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Chapter 1

Introduction

In this doctoral thesis we study some specific families of multidimensional dis-
tributions in the framework of orthogonal Clifford analysis, meanwhile con-
structing several generalizations of the Clifford–Hilbert transform, their kernels
belonging to one of those families of distributions. The generalized Hilbert
transforms are developed within the framework of either orthogonal Clifford
analysis (Part I), anisotropic Clifford analysis (Part II) or Hermitean Clifford
analysis (Part III).

In the introductory Chapter 2 we take off with a presentation of the classi-
cal Hilbert transform on the real line. Although emphasis is on the theoretical
point of view, we mention applications in the theoretical description of many
devices and systems. In particular the notion of analytic signal, closely related
to the Hilbert transform, is widely used in the theory of signals, circuits and sys-
tems. In the first section, the fundamental and characterizing properties of the
Hilbert transform on the real line are recalled, since in the following sections and
chapters, it is examined whether the multidimensional generalizations of that
original one–dimensional Hilbert transform still submit to properly rephrased
analogues of its most crucial properties. Special attention is paid to its rela-
tionship with the Cauchy integral in the complex plane. This naturally leads
to the well–known Hardy space of holomorphic functions in the upper half of
the complex plane and a second Hardy space on the real line, isomorphic with
the first one, and consisting of the eigenfunctions of the Hilbert transform with
eigenvalue 1. We then end the first section with the concept of analytic signal,
involving the Hilbert transform as an indispensable tool for both global and
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local descriptions of a real valued signal. In the second section, some of the ex-
isting higher dimensional scalar valued generalizations of the one–dimensional
Hilbert transform are exposed in order to have a clear view of the advantages
and limitations of their associated analytic signals. At the same time, their
properties are compared with those of the Hilbert transform on the real line.
For more detailed information about the one–dimensional Hilbert transform,
we refer the reader to a.o. [98, 79, 5, 60, 66]. Higher dimensional scalar valued
Hilbert transforms are introduced in e.g. [99, 95, 55, 66].

The purpose of Part I is twofold. On the one hand we introduce in Chapter 4
some specific families of distributions in the framework of orthogonal Clifford
analysis. Although certain of these distributions were already introduced, al-
beit dispersed, in the literature on harmonic analysis and on Clifford analysis,
classifying those distributions in families offers structural clarity and complete-
ness. Also some original results are obtained. On the other hand, Chapter 6
is devoted to an extensive study of new multidimensional Hilbert transforms,
the convolution kernels of which are carefully selected from the distributions
mentioned above.

In the introductory Chapter 3 the necessary language of orthogonal Clifford
algebra and Clifford analysis is presented. The algebras under consideration
found their origin in the paper [41] of W. K. Clifford who called them geomet-
ric algebras since they incorporate inside one single structure as well the inner
product as the wedge product of vectors. They generalize a.o. Grassmann’s
exterior algebra and Hamilton’s algebra of quaternions. One of the most simple
nontrivial Clifford algebras is the algebra of complex numbers, obtained when
constructing the universal Clifford algebra over the field of the real numbers. In
complex analysis then, it is well–known that the two–dimensional Laplace opera-
tor may be decomposed as the multiplication of the Cauchy–Riemann operator
with its complex conjugate. So, holomorphic functions, i.e. null solutions of
the Cauchy–Riemann operator, are also harmonic. In the same sense orthogo-
nal Clifford analysis arises as a higher dimensional function theory in a specific
Clifford algebra setting, centred around the notion of so–called monogenic func-
tions, i.e. null solutions of the Clifford–vector valued orthogonal Dirac operator,
which is an elegant generalization to higher dimension of the Cauchy–Riemann
operator. As this Dirac operator factorizes the higher dimensional Laplacian,
monogenic functions are harmonic as well and moreover their properties con-
stitute a refinement of those of harmonic functions. We end this chapter with
the so–called spherical monogenics, since they play a fundamental role in the
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construction of our generalized Hilbert transforms. They are restrictions to the
unit sphere of homogeneous, monogenic polynomials which we take Clifford–
vector valued. Finally, we remark here that, over the years, Clifford analysis
has gained more and more interest and has grown out to a proper branch of
classical analysis. A profound study of Clifford analysis, drawing the parallels
between the classical complex function theory on the one hand and this mono-
genic function theory on the other hand, can be found in the book [23] of Brackx,
Delanghe and Sommen. For further study of this higher dimensional function
theory and its applications we refer to e.g. [62, 60, 52, 77, 63, 88, 87, 8, 48, 82, 61].

In Chapter 4, four families of distributions in orthogonal Clifford analysis are
introduced which were already considered by Brackx, Delanghe and Sommen in
[26, 25]. The common and most striking feature of all those distributions is the
way they act on scalar valued test functions defined in Euclidean space. By
making use of the well–known spherical means, which arise naturally by intro-
ducing spherical co-ordinates, a simple, powerful and highly efficient technique
was designed allowing to convert the action in the original setting of Euclidean
space into an action on the real line by means of the distribution ”finite parts”.
The above authors also saw that introducing generalized spherical means, in-
volving spherical monogenics, would give rise to much more general Clifford
distributions, encompassing those already constructed in the special case where
the degree of the spherical monogenic considered is zero. In our turn we not
only normalize those families of distributions, but we also closely study their
properties, disclosing strong connections between them.

Next, the definition of the classical Clifford–Hilbert transform and its char-
acterizing properties are introduced in Chapter 5. To our knowledge, Horváth
was the first to define a vector valued Hilbert transform on Euclidean space Rm

using Clifford algebra (see [69]). This multidimensional Hilbert transform in the
orthogonal Clifford analysis setting was taken up again in the 1980’s and further
studied in e.g. [91, 60, 76, 50, 51]. It also plays a fundamental role in the study
of Hardy spaces of monogenic functions, see e.g. [36, 77, 39, 4, 42, 49]. In the
first section of this chapter, we present an alternative definition for the Clifford–
vector valued Hilbert transform of Horváth, involving the multiplication with
an extra basis vector. Its main properties are then examined; in particular its
relationship with the Cauchy integral on Rm+1 is disclosed, at the same time
giving rise to a study of Hardy spaces of monogenic functions. Further, we also
propose a higher dimensional generalization of the concept of analytic signal
in the Clifford analysis context. Finally, to conclude this section, we deal with
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the interaction between the Clifford–Hilbert transform and the Clifford–Radon
transform, both transforms being protagonists in multidimensional signal anal-
ysis theory. In the second section, the Clifford–Hilbert transform on closed
surfaces in Euclidean space Rm is introduced. It is shown that, in general, its
properties are weaker than the ones of the Clifford–Hilbert transform on Rm,
except for the case of the unit sphere to which we pay special attention.

We end Part I with our construction of two possible generalizations of the
Clifford–Hilbert transform on Rm (Chapter 6). Their kernels are deliberately
chosen from the distributions introduced in Chapter 4, in such a way that the
corresponding convolution operators preserve as much traditional properties of
the Clifford–Hilbert transform as possible. In the first approach for generaliza-
tion it is shown that the kernels constitute a refinement of the generalized Hilbert
kernels introduced by Horváth in [70]. Our resulting generalized Hilbert trans-
forms are shown to be no longer unitary operators, yet they remain bounded
singular operators on L2(Rm). The second approach is based on the intimate
relationship between the Hilbert transform and the Cauchy integral and starts
with the construction of a generalized Cauchy integral on Rm+1 involving a dis-
tribution from one of the aforementioned families as a generalized Cauchy kernel.
A new generalized Hilbert transform in Rm is then defined as part of the L2

or distributional boundary limits of the generalized Cauchy integral considered,
and it is shown to be a bounded operator on the Sobolev spaces Wn

2 (Rm). Also
a connection is established between both generalizations through the action of
a higher order Dirac derivative. Finally, a section is devoted to the action of
the Radon transform on the two types of generalized Hilbert operators.

The (generalized) multidimensional Hilbert transforms on Rm considered
so far and usually obtained as a part of the boundary limits of an associated
Cauchy integral on Rm+1, might be characterized as isotropic, since the met-
ric in the underlying space is the standard Euclidean one. Part II now adopts
the idea of an anisotropic (also called metric dependent or metrodynamical)
Clifford setting, which offers the possibility of adjusting the co-ordinate system
to preferential and not necessarily mutually orthogonal directions. In this new
area of Clifford analysis (see e.g. [35, 53]), we construct the so–called anisotropic
Clifford–Hilbert transform.

The basic language of anisotropic Clifford analysis is presented in the intro-
ductory Chapter 7. We first introduce the notion of metric tensor which gives
rise to two bases in Rm: a covariant one and a contravariant one. Then, a
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Clifford algebra is constructed, depending on the metric tensor involved, and all
necessary definitions and results of orthogonal Clifford analysis are adapted to
this metric dependent setting. We introduce e.g. the concepts of Dirac operator,
monogenicity and Laplace operator. We end this chapter with the definition and
the study of the so–called anisotropic Fourier transform, the metric dependent
analogue of the classical Fourier transform.

In Chapter 8, we first define a new anisotropic Clifford–Hilbert transform
on Rm, arising naturally as part of the non–tangential boundary limits of the
anisotropic Cauchy integral on Rm+1. Next, the former operator is shown to
possess, formally, the same properties as the isotropic Clifford–Hilbert trans-
form introduced in Chapter 5. Finally, the striking result is obtained that the
associated anisotropic Cauchy integral on Rm+1 is no longer uniquely deter-
mined, but may stem from a diversity of metric tensors of order (m+ 1).

The central topic of Part III is the development of new higher dimensional
Hilbert transforms in the framework of Hermitean Clifford analysis, a rather
young branch of Clifford analysis (see e.g. [86, 85, 89, 43, 34, 6, 7, 54]).

The introductory Chapter 9 discusses the basic ingredients of Hermitean
Clifford analysis, a new and successful branch of Clifford analysis, offering a re-
finement of the orthogonal case; it focusses on the simultaneous null solutions,
called Hermitean monogenic functions, of two Hermitean Dirac operators which
are invariant under the action of a realization of the unitary group. We first
introduce in a natural way the elementary objects in Hermitean Clifford anal-
ysis by means of a so–called complex structure J , which is used to mould in
some sense the orthogonal protagonists into their Hermitean counterparts. In
the second section a splitting of the Hermitean monogenic system is considered,
which has already been studied in [7], leading to the so–called homogeneous
parts of complex spinor space.

While studying Clifford–Hermite wavelets in the context of Hermitean Clifford
analysis, see [31, 32], the authors came across a new kind of operator, obtained
as the composition of two orthogonal Clifford–Hilbert transforms on Rm. The
resulting operator, denoted K, was shown to possess some typical properties of a
classical Hilbert transform as well. In Chapter 10, we further extensively investi-
gate this K–transform, reobtaining it as the commutator of two new Hermitean
Clifford–Hilbert transforms. In the first section of this chapter, we introduce,
next to the Clifford–Hilbert transform already presented in Chapter 5, a second
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orthogonal Clifford–Hilbert transform on Rm, its kernel being obtained by the
action of the complex structure J on the orthogonal Clifford–Hilbert kernel.
Through the action of the projection operators ± 1

2 (1 ± iJ) on the orthogonal
Clifford–Hilbert kernel we get two new isotropic Hermitean Hilbert transforms.
The commutator of the latter transforms then gives rise to the K–transform,
which is studied in the second section. Its connections and similarities with
the standard Clifford–Hilbert transforms as well as with the newly introduced
Hermitean Hilbert transforms are explicitly investigated, and in particular new
Hardy spaces associated to this operator are defined and characterized. Some
results also allow for a nice geometric interpretation. In the last section the
concept of multidimensional analytic signal is revised.

In orthogonal Clifford analysis, the Clifford–Cauchy integral formula for
monogenic functions has proven to be a corner stone of the function theory,
as is the case for the traditional Cauchy formula for holomorphic functions in
the complex plane. Naturally a Cauchy integral formula for Hermitean mono-
genic functions is essential in the further development of Hermitean Clifford
analysis, but was not obtained before in a satisfactory way. In the first sec-
tion of Chapter 11 we arrive at the desired result, by passing to the framework
of circulant (2 × 2) matrix functions. As an additional result, the obtained
Hermitean Clifford–Cauchy integral formula turns out to reduce to the tradi-
tional Martinelli–Bochner formula for holomorphic functions of several complex
variables when considering the special case of functions taking values in the
n–homogeneous part of complex spinor space. This means that the theory of
Hermitean monogenic functions not only refines orthogonal Clifford analysis
(and thus harmonic analysis as well), but also has strong connections with the
theory of functions of several complex variables, even encompassing some of
its results. In the second section, we then arrive at the definition of a new
Hermitean Clifford–Hilbert transform, arising naturally as part of the non–
tangential boundary limits of the Hermitean Clifford–Cauchy integral. The
resulting matrix Hilbert operator is shown to satisfy properly adapted analogues
of the characteristic properties of the Hilbert transform in classical analysis and
orthogonal Clifford analysis.



Chapter 2

Classical Hilbert transforms

The Hilbert transform is named after David Hilbert (1862–1943), one of the
greatest mathematicians of the twentieth century, who, in his studies of inte-
gral equations, was the first to observe what is nowadays known as the Hilbert
transform pair. However, the Hilbert transform and its properties were devel-
oped mainly by E. C. Titchmarsh and G. H. Hardy. It was Hardy who named
it after Hilbert. The Hilbert transform is applied in the theoretical description
of many devices and systems and directly implemented in the form of Hilbert
analogue or digital filters. In particular the notion of analytic signal, closely
related to the Hilbert transform, is widely used in the theory of signals, circuits
and systems. In this work however, emphasis is laid on the theoretical point of
view. For more detailed information about the Hilbert transform on the real
line, we refer the reader to a.o. [98, 79, 5, 60, 66]. Higher dimensional scalar
valued Hilbert transforms are introduced in e.g. [99, 95, 55, 66].

2.1 The Hilbert transform on the real line

2.1.1 Introduction

This first section may be seen as a basic framework for the whole of the un-
derlying thesis, which is to be understood in the following sense. We recall the
definition and the fundamental, characterizing properties of the Hilbert trans-
form on the real line. In subsequent chapters, it is then examined whether the
multidimensional generalizations of that original one–dimensional Hilbert trans-
form may be defined, which still submit to properly rephrased analogues of its
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most crucial properties.

We consider signals f(t), depending on a real (time) variable t ∈ R; they
may be real or complex valued. The signal f is mostly assumed to be a finite
energy signal, i.e.

‖f‖2L2
≡
∫ +∞

−∞
|f(t)|2 dt < +∞

in other words, f ∈ L2(R).

The Hilbert transform of a signal f then arises in a quite natural, but formal,
way in the context of the Fourier transform. Consider a Fourier pair of functions
f and F for which

F (ω) = Ft→ω[f(t)](ω) =
∫ +∞

−∞
f(t) exp(−2πi tω) dt

f(t) = F−1
ω→t[F (ω)](t) =

∫ +∞

−∞
F (ω) exp(2πi ωt) dω (2.1)

In a formal way the inverse Fourier formula (2.1) may be written as

f(t) =
∫ +∞

0

[(F (ω) + F (−ω)) cos(2πωt) + i (F (ω)− F (−ω)) sin(2πωt)] dω

or

f(t) =
∫ +∞

0

(a(ω) cos(2πωt) + b(ω) sin(2πωt)) dω

where we have put

a(ω) = F (ω) + F (−ω) = 2
∫ +∞

−∞
f(u) cos(2πuω) du

b(ω) = i (F (ω)− F (−ω)) = 2
∫ +∞

−∞
f(u) sin(2πuω) du

Now define the so–called conjugate integral g of f by

g(t) =
∫ +∞

0

(−b(ω) cos(2πωt) + a(ω) sin(2πωt)) dω
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Then it holds that

f(t) + i g(t) =
∫ +∞

0

(a(ω)− ib(ω)) exp(2πi ωt) dω

= 2
∫ +∞

0

F (ω) exp(2πi ωt) dω

Let us first have a look at the Fourier transform of the function g. One has

g(t)

=
∫ +∞

0

[−i (F (ω)− F (−ω)) cos(2πωt) + (F (ω) + F (−ω)) sin(2πωt)] dω

=
∫ +∞

0

(−i F (ω) exp(2πi ωt) + i F (−ω) exp(−2πi ωt)) dω

=
∫ +∞

−∞
(−i sgn(ω)F (ω)) exp(2πi ωt) dω

where we introduced the signum function

sgn(ω) =
ω

|ω|
=
{

+1 , ω > 0
−1 , ω < 0

So the Fourier transform G of g is given by

G(ω) = −i sgn(ω)F (ω)

Next, in a formal way, the functions f , g and f + ig, are defined as the following
limits for y → 0+:

f(x) = lim
y→0+

U(x, y)

= lim
y→0+

∫ +∞

0

(a(ω) cos(2πωx) + b(ω) sin(2πωx)) exp(−2πωy) dω

g(x) = lim
y→0+

V (x, y)

= lim
y→0+

∫ +∞

0

(−b(ω) cos(2πωx) + a(ω) sin(2πωx)) exp(−2πωy) dω
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and

f(x) + i g(x) = lim
y→0+

(U(x, y) + i V (x, y))

= lim
y→0+

2
∫ +∞

0

F (ω) exp(2πi ωx) exp(−2πωy) dω

or still

f(x) + i g(x) = lim
y→0+

W (z)

= lim
y→0+

2
∫ +∞

0

F (ω) exp(2πi ωz) dω , z = x+ iy

Note that the functions U and V are harmonic in the upper half plane

C+ = {z = x+ iy ∈ C : Im(z) = y > 0}

i.e.

∆U(x, y) =
(
∂2

x + ∂2
y

)
U(x, y) = 0 , y > 0

∆V (x, y) =
(
∂2

x + ∂2
y

)
V (x, y) = 0 , y > 0

while W is holomorphic there, i.e.

∂zcW (z) =
1
2

(∂x + i ∂y)W (x, y) = 0 , y > 0

In the particular case where f is real valued, the functions a, b and g are real
valued as well and so are the functions U and V . As they are then the real
and imaginary parts of the holomorphic function W in C+, the functions U and
V are conjugate harmonic functions in the upper half of the complex plane.
Moreover, still for a real valued function f ,

U(x, y) =
1
π

∫ +∞

−∞

y

(x− t)2 + y2
f(t) dt (2.2)

and

V (x, y) =
1
π

∫ +∞

−∞

(x− t)
(x− t)2 + y2

f(t) dt (2.3)
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Note that this holomorphic function W in the upper half plane may be written
as

W (z) = 2
∫ +∞

−∞
F (ω)H(ω) dω

where we have put H(ω) = exp(2πi ωz)Y (ω) with Y the Heaviside function on
the real axis. This function H is then the Fourier transform of

h(t) = − 1
2πi

1
x+ iy + t

= − 1
2πi

1
z + t

, y > 0

and hence, by Parseval’s identity one has∫ +∞

−∞
F (ω)H(ω) dω =

∫ +∞

−∞
f(t)h(−t) dt

or

2
∫ +∞

0

F (ω) exp(2πi ωz) dω = 2
∫ +∞

−∞
f(t)

(
− 1

2πi

)
1

z − t
dt , Im(z) > 0

or still

W (z) = − 1
πi

∫ +∞

−∞

f(t)
z − t

dt

which is in accordance with the relations (2.2) and (2.3) for the functions U and
V . Now we search for a direct relationship between the functions f and g. One
has

g(x) = 2
∫ +∞

0

dω

∫ +∞

−∞
f(u) sin(2πω(x− u)) du

= lim
λ→+∞

2
∫ λ

0

dω

∫ +∞

−∞
f(u) sin(2πω(x− u)) du

= lim
λ→+∞

1
π

∫ +∞

−∞
f(u)

1− cos(2π(x− u)λ)
x− u

du

= lim
λ→+∞

1
π

∫ +∞

0

(f(x− u)− f(x+ u))
1− cos(2πuλ)

u
du

If f is a sufficiently smooth function, the part involving cos(2πuλ) will tend to
0 as λ→ +∞ and we obtain

g(x) =
1
π

∫ +∞

0

f(x− t)− f(x+ t)
t

dt =
1
π

Pv
∫ +∞

−∞

f(t)
x− t

dt
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where Pv denotes the so–called Cauchy principal value, which means that in the
integral the singularity at t = x will be approached in a symmetrical way, i.e.

Pv
∫ +∞

−∞

f(t)
x− t

dt = lim
ε→0+

∫
|x−t|>ε

f(t)
x− t

dt

In a similar way, starting from

f(x) = −2
∫ +∞

0

dω

∫ +∞

−∞
g(u) sin(2πω(x− u)) du

we obtain

f(x) = − 1
π

∫ +∞

0

g(x− t)− g(x+ t)
t

dt = − 1
π

Pv
∫ +∞

−∞

g(t)
x− t

dt

It was Hilbert who first noticed the reciprocity between the functions f and g;
they form a so–called Hilbert pair and g is called the Hilbert transform of f .

2.1.2 Definition and first properties

Let f ∈ L2(R); the Hilbert transform H[f ] of f is defined by

H[f ](x) =
1
π

Pv
∫ +∞

−∞

f(t)
x− t

dt =
1
π

Pv
∫ +∞

−∞

f(x− t)
t

dt

=
1
π

lim
ε→0+

(∫ −ε

−∞

f(x− t)
t

dt+
∫ +∞

+ε

f(x− t)
t

dt

)
=

1
π

∫ +∞

0

f(x− t)− f(x+ t)
t

dt

or, by means of a convolution

H[f ](x) =
(

Pv
1
πt
∗ f(t)

)
(x) (2.4)

where we call H(t) = Pv 1
πt the Hilbert kernel.

The Hilbert transform is then directly seen to satisfy the following properties.
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Property 2.1. The Hilbert transform is a convolution operator, which is equiv-
alent with saying that the Hilbert transform commutes with translations, i.e.

τa[H[f ]] = H[τa[f ]]

with τa[f ](t) = f(t− a), a ∈ R.

Property 2.2. The Hilbert kernel is a homogeneous distribution of degree (−1),
which, for a convolution operator, is equivalent with saying that the Hilbert
transform commutes with dilations, i.e.

da[H[f ]] = H[da[f ]]

with da[f ](t) = 1√
a
f( t

a ), a > 0.

Property 2.3. The Hilbert and Fourier transforms are interrelated in the fol-
lowing way:

F [H[f ]](ω) = −i sgn(ω)F [f ](ω)
H[F [f ]](ω) = F [i sgn(t) f(t)](ω)

The results contained in Property 2.3 are used to calculate Hilbert trans-
forms in practice. They lead to the diagram in Figure 2.1, where the operator
iH and not H plays a crucial role.

Figure 2.1: Relationship of the Hilbert transform with the Fourier transform

The Fourier image of the Hilbert kernel, i.e. (−i) sgn(ω), is called the Fourier
symbol of the Hilbert transform. That Fourier symbol clearly being a bounded
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function is equivalent with saying that the Hilbert transform is a bounded linear
operator on L2(R). More precisely one has:

Property 2.4. The Hilbert transform is a bounded linear operator on L2(R),
and is a fortiori norm preserving, i.e.

‖H[f ]‖2L2
=
∫ +∞

−∞
|H[f ](x)|2 dx =

∫ +∞

−∞
|f(t)|2 dt = ‖f‖2L2

More generally, it also preserves the inner product

(f, g)L2
≡
∫ +∞

−∞
fc(t) g(t) dt = (H[f ],H[g])L2

where fc stands for the complex conjugate function of f .

For the following property we introduce the identity operator 1 on L2(R).

Property 2.5. The Hilbert transform H : L2(R) → L2(R) satisfies

H2 = −1

Corollary 2.1. The Hilbert transform H : L2(R) → L2(R) is invertible with

H−1 = −H

Corollary 2.2. The Hilbert transform H : L2(R) → L2(R) is unitary, its
adjoint being given by −H, i.e.

(H[f ], g)L2
= (f,−H[g])L2

, f, g ∈ L2(R)

Corollary 2.3. The Hilbert transform satisfies the orthogonality relation

(fc,H[f ])L2 = 0

Remark 2.1. In engineering sciences the L2 norm of a signal f is considered,
up to a possible constant, as its (finite) energy. This is why the above corollary
is paraphrased as ”the mutual energy of a signal and its Hilbert transform is
zero”.
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Property 2.6.

(i) If f is real, then H[f ] is real.

(ii) If f is imaginary, then H[f ] is imaginary.

(iii) If f is even, then H[f ] is odd.

(iv) If f is odd, then H[f ] is even.

We then end this subsection with some additional properties. First of all,
the relationship between the Hilbert transform and the derivative operator is
revealed. Secondly, the effect of the multiplication of the signal with the mono-
mial t is examined. And last but not least, a remarkable result is given for the
Hilbert transform of the product of two signals with non–overlapping spectra.

Property 2.7. The Hilbert transform commutes with differentiation, i.e. if f
and df

dt are in L2(R), then

H
[
d

dt
f(t)

]
(x) =

d

dx
(H[f ](x))

Property 2.8. If f and tf are in L2(R), then

H[tf(t)](x) = xH[f ](x)− 1
π

∫ +∞

−∞
f(t) dt

Property 2.9 (Bedrosian [3]). Let f and g be signals such that for some positive
real number a

|F (ω)| = 0 , if |ω| > a

and
|G(ω)| = 0 , if |ω| < a

then
H[fg] = f H[g]

Remark 2.2. In engineering sciences, the above result is paraphrased as ”only
the high-pass signal in the product of low-pass and high-pass signals gets Hilbert
transformed”.
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2.1.3 Relationship with the Cauchy integral

We assume the real axis to be embedded in the complex plane C. A function
F (z), depending on a complex variable z = x+ iy, is called holomorphic in an
open region Ω ⊂ C if it is continuously differentiable and satisfies

∂zcF = 0 in Ω

with
∂zc =

1
2

(∂x + i ∂y)

being the so–called Cauchy–Riemann operator. The fundamental solution of
∂zc is given by

E(z) =
1
2π

1
z

It satisfies the following properties:

(i) E(z) is holomorphic in C \ {0}

(ii) lim
|z|→+∞

E(z) = 0

(iii) ∂zcE(z) = δ(z) in distributional sense

This fundamental solution E(z), up to the complex factor i, now serves as the
convolution kernel, usually called Cauchy kernel, for the Cauchy integral.

Definition 2.1. For a signal f(t) on the real t–axis, its Cauchy integral is
defined in C \ R by

C[f ](z) = i

∫ +∞

−∞
E(z − t) f(t) dt = − 1

2πi

∫ +∞

−∞

f(t)
(x− t) + iy

dt

It may be clear that the Cauchy integral is holomorphic in both the upper
half plane C+ and the lower half plane C− = {z ∈ C : Im(z) < 0}. Let
f ∈ L2(R); taking the supremum either in C+ or in C−, we also have that

sup
y≶0

∫ +∞

−∞
|C[f ](x+ iy)|2 dx < +∞

The Hilbert transform comes into play now, when considering the non–tangential
boundary limits of the Cauchy integral for y → ±0. They lead to the so–called
Plemelj–Sokhotzki formulae.
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Property 2.10. Let f ∈ L2(R), then the non–tangential boundary limits of the
Cauchy integral are given by

C+[f ](x) ≡ lim
y→0+

C[f ](z) =
1
2
f(x) +

1
2
iH[f ](x)

C−[f ](x) ≡ lim
y→0−

C[f ](z) = −1
2
f(x) +

1
2
iH[f ](x)

For a signal f ∈ L2(R), we call C+[f ] and C−[f ] its Cauchy transforms. They
satisfy the following properties.

Corollary 2.4. Let f ∈ L2(R), then

(i) C+ and C− are bounded linear operators on L2(R)

(ii) f = C+[f ]− C−[f ] and iH[f ] = C+[f ] + C−[f ]

(iii) C−[f ] = −(C+[fc])c and C+[f ] = −(C−[fc])c

(iv) C+[f ] and C−[f ] are orthogonal, i.e. (C+[f ], C−[f ])L2
= 0

(v) in engineering sciences it is said that ”the Fourier spectrum of C+[f ] only
contains positive frequencies”, i.e.

F [C+[f ]](ω) =
1
2

(1 + sgn(ω))F [f ](ω) = Y (ω)F [f ](ω)

whereas ”the Fourier spectrum of C−[f ] only contains negative frequen-
cies”, i.e.

F [C−[f ]](ω) =
1
2

(−1 + sgn(ω))F [f ](ω) = −Y (−ω)F [f ](ω)

Now expressing the Cauchy integral in terms of the Poisson transform and its
conjugate, it becomes apparent that the functions f and iH[f ] play a symmetri-
cal role – this idea will also be strengthened in Figure 2.2 (see Subsection 2.1.4).
To that end, the convolution kernel of the Cauchy integral is rewritten as

i E(z) = − 1
2πi

1
z

=
1
2

1
π

y

x2 + y2
+
i

2
1
π

x

x2 + y2

in which we recognize the Poisson kernel P (x, y) = 1
π

y
x2+y2 and the conjugate

Poisson kernel Q(x, y) = 1
π

x
x2+y2 . The Cauchy integral of a function f ∈ L2(R)

thus takes the form
C[f ] =

1
2
P[f ] +

i

2
Q[f ]
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where

P[f ](x, y) = (P (·, y) ∗ f(·)) (x) =
1
π

∫ +∞

−∞

y

(x− t)2 + y2
f(t) dt

and

Q[f ](x, y) = (Q(·, y) ∗ f(·)) (x) =
1
π

∫ +∞

−∞

x− t

(x− t)2 + y2
f(t) dt

respectively are the Poisson transform and the conjugate Poisson transform of
f . They enjoy the following properties:

(i) P[f ] and Q[f ] are harmonic in both C+ and C−

(ii) taking the supremum either in C+ or in C−, one has

sup
y≶0

∫ +∞

−∞
|P[f ](x, y)|2 dx < +∞ and sup

y≶0

∫ +∞

−∞
|Q[f ](x, y)|2 dx < +∞

(iii) the Poisson kernel and the conjugate Poisson kernel (up to a minus sign
in the lower half plane) form a Hilbert pair with respect to the variable x:

Ht→x[P (t, y)](x, y) =
{

Q(x, y) , y > 0
−Q(x, y) , y < 0

2.1.4 Hardy spaces of holomorphic functions

The Cauchy integral C[f ] of a signal f ∈ L2(R) provides an example of a holo-
morphic function in the upper half plane C+ which is in the so–called Hardy
space H2(C+). It is defined as follows.

Definition 2.2. The Hardy space H2(C+) consists of those holomorphic func-
tions F (z) in C+ for which

sup
y>0

∫ +∞

−∞
|F (x+ iy)|2 dx < +∞

We know from Property 2.10 that the non–tangential boundary limit for
y → 0+ of C[f ](z) is again in L2(R). The question arises if this is also the case
for any function of H2(C+); the answer is positive.
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Proposition 2.1. The non–tangential boundary limit for y → 0+ of a function
F (z) ∈ H2(C+) exists a.e. and belongs to L2(R).

A second question to investigate is whether the Cauchy integral of a non–
tangential boundary limit of a function F (z) ∈ H2(C+), is precisely F (z); again
the answer is positive.

Proposition 2.2. Let F ∈ H2(C+) and let lim
y→0+

F (z) = f(x), then C[f ] = F .

So the functions in L2(R) which may be obtained as non–tangential bound-
ary limit of functions in H2(C+), are special. This leads to the definition of
another Hardy space, this time on the real line.

Definition 2.3. The Hardy space H2(R) is the closure in L2(R) of the subspace
of the non–tangential boundary limits for y → 0+ of all functions in H2(C+).

We immediately obtain

Corollary 2.5. H2(R) is a closed subspace of L2(R) and hence itself a Hilbert
space.

It is also clear that both Hardy spaces H2(C+) and H2(R) are intimately
related; in fact they are identified with each other.

Proposition 2.3. H2(R) and H2(C+) are isomorphic.

From the considerations made above it follows that the Cauchy transform

C+ : L2(R) −→ H2(R); f 7−→ C+[f ]

is a projection; it is called the Hardy projection. It will be shown that this
Hardy projection is an orthogonal projection. Note however that in a more
general setting, where Hardy spaces are defined on the smooth boundary of
bounded domains in Euclidean space, the Hardy projection is a skew projec-
tion, except for the Hardy space on the unit sphere where the Hardy projection
also is orthogonal.

As H2(R) is a closed subspace of L2(R), the latter space may be decomposed
into an orthogonal direct sum

L2(R) = H2(R)⊕⊥ H2(R)⊥
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whence there exist two orthogonal projection operators P+ : L2(R) → H2(R)
and P− : L2(R) → H2(R)⊥; these are called the Szegö projections. It is then
clear from Property 2.10 and Corollary 2.4 that for f ∈ L2(R)

P+[f ] = C+[f ] and P−[f ] = −C−[f ]

as well as
P+[iH[f ]] = C+[f ] and P−[iH[f ]] = C−[f ]

So in this case, the Hardy en Szegö projections coincide. The orthogonal de-
composition of L2(R) with respect to the Hardy spaces H2(R) and H2(R)⊥ is
then visualized by the diagram in Figure 2.2. Note that when restricting to a
real valued signal u and its associated real valued Hilbert transform H[u], their
corresponding vector representations in the diagram must lay on the bisectors,
since in that case (u,H[u])L2 = 0 (see Figure 2.3).

Figure 2.2: The orthogonal decomposition of L2(R) with respect to H2(R) and
H2(R)⊥
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Figure 2.3: The orthogonal decomposition of L2(R) with respect to H2(R) and
H2(R)⊥, for real valued functions

The Hardy space H2(R) is then characterized as follows.

Theorem 2.1. A function f ∈ L2(R) belongs to H2(R) if and only if one of
the following conditions is fulfilled:

(i) iH[f ] = f

(ii) the Fourier spectrum of f contains only positive frequencies,
i.e. suppF [f ] ⊂ [0,+∞ [ .

(iii) P+[f ] = C+[f ] = f

(iv) C[f ] = P[f ] = iQ[f ] in C+

(v) P[f ] is holomorphic in C+

(vi) Q[f ] is holomorphic in C+
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As already mentioned, the Hardy space H2(R), as a closed subspace of
L2(R), is itself a Hilbert space. Moreover it possesses a so–called reproducing
kernel, i.e. a function K(x, t) such that for any t ∈ R fixed, K(x, t) ∈ H2(R)
and

(K(·, t), f(·))L2 = f(t) , ∀f ∈ H2(R)

This reproducing kernel is called the Szegö kernel ; it is given by

Sy(x, t) =
1

2πi
1

t− x− iy
, y > 0

in which we recognize the Cauchy kernel:

Sy(x, t) =
i

2π
1

x− t+ iy
= i E(x− t, y) , y > 0

It is proven that for each t ∈ R and y > 0 fixed, the Szegö kernel indeed belongs
to H2(R) since C+[Sy(x, t)](u) = Sy(u, t). The reproducing property of the
Szegö kernel then follows from

(Sy(·, t), f(·))L2
= − 1

2πi

∫ +∞

−∞

1
t− x+ iy

f(x) dx = C[f ](t, y) , y > 0

since this Cauchy integral is in H2(C+) and its isomorphic image in H2(R) is

lim
y→0+

(Sy(·, t), f(·))L2
= lim

y→0+
C[f ](t, y) = f(t) , t ∈ R

The Szegö kernel Sy(x, t) shows the symmetry property Sc
y(x, t) = Sy(t, x) if

y > 0 and moreover it holds in C+ that

Sy(x, t) + Sc
y(x, t) = P (x− t, y)

Sy(x, t)− Sc
y(x, t) = iQ(x− t, y)

which links the Szegö kernel to the Poisson kernels. It is important to note that
the Szegö kernel is the integral kernel for the Szegö projection P+ (which here
coincides with the Hardy projection C+), since in C+

C[f ](z) = (Sy(·, x), f(·))L2
=
∫ +∞

−∞
Sy(x, t) f(t) dt

and hence

P+[f ](x) = C+[f ](x) = lim
y→0+

∫ +∞

−∞
Sy(x, t) f(t) dt
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In a similar way we can look for the reproducing kernel of the Hilbert space
H2(R)⊥; it is called the Garabedian kernel. One has for f ∈ L2(R) and y > 0:

(C[fc](z))c =
∫ +∞

−∞
Sc

y(x, t) f(t) dt

and hence, due to Corollary 2.4 (iii)

P−[f ](x) = (C+[fc](x))c = lim
y→0+

∫ +∞

−∞
Sc

y(x, t) f(t) dt

This means that the kernel function

Ly(x, t) = Sc
y(x, t) =

1
2πi

1
x− t− iy

, y > 0

is the integral kernel for the Szegö projection P−. The Garabedian kernel
Ly(x, t) is clearly anti–holomorphic in C+ with respect to the variable z = x+iy,
and it satisfies the symmetry property Lc

y(x, t) = Ly(t, x). Moreover, it is indeed
the reproducing kernel for H2(R)⊥, since for y > 0 and t ∈ R fixed, Ly(x, t)
belongs to H2(R)⊥ and

(Ly(·, t), f(·))L2
=

1
2πi

∫ +∞

−∞

1
t− x− iy

f(x) dx = −C[f ](t,−y) , y > 0

This Cauchy integral is in the Hardy space H2(C−) which is isomorphic with
H2(R)⊥. If f ∈ H2(R)⊥, then the isomorphic image of −C[f ](t,−y) is clearly
−C−[f ](t) = f(t). Note that we now have in C+

Sy(x, t) + Ly(x, t) = P (x− t, y)
Sy(x, t)− Ly(x, t) = iQ(x− t, y)

2.1.5 Application: analytic signal

In one–dimensional signal processing, the Hilbert transform has become an in-
dispensable tool for both global and local descriptions of a signal, yielding infor-
mation on various independent signal properties. The instantaneous amplitude,
phase and frequency are estimated by means of so–called quadrature filters,
which allow to distinguish different frequency components and therefore locally
refine the structure analysis. They are essentially based on the notion of analytic
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signal, a concept introduced by Gabor in 1946 (see [57]). An analytic signal is
a complex signal, which consists of the linear combination of a bandpass filter,
selecting a small part of the spectral information, and its Hilbert transform,
the latter basically being the result of a phase shift by −π/2 on the original
filter (see further on). Mathematically, if u(t) is a real valued signal, then the
corresponding analytic signal is the function

f(t) = u(t) + iH[u](t)

The simplest example of an analytic signal was already used before the
actual introduction of that nomenclature. The harmonic complex signal given
by Euler’s formula

exp(iωt) = cos(ωt) + i sin(ωt) , ω ∈ R

is commonly applied in electrical engineering since the 1890’s and nowadays also
in the theoretical description of various, not only electrical, systems. It can be
shown that, mathematically in the distributional sense, sin(ωt) = cos(ωt−π/2)
is the Hilbert transform of cos(ωt) and, since H2 = −1, the Hilbert transform
also changes sin(ωt) into − cos(ωt) = sin(ωt − π/2). That explains why the
Hilbert transform is used as a tool for phase shifting a signal by −π/2, since
important classes of real signals u(t) are given by linear combinations in terms
of cos(ωt+ α).

Now note that if u is taken in L2(R), then it may be clear that its associated
analytic signal f belongs to the Hardy spaceH2(R), while the complex conjugate
fc = u−iH[u], the so–called associated anti–analytic signal, belongs toH2(R)⊥.
Conversely, if f ∈ H2(R), then iH[f ] = f , which leads to

iH[Re(f) + i Im(f)] = Re(f) + i Im(f)

and thus
H[Re(f)] = Im(f) and −H[Im(f)] = Re(f)

and finally
f = (1 + iH)[Re(f)]

which clearly has the structure of an analytic signal. With respect to the split-
ting of the function f into its even and odd parts, we get:

iH[fE + fO] = fE + fO
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or
iH[fE ] = fO and iH[fO] = fE

which leads to the following structure of a function f ∈ H2(R)

f = (1 + iH)[fE ] = (1 + iH)[fO]

Further, as already mentioned, the analytic signal provides direct access to
a real one–dimensional signal’s instantaneous amplitude, instantaneous phase
and instantaneous frequency (see also e.g. [81, 80]). They may be uniquely
and conveniently defined introducing the notion of a phasor rotating in the
Cartesian (u,H[u]) plane, as shown in Figure 2.4. A change of co-ordinates
from rectangular (u,H[u]) to polar (ρ, θ) results into

u(t) = ρ(t) cos(θ(t)) , H[u](t) = ρ(t) sin(θ(t)) and f(t) = ρ(t) exp(iθ(t))

yielding the definition of the instantaneous amplitude ρ(t), the instantaneous
phase θ(t) and the instantaneous frequency dθ

dt (t).

Figure 2.4: A phasor in the Cartesian (u,H[u]) plane representing the analytic signal

To end this section, we introduce the notion of (anti–)causal signal and its
relation with (the Fourier transform of) an analytic signal. Simply stated, a
causal signal f ∈ L2(R) is a function with support contained in [0,+∞[. So,
the Fourier spectrum of an analytic signal f ∈ H2(R) is causal, since

F [f ](ω) = F [u+ iH[u]](ω) = (1 + sgn(ω))F [u](ω) = 2Y (ω)F [u](ω)
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In other words: the negative frequencies of an analytic signal are vanishing,
while the positive frequencies are doubled. An anti–causal signal has its support
contained in ] −∞, 0]. Hence, the Fourier spectrum of an anti–analytic signal
f ∈ H2(R)⊥ is anti–causal, since

F [f ](ω) = F [u− iH[u]](ω) = (1− sgn(ω))F [u](ω) = 2Y (−ω)F [u](ω)

Now, as F2 is a parity operator, i.e. F2[f ](t) = f(−t), the Fourier spectrum
of a causal signal will be anti–analytic, while the Fourier spectrum of an anti–
causal signal will be analytic. So, if f ∈ L2(R) is a causal signal, then its Fourier
spectrum F (ω) shows the following properties:

(i) H[F ](ω) = i F (ω)

(ii) H[FE ](ω) = i FO(ω)

(iii) H[FO](ω) = i FE(ω)

(iv) F (ω) = (1− iH)[FE ] = (1− iH)[FO]

which are sometimes quoted, especially in engineering textbooks, as ”the ab-
sorption and dispersion spectra of a causal signal form a Hilbert pair”. Similarly,
for an anti–causal signal f one has the following properties of its Fourier trans-
form F :

(i) H[F ](ω) = −i F (ω)

(ii) H[FE ](ω) = −i FO(ω)

(iii) H[FO](ω) = −i FE(ω)

(iv) F (ω) = (1 + iH)[FE ] = (1 + iH)[FO]

2.2 Higher dimensional scalar Hilbert transforms

In the previous section it was explained how the analytic signal turns out to be
a useful construct for extracting interesting features of the real one–dimensional
signal from which it originates. Of course, a tool for obtaining this kind of
information would be of much use for multidimensional signals as well. So
there was – and still is – the need for suitable generalizations of the concept of
analytic signal to higher dimensions and hence likewise of the concept of Hilbert
transform. In this section we briefly discuss some of the existing generalizations
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in classical contexts and their properties, in order to have a clear view of the
advantages and limitations of these attempts. For more detailed information
about higher dimensional analytic signals we recommend a.o. [65, 64, 66, 38, 56].

2.2.1 Higher dimensional scalar Hilbert transforms

The total Hilbert transform

A first way to generalize the one–dimensional Hilbert kernel Pv 1
πt to higher

dimensions is by considering the tensor product
⊗m

j=1 Pv 1
πxj

of the principal
value kernels Pv 1

πxj
in the real xj–variables, j = 1, . . . ,m. For a suitable real

signal f defined on Rm, it induces the realm–dimensional total Hilbert transform

H[f ](y) =
1
πm

Pv
∫

Rm

f(u)
(y1 − u1)(y2 − u2) . . . (ym − um)

dV (u)

=
1
πm

lim
εj→0+

j=1,...,m

∫
|x1|>ε1

· · ·
∫
|xm|>εm

f(y − x)
x1x2 . . . xm

dV (x)

=
((

Pv
1
πx1

⊗ · · · ⊗ Pv
1

πxm

)
∗ f(x)

)
(y)

with dV (x) = dx1dx2 . . . dxm the Lebesgue measure on Rm and x the short-
hand notation of (x1, . . . , xm).

Now we adopt for the Fourier transform in Rm the following definition

F [f ](y) =
∫

Rm

f(x) exp
(
−2πi

〈
x, y
〉)
dV (x) (2.5)

with
〈
x, y
〉

=
∑m

j=1 xjyj the classical scalar product in Rm. Further, for a real
signal f defined on Rm, its Cauchy integral is defined in (C \ R)m by

C[f ](z1, . . . , zm) =
(
−1
2πi

)m ∫ +∞

−∞
· · ·
∫ +∞

−∞

f(ξ1, . . . , ξm)∏m
j=1[(xj − ξj) + i yj ]

dV (ξ)

where we assumed each real xj–axis to be embedded in a complex zj–plane,
zj = xj + iyj , j = 1, . . . ,m. Note that this Cauchy integral is holomorphic in
(z1, . . . , zm) ∈ (C \ R)m.

The total Hilbert transform then satisfies the following properties.
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Property 2.11.

P(1) The total Hilbert transform is a convolution operator, which is equivalent
with saying that the Hilbert transform commutes with translations, i.e.

τa[H[f ]] = H[τa[f ]]

with τa[f ](x) = f(x− a), a ∈ Rm.

P(2) The kernel of the total Hilbert transform is a homogeneous distribution of
degree (−m), which, for a convolution operator, is equivalent with saying
that the total Hilbert transform commutes with dilations, i.e.

da[H[f ]] = H[da[f ]]

with da[f ](x) = 1
am/2 f(x

a ), a > 0.

P(3) The total Hilbert and Fourier transforms are interrelated in the following
way:

F [H[f ]](y) = (−i)m
m∏

j=1

sgn(yj)F [f ](y)

H[F [f ]](y) = F [im
m∏

j=1

sgn(xj) f(x)](y)

P(4) The total Hilbert transform is a bounded linear operator on L2(Rm), and
is a fortiori norm preserving, i.e.

‖H[f ]‖2L2
≡
∫

Rm

|H[f ](x)|2 dV (x) =
∫

Rm

|f(x)|2 dV (x) = ‖f‖2L2

More generally:

(H[f ],H[g])L2
≡

∫
Rm

H[f ]c(x)H[g](x) dV (x)

=
∫

Rm

fc(x) g(x) dV (x) = (f, g)L2

P(5) The total Hilbert transform H : L2(Rm) → L2(Rm)

(a) is invertible with H−1 = (−1)mH.
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(b) is unitary, its adjoint being given by (−1)mH.
(c) satisfies the orthogonality relation (fc,H[f ])L2 = 0 if m is odd.

P(6) If for some j ∈ {1, . . . ,m} it holds that for all (x1, . . . , xm) ∈ Rm

(a) f(x1, . . . , xj , . . . , xm) = f(x1, . . . ,−xj , . . . , xm), then

H[f ](x1, . . . , xj , . . . , xm) = −H[f ](x1, . . . ,−xj , . . . , xm)

(b) f(x1, . . . , xj , . . . , xm) = −f(x1, . . . ,−xj , . . . , xm), then

H[f ](x1, . . . , xj , . . . , xm) = H[f ](x1, . . . ,−xj , . . . , xm)

P(7) The total Hilbert transform commutes with differentiation, i.e. if f and
∂xj

f are in L2(Rm), for some j ∈ {1, . . . ,m}, then

H[∂xj
f(x)](y) = ∂yj

H[f ](y)

P(8) If f and xjf are in L2(Rm), for some j ∈ {1, . . . ,m}, then

H[xjf(x)](y) = yjH[f ](y)− 1
πm

Pv
∫

Rm

m∏
k=1
k 6=j

1
yk − xk

f(x) dV (x)

P(9) Stark’s extension of Bedrosian’s theorem for m = 2 (see [94]): let f and
g be two–dimensional signals such that for some a1, a2 ∈ R+

|F (y1, y2)| = 0 , if |y1| > a1 and |y2| > a2

and
|G(y1, y2)| = 0 , if |y1| < a1 and |y2| < a2

then
H[fg](y1, y2) = f(y1, y2)H[g](y1, y2)

P(10) Let f ∈ L2(Rm), then the non–tangential boundary limits of the Cauchy
integral read

lim
yj→0+

j=1,...,m

C[f ](z1, . . . , zm) =
1
2
f(x1, . . . , xm) +

1
2
iH[f ](x1, . . . , xm)

lim
yj→0−

j=1,...,m

C[f ](z1, . . . , zm) = −1
2
f(x1, . . . , xm) +

1
2
iH[f ](x1, . . . , xm)
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P(11) If the real signal f(x) is separable in the co-ordinates x, i.e. if it is given by
the product of one–dimensional functions f(x) = f1(x1)f2(x2) · · · fm(xm),
then its total Hilbert transform has the form

H[f ](y) = H[f1](y1)H[f2](y2) · · · H[fm](ym)

Remark 2.3. The optimal convolvability of the total Hilbert kernel
⊗m

j=1 Pv 1
πxj

with tempered distributions has been studied in [2].

The partial Hilbert transform

A second generalization of the one–dimensional Hilbert transform is the so–
called partial Hilbert transform Hn with respect to a certain direction n ∈ Rm,
defined in frequency space by

F [Hn[f ]](y) = −i sgn
(〈
y, n
〉)
F [f ](y)

For the special cases where n is taken to be one of the standard basis elements
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) in Rm, the partial
Hilbert transform Hej

with respect to ej (with j ∈ {1, . . . ,m}) is given in the
spatial domain by

Hej
[f ](y)

=
((

δ(x1)⊗ · · · ⊗ δ(xj−1)⊗ Pv
1
πxj

⊗ δ(xj+1)⊗ · · · ⊗ δ(xm)
)
∗ f(x)

)
(y)

=
1
π

Pv
∫ +∞

−∞

f(y1, . . . , yj−1, xj , yj+1, . . . , ym)
yj − xj

dxj

The total Hilbert transform may thus be considered as the successive appli-
cation of the partial Hilbert transforms with respect to all basis vectors ej ,
j = 1, . . . ,m, i.e.

H[f ] = He1

[
He2

[
· · ·
[
Hem

[f ]
]]]

The partial Hilbert transform Hej
with respect to ej , j = 1, . . . ,m then

satisfies the following properties.

Property 2.12.

P(1) The partial Hilbert transform Hej
is a convolution operator, which is equiv-

alent with saying that the partial Hilbert transform Hej
commutes with

translations, i.e. τa[Hej
[f ]] = Hej

[τa[f ]], a ∈ Rm.
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P(2) The kernel of the partial Hilbert transform Hej
is a homogeneous dis-

tribution of degree (−m), which, for a convolution operator, is equiva-
lent with saying that the Hilbert transform commutes with dilations, i.e.
da[Hej

[f ]] = Hej
[da[f ]], a > 0.

P(3) The partial Hilbert transform Hej
and the Fourier transform are interre-

lated in the following way:

F [Hej
[f ]](y) = −i sgn(yj)F [f ](y)

Hej
[F [f ]](y) = F [i sgn(xj) f(x)](y)

P(4) The partial Hilbert transform Hej
is a bounded linear operator on L2(Rm),

and is a fortiori norm preserving, i.e.
∥∥∥Hej

[f ]
∥∥∥2

L2

= ‖f‖2L2
.

More generally:
(
Hej

[f ],Hej
[g]
)

L2

= (f, g)L2
.

P(5) The partial Hilbert transform Hej
: L2(Rm) → L2(Rm)

(a) is invertible with H−1
ej

= −Hej
.

(b) is unitary, its adjoint being given by −Hej
.

(c) satisfies the orthogonality relation (fc,Hej
[f ])L2 = 0.

P(6) If for some k ∈ {1, . . . ,m} it holds that for all (x1, . . . , xm) ∈ Rm

(a) f(x1, . . . , xk, . . . , xm) = f(x1, . . . ,−xk, . . . , xm), then

Hej
[f ](x1, . . . , xk, . . . , xm)

=

{
Hej

[f ](x1, . . . ,−xk, . . . , xm) , if k 6= j

−Hej
[f ](x1, . . . ,−xj , . . . , xm) , if k = j

(b) f(x1, . . . , xk, . . . , xm) = −f(x1, . . . ,−xk, . . . , xm), then

Hej
[f ](x1, . . . , xk, . . . , xm)

=

{
−Hej

[f ](x1, . . . ,−xk, . . . , xm) , if k 6= j

Hej
[f ](x1, . . . ,−xj , . . . , xm) , if k = j
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P(7) The partial Hilbert transform Hej
commutes with differentiation, i.e. if f

and ∂xk
f are in L2(Rm), for some k ∈ {1, . . . ,m}, then

Hej
[∂xk

f(x)](y) = ∂yk
Hej

[f ](y)

P(8) If f and xkf are in L2(Rm), for some k ∈ {1, . . . ,m}, then

Hej
[xkf(x)](y)

=


ykHej

[f ](y) , if k 6= j

yjHej
[f ](y)− 1

π

∫ +∞

−∞
f(y1, . . . , xj , . . . , ym) dxj , if k = j

P(9) If the real signal f(x) is separable in the co-ordinates x, i.e. if it is given
by f(x) = f1(x1)f2(x2) . . . fm(xm), then its partial Hilbert transform Hej

has the form

Hej
[f ](y) = f1(y1) f2(y2) . . . Hxj→yj

[fj(xj)](yj) . . . fm(ym)

The Riesz transforms

A third way to generalize the one–dimensional Hilbert transform to Rm is pre-
sented in e.g. [70, 97]. Introducing the Euclidean norm

|x| =
√
〈x, x〉 = (x2

1 + x2
2 + · · ·+ x2

m)
1
2

one considers the so–called principal value distributions

K(x) = Pv
Ω(x)
|x|m

(2.6)

where Ω is a real valued function defined on Rm; notice that in Chapter 4,
we allow Ω to take values in a Clifford algebra as well. Further, the following
conditions are imposed upon Ω:

C(1) Ω is homogeneous of degree zero, i.e.

Ω(ax) = Ω(x) , ∀a > 0 ,∀x ∈ Rm

C(2) Ω is continuous on the unit sphere Sm−1 in Rm
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C(3) the integral of Ω over the unit sphere vanishes

Note in particular that when m = 1 and Ω(t) = 1
π sgn(t), the convolution

of K(t) = Pv 1
πt with a real valued function f defined on R yields the one–

dimensional Hilbert transform of f . In view of that observation, one defines, in
general dimension and for general K of the form (2.6), the so–called singular
integral operator

K[f ](y) =
∫

Rm

K(y − x) f(x) dV (x)

It is then shown that K is a bounded linear operator on L2(Rm) (see e.g. [97]).

An important class of singular integral operators in classical harmonic anal-
ysis is obtained by considering convolution kernels of the form

K(x) = Pv
Sp(x)
|x|m+p

= Pv
Sp

(
x
|x|

)
|x|m

≡ Pv
S̃p (x)
|x|m

where Sp is a real valued (or Clifford algebra valued, in general), harmonic,
homogeneous polynomial of degree p ∈ N0 = {0, 1, 2 . . .}; these kernels were
introduced by Horváth in [70]. It may be clear that S̃p satisfies the conditions
C(1) and C(2). The cancellation condition C(3) is fulfilled as well, due to the
orthogonality of the spherical harmonics with the constant function (see e.g.
[97, Corollary IV.2.4]). The singular integral operators with such a convolution
kernel K were then qualified by Horváth as generalized Hilbert transforms.

