 ng/ml 
(respectively A, B, C, and D). The incubation was performed in a volume of 100 µl. Development of the relative fluorescence 
signal intensity at the surface of the microcarriers over time. Different settings of the microscope were used for each curve, 
so they cannot be compared as such. Note that each data point represents the averaged fluorescence of 10-15 microcarriers 
and that another group of microparticles is used at each data point (because separate tubes were used, see materials & 
methods). 

 

As expected, the higher the concentration of goat anti-mouse IgG antibody, the faster the 

plateau phase, and thus equilibrium is reached. Table 2 contains the T90% (close to equilibrium) and 

T50% values of each fitting process, showing that it takes a long time for low goat anti-mouse IgG 

antibody concentrations to reach equilibrium, with values up to some hours. Remarkably, we did not 

observe almost any difference in reaction kinetics between 4000 and 400 ng/ml solutions, as was 

the case at the micro-level. 
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Figure 8: Kinetics of labeling of trapped goat anti-mouse IgG (H+L) with mouse IgG conjugated microcarriers loaded in a 
microcentrifuge tube at input goat anti-mouse IgG (H+L) concentrations of 40 µg/ml, 4 µg/ml, 0.4 µg/ml, and 40 ng/ml 
(respectively black, red, blue, and green line). The incubation was performed in a volume of 100 µl. Development of the 
fluorescence intensity at the surface of the microcarriers over time (the fluorescence of 10-15 microcarriers is averaged at 
each data point). The fluorescence signals were normalized to the maximum signal for each curve (as obtained from the 
fitting procedure). This is possible because of the narrow confidence intervals on these values. 

 

 

Table 2: Summary of the hyperbolic fitting procedure at the macro-level. 

Concentration 

(ng/ml) 

Ymax (A.E.) SE (A.E.)  SE (%) T90% (min) T50% (min) 

40 000 99.999 3.085 3,085 23.528 2.61 

4000 100 4.480 4.480 121.680 13.52 

400 99.201 5.354 5.397 155.047 15.851 

40 100.916 6.775 6.713 288.411 34.981 
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The reaction time required for the probe-target reaction was remarkably cut in the microcarrier-bed 

microchip-based assay system, which can be seen in Figure 9 where the T50% values are compared 

between the macro- and micro-level. It can be concluded that the total assay time for the detection 

of proteins could be considerably reduced, when performing those assays in microchips, when taking 

into account that the gain in speed is valid for every step in such a microcarrier-based protein 

detection assay. Besides protein-protein interactions, enzymatic substrate conversion reactions 

occur also faster in microchips 6. It would therefore be of interest to apply the Tyramide Signal 

Amplification assay, as demonstrated in Chapter 4, in a microchip. 

Note that a flow velocity of 100 nl per second has been used in the microchip experiments, 

which is low enough to guarantee almost no reaction limitation: it is obvious that the higher the 

velocity, the less time target molecules have to diffuse to the surface of a microcarrier. On the other 

hand, if the velocity is too low, the transport of free target molecules can be limited 7. So far, 

however, we were not yet able to investigate the effect of the flow velocity. 

 

 

Figure 9: Comparison of the T50% values at the macro-level and at the micro-level for four different target concentrations. 

 

Specificity of the microchip bead-assay. 

The introduction of microcarriers into a microchannel seemed to improve the interaction 

between bound probe and free target molecules, because the diffusion distance is decreased by 

flushing the target sample stream through the surface of the microcarriers. However, there exists a 
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chance that, besides this enhanced specific binding, the non-specific interaction of target molecules 

with the surface of the microcarriers is also increased.  

 

 

Figure 10: Specificity test of the microchip bead-assay. Two different types of microcarriers were separately loaded into the 
microchip (first mouse IgG coated microcarriers and then control microcarriers without any antibody). Red and green merged 
fluorescent images after loading the microcarriers (A), and at different time points after flushing AF647 goat anti-mouse IgG 
(H+l) antibodies (40 ng/ml) through the microchannel (3, 5, and 7 minutes for respectively B, C, and D). Note that the colors 
are artificial, because fluorescence is measured with a confocal scanning beam; hence the green color represents the green 
fluorescence inside the microcarriers, while the blue color represents the red fluorescence at the surface of the microcarriers 
(yellow areas: overbleached red fluorescence) .   

 

To test whether the microcarrier platform retains its specificity after introduction of the 

microcarriers into the microchannel, antibody coated and control (no antibody coated) microcarriers 

were separately loaded into the same microchannel, and subsequently the target solution was 

flushed through the microchannel, so that it first contacts the control microcarriers, and thereafter 

the specific microcarriers. The red fluorescence on both type of microcarriers was again measured as 

a function of the time of interaction. Figure 10 shows an image of the microchannel immediately 

after loading (time 0, panel A), and 3 images taken at four different time points after adding a 40 

ng/ml solution of AF647® fluorescently labeled goat anti-mouse IgG (H+L) at 100 nl/s (3, 5, and 7 

minutes, respectively panels B, C, and D). Note that the blue color is an artificial color and represents 
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the red fluorescence, while yellow areas represent over-bleached regions. It can already be visually 

observed that the control microcarriers behave differently from the other ones. Although only  4 

different time points between 0 and 7 minutes are depicted in Figure 10, in reality a fluorescent scan 

was taken every 2 seconds. Figure 11 shows a more detailed analysis of the red fluorescence on top 

of the microcarriers shown in Figure 10, and clearly demonstrates that the control microcarriers do 

not exhibit any red fluorescence besides some background fluorescence, and this value seems to be 

independent of the time of interaction. This proves that the specificity of the bead-platform is 

retained after integration with microchip technology. 

 

Figure 11: The red fluorescence at the surface of control microcarriers (red data points) and mouse IgG coated microcarriers 
(black data points) as a function of the incubation time with a solution of AF647® labeled goat anti-mouse IgG (H+L) 
antibodies (40 ng/ml). 

  

Decoding of memobeads in microchip. 

