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Abbreviations 
ACINUS  Apoptotic chromatin-condensation inducer in the nucleus 

AD  Highly acidic domain 

AgRP  Agouti-related protein  

AMPK  AMP-activated protein kinase  

 α-MSH α-Melanocyte-stimulating hormone 

BBB  Blood-brain-barrier 

 βc β-Common 

BMI  Body mass index  

BRET  Bioluminescence resonance energy transfer 

CART  Cocaine-amphetamine-regulated transcript  

CD  Cluster of differentiation 

CIS  Cytokine inducible SH2-containing protein  

CLC  Cardiotrophin-like cytokine 

CLF  Cytokine-like factor 

CML  Chronic myeloid leukaemia 

CNS  Central nervous system  

CNTF  Ciliary neurotrophic factor 

CRH  Cytokine receptor homology  

CSF  Colony stimulating factor  

CT-1  Cardiotrophin-1 

Cul  Cullin  

db  Mouse diabetes gene: coding for the leptin receptor 

DIO  Diet-induced obesity  

DNA  Deoxyribonucleic acid 

EAE  Experimental autoimmune encephalomyelitis  

EGF  Epidermal growth factor  

EMSA  Electrophoretic mobility shift assay 

Epo  Erythropoietin  

ER  Endoplasmic reticulum 

ERK  Extracellular-signal-regulated kinase 

ESS  Extended SH2 subdomain 

EVH1  Enabled/VASP homology 1 domain 

FERM  Four-point-one, ezrin, radixin, moesin 

FNIII  Fibronectin type III  
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FRET  Fluorescence resonance energy transfer 

 γc γ-Common 

FVIIa  Factor VIIa 

G-CSF  Granulocyte-colony stimulating factor 

GDNF  Glial cell line-derived neurotrophic factor 

GFR  GDNF family receptor 

GH  Growth hormone 

GM-CSF  Granulocyte macrophage-colony stimulating factor 

gp130  Glycoprotein 130 

Grb2  Growth receptor bound protein 2 

GTP  Guanosine triphosphate 

ICV  Intracerebroventricular  

HIF-α  Hypoxia-inducible transcription factor-α 

IFN  Interferon   

Ig  Immunoglobulin   

IGF-1  Insulin Growth Factor 1 

IL  Interleukin  

ISG15  Interferon stimulated gene product 15 

IRF  Interferon regulatory factor  

IRS  Insulin receptor substrate 

JAB  JAK binding protein  

JAK  Janus kinase  

JH  Janus homology domain 

KIR  Kinase inhibitory region 

LR  Leptin receptor 

LRlo  LR long form, LRb 

LRsh  LR short form: LRa, main short isoform of the LR  

LIF  Leukaemia inhibitory factor 

LPS  Lipopolysaccharide  

MAPK  Mitogen activated protein kinase  

MAPPIT  Mammalian protein-protein interaction trap 

MASPIT  Mammalian small molecule-protein interaction trap 

MHC  Major histocompatibility complex 

MLR  Mixed-lymphocyte reaction 

mRNA  Messenger ribonucleic acid 

mSOS  Mammalian son of sevenless 
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MyD88  Myeloid differentiation factor 88  

 Nuclear factor kappa B NFκB 

NES  Nuclear export signal  

NGF  Nerve growth factor 

NK  Natural killer  

NLS  Nuclear localisation signal 

NPY  Neuropeptide Y  

ob  Mouse obese gene: coding for leptin 

OSM  Oncostatin M 

PAC  Peptide affinity chromatography 

PAP  Pancreatitis Associated Protein 

PCM1  Pericentriolar material 1 

PDGF  Platelet-derived growth factor 

PIAS  Protein inhibitor of activated STAT 

PI-3K  Phosphatidyl inositol-3 kinase 

 PLC-γ Phospholipase C-γ  

POMC  Pro-opiomelanocortin  

PRL  Prolactin  

PTP  Phosphotyrosine phosphatase 

-R  Receptor 

Rbx  RING box protein 

RLD  RING-finger-like zinc-binding domain 

SAF  Scaffold-attachment factor 

SAP  SAFA and SAFB, ACINUS and PIAS domain 

SCID  Severe combined immune deficiency 

SCF  Stem cell factor 

SEAP  Secreted alkaline phosphatase 

SH2  Src Homology 2  

SHP  SH2 domain containing phosphatase   

SOCS  Suppressor of cytokine signalling 

Spred  Sprouty-related EVH1 domain-containing proteins  

SPR  Sprouty-related cystein-rich domain 

SPRY  Sprouty  

SSI  STAT-induced STAT-inhibitor  

STAT  Signal transducer and activator of transcription 

SUMO  Small ubiquitin-related modifier 
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TAD  Transcription activation domain  

TAP  Tandem affinity chromatography  

TCPTP  T-cell PTP  

TF  Tissue factor 

TGF  Transforming growth factor 

TH  T helper 

TIR  Toll-IL-1 receptor 

TLR  Toll-like receptor 

TNF  Tumour necrosis factor 

Tpo  Thrombopoietin 

TYK  Tyrosine kinase  

Ub  Ubiquitin  

UbE  Ubiquitin-dependent endocytosis  

UbL  Ubiquitin-like  

VASP  Vasodilator-stimulated phosphoprotein 

VHL  Von Hippel-Lindau 

WT  Wild type 

 
A, Ala  Alanine        M, Met  Methionine 

C, Cys  Cysteine       N, Asn  Asparagine 

D, Asp  Aspartic acid       P, Pro  Proline 

E, Glu  Glutamic acid       Q, Gln  Glutamine 

F, Phe  Phenylalanine       R, Arg  Arginine 

G, Gly  Glycine       S, Ser  Serine 

H, His  Histidine       T, Thr  Threonine 

I, Ile  Isoleucine       V, Val  Valine 

K, Lys  Lysine       W, Trp  Tryptophan

L, Leu  Leucine       Y, Tyr  Tyrosine 
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Samenvatting 
Leptine is een pleiotroop cytokine dat voornamelijk aangemaakt wordt in wit 

vetweefsel en in de bloedcirculatie aanwezig is in een hoeveelheid die correleert met 

de totale massa lichaamsvet. Functionerend als een adipostaat, passeert leptine de 

bloed-hersenbarrière en informeert de hypothalamus over de status van de 

energiereserves in het lichaam. Vervolgens worden adaptieve responsen geïnduceerd 

zodat het lichaamsgewicht constant gehouden wordt. 

Bij de meeste obese individuen treffen we een staat van leptineresistentie aan. Deze 

kan te wijten zijn aan een defect in het transport van leptine doorheen de bloed-

hersenbarrière en/of in leptine signaaltransductie in de hypothalamus. Daarnaast 

speelt leptine een rol in een ganse reeks andere, vaak perifere, fysiologische functies 

zoals voortplanting, botvorming en het immuunsysteem; het kan ook betrokken zijn 

in de pathogenese van ondermeer auto-immuunziekten. 

Er zijn zes isovormen van de leptinereceptor waarvan enkel deze met een lang 

cytoplasmatisch deel volwaardige signalisatiecapaciteit bezit. Deze signalisatie 

gebeurt klassiek via de JAK-STAT cascade, via JAK2 en voornamelijk STAT3. Strikte 

regulatie van deze cascade is van cruciaal belang; SOCS3 en PTP1B zijn hierbij de 

best gekarakterizeerde inhiberende regulatoren. 

In dit werk gaan we dieper in op de rol van SOCS eiwitten in leptine signalisatie. 

SOCS eiwitten worden klassiek beschouwd als inhibitoren van cytokine 

receptorsignalisatie; ze bestaan uit een SH2-domein dat verantwoordelijk is voor 

associatie met fosfotyrosine-motieven, een N-terminaal preSH2-domein en een C-

terminale SOCS-box die geassocieerde eiwitten selecteert voor degradatie door het 

proteasoom. We identificeerden twee leden van de SOCS familie, CIS en SOCS2, als 

nieuwe interactiepartners van de leptinereceptor. We bestudeerden de 

bindingsmodaliteiten van SOCS eiwitten en toonden aan dat in het geval van CIS, 

maar niet van andere SOCS eiwitten, de SOCS box essentieel is voor associatie met 

de receptor. Bovendien bewezen we dat onderlinge modulatie tussen de SOCS 

eiwitten gebaseerd is op directe binding en recrutering van het elongine B/C complex 

door de SOCS box. Dit laatste wijst op een belangrijke rol voor proteasomale 

degradatie.     
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Résumé 
La leptine est une cytokine pléiotrope produite principalement dans le tissu adipeux 

blanc et est présente dans la circulation sanguine en quantités qui corrèlent avec la 

masse totale de graisse corporelle.  Fonctionnant comme un ‘adipostat’, la leptine 

passe la barrière hématoméningée et communique le statut des réserves graisseuses 

du corps à l’hypothalamus.  

Chez la plupart des individus obèses on trouve une résistance à la leptine, celle-ci 

peux être provoqué par un défaut dans le transport à travers la barrière 

hématoméningée  et/ou dans la cascade de signalisation dans l’hypothalamus.  Mis à 

part son importance dans le réglage du poids corporel, la leptine a un rôle dans une 

série d’autres fonctions physiologiques, souvent périfère comme la reproduction, la 

formation osseuse et le système immunitaire.   

Six isoformes du récepteur de la leptine sont discernés et uniquement la forme avec 

la partie cytoplasmique complète possède une capacité de signalisation absolue.  

Cette signalisation est transmise classiquement par la cascade JAK-STAT et JAK2 et 

STAT3 sont les acteurs principaux.  Une régulation rigoureuse de cette cascade est 

primordiale; SOCS3 et PTP1B sont dans ce cadre là les inhibiteurs le mieux 

caractérisés.   

Dans cette thèse de doctorat nous approfondissons le rôle des protéines SOCS dans 

la signalisation de la leptine.  Les protéines SOCS sont classiquement considérées 

comme étant des inhibiteurs de signalisation de récepteur de cytokines ;  elles 

contiennent un domaine SH2 qui permet l’association avec des motives de tyrosines 

phosphorylées, du côté de l’ N-terminus un domaine pre-SH2 et vers le C-terminus 

un domaine dit SOCS-box qui a la capacité de sélectionner des protéines associées 

pour la dégradation par le protéasome. Nous avons identifié deux membres de la 

famille SOCS, SOCS2 et CIS, en tant que nouveaux interacteurs du récepteur de la 

leptine.  Nous avons examiné les modalités d’interaction des protéines SOCS et avons 

pu démontrer que dans le cas de CIS, mais pas des autres protéines SOCS, le ‘SOCS-

box’ est essentiel pour l’association avec le récepteur.  De plus, nous avons prouvé 

que le modulation réciproque entre les protéines SOCS est basé sur une interaction 

directe et le recrutement du complexe contenant les elongines B et C par le ‘SOCS-

box’.  Cette dernière donnée indique un rôle important  pour la dégradation 

protéasomale. 
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Summary  
Leptin is a pleiotropic cytokine that was initially identified as a key player in food 

intake and energy expenditure. It is produced mainly in adipose tissue and 

circulating leptin levels correlate well with the amount of body fat. As an adipostat, 

leptin passes the blood brain barrier to inform the hypothalamus about the status of 

energy reserves in the body. Appropriate responses are triggered to maintain a 

stable body mass. Most obese individuals have developed a state of leptin resistance 

because their body is not capable of reacting properly to the leptin signal. This leptin 

insensitivity can be caused by defects at different levels in the leptin pathway 

including leptin transport through the blood brain barrier, hypothalamic leptin 

signalling and downstream effects of leptin in the neuronal circuit. In addition, leptin 

is involved in a broad range of other, often peripheral, physiological functions 

including reproduction, bone formation and immunity, and may also contribute to the 

development of disorders like auto-immune diseases.  

There are at least six splice variants of the leptin receptor but only the one with a 

long cytoplasmic tail has full signalling capacities. It typically signals through the JAK-

STAT pathway via JAK2 and predominantly STAT3. Since leptin action is of great 

importance throughout the body, signalling must be under stringent control. SOCS3 

and PTP1B are the best characterized mediators of leptin signalling termination.  

In this work we focus on the role of SOCS proteins in leptin receptor signalling. SOCS 

proteins are typically inhibitors of cytokine receptor signalling and consist of an SH2-

domain that mediates association with phosphotyrosine motifs, an N-terminal 

preSH2-domain and a C-terminal SOCS-box that is responsible for targeting 

associated proteins for proteasomal degradation. We identified two members of the 

SOCS family, CIS and SOCS2, as new interaction partners of the LR. We studied the 

binding modus of SOCS proteins and demonstrated that the SOCS-box is essential for 

receptor interaction of CIS but not of other examined SOCS proteins. In addition, we 

demonstrated that cross-modulation between SOCS proteins depends on direct 

interaction and requires elongin B/C recruitment to the SOCS-box which implicates a 

role for proteasomal degradation. 
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Part I 
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Chapter 1: Cytokines and their receptors 

1. Cytokines 
 

Cytokines constitute a broad group of messenger proteins involved in intercellular 

communication in multicellular organisms. They regulate biological activities like cell 

proliferation, differentiation and apoptosis and are involved in many processes 

including haematopoiesis, homeostasis, modulation of immune responses and 

development of multicellular organisms. 

 

Two crucial characteristics of cytokines are their redundancy and pleiotropy. 

Redundancy implies that different cytokines can exert similar biological activities. 

Upon the failure of one cytokine others can function as a back-up to preserve 

important cellular functions. Pleiotropy indicates that one particular cytokine can 

induce multiple biological activities on a number of target cells, thus orchestrating a 

coordinated response of different cellular processes.  

 

Cytokines have a diverse nomenclature since they were originally named according 

to their activity or origin. The first cytokines to be described were lymphokines and 

monokines referring to the cells that produce them, lymphocytes or monocytes. 

Others are interleukins (IL) that signal between leukocytes during immune 

responses, interferons (IFN) which are involved in protection against viral infections, 

growth factors which induce growth and colony-stimulating factors (CSF) that 

stimulate colony expansion of haematopoietic cells. Since cytokines often show 

overlapping activities and in many cases are produced by several different cell types 

this nomenclature is very complex with many cytokines carrying more than one 

name.  

 

Since cytokines show little sequence homology, they are classified based on 

structural similarities. Currently, four classes of cytokines are described (Nicola, 

1994) 
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Class I cytokines: 4-α-helical bundles  
This large group of cytokines includes the previously mentioned interleukins, 

interferons and colony stimulating factors. They adopt an anti-parallel 4-α-helical 

bundle structure with a typical up-up-down-down configuration (figure 1).  

 

These class I cytokines are divided into two subgroups. The first group includes GM-

CSF and several interleukins like IL-2, IL-3, IL-4, IL-5. These ‘short chain’ cytokines 

have short α-helices and comprise two short antiparallel β-strands in their loops. 

Leptin, erythropoietin (Epo), prolactin (PRL), leukaemia inhibitory factor (LIF), 

granulocyte-colony stimulating factor (G-CSF), oncostatin M (OSM), ciliary 

neurotrophic factor (CNTF), IL-6 , IL-11 and growth hormone (GH) are ‘long chain’ 

cytokines. They have longer α-helices and the loops contain additional helices.  

 

The IFN/IL-10 family comprises the type I IFNs including IFNα, IFNβ, IFNω, IFNκ 

and IFNε, the type II IFN (IFNγ), type III IFNs (IFNλ1, IFNλ2 and IFNλ3) and IL-10 

with its viral and cellular homologues (Pestka et al., 2004). IFNγ and IL-10 form 

intermeshed, V-shaped homodimers. Each subunit of the IL-10 dimer consists of six 

alpha-helices, four originating from one subunit and two from the other, of which 

four helices have the classical up-up-down-down bundle. The viral IL-10 homologues 

form dimers whereas cellular homologues which include IL-19, IL-20, IL-22 and IL-24 

are monomers (Zdanov, 2004). Several subfamilies can be discriminated within the 

IFN/IL-10 family based on structure and common receptor use.  

 

Class II cytokines: long chain β-sheet structures 
The IL-1 family of cytokines and pro-inflammatory tumour necrosis factor (TNF) 

related cytokines belong to the Class II cytokines. These cytokines are often 

produced as membrane-bound precursors and are released from the cell surface by 

shedding. Their structures are based on β-strands. The TNF family adopts a β-jelly 

roll fold while the IL-1 related cytokines have a β-trefoil configuration.  

 

Class III cytokines: mosaic structures, type I 
This heterogeneous group of cytokines often modulates mitogenic responses. Growth 

hormones of the epidermal growth factor family (EGF) carry an EGF domain 
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containing two or more anti-parallel β-strands. Insulin and insulin-related cytokines 

are characterized by a three α-helical structure linked by three disulfide bridges. This 

class of cytokines also includes the platelet-derived growth factors (PDGF), nerve 

growth factors (NGF) and the transforming growth factor β (TGFβ). The latter adopts 

a ‘cysteine knot’ configuration in its biologically active form, a disulfide linked dimer 

with three disulfide bonds in a threaded ring configuration within each monomer. 

Class IV cytokines: mosaic structures, type II 
The class IV cytokines are a group of very small cytokines, also called chemokines. 

They have an important role in chemotactic migration of leukocytes. This class of 

cytokines is further subdivided in four groups depending on the position of the 

conserved cysteins: CXC, CX3C, CC, C chemokines. 

 

Growth hormone GM-CSF
 

Figure 1: Class I cytokines: 4-α-helical bundles 

On the left hand site the structure of growth hormone, a typical long chain cytokine, 

on the right the structure of GM-CSF, a short chain cytokine. 

(Adapted from ‘the cytokine web’ 

url http://cmbi.bjmu.edu.cn/cmbidata/cgf/CGF_Database/cytweb/index.html) 
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2. Cytokine receptors 
 

Since cytokines have no intrinsic enzymatic activity and are incapable of penetrating 

the cell-surface, they need specific receptors (R) to induce signal transduction and 

evoke a specific cell response. These cytokine receptors are transmembrane 

molecules that allow the transfer of the extracellular signal to the cytoplasm. Many 

cytokine receptors also have a soluble variant consisting of the extracellular part of 

the membrane bound form. These originate from alternative spliced messenger RNA 

(mRNA) or from proteolytic release of the extracellular receptor domain (Heaney et 

al., 1996). Secreted receptors can act as antagonists, as observed for many 

interleukin receptors. They inhibit cytokine signalling by competing with their 

membrane-anchored counterparts for the common ligand (Heaney et al., 1996). The 

soluble receptor can also function as a carrier for the ligand, thereby protecting it 

from degradation or secretion and therefore significantly prolonging its half-life 

(Baumann, 1995; Peters et al., 1996). In some cases soluble receptors are part of 

the receptor complex and facilitate receptor signalling, like seen for the IL-6 receptor 

complex (Heaney et al., 1996). 

 

Based on their secondary and tertiary structural similarities, cytokine receptors are 

divided into four categories. In general there is a striking correlation between the 

structural class of the cytokines and the receptors that they activate.  

 

Class I cytokine receptors: haematopoietin/interferon receptors 
Class I cytokine receptors are transmembrane glycoproteins with a characteristic 

cytokine receptor homology (CRH) domain in their extracellular domain. Each 

receptor carries at least one of these domains formed by two homologous barrel-like 

subdomains of about 100 amino acids (figure 2). Both barrels consist of 7 β-strands 

separated by a proline-rich segment and show great resemblance with the 

fibronectin type III (FNIII) structures. Other conserved features in the amino acid 

sequence of the CRH domain are two pairs of cysteines forming disulfide bridges in 

the first N-terminal domain, a canonical Trp-Ser-X-Trp-Ser (WSXWS) motif in the 

membrane-proximal subdomain and a stretch of aromatic residues.  
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The class I receptor family is subdivided into two groups. The type I cytokine 

receptors are mostly triggered by 4-α-helical bundle class I cytokines while the type 

II cytokine receptor family binds IFNs and the IL-10 family. The type II cytokine 

receptors do possess a CRH domain but lack a WSXWS motif. The same type II 

cytokine receptor complexes are often used by different cytokines for their signal 

transduction. This is, for example, the case for the type I IFNs including IFNα, IFNβ, 

IFNω, IFNκ and IFNε that all use the IFNAR-1 and IFNAR-2 receptor and for several 

subfamilies of the IL-10 family (figure 3) (Langer et al., 2004; Renauld, 2003).   

The cytoplasmatic domain of the class I cytokine receptors is more diversified. They 

have no intrinsic enzymatic activity but associate with intracellular enzymes, JAK 

kinases, to trigger phosphorylation upon stimulation. The receptor carries two 

functional domains termed box1 and box2 which are involved in association of Janus 

kinase (JAK) molecules for signal transduction via the so-called JAK-STAT (signal 

transducer and activator of transcription) pathway which will be discussed in more 

detail later on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Growth hormone - Growth hormone receptorGrowth hormone - Growth hormone receptor

Figure 2: Class I cytokine receptors: 

Growth hormone in complex with two extracellular domains of its receptor 

(adapted from ‘the cytokine web’ 

url http://cmbi.bjmu.edu.cn/cmbidata/cgf/CGF_Database/cytweb/index.html) 
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Some class I cytokine receptors are built of one type of subunit and function as a 

homodimer like the EpoR or the GHR. Others form heteromers sharing one receptor 

unit and are accordingly grouped into subfamilies. These receptor complexes 

combine a cytokine-specific unit with a shared signal transducing receptor. Three 

well characterized type I cytokine receptor families have the glycoprotein 130 

(gp130) chain, the β-common (βc) or the γ-common (γc) receptor chain in common.  

Common use of a cytokine receptor chain in several receptor complexes also occurs 

for the type II cytokine receptors. This phenomenon of common receptor units 

partially explains the functional redundancy of cytokines. An overview of the class I 

cytokine receptor families is shown in figure 3. 

Class II cytokine receptors: NGF/TNF and IL-1 receptors 
The unifying feature of this receptor class is a domain consisting of six cysteine 

residues. Each receptor has 4 copies of this domain in its extracellular part. In the 

cytoplasmatic tail they often carry a so-called ‘death domain’ that is involved in 

apoptosis. The IL-1 type receptors have an additional extracellular immunoglobulin 

(Ig)-like domain.  

Class III cytokine receptors: receptor kinases 
Unlike the other cytokine receptor classes, class III cytokine receptors have an 

intrinsic kinase activity. They carry a catalytic domain in the cytoplasmatic tail. The 

receptor kinases are divided into two subgroups according to substrate specificity, 

phosphorylating either tyrosine residues (e.g. Insulin R) or serine and threonine 

residues (e.g. TGFβR). 

Class IV cytokine receptors: serpentine receptors 
The most remarkable feature of this group is that unlike the other cytokine receptor 

classes that have a single transmembrane domain, these receptors traverse the 

membrane seven times. They have a short extracellular domain and the intracellular 

tail carries several serine and threonine residues that become phosphorylated in 

receptor signalling. Signal transduction is dependent on additional G-proteins. These 

are GTP-binding, hetero-trimeric proteins associated with the cytoplasmatic side of 

the cell membrane. Ligand association induces a conformational change of the 

receptor which leads to association and activation of the G-protein, that in turn relays 

the signal to effector enzymes.  
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Figure 3: Schematic overview of the Class I cytokine receptors  

(adapted from Huising et al., 2006; Ernst and Jenkins, 2004; Renauld, 2003). 
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Chapter 2: Cytokine receptor signalling 

1. The JAK-STAT pathway 
Class I cytokine receptors typically signal trough the JAK-STAT pathway (figure 4). As 

these cytokine receptors do not possess any intrinsic kinase activity, they have JAK 

kinases constitutively associated with the cytoplasmatic membrane proximal part of 

the receptor. Ligand association induces receptor clustering and reorganisation 

thereby bringing the associated JAK kinases in close proximity and allowing them to 

activate each other by cross-phosphorylation. These activated JAK kinases then 

phosphorylate cytoplasmic tyrosines in the receptor tail. These phosphorylated 

residues serve as docking sites for various signalling molecules. STAT molecules are 

typically recruited to these phosphotyrosines. Upon recruitment the STATs become 

also phosphorylated by the JAKs. The activated STATs dissociate from the receptor 

and translocate to the nucleus as dimers where they induce transcription of specific 

target genes.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Schematic representation of the JAK-STAT pathway: 

Ligand association leads to reorganisation of the receptor chains (step 1) and 

activation of the juxtaposed JAKs through cross-phosphorylation (step 2). 

Intracellular tyrosines are subsequently phosphorylated and act as docking sites for 

STAT molecules (step 3). The STATs are activated by phosphorylation and dissociate 

from the receptor (step 4). They form dimers that translocate to the nucleus to 

induce specific target genes (step 5). 
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Receptor activation 
The initial step in receptor activation is induced by binding of the cytokine. Upon 

ligand association the receptor chains are reorganized. Two models have been 

proposed for cytokine induced receptor oligomerization. A first model describes the 

individual receptor chains as monomers on the cell membrane. Upon cytokine 

administration one receptor chain associates with the ligand and this induces 

recruitment of one or more receptor chains resulting in the formation of an activated 

receptor complex. This mechanism of receptor clustering was first proposed for the 

GHR (Cunningham et al., 1991; Wells et al., 1994).  

 

In the second model the cytokine receptor chains are pre-assembled at the 

membrane. Cytokine association induces a conformational change which is 

allosterically transduced to the intracellular part of the receptor. The membrane 

proximal cytoplasmic regions of the receptors are brought in closer proximity which 

results in juxtaposing and subsequently activating the associated JAK kinases. This 

model was for example supported by the crystal structures described for the EpoR 

complex with or without its ligand (Livnah et al., 1999; Remy et al., 1999). The 

transmembrane domain of the EpoR is involved in its ligand-independent 

dimerization (Constantinescu et al., 2001).  

The first model proposed was previously generally accepted. However, preclustering 

has since been suggested for a variety of class I cytokine receptors including the 

GHR (Frank et al., 2002; Ross et al., 2001). From the different receptor systems 

examined it is clear that receptor activation is a complex system that is not yet fully 

understood. 

 

The JAKs  
As mentioned before class I cytokine receptors have no intrinsic kinase activity. The 

tyrosine-specific phosphorylation that occurs upon ligand binding and subsequent 

receptor oligomerisation is mediated by the activity of cytoplasmic tyrosine kinases. 

These kinases are called JAKs, ‘Just Another Kinase’ or ‘JAnus Kinase’ named after 

Janus, the Roman god of gates and doors (ianua), beginnings and endings, and 

hence represented with a double-faced head, each looking in an opposite direction, 
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referring to the unique feature of JAK molecules: their kinase and pseudokinase 

domain. 
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Figure 5: Schematic representation of the JAK structure 

 

 

JAKs are rather large proteins of about 1100 amino acids. All JAK kinases have seven 

regions of high homology called Janus homology domains 1 to 7 (JH1-JH7), which 

are numbered starting from the C-terminus (figure 5). The N-terminal domains (JH7-

JH5) are most likely involved in receptor association and form a structure that shares 

similarity with a FERM (Four-point-one, Ezrin, Radixin, Moesin) domain, which is 

known to be involved in interactions between proteins (Girault et al., 1998). This 

domain mediates receptor binding and plays a role in the preservation of the 

catalytical activity (Hilkens et al., 2001; Zhou et al., 2001). The JH4-JH3 regions form 

a structural domain resembling a Src Homology 2 (SH2) domain, but appear not to 

be involved in mediating phosphotyrosine dependent protein interactions, as SH2 

domains typically do. However, the JH4-JH3 region is structurally important for 

receptor association and receptor surface expression (Radtke et al., 2005). As 

mentioned above JAKs have two kinase domains in their C-terminal part, a functional 

kinase domain JH1 preceded N-terminally by a pseudokinase domain JH2. This 

kinase-like domain has no enzymatic activity although it has all the structural 

characteristics of a normal tyrosine kinase domain. However, it is important for a 

normal catalytic activity of the JAK kinase. Deletion of the pseudokinase domain 

results in the dysregulation of the JAK2 kinase activity and a loss of function for TYK2 

(Saharinen et al., 2000; Velazquez et al., 1995; Yeh et al., 2000). A structure model 

for JAK2 is shown in figure 6. 
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The JAK family comprises four mammalian members, JAK1, JAK2, JAK3 and TYK2. 

Different JAKs are involved in signalling via different cytokine systems and some 

cytokine receptors even activate more than one kinase. JAK1, JAK2 and TYK2 are 

ubiquitously expressed whereas JAK3 expression is restricted mainly to 

haematopoietic cells (Leonard and O’Shea, 1998). Cytokine receptors can be 

categorized into subfamilies according to the JAKs and STATs they use for signalling, 

which is outlined in table 1. 

 

 

Figure 6: JAK2 structure model 

(from Giordanetto and Kroemer, 2002). 