Important examples of such real valued generalized Hilbert transforms, are
the Riesz transforms (introduced in [84]), defined by

Rj [f ](y) = lim
ε→0+

2
am+1

∫
|y−x|>ε

yj − xj

|y − x|m+1
f(x) dV (x) , j = 1, . . . ,m

where am+1 = 2π(m+1)/2

Γ((m+1)/2) denotes the area of the unit sphere Sm in Rm+1. Note
that in one dimension m = 1, the only Riesz transform obtained coincides with
the one–dimensional Hilbert transform.

The Riesz transforms Rj , j = 1, . . . ,m, satisfy the following properties.

Property 2.13.
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P(1) The Riesz transform Rj is a convolution operator, which is equivalent
with saying that the Riesz transform Rj commutes with translations, i.e.
τa[Rj [f ]] = Rj [τa[f ]], a ∈ Rm.

P(2) The kernel of the Riesz transform Rj is a homogeneous distribution of de-
gree (−m), which, for a convolution operator, is equivalent with saying that
the Riesz transform Rj commutes with dilations, i.e. da[Rj [f ]] = Rj [da[f ]],
a > 0.

P(3) The Riesz transform Rj and the Fourier transform are interrelated in the
following way:

F [Rj [f ]](y) = −i yj

|y|
F [f ](y)

Rj [F [f ]](y) = F [i
xj

|x|
f(x)](y)

P(4) The Riesz transform Rj is a bounded linear operator on L2(Rm), for which
it holds that

m∑
j=1

‖Rj [f ]‖2L2
= ‖f‖2L2

More generally:

(f, g)L2
=

m∑
j=1

(Rj [f ], Rj [g])L2

P(5) For the Riesz transform Rj : L2(Rm) → L2(Rm) it holds that

(a)
m∑

j=1

R2
j = −1, 1 being the identity operator.

(b) its adjoint is given by −Rj.

P(6) If for some k ∈ {1, . . . ,m} it holds that for all (x1, . . . , xm) ∈ Rm

(a) f(x1, . . . , xk, . . . , xm) = f(x1, . . . ,−xk, . . . , xm), then

Rj [f ](x1, . . . , xk, . . . , xm)

=

{
Rj [f ](x1, . . . ,−xk, . . . , xm) , if k 6= j

−Rj [f ](x1, . . . ,−xj , . . . , xm) , if k = j
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(b) f(x1, . . . , xk, . . . , xm) = −f(x1, . . . ,−xk, . . . , xm), then

Rj [f ](x1, . . . , xk, . . . , xm)

=

{
−Rj [f ](x1, . . . ,−xk, . . . , xm) , if k 6= j

Rj [f ](x1, . . . ,−xj , . . . , xm) , if k = j

P(7) The Riesz transform Rj commutes with differentiation, i.e. if f and ∂xk
f

are in L2(Rm), for some k ∈ {1, . . . ,m}, then

Rj [∂xk
f(x)](y) = ∂yk

Rj [f ](y)

P(8) If f and xkf are in L2(Rm), for some k ∈ {1, . . . ,m}, then

Rj [xkf(x)](y) = ykRj [f ](y)− 2
am+1

Pv
∫

Rm

(yj − xj)(yk − xk)
|y − x|m+1

f(x) dV (x)

Remark 2.4. The optimal convolvability of the Riesz kernel Pv xj

|x| with tem-
pered distributions has been studied in [2].

2.2.2 Application: higher dimensional analytic signals

The total analytic signal

In a first generalization of the concept of analytic signal to higher dimensions,
the total Hilbert transform underlies the construction of the so–called total
analytic signal ftot of a signal f : Rm → R, given by

ftot = f + iH[f ]

One of the major drawbacks of this construction is that the Fourier transform
of ftot reads

F [ftot](y) =

1− (−i)m+1
m∏

j=1

sgn(yj)

F [f ](y)

So for m even it is not possible to suppress certain frequency components, as
opposed to the classical one–dimensional case where the Fourier spectrum of
the analytic signal is causal. Further, for the specific case of m = 2, it is also
shown in [37] that the total Hilbert transform can no longer be interpreted as
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performing a phase shift of −π/2, since the cosine and sine function do not
form a Hilbert pair. Finally, in the one–dimensional case, the original signal f
is uniquely determined by its amplitude and phase. In [56] the total analytic
signal is then even not seen as a valid two–dimensional generalization of the
analytic signal, since it does not have a phase which can be related to the
one–dimensional phase θ.

The partial analytic signal

A second possible way to introduce a higher dimensional analytic signal is the
combination of the original signal with a partial Hilbert transform. The partial
analytic signal fn

part of a signal f : Rm → R with respect to the direction n ∈ Rm

is defined by
f

n
part = f + iHn[f ]

which in frequency domain reads

F [fn
part](y) =

[
1 + sgn

(〈
y, n
〉)]

F [f ](y) =


2F(y) , for

〈
y, n
〉
> 0

F(y) , for
〈
y, n
〉

= 0
0 , for

〈
y, n
〉
< 0

This result corresponds to the one–dimensional case where negative frequency
components are suppressed while positive frequency components are doubled.
Here a frequency y is called positive or negative (with respect to n) if

〈
y, n
〉
> 0

or
〈
y, n
〉
< 0, respectively. So for the specific case of n = ej , with j ∈ {1, . . . ,m},

the m–dimensional partial analytic signal f
ej

part is obtained by omitting the half
space yj < 0 in the Fourier domain.

However, in [56] it is noticed that the partial Hilbert transform Hn leads
to amplitude and phase distortions unless the original signal considered only
varies with respect to one direction and n is chosen properly with respect to
that direction.

The single-orthant analytic signal

A third approach to the multidimensional analytic signal has been proposed by
Hahn in [64]. Motivated by the one–sidedness of the one–dimensional analytic
signal, he defines a higher dimensional complex signal the spectrum of which
is zero everywhere except from one orthant of the frequency domain. In one
dimension, an orthant is a half axis, in two dimensions a quadrant, in three
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dimensions an octant, and so on. So, let f be a real m–dimensional signal,
then its corresponding single-orthant analytic signal fso1 with respect to the first
orthant {x = (x1, . . . , xm) ∈ Rm : xj > 0, j = 1, . . . ,m} is given in frequency
domain by

F [fso1 ](y) =
m∏

j=1

[1 + sgn(yj)] F [f ](y) (2.7)

In the classical one–dimensional case the original signal could be recovered from
the analytic signal by taking its real part. The same holds for the total and the
partial analytic signals ftot and f

n
part. However, this is no longer the case for

the single-orthant analytic signal. To retrieve the original signal, one needs to
consider 2m−1 single-orthant analytic signals constructed in different orthants
(see [65]). We will demonstrate the reconstructability of f from two complex
signals with single-orthant spectrum for two–dimensional signals. First of all,
for m = 2, the expression (2.7) is written as

F [fso1 ](y) = F [f ](y) + sgn(y1)sgn(y2)F [f ](y)

+i
(
−i sgn(y1)F [f ](y)− i sgn(y2)F [f ](y)

)
leading to the following definition for fso1 in the spatial domain

fso1 = f −H[f ] + i
(
He1

[f ] +He2
[f ]
)

Another complex signal, now for the second quadrant, is given by

fso2 = f +H[f ]− i
(
He1

[f ]−He2
[f ]
)

From the two complex signals fso1 and fso2 , the original signal is then recovered
by

f =
1
2

Re(fso1 + fso2)

Considering both analytic signals fso1 and fso2 at the same time, a complete
signal representation is obtained.

The hypercomplex signal

The most sophisticated approach to a higher dimensional analytic signal com-
bines (the best of) the ideas of total and partial Hilbert transforms and the
single-orthant spectrum. To this end, definition (2.7) will be modified in such
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a way that it keeps enough spectral information for reconstructing the input
signal, while at the same time it still allows the suppression of all but one or-
thant of the spectrum. Therefore we will replace the Fourier transform by the
so–called hypercomplex Fourier transform, given by

Fh[f ](y) =
∫

Rm

f(x)
m∏

k=1

exp(−2π ik xkyk) dV (x)

the inverse hypercomplex Fourier transform then being defined as

f(x) =
∫

Rm

Fh[f ](y)
m∏

k=1

exp(2π im+1−k xm+1−kym+1−k) dV (x)

The symbols ik may be seen as m copies of the imaginary unit i and thus
obey the rules i2k = −1, k = 1, . . . ,m. They generate a real, unital algebra
of dimension 2m where the basis consists of all products ik1ik2 . . . ikh

, with
1 ≤ k1 < k2 < · · · < kh ≤ m. The algebra can be commutative, i.e. ikil = ilik,
or anticommutative, i.e. ikil = −ilik. In the latter case one has the Clifford
algebra of the Euclidean space Rm, which will be discussed in more detail in
the following section.

Combining then the definition of the single-orthant analytic signal with the
hypercomplex Fourier transform yields the so–called hypercomplex signal fh

so of
f , given in the frequency domain by

Fh[fh
so](y) =

m∏
k=1

[1 + sgn(yk)] Fh[f ](y)

Note that fh
so will take its values in the specific algebra chosen, i.e. either the

commutative hypercomplex algebra or the Clifford algebra. It may then be
shown that the original signal is contained in its hypercomplex signal as the
real part, i.e. Re(fh

so) = f . The main drawback of the hypercomplex analytic
signal is that it does not enjoy the flexibility of the partial analytic signal,
depending on a direction n. For a signal f only varying with respect to one
direction, the latter can adjust its direction n to that specific direction. For the
hypercomplex analytic signal this is however not possible. For more detailed
information see e.g. [38, 56].

Finally, we quote from [56] that all previously introduced generalizations
of the analytic signal in two dimensions fail to estimate in general the correct
amplitude and phase of the original signal.
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Chapter 3

The orthogonal Clifford
toolbox

William Kingdon Clifford (1845–1879) introduced the algebras named after him
in 1878 (see [41]). They may be seen as higher dimensional generalizations of
the algebras of complex numbers and Hamilton’s quaternions. Also the Pauli
and Dirac matrices, used in quantum mechanics, have a natural representation
in Clifford algebra. The importance of these algebras, which Clifford called ge-
ometric algebras, essentially lies in the fact that a new vector product, called
geometric product, is introduced, incorporating the inner product as well as the
wedge product of vectors.

Orthogonal (or standard) Clifford analysis is a higher dimensional function
theory in a Clifford algebra setting, offering at the same time a refinement of
classical harmonic analysis and a generalization of the theory of holomorphic
functions in the complex plane. In its most simple but still useful setting,
flat m–dimensional Euclidean space, it focusses on the null solutions of various
special partial differential operators arising naturally within the Clifford algebra
language, the most important of them being the so–called Dirac operator which
is the first order vector valued differential operator given by ∂x =

∑m
j=1 ej ∂xj

.
Here (e1, . . . , em) forms an orthonormal basis for the quadratic space underlying
the construction of the Clifford algebra. As the Dirac operator is invariant under
the action of the special orthogonal group, we have chosen the name orthogonal
Clifford analysis to refer to this setting.
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In this introductory chapter we present the basic concepts and some results
of orthogonal Clifford analysis which are necessary for the sequel. For an in–
depth study of this higher dimensional function theory and its applications we
refer to e.g. [23, 62, 60, 52, 77, 63, 88, 87, 8, 48, 82, 61].

3.1 Clifford algebra

Let, for m ∈ N and p, q ∈ N0 such that p + q = m, Rp,q be the real vector
space Rm, endowed with a non–degenerate quadratic form of signature (p, q),
and let (e1, . . . , em) be an orthonormal basis for Rp,q. Then the linear, real
and associative universal Clifford algebra Rp,q constructed over Rp,q has a non–
commutative multiplication governed by the rules:

e2j = 1 , j = 1, . . . , p

e2p+j = −1 , j = 1, . . . , q
ejek + ekej = 0 , j 6= k , j, k = 1, . . . ,m

For a set A = {j1, . . . , jh} ⊂ {1, . . . ,m} = M with 1 ≤ j1 < j2 < · · · < jh ≤ m,
let eA = ej1ej2 . . . ejh

. Moreover, we put e∅ = 1, the latter being the identity
element of the algebra. Then (eA : A ⊂ M) is a canonical basis for the 2m–
dimensional Clifford algebra Rp,q. Any Clifford number λ in Rp,q may thus be
written as λ =

∑
A⊂M eA λA, with λA ∈ R, or still as λ =

∑m
k=0[λ]k where

[λ]k =
∑

|A|=k eA λA is the so–called k–vector part of λ (k = 0, 1, . . . ,m).

If we denote the subspace of k–vectors in Rp,q by Rk
p,q, i.e. the image of Rp,q

under the projection operator [·]k, one has the so–called multivector structure
decomposition

Rp,q = R0
p,q ⊕ R1

p,q ⊕ · · · ⊕ Rm
p,q

leading to the identification of R with the subspace of real scalars R0
p,q and of

Rm with the subspace of real Clifford–vectors R1
p,q.

The Clifford number eM = e1e2 . . . em is mostly called the pseudoscalar ;
depending on the dimension m, this pseudoscalar (anti–)commutes with the
k–vectors and squares up to ±1.

Remark 3.1. We note that there also exist non–universal Clifford algebras.
This is the case if m is odd and if at the same time the pseudoscalar eM is a real
number. A basis for such a Clifford algebra is given by (eA : A ⊂M, |A| ∈ 2N0)
and the dimension consequently equals 2m−1.
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In the sequel we will consider the real Clifford algebra R0,m and the complex
Clifford algebra Cm which may be seen as its complexification:

Cm = C⊗ R0,m = R0,m ⊕ iR0,m

Let λ and µ be complex Clifford numbers; the (anti–)automorphisms on Cm

leaving the multivector structure invariant are

(i) the main involution λ→ λ̂, defined by

(̂λµ) = λ̂ µ̂

̂(eA λA) = êA λA , A ⊂M

êj = −ej , j = 1, . . . ,m

(ii) the reversion λ→ λ∗, defined by

(λµ)∗ = µ∗ λ∗

(eA λA)∗ = e∗A λA , A ⊂M

e∗j = ej , j = 1, . . . ,m

(iii) the Hermitean conjugation λ→ λ†, defined by

(λµ)† = µ† λ†

(eA λA)† = e†A λ
c
A , A ⊂M

e†j = −ej , j = 1, . . . ,m

In view of the decomposition Cm = R0,m⊕ iR0,m, any complex Clifford number
λ ∈ Cm may also be written as λ = a + i b with a, b ∈ R0,m. Moreover,
the restriction of the Hermitean conjugation to R0,m coincides with the usual
conjugation in R0,m, i.e. the main anti–involution for which

ej = −ej , j = 1, . . . ,m

Hence, one may also write

λ† = (a+ i b)† = a− i b

The Hermitean conjugation leads to a Hermitean inner product and its associ-
ated norm on Cm, respectively given by

(λ, µ) = [λ†µ]0 and |λ|2 = [λ†λ]0 =
∑

A⊂M

|λA|2
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The following properties then hold:

|λµ| ≤ 2m |λ||µ| and |λ+ µ| ≤ |λ|+ |µ|

The Euclidean space Rm is embedded in the Clifford algebras R0,m and Cm by
identifying the point (x1, . . . , xm) ∈ Rm with the (Clifford–)vector variable x
given by

x =
m∑

j=1

ej xj

The (Clifford–)product of any two vectors x and y is given by

x y = x • y + x ∧ y

with

x • y =
1
2
(x y + y x) = −

m∑
j=1

xjyj = −
〈
x, y

〉
x ∧ y =

1
2
(x y − y x) =

m∑
j=1

m∑
k=j+1

ejek (xjyk − xkyj)

being a scalar and a 2–vector (also called bivector), respectively. In particular
we note that the square of a vector variable x is scalar valued and equals the
norm squared up to a minus sign:

x2 = −〈 x, x 〉 = −|x|2 = −
m∑

j=1

x2
j

Finally we introduce the Spin group in the following way. The even subalgebra
R+

0,m of the Clifford algebra R0,m is defined by

R+
0,m =

[m
2 ]⊕

k=0

R2k
0,m

The Clifford group Γ(m) of the Clifford algebra R0,m consists of those invertible
elements a ∈ R0,m for which the action axa on a vector x ∈ R1

0,m again is a
vector. Its subgroup Γ+(m) is the intersection of Γ(m) with the even subalgebra
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R+
0,m. The Spin group Spin(m) is the subgroup of Γ+(m) of those elements

s ∈ Γ+(m) for which ss∗ = 1, or equivalently,

Spin(m) = {s = ω1 . . . ω2` : ωj ∈ Sm−1, j = 1, . . . , 2`, ` ∈ N}

The Spin group is a twofold covering group of the rotation group SO(m). Indeed,
for any T ∈ SO(m), there exists s ∈ Spin(m) such that

T (x) = sxs = (−s)x(−s) , ∀x ∈ R1
0,m

3.2 Clifford analysis

During the last fifty years, Clifford analysis has gradually developed to a com-
prehensive function theory offering a higher dimensional generalization of the
theory of holomorphic functions of one complex variable. At the heart of Clifford
analysis is the Dirac operator, which is a direct and elegant generalization to
higher dimension of the Cauchy–Riemann operator in the complex plane. This
Dirac operator in Rm is the elliptic, rotation invariant, (Clifford–)vector valued
differential operator of first order defined by

∂x =
m∑

j=1

ej ∂xj

its fundamental solution being given by

E(x) =
1
am

x

|x|m
, x 6= 0

with

am =
2π

m
2

Γ(m
2 )

the area of the unit sphere Sm−1 in Rm. This means that

(i) E is vector valued and belongs to Lloc
1 (Rm)

(ii) lim
|x|→∞

E(x) = 0

(iii) ∂xE(x) = E(x) ∂x = δ(x) in distributional sense, δ being the classical
δ–distribution in Rm, i.e. for each test function φ defined on Rm and with
values in R0,m, one has 〈δ, φ〉 = φ(0).
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It follows that the Dirac operator is invariant under the orthogonal group
action, or, equally, under the action of Spin(m), which in Clifford language is
explicited as follows. If s ∈ Spin(m) and H(s) is its so–called H–representation,
given for a Clifford algebra valued function f by

H(s)[f(x)] = s f(s−1xs) s−1

then one has the commutation relation[
∂x,H(s)

]
= 0

This invariance property actually shows that the Dirac operator is the appro-
priate operator to work with in the orthogonal setting.

Along with the Dirac operator comes the notion of monogenicity, a notion
which is the multidimensional counterpart to the one of holomorphy in the
complex plane. Considering functions f defined in Rm and taking values in
R0,m or in its complexification Cm, we say that f is (left) monogenic in the
open region Ω of Rm if and only if f is continuously differentiable in Ω and
satisfies in Ω the equation ∂x f = 0. The notion of right monogenicity is defined
in a similar way by letting act the Dirac operator from the right on the function
considered. As

∂x f = f ∂x = −f∂x

a function f is (left) monogenic in Ω if and only if f is right monogenic in Ω.
For example the fundamental solution E is left and right monogenic in Rm\{0}.
Functions which are null solutions of the operator ∂x are called anti–monogenic
with respect to ∂x. Further, since the Dirac operator factorizes the Laplace
operator, i.e.

∆ =
m∑

j=1

∂2
xj

= −∂2
x = ∂x ∂x = ∂x ∂x

a(n) (anti–)monogenic function in Ω is harmonic as well, and hence C∞ in Ω.
So, monogenic functions have a special relationship with harmonic functions of
several variables in that they are refining their properties. Note for instance
that each harmonic function h can be split as

h(x) = f(x) + x g(x)

with f and g monogenic.
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Introducing spherical co-ordinates

x1 = r cos θ1
x2 = r sin θ1 cos θ2

...
xm−1 = r sin θ1 sin θ2 . . . sin θm−2 cos θm−1

xm = r sin θ1 sin θ2 . . . sin θm−2 sin θm−1

where 0 < r < +∞, 0 < θ1, . . . , θm−2 ≤ π, 0 < θm−1 < 2π, for a point
(x1, . . . , xm) ∈ Rm, we can write

x = rω , with r = |x| and ω ∈ Sm−1

For the Dirac operator ∂x the following spherical form is then obtained

∂x = ω ∂r +
1
r
∂ω = ω

(
∂r −

1
r
ω ∂ω

)
(3.1)

where

∂ω =
m∑

j=1

1∣∣∣ ∂ω
∂θj

∣∣∣2
∂ω

∂θj
∂θj

while the Laplace operator takes the form

∆ = ∂2
r +

m− 1
r

∂r +
1
r2

∆∗

∆∗ being the Laplace–Beltrami operator. The form (3.1) of the Dirac operator
can easily be rewritten as

∂x =
ω

r

(
r ∂r − ω ∂ω

)
=

ω

r
(Ex + Γx)

where

Ex = r ∂r =
m∑

j=1

xj ∂xj

Γx = −ω ∂ω = −ω ∧ ∂ω = −
∑
i<j

ei ej (xi ∂xj
− xj ∂xi

)



48 Chapter 3. The orthogonal Clifford toolbox

are the (scalar) Euler operator and the (bivector valued) spherical Dirac opera-
tor, respectively.

Further, in Clifford analysis, extensive use is made of the standard tensorial
Fourier transform (2.5) defined in Subsection 2.2.1. It satisfies the following
calculation rules:

F [∂x f(x)](y) = 2πi yF [f ](y) F [f(x) ∂x](y) = 2πiF [f ](y) y

2πiF [x f(x)](y) = −∂y F [f ](y) 2πiF [f(x)x](y) = −F [f ](y) ∂y

F [δ(x)](y) = 1 F [1](y) = δ(y)

(3.2)

We also consider the Clifford algebra valued inner product of functions f
and g defined in Rm and taking values in the Clifford algebra Cm:

〈f, g〉 =
∫

Rm

f(x)† g(x) dV (x)

and moreover the associated norm

‖f‖2L2
= [〈f, f〉]0 =

∫
Rm

|f(x)|2 dV (x)

We also introduce the right Hilbert–module L2(Rm) of square integrable func-
tions f for which it holds that

‖f‖L2
=
(∫

Rm

|f(x)|2 dV (x)
)1/2

<∞

Finally a fundamental role is played by the so–called inner and outer spher-
ical monogenics. Let Pp be a real Clifford algebra valued, homogeneous poly-
nomial of degree p ∈ N0, i.e.

Pp(x) =
∑

A⊂M

eA Pp,A(x)

its components Pp,A being real valued homogeneous polynomials of degree p
in the variables x1, . . . , xm. Furthermore, let Pp be left, respectively right,
monogenic in Rm, i.e.

∂x Pp(x) = 0 , respectively Pp(x) ∂x = 0 , ∀x ∈ Rm
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For p = 0, we put P0 = 1. By taking restrictions to the unit sphere Sm−1 of the
polynomials Pp(x), we obtain the left, respectively right, inner spherical mono-
genics Pp(ω). Conversely, given such an inner spherical monogenic Pp(ω) then
obviously rp Pp(ω) = Pp(x) is a left, respectively right, monogenic homogeneous
polynomial the restriction to the unit sphere of which is precisely Pp(ω). By
spherical inversion, executed on a left, respectively right, monogenic Pp, the
functions

Q(l)
p (x) =

1
rm+2p

xPp(x) =
1

rm+p−1
ω Pp(ω)

and

Q(r)
p (x) =

1
rm+2p

Pp(x)x =
1

rm+p−1
Pp(ω)ω

are homogeneous functions of order −(m + p − 1) in the complement of the
origin which are left, respectively right, monogenic. Their restrictions to the
unit sphere Sm−1, ωPp(ω) and Pp(ω)ω, are called outer spherical monogenics.
Both the inner and the outer spherical monogenics are special cases of spherical
harmonics. This implies that (see [52]) for each p, q ∈ N0:∫

Sm−1
Pp(ω)Qq(ω) dS(ω) = 0 (3.3)

and for each p 6= q ∈ N0:∫
Sm−1

Pp(ω)Pq(ω) dS(ω) =
∫

Sm−1
Qp(ω)Qq(ω) dS(ω) = 0 (3.4)

where dS(ω) denotes the Lebesgue measure on Sm−1. Moreover, both notions
constitute a refinement of the concept of a spherical harmonic. Indeed, taking
an arbitrary spherical harmonic Sp(ω), one may consider its unique orthogonal
decomposition into an inner and an outer spherical monogenic, viz

Sp(ω) = Pp(ω) +Qp−1(ω)

where obviously Q−1(ω) ≡ 0.

In the sequel we take the inner spherical monogenics to be vector valued, i.e.
Pp(x) =

∑m
j=1 ej Pp,j(x). Hence, if Pp is left monogenic it is right monogenic as

well, since

Pp(x) ∂x = ∂x Pp(x) = ∂x Pp(x) = 0
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Note that such kind of polynomials are easily obtained by considering

Pp(x) = ∂x Sp+1(x)

where Sp+1 is a scalar valued harmonic polynomial of degree (p + 1). We also
remark that the formulae (3.3) and (3.4) in particular lead to the vanishing
integrals∫

Sm−1
ω Pp(ω) dS(ω) =

∫
Sm−1

Pp(ω) ω dS(ω) = 0 , p ∈ N0

and ∫
Sm−1

Pp(ω) dS(ω) = 0 , p ∈ N

while of course for p = 0 ∫
Sm−1

dS(ω) = am

Further, these vector valued polynomials Pp enjoy the following calculus rules,
being special cases of more general formulae, the proofs of which can be found in
[11, 27], for inner spherical monogenics P (k)

p which are k–vector valued (k ∈M).

Lemma 3.1. Let Pp be a vector valued, monogenic, homogeneous polynomial
of degree p ∈ N0, then the following formulae hold in Rm:

∂x Pp(x) = Pp(x) ∂x = 0
∂x(xPp(x)) = (Pp(x)x)∂x = −(m+ 2p)Pp(x)
∂x(Pp(x)x) = (xPp(x))∂x = (m− 2)Pp(x) , p 6= 0

∂x(xPp(x)x) = −(m+ 2p+ 2)Pp(x)x− (m− 2)xPp(x) , p 6= 0
(xPp(x)x)∂x = −(m+ 2p+ 2)xPp(x)− (m− 2)Pp(x)x , p 6= 0

and also
∆Pp(x) = ∆(x Pp(x)) = ∆(Pp(x) x) = 0

∆(xPp(x)x) = 2(m− 2)Pp(x) , p 6= 0

Finally, also the following interesting and useful results have been obtained.

Proposition 3.1. Let Pp be a vector valued, monogenic, homogeneous polyno-
mial of degree p ∈ N0 and let r = |x|, then for each l ∈ N0
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(i) (a) Pp(∂x) r2l =


0 , if l < p

2p l!
(l − p)!

Pp(x) r2l−2p , if l ≥ p

(b) Pp(x) ∂2l
x δ(x) =


0 , if l < p

2p l!
(l − p)!

Pp(∂x) ∂2l−2p
x δ(x) , if l ≥ p

(ii) (a) (−1)p Pp(∂x)x2l+1 =


0 , if l < p

2p l!
(l − p)!

Pp(x)x2l−2p+1 , if l ≥ p

(b) Pp(x) ∂2l+1
x δ(x) =


0 , if l < p

2p l!
(l − p)!

Pp(∂x) ∂2l−2p+1
x δ(x) , if l ≥ p

(iii) (a) (−1)p x2l+1 Pp(∂x) =


0 , if l < p

2p l!
(l − p)!

x2l−2p+1 Pp(x) , if l ≥ p

(b) ∂2l+1
x δ(x)Pp(x) =


0 , if l < p

2p l!
(l − p)!

∂2l−2p+1
x δ(x)Pp(∂x) , if l ≥ p

Proof.

We first prove (i). The calculations being long and technical, we only sketch the
main lines of the proof which proceeds in several steps. In order to make the
formulae more compact, we will use multi-indices, being m–tuples of nonnega-
tive integers α = (α1, . . . , αm), and we put |α| =

∑m
i=1 αi.

step 1.
We write the vector valued monogenic homogeneous polynomial Pp of degree p
as

Pp(x) =
m∑

i=1

ei

∑
|α|=p

bi,α F (α)xα1
1 . . . xαm

m

 (3.5)
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with

F (α) =
|α|!

α1! . . . αm!
Then its assumed monogenicity leads to the following conditions on its coeffi-
cients: for any α = (α1, . . . , αm) with |α| = p and for any i ∈ {1, . . . ,m} with
αi ≥ 1: 

m∑
k=1

b
k,bα

k(1)
i(1)

= 0

bl,α = b
i,bα

l(1)
i(1)

, l = 1, . . . ,m
(3.6)

where

α̂
1(q1) 2(q2) ... m(qm)
1(s1) 2(s2) ... m(sm) = (α1 +q1−s1, α2 +q2−s2, . . . , αm +qm−sm) = α+q−s

Eventually the conditions (3.6) imply that for any i ∈ {1, . . . ,m} with αi ≥ 2:

m∑
k=1

b
i,bα

k(2)
i(2)

= 0 (3.7)

step 2.
As each term in the operator Pp(∂x) is of the form ∂α1

x1
∂α2

x2
. . . ∂αm

xm
, with αi ∈ N0

(i = 1, . . . ,m) and |α| = p, we have explicitly calculated the action of such
a term on r2l, l ∈ N0, by a double induction argument both on the orders of
derivation αi ánd on the number of αi’s occurring (i.e., not being zero). The
obtained result reads

∂α1
x1
∂α2

x2
. . . ∂αm

xm
r2l (3.8)

=
Sα∑
j=0

∑
|β|=j

aα1,β1 . . . aαm,βm
xα1−2β1

1 . . . xαm−2βm
m

 [2l]2p−2j−2 r
2l−2p+2j

where

Sα =
m∑

i=1

(αi)e

2
with (αi)e =

{
αi , if αi ∈ 2N0

αi − 1 , if αi ∈ 2N0 + 1

aαi,βi =


1

2βi

αi!
βi!(αi − 2βi)!

, if 0 ≤ βi ≤ (αi)e

2

0 , otherwise
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and
[2l]2p−2j−2 = (2l)(2l − 2) . . . (2l − 2p+ 2j + 2)

In particular note that

∂α1
x1
∂α2

x2
. . . ∂αm

xm
r2l = 0 , if l < p− Sα (3.9)

step 3.
We now let Pp(∂x) act on r2l for l ≥ p. On account of (3.8) and of the proposed
form (3.5) of Pp(x) this yields

m∑
i=1

ei

∑
|α|=p

bi,α F (α)
Sα∑
j=0

∑
|β|=j

aα,β x
α−2β

 [2l]2p−2j−2 r
2(l−p+j) (3.10)

where we introduced the shorthand notations

aα,β = aα1,β1 . . . aαm,βm
and xα−2β = xα1−2β1

1 . . . xαm−2βm
m

By isolating the term for j = 0, expression (3.10) can be rewritten as

2p l!
(l − p)!

r2(l−p) Pp(x)

+
m∑

i=1

ei

∑
|α|=p

bi,α F (α)
Sα∑
j=1

∑
|β|=j

aα,β x
α−2β

 [2l]2p−2j−2 r
2(l−p+j)

≡ 2p l!
(l − p)!

r2(l−p) Pp(x) +Rp,l(x) (3.11)

We are then lead to the second part of formula (i)(a) if we can prove that each
of the terms in Rp,l is zero. So, we need to show for each i ∈ {1, . . . ,m} that

∑
|α|=p

bi,α F (α)
S∑

j=1

∑
|β|=j

aα,β x
α−2β

 [2l]2p−2j−2 r
2j = 0 (3.12)

where, for convenience, we have increased the upper boundary of the sum in j
to S = max|α|=p Sα = pe

2 ; this does not affect the sum. Now, taking into account
that

r2j =
∑
|θ|=j

F (θ)x2θ1
1 . . . x2θm

m



54 Chapter 3. The orthogonal Clifford toolbox

the left-hand side of (3.12) may be written as a homogeneous polynomial of
degree p in (x1, . . . , xm). So, expression (3.12) will hold if for each multi-index
γ = (γ1, . . . , γm) for which |γ| = p, the coefficient of xγ equals zero, i.e. if

S∑
j=1

[2l]2p−2j−2

∑
|θ|=j

F (θ)
∑

|α|=p,|β|=j
α−2β=γ−2θ

bi,α F (α) aα,β = 0 (3.13)

for each i ∈ {1, . . . ,m} and for each multi-index γ for which |γ| = p. Note that
we only need to consider those multi-indices θ for which

γj − 2θj = αj − 2βj ≥ 0 , ∀j = 1, . . . ,m (3.14)

since otherwise aα,β = 0. Next, leaning upon

F (α) aα,β = F (β)
p!

2jj!
1∏m

k=1(γk − 2θk)!

for the multi-indices α and β satisfying the conditions under consideration in
(3.13), expression (3.13) may be rewritten as

S∑
j=1

[2l]2p−2j−2

2jj!

∑
|θ|=j

F (θ)∏m
k=1(γk − 2θk)!

∑
|β|=j

F (β) bi,γ−2θ+2β = 0 (3.15)

Now observe that every multi-index β, for which |β| = j, can be represented by
a j–tuple (s1, . . . , sj) ∈ M j , in which each l ∈ M will appear βl times, in the
following way:

β = (β1, . . . , βm) 7−→ (s1, . . . , sj) , if β1e1 + · · ·+ βmem = es1 + · · ·+ esj

It may be readily seen that this representation is not unique; with each multi-
index β corresponds a number of(

j

β1

)(
j − β1

β2

)(
j − β1 − β2

β3

)
. . .

(
j −

∑m−1
k=1 βk

βm

)
= F (β)

such j–tuples (s1, . . . , sj). So, for each fixed i, γ, j and θ under the known
conditions, we find that∑

|β|=j

F (β) bi,γ−2θ+2β =
m∑

s1,...,sj=1

bi,γ−2θ+2es1+2es2+···+2esj
(3.16)
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Finally, on account of (3.14) and the conditions (3.7) of the coefficients of Pp,
we find for each fixed es2 , . . . , esj

that

m∑
s1=1

bi,γ−2θ+2es1+2es2+···+2esj
= 0

Hence (3.15) equals zero and Rp,l indeed vanishes.

step 4.
Next, we consider the case where l < p. First, let l < p − pe

2 ; then clearly, for
each α with |α| = p one has l < p− Sα. Invoking (3.9) we thus have that

∂α1
x1
∂α2

x2
. . . ∂αm

xm
r2l = 0 , ∀α = (α1, . . . , αm) , |α| = p

yielding Pp(∂x)r2l = 0. Next, take p− pe

2 ≤ l < p. In this case, the arguments
of step 3 may be rephrased quite literally, leading to an analogous result as in
(3.11), however without the term for j = 0, since j will start from p− l > 0. So,
also here Pp(∂x)r2l = 0, implying the first part of formula (i)(a) to hold.

step 5.
Finally, formula (i)(b) may be shown by conversion of formula (i)(a) to fre-
quency space and invoking properties (3.2) of the Fourier transform. Indeed, in
frequency domain the left-hand side of formula (i)(a) reads

F [Pp(∂x) r2l](y) = (2πi)p Pp(y)F [(−1)lx2l](y)

= (−1)l (2πi)p−2l Pp(y) ∂2l
y δ(y)

while the Fourier transform of the right-hand side of formula (i)(a) equals

F [2p l!
(l − p)!

Pp(x) r2(l−p)](y) =
(
i

π

)p
l!

(l − p)!
Pp(∂y)F [(−1)l−px2l−2p](y)

= (−1)l (2πi)p−2l 2p l!
(l − p)!

Pp(∂y) ∂2l−2p
y δ(y)

for l ≥ p and is zero for l < p.

The proofs of (ii) and (iii) running along similar lines, we only prove (ii). One
has that in distributional sense

(−1)p Pp(∂x)x2l+1 = (−1)p
(
Pp(∂x)x2l

)
x = (−1)p+l

(
Pp(∂x) r2l

)
x
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Taking into account (i), this equals zero for l < p, while for l ≥ p the right-hand
side can be rewritten as

(−1)p+l

(
2p l!

(l − p)!
Pp(x) r2(l−p)

)
x = 2p l!

(l − p)!
Pp(x)x2l−2p+1

proving formula (ii)(a). Another conversion to frequency space will now lead to
formula (ii)(b).



Chapter 4

Four families
of Clifford distributions
in Euclidean space

In Subsection 2.1.2 we introduced the convolution kernel Pv 1
πt for the Hilbert

transform on the real line. Higher dimensional scalar valued generalizations
were then presented in Section 2.2, by means of a traditional tensorial approach
with a number of copies of the one–dimensional kernel or by means of the
principal value kernels K(x) = Pv Ω(x)

|x|m . In the framework of Clifford analysis, a
multidimensional Hilbert kernel which is vector valued, was already considered
by Horváth in his 1953 paper [69]. By adding all Riesz transforms Rj , each
one multiplied with its corresponding basis vector ej (j ∈ M), he obtained the
following Clifford–vector valued Hilbert transform:

H̃ =
m∑

j=1

ej Rj

which we will discuss in more detail in the following chapter. Its convolution ker-
nel was recently studied by Delanghe in [50]. Together with Brackx and Sommen
he realized however that this higher dimensional principal value distribution is
but an example of vector valued Clifford distributions, out of an infinite collec-
tion of such kind of distributions, which moreover can be obtained by letting
act the Dirac operator on a corresponding infinite set of classical real valued
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radial distributions. They were also aware of the fact that by making use of the
well–known spherical means, which arise naturally by introducing spherical co-
ordinates, a simple, powerful and highly efficient technique could be designed
allowing to carry out the explicit calculations on the real line and exporting
them to the original setting of Euclidean space. Finally they saw that intro-
ducing generalized spherical means involving spherical monogenics would give
rise to much more general Clifford distributions, encompassing those already
constructed in the special case where the degree of the spherical monogenic
considered is zero. The original construction of all these families of distribu-
tions is treated in the papers [26, 25].

In the first section of this chapter we present the distribution ”finite parts”
on the real line, which is the first building block for the construction of the fam-
ilies of Clifford distributions mentioned above. Then, in the following section,
the second building block is defined: the ”classical” spherical means, which were
already introduced in e.g. [92], and their generalizations, involving a spherical
monogenic. Both in the classical and in the generalized case, special attention
is paid to their interrelation by means of the multiplication with the vector
x and the action of the Dirac operator. Also their derivatives in the origin
are closely studied. In the third section we come to the construction of the
families of distributions, depending on the ”classical” spherical means. Sev-
eral properties will be discussed, exposing strong connections between the two
families under consideration. We also point out in a series of examples and
some historical background that these higher dimensional distributions were al-
ready introduced, albeit dispersed, in the literature on harmonic analysis and
on Clifford analysis. Classifying those distributions in families offers of course
structural clarity and moreover admits to gather results and formulae which
are spread over the literature. At the same time this unifying approach proves
once more the power and elegance of Clifford analysis. In the last section, the
families of distributions and their properties are generalized, making use of the
generalized spherical means. They give rise to generalized Hilbert transforms
which will be studied in the sequel of this thesis.
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4.1 The distribution ”finite parts” on the real
line

One of the fundamental tools used in our theory of Clifford distributions is the
distribution ”finite parts” Fp tµ+ on the real line. Hence, for a better under-
standing, it is necessary to give its definition and to treat its main properties in
some detail (see e.g. [90, 59, 22]).

Let µ be a complex parameter, t a real variable and consider the function

tµ+ =
{
tµ , t > 0
0 , t < 0

For Re(µ) > −1 the function tµ+ is locally integrable and hence constitutes
a regular distribution, its action on any test function φ given by

〈
tµ+ , φ

〉
=
∫ +∞

0

tµ φ(t) dt

For Re(µ) ≤ −1, the integral
∫ A

0
tµdt diverges for each real, positive number

A. So in that case, one cannot define a regular distribution. Here we resort to
the notion of finite part of a divergent integral: for Re(µ) < −1 or µ = −1+ i b,
with b ∈ R \ {0}, one defines

Fp
∫ A

0

tµdt =
Aµ+1

µ+ 1

while for µ = −1 one puts

Fp
∫ A

0

t−1dt = lnA

meaning that the unbounded terms − 0µ+1

µ+1 , respectively − ln 0, are dropped. In
the same order of ideas one defines the distribution Fp tµ+ by〈

Fp tµ+ , φ
〉

=
∫ +∞

0

tµ
(
φ(t)− φ(0)− φ′(0)

1!
t− · · · − φ(n−1)(0)

(n− 1)!
tn−1

)
dt

= lim
ε→0+

(∫ +∞

ε

tµ φ(t) dt+ φ(0)
εµ+1

µ+ 1
+ · · ·+ φ(n−1)(0)

(n− 1)!
εµ+n

µ+ n

)
(4.1)
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when the parameter µ belongs to the strip −n − 1 < Re(µ) < −n for some
n ∈ N or when µ = −n+ i b, with b ∈ R \ {0}.

As a function of µ, tµ+ is readily seen to be holomorphic in Re(µ) > −1, so
by analytic continuation Fp tµ+ is holomorphic in C \ {−1,−2, . . .}; the singular
points µ = −n, n ∈ N, are simple poles with residue

Res
µ=−n

Fp tµ+ =
(−1)n−1

(n− 1)!
δ(n−1)(t)

There are two ways to deal with those singularities.

On the one hand, by slightly changing definition (4.1) for negative entire
exponents, viz

〈
Fp t−n

+ , φ
〉

= lim
ε→0+

(∫ +∞

ε

t−n φ(t) dt+ φ(0)
ε−n+1

−n+ 1

+ · · ·+ φ(n−2)(0)
(n− 2)!

ε−1

(−1)
+
φ(n−1)(0)
(n− 1)!

ln ε
)

the so–called monomial pseudofunctions Fp t−n
+ , n ∈ N are obtained. In this

way the distribution Fp tµ+ is defined in the whole of the complex µ–plane,
but it is only holomorphic in C \ {−1,−2, . . .}. It further enjoys the following
properties which will be frequently used in Sections 4.3 and 4.4 while examining
the properties of our families of distributions.

Proposition 4.1.

(i) Multiplication rule:

tFp tµ+ = Fp tµ+1
+ , ∀µ ∈ C

(ii) Derivative rule:

d

dt
Fp tµ+ = µFp tµ−1

+ , µ 6= 0,−1,−2, . . .

d

dt
Fp t−n

+ = (−n) Fp t−n−1
+ + (−1)n 1

n!
δ(n)(t) , n = 0, 1, 2, . . .
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On the other hand one may cope with the singularities of Fp tµ+ through
the well–known technique of division by an appropriate Gamma–function which
shows the same singularities in the complex µ–plane. Indeed, if the distribution
Fp tµ

+
Γ(µ+1) is defined at µ = −n (n ∈ N) as the quotient of the respective residues[

Fp tµ+
Γ(µ+ 1)

]
µ=−n

= δ(n−1)(t)

it becomes an entire function of µ ∈ C.

In Sections 4.3 and 4.4 we will adopt the latter procedure of so–called normal-
ization, more precisely in order to define normalized versions of all distributions
under consideration.

4.2 The generalized spherical means

We now pass to the second building block in the definition of our families of
distributions: the so–called generalized spherical means. The classical notion
of spherical mean, presented in the next subsection, was already introduced in
e.g. [72, 92]. In the papers [26, 25], these spherical means were generalized,
making use of the vector valued, monogenic, homogeneous polynomials Pp of
degree p ∈ N0 as introduced in Section 3.2. We define those generalizations and
discuss their properties in the second subsection.

4.2.1 The generalized spherical mean operators Σ(0) and Σ(1)

Let φ be a scalar valued test function defined on Rm; putting x = r ω, r = |x|,
ω ∈ Sm−1, we define the generalized spherical means (see e.g. [92])

Σ(0)[φ] =
1
am

∫
Sm−1

φ(rω) dS(ω)

and
Σ(1)[φ] = Σ(0)[ωφ] =

1
am

∫
Sm−1

ω φ(rω) dS(ω)

Note that Σ(0)[φ] is nothing but the classical spherical mean introduced by John
in [72].
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The generalized spherical means enjoy the following properties. Proposi-
tion 4.2 may be proven straightforward making use of the spherical decomposi-
tion x = r ω. The proofs of the other propositions may be found in e.g. [26, 25].
First we observe that both spherical means are interrelated by the multiplication
with the vector x and by the action of the Dirac operator.

Proposition 4.2. If φ is a scalar valued test function defined on Rm, then

(i) Σ(0)[xφ] = rΣ(1)[φ]

(ii) Σ(1)[xφ] = −rΣ(0)[φ]

Proposition 4.3. If φ is a scalar valued test function defined on Rm, then

(i) Σ(0)[∂x φ] =
(
∂r +

m− 1
r

)
Σ(1)[φ]

(ii) Σ(1)[∂x φ] = −∂r Σ(0)[φ]

Next, for the behaviour of the derivatives of the spherical means at the origin
r = 0, we introduce the constants

C(l) =
22ll!
(2l)!

(m
2

+ l − 1
)
. . .
(m

2

)
=

22ll!
(2l)!

Γ(m
2 + l)

Γ(m
2 )

, l ∈ N0

in order to make the formulae more compact.

Proposition 4.4. If φ is a scalar valued test function defined on Rm, then the
spherical mean Σ(0)[φ] is an even, scalar valued test function on the real r–axis;
its derivatives of odd order vanish at the origin r = 0, while for its derivatives
of even order one has{

∂2l
x φ(x)

}
x=0

= (−1)l C(l)
{
∂2l

r Σ(0)[φ]
}

r=0

or, equivalently, in terms of distributions:〈
∂2l

x δ(x) , φ(x)
〉

= (−1)l C(l)
〈
∂2l

r δ(r) , Σ(0)[φ]
〉

Proposition 4.5. If φ is a scalar valued test function defined on Rm, then the
spherical mean Σ(1)[φ] is an odd, vector valued test function on the real r–axis;
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its derivatives of even order vanish at the origin r = 0, while for the derivatives
of odd order one has{

∂2l+1
x φ(x)

}
x=0

= (−1)l C(l + 1)
{
∂2l+1

r Σ(1)[φ]
}

r=0

or, equivalently, in terms of distributions:〈
∂2l+1

x δ(x) , φ(x)
〉

= (−1)l C(l + 1)
〈
∂2l+1

r δ(r) , Σ(1)[φ]
〉

Note that in particular {
Σ(0)[φ]

}
r=0

= φ(0)

while {
Σ(1)[φ]

}
r=0

= 0

or ∫
Sm−1

ω dS(ω) = 0

The above expressions for the action of natural powers of the Dirac operator
on the delta distribution then lead to the following interesting lemma for their
products with natural powers of the vector variable x. For the proof of the
lemma we refer to [28]. To make the formulae more compact we introduce the
Pochhammer symbol

(a)n =
Γ(a+ 1)

Γ(a− n+ 1)

with a ∈ C and n ∈ N such that neither a nor a− n is a negative integer.

Lemma 4.1. For l ∈ N and k = 1, 2, . . . , l the following formulae hold:

(i) x2k ∂2l
x δ(x) = 22k (l)k (m

2 + l − 1)k ∂
2l−2k
x δ(x)

(ii) x2k−1 ∂2l
x δ(x) = 22k−1 (l)k (m

2 + l − 1)k−1 ∂
2l−2k+1
x δ(x)

(iii) x2k ∂2l+1
x δ(x) = ∂2l+1

x δ(x)x2k = 22k (l)k (m
2 + l)k ∂

2l−2k+1
x δ(x)

(iv) x2k+1 ∂2l+1
x δ(x) = ∂2l+1

x δ(x)x2k+1 = 22k+1 (l)k (m
2 + l)k+1 ∂

2l−2k
x δ(x)
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4.2.2 The generalized spherical mean operators Σ
(0)
p , Σ

(1)
p ,

Σ
(2)
p and Σ

(3)
p

Now, the vector valued, monogenic, homogeneous polynomials Pp of degree
p ∈ N0 come into play in order to generalize the spherical mean operators Σ(0)

and Σ(1). Let again φ be a scalar valued test function defined on Rm, then the
spherical mean Σ(0)[φ] is generalized, depending on the parity of p, as follows:

Σ(0)
p [φ] = rp−pe Σ(0)[Pp(ω)φ(x)] =

rp−pe

am

∫
Sm−1

Pp(ω)φ(x) dS(ω)

where we have introduced the notation pe (”even part of p”) standing for pe = p
if p is even, and for pe = p− 1 if p is odd.

In the same way, the spherical mean Σ(1)[φ] is generalized; depending on the
multiplication of Pp(ω) from the left or the right we define the following two
generalizations:

Σ(1)
p [φ] = rp−pe Σ(0)[ω Pp(ω)φ(x)] =

rp−pe

am

∫
Sm−1

ω Pp(ω)φ(x) dS(ω)

Σ(3)
p [φ] = rp−pe Σ(0)[Pp(ω)ω φ(x)] =

rp−pe

am

∫
Sm−1

Pp(ω)ω φ(x) dS(ω)

Finally, by considering the ultimate combination ωPp(ω)ω, the picture is
completed symmetrically by introducing the generalized spherical mean

Σ(2)
p [φ] = rp−pe Σ(0)[ω Pp(ω)ω φ(x)] =

rp−pe

am

∫
Sm−1

ω Pp(ω)ω φ(x) dS(ω)

Note that if p = 0, then

Σ(0)
0 [φ] = −Σ(2)

0 [φ] = Σ(0)[φ] and Σ(1)
0 [φ] = Σ(3)

0 [φ] = Σ(1)[φ]

Remark 4.1. It is clear that all generalized spherical means introduced above
depend upon the monogenic polynomial Pp chosen. But in order to simplify the
notation, we have abbreviated Σ(k)

Pp
[φ] to Σ(k)

p [φ], k = 0, 1, 2, 3. This simplifi-
cation however is justified in the perspective that monogenic polynomials of the
same degree will give rise to seemingly identical formulae, in the sense that the
arising constants will only depend on the degree and not on the specific polyno-
mial involved.
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Remark 4.2. These generalized spherical means may be generalized even fur-
ther using a k–vector valued spherical monogenic P

(k)
p (ω), with k ∈ M (see

[11]). They then lead to families of distributions, embedding the ones presented
in Section 4.4.

In the propositions below it is shown how the spherical means are interrelated
by the multiplication with the vector x and by the action of the Dirac operator.
The proof of the first proposition again relies on the spherical decomposition
x = r ω. For the proof of the second proposition we once more refer to [26, 25].

Proposition 4.6. If φ is a scalar valued test function defined on Rm, then

(i) Σ(0)
p [φx] = −Σ(2)

p [xφ] = rΣ(1)
p [φ]

(ii) Σ(0)
p [xφ] = −Σ(2)

p [φx] = rΣ(3)
p [φ]

(iii) Σ(1)
p [φx] = Σ(3)

p [xφ] = −rΣ(0)
p [φ]

(iv) Σ(1)
p [xφ] = Σ(3)

p [φx] = rΣ(2)
p [φ]

where Σ(0)
p [φx] stands for Σ(0)[(xφ)Pp(ω)] and Σ(0)

p [xφ] for Σ(0)[Pp(ω)(xφ)].

Proposition 4.7. If φ is a scalar valued test function defined on Rm, then

(i) Σ(0)
p [φ∂x] =

(
∂r +

m+ pe − 1
r

)
Σ(1)

p [φ]

(ii) Σ(0)
p [∂x φ] =

(
∂r +

m+ pe − 1
r

)
Σ(3)

p [φ]

(iii) rΣ(1)
p [φ∂x] = rΣ(3)

p [∂x φ] = (−r ∂r + 2p− pe) Σ(0)
p [φ]

and for p 6= 0

(iv) rΣ(1)
p [∂x φ] = rΣ(3)

p [φ∂x] = −(m− 2)Σ(0)
p [φ] + (r ∂r +m+ pe) Σ(2)

p [φ]

(v) rΣ(2)
p [∂x φ] = (−r ∂r + 2p− pe + 1)Σ(1)

p [φ] + (m− 2)Σ(3)
p [φ]

(vi) rΣ(2)
p [φ∂x] = (m− 2) Σ(1)

p [φ] + (−r ∂r + 2p− pe + 1)Σ(3)
p [φ]

where Σ(0)
p [φ∂x] stands for Σ(0)[(∂xφ)Pp(ω)] and Σ(0)

p [∂xφ] for Σ(0)[Pp(ω)(∂xφ)].
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Next, the behaviour of the derivatives of the spherical means at the origin
r = 0 is studied. Observe that the presence of the monogenic polynomials Pp

will cause an extra number of derivatives to vanish at the origin.

Proposition 4.8. If φ is a scalar valued test function defined on Rm, then

(i) the spherical means Σ(0)
p [φ] and Σ(2)

p [φ] are even test functions on the real
r–axis; their derivatives of odd order vanish at the origin r = 0, while for their
derivatives of even order one has for l < p− pe

2 :{
∂2l

r Σ(0)
p [φ]

}
r=0

= 0 and
{
∂2l

r Σ(2)
p [φ]

}
r=0

= 0

while for l ≥ p− pe

2 :{
∂2l

r Σ(0)
p [φ]

}
r=0

=
(2l)!

(pe + 2l)!
(−1)

pe
2 +l

C(pe

2 + l)

〈
Pp(x)

(
∂pe+2l

x δ(x)
)
, φ(x)

〉 (4.2)

and{
∂2l

r Σ(2)
p [φ]

}
r=0

=
(2l)!

(pe + 2l + 2)!
(−1)

pe
2 +l+1

C(pe

2 + l + 1)

〈
xPp(x)x

(
∂pe+2l+2

x δ(x)
)
, φ(x)

〉 (4.3)

(ii) the spherical means Σ(1)
p [φ] and Σ(3)

p [φ] are odd test functions on the real
r–axis; their derivatives of even order vanish at the origin r = 0, while for the
derivatives of odd order one has for l < p− pe

2 :{
∂2l+1

r Σ(1)
p [φ]

}
r=0

= 0 and
{
∂2l+1

r Σ(3)
p [φ]

}
r=0

= 0

while for l ≥ p− pe

2 :{
∂2l+1

r Σ(1)
p [φ]

}
r=0

=
(2l + 1)!

(pe + 2l + 1)!
(−1)

pe
2 +l+1

C(pe

2 + l + 1)

〈 (
∂pe+2l+1

x δ(x)
)
Pp(x) , φ(x)

〉 (4.4)
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and{
∂2l+1

r Σ(3)
p [φ]

}
r=0

=
(2l + 1)!