So far it has been shown that the integration of the LbL coated microcarriers in microchips 

remarkably cuts the reaction time, and does not affect the specificity as far as investigated. In order 

to be able to perform multiplex analysis by means of LbL coated memobeads integrated in 

microchips, this microchip format must not affect the decoding process at all. There are reasons why 

the decoding process might be impeded. This micro-format could influence, for instance, the 
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mobility of the memobeads, and their orientation during the decoding process due to increased 

surface interactions. In the previous chapters, we have demonstrated that those LbL coated 

memobeads could be turned into their appropriate read-out position at the time of decoding when 

decoding was done at the bottom of a well plate. In a narrow microchannel, however, such as the 

one with a diameter of only 60 micrometer that is used in these experiments, the situation is 

completely different, because a) the memobeads can interact with the wall of the channel at each 

side (not only via the bottom), b) the memobeads are arrayed in the channel, meaning that they 

make contact with each other which was almost never the case in a well-plate, where they behave 

almost always separately and c) besides memobeads the channel is also filled with some debris 

during the experiment, which adhered to the wall of the channel and even to the surface of the 

memobeads. Debris is inherent to the layout of our microchip: disadvantageous to the dam 

structure is that it works as a kind of filter, and not only prevents memobeads to go further through 

the channel, but also blocks dust and other small particles, which was also observed by others 8. This 

filter-effect is even increased when loading memobeads in the channel. For all those reasons, the 

integration of the memobeads into the microchannel diminishes their freedom, which might 

influence their read-out. 

 

Figure 12: Decoding of memobeads loaded into the microchannel. The microcarriers turned into the appropriate position by 
means of magnetic forces due to the proximity of an external magnet. Confocal green fluorescent images (top row) and 
transmission images (bottom row). A/ overview of loaded memobeads before applying magnetic forces, and B/ Detailed 
magnification of some of the loaded memobeads. 
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Encoded memobeads were loaded into the microchannel, and they were tried to be oriented 

into the appropriate read-out position by means of an external magnet. Figure 12A shows the 

memobeads immediately after the loading step. Only one bead can be decoded (third one from 

right), because by chance, its code is present in a plane perpendicular to the direction of the laser 

light. The other panels in Figure 12 (B, C, and D) show a magnification of some of the loaded 

memobeads after applying an external magnetic force, proving the possibility of orienting the 

memobeads. Although almost all memobeads could be decoded, we have to admit that when 

memobeads were surrounded with debris, it was sometimes not possible to position them in the 

appropriate way. An example of such debris is shown in Figure 12 D, at the upper left part of the 

encoded microcarrier. As mentioned in chapter 6, other methods are available for keeping 

microcarriers in a confined area. Abandoning the dam structure and using one of the other methods 

could solve this problem. 

 

Capturing memobeads in microchips. 

One other way to keep microcarriers in a microchip at a certain position is by using 

dilelectrophoresis (DEP) forces 
9
. As explained in Chapter 6, when polarizable microparticles are 

subjected to an alternating electric field, they experience a DEP force in a non-uniform electrical 

field, which may move them to regions of high or low electrical field. The motion depends on the 

particle polarizability, compared to the surrounded medium. The magnitude and direction of the DEP 

force depends on the microcarrier dielectric properties. When using several electrodes at a time, 

DEP forces can be used to manipulate and trap individual microcarriers in a microchip, as explained 

in Chapter 6. It is relatively easy to generate an electric field in a specific area of a microchip with 

physical dimensions close to the size of the microcarriers by using microelectrodes. This so-called 

‘microcarrier trap’ can hold particles against volumetric fluid flow rates of about 10 to 50 µl/min by 

forces in the sub-piconewton range 10-13. An advantage of such a trap is that the channel size might 

be taken large enough to prevent clogging of debris material, because the microcarriers are fixed at 

one position without any physical contact. We therefore tested whether the LbL coated 

microcarriers could be caught in such a trap. 
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Figure 13: Proof-of-principle of a DEP-trap inside a microchip. The DEP-trap consist of four pairs of micro-electrodes that are 
integrated in the capillary walls: four in the top plate, and four in the bottom plate. 1: View on the four electrodes integrated in 
the bottom plate of the capillary. 2-4: Transmission images of the catching process of a 40 µm sized microcarrier in the DEP-
trap inside the chip. Only one carrier is trapped at a time, the other ones are repelled, as can be seen in 2 and 3. The 
microcarrier is suspended in a liquid that flows from the bottom to the top of the image (arrow shows flow direction), and is 
caught centrally between the electrodes. Note that only a small part of the microchip is shown. 5-7: Green fluorescent and 
transmission superimposed images, taken at three different heights, focused at the electrodes (5), the central plane of the 
microcarrier (6), and the surface of the microcarrier (7) Images 8-24: A randomly moving external magnetic field is applied, 
which rotates very easy the microcarrier around its axis, while it is caught via the DEP forces in the trap. Note that the liquid 
was continuously flowing while trapping the microcarrier (Experiment performed at Evotec Technologies - www.evotec-
technologies.com, recently acquired by PerkinElmer). 

 

Figure 13 shows a (no encoded) LbL coated microcarrier, that is suspended in a continuously 

liquid flow, and captured at a certain moment in a DEP trap by means of DEP forces. The 

microcarrier is hold in the trap, while liquid flows through the microchannel. At a certain moment, 

while still trapping the microparticle, an external magnetic field is randomly applied, which rotates 

the microparticle in the trap. Although the microparticle was not encoded at that time, this example 

clearly demonstrates the possibility of decoding memobeads in a microchip by using DEP and 

magnetic forces at the same time. 

 

http://www.evotec-technologies.com/
http://www.evotec-technologies.com/
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CONCLUSION 

The previous experiments show evidence that the reaction time of a suspension array can be 

remarkably reduced by the integration of the suspension array technology with microfluidicics. 