 

It appears that the role of JAKs is more than mere tyrosine phosphorylation. JAK2, 

for example, associates with the EpoR in the endoplasmatic reticulum (ER) and this 

appears essential for membrane expression of the receptor (Bonifacino et al., 2002; 

Huang et al., 2001). Likewise, JAK1 is involved in cell surface expression of the OSM 

receptor. TYK2 is essential for stable membrane expression of a subunit of the type I 

IFN receptor complex (Ragimbeau et al., 2003). In addition, JAK1 is also implicated 

in translocation of STAT1 to the nucleus (Mowen and David, 2000). The 

phosphotyrosines in activated JAK kinases also function as docking sites for several 

proteins including the SH2-B homologues (O’Shea et al., 2002; Rui et al., 2000). 
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Table 1: Cytokine specific JAK and STAT activation 

(adapted from Schindler and Strehlow, 2000) 

 

ligands JAK kinases STATs 

Single chain family 

Epo JAK2 STAT5 

GH JAK2 STAT5, (STAT3) 

PRL JAK2 STAT5 

G-CSF JAK1 STAT3 

Leptin JAK2 STAT3, (STAT1, STAT5) 

Tpo JAK2 STAT3, STAT5 

   

-family βc

IL-3 JAK2 STAT5 

IL-5 JAK2 STAT5  

GM-CSF JAK2 STAT5 

   

γc-family 

IL-2 JAK1, JAK3 STAT5, (STAT3) 

IL-4 JAK1, JAK3 STAT6 

IL-7 JAK1, JAK3 STAT5, (STAT3) 

IL-9 JAK1, JAK3 STAT5, STAT3, STAT1 

IL-15 JAK1, JAK3 STAT5, (STAT3) 

   

gp130 family 

IL-6 JAK1, JAK2 STAT3, STAT1 

IL-11 JAK1 STAT3, STAT1 

OSM JAK1, JAK2 STAT3, STAT1 

LIF JAK1, JAK2 STAT3, STAT1 

CNTF JAK1, JAK2 STAT3, STAT1 

   

IFN/IL-10 family 

TYK2, JAK1 STAT1, STAT2 IFN-α/β 

JAK1, JAK2 STAT1, (STAT5) IFN-γ 

IL-10 TYK2, JAK1 STAT3 

IFN-λ1-3 JAK1, TYK2 STAT1, STAT2, STAT3, STAT4, STAT5 

IL-19 JAK1 STAT1, STAT3 

IL-20 JAK1 STAT1, STAT3 

IL-22 JAK1, TYK2 STAT1, STAT3, STAT5 

IL-24 JAK1 STAT1, STAT3 

IL-26 JAK1, TYK2 STAT3, STAT1 
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Biological functions – JAK knock-outs  
Analysis of knock-out mice is crucial for deciphering the functions of JAK kinases. An 

overview of the phenotypes of JAK knock-out mice is shown in table 2. 

 

JAK1 knock-out mice are small and die early after birth. They exhibit neurological 

defects that cause problems with suckling. JAK1 deficiency affects signalling of IFNs 

and cytokines that use the γ -chain or the gp130 chain (Rodig et al., 1998).  C

 

JAK2 deficiency causes embryonic lethality due to the absence of a definitive 

erythropoiesis. JAK2-/- fibroblast cells are clearly impaired in IFNγ signalling 

(Neubauer et al., 1998; Parganas et al., 1998).   

 

Targeted disruption of the murine JAK3 gene results in a viable phenotype. However 

these mice suffer from severe combined immune deficiency (SCID). JAK3-/- mice 

show profound defects in T- and B-cells due to impaired signalling via the γc 

receptors. In contrast, although JAK3 deficient humans have severe T-cell defects 

and SCID, their B-cell populations remain unaffected (Thomis and Berg, 1997).  

 

TYK2-deficient mice show defective responses to IL-12 and lipopolysaccharide (LPS). 

Surprisingly, only subtle defects were observed in IFNα and β signalling (Shimoda et 

al., 2000). 

 

The STATs 
The family of STATs consists of seven mammalian members: STAT1, STAT2, STAT3, 

STAT4, STAT5a, STAT5b and STAT6. They map in three gene clusters with each 

cluster mapping to a different chromosome. STAT1 and STAT4 are located on 

chromosome 1, STAT2 and STAT6 are found on chromosome 10 and STAT3, STAT5a 

and STAT5b map to chromosome 11. STAT5a and STAT5b are over 95% 

homologous, which results from a very recent additional duplication of the STAT5 

gene (Copeland et al., 1995; Mui et al., 1995). 

STAT isoforms have also been detected. They result from protein processing as 

found for STAT5a, STAT5b and STAT6 (Azam et al., 1997;Quelle et al., 1995; Wang 

- Page 30 - 



 

et al., 1996) or alternative splicing of the mRNA including STAT1β, STAT3β, STAT5a1 

and STAT5a2 (Kazansky et al., 1995; Schaefer et al., 1995; Shuai et al., 1993). 
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Figure 7: Schematic representation of the STAT structure 

 

 

STATs are about 800 amino acids long and have six structurally and functionally 

conserved domains (see figure 7).  

In the N-terminal region, STAT molecules have a coiled-coil domain, preceded by a 

conserved dimer-dimer interaction domain. The coiled-coil structure consists of four 

helices and is responsible for interactions with other transcription factors including c-

Jun and NFκB (Ortmann et al., 2000; Schaefer et al., 1995; Shen et al., 1998). In 

addition, the domain is also important for receptor binding and nuclear translocation 

(Begitt et al., 2000; Ma et al., 2003; Zhang et al., 2000). The extreme N-terminal 

dimer-dimer interaction domain apparently allows STAT dimers to form tetramers 

that cooperatively associate with multiple STAT binding sites in the promoter 

sequence (John et al., 1999; Vinkemeier et al., 1996; Xu et al., 1996; Murphy et al., 

2000). 

The central part of STAT proteins carries a DNA binding domain, a linker domain, an 

SH2 domain and a conserved tyrsosine phosphorylation site. The DNA binding 

domain is a β-barrel with an Ig-fold and resembles the structure of the p53 and NF-

κB DNA binding domains. Obviously, it is implicated in DNA binding, however, there 

are only little direct interaction sites (Becker et al., 1998; Chen et al., 1998). Figure 8 

represents the nutcracker-like structure that is formed by the association of STAT1 

dimers with DNA. The SH2 domain is essential for receptor association and 

dimerization of the STATs. Its pocket structure consists of a β-sheet flanked by two α 

helices. A conserved arginine in this pocket is essential for association of 

phosphotyrosines (Chen et al., 1998). C-terminal to the SH2 domain STATs have a 
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conserved tyrosine residue which becomes phosphorylated by the JAK kinases upon 

receptor binding. Dimerization of activated STATs is based on the reciprocal 

interaction of the SH2 domain with this phosphorylated tyrosine (see figure 8). STAT 

association with the JAKs may also be attributed to the SH2 domain (O’Shea et al., 

2002). 

 

 

Figure 8: Structure of STAT1 in complex with DNA 

(adapted from Chen et al, 1998). 

 

The C-terminus of STATs consists of a variable transcription activation domain (TAD). 

Its poor conservation among various STATs can be explained by its regulatory 

function in unique transcriptional responses. In many cases phosphorylation of the 

conserved serine within this domain leads to an enhanced transcriptional activity and 

may be involved in the TAD dependent regulation of transcription (Decker and 

Kovarik, 2000; Kovarik et al, 2001).  

 

STAT molecules are recruited to the phosphotyrosines of activated receptors and 

after becoming phosphorylated themselves at their conserved tyrosine by the JAKs 

they dissociate from the receptor and dimerize. STAT1, STAT3 and STAT4 can form 

both homo-and heterodimers whereas for STAT5 and STAT6 only homodimers have 
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been demonstrated. STAT2 is only functional after dimerization with STAT1 or 

STAT4.  

 

When STAT dimers reach the nucleus they associate with specific sequences in the 

promoter of target genes. These binding consensus sequences are typically 

palindromes: STAT1, STAT3, STAT4, STAT5a, STAT5b and STAT6 bind to a 5’-TTCN2-

4GAA-3’ motif, while the STAT1-STAT2 dimer binds to an IFN-stimulated response 

element with the consensus sequence AGTTTN TTTCC (Kisseleva et al., 2002).  3

 

STAT proteins have no classical nuclear localisation signal (NLS) and the mechanisms 

that regulate their exchange between the cytoplasm and the nucleus are not really 

clear. Translocation of STAT dimers to the nucleus involves an active nuclear import 

mechanism depending on Ran and importin-α5. A nuclear export signal (NES) in the 

DNA binding domain is likely to drive the nuclear export of the STATs mediated by 

Ran and exportin 1. STAT dephosphorylation and dissociation from the DNA uncovers 

this NES sequence and activates the export mechanism mediated by exportin1 

(Kisseleva et al., 2002; McBride and Reich, 2004; O’Shea et al., 2002). 

 

 

Table 2: Phenotype of mice deficient in various JAKs and STATs 

Knock-out Phenotype 

JAKs 

JAK1 Early postnatal lethality, neurological deficiencies, SCID 

JAK2 Embryonic lethality, impaired erythropoiesis 

JAK3 Viable, fertile, SCID 

TYK2 Viable, fertile, defect in antiviral response 

  

STATs 

STAT1 Viable, defect in antiviral response, impaired growth control 

STAT2 Viable, defect in antiviral response 

STAT3 Embryonic lethal 

1 differentiation STAT4 Viable, defective TH

STAT5a Viable, impaired breast tissue development 

STAT5b Viable, impaired growth 

2 differentiation STAT6 Viable, defective TH

- Page 33 - 



 

 

Biological functions – STAT knock-outs 
Specific disruption of each of the STAT genes revealed distinctive functions for the 

various STATs. An overview of the different knock-out mice phenotypes is given in 

table 2. 

 

The primary role of STAT1 in IFN signalling was clearly established by the generation 

of STAT1 knock-out mice. These mice are highly susceptible to bacterial and viral 

infections (Meraz et al., 1996). Involvement of STAT1 in non-immune responses like 

IFN-γ-induced growth retardation was readily reflected in the enhanced tumor 

susceptibility of STAT1-/- mice (Shankaran et al., 2001). All major defects could be 

attributed to IFN signalling (Meraz et al., 1996). 

 

STAT2 deficient mice are also defective in viral responses. They are primarily 

defective in IFNα/β signalling that is mediated by STAT1/STAT2 heterodimers (Park 

et al., 2000).  

 

STAT3-deficient mice die embryologically before gastrulation. Clearly STAT3 has an 

essential role in development of various cell lineages early in embryogenesis (Takeda 

et al., 1997). STAT3-depleted zebrafish embryos die later in embryogenesis but 

display abnormal cell movement during gastrulation (Yamashita et al., 2002). In 

order to clarify the specific roles of STAT3, several tissue-restricted mice knock-outs 

were developed. STAT3 deficient T-cells lose their proliferative response to IL-6 

(Takeda et al., 1998). STAT3 deficiency in macrophages and neutrophils leads to 

high susceptibility to endotoxin shock. Various stimuli like LPS cause these cells to 

produce more inflammatory cytokines due to impaired IL-10 responsiveness (Takeda 

et al., 1999). Finally, lack of STAT3 in keratinocytes results in defective wound 

healing and hair growth (Sano et al., 1999). 

 

The phenotype of STAT4 knock-out mice revealed that STAT4 is essential in IL-12 

signalling. A marked tendency towards T helper 2 (TH2) responses is observed in 

these mice. Lymphocytes are impaired in T helper 1 (TH1) differentiation and fail to 

produce IFNγ in response to IL-12 (Kaplan et al., 1996b; Thierfelder et al., 1996). 
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STAT4-deficient mice are therefore protected against TH1 based autoimmune 

diseases like experimental autoimmune encephalomyelitis (EAE) (Chitnis et al., 

2001).  

 

STAT5a and STAT5b are 96% identical in their amino acid sequence. However, their 

biological functions are not completely redundant, which is underscored by the 

striking differences in phenotype of the single knock-out mice. STAT5a deficiency 

predominantly causes impaired PRL-dependent mammary gland development (Liu et 

al., 1997), whereas STAT5b deficient mice show aberrations in sexual dimorphic 

growth (Udy et al., 1997). STAT5a/STAT5b double knock-outs were created to 

assess their functional redundancy and exhibited a more severe phenotype. Many of 

these mice die within weeks after birth. The surviving mice are smaller and infertile 

with mammary gland defects. They have relatively normal peripheral blood counts. 

However, defects in myeloid and lymphoid lineages were observed under stress 

conditions and NK cells were absent (Teglund et al., 1998).  

 

STAT6 is broadly expressed and is activated by IL-4 and IL-13. STAT6-deficient mice 

failed to develop TH2 cells in response to these cytokines. These mice also lose the 

ability to class switch antibodies to the IgE isotype upon IL-4 stimulation (Kaplan et 

al., 1996a; Shimoda et al., 1996; Takeda et al., 1996a; Takeda et al., 1996b). Lack 

of STAT6 significantly attenuates the TH2 related symptoms in asthmatic disease 

(Akimoto et al., 1998; Kuperman et al., 1998; Miller et al., 1998). 

 

2. Other cytokine-induced signalling pathways 
Cytokine receptors predominantly signal via the JAK-STAT pathway as explained 

above. However other pathways are also involved in transduction of the cytokine 

signal. A number of adaptor molecules can associate with the receptor or the kinase 

and sometimes upon JAK-dependent phosphorylation, link to other signalling 

pathways.  

Here we only describe the well characterized MAPK (mitogen activated protein 

kinase) pathway (Dong et al, 2002; Platanias, 2002). Other signalling molecules 

recruited to cytokine receptors include Vav, phospholipase C-γ (PLC-γ) and 
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phosphatidylinositol-3 kinase (PI-3K) (Carpenter and Ji, 1999; Fresno Vara et al., 

2004; Hennessy et al., 2005; Krasilnikov, 2000; Uddin and platanias, 2004).  

The Ras-Raf pathway plays an important role in cytokine signal transduction. 

Extracellular-signal-regulated kinase (ERK) activation can be initiated by Grb2 

(growth receptor bound protein 2) association with phosphorylated tyrosine motifs in 

the cytokine receptor or with phosphorylated adaptor molecules including SH2 

domain containing phosphatase-2 (SHP-2), Shc and IRS (insulin receptor substrate)-

1/2. Grb2 recruits mSOS (mammalian son of sevenless) to the receptorcomplex. 

mSOS in turn associates with the membrane-anchored Ras and induces its activation. 

Ras then triggers the MAPK pathway by activation of Raf, a serine-threonine kinase 

(Kerkhoff et al., 2001).  
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Chapter 3: Negative regulation of cytokine receptor signalling 
Typically, the activity of cytokines, involved in a broad range of processes, is very 

short-lived. Therefore their signalling modus has to be under very stringent control. 

There are a number of mechanisms that modulate cytokine receptor signalling. 

Obviously, any impairment or degradation of the key signalling components of the 

JAK-STAT pathway will attenuate signalling. In addition, several molecules function 

as active negative regulators of cytokine receptor signalling. The main ones are 

phosphatases (PTP), protein inhibitor of activated STAT (PIAS) proteins, the 

suppressors of cytokine signalling (SOCS) family and the recently identified Sprouty-

related proteins, the Spred proteins.  

1. Internalisation and degradation 
Internalisation and degradation of the activated cytokine receptor is an effective 

mechanism to irreversibly turn off cytokine signalling. The internalisation of many 

cytokine receptors has been described. A di-leucine motif in the cytoplasmatic tail is 

often found to be involved in receptor internalisation. Together with an upstream 

serine it is essential for internalisation of the gp130 chain and down-regulation of the 

IL-6R, most likely via the clathrin-coated pit pathway leading to lysosomal 

degradation (Dittrich et al., 1994; Dittrich et al., 1996; Gibson et al., 2000). LIFR 

internalisation occurs independently of the gp130 chain. The LIFR carries its own di-

leucine based internalisation motif with an isoleucine in the second position, in its 

cytoplasmatic tail (Thiel et al., 1999). A role for a di-leucine internalisation motif in 

receptor internalisation was also reported for the G-CSFR (Aarts et al., 2004). 

Proteasome inhibitors prolong the signalling capacity of cytokine receptors. 

Endocytosis of the GHR is regulated by the ubiquitin (Ub) conjugation system and 

requires the Ub dependent endocytosis (UbE) motif in its intracellular domain 

(Govers et al., 1999). Ub also plays a role in internalisation of the EpoR. The cytokine 

inducible SH2 domain containing protein (CIS) is involved in recruitment of the 

proteasome and may target the EpoR for degradation (Verdier et al., 1998). CIS is a 

member of the family of SOCS proteins that is discussed below. Degradation of the 

EpoR was also addressed to lysosome activity. It was suggested that a significant 

part of the intracellular domain of the EpoR is targeted to the proteasome, while the 

remaining part of the receptor complex is degraded in the lysosome (Walrafen et al., 

2005). Ubiquitination is described in the text box on ubiquitination below.  
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Text Box: ubiquitination 
 

Ubiquitin (Ub) is a small, 76 amino acid long protein that is highly conserved among 
eukaryotic organisms. Ubiquitination is the process of its covalent conjugation to other 
proteins. Ub modification can influence the stability, activity or subcellular location of the 
target protein.   
Ubiquitination is a multistep mechanism that involves three types of enzymes. The Ub-
activating enzyme E1 activates Ub by forming a thioester bond. Activated Ub is 
subsequently transferred to an Ub-carrier enzyme E2 by transthiolation. Finally, an Ub 
ligase E3 conjugates ubiquitin to a lysine residue or the N-terminus of the E3 associated 
target protein (Glickman and Ciechanover, 2002; Breitschopf et al., 1998). The specific 
association of the E3 ligases with their target proteins determines substrate selection for 
ubiquitination. Ubiquitination is a reversible and dynamic process. It is controlled by de-
ubiquitinating enzymes that cleave off Ub (Weissman, 2001).  
Proteins can be modified by a single or by multiple Ub moieties, termed mono-, multi- or 
polyubiquitination. Poly-Ub chains are formed by conjugation of Ub to any of the seven 
lysines in the previously conjugated Ub. The different types of ubiquitination are thought 
to target the associated protein for different cellular events. Mono-ubiquitination for 
instance is involved in histone regulation and receptor internalization (Belouzard et al., 
2006; Osley, 2004; Wilkinson et al., 2005). In many cases polyubiquitination leads to 
protein degradation by the proteasome, but it can also be involved in ribosomal function, 
DNA repair or signal transduction (Geetha et al., 2005; Spence et al., 2000; Wilkinson et 
al., 2005). Lysine48-linked poly-Ub chains usually target proteins for proteasomal 
degradation (Kim and Rao, 2006; Pickart, 2001; Thrower et al., 2000).  
A well-studied example is the Von Hippel-Lindau (VHL) tumor suppressor which is involved 
in the transfer of polyubiquitin chains to hypoxia-inducible transcription factor-α (HIF-α). 
This results in the degradation of HIF-α by the proteasome and downmodulation of 
hypoxia-inducible gene expression (Iliopoulos et al., 1996; Pause et al., 1997; Lisztwan et 
al., 1999; Hon et al., 2002). This phenomenon is regulated by oxidation status and VHL 
specifically associates with hydroxilated HIF-α in non-hypoxic conditions (Hon et al., 2002; 
Wilkinson et al., 2005). VHL protein is part of poly-protein complex that functions as a 
multisubunit E3 protein ligase. It has a SOCS-box like domain that associates with elongin 
B and C (Duan et al., 1995). Elongin C is responsible for association with the BC-box in 
the N-terminal part of the SOCS-box while ElonginB binds with elongin C (Stebbins et al., 
1999). Cullin2 (Cul2) and the E3 ligase enzyme Rbx1 (RING box protein 1) are recruited 
to the elongin B/C complex and the Cul2-box in the SOCS-box of VHL (Kamura et al., 
2004). Together these proteins form an E3 ubiquitin ligase complex and specifically target 
associated proteins for poly-ubiquitination and subsequent degradation by the 26S 
proteasome. Many protein families, including the SOCS protein family that is discussed 
later, contain a SOCS-box region and may link a broad range of proteins to the common 
process of proteasomal protein degradation (Hilton et al., 1998; Zhang et al., 1999).  
Besides Ub, several other Ub-like (UbL) proteins can also modify target proteins using 
similar enzymatic mechanisms for their covalent conjugation. These UbL proteins include 
ISG15 (Interferon stimulated gene product 15), that resembles an Ub dimer and 
influences signal transduction of IFN or other inflammatory signals, Nedd8 that can 
influence transcription and SUMO (Small Ub-related modifier), which sometimes acts as an 
antagonist to ubiquitination (Dohmen, 2004; Ritchie and Zhang, 2004). Ub-like domains 
with a characteristic Ub fold were also found as stable regions within other proteins, as 
demonstrated for elongin B (Stebbins et al., 1999). These domains do not become 
conjugated to other proteins but probably function in Ub-mediated processes (Pickart and 
Eddins, 2004; Weissman, 2001). 
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Proteasome inhibitors also stabilize receptor-recruited STAT molecules, as seen for 

STAT1 in IFNγ signalling. The STATs are a target for ubiquitination and subsequent 

degradation by the proteasome (Kim and Maniatis, 1996; Wang et al, 2000).  

A similar phenomenon was observed for JAK kinases. Proteasome inhibitors 

prolonged the IL-2 and IL-3 induced activation of the JAK kinases (Callus and 

Mathey-Prevot, 1998; Yu and Burakoff, 1997). 

 
 

2. Phosphatase activity 
Since tyrosine phosphorylation is a crucial step in the activation of the cytokine 

signalling pathway, dephosphorylation by PTPs is an obvious factor in negative 

regulation.  

SHP-1 and SHP-2 (SH2 domain containing phosphatase 1 and 2) are two 

constitutively expressed phosphatases responsible for the dephosphorylation of JAK 

kinases and consequent inhibition of their activity. Both phosphatases carry two 

tandem SH2 domains followed by a tyrosine phosphatase catalytic domain (figure 9). 

They bind to the phosphotyrosine residues of a number of cytokine receptors with 

their SH2 domains. Interference with SHP-1 recruitment to the EpoR clearly results in 

prolonged signalling (Klingmuller et al., 1995). Interaction with JAK was also 

demonstrated for SHP-2 (Yin et al., 1997). While SHP-2 is broadly expressed, SHP-1 

expression is restricted to haematopoietic cells (Ahmad et al., 1993; Yi et al., 1992). 

The phenotype of a natural SHP-1 loss-of function mutant, the motheaten mouse, 

underscores the critical role of SHP-1 in hematopoiesis and immunity. These mice 

show severe dysregulations in macrophages and neutrophils which result in skin 

abnormalities and airway inflammation, and die shortly after birth (Kamata et al., 

2003; Shultz et al., 1993; Shultz et al., 1997; Tsui et al., 1993). SHP-2 deficient mice 

die embryonically probably because of defective EGF signalling (Saxton et al., 1997; 

Qu et al., 1999). Despite its clear phosphatase activity, accumulating data also 

demonstrate an activating role for SHP-2. IFN-induced STAT activation is significantly 

increased in SHP-2 -/- fibroblasts (You et al., 1999). Negative regulation of leptin 

receptor (LR) and gp130 signalling was also suggested, although this effect may also 

be attributed to inhibition by SOCS3, a member of the SOCS protein family that is 

discussed below (Banks et al., 2000; Carpenter et al., 1998; Kim et al., 1998; 

Lehmann et al., 2003; Nicholson et al., 2000). Conversely, implementation of SHP-2 
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in the activation of the MAPK pathway was reported for several cytokine systems 

including leptin, Epo, EGF, IL-2 and insulin (Barber et al., 1997; Bennett et al., 1996; 

Bjorbaek et al., 2001; Lundin et al., 2002; Milarski et al., 1994; Tauchi et al., 1995). 

SHP-2 itself becomes phosphorylated and leads to recruitment of Grb2 and 

subsequent activation of the ERK pathway (Bennett et al., 1994; Lu et al., 2001).   

SHP-2 also positively influences signalling by interacting with STAT molecules. SHP-2 

maintains tyrosyl phosphorylation of STAT5a and translocates to the nucleus as a 

complex upon PRL stimulation (Chughtai et al., 2002). On the other hand is SHP-2 

also responsible for tyrosine dephosphorylation of STAT5 in the cytosolic 

compartment (Yu et al., 2000). 
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Figure 9: Structure of SHP 

 

The catalytic activity of SHP-2 is firmly auto-regulated by its two SH2 domains. The 

N-terminal SH2 domain acts as a conformational switch. It either binds the catalytic 

phosphatase domain and directly inhibits its activity or it interacts with the 

phosphotyrosine substrate thereby activating the enzyme. Introduction of 

phosphonates, nonhydrolyzable phosphotyrosine analogues, revealed a role for the 

C-terminal tyrosines (figure 9). While the N-terminal SH2 domain associates with the 

N-terminal phosphotyrosine and reduces basal inhibition of the enzymatic activity, 

the C-terminal SH2 domain interacts with the C-terminal phosphotyrosine and 

stimulates phosphatase activity (Hof et al., 1998; Lu et al 2001).  

 

Other phosphatases implicated in tyrosyl dephosphorylation are CD45, PTP1B and 

PTPεC. CD45 is a transmembrane phosphatase that is highly expressed in 

haematopoietic cells. It negatively regulates IL-3 and Epo signalling by direct 

dephosphorylation of the JAKs (Irie-Sasaki et al., 2001). PTPεC dephosphorylates JAK 

kinases and suppresses IL-6 and LIF signalling (Tanuma et al., 2000). The ER-
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anchored PTP1B associates with TYK2 and JAK2 and is a key negative regulator of 

both insulin and leptin signalling (Elchebly et al., 1999; Myers et al., 2001). PTP1B 

was demonstrated to also dephosphorylate STAT3 (Lund et al., 2005) 

 

Signalling can also be inhibited by dephosphorylation and inactivation of the STAT 

dimers in the nucleus. TC45 is the nuclear isoform of the T-cell PTP (TCPTP) which is 

associated with the ER (Lorenzen et al., 1995). It is responsible for the 

dephosphorylation of STAT1 in the nucleus (ten Hoeve et al., 2002). 

 

3. PIAS 
The PIAS protein family consists of four members, PIAS1, PIASx (also known as 

PIAS2), PIAS3, PIASy (also known as PIAS4) (Shuai and Liu, 2003). Two isoforms 

were identified for each PIAS protein except for PIAS1. PIAS proteins have an N-

terminal nuclear receptor interaction motif and a central zinc-binding domain (figure 

10) (Shuai and Liu, 2005). 
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Figure 10: Structure of PIAS  

PIAS consist of five conserved domains: The N-terminal SAP domain (scaffold-

attachment factor A (SAFA) and SAFB, apoptotic chromatin-condensation inducer in 

the nucleus (ACINUS) and PIAS domain) with a LXXLL signature motif, the conserved 

PINIT amino acid motif involved in nuclear retention, the RLD (RING-finger-like zinc-

binding) domain,  the AD (highly acidic) domain with a SUMO1 (small ubiquitin-like 

modifier 1)-interaction motif and finally a C-terminal S/T (serine- and threonine-rich) 

region (adapted from Shuai and Liu, 2005). 
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PIAS proteins were initially discovered as negative regulators of STAT signalling. 

PIAS1 was identified as a specific inhibitor of STAT1 (Liu et al., 1998). PIAS1 and 

PIAS3 associate with STAT1 and STAT3 respectively, and inhibit their activity by 

interfering with DNA binding (Chung et al., 1997; Liao et al., 2000; Liu et al., 1998). 

STAT4 and STAT1 activity is inhibited by PIASx and PIASy, respectively. They repress 

the STAT transcriptional activity by recruiting additional co-repressing factors (Arora 

et al., 2003; Liu et al., 2001). Recent reports describe PIAS proteins as SUMO E3 

ligases that attach SUMO proteins to a number of target proteins. STAT1 was 

identified as a substrate for SUMO modification by PIASx. However, this particular 

modification of STAT1 was not essential for the PIAS mediated inhibition of its 

activity (Rogers et al., 2003; Schmidt and Muller, 2003).  

 

4. SOCS proteins 
At present the SOCS family of proteins counts eight different members, cytokine 

inducible SH2 protein (CIS) and SOCS1 through SOCS7. CIS is the founding member 

of the SOCS family and was cloned in 1995 by the group of Miyajima (Yoshimura et 

al., 1995). It was initially identified as an immediate early response gene induced in 

hematopoietic cells in response to Epo or IL-3 stimulation.  

A few years later, the cloning of the second member of the SOCS family was 

reported simultaneously by three independent research groups, using three different 

approaches. One group identified SOCS1 while screening for inhibitors of cytokine 

signalling. A myeloid leukemic cell line was infected with a retroviral cDNA library and 

colonies failing to differentiate into macrophages upon IL-6 stimulation were selected 

and characterized (Starr et al., 1997). Another study used antibodies directed against 

the SH2 domain of STAT3 and identified the STAT-induced STAT-inhibitor-1 (SSI-1) 

(Naka et al., 1997). Finally, a yeast two-hybrid screening led to the detection of JAK 

binding protein (JAB) as an interaction partner of the catalytic domain of JAK2 (Endo 

et al., 1997).  

Database searches led to the identification and cloning of 6 additional SOCS proteins 

based on sequence homology (Hilton et al., 1998; Masuhara et al., 1997; Starr et al., 

1997). Although three parallel systems of nomenclature exist at the moment to 

address these genes and proteins, the SOCS nomenclature is most commonly used. 
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SOCS proteins are part of a classic negative feedback loop. SOCS proteins typically 

are not abundantly expressed in resting cells. They are induced upon stimulation by 

a broad range of cytokine and then interfere with cytokine signalling by blocking 

various components of the signalling pathway. The pattern of SOCS protein 

upregulation by a particular cytokine tends to vary according to the observed cell 

type or tissue (Krebs et al., 2001). The induced SOCS proteins attenuate signalling 

by various cytokine receptors. They can downmodulate the very signalling pathway 

that stimulated their production but can also inhibit signalling of other cytokines, 

mediating inhibitory cross-talk between cytokine signalling pathways. SOCS1, for 

example, is upregulated by IL-6 in CD4+ T-cells which then inhibits IFN-γ signalling 

and prevents TH1 differentiation (Diehl et al., 2000). An overview of SOCS induction 

patterns and inhibition of cytokine signalling is given in table 3.  

Recently, it was discovered that SOCS proteins can also be induced by other stimuli 

than cytokines. Toll-like receptors (TLR) are involved in recognition of pathogen-

associated microbial components including LPS and can induce SOCS factors in for 

example macrophages (Heeg et al., 2003; Nakagawa et al., 2002). 