(pe + 2l + 1)!
(−1)

pe
2 +l+1

C(pe

2 + l + 1)

〈
Pp(x)

(
∂pe+2l+1

x δ(x)
)
, φ(x)

〉 (4.5)

Proof.
These results were already partly obtained in [26, 25], where the formulae (4.2) –
(4.5) were shown to hold for all l > 0. Taking now into account Proposition 3.1,
it is then easily seen that for l < p− pe

2 the respective right-hand sides of (4.2),
(4.4) and (4.5) vanish, so that indeed{

∂2l
r Σ(0)

p [φ]
}

r=0
=
{
∂2l+1

r Σ(1)
p [φ]

}
r=0

=
{
∂2l+1

r Σ(3)
p [φ]

}
r=0

= 0

Further, leaning on Lemma 4.1 (ii) and then again taking into account Propo-
sition 3.1, we find

xPp(x)x
(
∂pe+2l+2

x δ(x)
)

= (pe + 2l + 2)xPp(x)
(
∂pe+2l+1

x δ(x)
)

= 0

if l < p− pe

2 , whence in that case also{
∂2l

r Σ(2)
p [φ]

}
r=0

= 0

4.3 The distributions T ∗
λ and U ∗

λ

The distributions Tλ = Fp rλ and Uλ = Fp rλ ω (with x = r ω, r = |x| and
λ ∈ C) have been introduced in [26]. They have then been normalized and
extensively studied in a series of papers [28, 29, 30, 19]. The idea behind their
construction is disclosed in the following subsection and relies on the spheri-
cal co-ordinates, the fundamental distribution Fp rµ

+ on the real r–axis and the
generalized spherical means of Subsection 4.2.1. Subsequently, we present their
definitions and some elegant properties. Then, particular examples of classi-
cal distributions in Euclidean space are presented which are embedded in our
two families of distributions. We end this section with some short historical
background since the distributions Tλ are of course very classical, in the sense
that they were already introduced in the literature on harmonic analysis. Also
the distributions Uλ, which are clearly Clifford–vector valued, will be discussed
there; they have vectorial analogues which were introduced in the 1950’s.
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4.3.1 The idea

The underlying idea for the construction of those distributions mentioned above
may be explained by considering the special case of a locally integrable radial
function T (r) on Rm, r = |x|. Its action as a regular distribution on a scalar
valued test function φ defined on Rm is given by

〈 T (r) , φ(x) 〉 =
∫

Rm

T (r) φ(x) dV (x)

Introducing spherical co-ordinates, this integral takes the form∫ +∞

0

T (r) rm−1 dr

∫
Sm−1

φ(rω) dS(ω) = am

∫ +∞

0

T (r) rm−1 Σ(0)[φ] dr

In particular for T (r) = rλ, with Re(λ) > −m, one gets

〈
rλ , φ(x)

〉
= am

∫ +∞

0

rµ Σ(0)[φ] dr = am

〈
rµ
+ , Σ(0)[φ]

〉
where we have set µ = λ+m− 1. Summarizing, the action of the distribution
T (r) = rλ in Rm is converted into an action of the distribution rµ

+ on the real
line. Precisely this type of conversion procedure will be used for the definition
of our Clifford distributions in Rm.

4.3.2 Definition

Let λ be a complex parameter and let φ be a scalar valued test function defined
on Rm. We then define the scalar valued distributions Tλ and the vector valued
distributions Uλ by:

〈 Tλ , φ 〉 = am

〈
Fp rµ

+ , Σ(0)[φ]
〉

(4.6)

and

〈 Uλ , φ 〉 = am

〈
Fp rµ

+ , Σ(1)[φ]
〉

(4.7)

where we have put µ = λ +m − 1. It is then easily seen that both families of
distributions inherit an infinite sequence of singular points from Fp rµ

+, namely
µ = −n, n ∈ N. However, on account of the vanishing at the origin of the
even, respectively odd, derivatives of the spherical means Σ(0)[φ], respectively
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Σ(1)[φ], in both cases half of those singularities disappears. Indeed, for l ∈ N0

the residue for λ = −m− 2l − 1 of (4.6) equals

am

〈
Res

µ=−2l−2
Fp rµ

+ , Σ(0)[φ]
〉

= am

〈
(−1)2l+1

(2l + 1)!
δ(2l+1)(r) , Σ(0)[φ]

〉
= 0

while the residue for λ = −m− 2l of (4.7) yields

am

〈
Res

µ=−2l−1
Fp rµ

+ , Σ(1)[φ]
〉

= am

〈
(−1)2l

(2l)!
δ(2l)(r) , Σ(1)[φ]

〉
= 0

Removing the remaining singularities through the well–known technique of divi-
sion by an appropriate Gamma–function showing the same singularities, results
into the following normalizations:

T ∗λ = π
λ+m

2
Tλ

Γ
(

λ+m
2

) , λ 6= −m− 2l

T ∗−m−2l =
π

m
2 −l

22lΓ
(

m
2 + l

) (−∆)lδ(x) , l ∈ N0

and
U∗λ = π

λ+m+1
2

Uλ

Γ
(

λ+m+1
2

) , λ 6= −m− 2l − 1

U∗−m−2l−1 = − π
m
2 −l

22l+1 Γ
(

m
2 + l + 1

) ∂2l+1
x δ(x) , l ∈ N0

So, up to a power of π, the distributions T ∗−m−2l are defined as the quotient
of the residues for λ = −m − 2l of Tλ and Γ(λ+m

2 ); and the same procedure is
applied for the distributions U∗−m−2l−1, mutatis mutandis. For the removable
poles, the corresponding distributions T ∗−m−2l−1 and U∗−m−2l are defined by
means of a limiting process

〈 T−m−2l−1 , φ 〉 = am lim
µ→−2l−2

〈
Fp rµ

+ , Σ(0)[φ]
〉

〈 U−m−2l , φ 〉 = am lim
µ→−2l−1

〈
Fp rµ

+ , Σ(1)[φ]
〉

where the limits at the right-hand sides exactly yield the monomial pseudo-
functions Fp r−2l−2

+ and Fp r−2l−1
+ . Summarizing, this normalization procedure

results in two entire mappings λ 7→ T ∗λ and λ 7→ U∗λ from C to the space S ′(Rm)
of tempered distributions. The fundamental properties of the normalized dis-
tributions T ∗λ and U∗λ are listed in the following subsection.
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4.3.3 Properties

Multiplication with the vector x and action of the Dirac operator ∂x

We first consider on our two families of distributions the action of multiplication
with the vector x and the action of the Dirac operator ∂x. Observe that both
actions constitute a bijection between the two families. For the proofs, which rely
on the properties of the finite parts distribution and the generalized spherical
means, we refer to [26, 28].

Proposition 4.9. For λ ∈ C one has

(i) xT ∗λ =
λ+m

2π
U∗λ+1

(ii) xU∗λ = U∗λ x = −T ∗λ+1

Proposition 4.10. For λ ∈ C one has

(i) ∂x T
∗
λ = λU∗λ−1

(ii) ∂x U
∗
λ = U∗λ ∂x = −2π T ∗λ−1

Fourier transform

Next, we have also examined the Fourier transforms of the distributions T ∗λ and
U∗λ , constituting a bijection inside each of the two families. They are essential for
the study of convolution and product of the distributions under consideration
(see further). The proof of the following proposition may be found in [28]:
whenever λ equals one of the genuine singularities of the distributions Tλ and
Uλ, one makes use of the properties (3.2) of the Fourier transform, while in the
general case, classical results from [90, p. 257] are applied.

Proposition 4.11. For λ ∈ C one has

(i) F [T ∗λ ] = T ∗−λ−m

(ii) F [U∗λ ] = −i U∗−λ−m

Convolution

In [19], our aim was to construct the fundamental solution of an arbitrary com-
plex power of the Dirac operator, these powers being defined as convolution
operators with a kernel expressed in terms of T ∗λ– and/ or U∗λ–distributions.
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The desired fundamental solution was found, at least formally, in terms of the
same families of distributions and is discussed in Subsection 4.3.4. In order
to prove these results in a rigorous way, we first investigate the definition and
properties of both the convolution and the product (see further) of arbitrary
elements of the families of distributions under consideration, leading to a very
attractive pattern of mutual relations between them.

In the sequel we will use the following subsets of C× C:

Φm = {(α, β) ∈ C× C : Re(α) > −m , Re(β) > −m , Re (α+ β) < −m}
Sm,1 = {(α, β) ∈ C× C : α = −m− 2k , k ∈ N0 and β 6= 2l , l ∈ N0}
Sm,2 = {(α, β) ∈ C× C : α 6= 2k , k ∈ N0 and β = −m− 2l , l ∈ N0}

Ψ3 = {(α, β) ∈ (C× C) \ (Sm,1 ∪ Sm,2) : m ≥ 3 and
(Re(α) ≤ −m , −2 > Re(β) > −m
or Re(β) ≤ −m , −2 > Re(α) > −m)}

Ψ4 = {(α, β) ∈ (C× C) \ (Sm,1 ∪ Sm,2) : m ≥ 4 and
Re(α) ≤ −m , Re(β) ≤ −m}

and

Ω = Φm ∪ Sm,1 ∪ Sm,2 ∪Ψ3 ∪Ψ4

Starting point are the Riesz potentials as introduced in [84]. For a complex
parameter α and a scalar valued rapidly decreasing function f defined on Rm

they are defined by

Iα[f ](y) =
1

2απ
m
2

Γ
(

m−α
2

)
Γ
(

α
2

) Fp
∫

Rm

∣∣y − x
∣∣α−m

f(x) dV (x)

=
1

2απ
m
2

Γ
(

m−α
2

)
Γ
(

α
2

) (
Fp |x|α−m ∗ f(x)

)
(y)

Observe that the poles of Fp |x|α−m are cancelled by the poles of Γ
(

α
2

)
, so that

Iα[f ] is a holomorphic function for α 6= m + 2l (l ∈ N0). It is clear that for
α 6= −2l (l ∈ N0), these Riesz potentials may then be rewritten in terms of the
distributions T ∗α−m in the following way:

Iα[f ] =
Γ
(

m−α
2

)
2απ

α+m
2

T ∗α−m ∗ f (4.8)
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We also note that in [84, p. 20] and [68, Proposition 2.36], the following impor-
tant property of the Riesz potentials has been proven.

Proposition 4.12. For a scalar valued rapidly decreasing function f defined
on Rm and for each couple (α, β) ∈ C×C, satisfying Re(α) > 0, Re(β) > 0 and
Re(α+ β) < m, the following identity holds:

Iα
[
Iβ [f ]

]
= Iα+β [f ]

The following result is then obtained and will be proven in a series of propo-
sitions.

Theorem 4.1. For all (α, β) ∈ Ω, the convolution T ∗α ∗ T ∗β is the tempered
distribution given by

T ∗α ∗ T ∗β = cm(α, β)T ∗α+β+m (4.9)

where

cm(α, β) = π
m
2

Γ
(
−α+β+m

2

)
Γ
(
−α

2

)
Γ
(
−β

2

) (4.10)

Proposition 4.13. Theorem 4.1 holds whenever the complex parameters α and
β fulfil the conditions of the set Φm, viz

(I) Re(α) > −m, Re(β) > −m

(II) Re(α+ β) < −m.

Proof.
The conditions (I) and (II) may be reformulated as

Re(α+m) > 0 , Re(β +m) > 0 and Re(α+ β + 2m) < m

such that, taking into account Proposition 4.12, the following identity holds for
a scalar valued rapidly decreasing function f defined on Rm:

Iα+m
[
Iβ+m[f ]

]
= Iα+β+2m[f ] (4.11)

Moreover, the conditions (I) and (II) also imply that

α+m 6= −2j , β +m 6= −2k and α+ β + 2m 6= −2l , j, k, l ∈ N0
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such that, taking into account (4.8) and putting in particular f = δ, the left-
hand side of (4.11) may be written as

Γ
(
−α

2

)
2α+mπ

α+2m
2

T ∗α ∗

 Γ
(
−β

2

)
2β+mπ

β+2m
2

T ∗β ∗ δ

 =
Γ
(
−α

2

)
Γ
(
−β

2

)
2α+β+2mπ

α+β+4m
2

T ∗α ∗ T ∗β

and for the right-hand side of (4.11) we obtain

Γ
(
−α+β+m

2

)
2α+β+2mπ

α+β+3m
2

T ∗α+β+m

leading to the desired result.

Proposition 4.14. Theorem 4.1 holds whenever the complex parameters α and
β fulfil the conditions of the set Sm,1 ∪ Sm,2.

Proof.
Since it is clear that the sets Sm,1 and Sm,2 only differ in an inversion of the
roles of α and β, we restrict ourselves to the proof of the case (α, β) ∈ Sm,1. So,
let α = −m− 2k (k ∈ N0) and β ∈ C such that β 6= 2l (l ∈ N0). First we infer
from Proposition 4.10 that

∆kT ∗β = (4π)k
Γ
(

β
2 + 1

)
Γ
(

β
2 − k + 1

) T ∗β−2k , ∀k ∈ N0 (4.12)

We then subsequently obtain

T ∗−m−2k ∗ T ∗β =

(
π

m
2 −k

22kΓ
(

m
2 + k

) (−∆)k
δ

)
∗ T ∗β

=
π

m
2 −k

22kΓ
(

m
2 + k

) (−1)k∆k T ∗β = cm(−m− 2k, β)T ∗β−2k

the last step on account of (4.12) and Euler’s reflection formula

Γ(1− z)Γ(z) =
π

sinπz
, ∀z ∈ C (4.13)

In a third proposition it will be shown that condition (II) of Proposition 4.13
can be omitted, provided that we modify condition (I) and put a restriction on
the dimension m.
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Proposition 4.15. Theorem 4.1 holds whenever the complex parameters α and
β fulfil the conditions of the set Ψ3 ∪Ψ4.

Proof.

(i) First, we prove the proposition for arbitrary (α, β) ∈ Ψ3. To this end, let
Re(α) ≤ −m and −2 > Re(β) > −m, with m ≥ 3; interchanging the roles
of α and β does not affect the proof. Clearly, the chosen couple (α, β) satisfies
condition (II) of Proposition 4.13 but does not fulfil condition (I). In the present
situation, it is possible to find l ∈ N, ε ∈]0, 2[ and r ∈]0,m− 2[ such that

Re(α) = −m− 2(l − 1)− ε

Re(β) = −m+ r

Now the couple (α+ 2l, β) fulfils conditions (I) and (II), resulting in

T ∗α+2l ∗ T ∗β = cm(α+ 2l, β)T ∗α+β+m+2l

As the convolution at the left-hand side is well–defined, application of the opera-
tor ∆l to both sides leads to(

∆l T ∗α+2l

)
∗ T ∗β = cm(α+ 2l, β)

(
∆l T ∗α+β+m+2l

)
Formula (4.12) then yields

(4π)l Γ
(

α
2 + l + 1

)
Γ
(

α
2 + 1

) T ∗α ∗ T ∗β

= cm(α+ 2l, β) (4π)l
Γ
(

α+β+m
2 + l + 1

)
Γ
(

α+β+m
2 + 1

) T ∗α+β+m

from which (4.9) readily follows when taking into account Euler’s reflection for-
mula (4.13).

(ii) Similarly, for (α, β) ∈ Ψ4, it is possible to find l1, l2 ∈ N, and ε1, ε2 ∈]0, 2[
such that

Re(α) = −m− 2(l1 − 1)− ε1

Re(β) = −m− 2(l2 − 1)− ε2

Then the couple (α+ 2l1, β + 2l2) fulfils conditions (I) and (II), allowing the
proof to be completed as in (i).
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Remark 4.3. Notice that in part (i) of the previous proof, the condition (II)
can not be fulfilled for the couple (α+ 2l, β) if m = 1, 2 or 0 > Re(β) > −2. In
the same way, in part (ii), the condition (II) can not be fulfilled for the couple
(α+ 2l1, β + 2l2) if m = 1, 2, 3.

Now, if (α, β) 6∈ Ω then T ∗α ∗T ∗β does not exist as a genuine convolution any-
more. However for each β ∈ C \ {2j : j ∈ N0}, the expression cm(α, β) T ∗α+β+m

is a holomorphic mapping of α, for all α ∈ C \ {2k : k ∈ N0} such that
α 6= −β − m + 2l, l ∈ N0. Hence, we may define the expression T ∗α ∗ T ∗β at
the left-hand side of (4.9) in this α–region by analytic continuation. Moreover,
this reasoning clearly allows for the roles of α and β to be interchanged. This
leads to a sound interpretation of the above result (4.9) in this case, involving
a ”∗”–operation which, although not being a genuine convolution, still satisfies
the basic properties of a convolution, as will be shown below in Corollary 4.1.

Similarly as above, we now give sense to the distributions T ∗α ∗ U∗β , U∗α ∗ T ∗β
and U∗α ∗U∗β . In Theorem 4.2, we trace out the largest subset of C×C for which
each of these distributions is a convolution in the classical sense. Next, for all
admissible couples (α, β) not belonging to that subset, we provide a ”natural”
definition.

Theorem 4.2.

(i) For (α+ 1, β) ∈ Ω, the convolutions U∗α ∗ T ∗β and T ∗β ∗ U∗α are tempered
distributions given by

U∗α ∗ T ∗β = T ∗β ∗ U∗α = cm(α− 1, β)U∗α+β+m (4.14)

(ii) For (α+ 1, β + 1) ∈ Ω, the convolution U∗α ∗U∗β is a tempered distribution
given by

U∗α ∗ U∗β =
−2π

α+ β +m
cm(α− 1, β − 1)T ∗α+β+m (4.15)

Proof.
We only treat the case of U∗α ∗ T ∗β , the other cases being similar.
Take (α+ 1, β) ∈ Ω, then T ∗α+1 ∗ T ∗β is a genuine convolution and hence:

∂x

(
T ∗α+1 ∗ T ∗β

)
=

(
∂xT

∗
α+1

)
∗ T ∗β

On account of (4.9) and Proposition 4.10, this leads to

(α+ β +m+ 1) cm(α+ 1, β)U∗α+β+m = (α+ 1)U∗α ∗ T ∗β
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or

U∗α ∗ T ∗β = cm(α− 1, β)U∗α+β+m

Now note that for the admissible values of (α+ 1, β) ∈ C× C, viz

α+ 1 6= 2j , β 6= 2k and α+ β +m+ 1 6= 2l , j, k, l ∈ N0

we already had that

T ∗α+1 ∗ T ∗β = cm(α+ 1, β)T ∗α+β+m+1 (4.16)

where the ”∗”–operator denotes a genuine convolution if (α + 1, β) ∈ Ω. Then
the action of the Dirac operator ∂x on both sides of (4.16) produces

∂x

(
T ∗α+1 ∗ T ∗β

)
= (α+ 1) cm(α− 1, β)U∗α+β+m

which inspires the following definition.

Definition 4.1.

(i) For (α, β) ∈ C× C such that

α 6= 2j + 1 , β 6= 2k and α+ β 6= −m+ 2l + 1 , j, k, l ∈ N0

one puts
U∗α ∗ T ∗β = T ∗β ∗ U∗α = cm(α− 1, β)U∗α+β+m

(ii) For (α, β) ∈ C× C such that

α 6= 2j + 1 , β 6= 2k + 1 and α+ β 6= −m+ 2l, j, k, l ∈ N0

one puts

U∗α ∗ U∗β =
−2π

α+ β +m
cm(α− 1, β − 1)T ∗α+β+m

Now, the basic properties of convolutions also hold for the newly defined ”∗”–
operation between members of the families of distributions T = {T ∗λ : λ ∈ C}
and U = {U∗λ : λ ∈ C}.
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Corollary 4.1. Let X1 and X2 be two distributions of T∪U. Then, as long as
the distributions involved are defined, the following properties hold:

(i) [Commutativity] X1 ∗X2 = X2 ∗X1

(ii) [Derivation] ∂x (X1 ∗X2) =
(
∂xX1

)
∗X2 = X1 ∗

(
∂xX2

)
(X1 ∗X2) ∂x =

(
X1∂x

)
∗X2 = X1 ∗

(
X2∂x

)
Proof.

(i) This commutative law can readily be checked.

(ii) In all cases where the ”∗”–operator denotes a genuine convolution, the
proof is trivial. In the other cases, restricting α and β to admissible
values, one has e.g.

∂x

(
T ∗α ∗ T ∗β

)
= (α+ β +m) cm (α, β) U∗α+β+m−1

The right-hand side equals

α+ β +m

α

cm (α, β)
cm (α− 2, β)

(
∂xT

∗
α

)
∗ T ∗β =

(
∂xT

∗
α

)
∗ T ∗β

which also can be written as

α+ β +m

β

cm (α, β)
cm (α, β − 2)

T ∗α ∗
(
∂xT

∗
β

)
= T ∗α ∗

(
∂xT

∗
β

)
from which we may conclude that

∂x

(
T ∗α ∗ T ∗β

)
=

(
∂xT

∗
α

)
∗ T ∗β = T ∗α ∗

(
∂xT

∗
β

)
The other cases are treated similarly.

The above properties justify that the ”∗”–operation is called convolution
as well, with a slight abuse of language. However, a careful interpretation is
required in all cases.

Product

In general, the product of arbitrary distributions is not defined. However, if the
convolution of two distributions f and g exists, one can always give meaning to
the product of their Fourier transforms, since for f, g ∈ S ′ and φ ∈ S:

〈 F [f ] · F [g] , φ 〉 = 〈 F [f ∗ g] , φ 〉 = 〈 f ∗ g , F [φ] 〉
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Hence, in view of the fact that the Fourier transform maps the set T (respectively
U) onto the set T (respectively −iU), it makes sense to consider products of
distributions T ∗λ and U∗λ . We will give a rigorous definition for the distributions
T ∗α · T ∗β , T ∗α · U∗β , U∗α · T ∗β and U∗α · U∗β , for all allowed values of (α, β) ∈ C × C.
Note that we use the dot notation in order to emphasize that we are dealing
with a product.

Theorem 4.3.

(i) For (−α−m,−β−m) ∈ Ω, the product T ∗α ·T ∗β is a tempered distribution
given by

T ∗α · T ∗β = cm(−α−m,−β −m)T ∗α+β

(ii) For (−α − m + 1,−β − m) ∈ Ω, the products U∗α · T ∗β and T ∗β · U∗α are
tempered distributions given by

U∗α · T ∗β = T ∗β · U∗α = cm(−α−m− 1,−β −m)U∗α+β

(iii) For (−α − m + 1,−β − m + 1) ∈ Ω, the product U∗α · U∗β is a tempered
distribution given by

U∗α · U∗β =
2π

α+ β +m
cm(−α−m− 1,−β −m− 1)T ∗α+β

Proof.
We only treat the product T ∗α · T ∗β , the other cases being similar.
Take (α, β) ∈ C×C such that (−α−m,−β−m) ∈ Ω, i.e. let (α, β) be a couple
of complex parameters for which the distribution T ∗−α−m ∗ T ∗−β−m is a genuine
convolution (see Theorem 4.1). We then have

F [T ∗−α−m] · F [T ∗−β−m] = F
[
T ∗−α−m ∗ T ∗−β−m

]
= cm(−α−m,−β −m)F [T ∗−α−β−m]

which, by means of Proposition 4.11, reduces to

T ∗α · T ∗β = cm(−α−m,−β −m)T ∗α+β

Now recall that for all (−α−m,−β −m) /∈ Ω, such that

α 6= −m− 2j , β 6= −m− 2k and α+ β 6= −m− 2l , j, k, l ∈ N0
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the distribution T ∗−α−m ∗ T ∗−β−m is still defined, and one has

F
[
T ∗−α−m ∗ T ∗−β−m

]
= cm(−α−m,−β −m)T ∗α+β

But, as the distribution T ∗−α−m ∗ T ∗−β−m is no longer defined as a genuine con-
volution, we cannot rewrite the left-hand side as the product of two Fourier
transforms. However, the above formula inspires a definition for the products
of distributions in T ∪ U in these cases as well.

Definition 4.2.

(i) For (α, β) ∈ C× C such that

α 6= −m− 2j , β 6= −m− 2k and α+ β 6= −m− 2l , j, k, l ∈ N0

one puts
T ∗α · T ∗β = cm(−α−m,−β −m)T ∗α+β

(ii) For (α, β) ∈ C× C such that

α 6= −m−2j−1 , β 6= −m−2k and α+β 6= −m−2l−1 , j, k, l ∈ N0

one puts

U∗α · T ∗β = T ∗β · U∗α = cm(−α−m− 1,−β −m)U∗α+β

(iii) For (α, β) ∈ C× C such that

α 6= −m−2j−1 , β 6= −m−2k−1 and α+β 6= −m−2l , j, k, l ∈ N0

one puts

U∗α · U∗β =
2π

α+ β +m
cm(−α−m− 1,−β −m− 1)T ∗α+β

By the above definition we have now given meaning to the distribution T ∗α ·T ∗β
for all admissible (α, β) ∈ C×C. However, one should always keep in mind that
only for the couples (α, β) mentioned in Theorem 4.3, T ∗α ·T ∗β can be interpreted
as a genuine product of distributions.

Remark 4.4. On account of Corollary 4.1 (i), the ”·”-operator acting on ad-
missible members of (T ∪ U)× (T ∪ U) is commutative. In particular, one has,
for allowed values of α and β, that U∗β · T ∗α = T ∗α · U∗β .
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4.3.4 Examples: some specific distributions in Euclidean
space

To emphasize the unifying character of our theory we give some explicit ex-
amples showing that for specific choices of λ well–known classical and Clifford
distributions are obtained.

Example 1. Higher dimensional signum distribution

For λ = 0 we find that

〈 U0 , φ 〉

= am

〈
Fp rm−1

+ , Σ(1)[φ]
〉

=
∫ +∞

0

rm−1 dr

∫
Sm−1

ω φ(rω) dS(ω)

=
∫

Rm

ω φ(x) dV (x) = 〈 ω , φ 〉

showing that U0 coincides with the locally integrable function ω. As a distribu-
tion, ω = x

|x| is the higher dimensional analogue of the one–dimensional signum
distribution sgn(t) on the real line, introduced in Subsection 2.1.1.

Example 2. Higher dimensional principal value distribution

For λ = −m we find that

〈 U−m , φ 〉 = am

〈
Fp r−1

+ , Σ(1)[φ]
〉

= Fp
∫ +∞

0

1
r
dr

∫
Sm−1

ω φ(rω) dS(ω) =
∫

Rm

ω

rm
(φ(x)− φ(0)) dV (x)

= lim
ε→0+

∫
Rm\B(0;ε)

ω

rm
φ(x) dV (x) ≡

〈
Pv

ω

rm
, φ

〉
so that

U∗−m = U−m = Pv
ω

rm

which is the principal value kernel in Rm, studied in [50]. It is seen as the higher
dimensional analogue of the one–dimensional Pv 1

t distribution on the real line,
introduced in Subsection 2.1.1. Since the numerator ω of that higher dimen-
sional principal value kernel clearly is homogeneous of degree 0 and satisfies∫

Sm−1
ω dS(ω) = 0
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(see Section 3.2), the distribution Pv ω
rm is a typical example of a convolution

operator, giving rise to a singular integral operator in the sense of Horváth (see
Subsection 2.2.1), viz

H̃[f ](y) =
(

2
am+1

Pv
ω

rm
∗ f(x)

)
(y)

=
2

am+1
lim

ε→0+

∫
Rm\B(0;ε)

y − x

|y − x|
f(x)

|y − x|m
dV (x)

This is nothing but the Clifford–vector valued Hilbert transform, introduced in
e.g. [69, 60]. In the following chapter we study that operator in more detail.

Example 3. Fundamental solution of ∂λ
x , λ ∈ C

In [19] the fundamental solution of an arbitrary complex power of the Dirac
operator has been calculated in terms of the distributions T ∗λ and U∗λ . For
a complex number λ 6= −m − n (n ∈ N0), the operator ∂λ

x is a convolution
operator, acting on tempered distributions f as follows (see [52]):

∂λ
x f =

[
1 + eiπλ

2
2λΓ

(
λ+m

2

)
π
−λ+m

2

T ∗−λ−m − 1− eiπλ

2
2λΓ

(
λ+m+1

2

)
π
−λ+m+1

2

U∗−λ−m

]
∗ f

=
2λ

π
m
2

Fp
1

|x|λ+m

[
1 + eiπλ

2
Γ
(

λ+m
2

)
Γ
(
−λ

2

) − 1− eiπλ

2
Γ
(

λ+m+1
2

)
Γ
(
−λ−1

2

) ω] ∗ f
We notice that complex powers of the Laplace operator were already defined in
[68]; for µ ∈ C \ {−m

2 − l, l ∈ N0} and a tempered distribution f , one has

(−∆)µ f =
22µ Γ

(
µ+ m

2

)
π−µ+ m

2
T ∗−2µ−m ∗ f

Note that in particular the ”square root of the negative Laplacian” is given by

(−∆)
1
2 [f ](x) =

(
4π
am+1

T ∗−m−1 ∗ f
)

(x) =
−2
am+1

Fp
∫

Rm

f(u)
|x− u|m+1

dV (u)

which is a scalar valued convolution operator, as opposed to the Clifford–vector
valued Dirac operator ∂x for which also holds ∂2

x = −∆. Moreover, it is well–
known (see e.g. [30]) that this scalar square root is the so–called Hilbert–Dirac
operator −H̃∂x, since

−H̃∂x[f ] =
−2
am+1

U∗−m ∗
(
∂xf

)
=

−2
am+1

(
U∗−m∂x

)
∗ f =

4π
am+1

T ∗−m−1 ∗ f
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We will now focus on the construction of the fundamental solutions Eλ of the
complex powers of the Dirac operator ∂λ

x . For the moment we need to exclude
the values λ = −m − n (n ∈ N0) for which the operator ∂λ

x is not yet defined.
We then distinguish between several cases for the parameter λ ∈ C, depending
on the dimension m.

case a. λ = 1, 2, . . . ,m− 1

For λ = −m+ 1 we find, according to Proposition 4.10, that

∂x U
∗
−m+1 = −2π T ∗−m = −πam δ(x)

which confirms that

− 1
πam

U∗−m+1 =
1
am

ω

rm−1
=

1
am

x

|x|m

is the fundamental solution of the Dirac operator in Rm (see Section 3.2).
Next, observe that we also have

∆T ∗−m+2 = −∂x((−m+ 2)U∗−m+1) = −πam (m− 2) δ(x)

which confirms

− 1
πam

1
m− 2

T ∗−m+2 = − 1
am

1
m− 2

1
rm−2

being the fundamental solution of the Laplace operator in Rm.
Proceeding in this way, we recursively find the fundamental solutions of natural
powers of the Dirac operator (at least up to order (m − 1)), and hence also of
the Laplace operator:

∂2l
x

(
1
am

2
(2π)l

1
m− 2

1
m− 4

· · · 1
m− 2l

T ∗−m+2l

)
= δ(x)

and

∂2l+1
x

(
− 1
am

2
(2π)l+1

1
m− 2

1
m− 4

· · · 1
m− 2l

U∗−m+2l+1

)
= δ(x)

So, this leads to the fundamental solutions

E2l =
Γ
(

m
2 − l

)
22lπ

m
2 +l

T ∗−m+2l (4.17)

E2l+1 = −
Γ
(

m
2 − l

)
22l+1π

m
2 +l+1

U∗−m+2l+1 (4.18)
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case b. λ = m+ n, n ∈ N0

For odd dimension m, it is sufficient to notice that

T ∗−2m−2n−1 ∗ T ∗2n+1 =
πm

Γ
(
m+ n+ 1

2

)
Γ
(
−n− 1

2

) δ(x)
and

U∗−2m−2n ∗ U∗2n =
πm+1

Γ
(
m+ n+ 1

2

)
Γ
(
−n+ 1

2

) δ(x)
Hence, in this case, in view of the definitions of ∂m+2n

x and ∂m+2n+1
x in terms

of U∗−2m−2n and T ∗−2m−2n−1, we arrive at the fundamental solutions:

Em+2n = −
Γ
(

1
2 − n

)
2m+2nπ

1
2+m+n

U∗2n (4.19)

Em+2n+1 =
Γ
(
− 1

2 − n
)

2m+2n+1π
1
2+m+n

T ∗2n+1 (4.20)

In case of an even dimension m, note that (4.17) and (4.18) are ill–defined
whenever λ = m + n (n ∈ N0). Thus, one has to use different techniques in
order to find a fundamental solution. As

∂x ln r =
2
am

U∗−1

it is directly seen that, for even m, the fundamental solution of ∂m
x is given by

Em(x) = − am

(2π)m
ln r (4.21)

This fact inspired us to propose, for the remaining natural powers of ∂x, a
fundamental solution containing a logarithmic term, which has eventually lead
to the following theorem.

Theorem 4.4. Let the dimension m be even. Then, for all n ∈ N0, the funda-
mental solution Em+n of ∂m+n

x is given by

Em+2n−1 = (p2n−1 ln r + q2n−1)U∗2n−1 (4.22)

Em+2n = (p2n ln r + q2n)T ∗2n (4.23)



84 Chapter 4. Four families of distributions

with

p2n =
(
−1
4π

)n
p0

n!

q2n = −
(
−1
4π

)n
p0

n!

n∑
j=1

[
1

m+ 2n− 2j
+

1
2n− 2j + 2

]
p2n+1 = 2

(
−1
4π

)n+1
p0

n!

q2n+1 = −2
(
−1
4π

)n+1
p0

n!


n∑

j=1

[
1

m+ 2n− 2j
+

1
2n− 2j + 2

]
+

1
m+ 2n


and

p0 = − am

(2π)m

Proof.
First, assuming that the desired fundamental solutions take the proposed forms
(4.22) and (4.23), we establish recurrence relations between the coefficients
(p2n, q2n) and (p2n−1, q2n−1). To this end, note that

∂m+2n
x Em+2n(x) = δ(x) ⇐⇒ ∂x(p2n ln r + q2n)T ∗2n = Em+2n−1(x)

which, on account of (4.21) and the product rules from Theorem 4.3, leads to
p2n =

1
2n

p2n−1

q2n =
1
2n

(
q2n−1 −

1
2n

p2n−1

) (4.24)

Similarly, one has

∂m+2n+1
x Em+2n+1(x) = δ(x) ⇐⇒ ∂x(p2n+1 ln r+q2n+1)U∗2n+1 = Em+2n(x)

yielding 
p2n+1 = − 1

2π
p2n

q2n+1 = − 1
2π

(
q2n −

1
m+ 2n

p2n

) (4.25)
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Now, taking into account (4.21), one already has that

p0 = − am

(2π)m
and q0 = 0

Then, from (4.24) and (4.25), the desired closed expressions for all coefficients
may be obtained by an induction argument.

case c. λ ∈ C \ N and λ 6= −m− n, n ∈ N0

It remains to construct fundamental solutions Eλ for all non–natural powers of
∂x. Seen the definition of ∂λ

x as a convolution operator in terms of T ∗−λ−m and
U∗−λ−m and the fact that

T ∗−λ−m ∗ T ∗λ−m =
πm

Γ
(

λ+m
2

)
Γ
(−λ+m

2

) δ(x)
and

U∗−λ−m ∗ U∗λ−m =
πm+1

Γ
(

λ+m+1
2

)
Γ
(−λ+m+1

2

) δ(x)
it seems rather natural to define Eλ as a linear combination of T ∗λ−m and U∗λ−m.
Hence we put

Eλ = CT (m,λ)T ∗λ−m + CU (m,λ)U∗λ−m

where the complex coefficients CT (m,λ) and CU (m,λ) still need to be deter-
mined in order to fulfil ∂λ

xEλ(x) = δ(x). The action of ∂λ
x on the distribution

Eλ(x) produces four terms, two of which are ”mixed”, in the sense that they
contain a T ∗– as well as a U∗–distribution; they are given by

1 + eiπλ

2
2λΓ

(
λ+m

2

)
π
−λ+m

2

CU (m,λ)T ∗−λ−m ∗ U∗λ−m

=
1 + eiπλ

2
2λΓ

(
m+1

2

)
π−

λ
2 Γ
(−λ+m+1

2

) CU (m,λ)U∗−m

and

−1− eiπλ

2
2λΓ

(
λ+m+1

2

)
π
−λ+m+1

2

CT (m,λ)U∗−λ−m ∗ T ∗λ−m

= −1− eiπλ

2
2λΓ

(
m+1

2

)
π−

λ−1
2 Γ

(−λ+m
2

) CT (m,λ)U∗−m
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Clearly, we need these terms to cancel each other, leading to the condition

CT (m,λ)
CU (m,λ)

= π
1
2
1 + eiπλ

1− eiπλ

Γ
(−λ+m

2

)
Γ
(−λ+m+1

2

) (4.26)

One can easily verify that putting

CT (m,λ) =
e−iπλ + 1

2
Γ
(−λ+m

2

)
2λπ

λ+m
2

and

CU (m,λ) =
e−iπλ − 1

2
Γ
(−λ+m+1

2

)
2λπ

λ+m+1
2

not only condition (4.26) is satisfied, but moreover

∂λ
x

[
CT (λ,m)T ∗λ−m + CU (λ,m)U∗λ−m

]
= δ(x)

This means that for arbitrary λ ∈ C \ N such that λ 6= −m − n (n ∈ N0), the
fundamental solution of ∂λ

x is given by

Eλ =
1 + e−iπλ

2
Γ
(−λ+m

2

)
2λπ

λ+m
2

T ∗λ−m − 1− e−iπλ

2
Γ
(−λ+m+1

2

)
2λπ

λ+m+1
2

U∗λ−m

Note that the formulae (4.17) and (4.18), obtained in Case A, and the formulae
(4.19) and (4.20), obtained in Case B for m odd, are included in the above
formula as well. Only the fundamental solutions Em+n for m even and with
n ∈ N0, escape from this unifying structure.

case d. λ = −m− n, n ∈ N0

We are now able to define ∂−m−n
x as the convolution operator

∂−m−n
x f = Em+n ∗ f

We also put
E−m−n = ∂m+n

x δ

and observe that indeed

∂−m−n
x E−m−n = Em+n ∗ ∂m+n

x δ = δ

Note that, depending on the parity of the dimension m and the natural num-
ber n, E−m−n is indeed a distribution in the T– or the U–family.
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4.3.5 Historical comment

The radial distributions Tλ = Fp rλ, r = |x|, λ ∈ C, are of course well–known.
In [84], Riesz introduced their normalizations Rα, given by

Rα =
1

2απ
m
2

Γ
(

m−α
2

)
Γ
(

α
2

) Fp rα−m =
Γ
(

m−α
2

)
2απ

α+m
2

T ∗α−m

for α 6= −2l and α 6= m+ 2l, l ∈ N0, and

R−2l = (−∆)lδ =
22lΓ

(
m
2 + l

)
π

m
2 −l

T ∗−m−2l , l ∈ N0

Rm+2l =
2(−1)l

π
m
2 2m+2lΓ

(
m
2 + l

)
l!
r2l

(
log

1
πr

+Am,l

)
, l ∈ N0

where

Am,l =
1
2

(
1 +

1
2

+ . . .+
1
l
− C

)
+

1
2

Γ′
(

m
2 + l

)
Γ
(

m
2 + l

) , l ∈ N0

and C is Euler’s constant. The corresponding Riesz potentials are then given
by (see Subsection 4.3.3):

Iα[f ] = Rα ∗ f , α 6= m+ 2l

So we note that, when ignoring the additional definition of Rm+2l, Rα shows
simple poles at α = m + 2l, l ∈ N0. Moreover F [R−2l] and F [Rm+2l], l ∈ N0,
are no Riesz kernels anymore, whereas in our approach T ∗λ is an entire function
of λ ∈ C and the Fourier transform constitutes a bijection in the T–family.

In [71], Horváth introduced the vectorial kernels

~Nα = −~∇Rα+1

which, for α 6= −2l − 1 and α 6= m+ 2l − 1, l ∈ N0, are given by

~Nα =
1

2απ
m
2

Γ
(

m−α+1
2

)
Γ
(

α+1
2

) ~x

rm−α+1

For admissible values of α and β, these kernels satisfy the convolution formulae

~Nα ∗ ~Nβ = −Rα+β
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where the convolution of the two vector valued distributions has to be taken
in the sense of a scalar product. If the Euclidean vector ~x is identified with
the Clifford–vector x, then the Horváth kernels ~Nα correspond to the Clifford
distributions

~Nα ≈
Γ
(

m−α+1
2

)
2απ

α+m+1
2

U∗α−m

Again note that ~Nα shows simple poles at α = m+2l−1, l ∈ N0, whereas U∗λ is
an entire function of λ ∈ C. Moreover, after identification, up to a minus sign, of
the scalar product of two vectors with the inner product of two Clifford–vectors,
the above convolution formula for the Horváth kernels ~Nα, finds its equivalent
in our formula (4.15) for the convolution of U∗λ–distributions where the Clifford
geometric multiplication is involved.

In the special case where α = 1 the Horváth kernel turns into the vectorial
kernel of Newtonian force

~N1 =
Γ
(

m
2

)
2π

m
2

~x

rm

in which one recognizes, after identification and up to a minus sign, the funda-
mental solution of the Dirac operator ∂x:

~N1 ≈ 1
am

ω

rm−1
=

Γ
(

m
2

)
2π

m
2 +1

U∗−m+1

The relation ~∇ ◦ ~N1 = δ in [71], where the nabla operator ~∇ is acting as a
divergence, is then the vectorial equivalent of the formula

∂x

(
−

Γ
(

m
2

)
2π

m
2 +1

U∗−m+1

)
= δ

where the Dirac operator ∂x acts by geometric multiplication.

In the special case where α = 0, the Horváth kernel

~N0 =
Γ
(

m+1
2

)
π

m+1
2

~x

rm+1
=

2
am+1

~x

rm+1

is a vectorial generalization to Rm of the Pv 1
πt kernel on the real line. It satisfies

the reciprocity formula
~N0 ∗ ~N0 = −δ
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which was proved first in [69]. This kernel leads to the vectorial Hilbert trans-
form in Rm, the components of which are the Riesz transforms Rj , j = 1, . . . ,m,
given by

Rj [f ](~x) = lim
ε→0+

2
am+1

∫
|~x−~y|>ε

xj − yj

|~x− ~y|m+1
f(~y) dV (~y)

Note that ~N0 corresponds, up to a minus sign, to the Hilbert convolution kernel
in the Clifford setting

− ~N0 ≈ 2
am+1

Pv
ω

rm
= −

Γ
(

m+1
2

)
π

m+1
2

U∗−m

(see Example 2 of previous subsection). To our knowledge, the first one to have
considered the Hilbert convolution kernel as a function taking values in the sub-
space R1

0,m of Clifford–vectors, is Horváth in [69].

Finally, the scalar convolution operator

Ξ = ~∇ ◦ ~N0 = −~∇ ◦ (~∇R1) = (−∆)R1 = R−1

satisfies
Ξ ∗ Ξ = −∆

a result which already figures in [40]; one recognizes in Ξ the Hilbert–Dirac
kernel 4π

am+1
T ∗−m−1 discussed above.

4.4 The distributions T ∗
λ,p, U ∗

λ,p, V ∗
λ,p and W ∗

λ,p

The distributions Tλ,p = Fp rλ Pp(x), Uλ,p = Fp rλ ω Pp(x), Vλ,p = Fp rλ Pp(x)ω
and Wλ,p = Fp rλ ω Pp(x)ω (with x = r ω, r = |x| and (λ, p) ∈ C × N0) were
introduced in [26, 25]. They have then been normalized, extensively studied
and applied in a series of papers [9, 10, 11, 13, 14, 21, 15]. These four families
of Clifford distributions encompass the distributions of Section 4.3 in the sense
that in the special case where the degree p of the involving vector valued, mono-
genic, homogeneous polynomial Pp is zero, the families of distributions T and
U will be recovered.

In the first subsection these four families of Clifford distributions are in-
troduced, making use of the same technique as in previous section. The basic
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ingredients for the construction again consist of the spherical co-ordinates and
the fundamental distribution Fp rµ

+ on the real r–axis. A next step, crucial for
the generalization, is then the employment of the generalized spherical means of
Subsection 4.2.2, involving vector valued, monogenic, homogeneous polynomials
Pp of degree p ∈ N0. In the second subsection, we generalize the properties of
Subsection 4.3.3. Finally, we look at some specific and useful members of the
families under consideration.

4.4.1 Definition

Let φ be a scalar valued test function in Rm and, as before, let µ = λ+m− 1.
Then for all (λ, p) ∈ C × N0, we define the distributions Tλ,p, Uλ,p, Vλ,p and
Wλ,p as follows:

〈 Tλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(0)
p [φ]

〉
〈 Uλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(1)
p [φ]

〉
〈 Wλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(2)
p [φ]

〉
〈 Vλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(3)
p [φ]

〉
Remark 4.5. Following Remark 4.1 we also have abbreviated the notation Tλ,Pp

to Tλ,p and the like.

It is clear that for each choice of p ∈ N0, the above introduced distributions
all will inherit an infinite sequence of singular points in the complex λ–plane
from the distribution finite parts on the real r–axis. Half of these singularities
are directly seen to disappear, their residue being zero on account of the van-
ishing at the origin r = 0 of either the odd or the even order derivatives of the
generalized spherical means (see Proposition 4.8). In addition, the appearance
of the spherical monogenic causes a finite number of the remaining residues to
be zero as well (see again Proposition 4.8). The same normalization procedure,
already explained in previous section, will be applied: the eventual genuine sim-
ple poles will be removed through division by an appropriate Gamma–function.
We only give the details of the method for the Tλ,p–distributions, the normal-
ization of the other distributions being quite similar.

First of all, let for a moment λ 6= −m − n and λ 6= −m − n − pe, n ∈ N0.
Then the connection between Tλ,p and Tλ = Tλ,0 is obtained in a natural way
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from

〈 TλPp(x) , φ(x) 〉

= 〈 Tλ , Pp(x)φ(x) 〉 = am

〈
Fp rµ

+ , Σ(0)[Pp(x)φ(x)]
〉

= am

〈
Fp rµ+pe

+ , Σ(0)
p [φ]

〉
= 〈 Tλ,p , φ 〉

leading, at least for the values of λ mentioned above, to

Tλ,p = Tλ Pp (4.27)

The other values of λ are not yet taken into account, as they seem to be simple
poles of either the left- or the right-hand side of the relation (4.27). Further
investigation of these assumed singularities is carried out in what follows.

It is obvious from the definition itself that Tλ,p, considered as a function of
(λ, p) ∈ C × N0, inherits the following infinite sequence of singularities (simple
poles) from the finite parts distribution: µ + pe = −n, n ∈ N, or equivalently,
λ = −m− pe − n+ 1, n ∈ N; the corresponding residues are given by

Res
λ=−m−pe−n+1

〈 Tλ,p , φ 〉 = am

〈
(−1)(n−1)

(n− 1)!
δ(n−1)
r , Σ(0)

p [φ]
〉

(4.28)

According to the parity of n, we then distinguish between two cases.

case a. n = 2l + 2, l ∈ N0

In this case we rewrite (4.28) as

Res
λ=−m−pe−2l−1

〈 Tλ,p , φ 〉 =
am

(2l + 1)!

{
∂2l+1

r Σ(0)
p [φ]

}
r=0

the latter being zero on account of Proposition 4.8. Hence Tλ,p shows no genuine
poles whenever n = 2l + 2, or equivalently, whenever λ = −m − pe − 2l − 1,
l ∈ N0. Thus, the distributions T−m−pe−2l−1,p, l ∈ N0, can be defined by means
of a limiting process:

〈 T−m−pe−2l−1,p , φ 〉 = am lim
µ→−2l−2

〈
Fp rµ

+ , Σ(0)
p [φ]

〉
where the limit at the right-hand side exactly yields the monomial pseudofunc-
tion Fp r−2l−2

+ .
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case b. n = 2l + 1, l ∈ N0

Substitution of these values of n in (4.28) yields

Res
λ=−m−pe−2l

〈 Tλ,p , φ 〉 =
am

(2l)!

{
∂2l

r Σ(0)
p [φ]

}
r=0

Since, according to Proposition 4.8, the expression at the right-hand side equals
zero for l < p − pe

2 , we conclude that Tλ,p also has no genuine singularities in
the case λ = −m − pe − 2l for l = 0, 1, 2, . . . , p − pe

2 − 1; for this finite set of
values, the distribution can be defined similarly as above by a limiting process,
now involving the monomial pseudofunction Fp r−2l−1

+ .

The results obtained are summarized in the following proposition.

Proposition 4.16. Considered as a function of (λ, p) ∈ C×N0, the distribution
Tλ,p shows simple poles at λ = −m− 2p− 2l, l ∈ N0, with residue

Res
λ=−m−2p−2l

Tλ,p = am
1

(2p+ 2l)!
1

C(p+ l)
Pp(x)∆p+lδ(x)

Remark 4.6. The above considerations lead to the conclusion that multiplica-
tion of Tλ with Pp in (4.27) causes the removal of its singularities λ = −m− 2l
for l < p. Hence, the equality (4.27) may be holomorphically extended to all
couples (λ, p) which do not fulfil the relation λ + 2p = −m − 2l, l ∈ N0. This
means that, whenever Tλ,p is well–defined, we may rewrite it as Tλ Pp.

Now, the genuine singularities will be removed through the well–known tech-
nique of division by a deliberately chosen Gamma–function. Noting that the
function Γ(λ+m+2p

2 ) shows exactly the same simple poles as Tλ,p, with residues

Res
λ=−m−2p−2l

Γ
(
λ+m+ 2p

2

)
= 2

(−1)l

l!

we are lead to the following definition of the normalized distributions T ∗λ,p:
T ∗λ,p = π

λ+m
2 +p Tλ,p

Γ
(

λ+m
2 + p

) , λ 6= −m− 2p− 2l

T ∗−m−2p−2l,p =
(−1)ll!π

m
2 −l

22p+2l(p+ l)!Γ
(

m
2 + p+ l

) Pp(x)∆p+lδ(x) , l ∈ N0

(4.29)
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where, at the singularities of Tλ,p, the normalized distribution T ∗λ,p is defined,
up to constants, as the quotient of the residues involved.

As already discussed above, in this definition, Tλ,p should be interpreted in
terms of the monomial pseudofunction Fp r−n

+ whenever λ = −m− pe − n+ 1,
n ∈ N, but λ 6= −m− 2p− 2l, l ∈ N0. Moreover, one can verify that for p = 0
this definition is in accordance with the definition of T ∗λ = T ∗λ,0.

Adopting the same modus operandi leads to the following definitions of the
normalized distributions U∗λ,p, V

∗
λ,p and W ∗

λ,p with l ∈ N0:
U∗λ,p = π

λ+m+1
2 +p Uλ,p

Γ
(

λ+m+1
2 + p

) , λ 6= −m− 2p− 2l − 1

U∗−m−2p−2l−1,p =
(−1)p+1l!π

m
2 −l

22p+2l+1(p+ l)!Γ
(

m
2 + p+ l + 1

) (∂2p+2l+1
x δ(x)

)
Pp(x)


V ∗

λ,p = π
λ+m+1

2 +p Vλ,p

Γ
(

λ+m+1
2 + p

) , λ 6= −m− 2p− 2l − 1

V ∗
−m−2p−2l−1,p =

(−1)p+1l!π
m
2 −l

22p+2l+1(p+ l)!Γ
(

m
2 + p+ l + 1

) Pp(x)
(
∂2p+2l+1

x δ(x)
)


W ∗

λ,p = π
λ+m

2 +p Wλ,p

Γ
(

λ+m
2 + p

) , λ 6= −m− 2p− 2l

W ∗
−m−2p−2l,p =

(−1)ll!π
m
2 −l

22p+2l+2(p+ l + 1)!Γ
(

m
2 + p+ l + 1

) xPp(x)x∆p+l+1δ(x)

For each p ∈ N0, we introduce the following families of distributions:

Tp = {T ∗λ,p : λ ∈ C} , Up = {U∗λ,p : λ ∈ C}
Vp = {V ∗

λ,p : λ ∈ C} , Wp = {W ∗
λ,p : λ ∈ C}

4.4.2 Properties

Multiplication with the vector x and action of the Dirac operator ∂x

First we consider on our four families of distributions the action of multiplication
with the vector x and the action of the Dirac operator ∂x. Since the distributions
involved are not necessarily scalar valued, it makes sense to distinguish between
an action from the left or from the right.
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Theorem 4.5. For all (λ, p) ∈ C× N0 one has

xT ∗λ,p = −W ∗
λ,p x =

λ+m+ 2p
2π

U∗λ+1,p , xU∗λ,p = V ∗
λ,p x = −T ∗λ+1,p

T ∗λ,p x = −xW ∗
λ,p =

λ+m+ 2p
2π

V ∗
λ+1,p , U∗λ,p x = xV ∗

λ,p = W ∗
λ+1,p

Proof.
We only calculate xT ∗λ,p, the proof of the other formulae running along similar
lines. Taking into account Proposition 4.6 (i), we get

〈 φ , x Tλ,p 〉 = 〈 φx , Tλ,p 〉 = am

〈
Fp rµ+pe

+ , Σ(0)
p [φx]

〉
= am

〈
Fp rµ+pe

+ , rΣ(1)
p [φ]

〉
= 〈 φ , Uλ+1,p 〉

where the singularities are located at λ = −m− 2p− 2l for the distribution at
the left-hand side and at λ = −m− 2p− 2l − 2, l ∈ N0, for the distribution at
the right-hand side. We then distinguish between three cases.
If λ 6= −m− 2p− 2l, l ∈ N0, then

xT ∗λ,p =
π

λ+m
2 +p

Γ
(

λ+m
2 + p

) xTλ,p =
π

λ+m
2 +p

Γ
(

λ+m
2 + p

) Uλ+1,p =
λ+m+ 2p

2π
U∗λ+1,p

Next, if λ = −m − 2p − 2l, l ∈ N, then, by the definition of T ∗−m−2p−2l,p and
making use of Lemma 4.1 (ii), one has

xT ∗−m−2p−2l,p =
(−1)pl!π

m
2 −l

22p+2l(p+ l)!Γ
(

m
2 + p+ l

) x ∂2p+2l
x δ(x)Pp(x)

=
(−1)pl!π

m
2 −l

22p+2l−1(p+ l − 1)!Γ
(

m
2 + p+ l

) ∂2p+2l−1
x δ(x)Pp(x)

= − l

π
U∗−m−2p−2l+1,p

the last equality following from the definition of U∗−m−2p−2l+1,p for l ∈ N.
Finally, if λ = −m− 2p, then again on account of Lemma 4.1 (ii) one has

xT ∗−m−2p,p =
(−1)pπ

m
2

22pp!Γ
(

m
2 + p

) x ∂2p
x δ(x)Pp(x)

=
(−1)pπ

m
2

22p−1(p− 1)!Γ
(

m
2 + p

) ∂2p−1
x δ(x)Pp(x) = 0
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the last equality following from Proposition 3.1 (iii).

By a similar reasoning one can prove the following theorem.

Theorem 4.6.