Another advantage is that sample and reagent volumes can be incredibly reduced. Note that in our 

experiments samples were continuously flushed through the microchannel at 100 nl per second, but 

that we didn’t investigate yet other parameters, such as the influence of the flow rate, the 

difference between a continuous and start-stop sample flow, one-way versus reciprocal flow, etc. 

Changing one of those parameters might even shorten the reaction time, as was also observed by 

other groups 
7,14

. Although only protein interactions were shown in this study, one can expect the 

same result when performing DNA hybridization, because the latter one is diffusion-dependent too. 

A faster DNA hybridization reaction on microparticles that were loaded in microchannels, instead of 

in micro-centrifuge tubes, was already observed by other people 4.  

Concerning the applicability of the LbL coated memobeads, it is shown that the integration in 

microchips is acceptable as long as the magnetic positioning is possible. Although the decoding of 

memobeads in a microchannel has been proven, we have to admit that other factors like the 

presence of dust and/or other material, can negatively influence this process, and it is expected that 

it will become more difficult when assaying complex samples, as plasma or blood. To circumvent this 

issue, in future other methods have to be tested to hold microcarriers at a specific location in a 

microchip while flushing sample and reagent stream through it, such as for instance the use of 

dielectrophoresis as demonstrated in this study. An advantage of DEP immobilization is indeed its 

(almost) independency to the size of the channel. When using channels that are wide enough, it 

should be possible to assay more complex samples, without any issues related the decoding process. 

Interestingly, as mentioned in Chapter 6, hundreds till thousands of DEP traps can be combined in 

one microchannel, due to the development of microelectrodes, making this an attractive approach 

for microparticle-based multiplex analysis, in which several microparticles have to be trapped at a 

time. 
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Summary & General 

Conclusions 
 

SUMMARY 

 

The sequencing of the human genome resulted in the exponentially discovery of diagnostic 

and prognostic biomarkers that provide a deeper insight into the molecular biology of diseases. It 

moved healthcare to a more efficient level in which a disease is not only recognized by its phenotype, 

but also understood at the molecular level. For a lot of diseases it is proven that the combination of 

multiple biomarkers together indicates a particular state of that disease. Multiplex assay 

technologies are of great interest to diagnose such diseases, because they can detect multiple 

biomarkers simultaneously in one sample, and have a lot of advantages compared to the traditional 

monoplex assays that only measure one biomarker at a time. They benefit e.g. from much less 

sample volume that is needed to analyze all biomarkers, a more efficient use of reagents, and less 

hands-on time. 

Meanwhile several multiplex technologies have been proposed, from which the main 

important are the planar microarray and the suspension array platforms, as summarized in Chapter 

1. Suspension arrays enjoy higher reaction kinetics, and flexibility regarding the attachment of new 

probes, and are therefore preferred to planar microarrays when it comes to low- or medium 

throughput multiplexing. Because suspension arrays consist of mobile microparticles on which 

surface probes are attached that recognize specific targets, an encoding system has to be introduced 

in order to identify the multiple targets that have reacted with the microparticles. To this aim, 

several strategies have been developed, from which the spatial selective photobleaching technology 

that has been proposed by our group, is one. The primary aim of this thesis was to check whether 

this type of encoded polystyrene microparticles, that are also called memobeads, could be applied to 

multiplexed detection of proteins or DNA molecules. 

Because this encoding technology needs ferromagnetic microparticles, first of all polystyrene 

microparticles have been used that were made magnetic by polymerization of monostyrene in the 

presence of ferromagnetic nanoparticles on the surface of core polystyrene microparticles. Such 

microparticles, however, exhibited aggregates of magnetic nanoparticles at their surface, which 
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caused shadowing areas in the inner part of the microparticles upon excitation with fluorescent light, 

and as a result accurate decoding was impossible. An even worse effect was that capture probes 

couldn’t be coupled homogeneously, due to the presence of these magnetic nanoparticles at the 

(outside of) the surface. Therefore, in Chapter 2, we have used an alternative strategy for the 

preparation of magnetic microparticles. The surface of negatively charged non-magnetic 

carboxylated polystyrene microparticles was modified by means of the Layer-by-Layer technology, 

which is based on the sequential adsorption of positively and negatively charged polymers and/or 

nanoparticles on the surface of charged microparticles. This technology was applied as well to 

incorporate ferromagnetic chromium dioxide nanoparticles on the surface of the microparticles, as 

to provide them at the same time with functional carboxylic acid groups. We showed that the LbL 

coating allows (a) an optimal (optical) read out of the codes, (b) a perfect orientation within pixel 

accuracy (0.7 µm/pixel) of the microparticles (leading to a correct decoding), and (c) an optimal 

coupling of capture probes to the surface. Importantly, the LbL coatings remained stable at the 

surface of the microparticles after a storage period during some months, and the microparticles 

could be freeze-dried, and even autoclaved, which is important when the microparticles have to be 

applied in a research or diagnostic kit, or when they have to be used as cell-carriers, respectively. 

We showed in Chapter 3 that the LbL coated digitally encoded microparticles allowed the 

quantitative and sensitive detection of proteins, like TNF-α, P24 and FSH, not only in buffer but also 

in complex media, such as serum and plasma. The LbL coatings remained stable at the surface of the 

microparticles when they were incubated in serum or plasma, and we didn’t observe any non-specific 

binding of serum/plasma molecules to the capture antibody loaded LbL layers. Importantly, we 

observed that (a) the digital code of the microparticles could be still accurately decoded and (b) the 

red fluorescence at their surface could be quantified even when the microparticles remained in 

“whole blood”. These properties make the LbL coated digitally encoded microparticles investigated in 

this study ideally suited for the simultaneous (multiplexing) assaying of proteins in “whole” blood 

instead of in serum or plasma. We showed that using a lower number of LbL coated microparticles in 

the protein assay even profoundly improves the sensitivity of the assay, an interesting feature when 

one wants to make use of the microparticles for assaying in microchips which only allow using a 

rather low number of microparticles. 