 

STAT proteins are the predominant regulators responsible for the cytokine induced 

activation of SOCS gene expression. STAT binding sequences were identified in the 

promoter region of SOCS proteins and electrophoretic mobility shift assays confirmed 

STAT association to these motifs (Auernhammer et al., 1999; Emanuelli et al., 2000; 

Verdier et al., 1998).  

The promoter of CIS carries four STAT5 binding sites all involved in Epo-dependent 

CIS induction (Matsumoto et al., 1997). A STAT1/STAT3 binding element in the 

promoter of SOCS3 interacting with both STAT1 and STAT3 is responsible for LIF-

induced SOCS3 expression whereas IFN-γ-dependent SOCS3 upregulation relied on 

STAT1 homodimer binding (Auernhammer et al., 1999; Gatto et al., 2004). STAT5b 

also interacts with this STAT binding element previously identified as a STAT1/STAT3 

binding site in the SOCS3 promoter and is involved in SOCS3 induction since mice 

lacking STAT5b show reduced GH induced SOCS3 expression (Davey et al., 1999; 

Emanuelli et al., 2000). Putative binding sites for STAT3 and STAT6 were detected in 

the promoter of SOCS1 and a dominant negative STAT3 mutant blocked LIF or IL-6 

triggered induction of SOCS1 (Naka et al., 1997). In some cases, STAT-induced 
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SOCS expression is indirect. For example, STAT1 is indirectly involved in IFN-γ 

induced upregulation of SOCS1 since it induces expression of the interferon 

regulatory factor-1 (IRF-1) transcription factor which is responsible for stimulation of 

SOCS1 transcription (Saito et al., 2000).  

The timing and intensity by which SOCS proteins are upregulated influence the 

kinetics of the particular cytokine activity (Krebs et al., 2001). It was demonstrated 

that while both IL-6 and IFNγ induce SOCS1 and SOCS3 expression in macrophages, 

IL-6 induces particularly SOCS3 in a very rapid manner while IFNγ upregulates mainly 

SOCS1 at a later time point. Accordingly, these cells were desensitized rapidly to IL-6 

and later to IFNγ (Wormald et al., 2006). While most SOCS proteins are usually 

upregulated relatively fast after cytokine stimulation SOCS2 induction typically occurs 

later and is maintained longer. We propose that SOCS2 interferes with other SOCS 

proteins and this will be discussed in more detail in part III.  

 

 

 

Table 3: SOCS cross-regulation, induction and inhibition patterns 

SOCS proteins are part of a negative feedback loop. Their expression can be induced 

by a variety of cytokines and they inhibit signalling by several cytokine receptors. 

(adapted from Fujimoto et al., 2003) 

 

SOCS Induced by Inhibits signaltransduction of 

CIS Leptin, Epo, GH, PRL, IL-2, IL-3 Leptin, Epo, GH, PRL, IL-2, IL-3, IL-6, IFN-α, 

IL-9 

SOCS1 Epo, GH, PRL, insulin, G-CSF, GM-CSF, IL-2, 

IL-3, IL-6,LIF, IFN-α/β, IFN-γ 

Leptin, Epo, GH, PRL, insulin, IL-2, IL-6, LIF, 

IFN-α/β, IFN-γ  

SOCS2 GH, PRL, insulin, IL-6, LIF, IFN-α, IFN-γ, IL-9 Leptin, GH, PRL, IL-6, LIF, IFNγ  

SOCS3 Leptin, Epo, GH, PRL, insulin, GM-CSF, IL-2, 

IL-6, LIF, IFN-α, IFN-γ, IL-9  

Leptin, Epo, GH, PRL, insulin, IL-2, IL-6, LIF, 

IFN-α/β, IFN-γ, IL-9 

SOCS4 EGF  

SOCS5 EGF, IL-6 EGF, IL-4, IL-6 

SOCS6 insulin insulin 

SOCS7 Leptin, GH, PRL, insulin GH, PRL, insulin, IL-6, IFNγ 
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Physiological functions of SOCS proteins 
Mediation of the complex network of cytokine signalling involves SOCS proteins. They 

are indispensable in homeostasis of many biological functions. The role of SOCS 

proteins has been extensively studied both in in vitro experiments and in vivo in loss-

of-function or transgenic mouse models. The main characteristics of SOCS deficient 

and transgenic mice are summarized in table 4. 

 

 

Table 4: Phenotype of SOCS deficient mice and transgenic mice 

 

SOCS Knock-out phenotype Transgenic phenotype 

CIS No defects Defective in growth, immune response and 

mammary gland development  

SOCS1 Neonatal lethality, severe defects in 

immune system 

Defects in T-cell development 

SOCS2 Gigantism Gigantism 

SOCS3 Embryonic lethality Embryonic lethality 

SOCS4   

2 responses SOCS5 No defects Defective TH

SOCS6 Mild growth retardation Improved insulin and glucose tolerance 

SOCS7 50% lethality attributed to  

hydrocephalus 

 

 

CIS 
CIS is ubiquitously expressed. Northern blot analysis revealed strong expression 

levels in liver, kidney, lung, spleen, heart and testis (Starr et al., 1997). 

Deficiency of CIS did not lead to any detectable defects in mice. CIS transgenic mice 

were smaller than wild-type mice and manifested defects in mammary gland 

development and immune responses (Matsumoto et al., 1999). A remarkable 

resemblance, observed between the phenotype of these CIS transgenic mice and 

that of STAT5 knockout mice suggests that CIS acts as a specific negative feedback 

regulator of STAT5 activity (Matsumoto et al., 1999; Teglund et al., 1998). Indeed, 

CIS is induced by several STAT5 mediated cytokine receptor signalling systems 

including Epo, IL-2, IL-3, GH and PRL and was also identified as an inhibitor of these 
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particular systems (Aman et al., 1999; Dif et al., 2001; Matsumoto et al., 1997; Pezet 

et al., 1999; Ram and Waxman, 1999; Verdier et al., 1998; Yoshimura et al., 1995). 

SOCS1 
High expression levels of SOCS1 mRNA are observed in murine thymus tissue. SOCS1 

is also rapidly induced in mouse liver upon IL-6 stimulation (Starr et al., 1997). 

Hypermethylation within the promoter region of SOCS1 results in downregulation of 

SOCS1 expression which may be implicated in cancer development (To et al., 2004; 

Yoshikawa et al., 2001). SOCS1 induction was demonstrated to be induced by 

multiple cytokines, including IFNγ, GH, PRL, IL-2, IL-6 and Epo (Adams et al., 1998; 

Pezet et al., 1999; Sakamoto et al., 1998; Sporri et al., 2001; Starr et al., 1997; 

Sarna et al., 2003). Strong inhibition of GH-or PRL-dependent STAT5 activation and 

of EpoR signalling is mediated by SOCS1 (Adams et al., 1998; Dif et al., 2001; 

Hansen et al., 1999). 

Three independent research groups generated mice lacking SOCS1 to investigate the 

in vivo function of SOCS1 (Marine et al., 1999b; Naka et al., 1998; Starr et al., 

1998). SOCS1 deficient mice suffer from a complex disease characterized by 

deregulation of the immune system at multiple levels and die within three weeks 

after birth (Naka et al, 1998; Starr et al., 1998). They exhibit stunted growth and 

suffer from fatty degeneration and necrosis of the liver, severe lymphopenia, 

monocytic infiltration of major organs and peripheral T cell activation. Surprisingly, 

defects in these mice are primarily due to uncontrolled IFNγ signalling and 

consequent constitutive STAT1 activity. Administration of neutralizing anti-IFNγ 

antibodies largely prevents the onset of the complex disease associated with SOCS1 

deficiency (Alexander et al., 1999). Moreover, SOCS1 knock-outs that also lack the 

IFN-γ gene were rescued from neonatal lethality, confirming the inhibitory function of 

SOCS1 in the STAT1 dependent IFNγ signalling pathway (Alexander et al., 1999). In 

vitro antiproliferative and antiviral activities of IFN were also inhibited by SOCS1 

(Song et al., 1998).  

SOCS2 
Relatively weak expression of SOCS2 is demonstrated predominantly in murine liver, 

testis and lungs (Metcalf et al., 2000; Starr et al., 1997). SOCS2 expression is 

upregulated upon stimulation with IL-6, Epo, IL-3, PRL, GH, GM-CSF, G-CSF and IFNγ 

(Adams et al., 1998; Pezet et al., 1999; Starr et al., 1997). Signal transduction of GH, 
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PRL, IL-6 and LIF is repressed by SOCS2 (Minamoto et al., 1997; Nicholson et al., 

1999; Pezet et al., 1999; Ram and Waxman, 1999). 

Mice lacking SOCS2 exhibit gigantism associated with increases in bone and body 

length and augmented weight of organs and carcass. This phenotype is due to a 

prolonged GH dependent STAT5 activity (Greenhalgh et al., 2002a; Metcalf et al., 

2000). Surprisingly, SOCS2 transgenic mice showed a similarly increased growth 

(Greenhalgh et al., 2002b). This dual effect of SOCS2 was also observed in vitro, 

were low SOCS2 doses moderately inhibit GH signalling while higher levels positively 

regulate signalling. It was hypothesized that SOCS2 blocks SOCS1-mediated 

inhibition of GH and PRL signalling and interferes with the downmodulation of PRL 

signalling by SOCS3 (Dif et al., 2001; Favre et al., 1999).  

Unlike SOCS1 and 3 that are typically induced in a rapid and transient manner upon 

stimulation, SOCS2 expression usually is more prolonged (Pezet et al., 1999; Tollet-

Egnell et al., 1999). Therefore, SOCS2 may be involved in restoring cellular sensitivity 

by overcoming the inhibitory effect of other SOCS proteins. This is discussed in more 

detail in part III. 

SOCS3 
SOCS3 expression is induced by a broad range of cytokines including Epo, G-CSF, 

GM-CSF, IL-3, IFNγ, leptin and PRL (Bjorbaek et al., 1998; Pezet et al., 1999; Starr et 

al., 1997). SOCS3 expression at lower levels is observed in lung and spleen and 

expression levels are induced in liver upon stimulation with leptin or IL-6 (Starr et al., 

1997; Waelput et al., 2000). Signal transduction of several cytokines including GH, 

PRL, IL-2, IL-3, IL-6, G-CSF, IFNγ and Epo is suppressed considerably by SOCS3 

(Cohney et al., 1999; Hansen et al., 1999; Hörtner et al., 2002b; Nicholson et al., 

1999; Pezet et al., 1999; Sasaki et al., 2000; Song and Shuai 1998). SOCS3 was also 

identified as a potent inhibitor of LR signalling and is rapidly expressed in the 

hypothalamus upon leptin stimulation (Bjorbaek et al., 1998).  

Both SOCS3-deficient and transgenic mice die in utero. Lack of SOCS3 results in a 

marked erythrocytosis and placental insufficiency while SOCS3 transgenic mice are 

completely deficient in foetal liver erythropoiesis (Marine et al., 1999a; Roberts et al., 

2001). These observations suggest a critical function for SOCS3 in regulation of 

foetal liver haematopoiesis at the level of Epo signal transduction.  

- Page 52 - 



 

SOCS3 heterozygous or neural-cell specific deficient mice are viable. They show 

augmented leptin sensitivity in the hypothalamus associated with a remarkable 

attenuation of diet-induced obesity, suggesting a key role for SOCS3 in leptin 

resistance (Howard et al., 2004; Mori et al., 2004).  

It was demonstrated that SOCS3 deficiency in macrophages and hepatocytes leads 

to increased activation of both STAT3 and STAT1 after stimulation with the 

proinflammatory cytokine IL-6, demonstrating its role in negative regulation of IL-6 

signalling. This results in a STAT3-mediated IL-10 like immunosuppressive response 

and a STAT1-mediated IFN-like response, which changes the normal cellular IL-6 

effect. Apparently, SOCS3 controls the IL-6 response in preventing an anti-

inflammatory response (Croker et al., 2003; Lang et al., 2003; Yasukawa et al., 

2003). 

Other SOCS proteins 
To date, studies addressing the physiological actions of the remaining four SOCS 

proteins are only beginning to emerge. Very little is known about SOCS4 so far. 

SOCS4 expression is upregulated upon EGF stimulation (Kario et al., 2005). Recently, 

it was reported that Mycobacterium tuberculosis infection in mice is associated with 

augmented levels of type I IFNs, SOCS4 and SOCS5 (Manca et al., 2005). SOCS5 is 

expressed in many tissues and especially in hematopoietic tissues (Magrangeas et 

al., 2000). T-cells from transgenic mice constitutively expressing SOCS5 demonstrate 

that SOCS5 inhibits IL-4 signalling and promotes TH1 differentiation (Seki et al., 

2002). Surprisingly however, SOCS5 knock-out mice exert a normal T 1/TH H2 balance 

and show normal susceptibility to pathogen infection (Brender et al., 2004). SOCS5 

expression is triggered by EGF and exerts a negative effect on its signal transduction 

(Kario et al., 2005; Nicholson et al., 2005).  

SOCS6 and SOCS7 are expressed ubiquitously in murine tissues (Krebs et al., 2002). 

Mice lacking SOCS6 develop normally but weigh about 10% less than wild type mice. 

They exhibit no defects in hematopoiesis or glucose metabolism (Krebs et al., 2002). 

Contrary to SOCS6 knock out mice, SOCS6 transgenes displayed improvement in 

their glucose metabolism (Li et al., 2004). SOCS6 was shown to associate with the 

insulin receptor upon stimulation with insulin (Mooney et al., 2001). This association 

may occur indirectly since SOCS6 binding with IRS-4 and the p85 regulatory subunit 

of PI-3K was observed in response to insulin stimulation (Krebs et al., 2002). 
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Interaction of SOCS6 with IRS-4 and p85 was also demonstrated upon IGF-1 

stimulus (Krebs et al., 2002). SOCS6 expression is induced by insulin and SCF (Bayle 

et al., 2004; Li et al., 2004). Interaction of SOCS6 with the KIT receptor is 

demonstrated upon SCF stimulation (Bayle et al., 2004). After insulin or SCF 

stimulation, an inhibitory effect is observed on ERK1/2 activation but not on the 

activation of Akt (Bayle et al., 2004; Li et al., 2004; Mooney et al., 2001). SOCS6 

may even have a positive effect on Akt activation upon insulin stimulation which may 

involve PI-3K (Li et al., 2004). SOCS7 expression is induced by IL-6, PRL, GH, IFNγ 

and insulin (Banks et al., 2005; Dogusan et al., 2000; Van De Wiele et al., 2004). At 

birth, SOCS7 knock-out mice seem more or less normal. They have no defects in 

haematopoiesis or glucose and insulin concentration but are smaller than wild type 

mice (Krebs et al., 2004). The pancreatic islets of Langerhans are in some cases 

exceptionally large (Banks et al., 2005; Krebs et al., 2004). Within 15 weeks, 

however, these mice develop hydrocephalus causing about 50% lethality (Krebs et 

al., 2004). Older mice also develop increased glucose tolerance and insulin sensitivity 

together with a mild hyperglycaemia and hyperinsulinemia (Banks et al., 2005).  

SOCS7 interacts with several components of the insulin pathway including IRS1, 

IRS4, p85 and the insulin receptor (Banks et al., 2005; Krebs et al., 2002). In 

addition, interaction of SOCS7 with PLCγ, cytoskeletal molecule vinexin and adaptor 

proteins Grb2 and Nck was demonstrated (Martens et al., 2004; Matuoka et al., 

1997). Recently, SOCS7 was also implicated in negative regulation of signalling by 

leptin, GH and PRL (Martens et al., 2005).  
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Text Box: JAK-STAT signalling in human pathology 

 
Cytokines stimulate biological responses in virtually all cell types throughout the body. 
They activate their specific receptor and signal predominantly via the JAK-STAT pathway 
that is highly regulated by SOCS proteins and other inhibitors. Obviously, dysregulations of 
the various components of this pathway are linked with a number of often inheritable 
diseases including immunological disorders and cancer. This is also reflected by the often 
severe phenotypes seen in knockout mice of the diverse signalling components. The JAK-
STAT pathway is described in more detail throughout part I. 
 
Despite the characteristic redundancy of cytokines many malfunctions on the level of a 
particular cytokine or its receptor do lead to severe abnormalities. Individuals with 
mutations in the genes encoding for leptin or its receptor suffer from extreme obesity and 
immunodeficiency (Clement et al., 1998; Ozata et al., 1999). The growth hormone 
insensitivity syndrome also termed Laron syndrome, a form of dwarfism, is caused by a 
variety of mutations or deletions in the GHR (Laron, 2004). Some forms of polycythemia 
or erythrocytosis, characterized by accumulation of red blood cells, are caused by 
mutations in the EpoR gene that result in a C-terminally truncated receptor (Arcasoy et 
al., 1997; Arcasoy et al., 2002; Gordeuk et al., 2005). Multiple EpoR splice variants were 
also identified in diverse human cancer cells (Arcasoy et al., 2003).  
 
A number of diseases are associated with dysregulation of JAK or STAT activity. A variety 
of JAK3 loss-of-function mutations account for approximately 10% of inherited SCID 
characterized by profound T-cell lymphopenia and impaired B-cell activation. Since JAK3 is 
restricted to signalling through the γc receptor chain, these patients show no other defects 
than in immune cells/ immunity (O’Shea et al., 2004; Pesu et al., 2005). Mutations in 
other components of the γ-common pathway including γc, IL-7 and IL-7R, result in similar 
disease phenotype. Aberrant activity of JAK and STAT proteins often contributes to 
tumourigenesis. A somatic gain-of-function point mutation (V617F) constitutively activates 
JAK2 (Tefferi and Gilliland, 2005). Several chromosomal translocations fuse the JAK2 gene 
with other genes including TEL, BCR or PCM1 forming fusion oncogenes. These JAK2 
fusion proteins are also strongly constitutively active (Valentino and Pierre, 2006). This 
constitutive activation of JAK2 both by gain-of-function point mutation and translocation 
leads to myeloproliferative disorders such as leukaemia. Recently, it was demonstrated 
that gain-of-function mutations in JAK3 are also involved in leukemogenesis (Walters et 
al., 2006). 
Dysregulation of STAT activity, particularly STAT3 and STAT5, contributes to malignant 
cellular transformation. Various oncoproteins including Src can induce constitutive 
activation of STATs (Benekli et al., 2003; Bowman et al., 2000). Constitutively active 
STATs can exert their transforming activity through induction of antiapoptotic pathways 
and dysregulation of cell growth (Benekli et al., 2003; Valentino and Pierre, 2006). 
Constitutive STAT3 activity is associated with a number of human cancers including breast 
and prostate cancer, melanoma and leukaemia (Benekli et al., 2003). 
 
Malfunctions in the negative control of the JAK-STAT pathway are also linked to human 
pathology. Transcriptional silencing by gene hypermethylation is demonstrated for SHP-1, 
SOCS1 and SOCS3 and is associated with cancer (Melzner and Möller, 2003; Valentino and 
Pierre, 2006). Several oncogenes are reported to repress SOCS-1 transcription. SOCS1 is 
thought to function as tumour suppressor gene involved in growth suppression and its 
silencing is linked with a variety of solid tumours and haematopoietic diseases (Valentino 
and Pierre, 2006; Yoshikawa et al., 2001). 
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SOCS protein structure and molecular mechanisms of SOCS protein action 
Comparing amino acid sequences of the SOCS proteins revealed that CIS and SOCS2, 

SOCS1 and SOCS3, SOCS4 and SOCS5 and finally SOCS6 and SOCS7 form closely 

related pairs (Hilton et al., 1998). CIS and SOCS2 are the closest related with around 

35% of amino acid identity while the rest of the SOCS pairs share approximately 

25% of amino acid sequences. Remarkably, the genes for SOCS1 and SOCS3 have 

no introns in their coding sequence (Starr et al., 1997).  
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Figure 11: Schematic structure of the SOCS proteins 

(adapted from Bullock et al., 2006) 

 

 

The overall structure of SOCS proteins is well-preserved throughout evolution (figure 

11). Additionally, SOCS homologues were identified in mammals, Drosophila 

melanogaster and Caenorhabditis elegans (Starr et al., 1997; Kile et al., 2002). SOCS 

proteins have a characteristic domain structure. They consist of a central SH2-

domain, an N-terminal preSH2-domain and a C-terminal SOCS-box (Starr et al., 

1997). The N-terminal domain varies in length and composition whereas the SH2 

domain and SOCS-box are more conserved. The SOCS-box is thought to target 

- Page 56 - 



 

proteins for proteasomal degradation and the SH2 domain is responsible for the 

association with phosphotyrosine motifs imbedded in cytokine receptors or with other 

signalling proteins like JAK and IRS. In the N-terminal domain an ESS (extended SH2 

subdomain) region was identified which is important for the binding capacity of the 

SH2 domain (Babon et al., 2006; Bullock et al., 2006; Nicholson et al., 1999; Sasaki 

et al., 1999; Yasukawa et al., 1999). This N-terminal domain also carries a KIR 

(kinase inhibitory region) in the case of SOCS1 and SOCS3. 

 

SOCS family members can block cytokine signalling by several inhibitory mechanisms 

that are not mutually exclusive: blocking access of substrates by directly interacting 

with the receptor, inhibition of the intrinsic kinase activity of the JAKs and 

ubiquitination and proteasome targeting by the SOCS-box.  

 

Hindering association of signalling molecules with the activated receptor 
SOCS proteins can exert their negative effect by competing for phosphorylated 

tyrosine motifs in the receptor. They associate with these tyrosine motifs by means 

of their SH2 domain. The docking sites for signalling molecules including STATs 

become thereby inaccessible because of direct association or steric hindrance by the 

SOCS proteins, thereby blocking activation of downstream signalling effects. CIS is 

thought to inhibit STAT5 activation by association with Y401 of the human EpoR, 

which is one of the two recruitment sites for STAT5 (Verdier et al., 1998). CIS 

interaction was also observed with the membrane distal part of the GHR where the 

tyrosines involved in STAT5 activation are situated (Hansen et al., 1996; Ram et al., 

1999). In addition, CIS is also engaged in negative regulation of PRLR signalling, 

involving steric hindrance (Endo et al., 2003). Little is known about the mechanism 

by which SOCS2 exerts its regulatory function. As mentioned before, it was 

demonstrated to function as an inhibitor in GH signalling at low concentrations 

although at higher concentrations it had a potentiating effect. SOCS2 can probably 

inhibit signalling in a similar way as CIS, involving interaction with the receptor. 

Association of SOCS2 with phosphotyrosine motifs of the GHR and the PRLR has 

been reported (Greenhalgh et al., 2002b; Pezet et al., 1999). Receptor association of 

CIS and SOCS2 is studied in more detail in part III. 
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Inhibition of JAK kinase activity 
Only the SOCS1 and SOCS3 proteins are able to inhibit the activity of the JAK kinases 

by means of their N-terminal KIR domain (figure 12). This region was found 

functionally interchangeable between the two SOCS proteins suggesting a common 

inhibitory mechanism (Nicholson et al., 1999). The SH2 domain of SOCS1 is essential 

for direct interaction with the kinase domain of JAK2. It targets the phosphotyrosine 

at position Y1007 in the activation loop of JAK2 (Giordanetto et al., 2003; Yasukawa 

et al., 1999). Phosphorylation of this particular tyrosine is responsible for the 

activation of the kinase activity. The KIR domain of SOCS1 also contributes to the 

high-affinity binding with JAK2 but is also essential for the inhibitory function of the 

SOCS protein (Yasukawa et al., 1999). It associates with the catalytic groove of JAK2 

and may obstruct the ATP binding pocket and hinder accessibility for substrates 

(Giordanetto et al., 2003; Yasukawa et al., 1999). Based on sequence similarity, the 

KIR domain somewhat resembles the activation loop of JAK2 (Yasukawa et al., 

1999).  It is suggested to act as a pseudosubstrate and mimic the activation loop 

that regulates access to the catalytic groove (Giordanetto et al., 2003; Yasukawa et 

al., 1999). Unlike SOCS1, SOCS3 showed only weak affinity for JAK2. It is thought to 

bind via its SH2 domain with phosphotyrosine motifs in the receptor in close 

proximity to the kinase to inhibit its activity through its KIR domain (Suzuki et al., 

1998). Membrane proximal SOCS3 interaction was demonstrated for several cytokine 

receptors including LR, gp130, EpoR and GHR (Bjorbaek et al., 2000; Eyckerman et 

al., 2000; Hörtner et al., 2002a; Nicholson et al., 2000; Ram et al., 1999).   
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Figure 12: Model for molecular mechanism of SOCS1 and SOCS3 actions. 

(adapted from Yoshimura et al., 2005)  
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The SOCS-box mediates proteasome targeting 
The conserved SOCS-box domain of a variety of proteins has been shown to interact 

with elongins B and C (Kamura et al., 1998; Zhang et al., 1999). The VHL (Von 

Hippel-Lindau) protein was the first protein with a SOCS-box like domain that was 

reported to associate with elongin B and C (Duan et al., 1995). Elongin B and C 

association has also been reported for SOCS1, SOCS3 and SOCS6 and recently for 

SOCS2, SOCS5 and CIS (figure 13) (Bullock et al., 2006; Greenhalgh et al., 2005; 

Kamura et al., 1998; Kario et al., 2005; Krebs et al., 2002; Lavens et al., 2006; 

Zhang et al., 1999). The SOCS protein - elongin B/C complex forms an E3 ubiquitin 

ligase complex with other proteins like a Cul5 subunit and a ring finger protein Rbx 

(figure 14) (Kamura et al., 2004). Together with an E1 ubiquitin activating enzyme 

and the E2 carrier enzyme, this E3 ubiquitin ligase participates in the polyubiquitin 

tagging of associated substrate proteins and is responsible for selection of specific 

target proteins (Glickman et al., 2002). This way, SOCS proteins may inhibit 

signalling by marking associated signalling components for degradation (Kamura et 

al., 2001; Kamura et al., 2004). Consistent with this idea, proteasomal inhibitors 

induced sustained JAK-STAT signalling and block the inhibitory actions of SOCS 

proteins (Landsman and Waxman, 2005; Ram and waxman, 2000; Verdier et al., 

1998). CIS interacts with the EpoR and GHR via phosphotyrosine motifs and is 

thought to target both activated receptors for degradation (Landsman and Waxman, 

2005; Verdier et al., 1998). SOCS1 was demonstrated to mediate the proteasomal 

degradation of the constitutively active TEL-JAK2 as well as endogenous JAK2 in a 

SOCS-box dependent fashion (Frantsve et al., 2001; Kamizono et al., 2001; 

Ungureanu et al., 2002). Downstream signalling components like insulin receptor 

substrate (IRS)1, IRS2 or the Rac guanine nucleotide exchange factor Vav are also 

targeted for proteasomal degradation by SOCS proteins (De Sepulveda et al., 2000; 

Rui et al., 2002). Examination of IFNγ responses in knock-in mice expressing SOCS1 

that lacks only the SOCS-box, confirmed that this domain is essential for its full 

signalling inhibition capacities (Zhang et al., 2001).  
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Figure 13: Three-dimensional structure of SOCS2 

in complex with JAK2 and elongin B/C  

(From Bullock et al., 2006) 

 

The SOCS-box of the SOCS proteins clearly plays an important role in protein 

stability. Proteasome-mediated degradation is also proposed for SOCS proteins, 

including CIS and SOCS3 (Ram and Waxman, 2000; Zhang et al., 1999). A naturally 

occurring truncated form of the SOCS3 protein, lacking its main ubiquitination site, 

displays an increased stability because it is protected from proteasomal-mediated 

degradation (Sasaki et al., 2003). The effect of elongin binding on the stability of the 

SOCS proteins themselves is still a matter of debate. SOCS-box-mediated 

degradation of SOCS proteins has been suggested. Disruption of elongin B and C 

binding through phosphorylation of the SOCS-box positively affected SOCS1 stability 

(Chen et al., 2002). On the other hand however, some reports propose that the 
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interaction of the elongin B/C complex with the SOCS-box increases the stability of 

SOCS proteins. Proteasome-mediated degradation of SOCS3 was accelerated by 

disrupting the interaction of the SOCS-box with elongin C through tyrosine 

phosphorylation (Haan et al., 2003). An increased stability of SOCS1 mediated by 

elonginB/C complex interaction with the SOCS-box was also reported (Hanada et al., 

2001; Kamura et al., 1998; Narazaki et al., 1998).  
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Figure 14: Model for proteasomal target degradation by SOCS proteins (Adapted 

from Elliott et al., 2004) 

 

In some cases SOCS proteins have a positive regulatory role. SOCS6 is involved in 

increased AKT activation in response to insulin stimulation via interaction with the 

P85 monomer (Li et al., 2004). Positive SOCS effects are also observed in the MAPK 

pathway, as seen for CIS in activated T-cells (Li et al., 2000). Although SOCS3 

negatively regulates JAK-STAT signalling, tyrosine phosphorylation in the SOCS-box 

of SOCS3 allows association of the Ras inhibitor P120 RasGap and results in sustained 

extracellular-signal-regulated kinase (ERK) activation (Cacalano et al., 2001).  

We demonstrate in this thesis that the SOCS-box can also be important for receptor 

association and for interference with other SOCS proteins and this will be discussed 

in more detail in part III. 
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5. Spred proteins  
Sprouty (SPRY) proteins found in Drosophila inhibit signalling of several growth 

factors by suppressing the MAPK pathway. Four sprouty homologs were also found in 

mammalia (Kim and Bar-Sagi, 2004). Recently, related proteins with structural and 

functional similarities to SPRY were identified, named Sprouty-related EVH1 Domain-

containing proteins (Spred). These proteins carry a sprouty-related cystein-rich (SPR) 

domain at their carboxyl terminus (Wakioka et al., 2001). So far 3 members of the 

Spred protein family were identified in mammals, Spred-1, Spred-2 and Spred-3. 