(i) For all (λ, p) ∈ C× N0 one has

∂x T
∗
λ,p = λU∗λ−1,p (4.30)

T ∗λ,p ∂x = λV ∗
λ−1,p (4.31)

(ii) For all (λ, p) ∈ C× N0 one has

∂x U
∗
λ,p = V ∗

λ,p ∂x = −2π T ∗λ−1,p (4.32)

(iii) For all (λ, p) ∈ C× N with λ 6= −m− 2p+ 1 one has

U∗λ,p ∂x = ∂x V
∗
λ,p

=
2π

λ+m+ 2p− 1
[
(m− 2)T ∗λ−1,p + (λ− 1)W ∗

λ−1,p

]
(4.33)

whereas

U∗−m−2p+1,p ∂x = ∂x V
∗
−m−2p+1,p

= π [(m− 2)T−m−2p,p − (m+ 2p)W−m−2p,p] + 2πW ∗
−m−2p,p (4.34)

(iv) For all (λ, p) ∈ C× N one has

∂xW
∗
λ,p = − (m− 2) U∗λ−1,p − (λ+m+ 2p) V ∗

λ−1,p (4.35)
W ∗

λ,p ∂x = − (λ+m+ 2p) U∗λ−1,p − (m− 2) V ∗
λ−1,p (4.36)

Proof.
The proofs of the formulae (4.30)–(4.33) and (4.35)–(4.36) running along similar
lines, we only illustrate the general method by calculating ∂x T

∗
λ,p. We distin-

guish between two cases.
If λ 6= −m − 2p − 2l, l ∈ N0, then Tλ,p is a vector valued distribution. So one
has to consider ∂x Tλ,p as a left distribution in order to be able to switch the
action of the Dirac operator from the distribution to the test function. So, for
any scalar valued test function φ defined on Rm, one has〈

φ , ∂x Tλ,p

〉
= −

〈
φ∂x , Tλ,p

〉
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which, by the definition of the distributions Tλ,p, equals

−am

〈
Fp rµ+pe

+ , Σ(0)
p [φ∂x]

〉
On account of Proposition 4.7 (i), we may rewrite this as

− am

〈
Fp rµ+pe

+ ,

(
∂r +

m+ pe − 1
r

)
Σ(1)

p [φ]
〉

= am

〈
∂r Fp rµ+pe

+ , Σ(1)
p [φ]

〉
− am (m+ pe − 1)

〈
Fp rµ+pe−1

+ , Σ(1)
p [φ]

〉
For the calculation of the first term at the right-hand side, we have to apply
Proposition 4.1 (ii) and hence we need to distinguish between the subcases where
µ+ pe 6= −n and where µ+ pe = −n, n ∈ N0.
In the first subcase, by the definition of the distributions Uλ,p, we readily find〈

φ , ∂x Tλ,p

〉
= 〈 φ , λUλ−1,p 〉 (4.37)

leading to (4.30), by the definition of T ∗λ,p and U∗λ−1,p in terms of Tλ,p and Uλ−1,p

respectively.
In the second subcase, where µ+ pe = −n, n ∈ N0, we obtain

am

〈
∂r Fp r−n

+ , Σ(1)
p [φ]

〉
= am (−n)

〈
Fp r−n−1

+ , Σ(1)
p [φ]

〉
+ am

(−1)n

n!

〈
δ(n)
r , Σ(1)

p [φ]
〉

On account of Proposition 4.8 (ii), the second term at the right-hand side is
then seen to vanish for all n ∈ N0. Indeed, this is immediately clear when n is
even. When, on the other hand, n is odd, then, in view of the assumption made
on λ, n can only take the values n = 1, 3, 5, . . . , 2p− pe − 1, turning that term
also into zero. Thus it follows that also in this subcase (4.37) holds and hence
does (4.30).
Next, if λ = −m − 2p − 2l, l ∈ N0, then, by the definition of T ∗−m−2p−2l,p, one
has

∂x T
∗
−m−2p−2l,p = ∂x

(
(−1)pl!π

m
2 −l

22p+2l(p+ l)!Γ
(

m
2 + p+ l

) ∂2p+2l
x δ(x)Pp(x)

)

=
(−1)pl!π

m
2 −l

22p+2l(p+ l)!Γ
(

m
2 + p+ l

) ∂2p+2l+1
x δ(x)Pp(x)

= (−m− 2p− 2l)U∗−m−2p−2l−1,p
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leading to the desired formula (4.30).
Finally, for the proof of (4.34), we first apply the same working method as above.
So, for λ = −m− 2p+ 1 and p 6= 0, we find consecutively:〈

U−m−2p+1,p ∂x , φ
〉

= −
〈
U−m−2p+1,p , ∂x φ

〉
= −am

〈
Fp r−2p+pe−1

+ , rΣ(1)
p [∂x φ]

〉
= −am

〈
Fp r−2p+pe−1

+ , −(m− 2) Σ(0)
p [φ] + (r ∂r +m+ pe) Σ(2)

p [φ]
〉

= (m− 2) am

〈
Fp r−2p+pe−1

+ , Σ(0)
p [φ]

〉
+am

〈
−(m+ 2p) Fp r−2p+pe−1

+ +
(−1)2p−pe

(2p− pe)!
δ(2p−pe)(r) , Σ(2)

p [φ]
〉

=
〈

(m− 2)T−m−2p,p − (m+ 2p)W−m−2p,p + 2W ∗
−m−2p,p , φ

〉
the last step on account of (4.3) and the definition of W ∗

−m−2p,p. It is clear that
the value λ = −m− 2p+ 1 yields a singularity for the distributions Tλ−1,p and
Wλ−1,p at the right-hand side, but not for the distribution Uλ,p at the left-hand
side. Hence, we can only arrive at the following result:

U∗−m−2p+1,p ∂x = π U−m−2p+1,p ∂x

= π [(m− 2)T−m−2p,p − (m+ 2p)W−m−2p,p] + 2πW ∗
−m−2p,p

Higher order Dirac derivatives of the distributions T ∗λ,p and U∗λ,p may then
readily be calculated. For our purpose, we only consider actions of the Dirac
derivative from the left. Depending on the parity of the order of the derivative,
the outcome belongs either to the Tp– or to the Up–family of distributions. The
proof follows by an induction argument on the natural parameter k.

Corollary 4.2.

(i) For all (λ, p, k) ∈ C× N0 × N0 one has

∂2k
x T ∗λ,p = (−2π)k λ(λ− 2) . . . (λ− 2k + 2)T ∗λ−2k,p

∂2k+1
x T ∗λ,p = (−2π)k λ(λ− 2) . . . (λ− 2k + 2)(λ− 2k)U∗λ−2k−1,p (4.38)
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(ii) For all (λ, p, k) ∈ C× N0 × N0 one has

∂2k
x U∗λ,p = (−2π)k (λ− 1)(λ− 3) . . . (λ− 2k + 1)U∗λ−2k,p (4.39)

∂2k+1
x U∗λ,p = (−2π)k+1 (λ− 1)(λ− 3) . . . (λ− 2k + 1)T ∗λ−2k−1,p

Fourier transform

The formulae already obtained in this subsection are particularly suited for the
calculation of the Fourier transforms of all normalized distributions, up to one
exception (see further); this was done in [9, 14]. It turns out that for the distri-
butions in the Tp–, Up– and Vp–families, the Fourier spectrum remains in the
same family, whereas for a distribution in the Wp–family, a linear combination
of a T ∗λ,p– and a W ∗

λ,p–distribution is obtained.

For the calculation of the Fourier spectra of the distributions T ∗λ,p, we start
from a classical result of [97, Theorem IV.4.1]: for those couples (λ, p) ∈ C×N0

for which Re(λ) is restricted to the strip −m − p < Re(λ) < −p, the following
formula holds

F [Tλ Pp(x)](y) = i−pπ−
m
2 −λ−p Γ

(
λ+m

2 + p
)

Γ
(
−λ

2

) T−λ−m−2p Pp(y)

or, when taking into account (4.27) and Remark 4.6, we already have that

F [Tλ,p] = i−pπ−
m
2 −λ−p Γ

(
λ+m

2 + p
)

Γ
(
−λ

2

) T−λ−m−2p,p (4.40)

Both sides of the above formula are meromorphic functions in the complex
variable λ. Hence, by analytic continuation, this expression is valid in each
open connected area containing the above mentioned strip, and where both sides
exist. Singularities occur in (4.40) when λ = −m− 2p− 2l for the distribution
at the left-hand side and when λ = 2l for the one at the right-hand side (twice
with l ∈ N0). Naturally, the same singularities are also contained in the involved
Gamma–functions. Consequently, (4.40) is seen to hold for λ belonging to the
set Λ, which is defined as

Λ = C \ ({−m− 2p− 2l : l ∈ N0} ∪ {2l : l ∈ N0})

This smoothens the path for the following fundamental result.
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Theorem 4.7. For all (λ, p) ∈ C×N0, the Fourier transform of the distributions
T ∗λ,p is given by

F [T ∗λ,p] = i−p T ∗−λ−m−2p,p

Proof.

Three cases have to be distinguished.

case a. λ ∈ Λ
On account of (4.40) we indeed have

F [T ∗λ,p] =
π

λ+m
2 +p

Γ
(

λ+m
2 + p

) F [Tλ,p] = i−p π−
λ
2

Γ
(
−λ

2

) T−λ−m−2p,p = i−p T ∗−λ−m−2p,p

case b. λ = −m− 2p− 2l, l ∈ N0

Exploiting the definition of T ∗−λ−m−2p,p and the properties (3.2) of the Fourier
transform, we arrive at

F [T ∗−m−2p−2l,p](y) =
(−1)ll!π

m
2 −l

22p+2l(p+ l)!Γ
(

m
2 + p+ l

) F [Pp(x) ∆p+lδ(x)](y)

= i−p l!π
m
2 +l+p

2p(p+ l)!Γ
(

m
2 + p+ l

) Pp(∂y) ρ2p+2l

As p+ l ≥ p, Proposition 3.1 (i) leads to the desired result, i.e.

F [T ∗−m−2p−2l,p] = i−p π
m
2 +p+l

Γ
(

m
2 + p+ l

) ρ2l Pp(y) = i−p T ∗2l,p (4.41)

In the above, we have used the notation ρ = |y|.

case c. λ = 2l, l ∈ N0

This case follows by considering the action of the Fourier operator on (4.41):

F [T ∗2l,p](y) = ip T ∗−m−2p−2l,p(−y) = i−p T ∗−m−2p−2l,p(y)

As the four families of normalized distributions are interrelated by the mul-
tiplication with the vector x and by the action of the Dirac operator ∂x, the
Fourier transform of the distributions U∗λ,p, V

∗
λ,p and W ∗

λ,p can be calculated
leaning upon Theorem 4.7. However, for the specific value of λ = −m− 2p+ 1,
formula (4.33) does not hold, causing also a hiatus in the following theorem.
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Theorem 4.8. For all (λ, p) ∈ C×N0, the Fourier transform of the distributions
U∗λ,p, respectively V ∗

λ,p, is given by

F [U∗λ,p] = i−p−1 U∗−λ−m−2p,p (4.42)

F [V ∗
λ,p] = i−p−1 V ∗

−λ−m−2p,p (4.43)

while for λ 6= 0 and p ∈ N, the Fourier transform of the distribution W ∗
λ,p is

given by

F [W ∗
λ,p] = i−p 1

λ

[
(λ+m+ 2p)W ∗

−λ−m−2p,p − (m− 2)T ∗−λ−m−2p,p

]
Proof.
Let (λ, p) ∈ C × N0. Substituting λ by λ + 1 in (4.30) and then taking the
Fourier transform of both sides yields

F [(λ+ 1)U∗λ,p](y) = F [∂xT
∗
λ+1,p](y) = 2πi yF [T ∗λ+1,p](y)

= 2πi−p+1 y T ∗−λ−m−2p−1,p = (λ+ 1) i−p−1 U∗−λ−m−2p,p

the last step on account of Theorem 4.5. Formula (4.42) then immediately
follows. The calculation of F [V ∗

λ,p] runs along similar lines.
Next, on account of Theorem 4.5, we find

F [W ∗
λ,p](y) = F [U∗λ−1,p x](y) =

i

2π
F [U∗λ−1,p](y) ∂y =

i−p

2π
U∗−λ−m−2p+1,p ∂y

Excluding the case λ = 0 and taking into account (4.33), we finally obtain

F [W ∗
λ,p] = i−p 1

λ

[
(λ+m+ 2p)W ∗

−λ−m−2p,p − (m− 2)T ∗−λ−m−2p,p

]

Convolution

In Subsection 4.3.3 the convolvability of the distributions T ∗λ,0 and U∗λ,0 has
been studied. Here we proceed with this study by considering the convolution
of arbitrary members of Tp ∪ Up.

The convolvability problem is tackled stepwise. First, in Lemma 4.2, a spe-
cific relation between T ∗λ,p and T ∗λ+2p,0, respectively between U∗λ,p and U∗λ+2p,0,
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is established, by means of which we will be able to convert new convolutions
into already known ones. This lemma is then used to deal with convolutions
within or in-between the Tp– and Up–families where, for one of the involved
distributions, we still have that p = 0. Finally, the main results are given in
Theorem 4.9, completing the picture in the most general case where p 6= 0 for
both distributions involved.

Lemma 4.2. For each couple (λ, p) ∈ C× N0, one has

(−2)p Γ
(
−λ

2

)
Γ
(
−λ

2 − p
) T ∗λ,p = T ∗λ+2p,0 Pp(∂x) (4.44)

(−2)p Γ
(
−λ−1

2

)
Γ
(
−λ−1

2 − p
) U∗λ,p = U∗λ+2p,0 Pp(∂x) (4.45)

Proof.
We only prove the first equality, the proof of the second one running along
similar lines. From (4.29) one can derive that

T ∗λ,p = πp Γ
(

λ+m
2

)
Γ
(

λ+m
2 + p

) T ∗λ,0 Pp(x) (4.46)

for λ 6= −m − 2l, l = 0, 1, . . . , p − 1. Invoking Theorem 4.7 and some of the
basic properties (3.2), we convert (4.46) to frequency space, which leads to

i−p T ∗−λ−m−2p,p = πp Γ
(

λ+m
2

)
Γ
(

λ+m
2 + p

) ip

(2π)p
T ∗−λ−m,0 Pp(∂x)

Replacing λ by −λ−m− 2p, we obtain

(−2)p T ∗λ,p =
Γ
(
−λ

2 − p
)

Γ
(
−λ

2

) T ∗λ+2p,0 Pp(∂x)

for λ 6= −2p+ 2l, l = 0, . . . , p− 1. Finally, rewriting this equality in the form of
(4.44) reveals its validity for all couples (λ, p), since both sides reduce to zero
whenever λ takes one of the values excluded above.

As announced, the previous lemma gives rise to a first generalization of the
formulae (4.9), (4.14) and (4.15).

Lemma 4.3. For each triplet (λ, µ, p) ∈ C× C× N such that



102 Chapter 4. Four families of distributions

(i) λ 6= 2j, µ 6= 2k and λ+ µ 6= −m+ 2l, j, k, l ∈ N0, one has

T ∗λ,p ∗ T ∗µ,0 = T ∗µ,0 ∗ T ∗λ,p = cm(λ, µ)T ∗λ+µ+m,p

(ii) λ 6= 2j, µ 6= 2k + 1 and λ+ µ 6= −m+ 2l + 1, j, k, l ∈ N0, one has

T ∗λ,p ∗ U∗µ,0 = cm(λ, µ− 1)V ∗
λ+µ+m,p

U∗µ,0 ∗ T ∗λ,p = cm(λ, µ− 1)U∗λ+µ+m,p

(iii) λ 6= 2j + 1, µ 6= 2k and λ+ µ 6= −m+ 2l + 1, j, k, l ∈ N0, one has

U∗λ,p ∗ T ∗µ,0 = T ∗µ,0 ∗ U∗λ,p = cm(λ− 1, µ)U∗λ+µ+m,p

(iv) λ 6= 2j + 1, µ 6= 2k + 1 and λ+ µ 6= −m+ 2l, j, k, l ∈ N0, one has

U∗µ,0 ∗ U∗λ,p =
−2π

λ+ µ+m
cm(λ− 1, µ− 1)T ∗λ+µ+m,p

and if moreover λ+ µ 6= −2m− 2p, one has

U∗λ,p ∗ U∗µ,0 =
2π

(λ+ µ+ 2m+ 2p)(λ+ µ+m)
cm(λ− 1, µ− 1)

×
[
(m− 2)T ∗λ+µ+m,p + (λ+ µ+m)W ∗

λ+µ+m,p

]
Proof.
We only treat the case of T ∗λ,p ∗ T ∗µ,0, the other cases being similar. First, take
λ 6= −2p+ 2j, j = 0, 1, . . . , p− 1. In that case, (4.44) can be rewritten as

T ∗λ,p =
(−1)p

2p

Γ
(
−λ

2 − p
)

Γ
(
−λ

2

) T ∗λ+2p,0 Pp(∂x) (4.47)

Then, from (4.47), it follows that

T ∗λ,p ∗ T ∗µ,0 =
(−1)p

2p

Γ
(
−λ

2 − p
)

Γ
(
−λ

2

) (
T ∗λ+2p,0 Pp(∂x) ∗ T ∗µ,0

)
=

(−1)p

2p

Γ
(
−λ

2 − p
)

Γ
(
−λ

2

) Pp(∂x)
(
T ∗λ+2p,0 ∗ T ∗µ,0

)
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In order for formula (4.9) to be applicable to the last expression, we need to
assume, in addition to the premised conditions of (i), that λ+µ 6= −m−2p+2l,
l = 0, 1, . . . , p− 1. We are then lead to

T ∗λ,p ∗ T ∗µ,0 =
(−1)p

2p

Γ
(
−λ

2 − p
)

Γ
(
−λ

2

) cm(λ+ 2p, µ)Pp(∂x)T ∗λ+µ+m+2p,0

from which the desired formula is easily obtained again exploiting (4.47):

T ∗λ,p ∗ T ∗µ,0 =
Γ
(
−λ

2 − p
)
Γ
(
−λ+µ+m

2

)
Γ
(
−λ

2

)
Γ
(
−λ+µ+m

2 − p
) cm(λ+ 2p, µ)T ∗λ+µ+m,p

= cm(λ, µ)T ∗λ+µ+m,p

We now further examine the values λ = −2p + 2j and λ + µ = −m − 2p + 2l,
j, l = 0, 1, . . . , p− 1, which had to be excluded temporarily in the course of the
proof. For these values, we may write T ∗−2p+2j,p = lim

λ→−2p+2j
T ∗λ,p, respectively

T ∗−µ−m−2p+2l,p = lim
λ→−µ−m−2p+2l

T ∗λ,p, allowing us to repeat the procedure above,

where we only effectuate the limit at the end of the calculations.

The previous lemma leads, in a second step, to more general results for
the convolution of arbitrary T ∗λ,p– and/ or U∗λ,p–distributions, apart from some
exceptional values for the involved parameters which remain excluded. In order
to make the formulae more compact, we introduce the constants

cm,p(λ, µ) =
(−1)p

2p
π

m
2

Γ
(
−λ+µ+m

2 − p
)

Γ
(
−λ

2

)
Γ
(
−µ

2

)
with cm,0(λ, µ) ≡ cm(λ, µ) (see 4.10).

Theorem 4.9. For each 4–tuple (λ, µ, p, q) ∈ C× C× N× N such that

(i) λ 6= 2j and µ 6= 2k, j, k ∈ N0, one has

T ∗λ,p ∗ T ∗µ,q = cm,q(λ, µ)T ∗λ+µ+m+2q,p Pq(∂x)

if λ+ µ 6= −m− 2q + 2l, l ∈ N0; and

T ∗λ,p ∗ T ∗µ,q = cm,p(λ, µ)Pp(∂x)T ∗λ+µ+m+2p,q
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if λ+ µ 6= −m− 2p+ 2l, l ∈ N0.

(ii) λ 6= 2j + 1, µ 6= 2k and λ+ µ 6= −m− 2q + 2l + 1, j, k, l ∈ N0, one has

U∗λ,p ∗ T ∗µ,q = cm,q(λ− 1, µ)U∗λ+µ+m+2q,p Pq(∂x)

(iii) λ 6= 2j, µ 6= 2k + 1 and λ+ µ 6= −m− 2q + 2l + 1, j, k, l ∈ N0, one has

T ∗λ,p ∗ U∗µ,q = cm,q(λ, µ− 1)V ∗
λ+µ+m+2q,p Pq(∂x) (4.48)

(iv) λ 6= 2j + 1, µ 6= 2k + 1 and λ+ µ 6= −m− 2q + 2l, j, k, l ∈ N0, one has

U∗λ,p ∗ U∗µ,q =
2π

(λ+ µ+ 2m+ 2p+ 2q)(λ+ µ+m+ 2q)
cm,q(λ− 1, µ− 1)

×
[
(m− 2)T ∗λ+µ+m+2q,p + (λ+ µ+m+ 2q)W ∗

λ+µ+m+2q,p

]
Pq(∂x)

if moreover λ+ µ 6= −2m− 2p− 2q.

Proof.
The proof directly follows from Lemma 4.2 and Lemma 4.3.

4.4.3 Examples: generalized Horváth kernels

In Subsection 2.2.1, we already introduced the important class of singular inte-
gral operators with convolution kernels (Horváth kernels) of the form

K(x) = Pv
Sp(x)
rm+p

= Pv
Sp(ω)
rm

where Sp is a spherical harmonic of degree p. At that point we only considered
scalar valued spherical harmonics. Now, a Clifford algebra valued refinement
of those Horváth kernels is established by means of the families of Clifford dis-
tributions introduced above, giving rise to new generalized Hilbert transforms
which will be discussed in Chapter 6.

When looking for principal value distributions amongst the above four fam-
ilies of distributions, it is clear that λ ∈ C and p ∈ N0 have to be chosen in such
a way that the resulting distributions are homogeneous of degree (−m), this
means: λ + p + m = 0. This results into the following four kinds of principal
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value distributions

T−m−p,p = Fp
1
rm

Pp(ω) = Pv
Pp(ω)
rm

U−m−p,p = Fp
1
rm

ω Pp(ω) = Pv
ω Pp(ω)
rm

V−m−p,p = Fp
1
rm

Pp(ω)ω = Pv
Pp(ω)ω
rm

W−m−p,p = Fp
1
rm

ω Pp(ω)ω = Pv
ω Pp(ω)ω

rm

These distributions are homogeneous of degree (−m) and the functions occur-
ring in the numerator satisfy the cancellation condition∫

Sm−1
Ω(ω) dS(ω) = 0

Ω(ω) being either of Pp(ω), ω Pp(ω), Pp(ω)ω or ω Pp(ω)ω. Note that, for p = 0,
the distribution U−m,0 = V−m,0 = Pv ω

rm is – up to a minus sign – exactly the
kernel of the multidimensional Hilbert transform.

If the spherical monogenic Pp is realized under the action of the Dirac opera-
tor on a real valued spherical harmonic Sp+1 of degree (p+1), i.e. Pp = ∂xSp+1,
then the following decomposition formulae lead to the desired refinement of the
Horváth kernels Pv Sp+1(ω)

rm and of the Clifford–vector valued singular integral
kernel Pv ω Sp+1(ω)

rm :

Pv
Sp+1(ω)
rm

= − 1
2(p+ 1)

(U−m−p,p + V−m−p,p)

Pv
ω Sp+1(ω)

rm
= − 1

2(p+ 1)
(W−m−p,p − T−m−p,p)

For an overview of convolution kernels in Clifford analysis we refer to [29].
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Chapter 5

The classical
Clifford–Hilbert transform

In Chapter 2 we already discussed the classical one–dimensional Hilbert trans-
form on the real line and some of its scalar valued higher dimensional exten-
sions. In the introduction of the previous chapter we also mentioned that, to
our knowledge, Horváth was the first to define a vector valued Hilbert transform
on Euclidean space Rm using Clifford algebra (see [69]). This multidimensional
Hilbert transform in the Clifford analysis setting was taken up again in the 1980’s
and further studied in e.g. [91, 60, 76, 50, 51]. It also plays a fundamental role in
the study of Hardy spaces of monogenic functions, see e.g. [36, 77, 39, 4, 42, 49].

In the first section of this chapter, we present an alternative definition for
the Clifford–vector valued Hilbert transform of Horváth, involving the multi-
plication with an extra basis vector. Its main properties are then examined;
in particular its relationship with the Cauchy integral in Rm+1 is disclosed, at
the same time giving rise to a study of Hardy spaces of monogenic functions.
Further, we also propose a multidimensional generalization of the concept of
analytic signal in the Clifford analysis context. Finally, to conclude this section,
we deal with the interaction between the Clifford–Hilbert transform and the
Clifford–Radon transform, both transforms being protagonists in multidimen-
sional signal analysis theory.

In the second section, the Clifford–Hilbert transform on closed surfaces in



108 Chapter 5. The classical Clifford–Hilbert transform

Euclidean space Rm is introduced. It is shown that, in general, its properties
are weaker then the ones of the Clifford–Hilbert transform on Rm, except for
the case of the unit sphere to which we will pay special attention.

5.1 The Clifford–Hilbert transform on Rm

5.1.1 Definition and first properties

First we pass to (m+ 1)–dimensional space by introducing an additional basis
vector e0 which follows the usual multiplication rules, i.e. e20 = −1 and it anti–
commutes with the other basis vectors, viz e0ej + eje0 = 0, j = 1, . . . ,m. The
variable (x0, x1, . . . , xm) ∈ Rm+1 is then identified with the Clifford–vector

x =
m∑

j=0

ej xj = e0 x0 + x

in the Clifford algebra R0,m+1. Two open subspaces of Rm+1 will be frequently
used: the upper and lower half spaces Rm+1

± , respectively given by

Rm+1
+ = {x = (x0, x) ∈ Rm+1 : x0 > 0}

Rm+1
− = {x = (x0, x) ∈ Rm+1 : x0 < 0}

Identifying Euclidean space Rm with the hyperplane x0 = 0 in Rm+1, we obtain
that the boundaries of the spaces Rm+1

± are given by ∂Rm+1
+ = ∂Rm+1

− = Rm.
Furthermore, the Dirac operator in Rm+1 reads

∂x =
m∑

j=0

ej ∂xj
= e0 ∂x0 + ∂x

Finally, in this chapter we consider functions defined in Rm and taking values
in the Clifford algebra R0,m+1 or its complexification Cm+1.

Now let f ∈ L2(Rm); the (Clifford–)Hilbert transform H[f ] of f on Rm is
then defined by

H[f ](x) =
2

am+1
e0 Pv

∫
Rm

x− y∣∣x− y
∣∣m+1 f(y) dV (y)

=
2

am+1
e0 lim

ε→0+

∫
Rm\B(x;ε)

x− y∣∣x− y
∣∣m+1 f(y) dV (y)
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or, for an appropriate (see Remark 2.4) distribution f , by means of the convo-
lution

H[f ](x) = e0 (H ∗ f) (x) (5.1)

with H the convolution kernel given by the distribution

H(x) =
2

am+1
Pv

ω

rm
= − 2

am+1
U∗−m,0 (5.2)

In the previous chapter, we had already introduced the Clifford–vector valued
Hilbert operator H̃. It may be clear that its relationship with the Clifford–
Hilbert operator H is simply given by

H = e0 H̃ (5.3)

Remark 5.1. The motivation of introducing e0 in the formula (5.1) of the
Clifford–Hilbert transform has its origin in the Clifford–Stokes theorem, which
will be discussed in the following section. In the upper half space Rm+1

+ , the
constant vector e0 plays the role of outward pointing unit normal vector in each
point of the boundary Rm. In the same order of ideas, when considering the
Clifford–Hilbert transform on closed surfaces in Rm, in the following section we
will see that the outward pointing unit normal vector on the boundary of the
closed surface under consideration will come into play.

The Hilbert transform (5.1) then satisfies the following properties.

Property 5.1. The Hilbert transform is a convolution operator, which is equiv-
alent with saying that the Hilbert transform commutes with translations, i.e.

τa[H[f ]] = H[τa[f ]]

with τa[f ](x) = f(x− a), a ∈ Rm.

Property 5.2. The Hilbert kernel H is a homogeneous distribution of degree
(−m), which, for a convolution operator, is equivalent with saying that the
Hilbert transform commutes with dilations, i.e.

da[H[f ]] = H[da[f ]]

with da[f ](x) = 1
am/2 f(x

a ), a > 0.
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Property 5.3. The Hilbert and Fourier transforms are interrelated in the fol-
lowing way:

F [H[f ]](y) = e0 i ξF [f ](y) (5.4)

H[F [f ]](y) = e0 iF [ω f(x)](y)

with x = rω, y = ρξ and ω, ξ ∈ Sm−1.

Proof.
Since the Hilbert transform is a convolution operator with kernel (5.2), we find,
relying on Proposition 4.11 (ii), that on the one hand

F [H[f ]](y) = e0 F [
−2
am+1

U∗−m,0 ∗ f ](y) = e0
−2
am+1

F [U∗−m,0](y) · F [f ](y)

= e0
2

am+1
i U∗0,0 · F [f ](y) = e0 i ξF [f ](y)

and on the other hand

H[F [f ]](y) = e0
−2
am+1

U∗−m,0 ∗ F [f ](y) = e0
−2
am+1

iF [U∗0,0](y) ∗ F [f ](y)

= e0
−2
am+1

iF [U∗0,0 · f ](y) = e0 iF [ω f(x)](y)

The Fourier symbol F [H](x) = i ω of the Hilbert transform being a bounded
function is equivalent with saying that the Hilbert transform is a bounded linear
operator on L2(Rm). More precisely one has:

Property 5.4. The Hilbert transform is a bounded linear operator on L2(Rm),
and is a fortiori norm preserving, i.e.

‖H[f ]‖L2
= ‖f‖L2

(5.5)

More generally, it also preserves the inner product

〈H[f ],H[g]〉 = 〈f, g〉 (5.6)

Proof.
On account of Parseval’s identity and (5.4) we find

〈H[f ],H[g]〉 = 〈F [H[f ]],F [H[g]]〉 = 〈e0 i ωF [f ](x), e0 i ωF [g](x)〉

=
∫

Rm

F [f ](x)† ω (−i) e0 e0 i ωF [g](x) dV (x)

= 〈F [f ],F [g]〉 = 〈f, g〉
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which proves (5.6) and at the same time also (5.5) since

‖H[f ]‖L2
= [〈H[f ],H[f ]〉]0 = [〈f, f〉]0 = ‖f‖L2

Next, the inverse and the adjoint of the Hilbert transform may be calculated.

Property 5.5. The Hilbert transform H : L2(Rm) → L2(Rm) is an involution,
i.e. it is invertible with H−1 = H.

Proof.
Applying formula (5.4) twice, we find in frequency space that

F [H2[f ]](x) = e0 i ωF [H[f ]](x) = F [f ](x)

So, the Hilbert transform H satisfies H2 = 1 on L2(Rm) and may hence be
addressed as an involution.

Corollary 5.1. The Hilbert transform H : L2(Rm) → L2(Rm) is unitary, its
adjoint being given by H∗ = H, i.e.

〈H[f ], g〉 = 〈f,H[g]〉 , f, g ∈ L2(Rm)

Proof.
Let H∗ be the unique adjoint of H : L2(Rm) → L2(Rm). Taking then into
account (5.6), one has for all f, g ∈ L2(Rm) that

〈f, g〉 = 〈H[f ],H[g]〉 = 〈f,H∗[H[g]]〉

This implies that H∗H = 1, or that H is unitary. Moreover, since H is an
involution, this means that H = H∗.

Taking into account the connection (5.3) between the Hilbert operators H
and H̃, the following relationship between the Hilbert operator H and the Dirac
operator ∂x is obtained:

Property 5.6. The Hilbert transform anti–commutes with the Dirac operator,
i.e. if f and ∂xf are in L2(Rm) or if f is an appropriate distribution, then

H[∂xf(x)](y) = −∂y

[
H[f ](y)

]
Proof.
For the Hilbert–Dirac operator H̃∂x one has that H̃∂x = ∂xH̃ on account of
Proposition 4.10 (ii). Hence:

H ∂x = e0 H̃ ∂x = e0 ∂x H̃ = −∂x e0 H̃ = −∂xH
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5.1.2 Relationship with the Cauchy integral

Let f ∈ L2(Rm), then its Cauchy integral C[f ] is defined in Rm+1 \ Rm by

C[f ](x0, x) = (C(x0, ·) ∗ f(·)) (x) =
∫

Rm

C(x0, x− y) f(y) dV (y)

where the Cauchy kernel

C(x) = C(x0, x) =
1

am+1

xe0

|x|m+1 =
1

am+1

x0 + e0x

|x0 + x|m+1
, x 6= 0

is the fundamental solution of the Cauchy–Riemann operator Dx in Rm+1, given
by

Dx = e0 ∂x = ∂x0 + e0 ∂x (5.7)

This means that

(i) C(x) is ∂x–monogenic in Rm+1 \ {0}

(ii) lim
|x|→+∞

C(x) = 0

(iii) DxC(x) = δ(x) in distributional sense

On account of those properties, it may be clear that the Cauchy integral is ∂x–
monogenic in both the upper half space Rm+1

+ and the lower half space Rm+1
− .

Further, for a function f ∈ L2(Rm), taking the supremum either in Rm+1
+ or

Rm+1
− , we also have that

sup
x0≶0

∫
Rm

|C[f ](x0, x)|2 dV (x) < +∞

Next, the Cauchy kernel is easily seen to decompose as

C(x) = C(x0, x) =
1
2
P (x0, x) +

1
2
e0Q(x0, x) , x 6= 0

in which we have introduced the scalar valued Poisson kernel P given by

P (x) = P (x0, x) =
2

am+1

x0

|x0 + x|m+1 , x 6= 0
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and the vector valued conjugate Poisson kernel Q, given by

Q(x) = Q(x0, x) =
2

am+1

x

|x0 + x|m+1 , x 6= 0

The Cauchy integral may then be rewritten as

C[f ](x0, x) =
1
2
P[f ](x0, x) + e0

1
2
Q[f ](x0, x) , x0 6= 0

where
P[f ](x0, x) = (P (x0, ·) ∗ f(·)) (x) , x0 6= 0

and
Q[f ](x0, x) = (Q(x0, ·) ∗ f(·)) (x) , x0 6= 0

respectively are the Poisson transform and the conjugate Poisson transform of
f . It then readily follows from the ∂x–monogenicity of the Cauchy transform
C[f ] in Rm+1

+ that P[f ] and Q[f ] are harmonic in Rm+1
+ (and similarly in Rm+1

− ).
Therefore we call P[f ] and Q[f ] conjugate harmonics in Rm+1

+ (and similarly in
Rm+1
− ), in the sense of [24].

The Hilbert transform now comes into play, when considering the non–
tangential boundary limits of the Cauchy integral for x0 → 0±. Indeed, the
following well–known distributional limits:

lim
x0→0±

P (x0, x) = lim
x0→0±

2
am+1

x0

|x0 + x|m+1
= ±δ(x)

lim
x0→0±

Q(x0, x) = lim
x0→0±

2
am+1

x

|x0 + x|m+1
=

2
am+1

Pv
ω

rm
= H(x)

immediately lead to the following Plemelj–Sokhotzki formulae.

Property 5.7. Let f ∈ L2(Rm), then the non–tangential boundary limits of the
Cauchy integral C[f ] are given by

C+[f ](x) ≡ lim
x0→0+

C[f ](x0, x) =
1
2
f(x) +

1
2
H[f ](x)

C−[f ](x) ≡ lim
x0→0−

C[f ](x0, x) = −1
2
f(x) +

1
2
H[f ](x)

For a function f ∈ L2(Rm), we then call C+[f ] and C−[f ] its Cauchy trans-
forms. They satisfy the following properties.
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Corollary 5.2. Let f ∈ L2(Rm), then

(i) C+ and C− are bounded linear operators on L2(Rm)

(ii) f = C+[f ]− C−[f ] and H[f ] = C+[f ] + C−[f ]

(iii) in Rm+1
+ one has C[f ] = C[H[f ]];

in Rm+1
− one has C[f ] = −C[H[f ]]

(iv) C+[f ] = e0 C−[e0 f ] and C−[f ] = e0 C+[e0 f ]

(v) C+[f ] and C−[f ] are orthogonal, i.e. 〈C+[f ], C−[f ]〉 = 0

(vi) the Fourier spectra of C+[f ] and C−[f ] are respectively given by

F [C+[f ]](y) =
1
2

(1 + e0 i ξ)F [f ](y)

F [C−[f ]](y) = −1
2

(1− e0 i ξ)F [f ](y)

5.1.3 Hardy spaces of monogenic functions

The Cauchy integral C[f ] of a function f ∈ L2(Rm) provides an example of a
monogenic function in the upper half space Rm+1

+ which belongs to the so–called
Hardy space H2(Rm+1

+ ), which is defined as follows.

Definition 5.1. The Hardy space H2(Rm+1
+ ) consists of functions F (x), mono-

genic in Rm+1
+ with respect to the Cauchy–Riemann operator Dx, for which

sup
x0>0

∫
Rm

|F (x0, x)|2 dV (x) < +∞

Taking into account Property 5.7, the non–tangential boundary limit for
x0 → 0+ of C[f ](x0, x) again is in L2(Rm). The question arises if this is also
the case for any function of H2(Rm+1

+ ); the answer is positive.

Proposition 5.1. The non–tangential boundary limit for x0 → 0+ of a function
F (x0, x) ∈ H2(Rm+1

+ ) exists a.e. and belongs to L2(Rm).

A second question to investigate is whether the Cauchy integral of a non–
tangential boundary limit of a function F (x) ∈ H2(Rm+1

+ ), is precisely F (x);
again the answer is positive.
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Proposition 5.2. Let F ∈ H2(Rm+1
+ ) and let lim

x0→0+
F (x0, x) = f(x), then

C[f ] = F .

So the functions in L2(Rm) which may be obtained as non–tangential bound-
ary limit of functions in H2(Rm+1

+ ), are special. This leads to the definition of
another Hardy space, this time in Rm itself.

Definition 5.2. The Hardy space H2(Rm) is the closure in L2(Rm) of the
subspace of the non–tangential boundary limits for x0 → 0+ of all functions in
H2(Rm+1

+ ).

We immediately obtain.

Corollary 5.3. H2(Rm) is a closed subspace of L2(Rm) and hence itself a
Hilbert space.

It is also clear that both Hardy spacesH2(Rm+1
+ ) andH2(Rm) are intimately

related; in fact they can be identified with each other.

Proposition 5.3. H2(Rm) and H2(Rm+1
+ ) are isomorphic.

From the considerations made above it follows that the Cauchy transform

C+ : L2(Rm) −→ H2(Rm) ; f 7−→ C+[f ]

is a projection; it is called the Hardy projection. It will be shown that, in
the present context, this Hardy projection is an orthogonal projection. Note
however that in a more general setting, where Hardy spaces are defined on the
smooth boundary of bounded domains in Euclidean space, the Hardy projection
will be a skew projection, except for the Hardy space on the unit sphere where
the Hardy projection also is orthogonal (see the following section).

As H2(Rm) is a closed subspace of L2(Rm), the latter space may be decom-
posed into an orthogonal direct sum

L2(Rm) = H2(Rm)⊕⊥ H2(Rm)⊥ (5.8)

whence there exist two orthogonal projection operators P+ : L2(Rm) → H2(Rm)
and P− : L2(Rm) → H2(Rm)⊥; these are called the Szegö projections. It is then
clear from Property 5.7 and Corollary 5.2 that for f ∈ L2(Rm)

P+[f ] = C+[f ] and P−[f ] = −C−[f ]
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as well as
P+[H[f ]] = C+[f ] and P−[H[f ]] = C−[f ]

So in this case, the Hardy en Szegö projections coincide. Moreover, it may be
clear that in geometrical terms f and H[f ] lie symmetrically with respect to
H2(Rm) (see also Figure 5.1).

Figure 5.1: f and H[f ] lie symmetrically w.r.t. H2(Rm)

Taking now into account Corollary 5.2 (iv), the orthogonal decomposition
of f ∈ L2(Rm) can be rewritten as

f = P+[f ] + P−[f ] = C+[f ]− C−[f ] = C+[f ] + e0 C+[e0 f ]

such that the orthogonal decomposition (5.8) can be expressed in terms of the
Hardy space H2(Rm) only:

L2(Rm) = H2(Rm)⊕⊥ e0H2(Rm)

The Hardy space H2(Rm) is then characterized as follows.
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Theorem 5.1. A function f ∈ L2(Rm) belongs to H2(Rm) if and only if one
of the following conditions is fulfilled:

(i) H[f ] = f

(ii) F [f ](y) = 1
2 F [(1 + e0 i ω) f(x)](y)

(iii) P+[f ] = C+[f ] = f

(iv) C[f ] = P[f ] = e0Q[f ] in Rm+1
+

(v) P[f ] is monogenic in Rm+1
+

(vi) Q[f ] is monogenic in Rm+1
+

As already mentioned, the Hardy space H2(Rm), as a closed subspace of
L2(Rm), is itself a Hilbert space. Moreover it possesses a reproducing kernel,
i.e. a function K(x, y) such that for any y ∈ Rm fixed, K(x, y) ∈ H2(Rm) and〈

K(·, y), f(·)
〉

= f(y) , ∀f ∈ H2(Rm)

This reproducing kernel is called the Szegö kernel; it is given by

Sx0(x, y) =
1

am+1

x0 + e0 (y − x)∣∣e0 x0 + y − x
∣∣m+1 = C(x0, y − x) , x0 > 0

Clearly Sx0(x, y) is monogenic in Rm+1
+ , for each y ∈ Rm fixed, and moreover

sup
x0>0

∫
Rm

∣∣Sx0(x, y)
∣∣2 dV (x) < +∞

so that the Szegö kernel belongs to H2(Rm+1
+ ) for each y ∈ Rm fixed. The

reproducing property of the Szegö kernel then follows from

〈
Sx0(·, y), f(·)

〉
=
∫

Rm

Sx0(x, y) f(x) dV (x) = C[f ](x0, y) , x0 > 0

since this Cauchy integral is in H2(Rm+1
+ ) and its isomorphic image in H2(Rm)

is
lim

x0→0+

〈
Sx0(·, y), f(·)

〉
= lim

x0→0+
C[f ](x0, y) = f(y) , y ∈ Rm



118 Chapter 5. The classical Clifford–Hilbert transform

The Szegö kernel Sx0(x, y) shows the symmetry property Sx0(x, y) = Sx0(y, x)
if x0 > 0 and moreover it holds in Rm+1

+ that

Sx0(x, y) + Sx0(x, y) = P (x0, y − x)

Sx0(x, y)− Sx0(x, y) = e0Q(x0, y − x)

which links the Szegö kernel to the Poisson kernels. Moreover, it is important
to note that the Szegö kernel is the integral kernel for the Szegö projection P+

(which here coincides with the Hardy projection C+), since in Rm+1
+

C[f ](x0, x) = 〈Sx0(·, x), f(·)〉 =
∫

Rm

Sx0(x, y) f(y) dV (y)

and hence

P+[f ](x) = C+[f ](x) = lim
x0→0+

∫
Rm

Sx0(x, y) f(y) dV (y)

In a similar way we can look for the reproducing kernel of the Hilbert space
H2(Rm)⊥, i.e. the orthogonal complement of H2(Rm) in L2(Rm); it is called
the Garabedian kernel. One has for f ∈ L2(Rm) and x0 > 0:

P−[f ](x) = e0 C+[e0 f ](x) = lim
x0→0+

∫
Rm

Sx0(x, y) f(y) dV (y)

when taking into account Corollary 5.2 (iv). This means that the kernel function

Lx0(x, y) = Sx0(x, y) =
1

am+1

x0 − e0 (y − x)∣∣e0 x0 + y − x
∣∣m+1 , x0 > 0

is the integral kernel for the Szegö projection P−. The Garabedian kernel
Lx0(x, y) is clearly anti–monogenic in Rm+1

+ with respect to the variable (x0, x),
i.e.

DxLx0(x, y) = 0

and it satisfies the symmetry property Lx0(x, y) = Lx0(y, x). Moreover, it is
indeed the reproducing kernel for H2(Rm)⊥, since for x0 > 0 and y ∈ Rm fixed,
Lx0(x, y) belongs to H2(Rm)⊥ and

〈
Lx0(·, y), f(·)

〉
=
∫

Rm

Lx0(x, y) f(x) dV (x) = −C[f ](−x0, y)
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This Cauchy integral is in the Hardy space H2(Rm+1
− ) which is isomorphic with

H2(Rm)⊥. If f ∈ H2(Rm)⊥, then the isomorphic image of −C[f ](−x0, y) clearly
is −C−[f ](y) = f(y). Note that we now have in Rm+1

+

Sx0(x, y) + Lx0(x, y) = P (x0, y − x)
Sx0(x, y)− Lx0(x, y) = e0Q(x0, y − x)

linking the Szegö and the Garabedian kernel with the (conjugate) Poisson kernel.

5.1.4 Application: analytic signal

Due to the splitting of the Clifford algebra

R0,m+1 = R0,m ⊕ e0 R0,m

any function f taking values in R0,m+1, may be written as

f = u+ e0 v

where u and v take their values in R0,m. We introduce the involution defined
by

f̆ = (u+ e0 v)˘ = u− e0 v

So, if u and v are in L2(Rm), then their Hilbert transforms H[u] and H[v] take
their values in e0 R0,m and one has (H[u])˘ = −H[u] and (H[v])˘ = −H[v]. We
immediately observe that

H[f ] = H[u]− e0H[v] and H[f̆ ] = H[u] + e0H[v]

whence
H[f̆ ] = −(H[f ])˘

It also follows that

C+[f̆ ] = −(C−[f ])˘ and C−[f̆ ] = −(C+[f ])˘

Note that, in particular, if f is Dx–monogenic in a certain region, then f̆ is
anti–monogenic, and vice versa:

Dxf = 0 ⇐⇒ Dxf̆ = 0

with Dx = ∂x0 − e0 ∂x = D̆x.
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In a similar way as in the one–dimensional case, one could now introduce
the notion of a multidimensional analytic signal in the Clifford setting. This is
a signal of the form

f(x) = u(x) +H[u](x)

where u is R0,m valued and H[u] is e0 R0,m valued. We then call

f̆(x) = u(x)−H[u](x)

an anti–analytic signal. (Anti–)analytic signals show the following properties.

Property 5.8. Let u ∈ L2(Rm) and f = u+H[u], then

(i) H[f ] = f and H[f̆ ] = −f̆

(ii) C+[f ] = f and C−[f ] = 0;

C+[f̆ ] = 0 and C−[f̆ ] = −f̆

(iii) f = 2 C+[u] = 2 C+[H[u]];

−f̆ = 2 C−[u] = −2 C−[H[u]]

(iv) f and f̆ are orthogonal, i.e.
〈
f, f̆
〉

= 0

(v) the Fourier spectra of f and f̆ are respectively given by

F [f ](y) = (1 + e0 i ξ)F [u](y)

F [f̆ ](y) = (1− e0 i ξ)F [u](y)

Finally note that if u is a R0,m valued function in L2(Rm), then it is clear that
its associated analytic signal f = u+H[u] belongs to the Hardy space H2(Rm),
while its associated anti–analytic signal f̆ = u − H[u] belongs to H2(Rm)⊥.
Conversely, if f ∈ H2(Rm), then H[f ] = f , which leads to

H[u+ e0 v] = u+ e0 v

and hence
H[u] = e0 v and H[e0 v] = u

and finally
f = (1 +H)[u]

which clearly has the structure of an analytic signal.
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5.1.5 Relationship with the Radon transform

Introduction

In his 1917 paper [83], Johann Radon posed and solved the problem of recon-
structing a function of two variables f(x, y) if its integrals over arbitrary lines
are given. In that original manuscript, the integral over the line with equation
x cos(φ) + y sin(φ) = p, is written as

F (p, φ) =
∫ ∞

s=−∞
f(p cos(φ)− s sin(φ), p sin(φ) + s cos(φ)) ds

which formally can be rewritten in the following form

F (p, φ) =
∫ ∞

x=−∞

∫ ∞

y=−∞
δ(x cos(φ) + y sin(φ)− p) f(x, y) dx dy

Later on, Radon himself also considered analogues of his transform in higher
dimensions. The idea of integrating over arbitrary lines was then translated into
the more general concept of integrating over arbitrary hyperplanes, leading to
the transform which assigns to a given function f defined in Rm the totality of
its integrals over all hyperplanes in Rm. One of the main problems of integral
geometry is then to reconstruct the function f from the information contained
in these ”sliced profiles”. Nowadays, the integral transform f 7→ F is called the
Radon transform and the corresponding operator is usually denoted by R.

For a detailed treatment of the theory of Radon transforms we refer to the
classical works [59, 58, 67], while applications are extensively treated in [45] and
the references therein. More in general, people have also studied integrals of
functions over surfaces belonging to a special class, such as spheres (see [72]),
quadrics (see [44]), or even over zeros of higher order homogeneous polynomials
(see [78, 47]).

The Radon transform in Clifford analysis

For a sufficiently smooth function f defined in Rm and taking values in the
Clifford algebra R0,m+1, its (Clifford–)Radon transform R[f ] is defined as

R[f ](α) =
∫

α

f(x) d`(x) (5.9)
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with α a hyperplane in Rm and d`(x) the Lebesgue measure on that hyperplane.
However, this definition is not practical to work with in calculations. There-
fore, we have chosen for the following more convenient and popular definition,
which is shown to be equivalent with (5.9) (see [45]). Let n ∈ Sm−1 be a unit
normal vector of the hyperplane α and let s ∈ R be the oriented distance of
the hyperplane α to the origin, i.e. the hyperplane α is given by the equation
〈x, n〉 − s = 0, then the Radon transform of f may also be rewritten as

R[f ](n, s) =
∫

Rm

δ(〈x, n〉 − s) f(x) dV (x) (5.10)

Stricto sensu we have allowed for some abuse of mathematical language at the
right-hand side of the above formula; however all results obtained are rigorous.

The Radon transform (5.10) is linear in two different, yet related senses.
Indeed, for suitable R0,m+1 valued functions f =

∑
A eA fA and g defined in

Rm and real scalars a and b, it is clear that on the one hand

R[a f + b g](n, s) = aR[f ](n, s) + bR[g](n, s)

while on the other hand also

R[f ](n, s) = R[
∑
A

eA fA](n, s) =
∑
A

eAR[fA](n, s) (5.11)

A well–known and important formula, relating the Radon transform to the
Fourier transform, is given in the following lemma.

Lemma 5.1. For a real variable u and a unit vector n one has

F [f(x)](un) = Fs→u[R[f ](n, s)](u) (5.12)

where f is a suitable, sufficiently smooth R0,m+1 valued function in Rm.

Proof.
One subsequently has

Fs→u [R[f ](n, s)] (u) =
∫ ∞

−∞
R[f ](n, s) exp(−2πi u s) ds

=
∫ ∞

−∞

[∫
Rm

δ(〈x, n〉 − s) f(x) dV (x)
]

exp(−2πi u s) ds

=
∫

Rm

f(x) dV (x)
∫ ∞

−∞
δ(〈x, n〉 − s) exp(−2πi u s) ds

=
∫

Rm

f(x) exp(−2πi u 〈x, n〉) dV (x) = F [f(x)](un)
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yielding the desired result.

This lemma shows that the m–dimensional Fourier transform of a suitable func-
tion may be obtained through subsequent application of the Radon transform
and the one–dimensional Fourier transform. The result is known as the central–
slice theorem.

Some other elementary properties of the Radon transform are listed in
Lemma 5.2. The proofs for scalar valued functions can be found e.g. in [46]; the
proofs for R0,m+1 valued functions run along similar lines, keeping in mind the
linearity (5.11) of the Radon transform.

Lemma 5.2. Let (n, s) ∈ Sm−1 × R and let f, f1, f2 be sufficiently smooth
R0,m+1 valued functions in Rm, then

(i) R[f(x+ t)](n, s) = R[f(x)](n, s+ 〈t, n〉) , t ∈ Rm

(ii) R[∂xjf(x)](n, s) = nj ∂sR[f(x)](n, s) , j = 1, . . . ,m

(iii) R[(f1 ∗ f2)(x)](n, s) = (R[f1](n, ·) ∗ R[f2](n, ·))(s)

We want to draw the reader’s attention to the fact that in property (iii)
the m–dimensional convolution at the left-hand side is converted into a one–
dimensional convolution, applying only to the oriented distance, while the role
of the unit vector n is reduced to the one of a parameter.

Interaction between the Hilbert and the Radon transform

As a consequence of formula (5.12), in [56] a link was established between the
two–dimensional Hilbert transform (therein referred to as Riesz transform) of a
two–dimensional signal and the one–dimensional Hilbert transforms of the so–
called intrinsically one–dimensional profiles obtained from the Radon transform
(see equation (4.34) in [56]). We have generalized this result to higher dimension
in our Clifford context.

Proposition 5.4. For a suitable function f defined on Rm (m > 1) and taking
values in the Clifford algebra R0,m+1, one has

R[H[f ]](n, s) = e0 nHu→s[R[f ](n, u)](s) , (n, s) ∈ Sm−1 × R (5.13)

The above formula has to be read in the following way: the Radon transform of
the m–dimensional Clifford–Hilbert transform of a given function f , evaluated
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in some hyperplane, can be obtained, up to some factor involving the normal
vector to that hyperplane, by taking the one–dimensional Hilbert transform of
the Radon transform of f , evaluated in the oriented distance of the hyperplane
to the origin. We have proven this proposition by a suitable adaptation of the
techniques used in [56].

Proof.
We will show (5.13) by passing to one–dimensional frequency space where the
unit vector n plays the role of a parameter. In a first step we make use of
relation (5.12) between the Fourier and the Radon transform and of relation
(5.4) between the Fourier and the Hilbert transform, yielding

Fs→q {R[H[f ]](n, s)} (q) = F [H[f ](x)](q n)

= e0 i
q n

|q n|
F [f ](q n) = e0 i n sgn(q)F [f ](q n)

We proceed by noticing that (−i) sgn(q) is the Fourier symbol of the one–
dimensional Hilbert kernel on the real line, and by applying once more (5.12),
now on the Fourier transform of f , which leads us to

Fs→q {R[H[f ]](n, s)} (q)

= e0 nFs→q[H(s)](q) · Fs→q[R[f ](n, s)](q)

= e0 nFs→q[(H(u) ∗ R[f ](n, u))(s)](q)

So in frequency space one has

Fs→q {R[H[f ]](n, s)} (q) = e0 nFs→q {Hu→s[R[f ](n, u)](s)} (q)

from which formula (5.13) immediately can be deduced.

5.2 The Clifford–Hilbert transform on closed sur-
faces in Rm

In this section we consider the definition and the fundamental properties of the
(Clifford–)Hilbert transform on closed surfaces in Euclidean space. Extra at-
tention is paid to the special case of the Hilbert transform on the unit sphere,
since only on that particular closed surface the Hilbert transform will be unitary.
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First we set some notations. We denote by Ω some open subset of Rm. Then,
an m–dimensional compact differentiable and oriented manifold Γ ⊂ Ω with C∞

smooth boundary ∂Γ is considered. Further, Γ+ will stand for the interior of Γ,
and Γ− for the exterior of Γ with respect to Ω, i.e. Γ− = Ω \ Γ.