Besides the sensitive detection of proteins, we showed in Chapter 5 that the LbL coated 

digitally encoded microparticles act also as good candidates for the quantitative detection of DNA 

molecules. The length of the spacer molecule, by which the capture probes are attached to the 

surface of the microparticles, plays an important role in the hybridization of targets probes thereto. 

Although we expected a higher hybridization efficiency with higher spacer lengths (and thus with a 

greater flexibility of the capture probe) , there was, remarkably, an optimal spacer length. Greater 
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spacer lengths, probably resulted in too much freedom of the capture probe, so that it starts to 

interact with the surface of the microparticles by multiple positions in its sequence. We observed 

that the hybridization occurred very fast on the surface of the microparticles; almost maximal 

hybridization was achieved within a few minutes. A few results raised the question whether the Cy5 

fluorophores are attracted to the surface, by which they could influence the efficiency of 

hybridization of Cy5 labeled targets. This is, however, still unclear, and has to be investigated in 

future. Some nucleic acid tests (NATs) on suspension arrays, such as e.g. gene expression analysis 

and the detection of single nucleotide polymorphisms, would benefit from making use of multiple 

colours, for the differential labeling of a control sample vs. the sample of interest, or for the 

differential labeling of all alleles of one gene, respectively. An important strength of our multiplex 

platform, compared to other suspension array platforms, is its possibility for multi-colour labeling. 

We have clearly proven that dual-colour target labeling - with Cy5 and TexasRed fluorophores - is 

possible with the LbL coated microparticles under investigation in our study, and suggested that 

multi-color labeling might be possible with this platform, by using another fluorophore to stain the 

microparticles, which (optimal) excitation wavelength is located in the UV- or far red spectrum. We 

finally demonstrated the use of the LbL coated digitally encoded microparticles as genotyping 

platform, by combining it with the oligo ligation assay for the simultaneous detection of two single 

nucleotide polymorphisms in the Apolipoprotein E gene. Nine different genotypes were correctly 

identified, as compared to microarray analysis, and sequencing. 

There are in general two ways to improve the sensitivity of affinity assays. If no PCR-like 

target amplification method exists, as is the case in the detection of proteins, the use of signal 

amplification methods could improve the sensitivity. One condition has to be fulfilled therefore, 

which is that the signals of the (negative) control samples are not amplified as much as those of the 

positive ones (that have reacted). This will result in a higher signal-to-noise ratio, and the gain in 

sensitivity will depend on the amount of amplification that is reached. In Chapter 4 we demonstrate 

this principle by using the tyramide signal amplification (TSA) method, which is based on the 

enzymatic conversion by horse radish peroxidise (HRP) of inactive tyramide-residues to active 

residues, that are able to bind to electronrich groups of protein in the neighbourhood. Signal 

amplification is very challenging on multiplexed suspension arrays, because the microparticles are 

mobile and false positive results may arise due to cross-reaction of the amplified signal with not 

reacted microparticles. Therefore, in order to know unambiguously which microparticle (and thus 

which target) has dealt with the amplified signal, the signal should be ‘attached’ to that 

microparticle. We expected TSA to be suitable in multiplex microparticle-based platforms, because a) 

several proteins that consist electronrich groups are present at the surface of the microparticles 

(antibodies, bovine serum albumin, etc.), b) HRP can be easily linked to the capture 
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antibody/antigen/detection antibody sandwich construct that is formed at the surface of the 

microparticles, and c) the active tyramide molecules are very instable. This means that they become 

again inactive when they do not bind immediately to electronrich groups, which diminishes their 

chance for binding to other microparticles in the neighbourhood. 

In fact, the combination of microparticles and TSA has already been shown once in literature. 

It was, however, only applied to a duplex assay, and it was never demonstrated to which extent this 

labelling procedure was more sensitive than the conventional method that is used on suspension 

arrays (and which is based on fluorescently labelled streptavidin that binds to biotinylated detection 

antibodies). We showed evidence that TSA method is indeed attractive for the fast and simultaneous 

detection of (multiple) targets in a sample, as well with our memobeads, as with the commercially 

available xMAP® microparticles. Compared to currently used detection methods, TSA significantly 

amplifies the fluorescence signals on the microparticles (up to 100 times) resulting in (much) higher 

signal-to-noise ratios. We show that TSA on microparticles is applicable in real (serum) samples - sub-

pg detection of P24 was possible – and that it worked perfect in a multiplex (quadruplex) format. 

Another way to improve the sensitivity of affinity assays within a certain assay time, is by 

enhancing the affinity reaction between the probes and target molecules. This study challenged the 

integration of LbL coated memobeads in microfluidic channels in Chapter 7. (Bio)molecular affinity 

reactions are often diffusion limited, and occur therefore much faster in a micro-environment, where 

diffusion distances are much smaller compared to those in conventional microtiter plates. This is a 

useful property in bioanalysis, because the time a molecule needs to  diffuse from point a to point b 

is proportional to the square of the distance between a and b. While it takes several hours to 

overcome 1 cm, it only takes tens of seconds to overcome 100 µm. A “liquid microspace” has also 

other characteristic features which differ from the properties of a “liquid bulk”: high interface-to-

volume ratio, and small heat capacity. For those reasons, we suggested that the integration of 

memobeads into microchannels could enhance the interaction between free target molecules and 

the probes that are attached to the surface of the memobeads. As a proof-of-concept, memobeads 

to which mouse antibodies were attached, were immobilized in a microchannel by means of a dam 

structure, and a solution of red fluorescent goat anti-mouse IgGs was then flushed through the 

channel. The affinity reaction between mouse IgG and goat anti-mouse IgG was followed by the 

appearance of red fluorescence at the surface of the memobeads, and the reaction was compared 

with that on memobeads that were loaded in a micro-centrifuge tube. We showed that rate of the 

protein affinity interactions was remarkably enhanced in the microchannel (up to almost 10 times 

compared to the rate measured on the microparticles that were loaded in the micro-centrifuge 

tube). The integration in the microchannel did not increase the amount of non-specific binding, and 

the decoding of the memobeads was also possible in the microchip, which means that the 
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combination of our memobead platform and microfluidics technologies might result in a fast and 

sensitive detection of multiple proteins. We proposed, however, that other immobilization strategies 

might work better for the memobead platform, because the dam structure that was used in these 

experiments worked also as a kind of filter, that accumulated debris (such as dust). We expected that 

this effect will be enhanced when measuring in more complex samples, and tested therefore 

whether the memobeads could be immobilized in a microchip by using a dielectrophoresis (DEP) 

cage, from which the main advantages are that no physical contact occurs with the memobeads, and 

that they can be immobilized in much broader channels than when using a dam structure. Although 

we didn’t investigate yet the immobilization of an encoded memobead, we saw that the LbL coated 

microparticles could be caught in such a cage, and they could be rotated easily by applying an 

external magnetic field, superimposed on the DEP field. Therefore, decoding of memobeads would 

be possible in this way too. 