They are responsible for inhibition of the MAP kinase pathway involved in cytokine 

signalling. They suppress the phosphorylation and activation of Raf by interacting 

with Ras, but without reducing Ras activation (Wakioka et al., 2001). A C-terminally 

truncated Spred-1 isoform was identified and functions as a dominant negative 

variant, inhibiting the activity of its full size counterpart. 
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Chapter 4: MAPPIT, a cytokine receptor based two-hybrid 
system 
Protein interactions are involved in practically all processes in the cell. Protein 

complexes can form stable, cellular structures including the cytoskeleton and the 

proteasome complex. Protein interactions are also involved in the regulation or 

control of cellular processes. These interactions are often of a temporary nature and 

can depend on modification of one of the binding partners. Identification of the 

interaction partners of a particular protein can contribute considerably to identifying 

its functionality and to situating it in a specific context.  
Protein interactions can be identified by two major kinds of approaches, biochemical 

or genetic methods (Xia et al., 2004). In a biochemical analysis proteins are co-

purified and interaction partners are identified. Classic examples are peptide affinity 

chromatography and co-immunoprecipitation. In recent years, the introduction of 

sensitive and adequate protein identification by mass spectrometry led to the 

development of high-throughput biochemical techniques relying on tag-based affinity 

purification such as tandem affinity purification (TAP) (Puig et al., 2001).  After 

cellular expression of a tagged bait protein and cell lysis, the complex is precipitated 

in one or more purification steps. Proteins are separated by protein gel 

electrophoresis and identified by mass spectrometry and subsequent database 

searching. For instance, this method was used to identify new components of the 

TNF-α signalling pathway (Bouwmeester et al., 2004). 

These techniques allow detection of whole protein complexes. However, the 

inevitable lysis of the cells may cause disruption of weak interactions. Total 

disruption of the cell architecture can also result in illegitimate interactions between 

proteins that normally reside in separate compartments in the cell. 

In genetic approaches both interacting proteins are adapted to functional molecules 

in a way that their specific interaction in intact cells leads to a detectable signal. The 

yeast two-hybrid technique based on reconstruction of a functional transcription 

factor was the first in vivo method. This system has been used extensively to 

characterize many protein interactions. In recent years, a high-throughput approach 

was applied to address protein interactome analysis in for example yeast and 

humans (Ito et al., 2000; Ito et al., 2001; Rual et al., 2005). This method suffers 

from a number of limitations due to the fact that proteins of higher organisms often 

need posttranslational modifications that are hard to reproduce in yeast and 
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interactions have to occur in the nucleus which eliminates membrane bound proteins 

or large proteins as candidates for examination. Use of mammalian cell systems can 

overcome some of the problems associated with the yeast two-hybrid technique 

(Eyckerman and Tavernier, 2002). The first mammalian two-hybrid systems were 

based on the Ras recruitment system and transcription factor complementation. 

Another mammalian genetic approach is the enzymatic complementation technique 

that is based on the reassembly and activation of two non-functional parts of a 

protein through interaction of the two attached proteins (Johnsson and Varshavsky, 

1994). The fluorescence resonance energy transfer (FRET) method relies on the 

energy transfer between two different fluorophores to monitor the interaction or 

dissociation of the attached proteins. Light emission of the excitated donor 

fluorophore results in excitation of the acceptor fluorophore only when both 

fluorophores are in close proximity (Wallrabe and Periasamy, 2005).  

 

MAPPIT (mammalian protein-protein interaction trap) is a cytokine receptor based 

tool for detection of protein interactions in mammalian cells that was recently 

developed in our laboratory (Eyckerman et al., 2001). A detailed overview of cytokine 

receptor activation and signalling through the JAK-STAT pathway can be found in 

chapter 2. The MAPPIT two-hybrid method is based on LR signal transduction. 

Typically, a chimeric receptor consisting of the extracellular part of the EpoR and the 

intracellular part of the LR is deprived of its tyrosines to prevent STAT activation. A 

specific bait protein is attached C-terminally to this mutant chimeric receptor. 

MAPPIT prey constructs are composed of a prey protein coupled to a part of the 

cytoplasmatic tail of the gp130 chain carrying several STAT3 recruitment domains. 

Interaction of bait and prey protein will lead to functional complementation of STAT3 

activity, which results in induction of a STAT3 responsive rat Pancreatitis Associated 

Protein I (rPAPI) promoter-luciferase reporter gene (Figure 15).    
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Figure 15: MAPPIT 

In the MAPPIT system, a bait protein is coupled C-terminally to a mutant chimeric 

receptor containing the extracellular part of the EpoR and the transmembrane and 

intracellular part of the LR of which the STAT3 recruiting tyrosine at position Y1138 is 

mutated to phenylalanine. Tyrosine Y985 en Y1077 are also removed to prevent 

negative feedback and to maximize the intensity of the signal. MAPPIT prey proteins 

are linked to a part of the cytoplasmic tail of the gp130 receptor carrying multiple 

STAT3 recruitment sites. When bait and prey interact, phosphorylation of the prey 

chimeras leads to STAT3 recruitment, activation and migration to the nucleus, 

ultimately resulting in transcription of a reporter gene under the control of the 

STAT3-responsive rPAP1 promoter (Eyckerman et al., 2001). 

 

 

The mammalian cell context of the technique offers substantial advantages. It 

provides a physiologically optimal context to examine protein interactions of higher 

order organisms, that often require specific posttranslational modifications of the 

proteins concerned. Moreover, intrinsic to this strategy, both modification-

independent and JAK2-mediated tyrosine phosphorylation-dependent interactions 

can be detected. MAPPIT is therefore very suitable for studying protein interactions 

implicated in signalling pathways.  
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The MAPPIT technique keeps false positives to a minimum. It physically separates 

the interaction and detection zones in respectively the cytosol and the nucleus. This 

way bait and prey proteins can not interfere with the transcription of the reporter 

gene, since signalling read out is mediated by the endogenous STATs. In addition, 

the MAPPIT technique is an inducible system based on cytokine stimulation which 

allows elimination of ligand-independent, false positive interactions. The cytokine 

receptor-based setup of the method is suited for the identification of transient or, like 

mentioned earlier, modification-dependent interactions, thus reducing the amount of 

false negative interactions. 

 

Various alternative versions of the MAPPIT technique were developed. Both the LR-

MAPPIT and GGS-MAPPIT method were used in the context of this doctoral thesis 

(figure 16). The LR-MAPPIT system was developed to identify interaction partners of 

the LR. The LR itself, devoid of its STAT recruiting Y1138 tyrosine, is used as bait 

protein. The GGS-MAPPIT technique was created to avoid interfering interactions due 

to association with the LR. Therefore the intracellular part of the LR following the 

docking site of the JAK kinase is replaced by 60 GGS triplet repeats.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Alternative versions of MAPPIT: LR-MAPPIT and GGS-MAPPIT 
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partII  

Leptin: biological functions and signalling 
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Chapter 5: biological functions of leptin 

1. Obesity, an expanding health problem in the twenty-first 
century   

Despite increasing social pressure towards slimness, the number of people suffering 

from obesity is growing. 

A simple formula that assesses obesity is the body mass index (BMI). It correlates 

body weight with height and is calculated by dividing the weight (in kilograms) by 

the square of the body length (in meters). An individual with a BMI of 30 or more is 

considered obese (table 5). The number clinically obese is estimated to exceed 300 

million people worldwide. In the United States 60 % of the adult population is 

overweight (Friedman et al., 2004). This increasing prevalence of obesity forms a 

considerable health problem since it is associated with an augmented susceptibility 

for numerous diseases including type I diabetes, insulin resistance, hypertension, 

cardiovascular disease and some cancer types.  

Obesity was long considered a psychological problem, a simple lack of will power. In 

recent years however, it has emerged from twin studies and experiments using 

mouse models that both genetic and environmental factors are involved. It is now 

clear that the tendency towards obesity is heritable, equivalent to that of height and 

more than many other conditions that are considered to have a genetic propensity 

including breast cancer or schizophrenia (Friedman, 2004). 

 

 

Table 5: Body Mass Index 

(classification according to the World Health Organisation) 

BMI classification 

< 18.5 Underweight 

18.5 – 24.9 Normal range 

Overweight ≥ 25 

25 – 29.9 Pre-obese 

30 – 34.9 Obese class I 

35 – 39.9 Obese class II 

Obese Class III (morbid obesity) ≥ 40 
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2. Leptin and its receptor 
Leptin is deduced from the Greek word leptos which means thin. It was identified by 

positional cloning as the protein product of the obese (ob) gene. This gene is 

truncated in the naturally occurring severely obese ob/ob mice (Zhang et al., 1994). 

These mice suffer from early-onset obesity, diabetes, decreased linear growth, 

infertility, and several other disorders. They weigh three times as much as wild type 

mice and their body fat content is increased five times (figure 17).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Phenotype of the ob/ob mouse (right). 

 

Leptin is a secreted 167 amino acids long polypeptide. Its structure, which is 

presented in figure 18, was revealed by crystallography and resembles the structure 

of the long chain α-helical cytokines with a typical up-up-down-down folding (Zhang 

et al., 1997). The 16 kDa mature protein carries an intra-molecular disulphide bridge 

that is essential for its biological activity (Rock et al., 1996).  

Leptin is secreted primarily by white adipose tissue and the plasma leptin levels 

correlate well with the amount of body fat (Considine et al., 1996; Maffei et al., 

1995). Lower expression of leptin was also observed in other tissues such as the 

epithelium of the stomach and the placenta (Bado et al., 1998; Masuzaki et al., 

1997).  
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Figure 18: Structure of leptin, the molecular surface structure on the left hand side 

and the crystal structure on the right (adapted from Zhang et al., 1997). 

 

Mice with the spontaneous db/db mutation display the same phenotype as ob/ob 

mice. Expressional cloning with a cDNA library revealed that the db (diabetes) gene 

codes for the receptor for the circulating leptin hormone (Tartaglia et al., 1995). The 

LR is part of the class I cytokine receptor family and has a very high sequence 

similarity with the G-CSFR and the gp130 receptor family, especially gp130, OSM and 

LIF receptors (Zabeau et al., 2003). At present, six isoforms of the LR have been 

identified, one long form (LRlo or LRb), one soluble variant (LRe) and four short 

forms (LRa or LRsh, LRc, LRd and LRf) and they are represented schematically in 

figure 19. The different LR variants are generated through alternative splicing but a 

soluble LR can also be generated by proteolytic ectodomain shedding of membrane-

anchored LRs (Ge et al., 2002; Maamra et al., 2001). The different isoforms have an 

identical N-terminal, extracellular domain but differ in their C-terminal part. The 

extracellular domain consists of two CRH domains separated by an Ig domain and 

followed by two FNIII domains (figure 19). The membrane proximal CRH2 domain, 

the two FNIII-like domains and the Ig-like domain are required for leptin binding or 

receptor activation, the membrane distal CRH1 domain is strictly not essential but 

- Page 85 - 



 

does optimize signalling (Fong et al., 1998; Zabeau et al., 2004; Zabeau et al., 

2005).  
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Figure 19: Structure of the LR isoforms. 

 

The LRlo is expressed most abundantly in specific nuclei of the hypothalamus, but 

lower expression levels could be demonstrated in almost all tissues of the body (Dyer 

et al., 1997; Fei et al., 1997; Ghilardi et al., 1996; Mercer et al., 1996). It has a long 

cytoplasmatic domain and is predominantly responsible for signal transduction. In its 

intracellular tail it carries three conserved motifs, a membrane distal box 3 motif  

(YXXQ) that forms a docking site for STAT3 and two membrane proximal boxes, 

box1 and box2, that are involved in JAK2 association. The short isoforms of LR, 

especially the LRsh, are most abundantly expressed throughout the body (Fei et al., 

1997; Ghilardi et al., 1996; Hoggard et al., 1997b). The LR short forms are thought 
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to contribute to the transport of leptin across the blood-brain barrier (Hileman et al., 

2002). They are involved in leptin internalisation and subsequent degradation (Uotani 

et al., 1999). Furthermore, a role in leptin signal transduction was also suggested but 

this phenomenon remains questionable (Murakami et al., 1997). The soluble LR 

binds leptin with high affinity (Li et al., 1998). It is likely involved in determining the 

level of circulating leptin and in regulating the amount of free leptin available for 

signal transduction (Huang et al., 2001; Yang et al., 2004). 

 

3. Energy homeostasis and leptin resistance 
The body weight in adult individuals is remarkably constant despite the fluctuations 

in daily energy expenditure and food consumption. It is controlled very stringently by 

both short- and long-term homeostatic control systems. The short-term system 

mainly controls feeding via hunger and satiety signals. It involves glucose and amino 

acid concentrations in the plasma, body temperature, cholecystokinin and other 

hormones. The long-term system involves balancing feeding and energy expenditure 

and thereby eventually regulates energy homeostasis. Leptin is mainly a key player 

in the latter system but is also implicated in the short-term control where it is 

thought to play a role in satiation (Geary et al., 2004).  

 

Since circulating leptin levels correlate accurately with the total body fat mass, leptin 

is considered to function as an adipostat that communicates the status of body 

energy reserves to the central nervous system (CNS) (Friedman and Halaas, 1998; 

Maffei et al., 1995). After leptin administration, mice increase their energy 

expenditure and decrease their food consumption (Halaas et al., 1995). Indeed, 

leptin forms an afferent signal of a negative feedback mechanism that keeps the 

body fat mass at a constant level. A drop in leptin levels due to a decrease in fat 

stores results in augmented food intake and lowered energy consumption while 

higher energy reserves correlate with elevated leptin levels, reduce food 

consumption and augment energy expenditure.  

The importance of the brain, especially the hypothalamus, as a direct target in the 

weight reducing effects of leptin is demonstrated by neural-specific deletion of the LR 

which leads to obesity in mice (Cohen et al., 2001). To reach the CNS the adipocyte-

derived leptin must thus pass the blood-brain-barrier (BBB). This presumably 
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involves a saturable system that might engage the short isoform of the leptin 

receptor which is highly expressed in the choroid plexus and cerebral microvessels 

(Banks et al., 2004; Bjorbaek et al., 1998; Devos et al., 1996; Tartaglia et al., 1995). 

In line with this, expression of the LRa in Madin-Darby canine kidney cells allowed 

directional transport of labelled leptin (Hileman et al., 2000). However, it was 

demonstrated that after brain perfusion leptin is transported at equal rates in wild 

type rats and Koletsky rats, which are deficient for all membrane-anchored LR 

isoforms. This might indicate that the LRsh is more a modulator of transport and the 

transporter itself remains to be identified (Banks et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Leptin functions as an adipostat. 

 

Leptin has an effect on two different populations of primary target neurons in the 

hypothalamus. The anorexigenic neurons express the satiety-related molecules 

cocaine-amphetamine-regulated transcript (CART) and pro-opiomelanocortin 

(POMC), the precursor protein of the α-melanocyt-stimulating hormone (α-MSH). 

The orexigenic neurons are responsive to absence or low concentrations of leptin 

and express neuropeptide Y (NPY) and agouti-related protein (AgRP). The abundant 
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neurotransmitter NPY is a very potent orexigenic peptide that stimulates food 

consumption while AgRP antagonizes α-MSH action. Leptin induces expression of the 

anorexigenic molecules α-MSH and CART whilst it decreases NPY and AgRP levels 

(figure 20). Secondary target neurons process the NPY/AgRP and POMC/CART 

signals they receive. The orexigenic and anorexigenic systems act together and 

ultimately determine the response to peripheral signals (Friedman and Halaas, 1998). 

 

Obviously deficiency in leptin leads to morbid obesity in humans but this 

phenomenon accounts for only a minority of obese individuals. In most cases, human 

obesity is associated with elevated leptin levels in the blood stream. Treating these 

patients with recombinant leptin has only minor effects on body weight loss 

(Heymsfield et al., 1999; Hukshorn et al., 2002). Apparently, they have developed a 

state of relative leptin resistance (Considine et al., 1996; Maffei et al., 1995). This 

leptin desensitisation is caused by defects in the leptin pathway and can be situated 

at three different levels (El-Haschimi et al., 2000; Münzberg and Myers, 2005):  

First, the transport of leptin through the BBB can be impaired. A decreased transport 

of leptin across the BBB was demonstrated in rodents with diet-induced obesity 

(DIO) (Levin et al., 2004). Moreover, these DIO animals are resistant to peripheral 

leptin administration but lose weight after intracerebroventricular (ICV) injection of 

leptin, although central leptin signalling was not completely restored (El-Haschimi et 

al., 2000).  

The latter observation suggests that leptin resistance can also be due to defects in 

hypothalamic leptin signalling. LR deficiency will evidently cause morbid obesity. In 

addition, aberrant signalling attenuation can cause central leptin insensitivity. SOCS3 

and PTP1B are the two molecules that are most associated with modulation of LR 

signalling and their enhanced activity can contribute to leptin resistance. Supportive 

of this, SOCS3 haploinsufficient or neural-cell specific deficient mice and PTP1B 

knockout mice show hypersensitivity to leptin which protects them from high fat diet 

obesity (Elchebly et al., 1999; Howard et al., 2004; Mori et al., 2004). LR signal 

modulation is discussed in more detail in chapter 7. 

A third mechanism that may underlie leptin resistance holds impairments in the 

downstream effects of leptin in the neuronal circuit. Defects may occur in the 

neuropeptides modulated by leptin such as NPY, AgRP, POMC or CART which were 
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addressed earlier. Exemplary is the obese phenotype observed for mice with null-

mutations in the POMC encoding gene (Challis et al., 2004). 

 

4. A broader role for leptin  
Leptin function was originally thought to be restricted to the central regulation of 

body mass control. During recent years it has become more and more clear that it is 

a pleiotropic molecule and is involved in a diverse range of functions both in the CNS 

and in the periphery. This is reflected in the phenotype of ob/ob mice: in addition to 

an obesity syndrome, these mice have many abnormalities such as infertility and an 

impaired immune function (Coleman et al., 1978). These particular defects can all be 

corrected by administration of recombinant leptin (Campfield et al., 1995; Chehab et 

al., 1996; Halaas et al., 1995; Howard et al., 1999; Faggioni et al., 2000). 

Apparently, ob/ob mice are in a state of alleged starvation. Food collection and 

consumption are strongly prioritized, while the expense of energy on certain other 

biological functions – such as reproduction and the immune system- is minimized. In 

this way leptin provides a link between the energy status of the body and other vital 

physiological functions. 

In recent years, several studies have linked increased circulating leptin levels with 

infection and inflammatory status, which suggested a role for leptin in the immune 

system. Leptin was recognized as a pro-inflammatory cytokine that can act as an 

early acute-phase reactant (Fantuzzi and Faggioni, 2000; Sarraf et al., 1997). It 

operates in both innate and adaptive immunity (La Cava and Matarese et al., 2004). 

In innate immunity, leptin promotes chemotaxis of neutrophils and their secretion of 

oxygen radicals (Caldefie-Chezet et al., 2003). It affects monocytes and 

macrophages by inducing phagocytosis, release of pro-inflammatory cytokines and 

expression of adhesion molecules (Fantuzzi and Faggioni, 2000; Mancuso et al., 

2002; Zarkesh-Esfahani et al., 2001). Leptin also acts on the development and 

activation of natural killer (NK) cells (Tian et al., 2002). In adaptive immunity, leptin 

promotes the generation, maturation and survival of T cells by reducing apoptosis 

and it shifts memory T cells towards a TH1 response (Howard et al., 1999; Lord et 

al., 1998). In vivo studies on mouse models revealed that leptin action is implicated 

in the pathogenesis of several autoimmune diseases including rheumatoid arthritis, 

- Page 90 - 



 

inflammatory bowel disease and multiple sclerosis (reviewed in Peelman et al., 

2004). 

It is well known that impaired reproductive function can be linked with both lack and 

excess of body fat. Leptin seems to be involved in pubertal development since 

administration accelerates the onset of puberty in female mice (Ahima et al., 1997; 

Chehab et al., 1997). It is also thought to play a role during pregnancy and lactation, 

although its exact functions in reproduction are still unclear (Brann et al., 2002). 

Moreover, a role for leptin was also suggested in foetal growth and development 

(Hoggard et al., 1997a; Masuzaki et al., 1997). 

Since both leptin-deficient and LR-deficient mice show increased bone mass, an 

important role for leptin was expected in bone development. Leptin regulates bone 

formation both directly and indirectly via the CNS. It modulates activity of osteoblasts 

responsible for bone resorption and osteoclasts involved in bone formation (Ducy et 

al., 2000; Elefteriou et al., 2005; Gordeladze and Reseland, 2003; Martin et al., 

2005; Thomas et al., 2005).  

Finally, leptin is involved in cell proliferation and migration. It induces 

neovascularization and wound healing and may also influence the invasive capacity 

of cancer cells (Attoub et al., 2000; Murad et al., 2003; Schäfer et al., 2004; Sierra-

Honigmann et al., 1998). 
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Chapter 7: Modulation of leptin receptor signalling 
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Abstract 

Leptin was discovered as an adipostat, regulating body weight by balancing food 

intake and energy expenditure. Recently, leptin emerged as a pleiotropic cytokine. It 

plays a substantial role in a wide spectrum of other functions including immune 

regulation, bone formation and fertility. Leptin signalling is under tight control. 

Aberrations of this stringent control system may be implicated in a variety of 

pathologies. Here, we review the various mechanisms that control cellular leptin 

receptor signalling.  

 

Introduction 

Leptin plays a major role in the regulation of energy homeostasis and food intake. It 

is mainly produced in white adipose tissue and to a lesser degree also in the stomach 

and in some other tissues [1;2]. Leptin is released in circulation and is translocated 

through the blood-brain-barrier (BBB) to target the leptin receptor (LR) in the 

hypothalamus. Functioning as an adipostat it signals the state of body fat reserves to 

the brain. Aberrations in leptin signalling are often associated with obesity, but only a 

minority of obese individuals show deficiency in leptin or its receptor. Instead, most 

cases of human obesity show a state of relative leptin resistance, as reflected in high 

serum leptin levels [3;4]. This resistance may be situated at different levels in the 

leptin pathway, including saturation of transport through the blood-brain barrier, 

aberrations in LR signal transduction or downstream effects on neural networks in 

the hypothalamus [5;6]. 
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Leptin is a pleiotropic cytokine. Apart from its role in energy homeostasis, it is also 

implicated in a range of other, often peripheral processes, including immune 

response, bone formation, angiogenesis and reproduction. Recent findings suggest 

that leptin is involved in a variety of pathological processes, including cardiovascular 

and autoimmune diseases [7;8].  

Given leptin’s wide range of important functions, its activities must be under 

stringent control. In this review we discuss the molecular mechanisms that are 

responsible for modulation of signal transduction via the LR. A schematic 

representation of LR signalling and modulation is shown in Figure 1. 

 

JAK-STAT signalling 

At least 5 different LR isoforms exist, but the main player responsible for signal 

transduction is the long isoform of the LR [9]. Canonical leptin signalling occurs 

through the JAK-STAT pathway. Ligand binding results in LR clustering bringing the 

associated JAK (janus kinase) kinases in close proximity. This allows them to activate 

each other by cross-phosphorylating tyrosines in their activation loop. These 

activated JAK kinases then phosphorylate tyrosines in the cytoplasmic tail of the 

receptor and on the JAKs, forming docking sites for signalling proteins. Amongst 

these, the STATs (signal transducers and activators of transcription) associate with 

the phosphotyrosines in the receptor via their SH2 domain and become activated by 

JAK2 mediated tyrosine phosphorylation. The activated STATs then dissociate from 

the receptor and translocate to the nucleus as dimers to induce specific target genes. 

JAK2 is constitutively associated with the membrane proximal box1 in the 

cytoplasmic tail of the LR [10;11]. The intracellular part of the receptor also carries 

three conserved tyrosines at positions Y985, Y1077 and Y1138 (murine numbering). 

The membrane distal tyrosine is embedded in a YXXQ motif and is responsible for 

the recruitment of STAT3 [12;13]. STAT3 activation was demonstrated after leptin 

stimulation in the hypothalamus of mice [14]. Knock-in mice containing an Y1138S 

mutation are incapable of STAT3 activation and reveal a severely obese phenotype. 

They do not show the infertility and reduced size that is seen in db/db mice that are 

truncated in the long LR, indicatory for the involvement of other signal transducers 

[15]. Leptin-induced activation of STAT1 and STAT5B, in addition to STAT3, was 

shown in COS cells and in HIT-T15 cells [16;17]. In the latter cell line STAT1 was 
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activated via Y1138 while STAT5B activation occurred via both Y1138 and Y1077 

[17].  

Next to JAK-STAT signalling, leptin also activates other pathways. A number of 

adaptor molecules can associate with the receptor and link to several signalling 

pathways, including the MAPK (mitogen activated protein kinase) pathway (see 

below) and the PI3K (phosphoinositol 3-kinase) pathway. In the latter, the JAK2-

interacting protein, SH2-B, mediates binding of IRS (insulin receptor substrate) 

proteins that function as adaptors for PI3K [18;19]. PI3K transforms 

phosphatidylinositol -biphosphate (PIP ) into phosphatidylinositol4,5 2 3,4,5-triphosphate 

(PIP3) eventually resulting in reduced levels of cAMP. It was also demonstrated that 

leptin has an inhibitory role on hypothalamic AMPK (AMP-activated protein kinase) 

activity which contributes to body weight regulation [20].  

 

 

 
 

 

 

Figure 1: Schematic representation of LR signalling and negative regulation.  
For abbreviations, we refer to the main text. 
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Modulation of functional receptor expression 

Obviously, receptor internalisation is an effective mechanism to rapidly turn off 

cytokine signalling. Upon ligand binding cytokine receptors can be internalized via 

the clathrin-coated pit pathway into early endosomes. Trafficking dynamics of the LR 

with receptor internalisation and subsequent degradation or recycling back to the cell 

surface clearly are involved in the regulation of leptin signalling. In steady state 

conditions, no more than 25% of the LR is located at the cell surface, whilst the 

majority of the LR is found in intracellular pools [21].This distribution of the LR may 

be explained by its liability to constitutive endocytosis resulting in short-lived 

membrane expression. In addition, part of the newly synthesized LRs are retained 

intracellularly based on a retention signal in the transmembrane domain [22]. 

Whether external stimuli modulate this LR localisation throughout the cell and in this 

way regulate leptin sensitivity remains to be determined.  
125I-labeled leptin uptake experiments demonstrated that LRs are also internalized 

upon ligand binding via clathrin-mediated endocytosis leading to leptin degradation 

in the lysosomes [21;23]. An internalisation signal was identified in the intracellular 

part of the receptor in immediate proximity of the membrane [23]. Compared with 

other LR splice variants, the long LR isoform seemed depleted relatively quickly from 

the cell surface upon leptin exposure suggesting it is most sensitive to leptin-induced 

down-regulation while its limited recycling to the cell membrane was slow [21-24]. 

This favoured down-modulation of LR signalling may be implicated in leptin 

resistance [25;26].   

Recently, it was demonstrated that both the long LR and the short LR, a membrane-

anchored isoform with a short cytoplasmic tail, become ubiquitinylated. Unlike for the 

long LR, this ubiquitination is essential for clathrin-mediated endocytosis of the short 

LR [27]. Many aspects of the mechanisms underlying LR cell surface expression and 

internalisation remain to be elucidated. It is likely that additional proteins involved in 

ubiquitination of the (activated) LR complex remain to be identified. 

A soluble form of the LR associates with circulating leptin [28]. Secreted cytokine 

receptors can either protect their ligands from degradation or clearance and thus 

significantly extend their half-life or can act as antagonists, capturing their ligand and 

thus preventing signalling by their membrane-spanning counterparts. In mice, the 

soluble LR is generated by alternative mRNA splicing. In contrast, no such mRNA 
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splice variant has been discovered in humans and a secreted human LR is generated 

by ectodomain shedding of membrane-anchored LRs including the signalling long 

form, by a hitherto unknown protease [29-31]. Although the soluble LR appears 

important for keeping leptin available in circulation, it is at the same time capable of 

competing with the long LR isoform for leptin binding and may suppress leptin action 

in that way [32-35]. This could indicate that the secreted LR plays an important role 

in determining leptin levels available for signal transduction. It is of note that the 

relative concentrations of the soluble LR and free leptin are similar while in obese 

individuals concentrations of free leptin exceed by far the concentrations of secreted 

LR [36]. 

 

Phosphatases 

SHP-2 (SH2 domain containing phosphatase-2) is a constitutively expressed protein 

tyrosine phosphatase known to be involved in the dephosphorylation of the JAKs. It 

carries two tandem SH2 domains followed by a tyrosine phosphatase catalytic 

domain and associates directly with the LR at position Y985 [37]. The exact role of 

SHP-2 in LR signalling has been a long standing matter of debate. Despite its initial 

identification as an inhibitor of LR signalling (cfr. infra), it also appeared as a strong 

activator of the MAPK pathway. ERK activation occurs predominantly via SHP-2 

recruitment at tyrosine Y985 via its C-terminal SH2 domain. SHP-2 is phosphorylated 

by JAK2 and forms a docking site for the adaptor protein growth factor receptor 

binding 2 (Grb2) leading to the activation of the ERK signalling cascade [12]. 

Alternatively, ERK is also directly activated by JAK2 but still requires the intervention 

of SHP-2 [38]. Leptin-triggered activation of MAPK was observed both peripherally 

and centrally. Recently, regulation of calcium fluxes involving MAPK activity was 

shown in lateral hypothalamic neurons upon leptin stimulation [39].  Also, NO (nitric 

oxide) production induced by leptin via MAPK activation was observed in white 

adipocytes [40]. Moreover, leptin induced MAPK is involved in full activation of the 

DNA binding of STAT3 by mediating serine phosphorylation at position S727 of 

STAT3 [41]. 