Subsequently, we denote by d̃σx the vector valued oriented surface element
on ∂Γ given by the following differential form of order (m− 1):

d̃σx =
m∑

j=1

ej (−1)j−1 ˜̂dxj

with ˜̂
dxj = dx1 ∧ · · · ∧ [dxj ] ∧ · · · ∧ dxm

where [·] denotes omitting that particular differential, i.e.

dx1 ∧ · · · ∧ [dxj ] ∧ · · · ∧ dxm = dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxm

Alternatively, if dS(x) stands for the classical surface element on ∂Γ and ν(x)
for the outward pointing (with respect to Γ+) unit normal vector in x on ∂Γ,
then the surface element d̃σx may also be expressed as

d̃σx = ν(x) dS(x)

The corresponding oriented volume element on Γ reads

d̃V (x) = dx1 ∧ · · · ∧ dxn

For functions f and g defined on ∂Γ and with values in the Clifford algebra
Cm, we then introduce the Cm valued inner product

〈f, g〉∂Γ =
∫

∂Γ

f†(x) g(x) dS(x)

and moreover the associated norm

‖f‖2L2(∂Γ) = [〈f, f〉]0 =
∫

∂Γ

|f(x)|2 dS(x)

We also consider the right Hilbert–module L2(∂Γ) of square integrable func-
tions f defined on ∂Γ for which it holds that ‖f‖L2(∂Γ) < +∞. To make the
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formulae more compact, in what follows, we drop ”∂Γ” in the notation for the
inner product and the norm.

Now, in order to arrive at the definition of the Hilbert transform on ∂Γ,
we list some elementary function theoretical results in Clifford analysis (see e.g.
[23]). First of all, the theorem of Stokes may be formulated as follows.

Theorem 5.2 (Clifford–Stokes theorem). Let f and g be functions in C1(Ω)
and let Γ ⊂ Ω be an m–dimensional compact differentiable and oriented manifold
with C∞ smooth boundary ∂Γ, then∫

∂Γ

f(x) d̃σx g(x) =
∫

Γ

[
(f(x)∂x) g(x) + f(x) (∂xg(x))

]
d̃V (x)

As an immediate consequence one obtains the basic theorem of Cauchy.

Theorem 5.3 (Clifford–Cauchy theorem). Let the function f be ∂x–monogenic
in Ω and let Γ ⊂ Ω be an m–dimensional compact differentiable and oriented
manifold with C∞ smooth boundary ∂Γ, then∫

∂Γ

d̃σx f(x) = 0

Next, a Cauchy–Pompeiu formula is obtained.

Theorem 5.4 (Cauchy–Pompeiu formula). Let f be a function in C1(Ω) and
let Γ ⊂ Ω be an m–dimensional compact differentiable and oriented manifold
with C∞ smooth boundary ∂Γ, then∫

∂Γ

E(x− y) d̃σx f(x)−
∫

Γ

E(x− y)
[
∂xf(x)

]
d̃V (x) =

{
0 , y ∈ Γ−

f(y) , y ∈ Γ+

In particular, for ∂x–monogenic functions this leads to:

Corollary 5.4 (Cauchy integral formula). Let the function f be ∂x–monogenic
in Ω and let Γ ⊂ Ω be an m–dimensional compact differentiable and oriented
manifold with C∞ smooth boundary ∂Γ, then∫

∂Γ

E(x− y) d̃σx f(x) =

{
0 , y ∈ Γ−

f(y) , y ∈ Γ+



5.2. The Clifford–Hilbert transform on closed surfaces in Rm 127

Now let f ∈ L2(∂Γ); its Cauchy integral C[f ] in Γ± is defined by

C[f ](y) =
∫

∂Γ

E(x− y) d̃σx f(x) , y ∈ Γ±

Clearly, this Cauchy integral is ∂x–monogenic in Γ±. The Hilbert transformH[f ]
then pops up in a natural way when considering the non–tangential boundary
limits of the Cauchy integral C[f ], leading to the Plemelj–Sokhotzki formulae:

C+[f ](u) ≡ lim
y→u

y∈Γ+

C[f ](y) =
1
2
f(u) +

1
2
H[f ](u) , u ∈ ∂Γ (5.14)

C−[f ](u) ≡ lim
y→u

y∈Γ−

C[f ](y) = −1
2
f(u) +

1
2
H[f ](u) , u ∈ ∂Γ

where the limits are taken in L2 sense and where the Hilbert transform H[f ] for
functions f ∈ L2(∂Γ) is given by the principal value integral

H[f ](u) = 2 Pv
∫

∂Γ

E(x− u) d̃σx f(x) , u ∈ ∂Γ (5.15)

We list its main properties, apart from the above defining one. For their proofs
we refer to e.g. [39, 42, 4].

Property 5.9.

P(1) H is a bounded linear operator on L2(∂Γ)

P(2) H2 = 1 on L2(∂Γ)

P(3) H∗ = νH ν on L2(∂Γ)

P(4) for f ∈ L2(∂Γ), one has that H[f ] = f if and only if f ∈ H2(∂Γ)

The last property P(4) deserves some more explanation. For the open set
Γ+ one can consider the Hardy space H2(Γ+) of ∂x–monogenic Clifford algebra
valued functions, viz

H2(Γ+) = {f : Γ+ → Cm : ∂xf = 0 in Γ+ and f∂Γ ∈ L2(∂Γ)}

where f∂Γ denotes the non–tangential boundary limit of f . It is well–known that
H2(Γ+) entails the Hardy space H2(∂Γ) as the closure in L2(∂Γ) of the space of
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all non–tangential boundary limits of all functions in H2(Γ+). Moreover, both
spaces H2(Γ+) and H2(∂Γ) are isomorphic, the isomorphism being obtained
explicitly by means of the Cauchy integral in the following way. For a given
f ∈ H2(∂Γ) its Cauchy integral C[f ] belongs to H2(Γ+) and

lim
y→u

y∈Γ+

C[f ](y) = f(u) , u ∈ ∂Γ

in the L2 sense, so that C[f ] may be seen as the ∂x–monogenic extension of f
to Γ+. Finally, as H2(∂Γ) is a closed subspace of L2(∂Γ), the latter space may
be decomposed into an orthogonal direct sum

L2(∂Γ) = H2(∂Γ)⊕⊥ H2(∂Γ)⊥ (5.16)

We also point out that in general, property P(3) has some severe conse-
quences. Firstly, in general, the Hilbert transform on closed surfaces in Rm is
not unitary, as opposed to the Hilbert transform on Rm. Secondly, the Hardy
projection C+ is a linear bounded operator, mapping L2(∂Γ) ontoH2(∂Γ), which
is, in general, only a skew projection. Indeed, every function f ∈ L2(∂Γ) may be
decomposed as f = C+[f ] + (−C−[f ]), but clearly C−[f ] /∈ H2(∂Γ)⊥. Invoking
now property P(3), the orthogonal decomposition (5.16) can be expressed in
terms of the Hardy space H2(∂Γ) only:

Proposition 5.5.

L2(∂Γ) = H2(∂Γ)⊕⊥ ν H2(∂Γ)

Proof.
We need to characterize the orthogonal complement H2(∂Γ)⊥ of the space
H2(∂Γ). To this end, take an arbitrary function f ∈ L2(∂Γ) and note that
f +H[f ] ∈ H2(∂Γ), since H[f +H[f ]] = f +H[f ]. Thus, for any g ∈ H2(∂Γ)⊥,
one has

〈f +H[f ], g〉 = 0 (5.17)

which may be rewritten as

〈f, g +H∗[g]〉 = 0 (5.18)

whence H∗[g] = −g. Conversely, take g ∈ L2(∂Γ) such that H∗[g] = −g,
then g fulfils (5.18) and hence also (5.17). From this, we may conclude that
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g ∈ H2(∂Γ)⊥, since any function in H2(∂Γ) can always be written in the form
f +H[f ], f ∈ L2(∂Γ). So one has that

g ∈ H2(∂Γ)⊥ ⇐⇒ H∗[g] = −g

On account of property P(3) and of the fact that ν2 = −1, this is seen to be
equivalent to H[νg] = νg, or still to νg ∈ H2(∂Γ), in view of property P(4).
Once more invoking ν2 = −1 we thus have shown that

g ∈ H2(∂Γ)⊥ ⇐⇒ g ∈ νH2(∂Γ)

Now considering the two orthogonal projection operators, the so–called Szegö
projections, P+ : L2(∂Γ) → H2(∂Γ) and P− : L2(∂Γ) → H2(∂Γ)⊥, every
function f ∈ L2(∂Γ) may be orthogonally decomposed as

f = P+[f ] + P−[f ] (5.19)

As a direct consequence of the previous proposition, the orthogonal decomposi-
tion (5.19) of f may also be written in terms of the Szegö projection P+ only.

Corollary 5.5. Every function f ∈ L2(∂Γ) may be orthogonally decomposed as

f = P+[f ]− ν P+[νf ] (5.20)

Proof.
If the function f belongs to L2(∂Γ), then the same holds for the function νf .
Clearly, the orthogonal decomposition of the latter function is given by

ν f = P+[νf ] + P−[νf ]

Multiplying both sides with (−ν) then yields

f = −ν P+[νf ]− ν P−[νf ] (5.21)

Taking into account Proposition 5.5, we find that −ν P+[νf ] ∈ H2(∂Γ)⊥ and
−ν P−[νf ] ∈ H2(∂Γ). Comparing then the expressions (5.19) and (5.21) for f ,
leads to

P+[f ] = −ν P−[νf ]
P−[f ] = −ν P+[νf ]
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from which the desired decomposition (5.20) follows.

We end this section by considering the special case of Γ+ =
◦
B(0; 1), i.e. the

open unit ball in Rm. In this case ∂Γ = Sm−1, i.e. the unit sphere in Rm, and
at each point ω ∈ Sm−1, one has ν(ω) = ω.

The Hilbert transform H[f ] of a function f ∈ L2(Sm−1) thus reads

H[f ](ξ) =
2
am

Pv
∫

Sm−1

ξ − ω

|ξ − ω|m
ω f(ω) dS(ω)

=
2
am

Pv
∫

Sm−1

1 + ξω

|1 + ωξ|m
f(ω) dS(ω)

where ξ ∈ Sm−1. It was then shown in e.g. [51, Theorem 2.1] that only in this
case the Hilbert transform is unitary. Indeed, one readily finds:

H∗[f ](ξ) = ξH[ωf(ω)](ξ) = H[f ](ξ)



Chapter 6

Generalized
Clifford–Hilbert transforms
on Rm involving spherical
monogenics

In this chapter we treat two possible generalizations of the Clifford–Hilbert
transform in Rm, making use of the families of Clifford distributions already in-
troduced in Section 4.4, and aiming at preserving in these approaches as many
of the traditional properties of the Clifford–Hilbert transform as possible. It is
shown that in each of both cases some of the properties – different ones – are
inevitably lost. Nevertheless we twice obtain a new bounded singular integral
operator on L2 or on appropriate Sobolev spaces.

The two generalizations are presented in the first section of this chapter
(see [10, 13]). In the first approach the Clifford–Hilbert transform on Rm is
generalized by using convolution kernels which were already briefly discussed in
Subsection 4.4.3. There it was shown that they constitute a refinement of the
generalized Hilbert kernels introduced by Horváth in [70]. We will now investi-
gate our generalized Hilbert convolution kernels more thoroughly. The resulting
generalized Hilbert transforms are shown to be no longer unitary operators, yet
they remain bounded singular operators on L2(Rm).
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The second approach is based on the intimate relationship between the Hilbert
transform and the Cauchy integral and starts with the construction of a gener-
alized Cauchy integral in Rm+1 involving a distribution from one of the above
mentioned families as a generalized Cauchy kernel. A new generalized Hilbert
transform in Rm is then defined as part of the L2 or distributional boundary
limits of the generalized Cauchy integral considered, and it is shown to be a
bounded operator on Sobolev spaces Wn

2 (Rm).

Finally a connection is established between both generalizations through the
action of a higher order Dirac derivative.

The relationship between the Clifford–Radon transform and the classical
Clifford–Hilbert transform on Rm was treated in Subsection 5.1.5. The second
section in this chapter is devoted to the action of the Radon transform on the
two types of generalized Hilbert operators mentioned above (see [15]).

6.1 Two types of generalized Hilbert transforms
on Rm

6.1.1 First generalization

For p ∈ N, we recall the specific distributions introduced in Subsection 4.4.3:

T−m−p,p = Fp
1
rm

Pp(ω) = Pv
Pp(ω)
rm

U−m−p,p = Fp
1
rm

ω Pp(ω) = Pv
ω Pp(ω)
rm

V−m−p,p = Fp
1
rm

Pp(ω)ω = Pv
Pp(ω)ω
rm

W−m−p,p = Fp
1
rm

ω Pp(ω)ω = Pv
ω Pp(ω)ω

rm

(6.1)

for which it holds that

Pv
Sp+1(ω)
rm

= − 1
2(p+ 1)

(U−m−p,p + V−m−p,p)

Pv
ω Sp+1(ω)

rm
= − 1

2(p+ 1)
(W−m−p,p − T−m−p,p)

where Pp(x) = ∂xSp+1(x) is a vector valued spherical monogenic, Sp+1 being a
scalar valued spherical harmonic. Note that these distributions are homogeneous
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of degree (−m) and that the functions in the respective numerators of (6.1) all
satisfy the cancellation condition∫

Sm−1
Ω(ω) dS(ω) = 0

Ω(ω) being either of Pp(ω), ω Pp(ω), Pp(ω)ω or ω Pp(ω)ω.

Next, we introduce the convolution operators

Tp = T−m−p,p ∗ f Up = U−m−p,p ∗ f

Vp = V−m−p,p ∗ f Wp = W−m−p,p ∗ f
(6.2)

which are direct generalizations of the Clifford–Hilbert transformH on Rm. The
following properties are then immediately obtained.

Property 6.1. The generalized Hilbert transforms (6.2) commute with trans-
lations, which is an equivalent statement to their definition as convolution op-
erators.

Property 6.2. The generalized Hilbert transforms (6.2) commute with dila-
tions, which, for convolution operators, is an equivalent statement to the above
consideration that their kernels (6.1) are homogeneous distributions of degree
(−m).

Now taking into account Theorems 4.7 and 4.8, the Fourier symbols of the
generalized Hilbert kernels (6.1), given by

F [T−m−p,p] = i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(ω)

F [U−m−p,p] = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) ω Pp(ω)

F [V−m−p,p] = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) Pp(ω)ω

F [W−m−p,p] = i−p−2 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) (ω Pp(ω)ω − m− 2
p

Pp(ω)
)

(6.3)

are homogeneous of degree 0 and moreover are bounded functions. We then
have
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Property 6.3. The generalized Hilbert transforms (6.2) and the Fourier trans-
form are interrelated in the following way:

F [Tp[f ]] = i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(ω)F [f ]

Tp[F [f ]] = ip π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) F [Pp(ω) f ]

F [Up[f ]] = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) ω Pp(ω)F [f ]

Up[F [f ]] = ip+1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) F [ω Pp(ω) f ]

F [Vp[f ]] = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) Pp(ω)ωF [f ]

Vp[F [f ]] = ip+1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) F [Pp(ω)ω f ]

F [Wp[f ]] = i−p−2 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) (ω Pp(ω)ω − m− 2
p

Pp(ω)
)
F [f ]

Wp[F [f ]] = ip+2 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) F [(ω Pp(ω)ω − m− 2
p

Pp(ω)
)
f

]
Property 6.4. The generalized Hilbert transforms (6.2) are bounded linear op-
erators on L2(Rm).

Now we investigate whether these new operators will show some appropriate
analogues of the remaining properties of the classical Clifford–Hilbert transform
on Rm. To this end we closely examine the kernel T−m−p,p and the correspond-
ing operator Tp.

A first traditional property of the Hilbert transform is that it squares to
unity, or more precisely: to the identity operator. Here we have

T 2
p [f ] = (T−m−p ∗ T−m−p) ∗ f
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whence we should investigate whether the convolution of the kernel T−m−p with
itself equals the delta distribution. Now, since

F [T−m−p,p ∗ T−m−p,p] = (F [T−m−p,p])
2 6= 1 (6.4)

this is seen not to be the case, from which we may conclude that T 2
p 6= 1.

Next, the traditional Hilbert transform is a unitary operator. In order to in-
vestigate whether the generalized Hilbert transform Tp fulfils this property, we
first compute its adjoint T ∗p . For functions f, g ∈ L2(Rm) one finds〈

f, T ∗p [g]
〉

= 〈Tp[f ], g〉 =
∫

Rm

Tp[f ](x)† g(x) dV (x)

=
∫

Rm

[
Pv
∫

Rm

f(y)†
Pp(x− y)†∣∣x− y

∣∣m+p dV (y)

]
g(x) dV (x)

=
∫

Rm

f(y)†
[
(−1)p+1 Pv

∫
Rm

Pp(y − x)∣∣y − x
∣∣m+p g(x) dV (x)

]
dV (y)

=
〈
f, (−1)p+1Tp[g]

〉
leading to

T ∗p = (−1)p+1Tp

From this result we may also conclude, in view of (6.4), that TpT ∗p = T ∗p Tp 6= 1,
whence Tp is not a unitary operator. Finally, we fail to establish an analogue
of Property 5.7 as well, since it has turned out being impossible to find a gen-
eralized Cauchy kernel in Rm+1 \ {0}, for which a part of the boundary limits
precisely equals the generalized Hilbert kernel T−m−p,p.

Similar conclusions hold for the other generalized kernels (6.1).

6.1.2 Second generalization

Subsequent to the observations above and in particular to the failing of the very
crucial Property 5.7, we now want to find a type of generalized Hilbert kernel
which actually is part of the non–tangential boundary limits of some generalized
Cauchy kernel. To that end, we define the function

Cp(x) = Cp(x0, x) =
1

am+1,p

xe0

|x|m+1+2p Pp(x)

=
1

am+1,p

x0 + e0x

|x0 + x|m+1+2p Pp(x) , x 6= 0
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involving a homogeneous polynomial Pp of degree p ∈ N0 on Rm which we take
to be vector valued and monogenic, and where

am+1,p =
(−1)p

2p

2π
m+1

2

Γ
(

m+1
2 + p

) (6.5)

In the next proposition we show that these functions Cp constitute good candi-
dates for generalized Cauchy kernels.

Proposition 6.1. The function Cp satisfies the following properties:

(i) Cp ∈ Lloc
1 (Rm+1) and lim

|x|→∞
Cp(x) = 0, ∀p ∈ N

(ii) Dx Cp(x) = Pp(∂x) δ(x) in distributional sense, ∀p ∈ N

(iii) for p = 0, C0 coincides with the traditional Cauchy kernel C

Proof.
The proof of (i) being straightforward, we focus on the proofs of (ii) and (iii).
First recall that in Rm the following formula holds for each couple (λ, p) ∈ C×N
(see (4.32)):

∂xU
∗
λ,p = −2π T ∗λ−1,p

Hence, passing to Rm+1 and using the tilde-notation for the corresponding fam-
ilies of distributions there, we still have that

∂xŨ
∗
λ,p = −2π T̃ ∗λ−1,p

Applying this formula in the specific case where λ = −m− 2p, p ∈ N, one gets

∂xŨ
∗
−m−2p,p = −2π T̃ ∗−m−2p−1,p (6.6)

which, invoking the definitions for the normalized distributions in Subsection 4.4.1
– however with m being replaced by (m+ 1) –, can be rewritten as

∂x

(
π

Γ(1)
Ũ−m−2p,p

)
= −2π

(
π

m+1
2

22pp!Γ
(

m+1
2 + p

) P̃p(x) ∆pδ(x)

)
or as

∂x

(
ω

|x|m+2p P̃p(x)

)
= − 1

2pp!
am+1,p P̃p(x) ∂2p

x δ(x) (6.7)
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with x = |x|ω, ω ∈ Sm. Now take in particular

P̃p(x) = e0 Pp(x) (6.8)

Although that specific polynomial P̃p is not vector valued, it may be clear that
formula (6.6) still holds. Then taking into account the relationship (5.7) between
∂x and Dx, and substituting (6.8) in (6.7) yields

Dx

(
xe0

|x|m+1+2p Pp(x)

)
=

1
2pp!

am+1,p Pp(x) ∂2p
x δ(x) (6.9)

On the other hand we know from Proposition 3.1 that in Rm

Pp(x) ∂2p
x δ(x) = 2pp!Pp(∂x) δ(x) (6.10)

which can be rewritten in Rm+1 as P̃p(x) ∂2p
x δ(x) = 2pp! P̃p(∂x) δ(x). Again

taking P̃p(x) = e0Pp(x) gives

Pp(x) ∂2p
x δ(x) = 2pp!Pp(∂x) δ(x) (6.11)

Finally, substitution of (6.11) in the right-hand side of (6.9) yields the desired
result of (ii):

Dx Cp(x) = Pp(∂x) δ(x)

Now, as for p = 0 one has that P0(x) = 1 and am+1,0 = am+1, this implies

C0(x) =
1

am+1

xe0

|x|m+1

which is precisely the standard Cauchy kernel in Clifford analysis.

As a nice additional result, using a similar method as in the previous proof,
one also can construct a generalized fundamental solution for the Dirac operator
∂x in Rm, viz

Ep(x) =
1

am,p

xPp(x)
|x|m+2p = − 1

π am,p
U∗−m−2p+1,p

for which
∂xEp(x) = Pp(∂x)δ(x)
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and E0 = E, the standard fundamental solution of the Dirac operator (see Sec-
tion 3.2).

In the next proposition we calculate the non–tangential distributional bound-
ary limits for x0 → 0± of the generalized Cauchy kernels Cp(x0, x), p ∈ N0. To
this end we first formulate an auxiliary result in the following lemma.

Lemma 6.1. For p ∈ N0 one has

lim
x0→0+

x0

|x0 + x|m+1+2p =
1

2p+1p!
am+1,p ∂

2p
x δ(x) (6.12)

lim
x0→0−

x0

|x0 + x|m+1+2p = − 1
2p+1p!

am+1,p ∂
2p
x δ(x) (6.13)

Proof.
First notice that |−x̃0 + x| = |x̃0 + x|, since the scalar x̃0 and the vector x, both
considered as elements of Rm+1, are orthogonal. Hence, when substituting x0

by −x̃0 and then taking into account (6.12), the equation (6.13) may be proven
immediately:

lim
x0→0−

x0

|x0 + x|m+1+2p = − lim
fx0→0+

x̃0

|x̃0 + x|m+1+2p = − 1
2p+1p!

am+1,p ∂
2p
x δ(x)

So we are reduced to the proof of (6.12). Therefore we apply induction on p.
Clearly, for p = 0, (6.12) stands for the well–known distributional limit

lim
x0→0+

x0

|x0 + x|m+1 =
1
2
am+1 δ(x)

Next, assume (6.12) to be valid for (p− 1), i.e. one has

lim
x0→0+

x0

|x0 + x|m−1+2p =
1

2p(p− 1)!
am+1,p−1 ∂

2p−2
x δ(x)

By the action of the Dirac operator on both sides of this equality one obtains

lim
x0→0+

∂x

(
x0

|x0 + x|m−1+2p

)
=

1
2p(p− 1)!

am+1,p−1 ∂
2p−1
x δ(x) (6.14)

On the other hand, one can directly calculate that

lim
x0→0+

∂x

(
x0

|x0 + x|m−1+2p

)
= −(m− 1 + 2p) lim

x0→0+

x0x

|x0 + x|m+1+2p (6.15)
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Comparing (6.14) and (6.15) leads to

1
2p(p− 1)!

am+1,p−1 ∂
2p−1
x δ(x)

= −(m− 1 + 2p)x lim
x0→0+

x0

|x0 + x|m+1+2p

(6.16)

Using Lemma 4.1 (ii) one has that x ∂2p
x δ(x) = 2p ∂2p−1

x δ(x). Thus (6.16) may
be rewritten as

1
2p+1p!

am+1,p−1 x ∂
2p
x δ(x) = −(m− 1 + 2p)x lim

x0→0+

x0

|x0 + x|m+1+2p

leading to the desired result

lim
x0→0+

x0

|x0 + x|m+1+2p =
1

2p+1p!
am+1,p ∂

2p
x δ(x)

when we invoke the definition (6.5) of am+1,p.

Proposition 6.2. For each p ∈ N0 one has

Cp(0+, x) ≡ lim
x0→0+

Cp(x0, x) =
1
2
Pp(∂x)δ(x) + e0

1
2
Hp(x)

Cp(0−, x) ≡ lim
x0→0−

Cp(x0, x) = −1
2
Pp(∂x)δ(x) + e0

1
2
Hp(x)

where

Hp(x) =
2

am+1,p
Fp

ω Pp(ω)
rm+p

= − 2
am+1,p

U∗−m−2p,p

Proof.
We only calculate Cp(0+, x), the computation for Cp(0−, x) running along sim-
ilar lines. Multiplying both sides of (6.12) with Pp(x) and applying (6.10) yields

lim
x0→0+

x0 Pp(x)
|x0 + x|m+1+2p =

1
2
am+1,p Pp(∂x) δ(x) (6.17)

Next, on account of Lebesgue’s dominated convergence theorem, one may show
that in distributional sense

lim
x0→0+

e0
xPp(x)

|x0 + x|m+1+2p = e0 Fp
ω Pp(ω)
rm+p

(6.18)
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Expressions (6.17) and (6.18) then result into the following distributional limit

Cp(0+, x) = lim
x0→0+

1
am+1,p

x0 Pp(x)
|x0 + x|m+1+2p + lim

x0→0+

1
am+1,p

e0 xPp(x)
|x0 + x|m+1+2p

=
1
2
Pp(∂x)δ(x) +

1
am+1,p

e0 Fp
ω Pp(ω)
rm+p

,

which had to be proved.

The distribution Hp arising in the previous proposition allows for the defi-
nition of a generalized Hilbert transform Hp, given by

Hp[f ] = e0Hp ∗ f

Now we compare its properties with those of the standard Clifford–Hilbert trans-
form H. First of all it readily follows that:

Property 6.5. The generalized Hilbert transform Hp commutes with transla-
tions, which is an equivalent statement to its definition as convolution operator.

Next, the kernel Hp being a homogeneous distribution of degree (−m − p)
means that the operator Hp is not dilation invariant. Further, taking into
account (4.42), its Fourier symbol

F [Hp] = − 2
am+1,p

i−p−1 U∗0,p (6.19)

not being a bounded function, the operator Hp will not be bounded on L2(Rm).
However, the Fourier symbol is polynomial of degree p, implying that Hp is
a bounded operator between the Sobolev spaces Wn

2 (Rm) → Wn−p
2 (Rm), for

n ≥ p (see [96, Proposition VI.5]). This is also confirmed in Property 6.6
resulting from the following proposition.

Proposition 6.3. The generalized Cauchy integral Cp maps the Sobolev space
Wn

2 (Rm) into the Hardy space H2(Rm+1
+ ), for each natural number n ≥ p.

Proof.
First of all we recall that the Hardy spaces H2(Rm+1

+ ) and H2(Rm) are isomor-
phic (see Proposition 5.3); each element of the latter space can be identified
with the non–tangential limit limx0→0+ F (x0, x) of a function F in H2(Rm+1

+ ).
Moreover, see Theorem 5.1, H2(Rm) can be characterized as follows

g ∈ H2(Rm) ⇐⇒

{
(C1) g ∈ L2(Rm)

(C2) H[g] = g
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So, it is necessary and sufficient to prove that, for each f ∈Wn
2 (Rm), n ≥ p,

lim
x0→0+

Cp[f ](x0, x) =
1
2
Pp(∂x)f(x) +

1
2
Hp[f ](x) (6.20)

satisfies conditions (C1) and (C2).
For such a function f one immediately has that Pp(∂x)f belongs to the Sobolev
space Wn−p

2 (Rm) ⊂ L2(Rm). Then, invoking (4.45) one finds that

H[Pp(∂x)f ] = e0
−2
am+1

U∗−m,0 ∗ Pp(∂x)f = e0
−2

am+1,p
U∗−m−2p,p ∗ f = Hp[f ]

This implies that

Hp[f ] = H[Pp(∂x)f ] ∈ L2(Rm) (6.21)

whence condition (C1) is fulfilled. Now we examine whether condition (C2) is
satisfied as well, i.e. we check whether

H
[

lim
x0→0+

Cp[f ](x0, x)
]

= lim
x0→0+

Cp[f ](x0, x)

As H is an involution and relying on the equality contained in (6.21), one indeed
finds that

H
[
1
2
Pp(∂x)f +

1
2
Hp[f ]

]
=

1
2
Hp[f ] +

1
2
Pp(∂x)f

which completes the proof.

Property 6.6. The generalized Hilbert transform Hp is a bounded linear opera-
tor between the Sobolev spaces Wn

2 (Rm) and Wn−p
2 (Rm), for each natural num-

ber n ≥ p.

Proof.
Take a function f in Wn

2 (Rm), with n ≥ p. The previous proposition then
already shows that Hp[f ] belongs to L2(Rm) (see (6.21)). Moreover, relying on

H[∂xj
f ](y) = ∂yj

H[f ](y) , j = 1, . . . ,m

one finds that, for each multi-index α = (α1, . . . , αm) with |α| = n− p,

∂α
yHp[f ](y) = ∂α

yH[Pp(∂x)f ](y) = H[∂α
xPp(∂x)f ](y) ∈ L2(Rm)
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Thus, a fortiori, Hp[f ] belongs to Wn−p
2 (Rm).

As for further traditional properties, we see that the generalized Hilbert
transform Hp does not square to the identity operator. Indeed, one has that

H2
p[f ] = e0Hp ∗ (e0Hp ∗ f) = (−Hp ∗Hp) ∗ f

whence we should investigate whether the convolution of the kernel Hp with
itself equals minus the delta distribution. Taking into account (4.30) and (4.48),
one finds that

U∗−m−2p,p ∗ U∗−m−2p,p =
−1

m+ 2p− 1
∂x

(
T ∗−m−2p+1,p ∗ U∗−m−2p,p

)
=

(−1)p+1

2p+1
π

m
2

Γ
(

m
2 + p

)[
Γ
(

m
2 + p+ 1

2

)]2 ∂xV
∗
−m−2p+1,p Pp(∂x)

such that, making use of the properties (3.2) of the Fourier transform and of
(4.43) and Theorem 4.5, one has

F [Hp ∗Hp] (y) =
4

(am+1,p)2
F
[
U∗−m−2p,p ∗ U∗−m−2p,p

]
(y)

= (−1)p+1 22p π−
m
2 +p Γ

(m
2

+ p
)
W ∗

0,p Pp(y)

from which we may conclude that H2
p 6= 1.

For functions f, g ∈ L2(Rm), we then calculate the adjoint H∗
p of the gener-

alized Hilbert transform Hp. The direct calculation

〈Hp[f ], g〉 =
∫

Rm

Hp[f ](x)† g(x) dV (x)

=
∫

Rm

[
2

am+1,p
Fp
∫

Rm

f(y)†
Pp(x− y) (x− y)∣∣x− y

∣∣m+2p+1 e0 dV (y)

]
g(x) dV (x)

=
∫

Rm

f(y)†
[
(−1)p 2

am+1,p
e0 Fp

∫
Rm

Pp(y − x)(y − x)∣∣y − x
∣∣m+2p+1 g(x) dV (x)

]
dV (y)

=
〈
f, e0 (−1)p+1 2

am+1,p
V ∗
−m−2p,p ∗ g

〉
leads to the adjoint H∗

p being given by

H∗
p = e0H

∗
p ∗ f
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with the convolution kernel

H∗
p = (−1)p+1 2

am+1,p
V ∗
−m−2p,p = (−1)p 2

am+1,p
Fp

Pp(ω)ω
rm+p

Applying then the same calculation method as on previous page one finds

F [Hp ∗H∗
p ](y) = −22p π−

m
2 +p Γ

(m
2

+ p
)
U∗−1,p Pp(y) y 6= −1

from which we conclude that the generalized Hilbert transformHp is not unitary.

However, the main objective for this second generalization is fulfilled on
account of Proposition 6.2: Hp pops up as a part of the boundary limits of
a generalized Cauchy kernel Cp, an analogue of the ”classical” Property 5.7.
Finally, a link with the first type of generalized Hilbert transforms is established.

Proposition 6.4. The generalized Hilbert kernel Hp can be written as a higher
order Dirac derivative, say ∂p

x, of the generalized Hilbert kernels of the first kind
T−m−p,p and U−m−p,p, depending on the parity of p. More specifically one has
that, for a suitable function f and a natural number p

(i) if p is odd, then

Hp[f ] = e0
−2

p−1
2 Γ

(
m+p

2

)
π

m+1
2 (p− 2)!!

∂p
xT−m−p,p ∗ f

(ii) if p is even, then

Hp[f ] = e0
−2

p
2 Γ
(

m+p+1
2

)
π

m+1
2 (p− 1)!!

∂p
xU−m−p,p ∗ f

Proof.
The proofs of (i) and (ii) running along similar lines, we only prove (i).
So, let p be an odd number. Formula (4.38) for the specific choice of λ = −m−p
and 2k + 1 = p then reads

∂p
x T

∗
−m−p,p = (−2π)

p−1
2 (−m− p)(−m− p− 2) . . . (−m− 2p+ 1)U∗−m−2p,p

= −2pπ
p−1
2

Γ
(

m+2p+1
2

)
Γ
(

m+p
2

) U∗−m−2p,p
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The normalized distribution T ∗−m−p,p may be written in terms of the generalized
Hilbert kernel T−m−p,p as follows (see (4.29)):

T ∗−m−p,p =
π

p
2

Γ
(

p
2

) T−m−p,p =
(2π)

p−1
2

(p− 2)!!
T−m−p,p

Taking into account those two previous results, one finally arrives at following
expression for the generalized Hilbert kernel Hp:

Hp = − 2
am+1,p

U∗−m−2p,p = −
2

p−1
2 Γ

(
m+p

2

)
π

m+1
2 (p− 2)!!

∂p
x T−m−p,p

6.2 Relationship with the Radon transform

We will now calculate the action of the Radon transform on the generalized
Hilbert transforms introduced in the previous section. In the following propo-
sition, the Radon transform of the generalized Hilbert transforms of the first
kind is considered. Again, for the proof, we rely on a suitable adaptation of the
techniques used in [56].

Proposition 6.5. For a suitable function f defined on Rm and with values in
the Clifford algebra R0,m+1, one has for p even:

R[Tp[f ]](n, s) = i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)R[f ](n, s)

R[Up[f ]](n, s) = i−p π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) nPp(n)Hu→s[R[f ](n, u)](s)

R[Vp[f ]](n, s) = i−p π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) Pp(n)nHu→s[R[f ](n, u)](s)

R[Wp[f ]](n, s) = i−p−2 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) (nPp(n)n− m− 2
p

Pp(n)
)

×R[f ](n, s)
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while for p odd:

R[Tp[f ]](n, s) = i−p+1 π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)Hu→s[R[f ](n, u)](s)

R[Up[f ]](n, s) = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) nPp(n)R[f ](n, s)

R[Vp[f ]](n, s) = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) Pp(n)nR[f ](n, s)

R[Wp[f ]](n, s) = i−p−1 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) (nPp(n)n− m− 2
p

Pp(n)
)

×Hu→s[R[f ](n, u)](s)

Before proving these formulae, we first make some preliminary remarks on
their structure. First of all, it is worth noticing that the last factor in the
above results is affected by the parity of p, which is the degree of homogeneity
of the spherical monogenic involved; more specifically, this parity dependence
is reflected in the fact that the outcome involves either the Radon transform
of the considered function, or the Hilbert transform of that Radon transform.
Secondly, if we isolate the parity dependent part in all formulae, then we easily
recognize the remaining factor at the right-hand side to be the Fourier symbol
of one of the considered operators Tp, Up, Vp or Wp (see (6.3)).

Proof.
We only calculate R[Tp[f ]](n, s) as the other computations run along similar
lines. Taking into account Lemma 5.1 and Theorem 4.7, in frequency space one
has

Fs→q [R[Tp[f ]](n, s)] (q) = F [T−m−p,p ∗ f ] (q n)

= F [T−m−p,p] (q n) · F [f ] (q n) = i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) T−p,p(qn) · F [f ] (q n)

As the spherical decomposition of qn reads |q| · (sgn(q)n), we then easily get

T−p,p(qn) = Fp |q|−p Pp(q n) = (sgn(q))p Pp(n)
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leading to

Fs→q [R[Tp[f ]](n, s)] (q)

= i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n) (sgn(q))p Fs→q [R[f ](n, s)] (q)
(6.22)

where we applied Lemma 5.1 on the Fourier transform of f . Further, as

(sgn(q))p =
{

1 , if p even
sgn(q) , if p odd

one has to distinguish between two cases.

case a. p even
In this case, formula (6.22) turns into

Fs→q [R[Tp[f ]](n, s)] (q) = i−pπ
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)Fs→q [R[f ](n, s)] (q)

from which the desired formula follows, taking the one–dimensional inverse
Fourier transform, viz

R[Tp[f ]](n, s) = i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)R[f ](n, s)

case b. p odd
Noticing that (−i) sgn(q) is the Fourier symbol of the one–dimensional Hilbert
kernel on the real line, formula (6.22) may be rewritten as

Fs→q [R[Tp[f ]](n, s)] (q)

= i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n) sgn(q)Fs→q [R[f ](n, s)] (q)

= i−p+1 π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)Fs→q [H(s)] (q)Fs→q [R[f ](n, s)] (q)

= i−p+1 π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)Fs→q {Hu→s[R[f ](n, u)](s)} (q)
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Then taking the one–dimensional inverse Fourier transform, viz

R[Tp[f ]](n, s) = i−p+1 π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)Hu→s[R[f ](n, u)](s)

we obtain the desired result.

In the following proposition the Radon transform of the generalized Hilbert
transform Hp is calculated. We will prove the formula in two different ways.

Proposition 6.6. For a suitable function f defined on Rm and with values in
the Clifford algebra R0,m+1, one has

R[Hp[f ]](n, s) = e0 nPp(n) ∂p
sHu→s[R[f ](n, u)](s) (6.23)

Proof 1.
The first way to prove formula (6.23), is by means of similar techniques as in
the previous proposition. So again, the calculations are done in one–dimensional
frequency space:

Fs→q {R[Hp[f ]](n, s)} (q) = e0 F [Hp ∗ f ] (q n)

= ip+1 (2π)p e0 U0,p(q n)F [f ] (q n) (6.24)

where in the last step we have used (6.19). Note that one may write

U0,p(q n) = Fp |q|0 (sgn(q)n)Pp(q n) = nPp(n) qp sgn(q)

= i nPp(n) qp Fs→q [H(s)] (q)

= i−p+1 (2π)−p nPp(n)Fs→q

[
dp

dsp
H(s)

]
(q) (6.25)

Substitution of (6.25) into (6.24) then yields

Fs→q {R[Hp[f ]](n, s)} (q)

= i2 e0 nPp(n)
(
Fs→q

[
dp

dsp
H(s)

]
Fs→q [R[f ](n, s)]

)
(q)

= e0 nPp(n)Fs→q {∂p
sHu→s[R[f ](n, u)](s)} (q)
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from which formula (6.23) can be deduced taking the one–dimensional inverse
Fourier transform.

Proof 2.
The second way to prove the proposition is through a direct calculation, on
the one hand making use of the relation (6.21) between the generalized Hilbert
transform Hp and the classical Clifford–Hilbert transform H, and on the other
hand taking into account Lemma 5.2 (ii). For a function f ∈Wn

2 (Rm) one has

R[Hp[f ]](n, s) = R[H[Pp(∂x)f ]](n, s)

= e0 nHu→s[R[Pp(∂x)f ](n, u)](s) (6.26)

where in the last step we made use of (5.13). Now invoking the linearity (5.11)
of the Radon transform, the fact that Pp is a vector valued homogeneous poly-
nomial of degree p and Lemma 5.2 (ii), we are lead to

R[Pp(∂x)f ](n, u) = Pp(n) ∂p
uR[f ](n, u) (6.27)

Substitution of (6.27) in (6.26) gives

R[Hp[f ]](n, s) = e0 nHu→s[Pp(n) ∂p
uR[f ](n, u)](s)

= e0 nPp(n) ∂p
sHu→s[R[f ](n, u)](s)
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Chapter 7

The anisotropic Clifford
toolbox

In Part I, (generalized) multidimensional Hilbert transforms have been con-
structed in Rm in the framework of orthogonal Clifford analysis. The consid-
ered Hilbert transforms, usually obtained as a part of the boundary limit of an
associated Cauchy integral in Rm+1, might be characterized as isotropic, since
the metric in the underlying space is the standard Euclidean one.

This introductory chapter adopts the idea of an anisotropic (also called met-
ric dependent or metrodynamical) Clifford setting, which offers the possibility
of adjusting the co-ordinate system to preferential and not necessarily mutually
orthogonal directions. This is achieved by means of a so–called metric tensor.
The idea is in fact not completely new since Clifford analysis on manifolds with
local metric tensors was already considered in e.g. [60, 75, 42], while in [56] a
specific three–dimensional metric tensor, leaving the third dimension unaltered,
was introduced for analyzing two–dimensional signals and textures. Of a more
recent character, however, is the detailed development of Clifford analysis in
a global metric dependent setting (see [35, 53]). It should be clear that this
has opened a new domain in Clifford analysis, offering a framework for a new
kind of applications such as texture analysis. In this context, we mention e.g.
the anisotropic Clifford–Hermite wavelets introduced in [35, 53] and moreover
the anisotropic multidimensional Hilbert transform, which will be thoroughly
discussed in the next chapter.
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The outline of this chapter is as follows. We first introduce the notion of
metric tensor which will give rise to two bases, a covariant one and a contravari-
ant one. Then, a Clifford algebra will be constructed, depending on the metric
tensor involved, and all necessary definitions and results of orthogonal Clifford
analysis will be extended to this metric dependent setting. We introduce e.g.
the concepts of Dirac operator, monogenicity and Laplace operator. We end this
chapter with the definition and study of the so–called anisotropic Fourier trans-
form, the metric dependent analogue of the classical Fourier transform (2.5).
For a more detailed account about anisotropic Clifford analysis we once more
refer the reader to [35, 53].

7.1 The metric tensor

Let G̃ = (gkl)k,l=0,...,m ∈ R(m+1)×(m+1) be a real, symmetric and positive def-
inite tensor, which will be referred to as metric tensor of order (m + 1), and
consider its corresponding subtensor G = (gkl)k,l=1,...,m ∈ Rm×m, i.e.

G̃ =


g00 . . . g0m

...
G

g0m

 (7.1)

Notice that G is a metric tensor as well, however of order m, which is obtained
by simply taking the restriction of G̃ to Rm, the latter being identified with the
hyperplane x0 = 0 of Rm+1. Furthermore, let G̃−1 = (gkl)k,l=0,...,m denote the
reciprocal, or inverse, tensor of G̃, i.e.

m∑
s=0

gks g
sl = δkl , k, l = 0, . . . ,m

In the following lemma, a criterion is given for the specific (and interesting)
case where the inverse G−1 of G is included as a part of G̃−1, i.e. where one has
G−1 = (gkl)k,l=1,...,m. The geometric consequences are discussed in Remark 7.1.

Lemma 7.1. Let G̃ be a metric tensor of order (m + 1), given by (7.1). The
reciprocal of its corresponding subtensor G is given by

G−1 = (gkl)k,l=1,...,m

if and only if the following conditions are simultaneously fulfilled:
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(C1) g00 g
00 = 1

(C2) g01 = . . . = g0m = 0

Proof.
It may be clear that conditions (C1)–(C2) directly lead to G−1 = (gkl)k,l=1,...,m.
Additionally, (C2) also implies that g01 = . . . = g0m = 0. Now the inverse
implication is addressed. First, the assumption that G−1 = (gkl)k,l=1,...,m may
be rewritten as

m∑
s=1

gks g
sl = δkl , k, l = 1, . . . ,m (7.2)

This implies that the reciprocity of G̃ and G̃−1 may be expressed in a block
matrix structure, viz(

g00 uT

u G

)(
g00 u′

T

u′ G−1

)
=

(
1 0T

0 Em

)
(7.3)

where uT , u′T and 0T respectively denote the (1×m) row matrices (g01 . . . g0m),
(g01 . . . g0m) and (0 . . . 0) and Em is the unity tensor of order m. Explicit
calculation of the left-hand side of (7.3) then yields the following equations on
the level of the tensor entries:

m∑
s=0

g0s g
s0 = 1 (7.4)

m∑
s=0

g0s g
sl = 0 , l = 1, . . . ,m

m∑
s=0

gks g
s0 = 0 , k = 1, . . . ,m (7.5)

m∑
s=0

gks g
sl = δkl , k, l = 1, . . . ,m (7.6)

In view of (7.2), the left-hand side of (7.6) may be turned into

gk0 g
0l +

m∑
s=1

gks g
sl = gk0 g

0l + δkl , k, l = 1, . . . ,m
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which leads to the condition

gk0 g
0l = 0 = g0k g

l0 , k, l = 1, . . . ,m (7.7)

seen also the symmetry of G̃. Combination of (7.7) for k = l with (7.4) then
immediately results in condition (C1). Next, condition (C2) can be proven by
reductio ad absurdum. Assume that there exists an index κ ∈ {1, . . . ,m} for
which g0κ 6= 0, then (7.7) implies that g0l = gl0 = 0 for all l = 1, . . . ,m. Hence,
for each k = 1, . . . ,m, (7.5) reduces to g0k g

00 = 0. This leads to a contradiction
for k = κ since g0κ 6= 0 and g00 6= 0 on account of condition (C1).

7.2 Anisotropic Clifford analysis

In the vector space Rm+1 a covariant basis (ek) = (e0, . . . , em) and a contravari-
ant basis (el) = (e0, . . . , em) are considered, corresponding to each other through
the metric tensor G̃, i.e.

ek =
m∑

l=0

gkl e
l and el =

m∑
k=0

glk ek

The universal anisotropic Clifford algebra (R0,m+1, G̃) is then constructed over
(Rm+1, G̃), with a non–commutative multiplication governed by

ek el + el ek = −2 gkl , k, l = 0, . . . ,m
ek el + el ek = −2 gkl , k, l = 0, . . . ,m
ek e

l + el ek = −2 δkl , k, l = 0, . . . ,m

Sometimes the notion anisotropic is also referred to as metric dependent or
metrodynamical.

Remark 7.1. The above multiplication rules, together with Lemma 7.1, learn
that the specific case where G−1 = (gkl)k,l=1,...,m corresponds to the geometric
situation where the e0–direction in Rm+1 will be perpendicular to the Rm–plane
spanned by (e1, . . . , em). Of course, the same then holds for the position of e0–
direction with respect to the Rm–plane spanned by (e1, . . . , em). For m = 2 this
corresponds to the application considered in [56].

For a set A = {i1, . . . , ih} ⊂ {0, . . . ,m} with 0 ≤ i1 < i2 < · · · < ih ≤ m, one
puts eA = ei1ei2 . . . eih

. Moreover, e∅ = 1 is the identity element. In this way
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a covariant basis for the anisotropic Clifford algebra (R0,m+1, G̃) is constructed
by means of which any a ∈ R0,m+1 may be written as

a =
∑
A

aA eA , aA ∈ R

or still as

a =
m+1∑
k=0

[a]k , [a]k =
∑
|A|=k

aA eA

where the terms [a]k correspond to the so–called covariant k–vectors, with
k = 0, 1, . . . ,m + 1. Alternatively, also a contravariant basis may be consid-
ered for the Clifford algebra.

A point (x0, . . . , xm) ∈ Rm+1 will be identified with the covariant Clifford
(1–)vector

∑m
k=0 ek x

k. The above multiplication rules then lead to the decom-
position of the Clifford product of two covariant Clifford–vectors x =

∑m
k=0 ek x

k

and y =
∑m

k=0 ek y
k as

x y = −〈 x, y 〉
eG + x ∧ y

with

〈 x, y 〉
eG =

m∑
k=0

m∑
l=0

gkl x
k yl (7.8)

defining a scalar, symmetric bilinear form associated to the metric tensor G̃
which replaces the classical scalar product

〈 x, y 〉 =
m∑

k=0

xk yk (7.9)

and with

x ∧ y =
1
2
xkyl (ekel − elek)

a bivector. The norm of a vector x then is given by

|x|
eG =

√
〈 x, x 〉

eG
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Obviously, when G̃ = Em+1, one recovers the traditional Clifford algebra stem-
ming from the standard Euclidean metric, and (7.8) reduces to (7.9).

In this metric dependent context, the anisotropic Dirac operator is intro-
duced as the contravariant Clifford–vector valued differential operator of first
order, given by

∂x, eG =
m∑

k=0

ek ∂xk

with fundamental solution

E
eG(x) =

1
am+1

x

|x|m+1
eG

as well as the anisotropic Laplace operator

∆
eG = −∂x, eG ∂x, eG =

m∑
k=0

m∑
l=0

gkl ∂xk ∂xl

with fundamental solution

F
eG(x) = − 1

(m− 1)am+1

1
|x|m−1

eG

In the above, · denotes the usual conjugation in R0,m+1, defined as the main
anti–involution for which ek = −ek (and thus also ek = −ek), k = 0, . . . ,m. In
particular for a vector x one has x = −x.

A function defined on Rm+1 and taking values in R0,m+1, is then called
G̃–monogenic in the open region Ω of Rm+1 if and only if f is continuously
differentiable in Ω and satisfies in Ω the equation ∂x, eG f = 0. As the Dirac

operator factorizes the Laplace operator ∆
eG, a G̃–monogenic function in Ω is

G̃–harmonic, and so are its components.

In what follows, we also refer to the anisotropic Cauchy–Riemann operator

Dx, eG = e0 ∂x, eG

and the corresponding function

C
eG(x) = C

eG(x0, x) =
1

am+1

x e0

|x|m+1
eG

=
1

am+1

e0e
0 x0 + e0 x

|e0x0 + x|m+1
eG
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almost, but not entirely, covering the notion of fundamental solution of Dx, eG,
since

Dx, eG C eG(x) = e0 e
0 δ(x)

Here, in an obvious notation,

x =
m∑

k=1

ek x
k

is a covariant Clifford–vector in Rm, the latter still being identified with the
hyperplane x0 = 0 of (Rm+1, G̃). Note that, as

Dx, eG = e0 ∂x, eG and ∂x, eG =
1
g00

e0Dx, eG

G̃–monogenicity may equally be expressed with respect to the Cauchy–Riemann
operator.

The function C
eG above is then easily seen to split into

C
eG(x) =

1
2

(
e0 e

0 P
eG(x) + e0Q

eG(x)
)
, x0 6= 0

where

P
eG(x) = P

eG(x0, x) =
2

am+1

x0

|x|m+1
eG

, x0 6= 0

is the scalar valued anisotropic Poisson kernel and

Q
eG(x) = Q

eG(x0, x) =
2

am+1

x

|x|m+1
eG

, x0 6= 0

is the vector valued anisotropic conjugate Poisson kernel. It then readily follows
from the G̃–monogenicity of C

eG in Rm+1
+ that P

eG and Q
eG are G̃–harmonic in

Rm+1
+ (and similarly in Rm+1

− ). In accordance with the definition of conjugate
harmonicity in the sense of [24], we call them G̃–conjugate harmonic functions.

The above functions may be used as the kernels for metric dependent coun-
terparts of well–known integral transforms. Indeed, for an appropriate function
f ∈ L2(Rm), we may define its anisotropic Cauchy integral by

C
eG[f ] = C

eG ∗ f
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which is G̃–monogenic in Rm+1
+ (and in Rm+1

− ). Analogously we introduce its
anisotropic Poisson and (G̃–)conjugate Poisson transforms as the G̃–harmonic
functions

P
eG[f ] = P

eG ∗ f and Q
eG[f ] = Q

eG ∗ f

such that

C
eG[f ] =

e0 e
0

2
P
eG[f ] +

e0

2
Q
eG[f ]

either in Rm+1
+ or in Rm+1

− .

7.3 The anisotropic Fourier transform

In the isotropic case the Fourier transform on Rm was defined by

F [f ](x) =
∫

Rm

exp
(
−2πi

〈
x, y

〉)
f(y) dV (y)

=
∫

Rm

exp
(
−2πi xT y

)
f(y) dV (y)

(7.10)

where
〈
x, y

〉
denotes the restriction of the classical scalar product (7.9) to

Rm (identified with x0 = 0) and, in the last equality, the vectors x and y are
interpreted as column matrices. In a natural way, this leads to the following
definition of the anisotropic Fourier transform on (Rm, G):

FG[f ](x) =
∫

Rm

exp
(
−2πi

〈
x, y

〉
G

)
f(y) dV (y)

=
∫

Rm

exp
(
−2πi xTGy

)
f(y) dV (y)

(7.11)

where the restriction of the scalar product (7.8) to Rm comes into play. Due
to the symmetric character of G, one then immediately finds the following link
between the two Fourier transforms:

FG[f ](x) = F [f ](Gx) (7.12)

To show that the definition (7.11) is meaningful in the metric dependent con-
text, it is checked how this anisotropic Fourier transform behaves with respect
to multiplication with the variable x in (Rm, G) and, by duality, with respect
to the action of the anisotropic Dirac operator ∂x,G in (Rm, G).
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Proposition 7.1. The anisotropic Fourier transform FG satisfies the following
calculation rules:

(i) the multiplication rule:

2πiFG[y f(y)](x) = −∂x,G FG[f ](x)

(ii) the differentiation rule:

FG[∂y,G f(y)](x) = 2πi xFG[f ](x)

Proof.
First of all, if we put

u ≡ Gx =
m∑

j=1

ej

m∑
k=1

gjk x
k

then

∂u =
m∑

j=1

ej ∂uj =
m∑

j=1

ej

m∑
k=1

gkj ∂xk =
m∑

k=1

ek ∂xk = ∂x,G

Hence, taking now into account (7.12) and the properties (3.2) of the isotropic
Fourier transform, we consecutively find

2πiFG[y f(y)](x) = 2πiF [y f(y)](u) = −∂u F [f ](u) = −∂x,G FG[f ](x)

and

FG[∂y,G f(y)](x) = F [∂y,G f(y)](u) = 2πi
m∑

j=1

ej uj F [f ](u) = 2πi xFG[f ](x)
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Chapter 8

The anisotropic Hilbert
transform

In the previous chapter we have introduced the basic language of anisotropic
Clifford analysis. In this setting, a new anisotropic multidimensional Hilbert
transform in Rm ⊂ Rm+1 can be defined (see our papers [12, 16]), which is
shown to possess formally the same properties as the isotropic Hilbert opera-
tor introduced in Chapter 5. We note however that a special case of such an
anisotropic Hilbert transform, fitting into this general framework, was already
introduced and used for two–dimensional image processing in [56].

In this chapter we first present our definition of the anisotropic Hilbert trans-
form in Rm, arising naturally as a part of the non–tangential boundary limit of
the anisotropic Cauchy integral in Rm+1. Next, we study the main properties of
the former operator. In the second section, for a specific tempered distribution
in Rm, both its isotropic and anisotropic Hilbert transform are calculated in
order to examine the influence of the metric tensor considered. Finally, a strik-
ing result to be mentioned is that the associated anisotropic Cauchy integral
in Rm+1 is no longer uniquely determined, but may stem from a diversity of
metric tensors of order (m+ 1).