The combination of microfluidic technologies with encoded microparticle-arrays is a very 

promising lab-on-a-chip tool, due to the remarkable characteristics of both technologies which 

complete each other. Chapter 6 aimed to debate on the ‘added value’ we can expect by (bio)analysis 

with particles in microfluidic devices. We overview technologies that are able to decode, analyse, and 

manipulate microparticles in microfluidic chips, with a special emphasis on the challenges which exist 

to integrate currently existing detection platforms for encoded microparticles in microdevices, and 

on promising microtechnologies for down-scaling the detection units, in order to obtain compact 

miniaturized particle-based multiplexing platforms. Although our focus was on the integration of 

multiplexed suspension array technology with microfluidics technology, the goal of those integrated 

lab-on-a-chip tools is point-of-care assessment. To this purpose, the real challenge will probably 

come from the coupling of the decoding modules under investigation in this chapter in an 

appropriate way on one chip to other advanced modules for sub-tasks, such as blood processing, 

extraction of DNA, RNA or proteins, and so on. In order to bring diagnostics closer to the patient, 

future requirements will also involve progress in non-hardware tools, like data acquisition, data 

management… Research in each of these fields is full of promise, and within the next decade, the 

first prototypes of multiplexed particle-based LOC tools can probably be expected, assuming that 

new micro- and nano-engineering technologies are rapidly accepted.       
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GENERAL CONCLUSIONS 

 

In conclusion the primary aim of this study was to proof the possibility of using memobeads 

for multiplexed protein and DNA detection. After optimizing the surface characteristics of the 

memobeads by modification with the use of the LbL technology, we succeeded in sensitive multiplex 

protein measurements in complex samples, such as serum, and plasma, and showed that genotyping 

and multi-color target labeling might be possible with this memobead platform. We also succeeded 

in making our platform more sensitive by combining it with the tyramide signal amplification 

method, and by integrating it in microfluidic channels, and suggested that this is possible with other 

suspension array platforms too. Finally, we believe that the ‘added value’ by (bio)analysis with 

suspension arrays in microfluidic devices, will result in future in lab-on-a-chip tools for point-of-care 

assessment. 
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Samenvatting & Algemene 

Besluiten 
 

SAMENVATTING 

 

Het sequeneren van het menselijk genoom bracht een exponentiële toename in ontdekking 

van diagnostische en prognostische biomerkers met zich mee, die een dieper inzicht geven in de 

moleculaire biologie achter ziekten. Het heeft ertoe geleid dat gezondheidszorg momenteel 

efficiënter wordt toegepast, omdat ziekten niet enkel herkend worden enkel op basis van hun 

fenotype, maar ook moleculair gekarakteriseerd worden. Bepaalde stadia van vele ziektes worden 

gekenmerkt door een combinatie van meerdere biomerkers. Multiplex technologieën spelen een 

belangrijke rol in de diagnose van deze ziektes, omdat ze in staat zijn om meerdere biomerkers 

tegelijkertijd te analyseren in slechts één staal, en omdat ze veel andere voordelen hebben ten 

opzichte van de klassieke monoplex technologieën, die slechts één biomerker per keer kunnen 

meten. Ze hebben bijvoorbeeld veel minder staal nodig om alle merkers te analyseren, verbruiken 

veel minder reagentia en vragen veel minder werk om uit te voeren. 

Er zijn ondertussen reeds verschillende multiplex technologieën voorgesteld, waarvan de 

vlakke substraat “microarrays” en de “platforms” op basis van micropartikels de belangrijkste zijn, 

zoals samengevat in Hoofdstuk 1. Indien een lage tot middelmatige hoeveelheid doelmoleculen 

tegelijkertijd moet worden getest, zijn platforms op basis van micropartikels te verkiezen boven de 

vlakke substraat microarrays, omdat ze o.a. een snellere reactiekinetiek vertonen en flexibeler zijn 

wat betreft de toevoeging van nieuwe “probes” aan een bestaande set van probes. Aangezien deze 

platforms bestaan uit een set van mobiele micropartikels, op wier oppervlak verschillende probes 

worden gebonden die elk specifieke doelmoleculen kunnen herkennen en binden, moeten de 

micropartikels gecodeerd worden om de verschillende doelmoleculen te identificeren die gereageerd 

hebben met de probes. Verscheidene strategieën werden reeds ontwikkeld om micropartikels te 

coderen, waartoe de ruimtelijke selectieve fotoblekingstechnologie behoort, die door onze 

onderzoeksgroep werd ontwikkeld. Het hoofddoel van deze onderzoeksscriptie is na te gaan in 

hoeverre dit type van gecodeerde polystyreen micropartikels, ook memobeads genaamd, kan 

worden toegepast voor de simultane detectie van diverse eiwitten of diverse DNA moleculen. 
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Aangezien deze coderingstechnologie gebruik maakt van ferromagnetische micropartikels, 

werden in eerste instantie magnetische polystyreen micropartikels gebruikt, die aangemaakt werden 

door polymerisatie van monostyreen, op het oppervlak van vooraf aangemaakte polystyreen 

micropartikels, in aanwezigheid van ferromagnetische nanopartikels. Aan het oppervlak van de 

micropartikels werden er bij dit proces echter aggregaten gevormd van die magnetische 

nanopartikels, die schaduwvlekken veroorzaakten in het binnenste van de micropartikels, wanneer 

deze belicht werden. Accurate decodering was om die reden onmogelijk. Nefaster was dat probes 

niet homogeen konden gekoppeld worden aan het oppervlak van deze micropartikels, omwille van 

de aanwezigheid van die magnetische nanopartikels. Om deze problemen te vermijden, hebben we 

in Hoofdstuk 2 een alternatieve methode aangewend om magnetische micropartikels aan te maken. 