 

On the other hand, many reports also attributed an inhibitory role in LR signalling to 

the SHP-2 phosphatase. Mutation of the Y986 position in the human LR led to 
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augmented STAT3 signalling and inhibitory properties associated with this position 

were ascribed to the negative regulatory function of SHP-2 [42]. However, SOCS3 

(suppressor of cytokine signalling 3), identified as a strong inhibitor of LR signalling 

(see below), was found to interact with the corresponding Y985 position in the 

murine LR [43-45]. SOCS3 is part of the SOCS family and its inhibitory mechanism is 

discussed below. SHP-2 and SOCS3 have very similar binding specificities and 

overlapping binding sites were also observed for the gp130 chain [46-49]. Thus, the 

negative regulation associated with the membrane proximal tyrosine position is partly 

attributed to SOCS3. However, SHP-2 mediated dephosphorylation of JAK2 was 

demonstrated in vitro [37]. Recently, forebrain-specific SHP-2 deficient mice revealed 

that SHP-2 moderately down-modulates JAK2 and STAT3 activation in vivo [50]. 

Although SHP-2 has a modest role in terminating leptin signal transduction, its 

dominant induction of the ERK pathway makes it overall an enhancer of leptin 

signalling, whereby it may function as a switch towards MAPK signalling. 

 

PTP1B (protein tyrosine phosphatase 1B) is a crucial protein tyrosine phosphatase 

implicated in the negative regulation of leptin receptor signalling. PTP1B deficiency 

results in hypersensitivity to insulin and leptin in mice, and leads to protection from 

high fat diet obesity [51]. PTP1B harbours two phosphotyrosine binding pockets in its 

catalytic domain that determine its intrinsic specificity. A consensus substrate 

recognition motif was found in the kinase activation loop of the insulin receptor and 

in JAK2 [52-54].  Both in vivo and in vitro data demonstrate that PTP1B targets LR 

signalling predominantly by dephosphorylating JAK2 [55-58]. PTP1B is a negative 

mediator of both the JAK-STAT and MAPK pathway in leptin receptor signalling. 

PTP1B-mediated hypophosphorylation of JAK2 in a mouse hypothalamic neuronal cell 

line abrogated the leptin-dependent induction of the STAT3 and MAPK inducible 

SOCS3 and c-fos genes, respectively [56]. Recently, leptin induced PTP1B was 

observed in liver raising the possibility that PTP1B may also function in a negative 

feedback loop [59]. Diet-induced obesity is associated with increased hepatic PTP-1B 

levels. Aberrant PTP1B activity is implicated in leptin resistance and PTP1B is 

currently investigated as a drug target in obesity [60-63]. 

PTP1B is localized predominantly on the ER (endoplasmic reticulum) via its C-

terminal hydrophobic targeting sequence [64]. How PTP1B acts on its substrates 
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remains unclear. It was demonstrated that the platelet-derived growth factor (PDGF) 

receptor becomes dephosphorylated by PTP1B at the ER after internalization [65]. 

Recently, direct interaction of PTP1B with the insulin receptor was observed in a 

perinuclear endosome compartment [66]. On the other hand, it has been 

demonstrated that internalisation of the insulin receptor is not essential for 

interaction with PTP1B and subsequent dephosphorylation [67]. In line with this, 

proteolytic cleavage of PTP1B can lead to the relocalization of the catalytic domain of 

PTP1B to the cytosol [68]. 

The ubiquitously expressed PTEN (phosphatase and tensin homologue deleted on 

chromosome ten) is a tumour suppressor protein and its mutation is linked with 

several human cancer types [69]. It belongs to the family of protein tyrosine 

phosphatases but also possesses lipid phosphatase activity. PTEN suppresses the 

PI3K pathway by hydrolyzing the secondary messenger PIP3 back to PIP2. [70].  It 

was demonstrated that hypothalamic PI3K is involved in leptin-induced reduction in 

food intake [19]. Surprisingly, specific disruption of PTEN restricted to the 

hypothalamic neurons expressing the anorexigenic POMC (proopiomelanocortin) 

neuropeptide results in an obese phenotype associated with leptin resistance [71].  

 

Suppressors of cytokine signalling 

The family of SOCS proteins consists of 8 members: CIS (cytokine inducible SH2 

protein) and SOCS1 through SOCS7. SOCS proteins have a characteristic domain 

structure which is represented in figure 2. They carry a central SH2 domain, an N-

terminal preSH2 domain with an ESS (extended SH2 subdomain) region and in some 

cases a KIR (kinase inhibitory region) domain and a C-terminal SOCS-box [72]. The 

N-terminal domain varies in length and composition while the SH2 domain and the 

SOCS-box are more conserved. They also carry one or two conserved tyrosines in the 

C-terminus of their SOCS-box. SOCS proteins can interfere with cytokine signalling at 

different levels. They can interact with phosphotyrosine motifs in activated cytokine 

receptor complexes by means of their SH2 domain, thereby hindering association of 

signalling molecules. The SOCS-box of SOCS proteins is identified as a key mediator 

in targeting associated proteins for proteasomal degradation. It associates with 

elonginB/C via its BC-box and takes part in a multi-protein complex that acts as an 
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E3 ligase known to link ubiquitin to the substrate. Finally, the kinase activity of the 

JAKs can be abolished through the KIR domain. 

 

 

 
 

Figure 2: Schematic overview of SOCS protein structure.  
The KIR domain is indicated with a black box, the C-terminal, conserved tyrosines 

are represented by a black line. 
 

 

SOCS proteins are typically part of a negative feedback loop. They are induced upon 

cytokine stimulation and attenuate signalling by various cytokine receptors, allowing 

possible cross-regulation among cytokine systems. Leptin induces SOCS3 expression 

in a rapid and transient manner while CIS expression accumulates over a longer 

period of time [43;73;74]. Leptin has also been implicated in the expression of 

SOCS1 and, to a lesser extent of SOCS2 [74;75]. 

 

SOCS3 was identified as a potent inhibitor of LR signalling [43]. Its STAT3-mediated 

expression is induced in the hypothalamus and liver after peripheral leptin 

administration in leptin-deficient ob/ob mice [12;43;76]. SOCS3 is a functional 

marker for identification of leptin-sensitive neurons in the hypothalamus [77]. In 

these hypothalamic neurons of the leptin-resistant lethal yellow (Ay/a) mouse model 

elevated levels of SOCS3 were found [43]. Unlike SOCS3-deficient mice that die in 

utero, SOCS3 haploinsufficient or neural-cell specific deficient mice are viable and 

show augmented leptin sensitivity in the hypothalamus and a remarkable attenuation 

of diet-induced obesity [78;79]. It was demonstrated that SOCS3 action is involved in 

rendering the LR refractory to reactivation after chronic leptin stimulation [80]. These 
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observations put SOCS3 up as a key mediator of negative regulation of leptin 

signalling and suggest a prominent role in leptin resistance.  

Only SOCS1 and 3 carry a KIR domain in their N-terminal region involved in direct 

inhibition of the JAK kinase activity. They both inhibit leptin receptor signalling, using 

a slightly different mechanism. SOCS1 directly interacts with the kinase domain of 

JAK2 by targeting the phosphotyrosine at position Y1007 in the activation loop of 

JAK2 [81;82]. The KIR domain is essential for the inhibitory function of the SOCS 

protein [82]. It associates with the catalytic groove of JAK2 and is suggested to act 

as a pseudosubstrate which mimics the activation loop that regulates access to the 

catalytic groove [81;82]. It may obstruct the ATP binding pocket and hinder 

accessibility for substrates [81;82]. Unlike SOCS1, SOCS3 has only weak affinity for 

JAK2. It is thought to inhibit the kinase activity through its KIR domain after binding 

via its SH2 domain with phosphotyrosine motifs in the receptor in close proximity to 

the JAKs [83]. Indeed, SOCS3 associates with the LR at the membrane proximal 

tyrosine Y985 domain [44;84]. It also weakly binds the highly similar Y1077 

interaction site with an accessory effect on LR signalling inhibition [84].  

 

 

 PY985 PY1077 PY1138 

 MAPPIT PAC MAPPIT PAC PAC 
CIS + - + - - 
SOCS1  -  - - 
SOCS2 - - + + + 
SOCS3 + + - /+ + - 

 

Table 1: Binding of the SOCS proteins, CIS and SOCS1 through SOCS3, with the 
tyrosines of the LR based on peptide affinity chromatography (PAC) with 

corresponding phosphorylated and non phosphorylated tyrosine motifs and based on 
mammalian protein-protein interaction trap (MAPPIT) [74;84;100]. 

 

 

Using the MAPPIT technique, a two hybrid method based on cytokine signalling, we 

recently demonstrated the interaction of CIS and SOCS2, two other members of the 

SOCS protein family, with the LR [45;74]. We showed that CIS interacts with the two 

membrane proximal tyrosine motifs at positions Y985 and Y1077 while SOCS2 only 

associated with the latter of the two. Phosphotyrosine specific interaction of SOCS2 
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with the LR Y1077 motif was confirmed by peptide affinity chromatography (PAC). 

Using this method, we also demonstrated that SOCS2 binds specifically to the 

phosphotyrosine Y1138 peptide. An overview of LR/SOCS interactions is given in 

Table 1. Interactions with the LR Y1138 motif and those involving SOCS1 were only 

analysed using PAC since in these cases interference occurs with the MAPPIT read-

out. Of note, MAPPIT proved to be a highly sensitive technique that can detect weak 

or transient (but functionally relevant) interactions that could not be detected by 

PAC. 

CIS and SOCS2 are known inhibitors of STAT5 activation. Although negative 

regulation of a leptin-induced STAT3 binding reporter gene by CIS was suggested, 

we did not observe any inhibitory effect on STAT3-mediated LR signalling by either 

CIS or SOCS2 [73;74]. Instead, we suggest an inhibitory role in leptin-induced STAT5 

signalling through interference with STAT5a recruitment to the Y1077 tyrosine motif 

in a MAPPIT based experiment [74]. Supporting this notion, SOCS2 binding 

completely overlaps with STAT5 association at the LR. CIS and SOCS2 may be 

implicated in preventing recruitment of downstream signalling moieties to the LR. 

Both SOCS2 knock-outs and CIS transgenes show growth abnormalities, the former 

being larger and the latter smaller than normal [85;86]. Although both SOCS proteins 

are negative regulators of GH signalling, growth retardation in people with a 

truncated LR as well as in LR null db/db mice suggests these SOCS proteins may 

additionally influence growth via the LR [15;87]. Leptin has been identified as a pro-

inflammatory cytokine [88]. It is implicated in the pathogenesis of several 

autoimmune diseases including rheumatoid arthritis, multiple sclerosis and 

inflammatory bowel disease [7;8]. A role for leptin was described in T-cell 

proliferation and switching towards a Th1 response [89]. CIS transgenic mice exhibit 

a shift to activation of Th2 cells [85], an effect that may be in part explained by its 

effect on leptin signalling in T-cells. More detailed analysis in cell-type specific 

expression and function will be needed to elucidate the specific roles of SOCS 

proteins in leptin signalling. Possibly, different physiological functions of leptin may 

be under the control of different SOCS proteins. 

More detailed examination of the binding modalities of SOCS proteins with the LR 

reveals that the SOCS-box of CIS is implicated in the association with the LR (Lavens 

et al, in press). The conserved C-terminal tyrosine at position Y253 is essential for 
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binding to both membrane proximal tyrosines. The same phenomenon is also 

observed for interaction with other cytokine receptors like the EpoR but not for 

association with the unrelated MyD88 protein, an adaptor protein involved in toll-like 

receptor (TLR) signalling [74;90]. In contrast, the corresponding C-terminal tyrosine 

or even the entire SOCS-box of the highly related SOCS2 protein are not essential for 

interaction with the LR, since deletion of the SOCS-box also hardly influenced the 

inhibitory capacity of SOCS1 or SOCS3 on LR signalling [74]. This indispensable role 

of the SOCS-box for binding with the LR (and likely other cytokine receptors as well), 

is probably an exclusive characteristic of CIS. The exact functional role of the C-

terminus of CIS is still unclear. This observation is very reminiscent of the Von 

Hippel-Lindau protein whereby the C-terminus of its SOCS-box is also involved in 

substrate recognition [91;92]. 

Recently it has become clear that regulation by certain SOCS proteins can be more 

complex than a mere negative feedback loop. It has been demonstrated that, apart 

from its negative regulatory effects, SOCS2 can also have positive effects on cytokine 

signalling, as was clearly observed in vivo and in vitro for GHR signalling [93;94]. 

SOCS2 interference with other SOCS proteins has been observed in several cytokine 

receptor systems including LR signalling [74;93;95;96] (Piessevaux et al., in press). 

We recently demonstrated that SOCS2 interferes with the association of CIS to the 

membrane proximal tyrosine of the LR although no direct binding of SOCS2 with this 

tyrosine position was demonstrated [74]. In addition, SOCS2 can impair the 

inhibitory effect of SOCS1 or SOCS3 on leptin-induced signalling. This effect strictly 

relied on the presence of the SOCS-box of both SOCS-proteins, since deletion of the 

SOCS-box of either SOCS2 or SOCS1 and SOCS3 abolished complete SOCS2 

interference (Piessevaux et al., in press). SOCS2 is demonstrated to associate with all 

members of the SOCS protein family [74;96] (Piessevaux et al., in press). Abolishing 

the elonginB/C recruitment potential of SOCS2 has no effect on its SOCS interaction 

capacity but leads to complete loss of its functional interfering characteristics [74] 

(Piessevaux et al., in press). SOCS2 influences the stability of target SOCS proteins 

and this effect is sensitive to proteasome inhibitors and clearly relies on the presence 

of its BC-box [96] (Piessevaux et al., in press). Together these data strongly suggest 

that SOCS2 can target SOCS proteins for degradation and regulate SOCS protein 

turnover. In addition, we demonstrated that SOCS6 and SOCS7 are also capable of 

- Page 114 - 



 

interacting with the SOCS protein family members. Similar potentiating effects as 

with SOCS2 are observed for SOCS6 in LR signalling as well as other cytokine 

receptor systems (Piessevaux et al., in press). This cross-regulatory effect of SOCS 

proteins may be of great importance in restoring cellular sensitivity after cytokine 

stimulation. Indeed, it has been reported that the expression of SOCS2 is in many 

cases more prolonged than seen for other SOCS proteins [96-99].  

Using the MAPPIT methodology, we recently demonstrated that SOCS6 and SOCS7 

also interact with the LR. Both associate with the Y1077 motif whilst only SOCS7 

interacts with the more membrane proximal tyrosine [100]. It was reported that 

SOCS7 is implicated in LR signalling termination. It can inhibit STAT3 activation 

which we speculate may involve LR association but can also interact with activated 

STAT3 molecules to prevent them from translocating to the nucleus [101].  

 

Conclusion 

Leptin is involved in a variety of crucial processes including adipocyte metabolism 

and immune responses and aberrant leptin signalling has been implicated in several 

pathophysiological processes. Tight control mechanisms exist that regulate leptin 

receptor signal transduction. Today, SOCS3 and PTP-1B are the two molecules that 

are most associated with modulation of LR signalling. However, the involvement of 

other mechanisms and molecules, especially other SOCS proteins is emerging. It is 

likely that the different inhibitory molecules may be implicated in the regulation of 

leptin functions in different cell types. Further investigation will be needed to clarify 

the complex regulatory mechanisms that control leptin receptor signalling in many 

vital processes. 
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partIII  

The role of SOCS proteins in LR signalling 
modulation 
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Scope of the thesis 
Leptin plays a major role in regulation of energy homeostasis and food intake. It 

operates essentially as an adipostat whereby it communicates the status of body fat 

reserves to the central nervous system.  

The leptin receptor predominantly activates the JAK-STAT pathway via JAK2 and 

STAT3. SOCS3 and PTP1B are identified as negative regulators of LR signalling. The 

phosphotyrosine phosphatase, PTP1B, primarily dephosphorylates JAK2, whereas 

SOCS3 is thought to predominantly inhibit JAK2 activity by means of its kinase 

inhibitory region. The importance of tight negative regulation is underscored by the 

state of relative leptin resistance observed in most cases of human obesity which is 

partly caused by defects in hypothalamic leptin signalling including aberrant 

signalling attenuation. In this work we focus on the role of SOCS proteins in the 

mediation of leptin receptor signal transduction in an attempt to elucidate the 

underlying mechanisms that involve the functionality of SOCS proteins in the leptin 

receptor signalling context.  

 

We made extensive use of the versatile MAPPIT technique described in chapter 4. 

This technique is very well suited for examining signal transduction pathways. It is 

capable of identifying associations that are short-lived or that depend on tyrosine 

phosphorylation. We adapted the technique to allow the detection of interactions 

with the LR itself. Therefore we mutated the STAT3 recruiting tyrosine to 

phenylalanine. In a second adaptation, called GGS-MAPPIT, the intracellular part of 

the LR following the docking site of the JAK kinase was replaced by 60 GGS triplet 

repeats.  This MAPPIT variant allows interaction with isolated tyrosine motifs of the 

LR and also avoids interfering interactions due to background association with the 

LR.  

First, we investigated the binding properties of two members of the SOCS family, CIS 

and SOCS2, that we identified as new interaction partners of the LR. Their 

differential binding was examined using the tyrosine to phenylalanine LR mutants in 

the LR-MAPPIT technique, the GGS-MAPPIT method and LR-MAPPIT based 

competition binding assays. Both interactions were also examined by peptide affinity 

chromatography, a well established, biochemical approach. We further investigated 

the functionality of SOCS2 in the context of leptin receptor signalling (Chapter 8). 
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Secondly, we addressed the role of conserved tyrosines in the C-terminus of the 

SOCS-box of the four most thoroughly studied SOCS proteins namely CIS, SOCS1, 

SOCS2 and SOCS3. An array of mutants based on the particular tyrosines was tested 

for associating capacities and functionality in LR and EpoR signalling (Chapter 9).  

 

In several cytokine receptor systems including the GHR signalling it was reported 

that SOCS2 could both inhibit and enhance signalling. This dual effect of SOCS2 led 

to the speculation of SOCS2 interfering with other SOCS proteins. We investigated 

and corroborated this hypothesis in the context of LR signalling and other cytokine 

systems. We used reporter assays and LR-MAPPIT assays to examine interference of 

SOCS2 with other SOCS proteins in leptin, growth hormone and IFN-γ signalling 

context. Degradation experiments and MAPPIT assays were applied to study the 

underlying mechanism of this interference phenomenon. Similar experiments were 

used to examine whether other SOCS proteins exerted comparable interfering 

characteristics (Chapter 8 and Chapter 10). 
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Chapter 8: A complex interaction pattern of CIS and SOCS2 with 
the leptin receptor. 
In this article we report the differential binding of CIS and SOCS2 with the LR. We 

used the LR-MAPPIT technique described in chapter 4 with the LR itself deprived of 

its membrane distal STAT3 recruiting tyrosine as bait protein. One or both of the two 

membrane proximal tyrosines at positions Y985 and Y1077 were mutated to 

phenylalanine to examine tyrosine-specific interactions. We demonstrated association 

of both CIS and SOCS2 with the Y1077 position whilst CIS but not SOCS2 associated 

with the membrane proximal Y985 position. We next performed MAPPIT competition 

experiments and peptide affinity chromatography to investigate the binding 

properties of both SOCS proteins. CIS and SOCS2 are typically known as inhibitors of 

STAT5 activity as readily demonstrated in for example GHR signalling (Greenhalgh et 

al., 2002; Ram et al., 1999). We revealed here that SOCS2 can interfere with 

association of the SH2 domain of STAT5a at the Y1077 position. Furthermore, we 

demonstrated that SOCS2 interfered with CIS binding at the membrane proximal 

tyrosine in the LR, although SOCS2 itself did not interact with this position. Co-

immunoprecipitation assays and MAPPIT interaction experiments subsequently 

showed that SOCS2 could associate with CIS, particularly with its SOCS-box. Finally, 

in analogy to a known elongin B/C recruitment-deficient SOCS1 mutant, we 

developed the SOCS2(LC-QQ) mutant. We demonstrated by TAP2 analysis, a two-

step immunopurification method, that this SOCS2 variant was no longer capable of 

recruiting the elongin B/C complex to its SOCS-box. This SOCS2 mutant completely 

lost its regulatory capacity, suggesting that proteasomal degradation of CIS is 

involved. 

Reference list 
Greenhalgh, C. J., P. Bertolino, S. L. Asa, D. Metcalf, J. E. Corbin, T. E. Adams, H. W. Davey, N. A. 
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Ram, P. A. and D. J. Waxman.  SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 
signaling by multiple mechanisms. J.Biol.Chem. 274[50], 35553-35561. 1999.  
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Chapter 9: The C-terminus of CIS defines its interaction pattern.  
In this report we examined the interaction pattern of the most commonly studied 

SOCS proteins namely CIS, SOCS1, SOCS2 and SOCS3, in more detail. In the C-

terminus of the SOCS-box these particular SOCS proteins carry one or two conserved 

tyrosines. MAPPIT analysis demonstrated that not only the SH2 domain but also the 

SOCS-box is indispensable for association of CIS with the LR. Site-directed 

mutagenesis revealed that the C-terminal tyrosine at position Y253 in the SOCS-box 

of CIS is critical for receptor binding. Both MAPPIT and peptide affinity 

chromatography experiments confirmed that the C-terminal tyrosine was also 

essential for interaction with the Y402 domain in the EpoR. Mutation of this tyrosine 

also abrogated the inhibitory action of CIS on EpoR signalling. In contrast, this 

phenomenon was not observed for interaction of CIS with the unrelated MyD88 

protein, a universal adaptor protein in TLR signalling.  

Conversely, the SOCS-box of the other examined SOCS proteins was not involved in 

association with the cytokine receptor motifs that were studied. 
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Summary 

Proteins of the Suppressors of Cytokine Signaling (SOCS) family are characterised by 

a conserved modular structure with pre-SH2, SH2 and SOCS-box domains. Several 

members including CIS, SOCS1 and SOCS3 are rapidly induced upon cytokine 

receptor activation and function in a negative feedback loop, attenuating signalling at 

the receptor level. We used a recently developed mammalian two-hybrid system 

(MAPPIT) to analyse SOCS protein interaction patterns in intact cells, allowing direct 

comparison with biological function. We find that, besides the SH2 domain, the C-

terminal part of the CIS SOCS-box is required for functional interaction with the 

cytokine receptor motifs examined, but not with the N-terminal Death Domain of the 

TLR adaptor MyD88. Mutagenesis revealed that one single tyrosine at position 253 is 

a critical binding determinant. Much in contrast, substrate binding by the highly 

related SOCS2 protein, and also by SOCS1 and SOCS3, does not require their SOCS-

box. 

 

Introduction 

A wide spectrum of α-helical bundle cytokines contributes to growth, differentiation 

and survival of hematopoietic cells. Examples include the colony-stimulating factors 

(CSFs), erythropoietin (Epo) and several interleukins (ILs) such as IL-5. More 

recently, also leptin, a hormone-like member of this family, was shown to promote 

proliferation of hematopoietic progenitors [1-3]. All these cytokines activate the 

highly conserved JAK/STAT signalling pathway upon receptor binding. Signalling via 

these receptors is under tight control including negative feedback by rapidly induced 
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SOCS proteins. CIS was the founding member of the SOCS protein family that 

consists of 8 members: SOCS1-7 and CIS [4,5]. All SOCS proteins comprise an SH2-

domain responsible for association with phosphotyrosine motifs, an N-terminal 

preSH2-domain and a C-terminal SOCS-box [5]. They can modulate receptor 

activation and signalling via at least three distinct mechanisms.  

CIS can inhibit Epo and growth hormone (GH) signalling by competition for STAT5 

docking sites at the receptor level [6-8]. Consistent with this, CIS suppresses Epo-

induced cell proliferation and promotes apoptosis of erythroid progenitor cells [9,10]. 

Phenotypes of CIS transgenic mice and of STAT5a and/or b knockout mice show 

clear similarities, lending further support for CIS as a specific negative feedback 

regulator of STAT5-mediated cytokine signalling [4,6,7,11]. Direct interference with 

STAT5 recruitment is also suggested for SOCS2-mediated inhibition of GH action 

[12,13]. Interestingly, SOCS2 shows a dual effect on GH signalling. Mice lacking 

SOCS2 and SOCS2 transgenic mice both exhibit increased growth [12,14,15]. This 

may be explained through direct binding and functional interference between SOCS 

proteins [16,17].  

CIS-dependent receptor degradation was reported for the EpoR and GHR [6,18]. The 

SOCS-box of SOCS proteins can interact with the Elongins B and C [19], which form 

a complex with proteins of the Cullin and Rbx families. This assembly is a E3 

ubiquitin ligase complex that is responsible for specific targeting of associated 

proteins for poly-ubiquitination [20]. This way, several SOCS proteins can inhibit 

signalling by marking associated signalling components for proteasomal degradation.  

SOCS1 and -3 carry a KIR (kinase inhibitory region) domain in their N-terminal region 

that acts as a pseudo-substrate for direct inhibition of JAK kinase activity. SOCS1 

interacts directly with the phosphorylated activation loop of JAK2 via its SH2 domain 

[21] while SOCS3 shows only weak affinity for JAK2 and is thought to bind to the 

receptor in close proximity of the kinase [22]. This is exemplified for SOCS3 that was 

recently identified as a potent inhibitor of LR signalling involved in regulation of 

energy balance. SOCS3 haplo-insufficient mice or neural cell-specific SOCS3 knockout 

mice show augmented leptin sensitivity in the hypothalamus associated with a 

remarkable attenuation of diet-induced obesity, suggesting a key role for SOCS3 in 

leptin resistance [23,24].  
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SOCS proteins are also involved in regulating JAK-STAT independent pathways such 

as insulin and TNF-α signalling [25-27]. Also, triggering of Toll-like receptors (TLRs), 

key players in innate immunity, leads to the induction of CIS, SOCS1 and SOCS3 [28-

30]. Evidence linking SOCS proteins to TLR signalling arose from the analysis of 

SOCS1-deficient mice that show enhanced sensitivity to LPS-induced sepsis [31,32] 

and from SOCS1-deficient mice that lack endotoxin tolerance. Moreover, 

macrophages lacking SOCS1 produce increased levels of nitric oxide and pro-

inflammatory cytokines in response to LPS. Conversely, SOCS1 over-expression in 

macrophages suppresses LPS-induced NF-κB activation. Based on these data, SOCS1 

was prompted as a negative regulator of TLR signalling, although no direct target of 

SOCS1 could be identified. Recently, two groups reported that SOCS1 has an indirect 

inhibitory effect on TLR signalling, targeting the secondary type I IFN signalling 

pathway and not the main NF-κB pathway [30,33]. 

In this paper we examine the binding modalities of SOCS proteins in more detail. We 

demonstrate that the SOCS-box of CIS, and more particularly its C-terminal tyrosine, 

is essential for interaction with recruitment motifs in the EpoR and LR and for its 

inhibitory role on STAT5 activation. In contrast, the SOCS-box is not required for 

SOCS2 receptor interaction or for signalling inhibition by SOCS1 and SOCS3. 

Furthermore, we identified the universal TLR adaptor MyD88 as a target for CIS. This 

interaction is SOCS-box-independent, indicating a different binding modus compared 

to the cytokine receptors. 

 

Experimental Procedures 

Constructs 

Generation of the mutant murine LRs by mutagenesis and cloning in the pMET7 

expression vector was published elsewhere [34]. EpoR-bait constructs containing 2 

extra leucines in the transmembrane were described before [35]. The pXP2d2-rPAPI-

luciferase reporter, originating from the rPAPI (rat pancreatitis associated protein I) 

promoter was used as previously described [36]. The pGL3-beta-casein-luciferase 

reporter consisting of 5 repeats of the STAT5-responsive motif of the β-casein 

promoter was a gift from Dr. Ivo Touw. Generation of the prey constructs pMG2-CIS 

and pMG2-SOCS2 was described before [35]. 
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CISd5, CISdbox (aa 1-221) , CISY249F and CISY253F prey constructs were 

generated by site directed mutagenesis on pMG1-CIS using following primer pairs:  

CISd5:  

5’-GACTACCTCCGACAGTGATATCTCCAACTCTGATCTAG-3’ and  

5’ CTAGATCAGAGTTGGAGATATCACTGTCGGAGGTAGTC-3’,  

CISdbox: 

5’-GTGCGCAGGAGCAGTTGATATCGCTTACAACATCTGTG-3’ and  

5’-CACAGATGTTGTAAGCGATATCAACTGCTCCTGCGCAC-3’,  

CISY249F:  

5’-GGCGTATGGCCGACTTCTTAAGACAGTACCCCTTCC-3’ and  

5’-GGAAGGGGTACTGTCTTAAGAAGTCGGCCATACGCC-3’,  

CISY253F:  

5’-GACTACCTCCGACAGTTCCCCTTCCAGCTGTGATCTAGAGAAAAAACCTCC-3’ and 5’-

GGAGGTTTTTTCTCTAGATCACAGCTGGAAGGGGAACTGTCGGAGGTAGTC-3’,  

The CIS mutants were then transferred to the pMG2 vector and the pMET7-FLAG 

expression vector by EcoRI-XbaI cloning.  