162 Chapter 8. The anisotropic Hilbert transform

8.1 Definition and properties

For the introduction of the anisotropic Hilbert kernel, one needs to calculate the
distributional limits of P

eG(x0, x) and Q
eG(x0, x) for x0 → 0+. The outcome of

those limits is presented in Proposition 8.1, which is preceded by the following
two auxiliary results.

Lemma 8.1. The determinant of a metric tensor G̃ of order (m + 1), given
by (7.1), is related to the determinant of its corresponding subtensor G in the
following way:

det(G̃) = det(G)
(
g00 − uT G−1 u

)
(8.1)

where uT denotes the row matrix (g01 . . . g0m).

Proof.
As the restriction G of the metric tensor G̃ to Rm is a metric tensor as well, one
may write G = BTB, with B ∈ GL(m; R). Defining v = (BT )−1u, the tensor
G̃ may then be factorized as

G̃ =
(
g00 uT

u BTB

)
=
(

1 0T

0 BT

) (
g00 vT

v Em

) (
1 0T

0 B

)
from which it follows that

det(G̃) = det(BT ) det
(
g00 vT

v Em

)
det(B)

= det(BTB)
(
g00 − vT v

)
= det(G)

(
g00 − uT G−1 u

)

Lemma 8.2. Let G̃ be a metric tensor of order (m+1), given by (7.1), and let
x̂ = e0 + x, then ∫

Rm

dV (x)
|x̂|m+1

eG

=
am+1

2
√

det(G̃)

Proof.
As the restriction G of the metric tensor G̃ to Rm is a metric tensor as well,
there exists an orthogonal (m×m) matrix A such that

ATGA = diag(µ2
1, . . . , µ

2
m)
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with µ2
1, . . . , µ

2
m the strictly positive (not necessarily different) eigenvalues of G.

Then, introducing a new integration variable x′ by means of the transformation

x = Ax′ −G−1u

and interpreting the vectors x and x′ as column matrices, one has

|x̂|2
eG

= 〈 x̂, x̂ 〉
eG =

(
1 xT

)
G̃

(
1
x

)
=

(
1 x′

T
AT − uTG−1

)(
g00 uT

u G

)(
1

Ax′ −G−1u

)
=

m∑
j=1

(
µjx

′j)2 +
(
g00 − uTG−1u

)
Once again introducing a new variable, now through the transformation

x′ =

√
det(G̃)
det(G)

diag(µ−1
1 , . . . , µ−1

m )x′′

and moreover invoking (8.1), one arrives at

|x̂|2
eG

= 〈 x̂, x̂ 〉
eG =

det(G̃)
det(G)

 m∑
j=1

(
x′′

j
)2

+ 1


Furthermore, the volume elements dV (x) and dV (x′′) are then seen to corre-
spond as follows:

dV (x) = |detA| dV (x′) =

√det(G̃)
det(G)

m  m∏
j=1

µ−1
j

 dV (x′′)

=

(√
det(G̃)

)m

(√
det(G)

)m+1 dV (x′′)

So eventually one has∫
Rm

dV (x)
|x̂|m+1

eG

=
1√

det(G̃)

∫
Rm

dV (x′′)[
1 +

∑m
j=1(x′′

j)2
]m+1

2

=
am+1

2
√

det(G̃)
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the last equality leaning on the classical result (see e.g. [97, Lemma I.1.17])∫
Rm

dV (x′′)[
1 +

∑m
j=1(x′′

j)2
]m+1

2

=
am+1

2

Proposition 8.1. In distributional sense one has

lim
x0→0+

P
eG(x0, x) =

1√
det(G̃)

δ(x)

lim
x0→0+

Q
eG(x0, x) =

1√
det(G̃)

HG,c(x)

with

HG,c(x) =
2c

am+1
Pv

x

|x|m+1
G

, c =
√

det(G̃)

Proof.
First consider the distributional limit of P

eG(x0, x). It is well–known that, if a
real valued integrable function h defined on Rm satisfies the property∫

Rm

h(x) dV (x) = 1 (8.2)

then one has in distributional sense

lim
x0→0+

h̃(x0, x) = δ(x)

where

h̃(x0, x) =
1

(x0)m
h(

x

x0
) , x0 > 0

As Lemma 8.2 implies that the specific integrable function

h(x) =
2
√

det(G̃)

am+1

1
|x̂|m+1

eG
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satisfies property (8.2), it follows that

lim
x0→0+

P
eG(x0, x) =

1√
det(G̃)

lim
x0→0+

h̃(x0, x) =
1√

det(G̃)
δ(x)

Next, since Q
eG(x0, x) ∈ Lloc

1 (Rm) for each x0 > 0, it defines a regular distribu-
tion whose action on a test function φ in Rm is given by

〈
Q
eG(x0, x) , φ(x)

〉
=
∫

Rm

Q
eG(x0, x)φ(x) dV (x)

Taking the limit for x0 → 0+ then results in〈
lim

x0→0+
Q
eG(x0, x) , φ(x)

〉
= lim

ε→0+

∫
Rm\B(0;ε)

lim
x0→0+

Q
eG(x0, x)φ(x) dV (x)

= Pv
∫

Rm

2
am+1

x

|x|m+1
G

φ(x) dV (x) =

〈
1√

det(G̃)
HG,c(x) , φ(x)

〉

which completes the proof.

The previous proposition directly leads us to the distributional limits of the
anisotropic Poisson transform and its (G̃–)conjugate, viz

lim
x0→0+

P
eG[f ] =

1√
det(G̃)

f

lim
x0→0+

Q
eG[f ] =

1√
det(G̃)

HG,c ∗ f

whence

lim
x0→0+

C
eG[f ] =

1√
det(G̃)

(
1
2
e0e

0 f +
1
2
e0HG,c ∗ f

)

Similarly, for x0 → 0−, one obtains

lim
x0→0−

C
eG[f ] =

1√
det(G̃)

(
−1

2
e0e

0 f +
1
2
e0HG,c ∗ f

)
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The above results may be seen as the anisotropic Plemelj–Sokhotzki formulae.
For a function f ∈ L2(Rm) (or a tempered distribution), they give rise to the
definition of the anisotropic Hilbert transform, defined as

HG,c[f ] = e0HG,c ∗ f

by means of which the Plemelj–Sokhotzki formulae can be rewritten as

lim
x0→0±

C
eG[f ] =

1√
det(G̃)

(
±1

2
e0e

0 f +
1
2
HG,c[f ]

)
(8.3)

For m = 2, such an anisotropic Hilbert transform was considered in [56], how-
ever for the special case where the e0–direction in R3 is chosen perpendicular
to the R2–plane spanned by (e1, e2). This corresponds to a G̃–matrix of order
3 in which g01 = g02 = 0 (see also Remark 7.1).

The following properties of the Hilbert transform HG,c may then be proven:

Proposition 8.2.

P(1) The anisotropic Hilbert transform HG,c commutes with translations, which
is an equivalent statement to its definition as a convolution operator.

P(2) The anisotropic Hilbert transform HG,c commutes with dilations, which,
for a convolution operator, is equivalent to its kernel HG,c being a homo-
geneous distribution of degree (−m).

P(3) The anisotropic Hilbert transform HG,c is a bounded linear operator on
L2(Rm), which is equivalent to its anisotropic Fourier symbol

FG[HG,c](x) =

√
det(G̃)
det(G)

i
x

|x|G
(8.4)

being a bounded function.

P(4) Up to a metric related constant, the anisotropic Hilbert transform HG,c

squares to unity, i.e.

(HG,c)2 = g00 det(G̃)
det(G)

1
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P(5) The anisotropic Hilbert transform HG,c is self–adjoint, i.e.

〈HG,c[f ], g〉 = 〈f,HG,c[g]〉 , f, g ∈ L2(Rm)

Proof.
The proof of properties P(1), P(2) and P(5) is rather straightforward, starting
from the definition of HG,c and taking into account the anisotropic setting.
Next, the calculation of the Fourier symbol in P(3) is established by invoking
the factorization of the positive definite tensor G as

G = BTB , B ∈ GL(m,R)

We then have

FG[HG,c](x)

=
√

det(G̃)
2

am+1

∫
Rm

exp(−2πi xTGy) Pv
y[

yTGy
]m+1

2

dV (y)

=
√

det(G̃)
2

am+1

∫
Rm

exp(−2πi (Bx)TBy) Pv
y[

(By)TBy
]m+1

2

dV (y)

Putting y′ = By one arrives at

FG[HG,c](x)

=

√
det(G̃)
det(G)

B−1 2
am+1

∫
Rm

exp(−2πi(Bx)T y′) Pv
y′[

y′T y′
]m+1

2

dV (y′)

such that the anisotropic Fourier transform of the anisotropic Hilbert kernel can
be rewritten in terms of the isotropic Fourier transform of the isotropic Hilbert
kernel, i.e.

FG[HG,c](x) =

√
det(G̃)
det(G)

B−1 F [H](Bx)

with the isotropic Hilbert kernel being given by

H(x) =
2

am+1
Pv

x

(〈 x, x 〉)
m+1

2
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Its Fourier symbol F [H] reads (see also (5.4))

F [H](x) = i
x√

〈 x, x 〉

yielding

FG[HG,c](x) =

√
det(G̃)
det(G)

B−1 i
Bx√

〈 Bx,Bx 〉
=

√
det(G̃)
det(G)

i
x

|x|G

Finally, property P(4) then results from a conversion to the Fourier domain.
Indeed,

FG

[
H2

G,c[f ]
]

= FG

[
e0HG,c ∗ HG,c[f ]

]
= FG

[
e0HG,c

]
FG [HG,c[f ]]

= FG

[
e0HG,c

]
FG

[
e0HG,c ∗ f

]
= FG

[
e0HG,c

]2
FG[f ]

whence

FG

[
H2

G,c[f ]
]

= −det(G̃)
det(G)

g00 x2

|x|2G
FG[f ] = g00 det(G̃)

det(G)
FG[f ]

Notice that, due to properties P(4)–P(5), the operator√
det(G)

g00 det(G̃)
HG,c

is unitary.

8.2 Example

Consider in Rm the tempered distribution

f(x) = exp (2πi 〈 a, x 〉)

where a is a given, nonzero vector. Both the isotropic Hilbert transform of f
and its anisotropic counterpart, defined respectively by

H[f ](y) = e0
2

am+1

(
Pv

x

(xTx)
m+1

2

∗ f(x)

)
(y)
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and

HG,c[f ](y) = e0
√

det(G̃)
2

am+1

(
Pv

x

(xT Gx)
m+1

2

∗ f(x)

)
(y)

will be calculated, in order to illustrate the differences between both cases on
a concrete example. Note that the above formulae show once more how HG,c

reduces to H when G̃ = Em+1, seen also the fact that e0 = e0 in that case.

We first consider the isotropic case. Using definition (7.10), the isotropic
Fourier transform of f reads

F [f ](y) = δ(y − a)

leading to

F [H[f ]] (y) = i e0
y

|y|
δ(y − a) = i e0

a

|a|
δ(y − a)

and eventually to

H[f ](x) = i e0
a

|a|
exp (2πi 〈 a, x 〉)

In the anisotropic case, the Fourier transform is defined by (7.11) or the
equivalent form (7.12), so that

FG[f ](y) = F [f ](Gy) = δ(Gy − a)

and thus

FG [HG,c[f ]] (y) = e0 i

√
det(G̃)
det(G)

G−1a

|G−1a|G
δ(Gy − a)

with

|G−1a|G =
[(
G−1a

)T
G
(
G−1a

)] 1
2

=
[
aT G−1 a

] 1
2

Subsequent calculations learn that

F−1
G

[
δ(Gy − a)

]
(x) =

∫
Rm

exp
(
2πi xTGy

)
δ(Gy − a) dV (y)

=
1

det(G)

∫
Rm

exp
(
2πi xT y′

)
δ(y′ − a) dV (y′) =

1
det(G)

exp (2πi 〈 a, x 〉)



170 Chapter 8. The anisotropic Hilbert transform

Hence

HG,c[f ](x) = i e0

√
det(G̃)

(det(G))3
G−1a

|G−1a|
exp (2πi 〈 a, x 〉)

Anticipating the next section, we already observe that in the above formula
the anisotropic Hilbert transform of our specific chosen distribution not only
depends on the chosen metric tensor G in Rm but also on the determinant of
the ”mother” metric G̃ in Rm+1.

8.3 Conclusion

As is the case for the definition in the isotropic setting, the present anisotropic
Hilbert kernel HG,c has been obtained in a constructive way, by taking dis-
tributional limits of a G̃–harmonic function in Rm+1

+ , which is one of the two
conjugate harmonic parts in which the G̃–monogenic anisotropic Cauchy kernel
C
eG splits. The resulting anisotropic Hilbert transform HG,c[f ] = e0HG,c ∗ f

depends on the underlying metric in two different ways:

(1) the determinant of the ”mother” metric G̃ on Rm+1 arises as an explicit
factor in the expression for the kernel

and

(2) the induced metric G on Rm implicitly comes into play through the de-

nominator of the kernel, since |x|m+1
G can be rewritten as

[
xT Gx

]m+1
2 .

The particularity of this metric dependence may also be seen in the Fourier
domain, where the metric G not only arises in the Fourier symbol (8.4) of HG,c,
but is also hidden in the definition of the Fourier transform itself, while the
”mother” metric G̃ again only pops up through its determinant.

The above observations raise the question whether there exists a one–to–one
correspondence between a given anisotropic Hilbert transform HG,c on Rm and
the associated anisotropic Cauchy integral C

eG on Rm+1 from which it originates,
or in other words: does the anisotropic Hilbert transform contain enough ge-
ometrical information to completely determine the ”mother” metric G̃? One
may already intuitively feel that the answer is negative, since only the induced
metric G and the determinant det(G̃) seem to be involved.
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To answer this question properly, we consider, for a given G and det(G̃), the
equation

g00 − uT G−1 u =
det(G̃)
det(G)

derived from (8.1). If we want G̃ to be uniquely determined, then this equation
should have a unique solution (g00, uT ), which clearly is not the case, since we
directly see that

g00 =
det(G̃)
det(G)

, uT = 0T

and

g00 =
det(G̃)
det(G)

+ (G−1)11 , uT = (1 0 . . . 0)

already constitute two different solutions, and others may be found straightaway.

We conclude that, given a Hilbert kernel

HG,c(x) =
2c

am+1
Pv

x

|x|m+1
G

which depends on the metric tensor G of order m and on the constant c > 0, it
is part of the boundary limit of a Cauchy kernel C

eG in Rm+1, with

G̃ =
(
g00 uT

u G

)
where (g00, uT ) are characterized, but not uniquely determined, by the equation

g00 − uT G−1 u =
c2

det(G)
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Part III

Hilbert transforms in
Hermitean Clifford analysis
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Chapter 9

The Hermitean Clifford
toolbox

In a series of recent papers, so–called Hermitean Clifford analysis has emerged
as a new and successful branch of Clifford analysis, offering a refinement of the
traditional, also called orthogonal, case; it focusses on the simultaneous null
solutions, called Hermitean monogenic functions, of two Hermitean Dirac oper-
ators ∂Z and ∂Z† which do not longer factorize but still decompose the Laplace
operator in the sense that 4(∂Z∂Z† + ∂Z†∂Z) = ∆ and which are invariant un-
der the action of a realization of the unitary group. The study of Hermitean
Dirac operators was initiated in [86, 85, 89, 43]; a systematic development of
the associated function theory, including the invariance properties with respect
to the underlying Lie groups and Lie algebras, is still in full progress, see e.g.
[34, 6, 7, 54].

In this introductory chapter we first present the elementary objects of Her-
mitean Clifford analysis which originate in a natural way by introducing a so–
called complex structure, which has proven to be the appropriate instrument
for converting notions from the orthogonal setting into their Hermitean coun-
terparts. In the second section a splitting of the Hermitean monogenic system
is considered, which has already been studied in [7], leading to the so–called
homogeneous parts of complex spinor space.
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9.1 Hermitean Clifford analysis: the basic in-
gredients

We reconsider the complex Clifford algebra Cm, already introduced in Chap-
ter 3, which may be seen as the complexification of the real Clifford algebra
R0,m, i.e.

Cm = C⊗ R0,m = R0,m ⊕ iR0,m

An elegant way for introducing the setting of Hermitean Clifford analysis con-
sists in considering Cm as a Hermitean space, i.e. endowing it with a so–called
complex structure, i.e. a specific SO(m) element J for which it is required that
J2 = −Em (see [6, 7]). It is then immediately seen that the requirement
det(J)2 = (−1)m forces the dimension m to be even, i.e. from now on we
take m = 2n. Moreover, without loss of generality, the generators e1, . . . , e2n of
the Clifford algebra may always be chosen in such a way that J is given by the
matrix

J =
(

0 En

−En 0

)
or, equivalently, when J is identified with the operator associated to the matrix,
its action upon those generators is given by

J [ej ] = −en+j and J [en+j ] = ej , j = 1, . . . , n

With J one may then associate two projection operators 1
2 (1±iJ) which produce

the main protagonists of the Hermitean setting by acting upon the corresponding
objects in the orthogonal framework. It is precisely here that originates the
statement describing Hermitean Clifford analysis as a refinement of orthogonal
Clifford analysis. Indeed, the considered projection operators cause a direct sum
decomposition of the vector space R2n (or its complexification C2n), viz

R2n =
1
2
(1 + iJ)[R2n]⊕ 1

2
(1− iJ)[R2n]

into two isotropic subspaces, whence all concepts from the orthogonal setting
will be split accordingly.

First of all, the so–called Witt basis elements (fj , f
†
j)

n
j=1 for the complex

Clifford algebra C2n are obtained through the action of ± 1
2 (1 ± iJ) on the
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orthogonal basis elements (ej)2n
j=1, i.e.

fj =
1
2

(1 + iJ)[ej ] =
1
2

(ej − i en+j) , j = 1, . . . , n

f†j = −1
2

(1− iJ)[ej ] = −1
2

(ej + i en+j) , j = 1, . . . , n

Notice that the dagger notation is well–chosen since the Hermitean conjugate
(see Chapter 3 for the definition) (fj)† of fj indeed yields f†j :

(fj)† =
[
1
2

(ej − i en+j)
]†

=
1
2

(−ej − i en+j) = f†j , j = 1, . . . , n

Taking into account the multiplication rules for the orthogonal basis elements

ejek + ekej = −2 δjk , j, k = 1, . . . , 2n

the Witt basis elements are seen to satisfy the Grassmann identities

fjfk + fkfj = f†jf
†
k + f†kf†j = 0 , j, k = 1, . . . , n

including their isotropy when j = k, as well as the duality identities

fjf
†
k + f†kfj = δjk , j, k = 1, . . . , n

Next, we rewrite the Euclidean vector X = (X1, . . . , X2n) in R0,2n as

X = (x1, . . . , xn, y1, . . . , yn)

and we identify it, as usual, with the Clifford–vector X =
∑n

j=1(ej xj +en+j yj).
By means of the action of the complex structure J , we now associate to X the
so–called twisted vector X|, i.e.

X| = J [X] =
n∑

j=1

(ej yj − en+j xj)

Observe that the Clifford–vectors X and X| anti–commute, since the vectors X
and X| are orthogonal with respect to the standard Euclidean scalar product.
The actions of the projection operators on the Clifford–vector X then produce
the Hermitean Clifford–variable Z and its Hermitean conjugate Z†:

Z =
1
2
(1 + iJ)[X] =

1
2
(X + iX|)

Z† = −1
2
(1− iJ)[X] = −1

2
(X − iX|)
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which may also be rewritten in terms of the Witt basis elements as

Z =
n∑

j=1

fj zj and Z† = (Z)† =
n∑

j=1

f†j z
c
j

where n complex variables zj = xj + iyj have been introduced, with complex
conjugates zc

j = xj−iyj , j = 1, . . . , n. In terms of the Hermitean vector variables
Z and Z†, the orthogonal vector variables X and X| are decomposed as follows:

X = Z − Z† and X| =
1
i

(Z + Z†)

Finally, the Hermitean Dirac operators ∂Z and ∂Z† are derived from the
orthogonal Dirac operator ∂X in the following way:

∂Z† =
1
4

(1 + iJ)[∂X ] =
1
4

(∂X + i ∂X|)

∂Z = −1
4

(1− iJ)[∂X ] = −1
4

(∂X − i ∂X|)

where we have introduced the so–called twisted Dirac operator

∂X| = J [∂X ] =
n∑

j=1

(ej ∂yj
− en+j ∂xj

)

As was the case with ∂X , a notion of monogenicity may be associated in a
natural way to ∂X| as well. Again passing to the Witt basis, the Hermitean
Dirac operators may then be expressed as

∂Z =
n∑

j=1

f†j ∂zj and ∂Z† = (∂Z)† =
n∑

j=1

fj ∂zc
j

involving the classical Cauchy–Riemann operators ∂zj = 1
2 (∂xj − i∂yj ) and their

complex conjugates ∂zc
j

= 1
2 (∂xj

+ i∂yj
) in the complex zj–planes, j = 1, . . . , n.

In terms of the Hermitean Dirac operators ∂Z and ∂Z† , the orthogonal Dirac
operators ∂X and ∂X| are decomposed as follows:

∂X = 2 (∂Z† − ∂Z) and ∂X| =
2
i

(∂Z† + ∂Z)
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For further use, observe that the Hermitean vector variables and Dirac op-
erators are isotropic, on account of the Witt basis properties, i.e.

(Z)2 = (Z†)2 = 0 and (∂Z)2 = (∂Z†)
2 = 0

whence the Laplacian ∆ = −∂2
X = −∂2

X| allows for the decomposition

∆ = 4 (∂Z∂Z† + ∂Z†∂Z)

while also
Z Z† + Z†Z = |Z|2 = |Z†|2 = |X|2 = |X||2

In this setting, a continuously differentiable function g on an open region Ω of
R2n with values in C2n is called a (left) Hermitean monogenic (or h–monogenic)
function in Ω if and only if it simultaneously is ∂X– and ∂X|–monogenic in Ω,
i.e. it satisfies in Ω the system

∂X g = 0 = ∂X| g (9.1)

or equivalently, the system

∂Z g = 0 = ∂Z† g (9.2)

As has been mentioned in Chapter 3, the reason to speak of orthogonal
Clifford analysis, when considering the function theory centred around the null
solutions of the orthogonal Dirac operator ∂X , is that the underlying group
invariance is given by the SO(2n) group, which is doubly covered, see [23], by
the Spin group of the Clifford algebra. For the group invariance underlying
Hermitean Clifford analysis, one may, seen the splitting of ∂X into ∂Z and ∂Z† ,
expect a subgroup of SO(2n) to come into play. Indeed, it has been proven,
see [6], that one has to consider the group SOJ(2n) of all SO(2n) elements com-
muting with the complex structure J , a group which is isomorphic to the unitary
group U(n). This group SOJ(2n) is doubly covered by the group SpinJ(2n), also
denoted as Ũ(n) of all Spin elements commuting with

sJ = s1 . . . sn , where sk =
1√
2
(1− eken+k) , k = 1, . . . , n

which is the Spin element corresponding to the complex structure J . A nice
and useful characterization of Ũ(n) is given by

Ũ(n) = {s ∈ Spin(2n) | ∃ θ ≥ 0 : sI = exp (−iθ)I}



180 Chapter 9. The Hermitean Clifford toolbox

involving the self–adjoint primitive idempotent

I = f1f
†
1 f2f

†
2 . . . fnf†n (9.3)

The fact that its associated action leaves the Hermitean Dirac operators ∂Z and
∂Z† invariant will be commented on in more detail in the following section.

Finally, when considering all possible combinations of actions of the orthog-
onal, respectively Hermitean, Dirac operators on the orthogonal, respectively
Hermitean, vector variables, the following Clifford number, the so–called spin
Euler operator, frequently appears

β =
n∑

j=1

f†jfj =
1
2

n+ i
n∑

j=1

ejen+j


Lemma 9.1.

(i) For the actions of the orthogonal Dirac operators ∂X and ∂X| from the left
and the right on the orthogonal vector variables X and X| we find

∂X X = X ∂X = −2n = ∂X|X| = X| ∂X|

and

∂X X| = −X| ∂X = 2i (2β − n) = −∂X|X = X ∂X| (9.4)

(ii) For the actions of the Hermitean Dirac operators ∂Z and ∂Z† from the left
and the right on the Hermitean vector variables Z and Z† we find

∂Z Z = n− Z ∂Z = β = n− ∂Z†Z
† = Z† ∂Z†

and
∂Z Z

† = Z† ∂Z = 0 = ∂Z†Z = Z ∂Z†

9.2 Splitting of the h–monogenic system

In Subsection 11.1.4 we will consider functions taking values in the so–called
”n–homogeneous part of complex spinor space” of the complex Clifford algebra
C2n. In order to arrive in a natural way to that specific subset of C2n, in this
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subsection the splitting of the h–monogenic system (9.1) is briefly examined.
For a more profound study, we refer to [7].

For j = 1, . . . , n we define the following mutually commuting, self–adjoint
idempotents

Ij = fjf
†
j =

1
2

(1− i ejen+j)

Kj = f†jfj =
1
2

(1 + i ejen+j)

for which it moreover holds that

Ij +Kj = 1 , j = 1, . . . , n

and thus
n∏

j=1

(Ij +Kj) = 1

the left-hand side consisting of 2n terms, each one being a self–adjoint idempo-
tent annihilating all other terms since

IjKj = KjIj = 0 , j = 1, . . . , n

In this way, a decomposition of the complex Clifford algebra C2n may be ob-
tained as a direct sum of 2n components, all of them being mutually isomorphic
minimal left ideals, called complex spinor spaces:

C2n ≡ C2n

 n∏
j=1

(Ij +Kj)

 = C2n(I1 . . . In) + · · ·+ C2n(K1 . . .Kn) (9.5)

If one realizes the Clifford algebra in the usual way through representation
by (2n × 2n) matrices with complex entries, each of the terms at the right-
hand side of (9.5) will correspond to the subspace of matrices with only one
nontrivial column. In [7] it is then shown that the Dirac equation ∂Xg = 0 for
C2n valued functions may be split into 2n independent subsystems for functions
with values in the corresponding 2n minimal left ideals. All these subsystems are
equivalent to each other, so that their solutions will have the same properties.
So, this implies that the study of properties of solutions of the Dirac equation for
Clifford algebra valued functions reduces to a characterization of the solutions
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of the same equation, considered for functions with values in a standard model
of complex spinor space. In what follows, the standard model which will be
considered, is CSn ≡ C2nI, where the specific primitive idempotent I (see (9.3))
may now be rewritten as

I = I1 I2 . . . In

Clearly, all other components in (9.5) may be used as alternative realizations
for complex spinor space. As further

ej I = i en+j I = −f†jI and fjI = 0 , j = 1, . . . , n

we also have that

CSn
∼= CnI and CSn

∼= (CΛ†n)I

where Cn is the complex Clifford algebra generated by {e1, . . . , en} and where
CΛ†n denotes the Grassmann algebra generated by {f†1, . . . , f†n}.

When considering the h–monogenic system (9.2) as a refinement of the Dirac
equation, it thus suffices to study only spinor valued solutions as well. Observe
that this allows us to formulate the invariance under the action of the unitary
group U(n), or more precisely: of its Clifford realization Ũ(n), explicitly in
terms of the so–called L–representation L(s) of arbitrary Spin elements s (see
e.g. [23]):

L(s) [g(X)] = s g(sXs)

We then have, see [34], that[
∂Z , L(s)

]
= 0 and

[
∂Z† , L(s)

]
= 0 , s ∈ Ũ(n)

The important question to be addressed here is whether it would be possible
to split the system (9.2) for functions with values in CSn into still smaller
subsystems, while preserving the invariance. First, to answer that question, it
has been shown in [7] that CSn, considered as a Ũ(n)–module, decomposes as

CSn =
n⊕

j=1

CS(j)
n =

n⊕
j=1

(CΛ†n)(j)I (9.6)

into the Ũ(n)–invariant and irreducible subspaces

CS(j)
n = (CΛ†n)(j)I , j = 0, . . . , n
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consisting of j–vectors from CΛ†n multiplied by the idempotent I. Therefore, the
spaces CS(j)

n are also called the j–homogeneous parts of the spinor space CSn.
Then, it was observed that the respective actions, i.e. multiplications from the
left, of the Witt basis elements f†k and fk on the spaces CS(j)

n behave like creation
and annihilation operators respectively, i.e.

f†k : CS(j)
n −→ CS(j+1)

n , k = 1, . . . , n , j = 0, . . . , n

and
fk : CS(j)

n −→ CS(j−1)
n , k = 1, . . . , n , j = 0, . . . , n

where we have put by definition CS(−1)
n = CS(n+1)

n = {0}. Clearly, this eventu-
ally leads to the system for h–monogenic spinor valued functions to be split into
n independent subsystems for functions with values in the homogeneous parts
CS(j)

n , j = 0, . . . , n.

Proposition 9.1. Let for a function g : Ω ⊂ R2n → CSn denote g =
∑n

j=0 gj

its decomposition into its homogeneous spinor parts, i.e. according to the direct
sum decomposition (9.6) of CSn. Then one has

(i) the system ∂Zg = 0 is equivalent with the set of subsystems ∂Zgj = 0,
j = 0, . . . , n

(ii) the system ∂Z†g = 0 is equivalent with the set of subsystems ∂Z†gj = 0,
j = 0, . . . , n

Note however that the obtained subsystems are not mutually equivalent, so
that one has to study all individual values of j when trying to characterize the
solutions of the original h–monogenic system.

Finally, we want to draw attention to the important cases corresponding
with the values j = 0 and j = n. In the first case, the function g takes the form

g(Z,Z†) = g0(Z,Z†)I

where g0 is a smooth complex valued function on R2n ∼= Cn. For such a function
the first equation ∂Z† [g] = 0 in the h–monogenic system (9.2) is directly seen
to be trivially fulfilled, while the solutions of the remaining equation ∂Z [g] = 0,
or equivalently

∂zk
[g0] = 0 , k = 1, . . . , n
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are exactly all anti–holomorphic functions g0 of n complex variables (z1, . . . , zn).
Similarly, in the symmetric case where j = n, we have

g(Z,Z†) = gn(Z,Z†)f†1 . . . f
†
nI

where gn is a smooth complex valued function on R2n ∼= Cn, showing that
∂Z [g] = 0 will be trivially fulfilled, while the solutions of ∂Z† [g] = 0 will be
all holomorphic functions gn of n complex variables (z1, . . . , zn). Those obser-
vations are important, since it means that the theory of Hermitean monogenic
functions not only refines orthogonal Clifford analysis (and thus harmonic anal-
ysis as well), but also has strong connections with the theory of functions of
several complex variables, even encompassing some of its results.



Chapter 10

Hermitean Hilbert
transforms

While studying Clifford–Hermite wavelets in the context of Hermitean Clifford
analysis, see [31, 32], the authors came across a new kind of operator, obtained
as the composition of two orthogonal Clifford–Hilbert transforms. The resulting
operator, denoted with K, was shown to possess some typical properties of a
classical Hilbert transform as well. In our paper [18], we have further exten-
sively investigated this K–transform, reobtaining it as the commutator of two
new Hermitean Clifford–Hilbert transforms.

In the first section of this chapter, we introduce, next to the Clifford–Hilbert
transform already presented in Chapter 5, a second orthogonal Clifford–Hilbert
transform, its kernel being obtained by the action of the complex structure J
on the orthogonal Clifford–Hilbert kernel. Through the action of the operators
± 1

2 (1± iJ) on the orthogonal Clifford–Hilbert kernel we get two new isotropic
Hermitean Hilbert transforms. The commutator of the latter transforms then
gives rise to a new Hilbert–like operator, the K–transform, which is studied in
the second section. Its connections and similarities with the standard Clifford–
Hilbert transforms as well as with the newly introduced Hermitean Hilbert trans-
forms are explicitly investigated, and in particular new Hardy spaces associated
to this operator are defined and characterized. Some results also allow for a
nice geometric interpretation. In the last section the concept of multidimen-
sional analytic signal is revised. The left multiplication with the basis vector e0
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is seen to act as a mapping between the different Hardy spaces considered in
this chapter.

10.1 Two isotropic Hermitean Hilbert transforms

In this section, we first construct and study a second Hilbert transform, next
to the classical Clifford–Hilbert transform, by – roughly spoken – letting act
the complex structure J on the latter transform. Taking then two deliberate
linear combinations of both transforms we arrive at two new isotropic Hilbert
transforms in Hermitean Clifford analysis.

First we pass to (2n+1)–dimensional space by introducing the supplementary
unit vector e0, squaring up to (−1) and orthogonal to all of (ej)2n

j=1. The real
variable X = (t,X) in R2n+1 and an associated variable X| = (t,X|) are then
identified with the vectors

X = e0 t+X and X| = e0 t+X|

in the real Clifford algebra R0,2n+1. In the same order of ideas, we define a
Dirac operator and an associated Dirac operator in R2n+1, viz

∂X = e0 ∂t + ∂X and ∂X| = e0 ∂t + ∂X|

Finally, we identify R2n with the hyperplane {(t,X) : t = 0} in R2n+1.

In Section 5.1 we already introduced and studied the Clifford–Hilbert trans-
form H[f ] for functions f ∈ L2(R2n) in the framework of orthogonal Clifford
analysis. In the present setting of Hermitean Clifford analysis, a second Hilbert
transform, the so–called twisted Hilbert transform H|[f ] of f , was then consid-
ered in [32, 1]. Its kernel H| arises naturally by means of the action of the
complex structure J on the classical Clifford–Hilbert kernel H, viz

H|(X) = J [H(X)] =
2

a2n+1
Pv

X|
|X|2n+1

=
2

a2n+1
Pv

X|
|X||2n+1

= H(J [X])

and the twisted Hilbert transform itself is then given by

H|[f ](X) = e0 (H| ∗ f) (X)
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At the same time, one may also define for the ∂X–monogenic Cauchy integral
C[f ] in R2n+1 \ R2n, introduced in Section 5.1, the associated Cauchy integral

C|[f ](X) = C|[f ](t,X) =
1

a2n+1

∫
R2n

t+ e0 (X| − U |)
|t+X − U |2n+1

f(U) dV (U) , t 6= 0

which is monogenic in R2n+1 \R2n with respect to the associated Dirac operator
∂X|. In upper halfspace R2n+1

+ = {(t,X) : t > 0} we may then consider the
Hardy space H|2(R2n+1

+ ) of ∂X|–monogenic Clifford algebra valued functions F
for which

sup
t>0

∫
R2n

|F (t,X)|2 dV (X) < +∞

The Hardy space H|2(R2n+1
+ ) entails the Hardy space H|2(R2n) as the closure

in L2(R2n) of the space of all non–tangential boundary limits for t→ 0+ of all
functions in H|2(R2n+1

+ ), and moreover, both spaces H|2(R2n+1
+ ) and H|2(R2n)

are isomorphic. The isomorphism is established by means of the Cauchy integral
C|[f ] ∈ H|2(R2n+1

+ ) in the following way: for a given h ∈ H|2(R2n) one has

lim
t→0+

C|[h](t,X) = h(X)

in the L2 sense of non–tangential boundary limits, such that C|[h] may be seen
as a ∂X|–monogenic extension of h in R2n+1

+ . More generally, for f ∈ L2(R2n),
its Cauchy integral C|[f ] still exists and belongs to H|2(R2n+1

+ ) (and in fact
also to H2(R2n+1

− ), defined similarly), but one obtains the Plemelj–Sokhotzki
formulae

C|+[f ](X) ≡ lim
t→0+

C|[f ](t,X) =
1
2
f(X) +

1
2
H|[f ](X) (10.1)

C|−[f ](X) ≡ lim
t→0−

C|[f ](t,X) = −1
2
f(X) +

1
2
H|[f ](X) (10.2)

for its non–tangential boundary limits, also called associated Hardy projections.
As H|2(R2n) is a closed subspace of L2(R2n), an orthogonal decomposition of
the latter space with respect to the inner product

〈f, g〉 =
∫

R2n

f(X)† g(X) dV (X)

is obtained, viz

L2(R2n) = H|2(R2n) ⊕⊥ H|2(R2n)⊥

f = P|+[f ] + P|−[f ]
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where P|+ and P|− are the so–called associated Szegö projections on H|2(R2n)
and its orthogonal complement H|2(R2n)⊥ respectively. These projections may
be further explicited in terms of the twisted Hilbert transform, viz

P|+[f ] =
1
2

(1 +H|)[f ]

P|−[f ] =
1
2

(1−H|)[f ]

Observe that, in the present case of halfspace, the associated Hardy projections
coincide with the associated Szegö projections. Explicitly, one has

C|+[f ] = P|+[f ] and C|−[f ] = −P|−[f ]

The twisted Hilbert transform then shows the usual Clifford–Hilbert trans-
form properties, the proofs of which run along similar lines as the analogous
properties in Section 5.1, mutatis mutandis.

Property 10.1.

P(1) The twisted Hilbert transform H| commutes with translations, which is an
equivalent statement to its definition as a convolution operator.

P(2) The twisted Hilbert transform H| commutes with dilations, which, for a
convolution operator, is equivalent to its kernel H| being a homogeneous
distribution of degree (−2n).

P(3) The twisted Hilbert transform H| is a bounded linear operator on L2(R2n),
which is equivalent to its Fourier symbol

F [H|](X) = i
X|
|X|

being a bounded function.

P(4) The twisted Hilbert transform H| is involutory on L2(R2n), i.e. H|2 = 1.

P(5) The twisted Hilbert transform H| is self–adjoint on L2(R2n), i.e.

〈H|[f ], g〉 = 〈f,H|[g]〉 , f, g ∈ L2(R2n)

P(6) The twisted Hilbert transform H|[f ] for a function f ∈ L2(R2n) arises in
a natural way when considering the non–tangential boundary limits (10.1)
and (10.2) of the associated Cauchy integral C|[f ] in R2n+1.
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P(7) The twisted Hilbert transform H| anti–commutes with the twisted Dirac
operator ∂X|, i.e. if f and ∂X|f are in L2(R2n), then

H|
[
∂X|f(X)

]
(Y ) = −∂Y | [H|[f ](Y )]

P(8) For f ∈ L2(R2n), one has that H|[f ] = f if and only if f ∈ H|2(R2n).

A completion of the interrelating picture between the (twisted) Hilbert trans-
form and the (twisted) Dirac operator is given in Property 10.2, which is pre-
ceded by following auxiliary result where the spherical mean operator Σ(0),
introduced in Section 4.2, again pops up.

Lemma 10.1. If φ is a scalar valued test function defined on R2n, then

Σ(0)
[
Ω|
(
∂Ωφ

)]
= Σ(0)

[(
∂Ω|φ

)
Ω
]

= 2i (2β − n) Σ(0) [φ] + 2nΣ(0) [Ω|Ωφ]

= −Σ(0)
[
Ω
(
∂Ω| φ

)]
= −Σ(0)

[(
∂Ωφ

)
Ω|
] (10.3)

and

Σ(0)
[
Ω|
(
∂Xφ

)]
= Σ(0)

[(
∂X|φ

)
Ω
]

= 2i (2β − n)
1
r

Σ(0) [φ] +
(
∂r +

2n
r

)
Σ(0) [Ω|Ωφ]

= −Σ(0)
[
Ω
(
∂X|φ

)]
= −Σ(0)

[(
∂Xφ

)
Ω|
]

(10.4)

Proof.
Let φ be a scalar valued test function defined on R2n. Consider the ball B(0; ρ)
with arbitrary radius ρ > 0 and apply the Clifford–Stokes theorem 5.2 to obtain∫

B(0;ρ)

[X| φ(X)] ∂X d̃V (X)

=
∫

∂B(0;ρ)

X|φ(X) d̃σX = ρ2n

∫
S2n−1

Ω|Ωφ(ρΩ) dS(Ω)
(10.5)

where we have used the spherical decomposition X = rΩ, and the fact that Ω
is the outward pointing unit normal vector to S2n−1. On the other hand, for
the left-hand side of (10.5) we also get∫

B(0;ρ)

[(
X| ∂X

)
φ(X) +X|

(
∂X φ(X)

)]
d̃V (X)
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Then, taking into account (9.4), the first term in the above expression equals

−2i (2β − n)
∫ ρ

0

r2n−1 dr

∫
S2n−1

φ(rΩ) dS(Ω)

while introducing the spherical decomposition (3.1) of the orthogonal Dirac
operator and applying integration by parts, the second term equals∫ ρ

0

r2n dr

∫
S2n−1

Ω|
(

Ω ∂rφ(rΩ) +
1
r
∂Ω φ(rΩ)

)
dS(Ω)

= ρ2n

∫
S2n−1

Ω|Ωφ(ρΩ) dS(Ω)− 2n
∫ ρ

0

r2n−1 dr

∫
S2n−1

Ω|Ωφ(rΩ) dS(Ω)

+
∫ ρ

0

r2n−1 dr

∫
S2n−1

Ω|
(
∂Ω φ(rΩ)

)
dS(Ω)

such that∫
B(0;ρ)

[X| φ(X)] ∂X d̃V (X)

= ρ2n

∫
S2n−1

Ω|Ωφ(ρΩ) dS(Ω) +
∫ ρ

0

r2n−1 dr

[
(−2n)

∫
S2n−1

Ω|Ωφ(rΩ) dS(Ω)

+
∫

S2n−1
Ω|
(
∂Ω φ(rΩ)

)
dS(Ω)− 2i (2β − n)

∫
S2n−1

φ(rΩ) dS(Ω)
]

As the first term in the last expression equals the right-hand side of the above
Stokes formula (10.5), we arrive at

a2n Σ(0)
[
Ω|
(
∂Ωφ

)]
=
∫

S2n−1
Ω|
(
∂Ω φ(rΩ)

)
dS(Ω)

= 2i (2β − n)
∫

S2n−1
φ(rΩ) dS(Ω) + 2n

∫
S2n−1

Ω|Ωφ(rΩ) dS(Ω)

= a2n 2i (2β − n) Σ(0) [φ] + a2n 2nΣ(0) [Ω|Ωφ]

This already proofs one of the equalities in (10.3). The proofs for the other
equalities run along similar lines. Next, one has

a2n Σ(0)
[
Ω|
(
∂Xφ

)]
=
∫

S2n−1
Ω|
(

Ω ∂rφ(rΩ) +
1
r
∂Ωφ(rΩ)

)
dS(Ω)

= a2n ∂rΣ(0) [Ω|Ωφ] + a2n
1
r

Σ(0)
[
Ω|
(
∂Ωφ

)]
= a2n 2i (2β − n)

1
r

Σ(0) [φ] + a2n

(
∂r +

2n
r

)
Σ(0) [Ω|Ωφ]
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the last step on account of (10.3). This already proves one of the equalities in
(10.4). The proofs for the other equalities run along similar lines.

Property 10.2.

(i) The Hilbert transform H commutes with the twisted Dirac operator ∂X|,
i.e. if f and ∂X|f are in L2(R2n), then

H
[
∂X|f(X)

]
(Y ) = ∂Y | [H[f ](Y )]

(ii) The twisted Hilbert transform H| commutes with the Dirac operator ∂X ,
i.e. if f and ∂Xf are in L2(R2n), then

H|
[
∂Xf(X)

]
(Y ) = ∂Y [H|[f ](Y )]

Proof.
We only prove (i), the proof of (ii) running along similar lines. Let φ be a
scalar valued test function defined on R2n. Taking into account (10.4), we find
in distributional sense that the convolution kernel H and the twisted Dirac
operator ∂X| anti–commute:

〈
H(X) ∂X| , φ(X)

〉
=

2
a2n+1

〈
U∗−2n , ∂X| φ(X)

〉
=

2a2n

a2n+1

〈
Fp r−1

+ , Σ(0)
[
Ω
(
∂X|φ(X)

)] 〉
= − 2a2n

a2n+1

〈
Fp r−1

+ , Σ(0)
[(
∂X|φ(X)

)
Ω
] 〉

= − 2
a2n+1

〈
∂X| φ(X) , U∗−2n

〉
= −

〈
φ(X) , ∂X|H(X)

〉
The desired result then immediately follows:

H
[
∂X|f(X)

]
(Y ) = e0

(
H(X) ∂X| ∗ f(X)

)
(Y )

= −e0
(
∂X|H(X) ∗ f(X)

)
(Y ) = ∂Y | [H[f ](Y )]

As a last step towards the definition of new Hermitean Hilbert transforms,
the following lemma is crucial (see also [32]).
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Lemma 10.2. The Hilbert transforms H and H| anti–commute.

Proof.
From the observation in frequency space that

F {H [H|[f ]]} (X) = e0 i
X

|X|
F [H|[f ]] (X) = −XX|

|X|2
F [f ](X)

=
X|X
|X|2

F [f ](X) = −F {H| [H[f ]]} (X)

we derive that HH| = −H|H.

In previous chapter, we introduced the Hermitean Clifford–variables Z and
Z† by means of the action of the projection operators ± 1

2 (1 ± iJ) on the or-
thogonal Clifford–vector X. In the same order of ideas we now introduce two
Hermitean Hilbert transforms on L2(R2n) by letting act the same projection op-
erators on the Clifford–Hilbert transform H where the action is in fact defined
on the convolution kernel H, resulting into

H =
1
2

(1 + i J)[H] =
1
2

(H+ iH|) (10.6)

H† = −1
2

(1− i J)[H] = −1
2

(H− iH|) (10.7)

or more explicitly, their action on a function f ∈ L2(R2n) is given by

H[f ] = e0
2

a2n+1
Pv

Z

r2n+1
∗ f

H†[f ] = e0
2

a2n+1
Pv

Z†

r2n+1
∗ f

with r = |Z| = |Z†| = |X| = |X||. We list a number of properties of these
Hermitean Hilbert transforms, the proofs of which follow directly when taking
into account their definitions (10.6) and (10.7), and the properties of the Hilbert
transforms H and H|.

Property 10.3.

P(1) The Hermitean Hilbert transforms H and H† commute with translations,
which is an equivalent statement to their definition as convolution opera-
tors.
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P(2) The Hermitean Hilbert transforms H and H† commute with dilations, which,
for convolution operators, is equivalent to their kernels being homogeneous
distributions of degree (−2n).

P(3) The Hermitean Hilbert transforms H and H† are bounded linear operators
on L2(R2n), which is equivalent to their Fourier symbols

F
[

2
a2n+1

Pv
Z

r2n+1

]
(Z,Z†) = −i Z

|Z|

F

[
2

a2n+1
Pv

Z†

r2n+1

]
(Z,Z†) = −i Z

†

|Z|

being bounded functions.

P(4) The Hermitean Hilbert transforms H and H† are isotropic on L2(R2n), i.e.
H2 = 0 and (H†)2 = 0.

P(5) The Hermitean Hilbert transforms H and H† are self–adjoint on L2(R2n),
i.e. for f, g ∈ L2(R2n) one has

〈H[f ], g〉 = 〈f,H[g]〉 and
〈
H†[f ], g

〉
=
〈
f,H†[g]

〉
P(6) The Hermitean Hilbert transforms H and H† are interrelated in the follow-

ing way:

H H† + H† H = −1 (10.8)
H H† − H† H = iHH| (10.9)

P(7) The Hermitean Hilbert transforms H and H† on the one hand and the
Hermitean Dirac operators ∂Z and ∂Z† on the other hand are interrelated
in the following way:

H ∂Z + ∂Z† H† = 0 = H ∂Z† + ∂Z H†

∂Z H + H† ∂Z† = 0 = ∂Z† H + H† ∂Z

Observe in particular property P(4) expressing the isotropy of the Hermitean
Hilbert transforms H and H†, and expression (10.9). Precisely these results will
play an important role in the introduction of a new Hilbert type transform in
the Hermitean Clifford analysis setting.
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10.2 The K–transform

In [32] the following new Hilbert type transform has been introduced:

K = iHH| = −iH|H (10.10)

As the operator K results from the composition of two convolution operators,
it is itself a convolution operator, i.e.

K[f ] = K ∗ f (10.11)

A precise calculation of its kernel K(X) is obtained in the following proposition.

Proposition 10.1.

K(X) =
(n− 1)!
πn

[
a2n

2n
(2β − n) δ(X) + i nFp

XX|
|X|2n+2

+ (2β − n) Fp
1

|X|2n

]
Proof.
As the K–transform (10.10) of a function f ∈ L2(Rm) may be written as

K[f ] = i e0H ∗ (e0H| ∗ f) = (iH ∗H|) ∗ f

its convolution kernel K is given by

K = iH ∗H|

In order now to calculate the above distributional convolution, we first rewrite
the twisted Hilbert kernel H|, making use of Proposition 4.10 (i), but for the
twisted Dirac operator ∂X|, viz

H|(X) =
2

a2n+1
Pv

X|
|X|2n+1

=
2

a2n+1

1
2n− 1

T ∗−2n+1 ∂X|

So, for the kernel K we already find

K(X) = − 1
(a2n+1)

2

4i
2n− 1

(
U∗−2n ∗ T ∗−2n+1

)
∂X| = − i (n− 1)!

2πn+1
U∗−2n+1 ∂X|

the last step on account of (4.14). Next, let φ be a scalar valued test function
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defined on R2n. Then, taking into account (10.4), one has that〈
U∗−2n+1 ∂X| , φ(X)

〉
= −π

〈
U−2n+1 , ∂X| φ(X)

〉
= −π a2n

〈
Fp r0+ , Σ(0)

[
Ω
(
∂X|φ

)] 〉
= −π a2n

〈
Fp r0+ , −2i (2β − n)

1
r

Σ(0) [φ] +
(
∂r +

2n
r

)
Σ(0) [Ω Ω|φ]

〉
= −π a2n

〈
Fp r0+ , ∂rΣ(0) [Ω Ω|φ]

〉
(10.12)

− π a2n

〈
Fp r0+ ,

1
r

(
2nΣ(0) [Ω Ω|φ]− 2i (2β − n) Σ(0) [φ]

) 〉
(10.13)

In order to compute the first term (10.12) of the right-hand side, let Ξ and Ξ†

be the Hermitean counterparts of Ω and Ω|. Then it was shown in [33] that∫
S2n−1

Ω Ω| dS(Ω) = i

∫
S2n−1

(
2 Ξ† Ξ− 1

)
dS(Ω) =

i

n
a2n (2β − n)

leading to〈
Fp r0+ , ∂rΣ(0) [Ω Ω|φ]

〉
= −

〈
∂rFp r0+ , Σ(0) [Ω Ω|φ]

〉
= −

〈
δ(r) , Σ(0) [Ω Ω|φ]

〉
= − 1

a2n

(∫
S2n−1

Ω Ω| dS(Ω)
)
φ(0)

= − i

n
(2β − n) 〈 δ(X) , φ(X) 〉

For the second term (10.13) of the right-hand side we notice that

2nΣ(0) [Ω Ω|φ] (0)− 2i (2β − n) Σ(0) [φ] (0)

=
2n
a2n

(∫
S2n−1

Ω Ω| dS(Ω)
)
φ(0)− 2i (2β − n)φ(0) = 0

such that for the specific function

ψ(r) = 2nΣ(0) [Ω Ω|φ]− 2i (2β − n) Σ(0) [φ]

we may write 〈
Fp r0+ ,

1
r
ψ(r)

〉
=
〈

Fp r−1
+ , ψ(r)

〉
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on account of [26, Lemma 1.1]. This leads to〈
Fp r0+ ,

1
r

(
2nΣ(0) [Ω Ω|φ]− 2i (2β − n) Σ(0) [φ]

) 〉
= 2n

〈
Fp r−1

+ , Σ(0) [Ω Ω|φ]
〉
− 2i (2β − n)

〈
Fp r−1

+ , Σ(0) [φ]
〉

=
2n
a2n

〈
Fp

XX|
|X|2n+2 , φ(X)

〉
− 2i
a2n

(2β − n)

〈
Fp

1
|X|2n , φ(X)

〉
Hence we get

U∗−2n+1 ∂X| = 2πi

[
a2n

2n
(2β − n) δ(X) + i nFp

XX|
|X|2n+2 + (2β − n) Fp

1
|X|2n

]
such that finally

K(X) =
(n− 1)!
πn

[
a2n

2n
(2β − n) δ(X) + i nFp

XX|
|X|2n+2

+ (2β − n) Fp
1

|X|2n

]

Moreover, when taking now into account (10.9), the K–transform may be
immediately seen as the commutator of the isotropic Hilbert operators H and
H†, viz

K =
[
H,H†] = H H† − H† H (10.14)

The following characteristic properties of the K–transform may then justify
that this transform is indeed a new Hilbert–like operator. Unfortunately, we
have not succeeded in constructing an h–monogenic Cauchy–like integral, the
non–tangential boundary limits of which give rise to the K–transform. Indeed,
such a Hermitean Cauchy integral would have to be defined on R2n+2 (causing
a jump of two dimensions at once), since the Hermitean framework requires all
involved vector spaces to be even dimensional. Moreover, it is by no means
clear how to construct a mutual fundamental solution of both Hermitean Dirac
operators, which would then act as a Cauchy kernel.

Property 10.4.

P(1) The K–transform commutes with translations, which is an equivalent state-
ment to its definition as a convolution operator.
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P(2) The K–transform commutes with dilations, which, for a convolution opera-
tor, is equivalent to its kernel K being a homogeneous distribution of degree
(−2n).

P(3) The K–transform is a bounded linear operator on L2(R2n), which is equiv-
alent to its Fourier symbol

F [K] (X) = i
X|X
|X|2

being a bounded function.

P(4) The K–transform is involutory on L2(R2n), i.e. K2 = 1.

P(5) The K–transform is self–adjoint on L2(R2n), i.e.

〈K[f ], g〉 = 〈f,K[g]〉 , f, g ∈ L2(R2n)

P(6) The K–transform anti–commutes with both H and H|, i.e.

HK +KH = 0 and H|K +KH| = 0

P(7) The K–transform anti–commutes with both the orthogonal Dirac operator
∂X and the twisted Dirac operator ∂X|, i.e. if f , ∂Xf and ∂X|f are in
L2(R2n), then

K
[
∂Xf(X)

]
(Y ) = −∂Y [K[f ](Y )]

K
[
∂X|f(X)

]
(Y ) = −∂Y | [K[f ](Y )]

Proof.
Properties P(1) and P(2) immediately follow from the definition (10.11) of the
K–transform as convolution operator and the specific expression for its kernel
K, calculated in Proposition 10.1. Properties P(3), P(4) and P(5) were already
proven in [32, Lemma 2.1]. For the proof of properties P(6) and P(7) we make
use of the definition (10.10) of the K–transform. Property P(6) then directly
follows when taking into account that the Hilbert transforms H and H| are
involutions. Recalling Property 5.6, Property 10.1 P(7) and Property 10.2, viz

H ∂X + ∂X H = 0 H ∂X| − ∂X|H = 0

H|∂X| + ∂X|H| = 0 H|∂X − ∂X H| = 0

property P(7) may be shown in a straightforward way.
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Corollary 10.1. For the Hardy spaces H2(R2n) and H|2(R2n), defined in terms
of the Dirac operators ∂X and ∂X| respectively, one has

H2(R2n) ∩H|2(R2n) = {0}

Proof.
Let g belong to both Hardy spaces. It then should hold simultaneously that
H[g] = g and H|[g] = g, from which we infer that

K[g] = iHH|[g] = iH[g] = i g

Hence
K2[g] = K[ig] = iK[g] = −g

However, as K2 = 1, we also have that K2[g] = g, whence g = 0.