Het oppervlak van negatief geladen niet-magnetische gecarboxyleerde polystyreen micropartikels 

werd gemodificeerd door middel van de “Layer-by-Layer” (LbL) technologie, die gebaseerd is op de 

laagsgewijze adsorptie van positief en negatief geladen polymeren en/of nanopartikels aan het 

oppervlak van geladen micropartikels. Ferromagnetische chroomdioxide nanopartikels werden op 

die manier ingebouwd in het oppervlak van de micropartikels. Tegelijkertijd werden de 

micropartikels voorzien van functionele carboxyl-groepen. We hebben aangetoond dat de LbL 

modificatie (a) zowel een optimale optische uitlezing van de code, als (b) een perfecte oriëntatie 

toelaat (met accuraatheid tot op het niveau van een pixel - 0.7 µm/pixel) van de micropartikels, 

eigenschappen die resulteren in een correcte decodering. Daarenboven maakt de LbL modificatie 

een optimale koppeling van probes mogelijk aan het oppervlak van de micropartikels. De LbL lagen 

blijven stabiel vastgehecht aan het oppervlak van de micropartikels, zelfs na een bewaarperiode van 

enkele maanden, en de LbL gemodificeerde micropartikels kunnen gevriesdroogd en zelfs 

geautoclaveerd worden, wat belangrijk is, indien ze respectievelijk worden aangewend in kits voor 

onderzoek of diagnostiek, of worden gebruikt als drager voor celculturen. 

We hebben in Hoofdstuk 3 aangetoond dat de LbL gemodificeerde micropartikels op een 

kwantitatieve en gevoelige wijze eiwitten, zoals bijvoorbeeld TNF-α, P24 en FSH, kunnen detecteren, 

niet enkel in een buffer, maar ook in meer complexe stalen, zoals serum en plasma. De LbL lagen 

bleven stabiel gehecht aan het oppervlak van de micropartikels, wanneer deze in serum of plasma 

werden geïncubeerd, en er werd geen aspecifieke adsorptie opgemerkt van serum- en 

plasmafactoren aan de LbL lagen. Zowel een accurate uitlezing van deze memobeads, als het 

kwantificeren van de rode fluorescentie aan hun oppervlak, was zelfs nog mogelijk wanneer ze 

aanwezig waren in een bloedstaal. Dit maakt de toepassing van memobeads voor de simultane 

detectie van meerdere eiwitten in volledig bloed mogelijk, in plaats van in serum of plasma. We 

hebben aangetoond dat de gevoeligheid voor de detectie van eiwitten van zo’n test op basis van 

micropartikels drastisch kan verhoogd worden door minder micropartikels te gebruiken in de test. Dit 
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kan een interessante eigenschap zijn, wanneer deze testen zouden aangewend worden om eiwitten 

te detecteren in “microfluidic chips”, die immers enkel een beperkt aantal micropartikels toelaten. 

Behalve de gevoelige detectie van eiwitten met deze LbL gemodificeerde en digitaal 

gecodeerde micropartikels, hebben we eveneens aangetoond in Hoofdstuk 5 dat ze kunnen worden 

gebruikt voor de kwantitatieve detectie van DNA moleculen. De lengte van de “spacer” molecule, via 

dewelke de oligonucleotide probes gebonden worden aan het oppervlak van de micropartikels, 

speelt een belangrijke rol in de efficiëntie van de hybridisatie tussen doelmoleculen en deze 

oligonucleotide probes. Hoewel we verwacht hadden dat de efficiëntie van deze hybridisatie zou 

verhogen bij gebruik van langere spacers (dat immers gepaard gaat met een grotere flexibiliteit van 

de probe), merkten we echter een optimale lengte op. Langere spacers gaven waarschijnlijk te veel 

flexibiliteit aan de probe, zodat deze contact kon maken met het oppervlak van de micropartikels via 

meerdere plaatsen in zijn sequentie. We merkten eveneens op dat de hybridisatie aan het oppervlak 

van de micropartikels zeer snel verliep; een maximale hybridisatie werd al bereikt na ongeveer een 

paar minuten. Enkele resultaten suggereerden een mogelijke interactie van de Cy5 moleculen met 

het oppervlak van de micropartikels, wat een invloed zou kunnen hebben op de efficiëntie van de 

hybridisatie van Cy5 geconjugeerde doelmoleculen. Dit moet echter nog dieper worden onderzocht, 

vooraleer er verder uitspraak over te doen. Het gebruik van meerdere kleuren voor het merken van 

de doelmoleculen zou een voordeel kunnen zijn voor sommige nucleïnezuurtesten die uitgevoerd 

worden op platforms op basis van gecodeerde micropartikels. Hierbij denken we bijvoorbeeld aan 

een differentiële kleuring van het controle staal en het te testen staal bij genexpressie analyse, of 

een afzonderlijke kleur voor de verschillende allelen van eenzelfde gen bij de detectie van 

polymorfismen. De mogelijkheid om meerdere kleuren aan te wenden voor het merken van 

doelmoleculen, is een sterkte van het multiplex platform dat is voorgesteld in deze studie, in 

vergelijking met andere platforms op basis van gecodeerde micropartikels. We hebben duidelijk 

aangetoond dat gebruik van twee kleuren (Cy5 en TexasRed) mogelijk is op de LbL gemodificeerde 

micropartikels, en we hebben gesuggereerd dat zelfs meer kleuren zouden kunnen worden 

aangewend, indien de kleurstof waarmee de micropartikels zelf gekleurd worden, vervangen wordt 

door een kleurstof die fluoresceert bij belichting met UV- of ver rood licht. We hebben dit DNA luik  

tenslotte beëindigd door de simultane genotypering aan te tonen van de 2 polymorfismen van het 

Apolipoproteine E gen met behulp van memobeads, door gebruik te maken van de oligonucleotide 

ligatie test. Negen verschillende genotypes werden correct geïdentificeerd, dit werd aangetoond 

door vergelijking met microarray analyses en sequeneren. 