SOCS2Y149F was generated using the previously described pMG1-SOCS2 as 

template [36] and the primer set  

5’-GCAGAATTCACCCTGCGGTGCCTGGAGCC-3’ and 

5’-CGCTGCGGCCGCTTATACCTGGAATTTGAATTCTTCCAAGTAATC-3’  

and was first cloned in the pMG1 vector as an EcoRI-NotI fragment, and then 

transferred to the pMG2 vector using EcoRI-XbaI. SOCS2Y190F and SOCS2dbox (aa 

1-159) were amplified from the pEF-FLAG-I/mSOCS2 construct (gift from Dr. Starr) 

using the  

5’-GCAGAATTCACCCTGCGGTGCCTGGAGCC-3’ and the 

5’-

GGTCGTCTAGAGCGGCCGCTTATACCTGGAATTTATATTCTTCCAAGAAATCTTTTAGTCTT

GTTG-3’ and  

5’-GCTGGGCGGCCGCTTATGATGTATACAGAGGTTTGG-3’ primers respectively, and 

were also cloned in the pMG2 vector. SOCS2 was transferred from the pMG2 vector 

to the pMET7-FLAG expression vector as an EcoRI-XbaI or EcoRI-NotI fragment. 

The pMET7-FLAG-SOCS3 expression vector was described elsewhere [37]. 

SOCS3dbox was amplified from the pMET7-FLAG-SOCS3 template using primers  
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5’-GCGAGATCTCAGAATTCGTCACCCACAGCAAGTTTCC-3’ and  

5’-CGCTTCTAGATTAGTTGGAGGAGAGAGGTCGG-3’ allowing EcoRI-XbaI based cloning 

in the pMet7-FLAG vector.  

The pMet7-FLAGmSOCS1 and pMet7-FLAGmSOCS1dbox constructs were generated 

by amplifying SOCS1 and SOCS1dbox from the pEF-FLAG-I/mSOCS1 construct (gift 

from Dr. Starr) with the  

5’-CCAGCGAATTCATGGCGCGCCAGGACTACAAGGAC-3’ and  

5’-GGTCGTCTAGATCAGATCTGGAAGGGGAAGGAAC-3’ or  

5’-GGTCGTCTAGATCAGCGGCGCTGGCGCAGCGGGGCCCCCAAC-3’ primer sets, 

respectively and EcoRI-XbaI cloning in the pMet7-FLAG vector.  

EpoR cDNA was amplified from TF1-derived using primers  

5’-CGGGGTACCATGGACCACCTCGGGGCGTCC-‘3 and 

5’- CGCTCTAGACTAAGAGCAAGCCACATAGC-3’ and was cloned in the pSVsport vector 

by KpnI-XbaI cloning. The pECE-STAT5B expression vector was a gift from Dr. 

Becker. 

Mouse full-length MyD88 was amplified using the  

5’-GCGCGAGCTCAATGTCTGCGGGAGACCCCCGCG-3’ and 

5’-GCGTGCGGCCGCTCAGGGCAGGGACAAAGCC-3’ primer pair on a pCAGGSE-

mMyD88 expression vector (gift from Dr. Beyaert). After SacI/NotI digestion, the 

fragment was cloned in the pCEL(2L) vector, which was described earlier [35]. This 

resulted in the mMyD88 bait construct. The mMyD88(N) and the mMyD88TIR bait 

vectors were made in an analogous manner using primer pairs  

5’-GCGCGAGCTCAATGTCTGCGGGAGACCCCCG-3’ /  

5’-GCTCGCGGCCGCTTACGTTTGTCCTAGGGGGTC-3’   

and  

5’-GCGCGAGCTCAATGCCGGAACTTTTCGATGCC-3’ /  

5’-GCTCGCGGCCGCTCAGGGCAGGGACAAAGCC-3’ respectively. 

The pCAGGSE-mMyD88(N) and pCAGGSEmMyD88 DD expression vectors were 

generated by amplification using oligo pairs   

5’-GGCAAAGAATTGAATTCCACCATGGGTGCGC-3’ /  

5’-GCGCCTCGAGTCAAAGTTCCGGCGTTTGTCCTAGGGGGTC-3’ and  

5’-GGCAAAGAATTGAATTCCACCATGGGTGCGC-3’/  
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5’-GCGCCTCGAGTCAGACAGACGCGCCAGAGCGCCCCTGCC-3’ respectively on 

pCAGGSE-mMyD88, followed by a EcoRI/XhoI digestion and ligation in the pCAGGSE 

vector. 

 

1. Extracellular EpoR - Intracellular LRF3 (Y985F-Y1077F-Y1138F) bait constructs 

 Bait protein 

Mock bait No bait 

EpoRY402 bait Y402 motif of the EpoR 

EpoRY430/Y432 bait Y430/Y402 motif of the EpoR 

mMyD88 bait MyD88 

mMyD88(N) bait N-terminal part of MyD88  

(Death Domain and intermediate domain) 

mMyD88(TIR) bait C-terminal TIR domain of MyD88 

 

2. Extracellular LR – Intracellular LR bait constructs  

LR(F3) LR (Y985F-Y1077F-Y1138F) 

LR(YYF) LR (Y1138F) 

LR(YFF)  LR (Y1077F-Y1138F) 

LR(FYF) LR (Y985F-Y1138F) 

 

3. Non-MAPPIT receptor constructs 

EpoR WT EpoR 

LR(FFY) LR (Y985F-Y1077F) 

LR(YFY) LR (Y1077F) 

 

Table 1: overview of the bait constructs used in this study 

 

Generation of the pMET7TAP2 construct was described elsewhere [17]. CIS, 

CISdbox, CISY249F and CISY253F were introduced in a TAP2 construct via EcoRI-

KpnI cloning from the respective pMG2 constructs.  

An overview of the bait constructs used in this study is given in Table 1. 

 

Cell culture, transfection and reporter assays 

Cell culture conditions, transfection procedures and luciferase assays for Hek293T 

cells were previously described [37]. For a typical luciferase experiment, 4x105 cells 

were seeded in 6-well plates 24 hours before transfecting them overnight with the 

desired constructs together with the luciferase reporter gene. Cells were left 
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untreated (negative control NC) or were stimulated overnight with 100 ng/ml leptin 

or 3.3 ng/ml Epo and luciferase activity of the transfected cells was measured by 

chemiluminescence. 

 

Co-immunoprecipitation  

Approximately 2 x 106 Hek293T cells were transfected with different combinations of 

mMyD88-E, mMyD88(N), mMyD88 DD, mCIS-FLAG, mCISY253F and mCISdBox. 

Cleared lysates (modified RIPA lysis buffer: 200mM NaCl, 50mM Tris-HCl pH8, 0,05% 

SDS, 2mM EDTA, 1% NP40, 0,5% DOC, Complete™ Protease Inhibitor Cocktail 

(Roche)) were incubated with 4 µg/ml anti-FLAG mouse monoclonal antibody 

(Sigma) and protein G-sepharose (Amersham Biosciences). After 

immunoprecipitation, SDS-PAGE and Western Blotting, interactions were detected 

using anti-E-Tag antibody (Amersham Biosciences) and anti-mouse-HRP (horseradish 

peroxidase) (Amersham Biosciences). 

 

Phosphopeptide affinity chromatography 

The phosphopeptide affinity chromatography procedure was as previously described 

[37]. 

 

Electrophoretic mobility shift assay (EMSA) 

Hek293T cells transiently transfected with the desired constructs were starved for 4 

hours in serum-free medium and subsequently stimulated with 5 ng/ml Epo for 15 

min or were left untreated. Protein concentrations of the nuclear extracts were 

measured with the BioRad protein assay. Double-stranded oligonucleotides based on 

the β-casein promoter (sense: CAGATTTCTAGGAATTC; antisense: GGATTTGAATTCC 

TAGAAATC) were labelled by filling in 5’ protruding ends with Klenow enzyme, using 

[α-32P]dATP (3,000 Ci/mmol; 10 mCi/ml). This probe binds STAT5 homodimers. 

Nuclear extracts (5 µg of protein) were incubated with about 10 fmol (20,000 cpm) 

of probe in gel-shift incubation buffer (10 mM HEPES pH 7.8, 1 mM EDTA, 5 mM 

MgCl2, 5% glycerol, 5mM DTT, 2 mM pefablock SC, 1 mg/ml BSA, 0.1 mg/ml poly 

(dI-dC)) for 10 min at room temperature (RT). The supershifting anti-STAT5 

antibodies were incubated with the nuclear extracts for 10 min at KT before addition 

of the radio-labelled β-casein probe. The protein-DNA complexes were separated on 
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a 4.5%-(w/v)-polyacrylamide gel containing 7.5 % glycerol in 0.5-fold TBE at 20V/cm 

for 90 min. Gels were fixed in water/methanol/acetic acid (80:10:10, by vol.) for 30 

min, dried and autoradiographed.  

 

TAP2 purification and mass spectrometry 

Hek293T cells were transfected with the appropriate TAP2 constructs. The TAP2 

purification procedure was followed as described previously [17]. Proteins were 

visualised on a polyacrylamide gel by silver staining, or for mass-spectrometry 

analysis with Sypro Ruby protein gel stain according to the manufacturers’ 

instructions (Molecular probes). Proteins of interest were excised, prepared for mass 

spectrometry and applied for nano-LC-MS/MS analysis on an Ultimate (Dionex, 

Amsterdam, The Netherlands) in-line connected to an Esquire HCT ion trap (Bruker 

Daltonics, Bremen, Germany). 

 

Modeling method 

Molecular models were built for the CIS-elonginB-elonginC complex, using the crystal 

structure of the SOCS2-elonginB-elonginC complex as a template [38]. The 

sequences of CIS and SOCS2 were automatically aligned using the sequence 

alignment editor of moe (chemical computing group). Using this alignment, 150 

models were built for the CIS-elonginB-elonginC complex in MODELLER version 8.1 

[39], 10 models with the best DOPE and molpdf scores were selected, and 

evaluated. 

 

Results 

Design of MAPPIT experiments 

We previously reported a new two-hybrid method to study protein-protein 

interactions in intact mammalian cells, termed MAPPIT (MAmmalian Protein-Protein 

Interaction Trap) [36]. Briefly, a bait protein is C-terminally linked to a chimeric 

EpoR/LR that is deficient in STAT3 recruitment, whilst a prey protein is attached to 

the string of 4 functional STAT3 recruitment sites of gp130. Association of bait and 

prey leads to STAT3 activation and subsequent activation of the STAT3-responsive 

rat Pancreatitis Associated Protein I (rPAPI) promoter-luciferase reporter. To examine 
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interactions with the EpoR, we used its intracellular receptor tyrosine motifs as baits. 

We also analysed interactions with the LR itself by mutating the STAT3 recruiting 

Y1138 to phenylalanine. One or both of the two membrane-proximal tyrosines at 

positions Y985 and Y1077 were mutated to phenylalanine to examine tyrosine-

specific interactions. These LR mutants were termed LR(YFF) and LR(FYF). MAPPIT 

configurations used in this manuscript are shown in Figure 1A. 

 

 

 

Figure 1: MAPPIT.  
A. MAPPIT, a cytokine receptor-based two-hybrid method, is displayed in the left panel, with the 
various receptor motifs used in this study. The right panel shows a variant of the MAPPIT technique 
using the STAT3 signalling-deficient LR as bait. Both MAPPIT methods are described in more detail in 
the results section.  
B, Schematic structure of SOCS proteins. Conserved tyrosines in the SOCS-box are indicated with a 
black box. 
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The C-terminus of CIS but not of SOCS2 is required for receptor binding 

We recently showed interaction of CIS and SOCS2 with the EpoR and the LR. CIS 

and SOCS2 both interact with Y402 and to a lesser extent also with Y344 and the 

double Y430/Y432 motifs of the EpoR, and with the Y1077 position in the LR. 

Although both are highly related, only CIS associated with Y985 of the LR and only 

SOCS2 with the pY480 motif of the EpoR [17,35]. Here we examine the binding 

modus of CIS and SOCS2 in more detail. It is well established that interaction of 

SOCS proteins with their receptor targets depends on their SH2 domains [40,41]. 

Figure 1B shows a diagrammatic presentation of the structure of SOCS proteins. For 

MAPPIT use, CIS and SOCS2 preys were generated by N-terminal fusion with part of 

gp130. Figure 2A shows the critical requirement of the CIS SOCSbox for CISprey 

binding to the EpoRY402 motif in a MAPPIT experiment. C-terminal deletion of the 

entire SOCS-box resulted in complete loss of MAPPIT signalling. Detailed mapping 

showed that deletion of the 5 C-terminal aa and even a single Y253F mutation leads 

to impaired MAPPIT signalling (Figure 2A). In contrast, no effect was observed upon 

replacing the second conserved tyrosine at position 249 with phenylalanine. We next 

performed a similar analysis for SOCS2. Here, deletion of the entire SOCS-box, or Y 

to F mutation of both conserved tyrosines did not significantly affect signalling 

(Figure 2B). Very similar observations were obtained in MAPPIT experiments for the 

EpoR Y430/Y432 motif (Figure 2C). In figure 2D we further expand this dataset to 

the LR Y985 and Y1077 positions, demonstrating that these findings are not limited 

to the EpoR system. 

CIS binding to the EpoR pY402 motif was also evaluated by phosphopeptide affinity 

chromatography. Figure 2E clearly shows loss of CIS binding by deletion of the 

SOCSbox or by introduction of the single Y253F mutation. In contrast to the MAPPIT 

dataset, complete loss of binding is also observed with the Y249F mutant. This may 

be explained by a lowered binding affinity so that the interaction with the EpoR 

pY402 motif is still detected with MAPPIT but not with peptide affinity 

chromatography. In line with such assumption, MAPPIT detects interactions without 

the need for any purification step.  
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Figure 2: The CIS C-terminus is critical for interaction with EpoR motifs.  
A. Interaction of CISprey mutants with EpoRY402. Hek293T cells were transiently co-transfected with 
plasmids encoding the EpoRY402 bait, various mutants of the pMG2-CIS prey construct and with the 
pXP2d2-rPAP1-luci reporter. After transfection, cells were left untreated (NS) or were stimulated with 
Epo for 24 hours. Luciferase activities were measured in triplicates. All preys were also tested for 
interaction with a “mock bait” lacking an EpoR tyrosine motif, and consistently showed absence of any 
signaling (data not shown). Data are expressed as ratio stimulated/NS and s.d. of triplicate 
measurements are plotted.  
B. Interaction of SOCS2prey mutants with EpoRY402. Hek293T cells were transiently co-transfected 
with plasmids encoding the EpoRY402 bait, various mutants of the pMG2-SOCS2 prey construct and 
with the pXP2d2-rPAP1-luci reporter. After transfection, cells were left untreated (NS) or were 
stimulated with Epo for 24 hours. Luciferase activities were measured in triplicates. All preys were also 
tested for interaction with a “mock bait” lacking the EpoR motif, and consistently showed absence of 
any signaling (data not shown). Data are expressed as ratio stimulated/NS + s.d.  
C. Interaction of CIS/SOCS2prey mutants with EpoRY430/Y432. Hek293T cells were transiently co-
transfected with plasmids encoding the EpoRY430/Y432 bait, various mutants of the pMG2-CIS and 
pMG2-SOCS2 prey constructs and with the pXP2d2-rPAP1-luci reporter. After transfection, cells were 
left untreated (NS) or were stimulated with Epo for 24 hours. Luciferase activities were measured in 
triplicates. All preys were also tested for interaction with a “mock bait” lacking the EpoR motif, and 
consistently showed absence of any signaling (data not shown). Data are expressed as ratio 
stimulated/NS+ s.d.   
D. Interaction of CIS/SOCS2prey mutants with the LR(YFF) and LR(FYF). Hek293T cells were 
transiently co-transfected with plasmids encoding different LR tyrosine mutants, various mutants of 
the pMG2-CIS or pMG2-SOCS2 prey constructs and with the pXP2d2-rPAP1-luci reporter. The 
transfected cells were either stimulated for 24 hours with leptin or were left untreated (NS). Luciferase 
measurements were performed in triplicate. All preys were also tested for interaction with the LR 
lacking intracellular tyrosines and consistently showed absence of any signaling (data not shown). 
Data are expressed as ratio stimulated/NS+ s.d.   
E. Peptide affinity chromatography. Hek293T cells were transfected with various mutants of CIS or 
SOCS2. The lysates were incubated with the (phospho-)tyrosine peptides corresponding to the Y402 
motif of the EpoR. Specific protein binding was revealed by SDS-PAGE and immunoblotting using the 
anti-FLAG antibody. 
 

 

No role for the SOCS1 and SOCS3 SOCS-box for receptor binding 

We also examined the role of the SOCS-box for the inhibitory function of SOCS1 and 

SOCS3. In this assay system, with clear inhibition of EpoR and LR signal transduction 

by co-expression of SOCS1 and SOCS3, deletion of the complete SOCS-box of SOCS1 

or SOCS3 did not significantly alter the inhibitory effect (Figure 3A-B). We conclude 

that the SOCS-box of SOCS1 and 3, in analogy with SOCS2, does not contain critical 

determinants involved in substrate binding. This highlights the unique new property 

of the CIS SOCS-box, which we next evaluated in more detail.  
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Figure 3: The C-terminus of SOCS1 and SOCS3 is not essential for signalling inhibition.  
A-B. Inhibition of EpoR and LR signalling by SOCS1/SOCS3 mutants. Hek293T cells were transiently 
co-transfected with plasmids encoding different LR tyrosine mutants or EpoR, various mutants of 
SOCS1 and SOCS3 and with the pXP2d2-rPAP1-luci reporter. The LR tyrosine mutants are used to 
minimize interference of other inhibitors. The transfected cells were either stimulated for 24 h with 
ligand or were left untreated (NS). Luciferase measurements were performed in triplicate. Data are 
expressed as ratio stimulated/NS+ s.d. 
 

Critical role of Y253 in CIS function 

We first investigated the functional implications of the CIS SOCS-box mutations. CIS 

operates in a classical negative feedback loop on EpoR signalling: it is rapidly and 

strongly induced by activated STAT5 upon EpoR activation, subsequently binds to the 

Y402 site in the EpoR, and there inhibits STAT5 activation. We first looked at the 

effect of CIS mutations on STAT5-dependent β-casein reporter activity using the 

EpoR Y402 bait. Wild-type CIS clearly abrogated reporter induction as expected. In 

contrast, co-expression of mutant proteins with C-terminal deletion of the SOCS-box, 

or with the Y253F mutation was unable to impair reporter induction. The CIS Y249F 

mutant inhibited signalling to a similar extent as wild type CIS protein (Figure 4A). 

Expression of all CIS variants was verified via Western blot (not shown). 
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Figure 4: Critical role of CIS C-terminus in blocking STAT5 activation.  
A. STAT5 reporter assay using the EpoRY402 motif. Hek293T cells were transiently co-transfected 
with plasmids encoding the EpoRY402 bait, various mutants of FLAG-tagged CIS and with the pGL3-
5xbeta-casein-luci reporter. After transfection, cells were left untreated (NS) or were stimulated with 
Epo for 24 hours. Luciferase activities were measured in triplicates. Data are expressed as ratio 
stimulated/NS + s.d.  
B, EMSA using the EpoRY402 motif. Hek293 Flp-In cells were transiently co-transfected with plasmids 
encoding the EpoR Y402 bait, various FLAG-tagged CIS mutants and STAT5B. Nuclear lysates were 
incubated with 32P labelled probe corresponding to a β-casein STAT5 binding site to reveal active 
STAT5 complexes.  
C, STAT5 reporter assay using the WT-EpoR. Hek293T cells were transiently co-transfected with 
plasmids encoding the EpoR, various mutants of FLAG-tagged CIS and with the pGL3-5xbeta-casein-
luci reporter. After transfection, cells were left untreated (NS) or were stimulated with Epo for 24 
hours. Luciferase activities were measured in triplicates. Data are expressed as ratio stimulated/NS + 
s.d. 
 

Confirmation was obtained using electrophoretic mobility shift assays. A 32P labelled 

probe corresponding to a β -casein STAT5 binding site was used to visualise bound 

STAT5 complexes. Whilst wild-type CIS clearly suppressed the formation of nuclear 

STAT5-DNA complexes, deletion of the complete SOCS-box, as well as the Y253F 

mutant, resulted in loss of inhibition (figure 4B). Again, the Y249F mutant behaved 

as wild-type CIS. Supershift with anti-FLAG antibody confirmed the presence of 

STAT5B in the complexes (not shown).  

Reporter assays were also performed on the wild-type EpoR. Although the effects 

were less pronounced, the tendencies clearly corresponded to what we observed for 
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the EpoR bait construct (figure 4C). This weaker effect is most likely explained by the 

incomplete overlap of STAT5 and CIS binding sites [6,35]. 

 

CIS interaction with MyD88 does not depend on its SOCS-box  

SOCS proteins are also rapidly induced after Toll-like receptor stimulation. However, 

no interaction partner of the SOCS proteins in TLR signalling has been described so 

far. A possible target of SOCS proteins in TLR signalling is the adaptor protein 

MyD88, which is used by most TLRs. To investigate this possibility, we performed 

MAPPIT analysis using MyD88 as bait and the CISprey. As shown in Figure 5A, we 

observed clear induction of luciferase activity implying interaction between CIS and 

MyD88. To investigate the role of the SOCS-box of CIS in this interaction, we next 

analysed the effect of the abovementioned CIS mutants.  Much in contrast to 

association of CIS with the EpoR and LR, interaction between MyD88 and CIS was 

not affected by any CIS mutation, including deletion of its entire SOCS-box.  These 

data were confirmed by co-immunoprecipitation (figure 5B). Here, we transiently co-

expressed E-tagged MyD88 (MyD88-E) and FLAG-tagged CIS (CIS-FLAG), CIS Y253F 

(CISY253F-FLAG) or CIS lacking its SOCS-box (CISdBox-FLAG). In every case, 

MyD88-E was co-immunoprecipitated using an anti-FLAG antibody.  

MyD88 consists of two interaction domains: a C-terminal ‘TIR’ domain and a N-

terminal ‘Death Domain’, linked together by a short intermediate domain. To 

examine the role of either domain in CIS binding, we created MAPPIT baits 

containing the N-terminal part of MyD88 encompassing the Death Domain and the 

intermediate domain, or the C-terminal TIR domain. MAPPIT analysis clearly shows 

that only the N-terminal part of MyD88 interacts with CIS (figure 5C). Again, co-

immunoprecipitation studies confirmed these findings (figure 5D). Together, we here 

clearly document a role for the MyD88 Death Domain in CIS recruitment, and show 

that this interaction solely depends on the CIS SH2 domain. 

 

C-terminal mutations in CIS do not affect Elongin B/C and cullin5 

recruitment 

We used a variant of the Tandem Affinity Purification (TAP) method developed by 

Puig and co-workers [42] (S.E., unpublished results) to analyse protein complexes of 

CIS and its mutants. Cullin5 and Elongins B and C were identified as interacting 
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partners of CIS. While deletion of the complete SOCS-box of CIS abrogates their 

association, mutation of the tyrosines at position 249 or 253 to phenylalanine did not 

significantly influence Cullin5 or Elongin B and C binding (Figure 6A). 
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Fig. 5. The SOCS-box of CIS is not critical for interaction with MyD88.  
A, Interaction of MyD88 and CIS prey constructs. Hek293T cells were transiently co-transfected with 
the MAPPIT mock bait or the mMyD88 bait plasmid (0.1 µg), various CIS or CIS-mutant prey (0.5 µg) 
constructs and with the pXP2d2-rPAP1-luci reporter (0.2 µg). MyD88 prey was used as a positive 
control. The transfected cells were either stimulated for 24 h with Epo or were left untreated (NS). 
Luciferase measurements were performed in triplicate. Data are expressed as ratio stimulated/NS + 
s.d.  
B, Co-immunoprecipitation analysis. Hek293T cells were transiently co-transfected with combinations 
of mMyD88-E, mCIS-FLAG, mCISY253F and mCISdBox. Cell lysates were immunoprecipitated (IP) 
with anti-FLAG and subsequently immunoblotted (IB) with anti-E.  
C, Role for the N-terminal domain of MyD88 in CIS binding. Hek293T cells were transiently co-
transfected with the MAPPIT mock bait, the mMyD88(N) bait or the mMyD88TIR bait vectors  (0.1 
µg), various CIS or CIS-mutant prey (0.5 µg) constructs and with the pXP2d2-rPAP1-luci reporter (0.2 
µg). The MyD88 prey construct was used as a positive control. The transfected cells were either 
stimulated for 24 h with Epo or were left untreated (NS). Luciferase measurements were performed in 
triplicate. Data are expressed as ratio stimulated/NS + s.d.  
D. Co-immunoprecipitation analysis. Hek293T cells were transiently co-transfected with combinations 
of mMyD88(N)-E, and mCIS-FLAG. Cell lysates were immunoprecipitated (IP) with anti-FLAG and 
subsequently immunoblotted (IB) with anti-E. 
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Modeling of the SOCS-box of CIS 

We used the crystal structure of the SOCS2-elongin C-elongin B complex [38] to 

build a molecular model for CIS, bound to Elongin B and C (Figure 6C). This model, 

together with sequence alignment with other SOCS proteins (Figure 6B) showed that 

residues involved in Elongin C binding are very conserved.  As for SOCS2, the C-

terminal residues of CIS, mutated in this work are not part of its actual Elongin C-

binding site and mutation of the C-terminus of CIS is thus not predicted to directly 

affect Elongin C binding.  As in SOCS2, the C-terminus of CIS is buried in the 

interface between the SH2 domain and the SOCS-box domain. The hydroxyl group of 

the completely buried Y253 hydrogen bonds to the buried C-terminal carboxyl group. 

The C-terminus of CIS or SOCS2 is not able to make direct contact with a 

phosphopeptide substrate bound to the SH2 domain (Figure 6C). 

 

Discussion 

SOCS proteins typically consist of a phosphotyrosine binding SH2 domain, a C-

terminal SOCS-box involved in proteasome recruitment and a pre-SH2 domain that 

only in the case of SOCS1 and SOCS3 contains a JAK kinase blocking KIR domain. 

Association of SOCS proteins with their target substrates is believed to occur solely 

via their SH2 domain. We here took a closer look at the binding modus of SOCS 

proteins using the MAPPIT approach, combined with biochemical and functional 

analyses.  

A key finding is that the SOCS-box of CIS is essential for association with recruitment 

motifs in cytokine receptors including the EpoR and LR. Deletion of the entire SOCS-

box completely abrogated binding, and more detailed mutagenesis analysis revealed 

the critical role of the single C-terminal Y253 residue. These findings were confirmed 

by peptide affinity chromatography using the phosphorylated or non-phosphorylated 

EpoRY402 motif. Furthermore, reporter assays and EMSA experiments extended 

these findings to functional activation of STAT5. Indirect effects of the mutations on 

the structural integrity of CIS could be ruled out since clear SOCS-box-independent 

interaction was observed with the unrelated MyD88 protein as bait. Association of 

the Y249F CIS mutant with the EpoR PY402 motif could not be demonstrated by 

peptide affinity chromatography, suggesting Y249 might serve a similar role as Y253. 
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However, MAPPIT experiments showed indisputable association of this CIS mutant 

with the same EpoRY402 motif. Only this latter interaction was functionally confirmed 

by the clear inhibitory effect seen in EpoRY402-dependent STAT5 recruitment and 

activation. The Y249F mutant thus only modestly reduced binding affinity compared 

to wild-type CIS. This reduced binding affinity of CISY249F completely abolished 

binding with the EpoR pY402 motif in a peptide affinity chromatography experiment, 

much in contrast with MAPPIT.  The MAPPIT technique therefore reveals itself as a 

sensitive tool for the identification of weaker, but functionally highly relevant protein 

interactions.  

In line with our findings that the SOCS-box of CIS is essential for EpoR association, 

Ketteler et al. previously reported that the SOCS-box of CIS is essential for the 

apoptotic effect of CIS on erythroid progenitor cells. Seemingly contradictory to our 

observations they also found that the SOCS-box of CIS was not required for 

inhibition of EpoR-induced proliferative responses [10]. However, this anti-

proliferative effect may be due to CIS interference with intermediate signalling 

molecules coupling to the cell cycle. CIS can indeed associate with downstream 

effector molecules in a SOCS-box independent modus as we showed for MyD88.  

This critical role of the CIS SOCS-box in substrate binding may be a unique feature of 

CIS, and was not seen for the highly related SOCS2 protein, or for SOCS1 and -3. 

The corresponding mutation of the conserved tyrosine in the SOCS-box of SOCS2 or 

even deletion of its entire SOCS-box did not show any significant effect on receptor 

association. Likewise, the inhibitory effect of SOCS1 and SOCS3 on cytokine receptor 

signalling was hardly affected by removal of the SOCS-box. Previously, the SOCS-box 

of SOCS1 was also reported dispensable for LIF, IL-6 and GHR signalling inhibition 

but not for G-CSF signal transduction [40,41,43,44]. In vivo deletion of the entire 

SOCS-box of SOCS1 however leads to partial loss of SOCS1 function [45], most likely 

reflecting its role in Elongin B/C binding, thus establishing an E3 ubiquitin ligation 

complex leading to proteasomal degradation of associated receptor complexes. 

Using MAPPIT, we could also demonstrate the association of CIS with the universal 

TLR adaptor MyD88. This interaction was confirmed by co-immunoprecipitation. In 

contrast to the data described above, mutation of the conserved C-terminal tyrosine 

at position 253 to phenylalanine or deletion of the complete SOCS-box of CIS had no 

effect at all on MyD88 binding. Further analysis of this association revealed a critical 
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role for the Death Domain of MyD88 in CIS binding. More studies are required to 

elucidate the functional consequences of this interaction. We also observed 

interaction of other members of the SOCS protein family with MyD88 and its splicing 

variant lacking the intermediate domain (P.U., unpublished results), and structural 

and functional analyses of these interactions are ongoing. Interestingly, our results 

imply differential modulation by CIS of signalling via cytokine receptors and Toll-like 

receptors. 