Corollary 10.2. The operators 1
2 (1±K) are projection operators on L2(R2n).

Proof.
One can immediately check that(

1
2

(1±K)
)2

=
1
2

(1±K)

and that
1
2

(1 +K)
1
2

(1−K) =
1
2

(1−K)
1
2

(1 +K) = 0

In this way a new orthogonal decomposition of L2(R2n) is obtained. Indeed,
putting

K2(R2n) =
1
2

(1 +K)[L2(R2n)]

K2(R2n)⊥ =
1
2

(1−K)[L2(R2n)]

we obtain
L2(R2n) = K2(R2n) ⊕⊥ K2(R2n)⊥

f = 1
2 (1 +K)[f ] + 1

2 (1−K)[f ]

with 〈
1
2

(1 +K)[f ],
1
2

(1−K)[f ]
〉

= 0
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Moreover, the closed subspaces K2(R2n) and K2(R2n)⊥ may be characterized
in a similar way as the traditional Hardy spaces.

Proposition 10.2. For f ∈ L2(R2n), one has that

(i) K[f ] = f if and only if f ∈ K2(R2n)

(ii) K[f ] = −f if and only if f ∈ K2(R2n)⊥

(iii) K[f ] = −iH|[f ] if and only if f ∈ H2(R2n)

(iv) K[f ] = iH|[f ] if and only if f ∈ H2(R2n)⊥

(v) K[f ] = iH[f ] if and only if f ∈ H|2(R2n)

(vi) K[f ] = −iH[f ] if and only if f ∈ H|2(R2n)⊥

Then, it directly follows from (10.8) and the definition (10.14) of K that
the projection operators defining the subspaces K2(R2n) and K2(R2n)⊥ may
be expressed in terms of the Hermitean Hilbert transforms H and H†.

Proposition 10.3. One has

1
2

(1 +K) = −H† H and
1
2

(1−K) = −H H†

Quite remarkable, however, is the following observation. The Hilbert trans-
forms H and H|, as well as the operator K are bijective on L2(R2n), since
they are bounded linear operators on L2(R2n) with H−1 = H, H|−1 = H| and
K−1 = K. The Hermitean Hilbert transforms H and H† on the contrary can not
be injective since they are isotropic, so their kernels should be nontrivial; they
are determined in the following proposition.

Proposition 10.4. One has

KerH† = K2(R2n) and KerH = K2(R2n)⊥

Proof.
If f ∈ KerH†, then it holds that

1
2

(1−K)[f ] = −H H†[f ] = 0

or K[f ] = f , whence f ∈ K2(R2n). Conversely, if f ∈ K2(R2n), then

f = K[f ] = iHH|[f ]
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from which it follows that

H[f ] = iH2H|[f ] = iH|[f ]

whence H†[f ] = − 1
2 (H[f ]− iH|[f ]) = 0. A similar argument may be applied to

KerH.

Summarizing, we obtain the following characterizations of the Hardy–like
spaces K2(R2n) and K2(R2n)⊥.

Theorem 10.1.

(a) A function f ∈ L2(R2n) belongs to K2(R2n) if and only if one of the
following conditions is satisfied:

(i) K[f ] = f

(ii) H†[f ] = 0

(iii) H[f ] = H[f ] = iH|[f ]

(b) A function f ∈ L2(R2n) belongs to K2(R2n)⊥ if and only if one of the
following conditions is satisfied:

(i) K[f ] = −f
(ii) H[f ] = 0

(iii) H†[f ] = −H[f ] = iH|[f ]

Corollary 10.3. For k, ` ∈ L2(R2n), one has that

(i) k ∈ K2(R2n) if and only if H[k] ∈ K2(R2n)⊥

(ii) k ∈ K2(R2n) if and only if H|[k] ∈ K2(R2n)⊥

(iii) ` ∈ K2(R2n)⊥ if and only if H[`] ∈ K2(R2n)

(iv) ` ∈ K2(R2n)⊥ if and only if H|[`] ∈ K2(R2n)

Proof.
We only prove property (i), the proofs of (ii), (iii) and (iv) proceeding along
similar lines. If k ∈ K2(R2n) then iH|[k] = H[k] and hence

K [H[k]] = −iH|HH[k] = −iH|[k] = −H[k]
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from which it follows that H[k] ∈ K2(R2n)⊥. Conversely, if H[k] ∈ K2(R2n)⊥

then
iH| [H[k]] = −H [H[k]] = −k

or −K[k] = −k meaning that k ∈ K2(R2n).

There is a nice geometric interpretation of the above corollary. Indeed, let
us recall that a function f ∈ L2(R2n) and its Hilbert transform H[f ] lie sym-
metrically with respect to H2(R2n) (see Figure 5.1). If in particular f is chosen
to belong to K2(R2n) then H[f ] ∈ K2(R2n)⊥, i.e. a function f ∈ K2(R2n) and
its Hilbert transform H[f ] are orthogonal. The spaces K2(R2n) and K2(R2n)⊥

may thus be considered as being the bisector spaces of H2(R2n) and H2(R2n)⊥

(see Figure 10.1). At the same time, K2(R2n) and K2(R2n)⊥ are also the bi-
sector spaces of the associated Hardy spaces H|2(R2n) and H|2(R2n)⊥.

Figure 10.1: f ∈ K2(R2n)

Finally, the L2(R2n) decompositions with respect to the Hilbert transform
H and with respect to the new integral transform K can be matched together,
resulting into the following schemes. Take f ∈ L2(R2n), then on the one hand

f = h+ g , h ∈ H2(R2n) , g ∈ H2(R2n)⊥
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and on the other hand

f = k + ` , k ∈ K2(R2n) , ` ∈ K2(R2n)⊥

where moreover the components h, g, k and ` may be decomposed themselves
as well, viz

h = hk + h` , hk ∈ K2(R2n) , h` ∈ K2(R2n)⊥

g = gk + g` , gk ∈ K2(R2n) , g` ∈ K2(R2n)⊥

and

k = kh + kg , kh ∈ H2(R2n) , kg ∈ H2(R2n)⊥

` = `h + `g , `h ∈ H2(R2n) , `g ∈ H2(R2n)⊥

where obviously the following relations hold:

k = hk + gk , ` = h` + g` and h = kh + `h , g = kg + `g

We thus obtain

f = hk + gk + h` + g` (10.15)
H[f ] = hk − gk + h` − g` (10.16)
K[f ] = hk + gk − h` − g` (10.17)

and
iH|[f ] = HK[f ] = −hk + gk + h` − g` (10.18)

since

H[hk] = h` , H[gk] = −g` , H[h`] = hk , H[g`] = −gk

and

K[hk] = hk , K[gk] = gk , K[h`] = −h` , K[g`] = −g`

Furthermore, the above results (10.15)–(10.18) show that

H[f ] =
1
2

(H+ iH|)[f ] = h` − g`

H†[f ] = −1
2

(H− iH|)[f ] = gk − hk
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as it should, since

H[f ] = H[hk + gk] = H[hk + gk] = h` − g`

and

H†[f ] = H†[h` + g`] = −H[h` + g`] = −hk + gk

on account of Theorem 10.1. Invoking (10.15)–(10.18), we may also express the
components (10.15) of f in terms of the respective projection operators 1

2 (1±K)
and 1

2 (1±H), leading to

hk =
1
4

(1 +H+K −HK) [f ] =
(1 +K)

2
(1 +H)

2
[f ]

gk =
1
4

(1−H+K +HK) [f ] =
(1 +K)

2
(1−H)

2
[f ]

h` =
1
4

(1 +H−K +HK) [f ] =
(1−K)

2
(1 +H)

2
[f ]

g` =
1
4

(1−H−K −HK) [f ] =
(1−K)

2
(1−H)

2
[f ]

which is in accordance with the definitions of these projections. Similarly, we
also have

f = kh + kg + `h + `g (10.19)
H[f ] = kh − kg + `h − `g (10.20)
K[f ] = kh + kg − `h − `g (10.21)

and

iH|[f ] = HK[f ] = kh − kg − `h + `g (10.22)

since

H[kh] = kh , H[kg] = −kg , H[`h] = `h , H[`g] = −`g

and

K[kh] = kg , K[kg] = kh , K[`h] = −`g K[`g] = −`h
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This yields, as an alternative decomposition of f by subsequent projections,

kh =
1
4

(1 +H+K +HK) [f ] =
(1 +H)

2
(1 +K)

2
[f ]

kg =
1
4

(1−H+K −HK) [f ] =
(1−H)

2
(1 +K)

2
[f ]

`h =
1
4

(1 +H−K −HK) [f ] =
(1 +H)

2
(1−K)

2
[f ]

`g =
1
4

(1−H−K +HK) [f ] =
(1−H)

2
(1−K)

2
[f ]

which also was to be expected. Furthermore we then have

H[f ] = kh − kg

H†[f ] = `g − `h

again in agreement with Theorem 10.1.

A following nice result is that the K–transform may be considered as a
commutator of the Hardy projections C± and C|±.

Proposition 10.5. On L2(R2n), one has that

1
2
K = [C+, iC|+] = [C−, iC|−]

Proof.
For a function f ∈ L2(R2n), the result is directly obtained from the following
calculations:

C+
(
i C|+

)
[f ] =

1
4

(i1 + iH|+ iH+ iHH|) [f ](
i C|+

)
C+[f ] =

1
4

(i1 + iH+ iH|+ iH|H) [f ]

C−
(
i C|−

)
[f ] =

1
4

(i1− iH| − iH+ iHH|) [f ](
i C|−

)
C−[f ] =

1
4

(i1− iH− iH|+ iH|H) [f ]

Finally, it is also possible to make the Hermitean Hilbert transforms H and
H† apparent as part of a boundary limit of a suitable combination of a ∂X–
monogenic and a ∂X|–monogenic function in halfspace.
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Proposition 10.6. On L2(R2n), one has that

(i) (C+ + i C|+) [f ] = 1+i
2 f + H[f ]

(ii) (C+ − i C|+) [f ] = 1−i
2 f − H†[f ]

(iii) (C− + i C|−) [f ] = − 1+i
2 f + H[f ]

(iv) (C− − i C|−) [f ] = − 1−i
2 f − H†[f ]

10.3 Analytic signals

In Chapter 2, we introduced the concept of analytic signal in one–dimensional
signal analysis. We recall that given a real signal u(t) depending on the time
variable t ∈ R and its one–dimensional Hilbert transform H[u](t), then its cor-
responding analytic signal is given by

f(t) = u(t) + iH[u](t)

As H2 = −1, this analytic signal satisfies the condition

iH[f ] = f

which means that if the signal u has finite energy, i.e. u ∈ L2(R), then its
associated analytic signal f belongs to the Hardy space H2(R). At the same
time the complex conjugated signal

fc(t) = u(t)− iH[u](t)

will then belong to the orthogonal complement H2(R)⊥ since

iH[fc] = −(u− iH[u]) = −fc

So one could say that in the one–dimensional case complex conjugation maps
the Hardy spaces H2(R) and H2(R)⊥ onto each other.

In the multidimensional case it is directly seen from the definitions of the
Hilbert transforms H and H| themselves that for functions f : R2n → C2n it
holds that

H[e0 f ] = −e0H[f ] and H|[e0 f ] = −e0H|[f ]



206 Chapter 10. Hermitean Hilbert transforms

Figure 10.2: f ∈ H2(R2n) and g ∈ H2(R2n)⊥

It follows that left multiplication by e0, i.e. Te0 : f → e0 f , will map the Hardy
spacesH2(R2n) andH|2(R2n) onto their orthogonal complements and vice versa
(see Figure 10.2). Indeed, for a function u : R2n → C2n with finite energy, its
associated analytic signal is given by

f(X) = u(X) +H[u](X)

which belongs to H2(R2n). Note that f takes values in the Clifford algebra
C2n ⊕ e0 C2n = C2n+1. The action of the map Te0 then results into

Te0 [f ] = e0 u+ e0H[u] = −H[e0 u] + e0 u

where now e0 u takes values in e0 C2n, while −H[e0 u] = e0H[u] takes values in
C2n. Moreover

H [Te0 [f ]] = H[e0 u]− e0 u = −Te0 [f ]
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which means that Te0 [f ] belongs to H2(R2n)⊥. More generally, the geometric
interpretation of the action of Te0 on a function u ∈ L2(R2n) is illustrated in
Figure 10.3.

Figure 10.3: u ∈ L2(R2n)

However, for the new spaces K2(R2n) and K2(R2n)⊥ of Hardy type, it holds
that

K[e0 f ] = iHH|[e0 f ] = iH [−e0H|[f ]] = e0 iHH|[f ] = e0K[f ]

implying that Te0 will map both K2(R2n) and K2(R2n)⊥ onto themselves.
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Chapter 11

The matrical Hermitean
Hilbert transform

In orthogonal Clifford analysis (see Chapter 5), the Clifford–Cauchy integral
formula has proven to be a corner stone of the function theory, as is the case for
the traditional Cauchy formula for holomorphic functions in the complex plane.
Recently, in our paper [20], a Hermitean Clifford–Cauchy integral formula is
established in the framework of circulant (2 × 2) matrix functions. Further-
more, in our follow–up paper [17], by means of the same matrix approach, a
new Hermitean Hilbert transform is introduced arising naturally as part of the
non–tangential boundary limit of the Hermitean Clifford–Cauchy integral. The
resulting matrix Hilbert operator is shown to satisfy properly adapted analogues
of the characteristic properties of the Hilbert transform in classical analysis and
orthogonal Clifford analysis.

The outline of this chapter is as follows. Section 11.1 is devoted to the Her-
mitean Clifford–Cauchy integral formula. To arrive at that formula, in Subsec-
tion 11.1.2 and 11.1.3, the main results obtained in Section 5.2 are translated
in the Hermitean Clifford analysis framework and some aspects are included
of the indispensable framework of circulant (2 × 2) matrix functions in which
the Cauchy integral formula is constructed. Finally, in Subsection 11.1.4, the
obtained Hermitean Clifford–Cauchy integral formula turns out to reduce to
the traditional Martinelli–Bochner formula for holomorphic functions of several
complex variables in the special case of CS(n)

n valued functions.
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The aim of Section 11.2 is to show that the non–tangential boundary lim-
its of the Hermitean Clifford–Cauchy integral reveal a new Hilbert–like matrix
operator. It is proven that this operator has a close connection to the Hilbert
transform in the orthogonal case, showing some quite similar properties as well.

11.1 Cauchy and Martinelli–Bochner integral for-
mulae in Hermitean Clifford analysis

11.1.1 Introduction

The Cauchy integral formula, a key result for the theory of holomorphic func-
tions in the complex plane, may be generalized to the case of several complex
variables in two ways: either one takes a holomorphic kernel and an integral
over the distinguished boundary ∂0D̃ =

∏n
j=1 ∂D̃j of a polydisk D̃ =

∏n
j=1 D̃j

in Cn, leading to the formula

f(z1, . . . , zn)

=
1

(2πi)n

∫
∂0 eD

f(ξ1, . . . , ξn)
(ξ1 − z1) · · · (ξn − zn)

dξ1 ∧ · · · ∧ dξn , zj ∈
◦
D̃j

or one takes an integral over the (piecewise) smooth boundary ∂D of a bounded
domain D in Cn in combination with the Martinelli–Bochner kernel, see e.g.
[74], which is not holomorphic anymore but still harmonic, resulting into

f(z) =
∫

∂D

f(ξ)U(ξ, z) , z ∈
◦
D (11.1)

with

U(ξ, z)

= (n−1)!
(2πi)n

∑n
j=1 (−1)j−1 ξc

j−zc
j

|ξ−z|2n dξc
1 ∧ · · · ∧

[
dξc

j

]
∧ · · · ∧ dξc

n ∧ dξ1 ∧ · · · ∧ dξn

The history of formula (11.1), obtained independently and through different
methods by Martinelli and by Bochner, has been described in detail in [73]. It
reduces to the traditional Cauchy integral formula when n = 1; for n > 1, it
is related to the double layer potential, while at the same time, it establishes a
connection between harmonic and holomorphic functions.
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A third alternative for a generalization of the Cauchy integral formula was
then offered in Section 5.2, where functions defined in Euclidean space R2n ∼= Cn

and taking values in a Clifford algebra are considered. In this framework the
Cauchy kernel appearing in the Clifford–Cauchy formula is monogenic, up to a
pointwise singularity, while the integral remains being taken over the complete
boundary:

f(Y ) =
∫

∂D

E(X − Y ) d̃σX f(X) , Y ∈
◦
D (11.2)

This Clifford–Cauchy integral formula is a corner stone in the function theoretic
development of orthogonal Clifford analysis.

Naturally a Cauchy integral formula for Hermitean monogenic functions tak-
ing values in the complex Clifford algebra C2n is essential in the further devel-
opment of this function theory. A first result in this direction was obtained in
[93], however for functions which are null solutions of only one of the Hermitean
Dirac operators and moreover presenting a ”fake” – as termed by the authors –
Cauchy kernel, failing to be monogenic.

In this section a Cauchy integral formula for Hermitean monogenic functions
is established. However, from the start of our quest, it was clear that the
formula aimed at could not have a traditional form as in (11.2). Indeed, as
was already mentioned in the previous chapter, it is not clear how to obtain a
mutual fundamental solution of both Hermitean Dirac operators, which could
act as a Cauchy kernel. Moreover, as observed in Section 9.2, when the functions
considered do not take their values in the whole Clifford algebra C2n, but in
the n–homogeneous part CS(n)

n of complex spinor space CSn, h–monogenicity is
equivalent with holomorphy in the complex variables (z1, . . . , zn). This means
that, in particular, the Martinelli–Bochner formula (11.1) should be included as
a special case in any Hermitean Cauchy integral formula to be established. It
turned out that a matrix approach is the key to obtain the desired result.

11.1.2 Clifford–Stokes and Clifford–Cauchy theorems

The aim of this subsection is to translate the orthogonal Clifford–Stokes The-
orem 5.2 and the orthogonal Clifford–Cauchy Theorem 5.3 into the Hermitean
Clifford analysis framework.
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First we set some notations. In the remainder of this chapter, we will,
as in Section 5.2, denote by Ω some open region in R2n, and we consider a
2n–dimensional compact differentiable and oriented manifold Γ ⊂ Ω with C∞

smooth boundary ∂Γ. Further, Γ+ will stand for the interior of Γ and Γ− for
the exterior of Γ with respect to Ω, i.e. Γ− = Ω \ Γ.

Subsequently, to the vector valued oriented surface element d̃σX on ∂Γ, given
by the following differential form of order (2n− 1):

d̃σX =
n∑

j=1

ej (−1)j−1 ˜̂dxj +
n∑

j=1

en+j (−1)n+j−1 ˜̂dyj

we associate its twisted analogue d̃σX|, defined as

d̃σX| = J [d̃σX ] =
n∑

j=1

ej (−1)n+j−1 ˜̂dyj −
n∑

j=1

en+j (−1)j−1 ˜̂dxj

Here

˜̂
dxj = dx1 ∧ · · · ∧ [dxj ] ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn˜̂
dyj = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ [dyj ] ∧ · · · ∧ dyn

reflecting the original consecutive ordering of the variables (x1, . . . , xn, y1, . . . , yn).
Alternatively, if dS(X) stands for the classical surface element on ∂Γ and ν(X)
for the outward pointing (with respect to Γ+) unit normal vector in X on ∂Γ,
then it is well–known that the surface element d̃σX is also given by

d̃σX = ν(X) dS(X)

so that we may write for d̃σX|

d̃σX| = ν|(X) dS(X) = J [ν(X)] dS(X)

The corresponding oriented volume elements on Γ then read

d̃V (X) = dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn

d̃V (X|) = dy1 ∧ · · · ∧ dyn ∧ (−dx1) ∧ · · · ∧ (−dxn)
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for which it is easily checked that

d̃V (X) = d̃V (X|) (11.3)

In orthogonal Clifford analysis the theorems of Stokes and Cauchy were
already formulated in Section 5.2. Clearly, both theorems may be restated for
X|, d̃σX| and ∂X|, leading to their ”twisted” formulations below, where (11.3)
has been taken into account. We summarize as follows.

Theorem 11.1 (Clifford–Stokes theorem). Let f and g be functions in C1(Ω)
and let Γ ⊂ Ω be a 2n–dimensional compact differentiable and oriented manifold
with C∞ smooth boundary ∂Γ, then∫

∂Γ

f(X) d̃σX g(X) =
∫

Γ

[
(f(X)∂X) g(X) + f(X) (∂Xg(X))

]
d̃V (X)∫

∂Γ

f(X) d̃σX| g(X) =
∫

Γ

[
(f(X)∂X|) g(X) + f(X) (∂X|g(X))

]
d̃V (X)

Corollary 11.1 (Clifford–Cauchy theorem). Let the function g be in C1(Ω) and
let Γ ⊂ Ω be a 2n–dimensional compact differentiable and oriented manifold with
C∞ smooth boundary ∂Γ, then

(i) if g is ∂X–monogenic in Ω, one has∫
∂Γ

d̃σX g(X) = 0

(ii) if g is ∂X|–monogenic in Ω, one has∫
∂Γ

d̃σX| g(X) = 0

We now introduce the Hermitean counterparts of the pair of oriented surface
elements (d̃σX , d̃σX|). To this end, we should note that we may also write

d̃σX = (−1)
n(n−1)

2 dσX

d̃σX| = (−1)
n(n−1)

2 dσX|
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with the alternative pair of surface elements (dσX , dσX|) only involving a re-
ordering of the variables according to n complex planes, i.e.

dσX =
n∑

j=1

[ej (dx1 ∧ dy1) ∧ · · · ∧ ([dxj ] ∧ dyj) ∧ · · · ∧ (dxn ∧ dyn)]

+
n∑

j=1

[−en+j (dx1 ∧ dy1) ∧ · · · ∧ (dxj ∧ [dyj ]) ∧ · · · ∧ (dxn ∧ dyn)]

and

dσX| =
n∑

j=1

[−en+j (dx1 ∧ dy1) ∧ · · · ∧ ([dxj ] ∧ dyj) ∧ · · · ∧ (dxn ∧ dyn)]

+
n∑

j=1

[−ej (dx1 ∧ dy1) ∧ · · · ∧ (dxj ∧ [dyj ]) ∧ · · · ∧ (dxn ∧ dyn)]

It is then easily seen that

d̃σX − i d̃σX| = (−1)
n(n−1)

2 (dσX − i dσX|) = (−1)
n(n−1)

2 (−4)
(
i

2

)n n∑
j=1

f†j d̂zj

while

d̃σX + i d̃σX| = (−1)
n(n−1)

2 (dσX + i dσX|) = (−1)
n(n−1)

2 (−4)
(
i

2

)n n∑
j=1

fj d̂zc
j

with

d̂zj = (dz1 ∧ dzc
1) ∧ · · · ∧ ([dzj ] ∧ dzc

j ) ∧ · · · ∧ (dzn ∧ dzc
n)

d̂zc
j = (dz1 ∧ dzc

1) ∧ · · · ∧ (dzj ∧ [dzc
j ]) ∧ · · · ∧ (dzn ∧ dzc

n)

This observation leads to the definition of the Hermitean oriented surface ele-
ments

dσZ =
n∑

j=1

f†j d̂zj

dσZ† =
n∑

j=1

fj d̂zc
j
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for which it holds that

dσZ = −1
4

(−2i)n
(
dσX − i dσX|

)
dσZ† = −1

4
(−2i)n

(
dσX + i dσX|

)
or equivalently

dσZ = −1
4

(−1)
n(n+1)

2 (2i)n (d̃σX − i d̃σX|) (11.4)

dσZ† = −1
4

(−1)
n(n+1)

2 (2i)n (d̃σX + i d̃σX|) (11.5)

Note that we in fact have applied the same technique as introduced in Chap-
ter 9, by means of the projection operators ± 1

2 (1± iJ) acting on dσX , up to a
deliberately chosen multiplicative constant.

We also consider the associated volume element dW (Z,Z†) defined as

dW (Z,Z†) = (dz1 ∧ dzc
1) ∧ (dz2 ∧ dzc

2) ∧ · · · ∧ (dzn ∧ dzc
n)

reflecting integration over the respective complex zj–planes, j = 1, . . . , n. One
has that

d̃V (X) = (−1)
n(n−1)

2

(
i

2

)n

dW (Z,Z†) (11.6)

A first result is then easily obtained.

Theorem 11.2 (Hermitean Clifford–Stokes theorems). Let f and g be functions
in C1(Ω) and let Γ ⊂ Ω be a 2n–dimensional compact differentiable and oriented
manifold with C∞ smooth boundary ∂Γ, then∫

∂Γ

f dσZ g =
∫

Γ

[
(f ∂Z ) g + f (∂Z g)

]
dW (Z,Z†)∫

∂Γ

f (−dσZ†) g =
∫

Γ

[
(f ∂Z†) g + f (∂Z†g)

]
dW (Z,Z†)

Proof.
Start from the orthogonal Clifford–Stokes theorems and invoke the expressions
(11.4) and (11.5), as well as the relation (11.6) between the orthogonal volume
element d̃V (X) and the Hermitean volume element dW (Z,Z†).
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Theorem 11.3 (Hermitean Clifford–Cauchy theorems). Let the function g be
h–monogenic in Ω and let Γ ⊂ Ω be a 2n–dimensional compact differentiable
and oriented manifold with C∞ smooth boundary ∂Γ, then∫

∂Γ

dσZ g = 0 and
∫

∂Γ

dσZ† g = 0

Proof.
Start from the orthogonal Clifford–Cauchy theorems and invoke the expressions
(11.4) and (11.5), or alternatively, take f = 1 and g an h–monogenic function
in the above Hermitean Clifford–Stokes theorems.

11.1.3 Cauchy integral formulae

The fundamental solutions of the orthogonal Dirac operators ∂X and ∂X|, i.e.
the orthogonal Cauchy kernels, are respectively given by

E (X) =
1
a2n

X

|X|2n
(11.7)

E|(X) =
1
a2n

X|
|X|2n

(11.8)

Explicitly, this means

∂X E (X) = δ(X) (11.9)
∂X|E|(X) = δ(X|) = δ(X) (11.10)

with

lim
|X|→∞

E(X) = 0 and lim
|X|→∞

E|(X) = 0 (11.11)

For the remaining combinations between the Dirac operators ∂X and ∂X| on the
one hand and the fundamental solutions E and E| on the other hand, we find

Lemma 11.1.
∂XE|(X)

= − i (2β − n)
n

δ(X) +
2n
a2n

Fp
XX|
|X|2n+2

− 2i (2β − n)
a2n

Fp
1

|X|2n

(11.12)

∂X|E(X)

=
i (2β − n)

n
δ(X) +

2n
a2n

Fp
X|X
|X|2n+2

+
2i (2β − n)

a2n
Fp

1
|X|2n

(11.13)
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Proof.
We only give the proof for (11.12), the proof of (11.13) running along similar
lines. In distributional sense we may write E|(X) as

E|(X) =
1
a2n

Fp
X|
|X|2n

=
1
a2n

T−2nX|

with T−2n a member of the T–family of distributions introduced in Chapter 4.
Taking into consideration various results of that same chapter, the action of
∂XT−2n on a scalar valued test function φ in R2n is given by〈

∂X T−2n , φ
〉

= −
〈
T−2n , ∂X φ

〉
= −a2n

〈
Fp r−1

+ , Σ(0)[∂X φ]
〉

= −a2n

〈
Fp r−1

+ ,

(
∂r +

2n− 1
r

)
Σ(1)[φ]

〉
= −a2n

〈
δ′(r) + (2n) Fp r−2

+ , Σ(1)[φ]
〉

=
〈
−a2n

2n
∂X δ(X)− (2n)U−2n−1 , φ

〉
Then, when taking into account (9.4), we find

(
∂X T−2n

)
X| = − i(2β − n)

n
a2n δ(X) + (2n) Fp

XX|
|X|2n+2

and finally we arrive at

∂XE|(X) =
1
a2n

[(
∂X T−2n

)
X|+ T−2n

(
∂X X|

)]
= − i (2β − n)

n
δ(X) +

2n
a2n

Fp
XX|
|X|2n+2

− 2i (2β − n)
a2n

Fp
1

|X|2n

For a function g ∈ C0(∂Γ), its Cauchy integral C[g] in Γ± was already defined
in Section 5.2, viz

C[g](Y ) =
∫

∂Γ

E(X − Y ) d̃σX g(X) , Y ∈ Γ±
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At the same time, one may also define on Γ± the ∂X|–monogenic associated
Cauchy integral C|[g], given by

C|[g](Y ) =
∫

∂Γ

E|(X − Y ) d̃σX| g(X) , Y ∈ Γ±

The boundedness of both integrals is guaranteed by (11.11).

Similarly as above, we now introduce the Hermitean counterparts to the pair
of fundamental solutions (E,E|), by putting

E = − (E + i E|)
E† = (E − i E|)

Explicitly this yields

E (Z,Z†) =
2
a2n

Z

|Z|2n

E†(Z,Z†) =
2
a2n

Z†

|Z|2n

with

lim
|Z|→∞

E(Z,Z†) = 0 and lim
|Z|→∞

E†(Z,Z†) = 0 (11.14)

Note however that E and E† are not the fundamental solutions to the respec-
tive Hermitean Dirac operators ∂Z and ∂Z† ! Indeed, invoking (11.9)–(11.10) and
(11.12)–(11.13), one obtains

Lemma 11.2.

∂Z E(Z,Z†) =
β

n
δ(Z) +

2β
a2n

Fp
1
r2n

− 2n
a2n

Fp
Z†Z

r2n+2

∂Z†E(Z,Z†) = 0

and

∂Z E†(Z,Z†) = 0

∂Z†E†(Z,Z†) =
n− β

n
δ(Z) +

2(n− β)
a2n

Fp
1
r2n

− 2n
a2n

Fp
Z Z†

r2n+2
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A first attempt at constructing a Hermitean Cauchy integral formula has
been undertaken in [93], however presenting the ”fake” – as termed by the au-
thors themselves – Cauchy kernel 1

2E
† = 1

2 (E− iE|), which obviously fails to be
h–monogenic.

Nevertheless it is clear that, in order to establish the desired formula, the
functions E and E† will need to be involved. Indeed, surprisingly, combining the
above calculations, we are lead to the following result.

Theorem 11.4. Introducing the particular circulant (2× 2) matrices

D(Z,Z†) =
(
∂Z ∂Z†

∂Z† ∂Z

)
, E =

(
E E†
E† E

)
and δ =

(
δ 0
0 δ

)
one obtains that

D(Z,Z†) E(Z,Z†) = δ(Z)

This means that E may be considered as a fundamental solution of D(Z,Z†),
the latter concept being reinterpreted in a matrical context. It is precisely this
simple observation which has lead us to the idea of a matrix approach to arrive
at a Cauchy integral formula in the Hermitean setting. Also note, as another
remarkable fact, that the Dirac matrix D(Z,Z†) in some sense factorizes the
Laplacian, since

4 D(Z,Z†)

(
D(Z,Z†)

)† =
(

∆ 0
0 ∆

)
where we have introduced the Hermitean conjugation on circulant elements of
(C2n)2×2, defined as follows:(

a1 a2

a2 a1

)†

=
(
a†1 a†2
a†2 a†1

)
with a1, a2 ∈ C2n.

Thus, in the same setting of circulant (2 × 2) matrices we associate, with
continuously differentiable functions g1 and g2 defined in Ω and taking values
in C2n, the matrix function

G1
2 =

(
g1 g2
g2 g1

)
(11.15)
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Definition 11.1. We call G1
2 (left) H–monogenic if and only if it satisfies the

system
D(Z,Z†) G1

2 = O (11.16)

where O denotes the matrix with zero entries.

The above system (11.16) for H–monogenicity explicitly reads{
∂Z [g1] + ∂Z† [g2] = 0

∂Z† [g1] + ∂Z [g2] = 0

Choosing in particular g1 = g and g2 = g†, it is clear that, in general, the
H–monogenicity of the corresponding matrix function

G =
(
g g†

g† g

)
will not imply the h–monogenicity of the function g and vice versa. As a simple
example consider the matrix function E for which we have found above that it
is H–monogenic in R2n \ {0}, while clearly the function E is not h–monogenic.
An exception to this general remark occurs in the special case of scalar (i.e.
complex) valued functions, where h–monogenicity (of g) and H–monogenicity
(of G) are easily found to be equivalent notions.

Another special yet very important case occurs when considering the diago-
nal matrix function

G0 =
(
g 0
0 g

)
Since its H–monogenicity is readily seen to be equivalent with the h–monogenicity
of the function g, this specific matrix will form the key for the construction of a
Hermitean Cauchy integral formula. A first step in this direction is the reformu-
lation of the Hermitean Clifford–Stokes theorems, established in Theorem 11.2,
in a matrical form. To this end, we still introduce the matrix

dΣ(Z,Z†) =
(

dσZ −dσZ†

−dσZ† dσZ

)
which will play the role of the differential form. We then have the following
result.



11.1. Cauchy and Martinelli–Bochner integral formulae 221

Theorem 11.5 (Hermitean Clifford–Stokes theorem). Let f1, f2, g1 and g2 be
arbitrary functions in C1(Ω) and consider the corresponding matrix functions
F 1

2 and G1
2 of the form (11.15); let as above Γ ⊂ Ω be a 2n–dimensional compact

differentiable and oriented manifold with C∞ smooth boundary ∂Γ. It then holds
that∫

∂Γ

F 1
2(X) dΣ(Z,Z†) G1

2(X)

=
∫

Γ

[(
F 1

2(X) D(Z,Z†)

)
G1

2(X) + F 1
2(X)

(
D(Z,Z†) G1

2(X)
)]
dW (Z,Z†)

Proof.
The proof follows by taking deliberate combinations of the Hermitean Clifford–
Stokes formulae found in Theorem 11.2.

From now on we reserve the notations Y and Y | for Clifford–vectors associ-
ated to points in Γ±. Their Hermitean counterparts are denoted by

V =
1
2

(1 + i J)[Y ] =
1
2

(Y + i Y |)

V † = −1
2

(1− i J)[Y ] = −1
2

(Y − i Y |)

The following Hermitean Cauchy–Pompeiu formula is then established.

Theorem 11.6 (Hermitean Cauchy–Pompeiu formula). Let g1 and g2 be func-
tions in C1(Ω) and let G1

2 be the corresponding matrix function of the form
(11.15); let as above Γ ⊂ Ω be a 2n–dimensional compact differentiable and
oriented manifold with C∞ smooth boundary ∂Γ. It then holds that∫

∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X)

−
∫

Γ

E(Z − V ,Z† − V †)
[
D(Z,Z†) G1

2(X)
]
dW (Z,Z†)

=

{
O , if Y ∈ Γ−

(−1)
n(n+1)

2 (2i)n G1
2(Y ) , if Y ∈ Γ+

Proof.
First, let Y = V − V † ∈ Γ−. In this case one has that, considered as functions
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of X = Z − Z†,

E(Z − V ,Z† − V †) =
2
a2n

Z − V

|Z − V |2n
=

2
a2n

Z − V

|X − Y |2n

and

E†(Z − V ,Z† − V †) =
2
a2n

Z† − V †

|Z − V |2n
=

2
a2n

Z† − V †

|X − Y |2n

are continuously differentiable in Γ, so that the Hermitean Clifford–Stokes The-
orem 11.5 can be applied, yielding the desired statement, since one has in Γ
that

E(Z − V ,Z† − V †) D(Z,Z†) = D(Z,Z†) E(Z − V ,Z† − V †) = O

Next, let Y = V − V † ∈ Γ+, and take R > 0 such that B(Y ;R) ⊂ Γ. Invoking
the previous case, we may then write

∫
∂(Γ\B(Y ;R))

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X)

−
∫

Γ\B(Y ;R)

E(Z − V ,Z† − V †)
[
D(Z,Z†) G1

2(X)
]
dW (Z,Z†) = O

(11.17)

Taking limits for R→ 0 the second term at the left-hand side yields

lim
R→0

∫
Γ\B(Y ;R)

E(Z − V ,Z† − V †)
[
D(Z,Z†) G1

2(X)
]
dW (Z,Z†)

=
∫

Γ

E(Z − V ,Z† − V †)
[
D(Z,Z†) G1

2(X)
]
dW (Z,Z†)

since the integrand only contains functions which are integrable on Γ. Further-
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more we may write for the first term at the right-hand side of (11.17):∫
∂(Γ\B(Y ;R))

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X)

=
∫

∂Γ

E(Z − V ,Z† − V †)dΣ(Z,Z†) G1
2(X)

−
∫

∂B(Y ;R)

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X)

=
∫

∂Γ

E(Z − V ,Z† − V †)dΣ(Z,Z†) G1
2(X)

− 2
a2nR2n

∫
∂B(Y ;R)

GZ−V dΣ(Z,Z†) G1
2(X)

where

GZ−V =
(

Z − V Z† − V †

Z† − V † Z − V

)
In order to calculate the last integral in the above expression, we apply once
more the Hermitean Clifford–Stokes Theorem 11.5:

2
a2nR2n

∫
∂B(Y ;R)

GZ−V dΣ(Z,Z†) G1
2(X)

=
2

a2nR2n

∫
B(Y ;R)

[
GZ−V D(Z,Z†)

]
G1

2(X) dW (Z,Z†)

+
2

a2nR2n

∫
B(Y ;R)

GZ−V

[
D(Z,Z†) G1

2(X)
]
dW (Z,Z†)

(11.18)

For the integrand of the first integral at the right-hand side of (11.18), we observe
that in the ball B(Y ;R)

GZ−V D(Z,Z†) =
(

(Z ∂Z) + (Z†∂Z†) (Z†∂Z) + (Z ∂Z†)
(Z†∂Z) + (Z ∂Z†) (Z ∂Z) + (Z†∂Z†)

)
= nE2

on account of Lemma 9.1 (ii). Moreover, since the functions g1 and g2 are
continuously differentiable on Ω, we may also write for X ∈ B(Y ;R):

G1
2(X) = G1

2(Y ) +O(ρ)



224 Chapter 11. The matrical Hermitean Hilbert transform

with
ρ = |Y −X| ≤ R and lim

ρ→0
O(ρ) = O

By direct calculation we then obtain

2
a2nR2n

∫
B(Y ;R)

[
GZ−V D(Z,Z†)

]
G1

2(X) dW (Z,Z†)

=
2n

a2nR2n

(
G1

2(Y )
∫

B(Y ;R)

dW (Z,Z†) +
∫

B(Y ;R)

O(ρ) dW (Z,Z†)

)

=
2n

a2nR2n
(−2i)n (−1)

n(n−1)
2 G1

2(Y )
∫

B(Y ;R)

d̃V (X)

+
2n

a2nR2n
(−2i)n (−1)

n(n−1)
2

∫ R

0

O(ρ) ρ2n−1 dρ

∫
S2n−1

dS(Ω)

= (2i)n (−1)
n(n+1)

2
(
G1

2(Y ) + 2nO(R)
)

such that eventually

lim
R→0

2
a2nR2n

∫
B(Y ;R)

[
GZ−V D(Z,Z†)

]
G1

2(X) dW (Z,Z†)

= (2i)n (−1)
n(n+1)

2 G1
2(Y )

The proof may now be finished since the second term at the right-hand side of
(11.18) is shown to converge to O for R→ 0, i.e. putting(

M1 M2

M2 M1

)
=

2
a2nR2n

∫
B(Y ;R)

GZ−V

[
D(Z,Z†) G1

2(X)
]
dW (Z,Z†)

we may find that

lim
R→0

M1 = 0 and lim
R→0

M2 = 0 (11.19)

Indeed, g1 and g2 being continuously differentiable on Ω implies that there exists
a constant C > 0 such that

sup
X∈B(Y ;R)

∣∣∂Z g1(X)
∣∣ ≤ C and sup

X∈B(Y ;R)

∣∣∂Z† g1(X)
∣∣ ≤ C

sup
X∈B(Y ;R)

∣∣∂Z g2(X)
∣∣ ≤ C and sup

X∈B(Y ;R)

∣∣∂Z† g2(X)
∣∣ ≤ C
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The following estimation for M1 can then be derived:

|M1| ≤ 23n+1

a2nR2n

∫
B(Y ;R)

[
|Z − V |

(∣∣∂Z g1(X)
∣∣+ ∣∣∂Z† g2(X)

∣∣)
+|Z† − V †|

(∣∣∂Z g2(X)
∣∣+ ∣∣∂Z† g1(X)

∣∣)] d̃V (X)

≤ 23n+3C

a2nR2n−1

∫
B(Y ;R)

d̃V (X)

=
23n+2C

n
R

and the same estimation holds for M2:

|M2| ≤ 23n+2C

n
R

The limits (11.19) then follow immediately.

This theorem then leads to the following Hermitean Cauchy integral for-
mulae for H–monogenic matrix functions G1

2 and h–monogenic functions g,
respectively.

Theorem 11.7 (Hermitean Cauchy integral formula I). If the matrix function
G1

2 is H–monogenic in Ω then∫
∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X)

=
{

O , if Y ∈ Γ−

(−1)
n(n+1)

2 (2i)n G1
2(Y ) , if Y ∈ Γ+

Proof.
Apply Theorem 11.6 while taking into account the H–monogenicity of the ma-
trix function G1

2.

Theorem 11.8 (Hermitean Cauchy integral formula II). If the function g is
h–monogenic in Ω then∫

∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G0(X)

=
{

O , if Y ∈ Γ−

(−1)
n(n+1)

2 (2i)n G0(Y ) , if Y ∈ Γ+

(11.20)
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The previous theorem may be considered as a Hermitean Cauchy integral
formula for the h–monogenic function g; therefore the matrix function E ap-
pearing in this formula is called the Hermitean Cauchy kernel. For functions
g1, g2, g ∈ C0(∂Γ) the following Hermitean Cauchy integrals C[G0] and C[G1

2]
are then defined

C[G1
2](Y ) =

∫
∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X) , Y ∈ Γ±

C[G0](Y ) =
∫

∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G0(X) , Y ∈ Γ±

which are both H–monogenic in Γ±, i.e.

D(V ,V †) C[G1
2](Y ) = O in Γ±

and
D(V ,V †) C[G0](Y ) = O in Γ±

Notice that both integrals converge, also in case of Ω being unbounded, on
account of (11.14). Further, calculations reveal that both Hermitean Cauchy
integrals can be expressed in terms of the orthogonal Cauchy integrals C and
C|, viz

C[G1
2] = (−1)

n(n+1)
2 (2i)n

[
1
2

(
C[g1 − g2] −C[g1 − g2]

−C[g1 − g2] C[g1 − g2]

)
+

1
2

(
C|[g1 + g2] C|[g1 + g2]
C|[g1 + g2] C|[g1 + g2]

)]
(11.21)

C[G0] = (−1)
n(n+1)

2 (2i)n

[
1
2

(
C[g] −C[g]

−C[g] C[g]

)
+

1
2

(
C|[g] C|[g]
C|[g] C|[g]

)]
(11.22)

Now taking in particular an H–monogenic matrix function G1
2 in Ω, i.e.

D(Z,Z†) G1
2 = O

or equivalently {
∂X [g1 − g2] = 0

∂X|[g1 + g2] = 0
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then C[g1 − g2] = g1 − g2 and C|[g1 + g2] = g1 + g2 in Γ+. Taking into account
(11.21), one obtains that

C[G1
2] = (−1)

n(n+1)
2 (2i)n G1

2 in Γ+

in accordance with Theorem 11.7. On the other hand, taking an h–monogenic
function g in Ω, for which

C[g] = g = C|[g] in Γ+

yields

C[G0] = (−1)
n(n+1)

2 (2i)n G0 in Γ+

on account of (11.22), thus confirming Theorem 11.8.

Finally, we already announce that the subject of Section 11.2 will be the
study of the non–tangential boundary limits in L2 sense of the Hermitean
Cauchy integrals C[G1

2](Y ) and C[G0](Y ), leading to Hermitean Clifford–Hardy
spaces and to a matrical Hermitean Hilbert transform.

11.1.4 The Martinelli–Bochner formula revisited

In this section we will restrict ourselves to functions g on R2n ∼= Cn, taking
values in the homogeneous n–space CS(n)

n of spinor space CSn, i.e. the functions
g under consideration will take the following form:

g(Z,Z†) = gn(Z,Z†) f†1f
†
2 . . . f

†
n I (11.23)

where gn is a smooth complex valued function on R2n ∼= Cn. It was argued in
Section 9.2 that h–monogenicity for such a function g is equivalent to holo-
morphy of the corresponding scalar function gn in the n complex variables
(z1, . . . , zn). Thus, considering functions g of the form (11.23) establishes a
connection between Hermitean Clifford analysis and the theory of holomorphic
functions of several complex variables, whence it is interesting to investigate the
true nature of the Hermitean Cauchy integral formula obtained in the previous
section for this type of functions.

To this end, we will explicitly calculate the left-hand side of formula (11.20),
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taking g to be of the form (11.23). One obtains

dΣ(Z,Z†) G0(X) =


n∑

k=1

(d̂zk f†k) gn(Z,Z†) f†1 . . . f
†
n I ∗

−
n∑

k=1

(d̂zc
k fk) gn(Z,Z†) f†1 . . . f

†
n I ∗


=

(
0 ∗

−dσZ† gn(Z,Z†) f†1 . . . f
†
n I ∗

)

where the second column has not been written, since it only duplicates the first
one (in reversed order) seen the circulant structure of the involved matrices. The
matrix entry [·11] reduces to zero on account of the anti–commutation relations
and the isotropy of the Witt basis elements f†k, k = 1, . . . , n. Further calculation
yields

E(Z − V ,Z† − V †) dΣ(Z,Z†) G0(X)

=

(
−E†(Z − V ,Z† − V †) dσZ† gn(Z,Z†) f†1 . . . f

†
n I ∗

−E (Z − V ,Z† − V †) dσZ† gn(Z,Z†) f†1 . . . f
†
n I ∗

)

where, putting ρ = |Z − V |,

E†(Z − V ,Z† − V †) dσZ† =
2

a2nρ2n

 n∑
j=1

f†j (zc
j − vc

j)

( n∑
k=1

fk d̂zc
k

)

whence

E†(Z − V ,Z† − V †) dσZ† gn(Z,Z†) f†1f
†
2 . . . f

†
n I

=
2

a2nρ2n

n∑
j=1

(zc
j − vc

j) d̂zc
j gn(Z,Z†) f†1f

†
2 . . . f

†
n I

where we have invoked the duality identities for the Witt basis elements and
once more their isotropy. Similarly

E(Z − V ,Z† − V †) dσZ† =
2

a2nρ2n

 n∑
j=1

fj (zc
j − vc

j)

( n∑
k=1

fk d̂zc
k

)
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whence

E(Z − V ,Z† − V †) dσZ† gn(Z,Z†) f†1f
†
2 . . . f

†
n I

=
2

a2nρ2n

∑
j 6=k

(zc
j − vc

j) d̂zc
k gn(Z,Z†) fjfk f†1f

†
2 . . . f

†
n I

Thus, the Hermitean Cauchy integral formula (11.20) for Y ∈ Γ+ yields two
statements. The first one reads

(−1)
n(n+1)

2 gn(V , V †) = −
∫

∂Γ

(n− 1)!
(2πi)n

1
ρ2n

n∑
j=1

(zc
j − vc

j) d̂zc
j gn(Z,Z†)

which exactly coincides with the Martinelli–Bochner formula (11.1), when taking
into account the appropriate reordering of the involved differential forms. Here
we have used a2n = 2πn

(n−1)! . The second statement is

0 = −
∫

∂Γ

2
a2n

1
ρ2n

∑
j 6=k

(zj − vj) d̂zc
k gn(Z,Z†) fj fk f†1f

†
2 . . . f

†
n I

which, by means of some more Witt basis calculations, decomposes into∫
∂Γ

zj − vj

ρ2n
d̂zc

k gn(Z,Z†) =
∫

∂Γ

zk − vk

ρ2n
d̂zc

j gn(Z,Z†) , j, k = 1, . . . , n , j 6= k

a result which is proved through direct computation in the following proposition.

Proposition 11.1. If gn is a complex valued funcion, holomorphic in (z1, . . . , zn),
then for Y ∈ Γ+:∫

∂Γ

zj − vj

ρ2n
d̂zc

k gn(Z,Z†) =
∫

∂Γ

zk − vk

ρ2n
d̂zc

j gn(Z,Z†) , j, k = 1, . . . , n

where ρ = |Z − V |.

Proof.
Consider the second equation in Theorem 11.2∫

∂Γ

f (−dσZ†) g =
∫

Γ

[
(f ∂Z†) g + f (∂Z† g)

]
dW (Z,Z†)

For complex valued functions f and g, this expression reduces to∫
∂Γ

f (−d̂zc
j ) g =

∫
Γ

[
(∂zc

j
f) g + f (∂zc

j
g)
]
dW (Z,Z†) , j = 1, . . . , n (11.24)
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First consider the case of the ball, i.e. Γ = B(Y ; ε) and ∂Γ = ∂B(Y ; ε), with
ε > 0. Then for all j, k = 1, . . . , n we apply the ”scalar” Stokes formula (11.24):∫

∂B(Y ;ε)

zj − vj

ρ2n
d̂zc

k gn(Z,Z†)

=
1
ε2n

∫
∂B(Y ;ε)

(zj − vj) d̂zc
k gn(Z,Z†)

= − 1
ε2n

∫
B(Y ;ε)

[
(∂zc

k
(zj − vj)) gn(Z,Z†) + (zj − vj) (∂zc

k
gn(Z,Z†))

]
dW (Z,Z†)

Since ∂zc
k
(zj − vj) = 0, for all j, k = 1, . . . , n and since gn is holomorphic in

(z1, . . . , zn), we are then lead to∫
∂B(Y ;ε)

zj − vj

ρ2n
d̂zc

k gn(Z,Z†) = 0 (11.25)

Now consider Γ̃ = Γ \ B(Y ; ε) with boundary ∂Γ̃ = ∂Γ ∪ ∂B(Y ; ε). Again we
apply the ”scalar” Stokes formula (11.24):∫

∂eΓ

zj − vj

ρ2n
d̂zc

k gn = −
∫
eΓ

[
(∂zc

k

zj − vj

ρ2n
) gn +

zj − vj

ρ2n
(∂zc

k
gn)
]
dW (Z,Z†)

On account of (11.25), the left-hand side of the above equation equals∫
∂Γ

zj − vj

ρ2n
d̂zc

k gn(Z,Z†)−
∫

∂B(Y ;ε)

zj − vj

ρ2n
d̂zc

k gn(Z,Z†)

=
∫

∂Γ

zj − vj

ρ2n
d̂zc

k gn(Z,Z†)

while for the right-hand side one obtains

n

∫
eΓ

1
ρ2n+2

(zj − vj)(zk − vk) gn(Z,Z†) dW (Z,Z†)

on account of the holomorphy of gn in (z1, . . . , zn) and

∂zc
k

(
ρ2
)

= ∂zc
k

 n∑
j=1

(zj − vj)(zc
j − vc

j)

 = zk − vk
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So, for all j, k = 1, . . . , n∫
∂Γ

zj − vj

ρ2n
d̂zc

k gn(Z,Z†)

= n

∫
eΓ

1
ρ2n+2

(zj − vj)(zk − vk) gn(Z,Z†) dW (Z,Z†)

=
∫

∂Γ

zk − vk

ρ2n
d̂zc

j gn(Z,Z†)

11.2 A matrix Hilbert transform in Hermitean
Clifford analysis

11.2.1 The twisted Clifford–Hilbert transform on closed
surfaces in R2n

For a function g ∈ L2(∂Γ) its Clifford–Hilbert transform on ∂Γ was already
introduced in Section 5.2 as part of the L2 non–tangential boundary limits of
the Cauchy integral C[g], viz

C±[g](U) = lim
Y→U

Y ∈Γ±

C[g](Y ) = ±1
2
g(U) +

1
2
H[g](U) , U ∈ ∂Γ (11.26)

with
H[g](U) = 2 Pv

∫
∂Γ

E(X − U) d̃σX g(X) , U ∈ ∂Γ

Adopting the same idea, the twisted Clifford–Hilbert transform H|[g] may be
immediately defined as part of the L2 non–tangential boundary limits of the
associated Cauchy integral C|[g], viz

C|±[g](U) = lim
Y→U

Y ∈Γ±

C|[g](Y ) = ±1
2
g(U) +

1
2
H|[g](U) , U ∈ ∂Γ (11.27)

Explicitly, the twisted Hilbert transform is given by the principal value integral

H|[g](U) = 2 Pv
∫

∂Γ

E|(X − U) d̃σX| g(X) , U ∈ ∂Γ
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Taking into account Property 5.9, the following main properties of the twisted
Hilbert transform on ∂Γ, apart from the above defining one, may be proven
instantly, mutatis mutandis.

Property 11.1. One has

P(1) H| is a bounded linear operator on L2(∂Γ)

P(2) H|2 = 1 on L2(∂Γ)

P(3) H|∗ = ν|H| ν| on L2(∂Γ)

P(4) for g ∈ L2(∂Γ), one has that H|[g] = g if and only if g ∈ H|2(∂Γ)

The last property P(4) deserves some more explanation. For the open set Γ+

one can consider the Hardy space H|2(Γ+) of ∂X|–monogenic Clifford algebra
valued functions, viz

H|2(Γ+) = {g : Γ+ → C2n : ∂X|g = 0 in Γ+ and g∂Γ ∈ L2(∂Γ)}

The Hardy space H|2(Γ+) then entails the Hardy space H|2(∂Γ) as the closure
in L2(∂Γ) of the space of all non–tangential boundary limits of all functions
in H|2(Γ+). Moreover, both spaces H|2(Γ+) and H|2(∂Γ) are isomorphic, the
isomorphism being obtained explicitly by means of the Cauchy integral in the
following way. For a given g ∈ H|2(∂Γ) its associated Cauchy integral C|[g]
belongs to H|2(Γ+) and

lim
Y→U

Y ∈Γ+

C|[g](Y ) = g(U) , U ∈ ∂Γ

in the L2 sense, so that C|[g] may be seen as the ∂X|–monogenic extension of g
to Γ+.

11.2.2 A matrix Hilbert transform in Hermitean Clifford
analysis

A first attempt at constructing Hermitean Hilbert transforms for functions in
L2(R2n) has been undertaken in the previous chapter. However, although the
obtained transforms showed some nice and satisfactory properties, one big issue
remained unsolved at that moment: it seemed impossible to construct in the
Hermitean context an h–monogenic Cauchy integral, such that those Hermitean
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Hilbert transforms could be retrieved as part of its non–tangential boundary lim-
its.

In the context of this chapter, if only that class of functions g ∈ L2(∂Γ)
would be considered for which H[g] = H|[g], then of course the h–monogenic
Cauchy integral is trivially given by C[g] which in this case coincides with C|[g].
Indeed, for such functions g one has that C[g]− C|[g] is a harmonic function in
Γ± with boundary limit equal to zero, as C±[g] = C|±[g]. On account of the
maximum and the minimum principle for harmonic functions this yields that
C[g] = C|[g] in Γ±.