Er kunnen in het algemeen twee wegen worden gevolgd om de gevoeligheid van 

affiniteitstesten te verhogen. Indien er geen PCR-achtige techniek voorhanden is om doelmoleculen 

te vermenigvuldigen, hetgeen o.a. het geval is voor de detectie van eiwitten, kunnen methoden 
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worden aangewend die het signaal vergroten, dat resulteert uit de reactie tussen een probe en een 

doelmolecule. Het signaal van de (negatieve) controle stalen mag dan evenwel niet even sterk 

vergroten, als dat van de positieve (gereageerde) stalen. Enkel dan zal de verhoging in signaal immers 

resulteren in een hogere signaal/ruis verhouding. De toename in gevoeligheid is afhankelijk van de 

mate waarmee het signaal vergroot kan worden. Dit principe hebben we in Hoofdstuk 4 

gedemonstreerd op het  multiplex platform dat is voorgesteld in deze studie door gebruik te maken 

van de tyramide signaal amplificatie (TSA) methode. TSA is gebaseerd op de enzymatische conversie 

van inactieve tyramide residuen, door middel van horseradish peroxidase (HRP), tot actieve residuen 

welke in staat zijn te reageren met electronenrijke groepen van eiwitten in de omgeving van de 

conversie. Signaalamplificatie is zeer uitdagend bij alle platforms op basis van gecodeerde 

micropartikels, omdat deze micropartikels mobiel zijn, en vals positieve resultaten makkelijk kunnen 

ontstaan door binding van signaalmoleculen aan het oppervlak van niet-gereageerde micropartikels. 

Met andere woorden, om een ondubbelzinnig antwoord te krijgen op de vraag welke micropartikels 

geleid hebben tot het signaal (en dus welke doelmoleculen gereageerd hebben met de probes), moet 

dit signaal fysisch gekoppeld worden aan enkel en alleen de desbetreffende micropartikels. We 

verwachtten dat de TSA methode toegepast zou kunnen worden op alle multiplex platforms op basis 

van gecodeerde micropartikels, omdat a) allerlei eiwitten (antilichamen, BSA moleculen, etc.) 

aanwezig zijn op het oppervlak van de micropartikels die alle electronenrijke groepen bevatten, b) 

HRP vrij makkelijk kan worden gekoppeld aan het probe/doelmolecule sandwich construct dat 

gevormd wordt aan het oppervlak van de micropartikels, en c) de actieve tyramide residuen zich in 

een zeer onstabiele toestand bevinden.  Dit laatste betekent dat ze, ofwel onmiddellijk moeten 

reageren met electronenrijke groepen, ofwel opnieuw overgaan in hun inactieve vorm, waarin ze 

onmogelijk nog kunnen reageren. Dit vermindert met andere woorden de kans dat ze nog kunnen 

binden op andere micropartikels in de omgeving. 

De toepassing van de TSA methode op micropartikels in een duplex test werd reeds eenmaal 

beschreven in de literatuur, maar tot nu toe werd er nog nooit aangetoond in hoeverre deze 

methode gevoeliger werkt dan de methode die conventioneel gebruikt wordt bij multiplex platforms 

op basis van gecodeerde micropartikels (welke gebruik maakt van fluorescent streptavidine dat bindt 

met gebiotinyleerde detectie antilichamen). We hebben aangetoond in hoofdstuk 4 dat deze TSA 

methode een zeer attractieve methode is om snel en simultaan diverse eiwitten te detecteren, zowel 

met de memobeads, als met de commercieel beschikbare xMAP ® micropartikels. De TSA methode 

vergroot het fluorescente signaal dat resulteert uit de reactie tussen probes en doelmoleculen 

significant (tot 100 keer ten opzichte van de huidige methode), met veel grotere signaal/ruis 

verhoudingen tot gevolg. We hebben aangetoond dat deze methode bruikbaar is in serum – sub-pg 

detectie van P24 was mogelijk – en perfect werkt in een multiplex (quadruplex) formaat. 
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Een tweede manier om de gevoeligheid van affiniteitstesten te verhogen binnen een 

bepaalde reactietijd, is door het contact tussen de probes en doelmoleculen efficiënter te maken. 

We hebben daartoe in deze studie in Hoofdstuk 7 de integratie van de LbL gemodificeerde 

micropartikels in “microfluidic chips” onderzocht. Affiniteitsreacties tussen (bio)moleculen zijn zeer 

vaak diffusie gelimiteerd, en zullen om die reden sneller plaatsvinden in een microruimte, waarin de 

diffusie afstanden veel korter zijn vergeleken met deze in conventionele microtiter platen. Dit is een 

belangrijke eigenschap aangezien de tijd die een molecule nodig heeft om van plaats a naar plaats b 

te diffunderen, proportioneel is met het kwadraat van de afstand tussen a en b. Hoewel het enkele 

uren duurt om een afstand van 1 cm te overbruggen, duurt het ongeveer 10 seconden om 100 µm te 

overbruggen. Een microruimte heeft daarenboven nog andere karakteristieke eigenschappen 

waardoor het verschilt van een macro-omgeving: een grote oppervlak/volume ratio en een lage 

warmtecapaciteit. De integratie van LbL gemodificeerde micropartikels in microkanalen zou om die 

redenen kunnen leiden tot een versnelde interactie tussen de vrije doelmoleculen en de probes, 

gebonden aan het oppervlak van de micropartikels. Als proof-of-concept hiervoor werden LbL 

gemodificeerde micropartikels, op wiens oppervlak muis antilichamen werden gekoppeld, 

geïmmobiliseerd in een microkanaal door middel van een soort damstructuur, en vervolgens werd 

een oplossing van rode fluorescente geit anti-muis IgGs doorheen het microkanaal gestuurd. De 

affiniteitsreactie tussen de beide antilichamen was visueel waarneembaar door het ontstaan van 

rode fluorescentie aan het oppervlak van de micropartikels; de reactiesnelheid werd vergeleken met 

die aan het oppervlak van LbL gemodificeerde micropartikels in een microcentrifuge tube 