 
Figure 6: Role of the CIS C-terminus in ElonginB/C association.  
A, TAP2 purification using CIS mutants. Hek293T cells were transiently transfected with various 
mutants of the pMet7TAP2-CIS construct. Cell lysates were purified by the TAP2 method and were 
then loaded on 14% polyacrylamide gel. After silver-staining the protein bands indicated with an 
arrow were analysed by mass spectrometry and identified as the annotated protein.  
B. Sequence alignment of SOCS-boxes. SOCS-box sequences of murine SOCS1,2 and 3 and CIS were 
aligned using the t_coffee algorithm. An arrow indicates the Y253 positions. Increasing grey shading 
corresponds with increasing % identity. 
C.  Homology model of mouse CIS, in complex with Elongin C and B.  The CIS SOCS-box is shown in 
black.  The position of the phosphopeptide substrate in the model is indicated by a sulphate ion, 
copied from the SOCS2 template structure, that mimics the phosphate group of the phosphopeptide 
substrate. Y253 hydrogen bonds with the C-terminal carboxyl group. 
D. Crystal structure of VHL protein (1LQB), bound to its hydroxylated HIF-1α substrate (black), and to 
Elongins C and B.  The pVHL SOCS-box and the hydroxyproline binding domain are in black.  The 
extra C-terminal helix (dark grey) is indicated.  
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A crystal structure for SOCS2 in a complex with elongin C and B was recently 

determined [38]. A molecular model was built for the CIS-elonginC-elonginB complex 

in order to get structural insight into the role of the CIS C-terminus on substrate 

recognition. In the SOCS2 structure and the CIS model, the C-terminus is buried in 

the interface between the SH2 domain and the SOCS-box excluding the possibility 

that this C-terminus could make direct contact with a phosphopeptide substrate 

bound to the SH2 domain (figure 6C). In both CIS and SOCS2, the hydroxyl group of 

the last tyrosine hydrogen bonds to the buried C-terminal carboxyl group.  The 

Y253F mutation in CIS can thus be expected to influence the protein structure or 

folding: removing the tyrosine hydroxyl group may render burial of the C-terminus 

energetically unfavorable. The tyrosine at position 253 of CIS may therefore play a 

structural role. One can speculate that this affects stability of the packing between 

SOCS-box and SH2 domain, but how this might affect binding to a phosphopeptide 

substrate remains unclear. Allosteric effects on the substrate binding pocket cannot 

be excluded. However, the direct environment of the C-termini in the CIS model and 

SOCS structure are very similar, hinting that the same phenomenon would be 

expected for the Y194F mutation in SOCS2, while this mutation has no effect on 

interaction with its phosphopeptide substrates. 

Tyrosine phosphorylation of SOCS proteins has been reported before. Cacalano et al. 

showed Epo-induced phosphorylation of the two conserved tyrosines in the SOCS-

box of SOCS3, including Y221 that corresponds to the Y253 position in CIS. 

Interestingly, the C-terminal PY221 allowed binding and functional coupling to the 

Ras signalling pathway on the one hand while both phosphorylated tyrosines, 

situated centrally and C-terminally in the SOCS-box, were involved in abrogation of 

Elongin C interaction [46,47]. Intriguingly, as in CIS and SOCS2, Y221 in SOCS3 is 

also predicted (not shown) to be buried in the interface between the SH2-domain 

and the SOCS-box, and its hydroxyl group hydrogen bonds to the buried C-terminal 

carboxyl group. It is therefore likely that phosphorylation of Y221 in SOCS3, and 

possibly Y253 in CIS, requires changes in the conformation of the C-terminus. One 

possibility is that burial of the C-terminus as seen in the SOCS2 crystal structure 

depends on binding of the Elongin complex.  In the absence of Elongin binding, the 

C-terminal tyrosine motifs may be accessible for phosphorylation. In this structural 

modus, phosphorylation-dependent interactions may occur with signaling molecules 
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or with accessory proteins that facilitate interactions with (a subset of) substrates. 

Mutating Y253 in CIS may then prevent the phosphorylation-driven structural change 

required for downstream interactions. Deletion of the 4 C-terminal aa in the CISprey, 

eliminating the putative phosphorylation context, leads to impaired MAPPIT signaling, 

adding evidence to this phosphorylation hypothesis (not shown).  Of note, it seems 

unlikely that disturbed Elongin binding causes the substrate binding defects in the 

CIS mutants: TAP2 purification of wild type CIS and of its C-terminal tyrosine 

mutants showed clear association with Elongins B and C and with Cullin 5, which was 

completely lost when the entire SOCS-box of CIS was deleted. Thus, Elongin C 

binding does not involve the C-terminus of CIS and has no role in the effect of 

mutating Y253. 

The role of the C-terminus of CIS in substrate binding is remarkably similar to the 

role of the C-terminal helix of the Von Hippel-Lindau (VHL) tumour suppressor 

protein. The VHL protein is part of a VHL/E3 ligase complex involved in ubiquitination 

of transcription factors like hypoxia inducible factor (HIF)-1α, targeting them for 

degradation. The VHL/E3 ligase complex binds and ubiquitinylates two oxygen-

dependent degradation domains (HIF-ODDD). The crystal structure of VHL protein, 

bound to a hydroxylated HIF-1 alpha peptide, and to the Elongins C and B has been 

determined (figure 6D) [48]. This revealed that the SOCS-box of VHL is followed by a 

C-terminal helix which is not directly involved in binding to the hydroxylated HIF-

1�peptide. Like the C-terminus of CIS, this helix tightly interacts with the SH2 

domain. Lewis et al. recently reported that this C-terminal helix is critical for 

ubiquitination of HIF-1α.  Deletion of this C-terminal peptide impaired VHL binding 

and ubiquitinylation of the C-terminal HIF-ODDD, while ubiquitinylation and 

degradation of the N-terminal HIF-ODDD is hardly affected [49].  The role of the C-

terminal peptide in VHL thus shows some striking parallels with the CIS C-terminus. 

As for CIS, deletion of the VHL C-terminus specifically affects certain 

functions/interactions, leaving other functions unaltered. It was suggested that 

deletion of the C-terminus might affect VHL substrate binding by secondary folding 

effects.   

In brief, we have shown that the SOCS-box of CIS is essential for interaction with 

target cytokine receptors but not with the universal TLR adaptor MyD88. It appears 

that the biological role of the SOCS-box is more complex than simple recruitment of 
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a ubiquitin-ligation complex, and is also involved in (regulated) substrate binding. 

Depending on the type of SOCS protein, this may include receptor recruitment 

motifs, alternative signalling pathways, and other SOCS proteins [16,17]. The precise 

underlying controls that are involved in these diverse functions of the SOCS-box 

remain to be clarified. 
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Chapter 10: Functional cross-modulation between SOCS 
proteins can stimulate cytokine signalling.  
Both overexpression and deficiency of SOCS2 causes a remarkable gigantism 

phenotype in mice (Greenhalgh et al., 2002a; Greenhalgh et al., 2002b; Metcalf et 

al., 2000). In vitro data also demonstrate a dual effect of SOCS2 on GH signalling 

with low SOCS2 concentrations having an inhibitory effect while signalling is restored 

at higher concentrations (Favre et al., 1999). In this article we studied the 

mechanism underlying this observation. We showed that SOCS2 can interfere with 

the inhibitory function of SOCS1 and SOCS3 in leptin, GH and type I IFN signalling. 

In analogy to SOCS2 interference with CIS interaction at the LR as described in 

chapter 8, this regulatory capacity of SOCS2 depended on elongin B/C recruitment to 

its SOCS-box. We observed degradation of SOCS1 by SOCS2 but not by the elongin 

B/C recruitment-deficient mutant suggesting that SOCS2 targets other SOCS proteins 

for proteasomal degradation. By means of MAPPIT experiments we demonstrated 

that SOCS2 can associate with all members of the SOCS protein family. This 

phenomenon was also observed for SOCS6 and SOCS7. Comparing SOCS6 with an 

elongin B/C deficient SOCS6 mutant generated similar data in degradation 

experiments and reporter assays, suggesting that this protein may also negatively 

regulate SOCS activity.  
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Summary 

Suppressors of cytokine signalling (SOCS) proteins are negative regulators of 

cytokine signalling that function primarily at the receptor level. Remarkably, in vitro 

and in vivo observations revealed both inhibitory and stimulatory effects of SOCS2 on 

growth hormone (GH) signalling suggesting an additional regulatory level. In this 

study, we examined the possibility of direct cross-modulation between SOCS proteins 

and found that SOCS2 could interfere with the inhibitory actions of other SOCS 

proteins in GH, interferon (IFN) and leptin signalling. This SOCS2 effect was SOCS-

box dependent, required recruitment of the elongin BC complex and coincided with 

degradation of target SOCS proteins. Detailed MAPPIT analysis indicated that SOCS2 

can interact with all members of the SOCS family. SOCS2 thus may function as a 

molecular bridge between an E3 ubiquitin ligase complex and SOCS proteins 

targeting these for proteasomal turnover. We furthermore extended these 

observations to SOCS6 and SOCS7. Our findings point to a unique regulatory role for 

SOCS2, -6 and -7 within the SOCS family and provide an explanation for the 

unexpected phenotypes observed in SOCS2 and SOCS6 transgenic mice. 

 

Introduction 

Cytokine signalling typically is a transient event, implying rapid and finely tuned 

attenuation.  Receptor binding leads to rapid activation of receptor-associated 

members of the Janus family of kinases (JAKs). Subsequent phosphorylation of 

tyrosine residues in the receptor tails enables recruitment of downstream signalling 

molecules whereby the signal transducers and activators of transcription (STATs) 

play a prominent role.  Activated STATs translocate to the nucleus where they control 
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cytokine-regulated gene transcription. Negative control occurs at many levels and 

involves receptor down-modulation, protein tyrosine phosphatases, protein inhibitors 

of activated STATs (PIAS) and members of the SOCS protein family. 

The cytokine-inducible suppressors of cytokine signalling (SOCS) family consists of 

eight different members (SOCS1-7 and CIS) characterized by conserved structural 

features.  All SOCS proteins consist of a central SH2 domain flanked by a variable N-

terminal region and a conserved C-terminal SOCS-box (1,2).  The SH2-domain can 

inhibit STAT activation by direct competition for the phosphorylated receptor 

recruitment sites (3-8). SOCS1 and SOCS3 carry an additional kinase inhibitory 

region (KIR) domain in their N-terminal region, which acts as a pseudosubstrate for 

the JAK kinase thereby blocking signalling (5). The SOCS-box was shown to act as an 

interaction domain for the elongin BC complex (9,10) that, in turn, is a component of 

an E3 ubiquitin ligase complex (11). This way, the SOCS-box can control protein 

turn-over by marking target proteins for proteasomal degradation (12).  However, 

the significance of the interaction between SOCS proteins and the elongin BC 

complex is not totally clarified as some reports propose that elongin association 

targets SOCS molecules for proteasomal degradation (10,12-15), while other data 

suggest that elongin BC binding stabilise SOCS protein expression (9,16,17). 

SOCS gene deletion studies in mice have underscored their importance in specific, 

restricted cytokine signalling pathways. E.g., SOCS1-deficient mice suffer from 

deregulated interferon-γ (IFN-γ) signalling characterised by malfunctioning of the 

immune system at several levels (18-20) and SOCS3 haplo-insufficient mice or mice 

with specific deletion of SOCS3 in hypothalamic neurons show augmented central 

leptin sensitivity (21,22), suggesting a key role for SOCS3 in leptin resistance. A 

special case concerns SOCS2  that can have opposing effects on  growth hormone 

(GH) signalling: SOCS2 knock-out mice exhibit an overgrowth phenotype due to 

prolonged GH-dependent STAT5 activity (23,24) and  paradoxically, overexpression 

of SOCS2 in a transgenic mouse model also leads to gigantism (25). This dual effect 

of SOCS2 is also observed in vitro, where low SOCS2 doses moderately inhibit GH 

signalling while higher levels positively regulate signalling (25-27).  A similar 

phenomenon is observed for SOCS2 on prolactin (PRL) (28) and IL-3  signalling (29). 

The role of SOCS2 in regulating cytokine-induced signals is obviously complex since 

increasing SOCS2 levels can overcome the negative effect of SOCS1 on GHR and PRL 
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signalling and can partially restore the SOCS3 downregulated PRL function 

(26,28,30).  Of note,  SOCS6 overexpression also confers an enhanced phenotype 

since SOCS6 transgenic mice display increased insulin sensitivity and enhanced 

glucose metabolism (31). 

GH, PRL, IFN and others induce SOCS2 expression (27,28,32). Unlike SOCS1 and -3 

that are typically induced in a rapid and transient manner, SOCS2 expression usually 

occurs later after cytokine stimulation and is more prolonged (28,32).  Consequently, 

it is tempting to speculate that SOCS2 may be involved in restoring cellular sensitivity 

by overcoming the inhibitory effect of other SOCS proteins.  However, to date, no 

report concerning the precise molecular mechanism of action of SOCS2 in signal 

enhancement of GH response has been published. 

The present study was conducted to clarify the stimulatory effect of SOCS2 observed 

in GH signalling. We demonstrate that SOCS2 can interfere with the negative 

regulatory effects of SOCS1 and SOCS3 via direct interaction. This effect requires the 

C-terminal SOCS-box of the targeted SOCS as well as the elongin BC binding motif in 

the SOCS2 SOCS-box, supporting proteosomal degradation of the targeted SOCS 

proteins. We also show that this inter-SOCS cross-modulation can be extended to 

other cytokine receptor systems and to other members of the SOCS protein family. 

 

Experimental Procedures 

Constructs 

All constructs used in this study were generated by standard PCR- or restriction-

based cloning procedures and are represented in table 1. The pEF-Flag-I/mSOCS1, 

pEF-Flag-I/mCIS and pEF-Flag-I/mSOCS2 constructs were kindly provided by Dr. 

Starr.  The pMET7-mouse LR long form (pMET7-mLR) was a gift from Dr. Tartaglia 

and the pcb6-rbGHR vector was a gift from Dr. Strous.  The mouse thymus cDNA 

was kindly provided by Dr. Brouckaert. The pMET7-Flag-SOCS3 expression vector 

was described elsewhere (33). The expression vectors pMET7-Flag-CIS, pMET7-Etag-

CIS and pMET7-Flag-SOCS2 have been previously described (34).  Generation of the 

chimeric bait receptors containing the extracellular part of the EpoR and the 

transmembrane and intracellular parts of the leptin receptor, such as pCEL, were 

described elsewhere (35,36).  
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Name of the construct Template Cloning Cloning oligos 

vector sites 
pMET7-rbGHR-Flag pcb6-rbGHR pMET7 EcoRV-XhoI 5’CCGGATATCACCATGGATCTCTGGCAGCTGC 

 5’CCGCTCGAGTTACTTATCGTCGTCATCCTTGTAATCTGGCAAG
ATTTTGTTCAGTTG 

pMET7-Flag-SOCS3 Δbox pMET7-Flag-
SOCS3 

pMET7 EcoRI-XbaI 5’ GCGAGATCTCAGAATTCGTCACCCACAGCAAGTTTCC 
5’ CGCTTCTAGATTAGTTGGAGGAGAGAGGTCGG 

pMET7-Flag-mSOCS1 pEF-Flag-
I/mSOCS1 

pMET7 EcoRI-XbaI 5’ CCAGCGAATTCATGGCGCGCCAGGACTACAAGGAC 
5’ GGTCGTCTAGATCAGATCTGGAAGGGGAAGGAAC 

pMET7-Flag-mSOCS1 
Δbox 

pEF-Flag-
I/mSOCS1 

pMET7 EcoRI-XbaI 5’ CCAGCGAATTCATGGCGCGCCAGGACTACAAGGAC 
5’GGTCGTCTAGATCAGCGGCGCTGGCGCAGCGGGGCCCCCAAC 

pMET7-Etag-mSOCS1 pEF-Flag-
I/mSOCS1 

pMET7-
EtagCIS* 

SacII-XbaI 5’CGTCCCGCGGTAGCACGCAACCAGGTGGCAG 
5’GGTCGTCTAGATCAGATCTGGAAGGGGAAGGAAC 

pMET7-Etag-mSOCS1 
Δbox 

pEF-Flag-
mSOCS1 

pMET7 SacII-XbaI 5’CGTCCCGCGGGAACCCTGCGGTGCCTGGAGCCCTC 
5’GGTCGTCTAGATCAGCGGCGCTGGCGCAGCGGGGCCCCCAAC 

pMET7-Etag-SOCS2 pMET7-Flag-
SOCS2 

pMET7-
Etag-CIS 

Not-XbaI 5’ CGTCGCGGCCGCGGTAACCCTGCGGTGCCTGGAGCCCTC 
5’ GCAGGTCTAGATTATACCTGGAATTTATATTC 

pMET7-Flag-SOCS2 Δbox  pMET7-Flag-
SOCS2 

pMET7 NotI-XbaI 5’ TGCCTTTACTTCTAGGCCTG 
5’ GCAGGTCTAGATTATGATGTATACAGAGGTTTG 

pMET7-Etag-SOCS2 Δbox pMET7-Etag-
SOCS2 

pMET7   

pMET7-Flag-SOCS6 pMG2-mSOCS6 pMET7 EcoRI-KpnI  
pMET7-Flag-SOCS2 (LC-
QQ) 

pMET7-Flag-
SOCS2 

 mutagenesis 5’GTATACATCAGCACCCACTCAGCAGCATTTCCAACGACTCGCC
ATTAAC 
5’GTTAATGGCGAGTCGTTGGAAATGCTGCTGAGTGGGTGCTGA
TGTATAC 

pMET7-Etag-SOCS2 (LC-
QQ) 

pMET7-Etag-
SOCS2 

 mutagenesis 5’GTATACATCAGCACCCACTCAGCAGCATTTCCAACGACTCGCC
ATTAAC 
5’GTTAATGGCGAGTCGTTGGAAATGCTGCTGAGTGGGTGCTGA
TGTATAC 

pMET7-Flag-SOCS2 (LC-
PF) 

pMET7-Flag-
SOCS2 

 mutagenesis 5’GTATACATCAGCACCCACTCCGCAGCATTTCTTTCGACTCGCC
ATTAAC 
5’GTTAATGGCGAGTCGAAAGAAATGCTGCGGAGTGGGTGCTGA
TGTATAC 

pMET7-Etag-SOCS2 (LC-
PF) 

pMET7-Etag-
SOCS2 

 mutagenesis 5’GTATACATCAGCACCCACTCCGCAGCATTTCTTTCGACTCGCC
ATTAAC 
5’GTTAATGGCGAGTCGAAAGAAATGCTGCGGAGTGGGTGCTGA
TGTATAC 

pMET7-Flag-SOCS6 (LC-
QQ) 

pMET7-Flag-
SOCS6 

 mutagenesis 5’TGCAGGTGCGCTCGCAACAGTACCTGCAACGCTTTGTTATCCG
T 
5’ACGGATAACAAAGCGTTGCAGGTACTGTTGCGAGCGCACCTG
CA 

CIS SOCS-box bait ** pEF-Flag-I/mCIS pCEL SstI-NotI 5’GCGAGAGCTCCGGATCCGCCCGCAGCTTACAACATC 
 5’CGCTGCGGCCGCTTAGAGTTGGAAGGGGTACTG 

SOCS1 SOCS-box bait pEF-Flag-
I/mSOCS1 

pCEL SstI-NotI 5’GCGAGAGCTCAGTCCGGCCGCTGCAGGAGC 
5’GCTTGCGGCCGCTTAGATCTGGAAGGGGAAGGA 

SOCS2 SOCS-box bait pEF-Flag-
I/mSOCS2 

pCEL SstI-NotI 5’GCGAGAGCTCCGCACCATCTCTGCAGCATC 
5’GCTGCGGCCGCTTATACCTGGAATTTATATTCTTCC 

SOCS3 SOCS-box bait pMET7-Flag-
SOCS3 

pCEL SstI-NotI 5’CGAGAGCTCCGTGGCTACCCTCCAGCATC 
5’CGCTGCGGCCGCTTAAAGTGGAGCATCATAC 

Elongin B bait N-38 cell cDNA pCEL BamHI- NotI 5’-CGCGGATCCGACGTGTTTCTCATGATCC -3’ and 5’-
CGCTGATCATCACTGCACAGCTTGTTC -3’ 

SOCS2 (LC-QQ) prey pMG2-SOCS2  mutagenesis 5’GTATACATCAGCACCCACTCAGCAGCATTTCCAACGACTCGCC
ATTAAC 
5’GTTAATGGCGAGTCGTTGGAAATGCTGCTGAGTGGGTGCTGA
TGTATAC 

SOCS4 prey mouse thymus 
cDNA  

pMG2 EcoRI-NotI 5’GCGGAATTCGCTGAAAACAATAGT 
5’CGCGCGGCCGCTCACTGCTGCTCTGGCA 

SOCS5 prey RZPD clone 
IRAV p968 
D11111D6   

pMG2  EcoRI-NotI 5’GCGGAATTCGATAAAGTGGGGAAAATGTG 
5’CGCGCGGCCGCTTACTTTGCTTTGACTG 

SOCS6 prey RZPD clone 
IRAV p968 E0635 
D6 

pMG2  EcoRI-NotI 5’GCGGAATTCAAGAAAATCAGTCTG 
5’CGCGCGGCCGCTCAGTAGTGCTTCTCC   

SOCS7 prey N-38 cell cDNA pMG2 EcoRI-XbaI 5’GCGGAATTCGTGTTCCGCAACGTG 
5’CGCTCTAGACTACGTGGAAGGCTCCA 

 
Table 1: Overview of constructs used in this study 

* Mutagenesis was used to eliminate an overlapping ORF. 
** the BamHI site in the C-terminus of the leptin receptor (LR) was eliminated by mutagenesis. 

*** SOCS7 was cloned in pZeroBlunt, cut with XbaI and blunted and subsequently partially digested 
with SacI.  This allowed ligation in a pCEL vector which was digested with NotI, blunted and then 

partially digested with SacI. 
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Generation of the prey constructs pMG2-CIS and pMG2-SOCS2 both containing part 

of the gp130 chain (aa 905-aa 918) in duplicate was described earlier (37). The Epo 

receptor tyrosine 402 bait and pMET7- SV40 large T antigen (SVT) expression 

vectors were obtained as described previously (36). 

 

Cell culture, transfection procedures and reagents 

Hek293-T, 3T3-F442A and N-38 cells were cultured in 10% CO2 humidified 

atmosphere at 37°C, and grown using DMEM (Gibco BRL) with 10% foetal calf serum 

(Cambrex). For transfection experiments, cells were freshly seeded in 6-wells plates. 

Hek293-T cells were transfected overnight with approximately 2,5 µg plasmid DNA 

using a standard calcium phosphate precipitation procedure. The pMET7-SVT 

construct was used to normalize for the amount of transfected DNA and load of the 

transcriptional and translational machinery. N-38 cells were transfected by using 

Lipofectamine 2000 (Invitrogen) following the manufacturer’s guidelines. One day 

after transfection, cells were washed with PBS-A (PBS without calcium, magnesium 

and sodium bicarbonate), and cultured   until further use. Recombinant mouse leptin 

and human erythropoietin (Epo) were purchased from R&D Systems. Human growth 

hormone was purchased from ImmunoTools and human IFNβ was generated in the 

laboratorium. 

 

Luciferase and SEAP assays 

For a typical luciferase experiment, Hek293-T or N-38 cells were transfected with the 

desired constructs together with a luciferase reporter gene. For STAT5 dependent 

luciferase assays, we used a β-casein–derived STAT5 luciferase reporter plasmid (38).  

For the STAT3 dependent luciferase experiments the pXP2d2-rPAPI-luciferase 

reporter, originating from the rPAPI (rat pancreatitis associated protein I) promoter, 

was used as previously described (36).  24 hours after transfection, cells were left 

untreated or were stimulated with ligand.  After another 24 hours, luciferase activity 

from triplicate samples was measured by chemiluminescence in a Topcount 

luminometer (Canberra Packard). For the ISGF3 dependent SEAP assays we used the 

6-16 SEAP reporter construct that was constructed as described previously (39).  The 

amount of secreted alkaline phosphatase was determined with the phospha-light kit 

(Tropix, Bedford), using disodium 3(4-methoxyspiro(1,2-dioxetane-3,2'-
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(5'chloro)tricycloneo[3.3.1.1]decan)-4-yl)phenyl phosphate (CSPD)  as the 

luminogenic substrate.  Assays were performed in a 96-well microtiterplate following 

the manufacturer’s guidelines.  Cells were lysed in a buffer (1% Triton X-100, 20 mM 

Tris pH 7,4) and alkaline phosphatase activity from triplicate samples was measured 

by chemiluminescence in a Topcount luminometer (Canberra Packard). 

 

Western blot analysis and co-immunoprecipitation 

Transfected Hek293-T or N38 cells were lysed in modified RIPA buffer (200 mM 

NaCl, 50 mM Tris-HCl pH 8, 0,05% SDS, 2 mM EDTA, 1% NP40, 0,5% deoxycholic 

acid (DOC), 1 mM Na VO , 1 mM NaF, 20 mM β-glycerophosphate and3 4  Complete™ 

Protease Inhibitor Cocktail (Roche)). 5X loading buffer (156 mM Tris-HCl pH 6,8, 2% 

SDS, 25% glycerol, 0,01% Bromphenol blue sodium salt, 5% β-mercapto-ethanol) 

was added to the cell lysates which were then resolved by SDS-PAGE and transferred 

to nitrocellulose membranes (Amersham Biosciences).  Blotting efficiency was 

checked using Ponceau S staining (Sigma). Blocking, washing and incubation with 

antibodies were carried out in TBS supplemented with: 5% dried skimmed milk and 

0.1% Tween 20.  Flag-tagged (corresponding to the peptide tag DYKDDDDK)   and 

E-tagged (corresponding to the peptide tag GAPVPYPDPLEPR) proteins were revealed 

using respectively monoclonal anti-Flag antibody M2 (Sigma) and monoclonal anti-E-

tag antibody (Amersham Biosciences).  Polyclonal rabbit anti-SOCS2 was a gift from 

Dr. Johnston and mouse β-actin antibody was supplied by Sigma.  Immunoblots 

were then revealed by incubation with horseradish peroxidase (HRP)-conjugated 

anti-mouse or anti-rabbit secondary antibodies (Amersham Biosciences) and 

SuperSignal West Pico Chemiluminescent Substrate (Pierce).  For the co-

immunoprecipitation experiments approximately 2 x 106 Hek293-T cells were 

transfected with Flag-tagged or E-tagged pMET7 SOCS expressionvectors.  Cleared 

lysates (modified RIPA lysis buffer) were incubated with 4,0 µg/ml anti-FLAG mouse 

monoclonal antibody (Sigma) or anti E-tag mouse monoclonal antibody (Amersham 

Biosciences) and protein G-sepharose (Amersham Biosciences). After 

immunoprecipitation, SDS-PAGE and Western Blotting, interactions were detected 

using anti-Flag (Sigma) or anti-E-tag antibody (Amersham Biosciences) as described 

previously. 
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Results 

An essential role for the SOCS2 SOCS-box to antagonise SOCS1 and SOCS3 

inhibition of cytokine signalling. 

SOCS2 exerts a dual action on growth hormone (GH) and prolactin (PRL) signalling 

and impairs the inhibitory effect of other SOCS proteins (26,30). To gain more 

detailed insight in the underlying mechanism, we first analyzed the role of the 

different SOCS protein sub-domains. The effect of constitutive expression of SOCS 

proteins on GH signalling was investigated in Hek293-T cells using the STAT5-

responsive β-casein luciferase reporter. Fig. 1A shows dose-response curves 

demonstrating complete inhibition of GH signalling by SOCS1 and SOCS3, 

respectively. GH-inducible activity is fully inhibited by low concentrations of either 

SOCS1 or SOCS3, i.e. concentrations below the level of antibody detection as judged 

by western blot analysis of the Flag-tagged SOCS constructs with anti-Flag antibody. 

After removal of the SOCS-box of SOCS1 (SOCS1-Δbox) and SOCS3 (SOCS3-Δbox) 

inhibition was slightly reduced but not abolished in this assay system. Co-expression 

of SOCS2 could completely suppress the SOCS1- and SOCS3-dependent inhibition of 

GH signalling (Fig. 1B and 1C), whereby SOCS1 inhibition appeared to be more 

sensitive to the counteracting effect by SOCS2 than SOCS3. Of note, the amounts of 

SOCS1 used in this experiment could not be visualized by western blot analysis, 

indicating that working concentrations are approaching the physiological 

concentrations of this SOCS protein. The SOCS2 amounts also are not supra-

physiological as the SOCS2 concentration at which a cross-regulatory effect is 

observed is comparable to the endogenous levels of SOCS2 in the growth hormone 

responsive 3T3-F442A mouse pre-adipocyte cell line (Fig. 1D). This suppressive 

effect on SOCS molecules is specific for SOCS2 as co-expression of CIS did not 

interfere with SOCS1 or SOCS3 mediated inhibition (data not shown). Strikingly, this 

SOCS2 effect strictly depended on the presence of its SOCS-box. It is of note that the 

deletion of the SOCS-box led to enhanced expression in case of SOCS2. This effect is 

also observed, albeit to a lesser extent with SOCS1, but is not observed for SOCS3.  
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Figure 1: An essential role for the SOCS-box in interference of SOCS2 with SOCS1 and SOCS3 
inhibition of GH signalling. 
Hek293-T cells were transfected with a rabbit GHR (40ng) expression vector and a β casein luciferase 
reporter gene (200ng). 24 hours after transfection, the cells were deprived of serum and then treated 
with human GH (200ng/ml) for 15 hours before the luciferase activity from the β casein reporter gene 
was measured.  Luciferase measurements were performed in triplicate. Fold induction represents the 
ratio of luciferase activity determined in the presence or absence of ligand. 
A. A range of concentrations of SOCS1, SOCS3 or their SOCS-box deletion mutant plasmids (S1Δbox  
or S3 Δbox ) were co-transfected to analyze inhibitory effect on GH signalling. A sample of lysate from 
each group was western blotted and probed with anti-Flag antibody. 
B. A fixed amount of SOCS1 (10ng) or SOCS1 Δbox (60ng) was co-transfected with increasing 
concentrations of SOCS2 or SOCS2 Δbox (S2Δbox). Expression of the E-tagged SOCS2 and SOCS2 
Δbox proteins in the same transfected cells was verified on lysates using anti-E antibody. 
C. A fixed amount of SOCS3 (100ng) or SOCS3 Δbox (100ng) was co-transfected with increasing 
concentrations of SOCS2 or SOCS2 Δbox. Expression of the E-tagged SOCS2 and SOCS2 Δbox proteins 
in the same transfected cells was verified on lysates using anti-E antibody. 
D. Comparison of ectopic and endogenous expression levels of mouse SOCS2 in respectively Hek293-T 
and 3T3-F442A.  A fixed amount of SOCS1 (10ng) was co-transfected with increasing concentrations 
of SOCS2 in Hek293-T.  Expression of the E-tagged SOCS2 proteins in the same transfected cells and 
of the endogeneous SOCS2 in the 3T3-F442A cells was verified on lysates using anti-SOCS2 antibody. 
3T3-F442A were incubated in serum-free medium prior to stimulation with GH (200ng/ml) for the 
indicated times.  Levels of loaded protein were normalised by determining the protein concentrations 
with the Bradford method and this was verified by Ponceau S staining.   As additional control, the 
blots were stripped and probed with β-actin antibody to check for equal loading of cell lysates of the 
same cell type. 
 