In the general case, it appeared that the matrix approach which has been
introduced in the previous chapter, is the key to obtain the desired result.

Given functions g1, g2, g ∈ L2(∂Γ), we will investigate in this section the
non–tangential boundary behaviour of the Hermitean Cauchy integrals C[G1

2]
and C[G0]. To that end, we introduce the matrix operator

H =
1
2

(
H+H| −H+H|

−H+H| H+H|

)
its action on the matrix functions G1

2 and G0 being given by matrix multipli-
cation, followed by an operator action on the level of the entries, e.g.

H[G0] =
1
2

(
H+H| −H+H|

−H+H| H+H|

)(
g 0
0 g

)
=

1
2

(
( H+H|)[g] (−H+H|)[g]
(−H+H|)[g] ( H+H|)[g]

)
Now expressing C[G1

2] in terms of C[g1 − g2] and C|[g1 + g2] and C[G0]
in terms of C[g] and C|[g], as in (11.21) and (11.22), respectively, and taking
into account the classical Plemelj–Sokhotzki formulae (11.26) and (11.27), the
following results are obtained.

Proposition 11.2. For functions g1, g2 ∈ L2(∂Γ), the non–tangential boundary
limits of its Hermitean Cauchy integral C[G1

2] are given by

C±[G1
2](U) = lim

Y→U

Y ∈Γ±

C[G1
2](Y )

= (−1)
n(n+1)

2 (2i)n

(
±1

2
G1

2(U) +
1
2

H[G1
2](U)

)
, U ∈ ∂Γ
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Corollary 11.2. For a function g ∈ L2(∂Γ), the non–tangential boundary limits
of its Hermitean Cauchy integral C[G0] are given by

C±[G0](U) = lim
Y→U

Y ∈Γ±

C[G0](Y )

= (−1)
n(n+1)

2 (2i)n

(
±1

2
G0(U) +

1
2

H[G0](U)
)
, U ∈ ∂Γ

We call the matrix operator H the matrical Hermitean Hilbert transform.
The matrix function G0 being a special case of G1

2, we now only focus on the last
one. Our aim is to establish for that matrical Hilbert transform the traditional
properties, similar to those mentioned in Property 5.9. To this end, we first
create the proper framework for dealing with circulant (2×2) matrix functions.
First of all, we introduce the vector space

L2(∂Γ) =
{

G1
2 =

(
g1 g2
g2 g1

)
: g1, g2 ∈ L2(∂Γ)

}
on which, inspired by the C2n valued inner product 〈·, ·〉 on L2(∂Γ) given by

〈f, g〉 =
∫

∂Γ

f(X)† g(X) dS(X)

we introduce the following bilinear form:

〈·, ·〉L2
: L2(∂Γ)×L2(∂Γ) −→ (C2n)2×2 ;((

f1 f2
f2 f1

)
,

(
g1 g2
g2 g1

))
7−→

(
〈f1, g1〉+ 〈f2, g2〉 〈f1, g2〉+ 〈f2, g1〉
〈f1, g2〉+ 〈f2, g1〉 〈f1, g1〉+ 〈f2, g2〉

)
In the lemma below it is stated that 〈·, ·〉L2

is a (C2n)2×2 valued inner product.

Lemma 11.3. For F 1
2,G

1
2,K

1
2 ∈ L2(∂Γ) and λ ∈ C one has

(i)
〈
F 1

2, λG1
2 + K1

2

〉
L2

= λ
〈
F 1

2,G
1
2

〉
L2

+
〈
F 1

2,K
1
2

〉
L2

(ii) if for all F 1
2 ∈ L2(∂Γ) :

〈
F 1

2,G
1
2

〉
L2

= O, then G1
2 = O

(iii)
(〈

F 1
2,G

1
2

〉
L2

)†
=
〈
G1

2,F
1
2

〉
L2
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Proof.

Let λ ∈ C and let F 1
2,G

1
2,K

1
2 ∈ L2(∂Γ) be given explicitly by

F 1
2 =

(
f1 f2
f2 f1

)
, G1

2 =
(
g1 g2
g2 g1

)
and K1

2 =
(
k1 k2

k2 k1

)
with fj , gj , kj ∈ L2(∂Γ), j = 1, 2.

(i) Taking into account that 〈·, ·〉 is an inner product, one subsequently has that〈
F 1

2, λG1
2 + K1

2

〉
L2

=
〈(

f1 ∗
f2 ∗

)
,

(
λg1 + k1 ∗
λg2 + k2 ∗

)〉
L2

=
(
〈f1, λg1 + k1〉+ 〈f2, λg2 + k2〉 ∗
〈f1, λg2 + k2〉+ 〈f2, λg1 + k1〉 ∗

)

=
(
λ 〈f1, g1〉+ 〈f1, k1〉+ λ 〈f2, g2〉+ 〈f2, k2〉 ∗
λ 〈f1, g2〉+ 〈f1, k2〉+ λ 〈f2, g1〉+ 〈f2, k1〉 ∗

)

= λ

(
〈f1, g1〉+ 〈f2, g2〉 ∗
〈f1, g2〉+ 〈f2, g1〉 ∗

)
+
(
〈f1, k1〉+ 〈f2, k2〉 ∗
〈f1, k2〉+ 〈f2, k1〉 ∗

)
= λ

〈
F 1

2,G
1
2

〉
L2

+
〈
F 1

2,K
1
2

〉
L2

where in the matrices the second column has not been written, since it only
duplicates the first column (in reversed order) seen the circulant structure of
the involved matrices.

(ii) Let G1
2 ∈ L2(∂Γ) and suppose that for all F 1

2 ∈ L2(∂Γ):
〈
F 1

2,G
1
2

〉
L2

= O.
This implies that {

〈f1, g1〉+ 〈f2, g2〉 = 0

〈f1, g2〉+ 〈f2, g1〉 = 0
(11.28)

for all f1, f2 ∈ L2(∂Γ). If we take in particular f2 = 0, then system (11.28)
reduces for all f1 ∈ L2(∂Γ) to {

〈f1, g1〉 = 0

〈f1, g2〉 = 0
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This can only be the case if both g1 = 0 and g2 = 0, so if G1
2 = O.

(iii) Taking into account that 〈·, ·〉 is an inner product, one has that(〈
F 1

2,G
1
2

〉
L2

)†

=
(
〈f1, g1〉+ 〈f2, g2〉 ∗
〈f1, g2〉+ 〈f2, g1〉 ∗

)†

=

(
〈f1, g1〉† + 〈f2, g2〉† ∗
〈f1, g2〉† + 〈f2, g1〉† ∗

)

=
(
〈g1, f1〉+ 〈g2, f2〉 ∗
〈g1, f2〉+ 〈g2, f1〉 ∗

)
=
〈
G1

2,F
1
2

〉
L2

where in the matrices the second column has again been omitted, since it only
duplicates the first column (in reversed order) seen the circulant structure of
the involved matrices.

Next, we also consider the Hardy spaces

H2(Γ+) =
{

G1
2 : Γ+ → (C2n)2×2 : D(Z,Z†)G

1
2 = O in Γ+

and g1|∂Γ, g2|∂Γ ∈ L2(∂Γ)
}

and H2(∂Γ), being the closure in L2(∂Γ) of the set of boundary values of ele-
ments of H2(Γ+).

Finally, we need a matrix analogue of the outward pointing unit normal
vector. An apt choice for our purpose is

V =
1
2

(
ν + ν| −ν + ν|

−ν + ν| ν + ν|

)
observing that indeed V2 = −E2. The Hermitean Hilbert transform H then
satisfies the following properties.

Theorem 11.9. One has

P(1) H is a bounded linear operator on L2(∂Γ)

P(2) H2 = E2 on L2(∂Γ)

P(3) H∗ = V H V on L2(∂Γ)
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P(4) for G1
2 ∈ L2(∂Γ), one has that H[G1

2] = G1
2 if and only if G1

2 ∈ H2(∂Γ)

Proof.

P(1) Follows from the fact that both H and H| are bounded linear operators
on L2(∂Γ).

P(2) As both H and H| are involutory operators on L2(∂Γ), one obtains:

H2 =
1
2

(
H+H| −H+H|

−H+H| H+H|

)
1
2

(
H+H| −H+H|

−H+H| H+H|

)
=

1
4

(
H2 +H|2 +H2 +H|2 −H2 +H|2 −H2 +H|2

−H2 +H|2 −H2 +H|2 H2 +H|2 +H2 +H|2
)

= E2

P(3) Let F 1
2 and G1

2 belong to L2(∂Γ) and be given explicitly by

F 1
2 =

(
f1 f2
f2 f1

)
and G1

2 =
(
g1 g2
g2 g1

)
One then has〈

H[F 1
2],G

1
2

〉
L2

=
〈

1
2

(
H+H| ∗

−H+H| ∗

)(
f1 ∗
f2 ∗

)
,

(
g1 ∗
g2 ∗

)〉
L2

=
〈

1
2

(
(H+H|)[f1] + (−H+H|)[f2] ∗
(H+H|)[f2] + (−H+H|)[f1] ∗

)
,

(
g1 ∗
g2 ∗

)〉
L2

=
1
2

(
k1 ∗
k2 ∗

)
with

k1 = 〈(H+H|)[f1] + (−H+H|)[f2], g1〉

+ 〈(H+H|)[f2] + (−H+H|)[f1], g2〉

= 〈f1, (H∗ +H|∗)[g1] + (−H∗ +H|∗)[g2]〉

+ 〈f2, (H∗ +H|∗)[g2] + (−H∗ +H|∗)[g1]〉
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and

k2 = 〈(H+H|)[f1] + (−H+H|)[f2], g2〉

+ 〈(H+H|)[f2] + (−H+H|)[f1], g1〉

= 〈f1, (H∗ +H|∗)[g2] + (−H∗ +H|∗)[g1]〉

+ 〈f2, (H∗ +H|∗)[g1] + (−H∗ +H|∗)[g2]〉

So: 〈
H[F 1

2],G
1
2

〉
L2

=
〈(

f1 ∗
f2 ∗

)
,
1
2

(
(H∗ +H|∗)[g1] + (−H∗ +H|∗)[g2] ∗
(H∗ +H|∗)[g2] + (−H∗ +H|∗)[g1] ∗

)〉
L2

=
〈
F 1

2,H
∗[G1

2]
〉

L2

with

H∗ =
1
2

(
H∗ +H|∗ −H∗ +H|∗

−H∗ +H|∗ H∗ +H|∗
)

=
1
2

(
νH ν + ν|H| ν| −νH ν + ν|H| ν|

−νH ν + ν|H| ν| νH ν + ν|H| ν|

)
= V H V

P(4) Let G1
2 ∈ L2(∂Γ). Then G1

2 ∈ H2(∂Γ) if and only if G1
2 is the non–

tangential boundary limit of a certain F 1
2 ∈ H2(Γ+), i.e. if and only if there

exists a matrix function F 1
2 : Γ+ → (C2n)2×2 such that

lim
Γ+NT→ ∂Γ

F 1
2 = G1

2 and D(Z,Z†) F 1
2 = O (11.29)

Now taking the explicit forms

G1
2 =

(
g1 g2
g2 g1

)
and F 1

2 =
(
f1 f2
f2 f1

)
the characterization (11.29) of G1

2 ∈ H2(∂Γ) may be given in terms of the
matrix entries as follows: there exist functions f1, f2 : Γ+ → C2n such that

lim
Γ+ NT−→∂Γ

(f1 − f2) = g1 − g2

lim
Γ+ NT−→∂Γ

(f1 + f2) = g1 + g2
and

{
∂X [f1 − f2] = 0

∂X|[f1 + f2] = 0
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which is equivalent with

g1 − g2 ∈ H2(∂Γ) and g1 + g2 ∈ H|2(∂Γ)

or with

H[g1 − g2] = g1 − g2 and H|[g1 + g2] = g1 + g2 (11.30)

when taking into account P(4) of Property 5.9 and 11.1. This ends the proof
since (11.30) is equivalent to H[G1

2] = G1
2.

These properties then lead to the following orthogonal decomposition of
L2(∂Γ) in terms of the Hardy space H2(∂Γ) with respect to the inner product
〈·, ·〉L2

.

Proposition 11.3.

L2(∂Γ) = H2(∂Γ)⊕⊥ VH2(∂Γ)

Proof.
We need to characterize the orthogonal complement, denoted

(
H2(∂Γ)

)⊥, of
the space H2(∂Γ). To this end, take an arbitrary matrix function F 1

2 ∈ L2(∂Γ)
and note that F 1

2 + H[F 1
2] ∈ H2(∂Γ), since H[F 1

2 + H[F 1
2]] = F 1

2 + H[F 1
2].

Thus, for any G1
2 ∈

(
H2(∂Γ)

)⊥, one has〈
F 1

2 + H[F 1
2],G

1
2

〉
L2

= O (11.31)

which may be rewritten as〈
F 1

2,G
1
2 + H∗[G1

2]
〉

L2
= O (11.32)

whence H∗[G1
2] = −G1

2. Conversely, take arbitrarily G1
2 ∈ L2(∂Γ) such that

H∗[G1
2] = −G1

2, then G1
2 fulfils (11.32) and hence also (11.31). From this, we

may conclude that G1
2 ∈

(
H2(∂Γ)

)⊥, since any function in H2(∂Γ) can always
be written in the form F 1

2 + H[F 1
2], F 1

2 ∈ L2(∂Γ). So one has that

G1
2 ∈

(
H2(∂Γ)

)⊥ ⇐⇒ H∗[G1
2] = −G1

2

On account of property P(3) and of the fact that V2 = −E2, this is seen
to be equivalent to H[VG1

2] = VG1
2, or still to VG1

2 ∈ H2(∂Γ), in view of
property P(4). Once more invoking V2 = −E2 we thus have shown that

G1
2 ∈

(
H2(∂Γ)

)⊥ ⇐⇒ G1
2 ∈ VH2(∂Γ)
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Conclusion

In this doctoral thesis we accomplished the following results.

First of all we elaborated the four families of distributions in orthogonal
Clifford analysis which were already considered in [26, 25] by Brackx, Delanghe
and Sommen. After normalizing those distributions, we studied their interrela-
tion by means of the multiplication with the vector x, the action of the Dirac
operator and the Fourier transform. We also obtained convolution and mul-
tiplication formulae for couples of those normalized distributions. The former
formulae were then used to construct the fundamental solutions of complex pow-
ers of the Dirac operator.

Next, we constructed two possible generalizations of the Clifford–Hilbert
transform on Rm. Their kernels were deliberately chosen from the abovemen-
tioned distributions, in such a way that the corresponding convolution operators
preserve as much traditional properties of the classical Clifford–Hilbert trans-
form as possible. In the first approach for generalization it was shown that
the kernels constitute a refinement of the generalized Hilbert kernels introduced
by Horváth in [70]. Our resulting generalized Hilbert transforms were shown
to be no longer unitary operators, yet they remain bounded singular opera-
tors on L2(Rm). The second approach was based on the intimate relationship
between the Hilbert transform and the Cauchy integral and started with the
construction of a generalized Cauchy integral on Rm+1 involving a distribution
from one of the aforementioned families as a generalized Cauchy kernel. A new
generalized Hilbert transform on Rm was then defined as part of the L2 or dis-
tributional boundary limits of the generalized Cauchy integral considered, and
it was shown to be a bounded operator on the Sobolev spaces Wn

2 (Rm). Finally,
we dealt with the action of the Radon transform on the two types of generalized
Hilbert operators.
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Further, inspired by the two–dimensional anisotropic Hilbert transform in-
troduced in [56], we presented in the setting of anisotropic Clifford analysis,
a Hilbert transform on Rm, arising naturally as a part of the non–tangential
boundary limits of the anisotropic Cauchy integral on Rm+1. We could show
that this new operator possesses formally the same properties as the classical
Clifford–Hilbert operator. Moreover, we found that there is no one-to-one cor-
respondence between a given anisotropic Hilbert transform and the associated
anisotropic Cauchy integral from which it originates. The latter may stem from
a diversity of metric tensors in Rm+1.

To conclude, we examined Hilbert transforms in de framework of Hermitean
Clifford analysis. First of all, on the half space, we extensively studied the
Hilbert–like operator K which was introduced in [31, 32]. In particular, new
Hardy spaces associated to this operator were defined and characterized. Sec-
ondly, on bounded domains, we could obtain a Cauchy integral formula for
Hermitean monogenic functions in the framework of circulant (2 × 2) matri-
ces. As an additional result, the obtained Hermitean Clifford–Cauchy integral
formula turned out to reduce to the traditional Martinelli–Bochner formula for
holomorphic functions of several complex variables when considering the special
case of functions taking values in the n–homogeneous part of complex spinor
space. This means that the theory of Hermitean monogenic functions not only
refines orthogonal Clifford analysis (and thus harmonic analysis as well), but also
has strong connections with the theory of functions of several complex variables,
even encompassing some of its results. A new Hermitean Clifford–Hilbert trans-
form on closed surfaces in Rm then arised naturally as part of the non–tangential
boundary limits of the Hermitean Clifford–Cauchy integral. The resulting ma-
trix Hilbert operator was shown to satisfy properly adapted analogues of the
characteristic properties of the orthogonal Clifford–Hilbert transform on closed
surfaces in Rm.

Summarizing, we have established and thoroughly investigated suitable gen-
eralizations of the multidimensional Hilbert transform in three main branches
of Clifford analysis which are studied nowadays: Euclidean, anisotropic and
Hermitean Clifford analysis.
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In deze doctoraatsverhandeling bestuderen we enkele specifieke families van
meerdimensionale distributies in het kader van orthogonale cliffordanalyse. De
observatie dat de convolutiekern van de klassieke clifford–hilberttransformatie
tot één van die families behoort, leidt vervolgens tot de constructie van verschil-
lende veralgemeningen van die kern, zorgvuldig gerekruteerd uit de distributies
van de verschillende families. Dit alles wordt behandeld in Deel I. Vervolgens,
in Deel II, introduceren en bestuderen we een nieuwe hilberttransformatie in
het kader van de metriekafhankelijke cliffordanalyse. Tot slot is Deel III gewijd
aan een studie van verscheidene, nieuwe hilberttransformaties in het kader van
hermitische cliffordanalyse.

We geven nu een meer gedetailleerd overzicht van de inhoud van deze scriptie.

In het inleidend Hoofdstuk 2 steken we van wal met de presentatie van de
klassieke hilberttransformatie op de reële rechte. Deze transformatie vindt haar
toepassingen in de theoretische beschrijving van vele elektronische componenten
en systemen en wordt daar eerder bestempeld als (analoge of digitale) hilbert-
filter. In het bijzonder vermelden we het gebruik van de hilberttransformatie
in de constructie van het zogenaamd analytisch signaal waarvan uitvoerig ge-
bruik wordt gemaakt in de theorie van signalen, schakelingen en systemen in
elektronische apparatuur. Wij belichten echter meer de theoretische kant van
de hilberttransformatie. In de eerste paragraaf brengen we de fundamentele en
karakteriserende eigenschappen van de hilberttransformatie op de reële rechte
in herinnering. Die eigenschappen fungeren in het verdere verloop van deze
thesis als toetsstenen: er wordt onderzocht of de meerdimensionale veralge-
meningen van die originele, eendimensionale hilberttransformatie voldoen aan
op gepaste manier geherformuleerde analoge eigenschappen. Speciale aandacht
wordt besteed aan de relatie tussen de hilberttransformatie op de reële rechte
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en de cauchyintegraal in het complexe vlak. Op een natuurlijke manier leidt dit
tot twee welbekende, isomorfe hardyruimten. De eerste hardyruimte bevat holo-
morfe functies gedefinieerd in het bovenste halfvlak van het complexe vlak; de
tweede hardyruimte, gedefinieerd op de reële rechte, bevat functies die invariant
zijn onder de hilberttransformatie. We beëindigen dan de eerste paragraaf met
de notie van analytisch signaal, waarbij de hilberttransformatie een onontbeer-
lijk werktuig is voor zowel globale als lokale beschrijving van een reëelwaardig
signaal. In de tweede paragraaf komen een aantal bestaande, meerdimensionale,
scalairwaardige veralgemeningen van de eendimensionale hilberttransformatie
aan bod teneinde een bespreking te houden over de voordelen en beperkingen
van hun geassocieerde analytische signalen. Tegelijkertijd worden hun eigen-
schappen getoetst aan die van de hilberttransformatie op de reële rechte. Voor
nadere toelichting over laatst genoemde transformatie, refereren we de lezer aan
o.a. [98, 79, 5, 60, 66]. Meerdimensionale, scalairwaardige hilberttransformaties
zijn gëıntroduceerd in bijvoorbeeld [99, 95, 55, 66].

Het opzet van Deel I is tweeledig. Enerzijds introduceren we in Hoofd-
stuk 4 enkele specifieke families van distributies in het kader van orthogonale
cliffordanalyse. Alhoewel een aantal van die distributies al eerder opdook in
de literatuur over harmonische analyse en cliffordanalyse, biedt het classificeren
ervan in families de mogelijkheid om resultaten en formules, die erg verspreid
liggen in de literatuur, te bundelen. Tevens bekomen we met behulp van deze
aanpak ook originele resultaten. Anderzijds is Hoofdstuk 6 gewijd aan een ex-
tensieve studie van nieuwe, meerdimensionale hilberttransformaties waarvan de
convolutiekernen nauwgezet geselecteerd worden uit de hierboven vermelde dis-
tributieverzamelingen.

We vatten echter Deel I aan met het inleidend Hoofdstuk 3 om de lezer te
voorzien van de noodzakelijke taal van orthogonale cliffordalgebra en clifford-
analyse. De algebra’s die we behandelen vinden hun oorsprong in het artikel
[41] van W. K. Clifford en werden aanvankelijk geometrische algebra’s genoemd,
omdat ze binnen één enkele structuur zowel het inwendig als het uitwendig pro-
duct van vectoren bevatten. Ze veralgemenen o.a. zowel de uitwendige algebra
van Grassmann als Hamiltons algebra van quaternionen. Een van de meest
eenvoudige, niet–triviale cliffordalgebra’s is de algebra van complexe getallen,
verkregen door constructie van de universele cliffordalgebra over het veld van de
reële getallen. Een welbekend resultaat in complexe analyse luidt dat de twee-
dimensionale laplaciaan kan worden ontbonden als het product van de cauchy–
riemannoperator met zijn complex toegevoegde. Derhalve zijn holomorfe func-



Nederlandse samenvatting 245

ties, dit zijn nuloplossingen van de cauchy–riemannoperator, ook harmonisch.
Het is in deze zin dat orthogonale cliffordanalyse te voorschijn komt als een na-
tuurlijke veralgemening tot hogere dimensie van complexe analyse in het vlak.
Is (e1, . . . , em) een orthonormale basis voor de euclidische ruimte Rm, dan wordt
het punt (x1, . . . , xm) van Rm gëıdentificeerd met de cliffordvectorvariabele

x =
m∑

j=1

ej xj

Bovendien wordt een elegante veralgemening tot hogere dimensie van de cauchy–
riemannoperator gëıntroduceerd, namelijk de zogenaamde diracoperator

∂x =
m∑

j=1

ej ∂xj

Orthogonale cliffordanalyse is dan een meerdimensionale functietheorie in het
kader van een zekere cliffordalgebra en geconcentreerd rond het begrip van de zo-
genaamd monogene functies, dit zijn nuloplossingen van bovenstaande clifford-
vectorwaardige diracoperator. Aangezien de diracoperator de laplaciaan fac-
toriseert, zijn monogene functies ook harmonisch en bovendien houden hun
eigenschappen een verfijning in van deze van harmonische functies. We ver-
melden ook nog dat de gekende fundamentele oplossing van de diracoperator
gegeven wordt door

E(x) =
1
am

x

|x|m
, x 6= 0

met am de oppervlakte van de eenheidssfeer Sm−1 in Rm en · de gebruike-
lijke toevoeging in de cliffordalgebra gedefinieerd als ej = −ej , j = 1, . . . ,m.
We sluiten dit hoofdstuk af met de zogenaamd sferische monogenen omdat zij
een fundamentele rol spelen bij de constructie van onze veralgemeende hilbert-
transformaties. Deze sferische monogenen worden bekomen als restricties tot de
eenheidssfeer Sm−1 van homogene, monogene veeltermfuncties Pp(x) van een
zekere graad p die we cliffordvectorwaardig nemen. We merken hier tot slot
op dat cliffordanalyse de laatste decennia meer en meer aan interesse gewon-
nen heeft en zelfs is uitgegroeid tot een op zichzelf staande onderzoekstak bin-
nen de klassieke analyse. Een diepgaande studie van cliffordanalyse waarbij de
parallellen getrokken worden tussen de klassieke complexe functietheorie ener-
zijds en die monogene functietheorie anderzijds, kan worden teruggevonden in
het toonaangevende boek [23] van Brackx, Delanghe en Sommen. Voor een
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verdere studie van deze hoger dimensionale functietheorie en haar toepassingen
citeren we volgende referenties: [62, 60, 52, 77, 63, 88, 87, 8, 48, 82, 61].

Vervolgens presenteren we in Hoofdstuk 4 een aantal verwante families van
clifforddistributies die reeds beschouwd werden in [26, 25] door Brackx, Delanghe
en Sommen. Een van de meest frappante, gemeenschappelijke eigenschappen
van die distributies is de manier van inwerking op een scalairwaardige testfunctie
φ in de euclidische ruimte. Introduceren we sferische coördinaten

x = r ω , r = |x| > 0 , ω ∈ Sm−1

dan laten de gekende sferische gemiddelden

Σ(0)[φ] =
1
am

∫
Sm−1

φ(rω) dS(ω)

Σ(1)[φ] = Σ(0)[ωφ] =
1
am

∫
Sm−1

ω φ(rω) dS(ω)

waar dS(ω) staat voor de lebesguemaat op Sm−1, de ontwikkeling toe van een
eenvoudige, doch krachtige en uiterst efficiënte methode die het mogelijk maakt
om de distributionele actie in het originele kader van de euclidische ruimte om
te zetten in een actie die plaatsvindt op de reële rechte met behulp van de
distributie ”finite parts”. Voor een complexe parameter λ worden de scalair-
waardige distributies Tλ en de cliffordvectorwaardige distributies Uλ dan als
volgt gedefinieerd:

〈 Tλ , φ 〉 = am

〈
Fp rµ

+ , Σ(0)[φ]
〉

〈 Uλ , φ 〉 = am

〈
Fp rµ

+ , Σ(1)[φ]
〉

met µ = λ + m − 1. Bovenstaande auteurs veralgemeenden ook de sferische
gemiddelden door in hun definitie sferische monogenen te introduceren:

Σ(0)
p [φ] = rp−pe Σ(0)[Pp(ω)φ(x)] =

rp−pe

am

∫
Sm−1

Pp(ω)φ(x) dS(ω)

Σ(1)
p [φ] = rp−pe Σ(0)[ω Pp(ω)φ(x)] =

rp−pe

am

∫
Sm−1

ω Pp(ω)φ(x) dS(ω)

Σ(2)
p [φ] = rp−pe Σ(0)[ω Pp(ω)ω φ(x)] =

rp−pe

am

∫
Sm−1

ω Pp(ω)ω φ(x) dS(ω)

Σ(3)
p [φ] = rp−pe Σ(0)[Pp(ω)ω φ(x)] =

rp−pe

am

∫
Sm−1

Pp(ω)ω φ(x) dS(ω)
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met pe = p als p even is en pe = p − 1 als p oneven is. Dit leidt tot meer
algemene families van clifforddistributies, gedefinieerd als

〈 Tλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(0)
p [φ]

〉
〈 Uλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(1)
p [φ]

〉
〈 Wλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(2)
p [φ]

〉
〈 Vλ,p , φ 〉 = am

〈
Fp rµ+pe

+ , Σ(3)
p [φ]

〉
waarin de distributies Tλ en Uλ vervat zijn in het speciale geval waar de graad
p van de beschouwde sferische monogeen nul genomen wordt, namelijk

Tλ = Tλ,0 = −Wλ,0 en Uλ = Uλ,0 = Vλ,0

De beschouwde families van distributies erven een aftelbaar aantal singuliere
punten van de distributie ”finite parts”. Door middel van de gekende techniek
van deling door een geschikte gammafunctie die dezelfde singulariteiten ver-
toont, hebben wij die singuliere punten kunnen verwijderen, wat resulteert in
de volgende normaliseringen van bovenstaande veralgemeende distributies, met
l ∈ N0:

T ∗λ,p = π
λ+m

2 +p Tλ,p

Γ
(

λ+m
2 + p

) , λ 6= −m− 2p− 2l

T ∗−m−2p−2l,p =
(−1)ll!π

m
2 −l

22p+2l(p+ l)!Γ
(

m
2 + p+ l

) Pp(x)∆p+lδ(x)


U∗λ,p = π

λ+m+1
2 +p Uλ,p

Γ
(

λ+m+1
2 + p

) , λ 6= −m− 2p− 2l − 1

U∗−m−2p−2l−1,p =
(−1)p+1l!π

m
2 −l

22p+2l+1(p+ l)!Γ
(

m
2 + p+ l + 1

) (∂2p+2l+1
x δ(x)

)
Pp(x)


V ∗

λ,p = π
λ+m+1

2 +p Vλ,p

Γ
(

λ+m+1
2 + p

) , λ 6= −m− 2p− 2l − 1

V ∗
−m−2p−2l−1,p =

(−1)p+1l!π
m
2 −l

22p+2l+1(p+ l)!Γ
(

m
2 + p+ l + 1

) Pp(x)
(
∂2p+2l+1

x δ(x)
)
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W ∗

λ,p = π
λ+m

2 +p Wλ,p

Γ
(

λ+m
2 + p

) , λ 6= −m− 2p− 2l

W ∗
−m−2p−2l,p =

(−1)ll!π
m
2 −l

22p+2l+2(p+ l + 1)!Γ
(

m
2 + p+ l + 1

) xPp(x)x∆p+l+1δ(x)

Tot slot komt een grondige studie van hun eigenschappen aan bod die sterke
verbanden blootlegt tussen de verschillende families.

In Hoofdstuk 5 voeren we de klassieke clifford–hilberttransformatie in en
haar karakteriserende eigenschappen. Voor zover ons bekend, was Horváth de
eerste om een vectorwaardige hilberttransformatie te definiëren in de euclidische
ruimte Rm, gebruik makend van een cliffordalgebra (zie [69]). Deze meerdi-
mensionale hilberttransformatie in het kader van cliffordanalyse werd opnieuw
bestudeerd vanaf de jaren 1980, zie [91, 60, 76, 50, 51], maar ook bijvoorbeeld
[36, 77, 39, 4, 42, 49] voor de fundamentele rol die deze transformatie speelt
in de studie van hardyruimten van monogene functies. In de eerste paragraaf
van dit hoofdstuk stellen we een alternatieve definitie voor van de cliffordvector-
waardige hilberttransformatie van Horváth. Voor een functie f ∈ L2(Rm) wordt
de clifford–hilberttransformatie H[f ] op Rm gegeven door

H[f ](x) =
2

am+1
e0 Pv

∫
Rm

x− y∣∣x− y
∣∣m+1 f(y) dV (y)

=
2

am+1
e0 lim

ε→0+

∫
Rm\B(x;ε)

x− y∣∣x− y
∣∣m+1 f(y) dV (y)

of, voor een geschikte distributie f , door middel van de convolutie

H[f ] = e0H ∗ f

waarbij H de convolutiekern is, gedefinieerd door

H(x) =
2

am+1
Pv

ω

rm
= − 2

am+1
U∗−m,0

We vermelden haar belangrijkste eigenschappen.

P(1) De clifford–hilberttransformatie commuteert met translaties, wat equiva-
lent is met haar definitie als convolutieoperator.

P(2) De clifford–hilberttransformatie commuteert met dilataties, wat equiva-
lent is met het feit dat haar convolutiekern homogeen is van de graad
(−2n).
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P(3) De clifford–hilberttransformatie is een begrensde, lineaire operator op
L2(Rm), wat equivalent is met het feit dat haar fouriersymbool

F [H](x) = iω

een begrensde functie is.

P(4) De clifford–hilberttransformatie is een involutie op L2(Rm).

P(5) De clifford–hilberttransformatie is unitair op L2(Rm).

P(6) De clifford–hilberttransformatie anticommuteert met de diracoperator.

P(7) De clifford–hilberttransformatie is een deel van de niet–tangentiële rand-
waarden van de cauchyintegraal in Rm+1.

In het bijzonder geven we nadere toelichting bij eigenschap P(7). Voor een
functie f ∈ L2(Rm) wordt de cauchyintegraal C[f ] in Rm+1 \ Rm gegeven door

C[f ](x0, x) = (C(x0, ·) ∗ f(·)) (x) =
∫

Rm

C(x0, x− y) f(y) dV (y)

waarbij de cauchykern C, gedefinieerd door

C(x) = C(x0, x) =
1

am+1

xe0

|x|m+1 =
1

am+1

x0 + e0x

|x0 + x|m+1
, x 6= 0

de fundamentele oplossing voorstelt van de cauchy–riemannoperator in Rm+1:

Dx = ∂x0 + e0 ∂x

De niet–tangentiële randwaarden van de cauchyintegraal leiden dan tot de ge-
kende plemelj–sokhotzkiformules:

lim
x0→0+

C[f ](x0, x) =
1
2
f(x) +

1
2
H[f ](x)

lim
x0→0−

C[f ](x0, x) = −1
2
f(x) +

1
2
H[f ](x)

Door middel van deze betrekkingen kan dan ook een mooi verband gelegd wor-
den met de theorie van hardyruimten. Vervolgens komen we terug op het
concept analytisch signaal waarvoor we een meerdimensionale veralgemening
voorstellen in de context van cliffordanalyse. Ter afsluiting van deze paragraaf
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onderzoeken we de interactie tussen twee hoofdrolspelers in meerdimensionale
signaalanalysetheorie, namelijk de clifford–hilberttransformatie en de clifford–
radontransformatie. Voor een geschikte cliffordalgebrawaardige functie f , vin-
den we volgend verband tussen beide transformaties:

R[H[f ]](n, s) = e0 nHu→s[R[f ](n, u)](s) , (n, s) ∈ Sm−1 × R

waarbij de clifford–radontransformatie R[f ] van f gedefinieerd wordt door

R[f ](n, s) =
∫

Rm

δ(〈x, n〉 − s) f(x) dV (x)

De bovenstaande notatie 〈·, ·〉 staat voor voor het klassiek scalair product in
de euclidische ruimte Rm. In de tweede paragraaf beschouwen we een open
gebied Ω in Rm en daarin bevat een m–dimensionale, compacte, afleidbare en
geöriënteerde variëteit Γ met C∞–gladde rand ∂Γ. Voorts introduceren we het
klassieke oppervlakelement dS(x) op ∂Γ en daaraan geassocieerd het vector-
waardige oppervlakelement d̃σx = ν(x)dS(x), met ν(x) de uitwendig gerichte
eenheidsnormaalvector op x ∈ ∂Γ. Tot slot voeren we nog Γ+ en Γ− in als
het inwendige van Γ, respectievelijk, het uitwendige van Γ ten opzichte van Ω.
Voor een functie f ∈ L2(∂Γ) wordt de clifford–cauchyintegraal C[f ] in Γ± dan
gedefinieerd door

C[f ](y) =
∫

∂Γ

E(x− y) d̃σx f(x) , y ∈ Γ±

De clifford–hilberttransformatie H[f ] op ∂Γ komt vervolgens op een natuurlijke
manier te voorschijn wanneer de niet–tangentiële randwaarden van de clifford–
cauchyintegraal C[f ], i.e. plemelj–sokhotzkiformules, beschouwd worden:

lim
y→u

y∈Γ+

C[f ](y) =
1
2
f(u) +

1
2
H[f ](u) , u ∈ ∂Γ

lim
y→u

y∈Γ−

C[f ](y) = −1
2
f(u) +

1
2
H[f ](u) , u ∈ ∂Γ

De clifford–hilberttransformatie H[f ] wordt dan gedefinieerd door de cauchy-
hoofdwaarde–integraal

H[f ](u) = 2 Pv
∫

∂Γ

E(x− u) d̃σx f(x) , u ∈ ∂Γ

en voldoet verder aan de volgende eigenschappen.



Nederlandse samenvatting 251

P(1) De clifford–hilberttransformatie is een begrensde, lineaire operator op
L2(∂Γ).

P(2) De clifford–hilberttransformatie is een involutie op L2(∂Γ).

P(3) De clifford–hilberttransformatie heeft als toegevoegde operatorH∗ = νH ν
op L2(∂Γ).

P(4) De clifford–hilberttransformatie karakteriseert de hardyruimte H2(∂Γ) als
de verzameling van functies f ∈ L2(∂Γ) waarvoor H[f ] = f .

Het moge duidelijk zijn dat, in het algemeen, haar eigenschappen zwakker zijn
dan die van de clifford–hilberttransformatie op Rm, behalve voor het geval van
de eenheidssfeer waaraan we speciale aandacht besteden.

Deel I wordt besloten met onze constructie van twee veralgemeningen van
de clifford–hilberttransformatie op Rm. Hun kernen worden met zorg gekozen
uit de clifforddistributies gëıntroduceerd in Hoofdstuk 4, zodat de ermee corres-
ponderende convolutieoperatoren een maximaal aantal traditionele, maar aan
de huidige meerdimensionale situatie aangepaste, eigenschappen van de clifford–
hilberttransformatie behouden. In de eerste aanpak tot veralgemening wordt
aangetoond dat de geselecteerde distributies als een verfijning mogen worden
beschouwd van de veralgemeende hilbertkernen van Horváth in [70]. Onze cor-
responderende veralgemeende hilberttransformaties

Tp = T−m−p,p ∗ f
Up = U−m−p,p ∗ f
Vp = V−m−p,p ∗ f
Wp = W−m−p,p ∗ f

blijven begrensde singuliere operatoren op L2(Rm); toch blijken ze echter niet
langer unitair te zijn. De tweede aanpak is gebaseerd op de intieme relatie tussen
de hilberttransformatie en de cauchyintegraal. Opnieuw wordt beroep gedaan
op de distributies uit Hoofdstuk 4. Een van die distributies werpt zich namelijk
op als goede kandidaat om als veralgemeende cauchykern te fungeren voor de
constructie van een veralgemeende cauchyintegraal in Rm+1. Voor een zeker
natuurlijk getal p en een functie f ∈ L2(Rm), introduceren we de veralgemeende
cauchyintegraal Cp[f ] in Rm+1 \ Rm als

Cp[f ](x0, x) = (Cp(x0, ·) ∗ f(·)) (x) =
∫

Rm

Cp(x0, x− y) f(y) dV (y)



252 Nederlandse samenvatting

waarbij de veralgemeende cauchykern Cp, gegeven door

Cp(x) = Cp(x0, x) =
1

am+1,p

x̄e0

|x|m+1+2p Pp(x)

=
1

am+1,p

x0 + e0x

|x0 + x|m+1+2p Pp(x) , x 6= 0

met

am+1,p =
(−1)p

2p

2π
m+1

2

Γ
(

m+1
2 + p

)
in distributionele zin voldoet aan

Dx Cp(x) = Pp(∂x) δ(x)

De niet–tangentiële randwaarden van de veralgemeende cauchyintegraal leiden
dan tot een veralgemening van de plemelj–sokhotzkiformules:

lim
x0→0+

Cp[f ](x0, x) =
1
2
Pp(∂x)f(x) +

1
2
Hp[f ](x)

lim
x0→0−

Cp[f ](x0, x) = −1
2
Pp(∂x)f(x) +

1
2
Hp[f ](x)

met Hp[f ] een nieuwe, veralgemeende hilberttransformatie in Rm, gegeven door

Hp[f ] = e0Hp ∗ f

waarbij Hp de convolutiekern is, gedefinieerd als

Hp(x) =
2

am+1,p
Fp

ω̄ Pp(ω)
rm+p

= − 2
am+1,p

U∗−m−2p,p

Er wordt aangetoond dat deze nieuwe hilberttransformatie een begrensde opera-
tor is op de sobolevruimten Wn

2 (Rm). Met behulp van de actie van hogere
orde diracafgeleiden kunnen we ook een verband leggen tussen beide veralge-
meningen. De laatste paragraaf wordt gewijd aan de actie van de clifford–
radontransformatie op de twee types van veralgemeende hilberttransformaties.
Het resultaat van de actie van de clifford–radontransformatie op de veralge-
meende hilberttransformaties Tp[f ], Up[f ], Vp[f ] en Wp[f ] hangt af van de
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pariteit van p. Voor p even verkrijgen we:

R[Tp[f ]](n, s) = i−p π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)R[f ](n, s)

R[Up[f ]](n, s) = i−p π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) nPp(n)Hu→s[R[f ](n, u)](s)

R[Vp[f ]](n, s) = i−p π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) Pp(n)nHu→s[R[f ](n, u)](s)

R[Wp[f ]](n, s) = i−p−2 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) (nPp(n)n− m− 2
p

Pp(n)
)

×R[f ](n, s)

terwijl voor p oneven:

R[Tp[f ]](n, s) = i−p+1 π
m
2

Γ
(

p
2

)
Γ
(

m+p
2

) Pp(n)Hu→s[R[f ](n, u)](s)

R[Up[f ]](n, s) = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) nPp(n)R[f ](n, s)

R[Vp[f ]](n, s) = i−p−1 π
m
2

Γ
(

p+1
2

)
Γ
(

m+p+1
2

) Pp(n)nR[f ](n, s)

R[Wp[f ]](n, s) = i−p−1 π
m
2

Γ
(

p
2 + 1

)
Γ
(

m+p
2 + 1

) (nPp(n)n− m− 2
p

Pp(n)
)

×Hu→s[R[f ](n, u)](s)

De inwerking van de clifford–radontransformatie op de veralgemeende hilbert-
transformatie Hp[f ] leidt tot

R[Hp[f ]](n, s) = e0 nPp(n) ∂p
sHu→s[R[f ](n, u)](s)

De tot hiertoe beschouwde (veralgemeende) hilberttransformaties op Rm

mogen worden getypeerd als isotroop, vermits de aangewende metriek in de
onderliggende ruimte de standaard euclidische metriek is. Deel II adopteert
nu het idee van een anisotrope (ook genoemd metriekafhankelijke of metrody-
namische) cliffordcontext. Dit biedt de mogelijkheid om het assenstelsel aan te
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passen aan bepaalde, niet noodzakelijk loodrechte, voorkeursrichtingen, bijvoor-
beeld aanwezig in de te analyseren structuren of signalen. In dit nieuwe domein
van cliffordanalyse (zie bijvoorbeeld [35, 53]) construeren wij een zogenaamde
anisotrope clifford–hilberttransformatie.

In het inleidend Hoofdstuk 7 worden de basisbegrippen van anisotrope clifford-
analyse voorgesteld. We introduceren eerst de notie metrische tensor als een
reële, symmetrische en positief definiete tensor G̃ = (gkl)k,l=0,...,m van orde
(m + 1) die twee bases in Rm+1, een covariante basis (e0, . . . , em) en een con-
travariante basis (e0, . . . , em), met elkaar in verband brengt:

ek =
m∑

l=0

gkl e
l en el =

m∑
k=0

glk ek , met G̃−1 = (gkl)k,l=0,...,m

Vervolgens wordt een cliffordalgebra geconstrueerd, afhankelijk van die metrische
tensor, en alle voor ons noodzakelijke definities en resultaten van orthogonale
cliffordanalyse worden aangepast aan dit metriekafhankelijk kader. Onder an-
dere worden de concepten diracoperator, monogeniciteit en laplaceoperator in-
gevoerd. We vermelden bijvoorbeeld dat het klassiek scalair product vervangen
wordt door de symmetrische bilineaire vorm

〈 x, y 〉
eG =

m∑
k=0

m∑
l=0

gkl x
k yl

We beëindigen dit hoofdstuk met de definitie en studie van de zogenaamde
anisotrope fouriertransformatie, de metriekafhankelijke versie van de klassieke
fouriertransformatie in de euclidische ruimte.

In Hoofdstuk 8 beschouwen we dan de deeltensor G = (gkl)k,l=1,...,m in
Rm×m van de metrische tensor G̃ in R(m+1)×(m+1). Onze nieuwe anisotrope
hilberttransformatie in Rm wordt gedefinieerd door

HG,c[f ] = e0HG,c ∗ f

waarbij de convolutiekern HG,c gegeven wordt door

HG,c(x) =
2c

am+1
Pv

x

(〈 x, x 〉G)
m+1

2

, c =
√

det(G̃)

Er wordt aangetoond dat deze anisotrope hilberttransformatie formeel gezien
dezelfde eigenschappen vertoont als haar isotrope tegenhanger uit Paragraaf 5.1.
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In het bijzonder observeren we dat eenzelfde anisotrope hilberttransformatie in
Rm kan worden bekomen als deel van de randwaarden van meerdere anisotrope
cauchyintegralen in Rm+1, afhangend van een diversiteit aan metrische tensors
van orde (m+ 1).

In Deel III staat de ontwikkeling centraal van nieuwe meerdimensionale
hilberttransformaties in het kader van hermitische cliffordanalyse, een vrij re-
cente tak binnen cliffordanalyse (zie bijvoorbeeld [86, 85, 89, 43, 34, 6, 7, 54]).

Het inleidend Hoofdstuk 9 behandelt de basisingrediënten van hermitische
cliffordanalyse, een nieuwe en succesvolle functietheorie die een verfijning in-
houdt van orthogonale cliffordanalyse. Zij concentreert zich op de gemeen-
schappelijke nuloplossingen, genoemd hermitisch monogene (of h–monogene)
functies, van twee hermitische diracoperatoren die invariant zijn onder de actie
van een realisatie van de unitaire groep. In de eerste paragraaf voeren we een
zogenaamde complexe structuur J in, die een even dimensie m = 2n aan de
vectorruimte Rm oplegt en die aangewend wordt om de elementaire objecten
van orthogonale cliffordanalyse om te zetten in het nieuwe hermitische kader.
Zo wordt de actie van J op de voortbrengers (e1, . . . , e2n) van R2n gegeven door

J [ej ] = −en+j en J [en+j ] = ej , j = 1, . . . , n

Herschrijven we dan de euclidische vector X = (X1, . . . , X2n) in R0,2n als

X = (x1, . . . , xn, y1, . . . , yn)

en identificeren we deze, zoals gewoonlijk, met de cliffordvector

X =
n∑

j=1

(ej xj + en+j yj)

dan kunnen we aan X de geroteerde vector X| associëren door inwerking van
de complexe structuur J op X, i.e.

X| = J [X] =
n∑

j=1

(ej yj − en+j xj)

Op dezelfde manier wordt ook een geroteerde diracoperator ingevoerd:

∂X| = J [∂X ] =
n∑

j=1

(ej ∂yj
− en+j ∂xj

)
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De inwerking van de projectieoperatoren ± 1
2 (1±iJ) op X leidt dan tot de intro-

ductie van de hermitische cliffordvariabele Z en zijn hermitisch toegevoegde Z†:

Z =
1
2
(1 + iJ)[X] =

1
2
(X + iX|)

Z† = (Z)† = −1
2
(1− iJ)[X] = −1

2
(X − iX|)

De inwerking van de operatoren ± 1
4 (1± iJ) op ∂X leidt tot de invoering van de

hermitische diracoperatoren

∂Z† = (∂Z)† =
1
4

(1 + iJ)[∂X ] =
1
4

(∂X + i ∂X|)

∂Z = −1
4

(1− iJ)[∂X ] = −1
4

(∂X − i ∂X|)

We noemen een functie g dan h–monogeen als ze voldoet aan het stelsel

∂Z g = 0 = ∂Z† g

In de tweede paragraaf wordt een opsplitsing van bovenstaand h–monogeen
stelsel beschouwd die al bestudeerd was in [7] en die leidt tot de zogenaamde
homogene delen van een complexe spinorruimte.

Tijdens de bestudering van clifford–hermitewavelets in de context van her-
mitische cliffordanalyse, zie [31, 32], ontdekten de auteurs onverwacht een nieuw
type operator, verkregen als samenstelling van twee orthogonale hilberttrans-
formaties op R2n. De resulterende operator, K genoteerd, bleek te voldoen
aan enkele typische eigenschappen van een klassieke hilberttransformatie. In
Hoofdstuk 10 voeren wij een dieper onderzoek uit naar deze K–transformatie.
In de eerste paragraaf introduceren we daarom, naast the klassieke clifford–
hilberttransformatie, een tweede orthogonale clifford–hilberttransformatie, H|
genoteerd, op R2n, gegeven door

H|[f ] = e0H| ∗ f

waarvan de kern verkregen wordt door de actie van de complexe structuur J op
de klassieke orthogonale clifford–hilbertkern:

H|(X) = J [H(X)] =
2

a2n+1
Pv

X|
|X|2n+1

=
2

a2n+1
Pv

X|
|X||2n+1

= H(J [X])
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De eerder vermelde K–transformatie wordt dan gedefinieerd als

K = iHH| = −iH|H

Vervolgens ontstaan twee nieuwe, isotrope, hermitische hilberttransformaties
door inwerking van de projectieoperatoren± 1

2 (1±iJ) op de orthogonale clifford–
hilbertkern. De K–transformatie wordt dan opnieuw verkregen, nu als com-
mutator van die twee hermitische clifford–hilberttransformaties. In de tweede
paragraaf worden dan alle verbanden en overeenkomsten tussen alle hierboven
vermelde transformaties grondig onderzocht. Bijzondere aandacht gaat daarbij
uit naar de introductie en karakterisering van nieuwe hardyruimten geassocieerd
aan de K–transformatie. Een aantal resultaten leent zich ook tot een mooie
meetkundige interpretatie. In de laatste paragraaf wordt het begrip analytisch
signaal herbekeken.

Beschouwen we nu opnieuw Ω en Γ zoals gëıntroduceerd in Paragraaf 5.2.
In orthogonale cliffordanalyse fungeert de clifford–cauchyintegraalformule

g(Y ) =
∫

∂Γ

E(X − Y ) d̃σX g(X) , Y ∈ Γ+

voor monogene functies g als hoeksteen van die functietheorie, net zoals dit
het geval is voor de traditionele cauchyformule voor holomorfe functies in het
complexe vlak. Het is evident dat een cauchyintegraalformule voor h–monogene
functies essentieel is voor de verder ontwikkeling van hermitische cliffordanalyse,
maar pogingen tot dusver voor het verkrijgen van deze formule waren niet
bevredigend. In de eerste paragraaf van Hoofdstuk 11 komen wij tot het gewen-
ste resultaat, echter in het kader van circulaire (2× 2)–matrixfuncties. Zonder
te veel in detail te treden voeren we de nodige notaties in om te komen tot
onze formule. Om te beginnen worden voor de fundamentele oplossingen E en
E| = J [E] van de diracoperatoren ∂X , respectievelijk ∂X|, hermitische tegen-
hangers gepresenteerd, namelijk

E = − (E + i E|) en E† = (E − i E|)

We merken op dat E en E† niet de fundamentele oplossingen voorstellen van de
respectieve hermitische diracoperatoren ∂Z en ∂Z† . Vervolgens worden hermi-
tische tegenhangers ingevoerd voor de vectorwaardige oppervlakelementen d̃σX
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en d̃σX| = J [d̃σX ], namelijk

dσZ = −1
4

(−1)
n(n+1)

2 (2i)n (d̃σX − i d̃σX|)

dσZ† = −1
4

(−1)
n(n+1)

2 (2i)n (d̃σX + i d̃σX|)

Introduceren we daarna de circulaire (2× 2)–matrices

D(Z,Z†) =
(
∂Z ∂Z†

∂Z† ∂Z

)
, E =

(
E E†
E† E

)
en δ =

(
δ 0
0 δ

)
dan observeren we dat

D(Z,Z†) E(Z,Z†) = δ(Z)

We interpreteren deze uitdrukking als volgt: in de huidige matrixcontext mag E
worden beschouwd als een fundamentele oplossing van D(Z,Z†). We associëren
dan aan de cliffordalgebrawaardige, continu afleidbare functies g1 en g2 de ma-
trixfunctie

G1
2 =

(
g1 g2
g2 g1

)
We noemen dan G1

2 (links) H–monogeen als en slechts als voldaan is aan
D(Z,Z†)G

1
2 = O, met O de nulmatrix. Echter, in het speciale geval van een

diagonale matrixfunctie

G0 =
(
g 0
0 g

)
zien we dat H–monogeniteit van de matrixfunctie G0 equivalent is met h–
monogeniteit van de functie g. Introduceren we tot slot nog de matrix

dΣ(Z,Z†) =
(

dσZ −dσZ†

−dσZ† dσZ

)
die de rol zal spelen van matrixdifferentiaalvorm, dan zien de hermitische clifford–
cauchyintegraalformules voor H–monogene matrixfuncties G1

2 en h–monogene
functies g er als volgt uit:∫

∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X)

=
{

O , als Y ∈ Γ−

(−1)
n(n+1)

2 (2i)n G1
2(Y ) , als Y ∈ Γ+
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∫
∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G0(X)

=
{

O , als Y ∈ Γ−

(−1)
n(n+1)

2 (2i)n G0(Y ) , als Y ∈ Γ+

Als een bijkomend resultaat blijkt onze hermitische clifford–cauchyintegraal-
formule zich te herleiden tot de traditionele martinelli–bochnerformule voor
holomorfe functies van meerdere complexe variabelen door het speciale geval
van functies die waarden aannemen in het n–homogene deel van een complexe
spinorruimte te beschouwen. Dit betekent dat de theorie van h–monogene func-
ties niet enkel orthogonale cliffordanalyse (en dus ook harmonische analyse) ver-
fijnt, maar ook sterke verbanden heeft met en resultaten omvat van de theorie
van functies van meerdere complexe variabelen. Vermits de matrixfunctie E die
opduikt in bovenstaande formules fundamentele oplossing is van de diracmatrix
D(Z,Z†), bestempelen we die als hermitische cauchykern. Voor continue functies
g1 en g2 definiëren we dan de volgende hermitische clifford–cauchyintegraal:

C[G1
2](Y ) =

∫
∂Γ

E(Z − V ,Z† − V †) dΣ(Z,Z†) G1
2(X) , Y ∈ Γ±

In de tweede paragraaf komen we uiteindelijk terecht bij de definitie van een
nieuwe hermitische clifford–hilberttransformatie op ∂Γ, gegeven door de ma-
trixoperator

H =
1
2

(
H+H| −H+H|

−H+H| H+H|

)
die op een natuurlijke manier opduikt als deel van de niet–tangentiële randwaar-
den van de hermitische clifford–cauchyintegraal. Voor functies g1, g2 ∈ L2(∂Γ)
verkrijgen we namelijk

lim
Y→U

Y ∈Γ±

C[G1
2](Y ) = (−1)

n(n+1)
2 (2i)n

(
±1

2
G1

2(U) +
1
2

H[G1
2](U)

)
, U ∈ ∂Γ

De matrixhilbertoperator blijkt dan tevens de karakteriserende, geherformuleerde
eigenschappen te bezitten van de clifford–hilberttransformatie zoals gepresen-
teerd in Paragraaf 5.2.
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