(macroruimte). We hebben aangetoond dat deze reactie veel sneller verliep in het microkanaal (tot 

zelfs 10 maal sneller vergeleken met de microcentrifuge tube). Er werd niet meer aspecifieke binding 

waargenomen op de micropartikels nadat ze in het microkanaal geïntegreerd werden, en decodering 

van geïntegreerde memobeads was eveneens mogelijk, wat betekent dat de combinatie van 

memobeads en microchips zou kunnen leiden tot een snelle en gevoelige test voor de simultane 

detectie van diverse eiwitten. Aangezien de damstructuur een soort van filtereffect teweeg bracht, 

waarbij niet alleen micropartikels maar ook stof en dergelijke accumuleerden, en omdat we 

verwachten dat dit effect nog meer zou worden benadrukt bij metingen in complexe stalen, hebben 

we voorgesteld om in de toekomst andere methoden aan te wenden voor het immobiliseren van 

micropartikels in microchips. We hebben dit aangetoond door de LbL gemodificeerde micropartikels 

te immobiliseren in een microkanaal door middel van dielectroforese, dat gekenmerkt wordt door 

het feit dat er geen enkel fysisch contact is met de micropartikels, en dat het kan toegepast worden 

in veel bredere microkanalen, dan bij gebruik van een damstructuur. Hoewel we nog geen test 

hebben uitgevoerd met gecodeerde memobeads, hebben we wel aangetoond dat een LbL 

gemodificeerd micropartikel precies kan gevangen worden op een bepaalde locatie in een 
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microkanaal door middel van dielectroforese-krachten, en dat het micropartikel makkelijk ter 

plaatste geroteerd kan worden door een extern magneetveld aan te leggen bovenop het 

dielectroforese veld. Dit betekent dat decodering van de memobeads mogelijk moet zijn op deze 

manier. 

De combinatie van “microfluidica” technologieën met multiplex platforms op basis van 

micropartikels, is een veelbelovende zogenaamde “lab-on-a-chip” (LOC) toepassing, dankzij de 

opmerkelijke en elkaar aanvullende eigenschappen van beide technologieën. We hebben in 

Hoofdstuk 6 getracht een debat te openen over de ‘toegevoegde waarde’ die we mogen verwachten 

als we dit soort (bio)analyses zouden uitvoeren in microfluidica systemen. We hebben de 

technologieën bekeken die gebruikt kunnen worden om micropartikels te decoderen, te analyseren 

en te manipuleren in microfluidica systemen, met een speciale focus op a) de uitdagingen waarvoor 

we momenteel staan, om de huidige detectie platformen voor gecodeerde micropartikels te 

integreren in deze microfluidica systemen, en op b) veelbelovende microtechnologieën die 

aangewend kunnen worden om de huidige detectie units compacter te maken, om op die manier 

geminiaturiseerde multiplex platforms op basis van micropartikels te verkrijgen. Hoewel de focus in 

dit hoofdstuk vooral lag op de integratie van beide technologieën, zullen deze geïntegreerde LOC 

analysesystemen uiteindelijk worden toegepast om ter plaatse snel diagnoses uit te voeren, in plaats 

van in laboratoria. De echte uitdaging zal daarom waarschijnlijk liggen in de koppeling van de 

geïntegreerde decodering modules, die we beschreven in hoofdstuk 6, aan andere geavanceerde 

modules. Hierbij denken we aan modules die instaan voor andere taken, zoals voor de 

verwerking/voorbereiding van (bloed)stalen, voor de extractie van DNA, RNA of eiwitten, enz. Om de 

diagnostiek in te toekomst letterlijk dichter bij de patiënt te brengen, zullen er ook niet-hardware 

gerelateerde zaken verder moeten ontwikkeld worden, zoals data acquisitie, data management, enz. 

Het onderzoek in elk van deze velden is zeer belovend, en er wordt verwacht dat de eerste 

prototypes van multiplex LOC systemen op basis van micropartikels in het volgende decennium 

gelanceerd zullen worden, onder voorbehoud dat nieuwe micro- en nano-technologieën snel 

aanvaard worden. 
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Deze doctoraatsstudie had tot hoofddoel de mogelijkheid na te gaan in hoeverre 

memobeads kunnen worden gebruikt voor de simultane detectie van meerdere eiwitten of DNA 

moleculen. Nadat we de oppervlakte-eigenschappen van de memobeads door middel van de LbL 

technologie geoptimaliseerd hadden, hebben we zowel gevoelige simultane eiwit metingen in 

complexe stalen, zoals serum en plasma, als genotypering en het merken van meerdere 

doelmoleculen met verschillende kleuren, aangetoond met dit memobead platform. We zijn er 

eveneens in geslaagd om het platform gevoeliger te maken door toepassing van de tyramide signaal 

amplificatie methode, en door integratie van het platform in microkanalen, en hebben gesuggereerd 

dat beide ook kunnen worden toegepast op andere multiplex platforms op basis van gecodeerde 

micropartikels. We zijn ervan overtuigd dat de ‘toegevoegde waarde’ die gecreëerd wordt door 

(bio)analyses op gecodeerde micropartikels uit te voeren in microkanalen, uiteindelijk zal resulteren 

in LOC instrumenten die kunnen worden toegepast voor “point-of-care” diagnoses. 
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