We next evaluated whether we could extrapolate this SOCS2 regulation to other 

receptor systems.  SOCS1 and SOCS3 have been implicated as potent inhibitors of 

IFN type I receptor (IFNaR) signalling (40,41), however, the role of SOCS2 is less 

well elucidated.  We monitored interferon-β (IFN-β) signalling in Hek293-T cells using 

the type I interferon-sensitive 6-16 SEAP reporter gene, and evaluated the effect of 

expression of various combinations of (mutant) SOCS proteins as described above.  

We found that expression of SOCS2 at increasing concentrations resulted in a clear 

dual effect on IFN signalling (Fig. 2A):  at low concentrations, SOCS2 suppressed IFN 

signalling, but higher concentrations of SOCS2 lead to complete restoration and even 

enhancement of the responsiveness of the 6-16 reporter to IFN-β, suggesting a 

negative effect of SOCS2 on endogenous SOCS proteins.  Quite similar to what we 

observed with GH, expression of SOCS1 or SOCS3 or of their mutants lacking the 

SOCS-box can inhibit IFN-β signalling (Fig. 2B). Again analogous to the observations 

made for GH, SOCS1 and SOCS3-mediated inhibition of IFN-β signalling could be 

completely neutralized by co-expression of SOCS2, and the SOCS-box of SOCS1 or -3 

and of SOCS2 is strictly required for the full effect (Fig. 2C and 2D). 
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Figure 2: An essential role for the SOCS-box in interference of SOCS2 with SOCS1 and SOCS3 
inhibition of interferon signalling. 
Secreted alkaline phosphatase (SEAP) activity was assayed in Hek293-T cells transfected without 
SOCS or with several ratios of SOCS1, -2 or -3 expression vectors and the IFN-responsive 6-16 SEAP 
reporter (200 ng). After 24 hours, transfected cells were stimulated with human IFN β (100pM) and 
the SEAP activity from the 6-16 reporter gene was measured after 48 hours.  SEAP measurements 
were performed in triplicate.  Fold induction represents the ratio of SEAP activity determined in the 
presence or absence of ligand. 
A. SOCS2 can act as a dual effector on interferon type I signalling as assessed by transfecting a range 
of concentrations of SOCS2 gene or the appropriate amount of empty vector in Hek293-T cells. 
Expression of the E-tagged SOCS2 protein in the same transfected cells was verified on lysates using 
anti-Etag antibody. 
B. A range of concentrations of SOCS1, SOCS3 or their SOCS-box deletion mutants plasmids were 
transfected to analyze inhibitory effect on interferon type I signalling. 
C. A fixed amount of SOCS1 (10ng) or SOCS1 Δbox (60ng) was co-transfected with increasing 
concentrations of SOCS2 or SOCS2 Δbox. 
D. A fixed amount of SOCS3 (20ng) or SOCS3 Δbox (100ng) was co-transfected with increasing 
concentrations of SOCS2 or SOCS2 Δbox.   
 
We finally extended these analyses of SOCS modulation also to leptin receptor (LR) 

signalling. Again quite similar to the previous observations, expression of SOCS1, 

SOCS3 or their SOCS-box deletion mutants blocked induction of leptin-mediated 

activation of a STAT3-responsive rat Pancreatitis Associated Protein I (rPAPI) 

promoter-luciferase reporter in Hek293-T cells (data not shown).  Co-expression of 

SOCS2 could restore the SOCS-dependent signalling blockade. Those effects were 

dependent on either SOCS-box and were less pronounced for SOCS3 mediated LR 

inhibition than for SOCS1 (data not shown). We further verified the cross-modulatory 

effects of SOCS2 in mouse hypothalamic N38 cells which represent a physiological 

context for leptin receptor signalling. This N38 cell line responds to leptin stimulation 

and is a part of a collection of clonal neuronal cell lines recently isolated  by Belsham 

et al. (42). Similar to what we observed in Hek293-T cells, expression of SOCS1 or 

SOCS3 or of their mutants lacking the SOCS-box can inhibit leptin signalling (Fig. 

3A). Co-expression of SOCS2 with SOCS1 (Fig. 3B) and SOCS3 (data not shown) in 

the N-38 cells led to recovery of the leptine-induced signalling in a SOCS-box 

dependent manner. Moreover, expression of SOCS2 alone clearly stimulated the 

STAT3-dependent luciferase response (Fig. 3C), which can be explained by a 

negative effect of SOCS2 on the endogenous SOCS proteins. This effect was again 

lost with a SOCS2 mutant lacking the SOCS-box. Together, these findings show that 

the cross-modulatory effect of SOCS2 on other SOCS proteins is not limited to the GH 

system and likely involves similar underlying mechanisms. 
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Figure 3: SOCS2 displays a SOCS-box dependent stimulatory effect on leptin signalling in N38 cells 
Mouse hypothalamic N38 cells were transiently co-transfected with a mouse LR (250ng) expression 
vector and the pXP2d2-rPAP1-luci reporter (1μg).  The transfected cells were either stimulated for 24 
h with leptin (100ng/ml) or were left untreated. Luciferase measurements were performed in 
triplicate. Data are expressed as ratio leptin stimulated/non stimulated. 
A. A range of concentrations of SOCS1, SOCS3 or their SOCS-box deletion mutant plasmids were co-
transfected to analyze inhibitory effect on leptin signalling. 
B. A fixed amount of SOCS1 (30 ng) or SOCS1 Δbox (100 ng) was co-transfected with increasing 
concentrations of SOCS2 or SOCS2 Δbox. 
C. A range of concentrations of SOCS2 or the SOCS2 Δbox mutant plasmids were transfected to 
analyze stimulatory effect on leptin signalling. 
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Recruitment of the elongin BC complex by SOCS2 is essential for 

interference with other SOCS proteins. 

Sequence alignments of SOCS-box containing proteins reveal a single conserved 

region with the consensus sequence T/SL/MxxxC/SxxxV/L/I that defines an elongin 

BC complex binding site or ‘BC-box’ (9,10,43). We generated a SOCS2 mutant, 

SOCS2 (LC-PF), containing point mutations in the BC box of SOCS2 which abrogate 

elongin BC recruitment (9). In another SOCS2 derivative, SOCS2 (LC-QQ), both 

residues were mutated to glutamines to minimize structural alterations of the 

protein.  As shown in Fig. 4, this SOCS2 (LC-QQ) mutant completely lost its capacity 

to interfere with SOCS1 and SOCS3 antagonism in GH and IFN signalling in Hek293-T 

cells and with leptin signalling in N38 cells.  Similar findings were made with the 

SOCS2 (LC-PF) mutant (data not shown).  This indicates that functional recruitment 

of the elongin BC complex is a prerequisite for the negative regulation by SOCS2 on 

other SOCS proteins. 

 

SOCS2 interacts with other members of the SOCS family. 

We next used MAPPIT (Mammalian Protein-Protein Interaction Trap), a strategy 

designed to analyze protein-protein interactions in intact mammalian cells (36) to 

investigate whether SOCS2 exerts its cross-modulatory function via direct binding to 

other SOCS proteins.   In MAPPIT, a bait protein is C-terminally linked to a chimeric 

receptor consisting of the extracellular region of the erythropoietin receptor (EpoR) 

linked to the transmembrane and the intracellular part of a signalling deficient LR.  

The use of a triple Y to F mutant leptin receptor (further referred to as LR-F3) knocks 

out STAT3 activation, and offers the added advantage that negative feedback 

mechanisms are inoperative, implying enhanced signalling. 

MAPPIT prey constructs are composed of a prey protein fused to a part of the gp130 

chain carrying 4 STAT3 recruitment sites.  Co-expression of interacting bait and prey 

leads to functional complementation of STAT3 activity and induction of the STAT3-

responsive rPAPI promoter-luciferase reporter.  MAPPIT permits the detection of both 

modification-independent and phosphorylation-dependent interactions in intact 

human cells. The MAPPIT configuration used in this manuscript is shown in Fig 5A. 
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Fig. 4A :
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Figure 4: The negative effect of SOCS2 on other SOCS proteins is dependent on recruitment of the 
elongin BC complex 
Hek293-T or N38 cells were transiently transfected with fixed amounts of plasmids encoding SOCS1 or 
SOCS3 and increasing concentrations of SOCS2 wild type or SOCS2 ΔElongin BC (LC-QQ).  The 
transfected cells were either stimulated with hGH (200ng/ml), IFN β (100pM) or leptin (100ng/ml) or 
were left untreated.  Luciferase and SEAP measurements were performed in triplicate. Data are 
expressed as fold induction (stimulated/non stimulated). 
A.  Hek293-T cells were transfected with 10ng SOCS1, 100ng SOCS3 and increasing concentrations of 
SOCS2 derivatives. GH signalling was assayed as described in Fig.1 
B.  Hek293-T cells were transfected with 10ng SOCS1, 20ng SOCS3 and increasing concentrations of 
SOCS2 derivatives. IFN signalling was assayed as described in Fig.2 
C.  N38 cells were transfected with 30ng SOCS1, 15ng SOCS3 and increasing concentrations of SOCS2 
derivatives. Leptin signalling was assayed as described in Fig.3 
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Figure 5: MAPPIT analysis of SOCS interactions  
A. Principle of MAPPIT 
See results section for details. 
B. SOCS2 interacts with the SOCS-box of SOCS1, -2, -3 and CIS 
Hek293-T cells were transiently co-transfected with plasmids encoding bait variants with the SOCS-
box of several SOCS proteins or with a mock bait lacking the SOCS motif, the pMG2-SOCS2 and 
pMG2-CIS prey-construct and with the pXP2d2-rPAP1-luciferase reporter. After transfection, cells were 
either left untreated or were stimulated with Epo for 24 hours. Luciferase activities were measured in 
triplicates. Fold induction represents the ratio of luciferase activity determined in the presence or 
absence of ligand.  Expression of the Flag-tagged fusion prey proteins in the same transfected cells 
was verified on lysates using anti-Flag antibody. 
C. The SOCS2 (LC-QQ) mutant does not bind elongin B while the interaction with CIS is preserved 
Hek293-T cells were transiently co-transfected with plasmids encoding the chimeric EpoR-LR-F3 
construct as a negative control, the EpoR Y402 bait as positive control for SOCS2, the elongin B bait 
or CIS SOCS-box bait, and the pMG2-SOCS2 or pMG2-SOCS2 (LC-QQ) prey constructs, combined with 
the pXP2d2-rPAP1-luciferase. The transfected cells were either stimulated for 24 hours with Epo or 
were left untreated. Luciferase measurements were performed in triplicate. Data are expressed as fold 
induction (stimulated/not stimulated). 
 
We have previously shown that SOCS2 directly interacts with CIS (34). This 

observation and the abovementioned findings on cross-regulation between SOCS2 

and SOCS1 and -3 prompted us to investigate whether SOCS2 could bind to those 

SOCS family members. Hek293-T cells were co-transfected with a bait plasmid 

encoding the SOCS-box of either SOCS1, -2, -3 or CIS combined with a plasmid 

encoding the SOCS2 prey or CIS prey and the STAT3-responsive luciferase reporter 

construct. We always used isolated SOCS-boxes as bait proteins since in case of 

SOCS1 and SOCS3 the full-length baits did interfere with the MAPPIT read-out and 

therefore could not be investigated. Epo stimulation revealed clear interaction of 

SOCS2 with all baits examined. In contrast, the CIS prey failed to induce any 

reporter activity (Fig. 5B).  Expression levels of the Flag-tagged prey proteins were 

confirmed by immunoblotting using an anti-Flag antibody.  In Fig. 5C we show using 

MAPPIT that the SOCS2 (LC-QQ) mutant lost its capacity to associate with an elongin 

B prey, while maintaining its interaction with the CIS bait.  A MAPPIT bait construct 

containing the Y402 motifof the EpoR was used as a positive control as this receptor 

motif directly interacts with SOCS2 (36).  This association of SOCS2 with SOCS1, 

SOCS2, SOCS3 and CIS was confirmed by co-immunoprecipitation.  We transiently 

co-transfected Hek293-T cells with a plasmid encoding E-tagged SOCS2, together 

with Flag-tagged plasmids encoding respectively SOCS1, SOCS2 and SOCS3 or we 

co-expressed Flag-tagged SOCS2 with E-tagged SOCS1, SOCS2 and CIS.  SOCS2 

could co-immunoprecipitate SOCS1 to -3 (Fig. 6A) and in case of CIS, both the 37- 

and 32-kDa forms that correspond to mono- and non-ubiquitinated forms 

respectively (44). Observed interactions of SOCS2 with SOCS proteins in Hek293-T 
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cells depended on proteasomal inhibition with the proteasomal inhibitor MG132 

(20µM) for 6 hours and stimulation with IFNβ (100pM) for 30 min.  SOCS1 could still 

be co-immunoprecipitated with the SOCS2 Δbox and SOCS2 (LC-QQ) mutant, 

indicating that the deletion of the SOCS-box or the BC box motif did not disrupt the 

capacity of SOCS2 to bind SOCS1 (Fig. 6B). Nevertheless, elimination of the SOCS-

box of SOCS2 weakens the interaction with SOCS1, suggesting a role for this domain 

in SOCS-SOCS interactions. 
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Figure 6: 
A. Interactions of SOCS2 demonstrated by co-immunoprecipitation experiments 
Lysates from Hek293-T cells co-transfected with Flag-tagged or E-tagged SOCS1 (S1), SOCS2 (S2), 
SOCS3 (S3) and CIS were immunoprecipitated with anti-E or anti-Flag antibodies and western blotted 
with anti-Flag or anti-E antibodies (Top).  Whole cell lysate was western blotted with anti-Flag or anti-
E antibodies as loading controls (middle and bottom). 
B. Interaction analysis of SOCS1 and SOCS2 mutants 
Hek293-T cells were transiently co-transfected with Flag-tagged SOCS2, SOCS2 Δbox (S2Δbox), 
SOCS2 ΔElongin BC (LC-QQ) (S2(LC-QQ)) or the appropriate amount of empty vector and E-tagged 
SOCS1. Cell lysates were immunoprecipitated (IP) with Flag antibody and were subsequently 
immunoblotted (IB) with anti E tag or anti Flag. 
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SOCS2 promotes degradation of SOCS1. 

The dependency of the SOCS2 effect on an intact BC box suggests that SOCS2 can 

target SOCS proteins for proteasomal degradation.  Hek293-T cells were transiently 

transfected with SOCS1 and increasing concentrations of SOCS2 and were treated 

with the protein synthesis inhibitor cycloheximide (20µM) for 6 hours.  Degradation 

of SOCS1 was observed when increasing concentrations of SOCS2 were co-expressed 

whereas SOCS2 (LC-QQ) had no effect (Fig. 7).  This suggests a mechanism in which 

SOCS2 acts as an adapter molecule between an E3 ubiquitin ligase complex and 

SOCS proteins targeting them for proteasomal turn-over. 
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Figure 7: Co-expression of SOCS2 accelerates the SOCS1 degradation 
Increasing concentrations of E-tagged SOCS2 or SOCS2 (LC-QQ) were transiently co-expressed in 
Hek293-T cells with Flag-tagged SOCS1. Cells were treated with cycloheximide (20µM) for up to 8 h. 
The lysates were blotted for SOCS1 with an anti-Flag antibody and for SOCS2 with an anti-E antibody. 
 

SOCS2 but also SOCS6 and SOCS7 interact with all members of the SOCS 

family. 

Interaction studies performed with the other SOCS proteins used as bait revealed 

that the SOCS2 prey can also interact with the SOCS-box of SOCS4, -5, -6 and -7 

(Fig. 8A).   Using the same approach we performed a matrix-type interaction analysis 

between SOCS proteins and we found that SOCS6 and SOCS7 preys also interact 

with the SOCS-box baits of all members of the SOCS family (Fig. 8B and 8C).  Of 

note, SOCS2, -6 and -7 also display binding on themselves.  The MAPPIT data with 

the CIS prey are included as negative control and functionality of this CIS prey was  
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Figure 8: 
A.-D. SOCS2, -6 and -7 interact with the SOCS-box of all SOCS members 
Hek293-T cells were transiently co-transfected with plasmids encoding bait variants of the SOCS-box 
of all SOCS proteins or the chimeric EpoR-LR-F3 construct as a negative control, the pMG2-SOCS2, -6, 
-7  and CIS preys and the pXP2d2-rPAP1-luciferase reporter. After transfection, cells were either left 
untreated or were stimulated with Epo for 24 hours. Luciferase activities were measured in triplicates.  
Data are expressed as fold induction (stimulated/not stimulated). 

- Page 186 - 



Fig. 9A :  

0

2

4

6

8

10

12

14

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

GH

0

2

4

6

8

10

12

0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0 0.1 0.5 2 0 0 0

0 0 0 0 0 0.1 0.5 2

fo
ld

 in
du

ct
io

n

GH

Fig. 9B :

0

5

10

15

20

25

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

IFNβ

0

5

10

15

20

25

0 50 50 50 50 50

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

IFNβ

Fig. 9C : 

0

2

4

6

8

10

12

14

16

0 30 30 30 30 30

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

Leptin

0

2

4

6

8

10

12

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

Leptin

SOCS1(ng) 

SOCS6(µg) 

SOCS3(µg) 

SOCS6(µg) 

S6(LC -QQ)(µg) S6(LC -QQ)(µg) 

SOCS1(ng) 

SOCS6(µg) 

S6(LC-QQ)(µg) 

SOCS3(ng)

SOCS6(µg) 

S6(LC-QQ)(µg) 

SOCS1(ng) 

SOCS6(µg) 

S6(LC-QQ)(µg) 

SOCS3(ng)

SOCS6(µg) 

S6(LC-QQ)(µg) 

Fig. 9A : 

0

2

4

6

8

10

12

14

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

GH

0

2

4

6

8

10

12

14

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

GH

0

2

4

6

8

10

12

0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0 0.1 0.5 2 0 0 0

0 0 0 0 0 0.1 0.5 2

fo
ld

 in
du

ct
io

n

GH

0

2

4

6

8

10

12

0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

0 0 0.1 0.5 2 0 0 0

0 0 0 0 0 0.1 0.5 2

fo
ld

 in
du

ct
io

n

GH

Fig. 9B :

0

5

10

15

20

25

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

IFNβ

0

5

10

15

20

25

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

IFNβ

0

5

10

15

20

25

0 50 50 50 50 50

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

IFNβ

0

5

10

15

20

25

0 50 50 50 50 50

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

IFNβ

Fig. 9C : 

0

2

4

6

8

10

12

14

16

0 30 30 30 30 30

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

Leptin

0

2

4

6

8

10

12

14

16

0 30 30 30 30 30

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

Leptin

0

2

4

6

8

10

12

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

Leptin

0

2

4

6

8

10

12

0 10 10 10 10 10

0 0 0.2 2 0 0

0 0 0 0 0.2 2

fo
ld

 in
du

ct
io

n

Leptin

SOCS1(ng) 

SOCS6(µg) 

SOCS3(µg) 

SOCS6(µg) 

S6(LC -QQ)(µg) S6(LC -QQ)(µg) 

SOCS1(ng) 

SOCS6(µg) 

S6(LC-QQ)(µg) 

SOCS3(ng)

SOCS6(µg) 

S6(LC-QQ)(µg) 

SOCS1(ng) 

SOCS6(µg) 

S6(LC-QQ)(µg) 

SOCS3(ng)

SOCS6(µg) 

S6(LC-QQ)(µg) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: The negative effects of SOCS6 on other SOCS proteins depends on recruitment of the 
elongin BC complex 
Hek293-T or N38 cells were transiently transfected with fixed amounts of plasmids encoding SOCS1 or 
SOCS3 and increasing concentrations of SOCS6 wild type or SOCS6 ΔElongin BC (LC-QQ).  The 
transfected cells were either stimulated with GH (200ng/ml), IFN β (100pM) or leptin (100ng/ml) or 
were left untreated.  Data are expressed as fold induction (stimulated/non stimulated). Luciferase and 
SEAP measurements were performed in triplicate. 
A.  Hek293-T cells were transfected with 10ng SOCS1, 100ng SOCS3 and increasing concentrations of 
SOCS6 derivatives. GH signalling was assayed as described in Fig.1 
B.  Hek293-T cells were transfected with 10ng SOCS1, 50ng SOCS3 and increasing concentrations of 
SOCS6 derivatives. IFN signalling was assayed as described in Fig.2 
C.  N38 cells were transfected with 30ng SOCS1, 10ng SOCS3 and increasing concentrations of SOCS6 
derivatives. Leptin signalling was assayed as described in Fig.3 
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demonstrated using the interaction with the EpoR Y402 motif as a control (Fig. 8D).  

The EpoR-LR-F3 bait provided a control for aspecific binding on the intracellular part 

of the leptin receptor and JAK2.  The expression of the different bait constructs was 

verified by checking the interaction with the SH2-β prey which binds the associated 

JAK of the LR-F3 (data not shown). Possible complications that could arise from 

interference of the SOCS prey constructs with JAK activity or STAT recruitment and 

that could lead to false negative signals were considered and ruled out as their co-

expression with an established MAPPIT interaction had no deleterious effect (data 

not shown). From these experiments we conclude that SOCS2, SOCS6 and SOCS7 

can interact with the SOCS-box of all SOCS members.  
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Figure 10: SOCS6 but not SOCS6 (LC-QQ) promotes degradation of SOCS1 
Increasing concentrations of Flag-tagged SOCS6 or SOCS6 (LC-QQ) were co-expressed transiently in 
Hek293-T cells with Flag-tagged SOCS1. Cells were treated with cycloheximide (20µM) for up to 8 h. 
The lysates were blotted for SOCS1 and SOCS6 expression with an anti-Flag antibody. 
 

 
SOCS6 is a negative regulator of other SOCS proteins. 

Subsequently, we investigated whether SOCS6 displays similar functional SOCS 

cross-modulation as SOCS2.  We found that SOCS6 antagonized the inhibition of 

SOCS proteins in GH, IFN (Fig. 9A and 9B) and leptin (not shown) signalling in 

Hek293-T cells.  In N38 cells, we could demonstrate that SOCS6 interfered with 

SOCS1 and SOCS3 inhibition of leptin signalling (Fig. 9C).  

Like other SOCS molecules, SOCS6 was shown to bind to elongin B and C in a SOCS-

box dependent manner (45).  Analogous to SOCS2, disruption of elongin BC binding 
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in SOCS6 yielded a mutant that was not able to interfere with the inhibitory effect of 

other SOCS proteins (Fig. 9).   Also, SOCS6 wild type, but not the ΔBC box mutant, 

reduced SOCS1 expression in a dose dependent manner (Fig. 10), indicating that 

SOCS6 mediates the observed inhibition by accelerating turn-over of other SOCS 

proteins.  Taken together, our data suggest that SOCS6 can negatively regulate 

SOCS function, in a way very similar to SOCS2. 

 

Discussion 

Protein degradation by the ubiquitin-proteasome pathway plays an essential role in 

controlling the abundance of regulatory molecules. Key to this is the sequential 

action of three protein sets: E1 ubiquitin activating enzymes, E2 carrier enzymes and 

a large set of E3 ubiquitin ligases, whereby the latter define substrate specificity. The 

SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase complex is composed of the Cul1 scaffold 

protein that binds the Roc1/Rbx1 RING domain protein and the E2 carrier enzyme, 

and that recruits, via the Skp1 linker protein, F-box proteins that in turn bind 

substrates for ubiquitination. This same architecture is also found in other SCF-like 

complexes, including those based on the Cul2- Von Hippel-Lindau (VHL)  and Cul5-

SOCS-box adaptor proteins, whereby elongins BC and SOCS or VHL proteins fulfil the 

role of the Skp1 and F-box protein moieties, respectively (1). Evidence that SOCS 

proteins can mediate proteasomal turn-over of target molecules is accumulating.  

Examples include the GHR and EpoR (44,46), JAK2 (13),  the Rac guanine nucleotide 

exchange factor Vav (47), Ras GAP (17) and insulin receptor substrate (IRS)1 and 

IRS2 (48).   Of note, SOCS proteins themselves can be targeted for ubiquitination 

and proteasomal degradation, although contradictory reports exist regarding the 

effect of elongin BC interaction on protein stability of SOCS1, SOCS3 and CIS. Some 

data suggest that elongin BC association targets SOCS proteins for degradation by 

the proteasome as has been demonstrated for CIS (44,49), SOCS1 (10,50) and 

SOCS3 (10,51).  In contrast, there is also evidence that elongin BC interaction can 

stabilize SOCS1 (9,16,52) and SOCS3 (17) and that disruption of this interaction 

leads to proteasome-mediated degradation of these SOCS proteins. 

SOCS2 undeniably plays a role as negative regulator of GH signalling in vivo and in 

vitro (43), but can also enhance GH signalling when expressed at higher 

concentrations (25,26). It binds to the GHR at multiple sites, some of which could 
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also function as recruitment sites for negative regulators such as SHP-2 (53) or 

SOCS3 (54,55).  Such competition between SOCS2 and potentially more potent 

negative regulators was put forward as a potential explanation for the dual effect of 

SOCS2 (25). However, little direct evidence was reported in support of such model, 

and recently, Greenhalgh et al., showed that SOCS2 binds at Y487 and Y595 of the 

GH receptor, which are not usual immunoreceptor tyrosine-based inhibitory motifs, 

suggesting that competition of SOCS3 at these sites is not involved (43). 

The key finding in this report is that a restricted set of SOCS proteins, including 

SOCS2, can bind to other members of the SOCS family thus controlling their activity 

through proteasome-dependent degradation.  We found that SOCS2 can restore and 

potentiate GH signalling by antagonizing SOCS1 and SOCS3 in a SOCS-box 

dependent manner.  This effect is not limited to the GH system, since we found 

similar effects on signalling via the endogenous IFN type I receptor and leptin 

receptor, in Hek293-T and N38 cells respectively.   

SOCS2 mutants lacking the binding site for elongin BC completely lose their inhibitory 

potential, providing a strong argument for proteasomal degradation of the target 

SOCS proteins. Indeed, as observed for SOCS1, co-expression of SOCS2 leads to 

lowered expression levels of this target SOCS protein. The critical elongin BC 

dependency of the inhibitory effect by SOCS2 strongly argues that SOCS2 functions 

as part of an E3 ligase complex. Alternatively, higher expression levels of SOCS2 may 

compete for recruitment of the elongin BC complex, indirectly leading to 

destabilisation of other SOCS proteins lacking this complex (vide supra). However, 

SOCS1 and -3 proteins lacking their entire SOCS-box were still able, although to a 

lesser extent, to inhibit cytokine signalling, but were completely refractory to the 

SOCS2 effect, implying that SOCS2 binding is critical. Moreover, overexpression of 

CIS that is equally well capable of sequestering elongin BC complexes does not lead 

to any effect on other SOCS proteins.  Where examined, the SOCS-box of the target 

SOCS protein appeared to be involved in SOCS2 binding.  Although our data support 

an involvement of the SOCS-box in the interaction between the inhibitory SOCS and 

the targetted SOCS, the precise nature of this inter-SOCS interaction is still unclear, 

and given the MAPPIT configuration, may well depend on phosphorylation of critical 

tyrosine residues. Mutational analysis will be required to fully determine the binding 

modus between different SOCS proteins. 
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Evidence that SOCS2 can act as a regulator of turnover of other SOCS proteins was 

recently also reported by Tannahill et al. by demonstrating SOCS2 regulation of the 

SOCS3-dependent inhibition of IL-2 and -3 signalling (29) and by Lavens et al. (34) 

showing elongin BC-dependent interference of SOCS2 with binding of CIS at position 

Y985 of the leptin receptor.   In line with such regulatory role of SOCS proteins is the 

sequential induction pattern of different SOCS molecules.  Unlike SOCS1 and SOCS3 

that are typically induced in a rapid and transient manner upon cytokine stimulation, 

SOCS2 expression usually occurs late after cytokine stimulation and is more 

prolonged (27,28,32).  Accumulation of increasing levels of SOCS2 late after 

induction is consistent with a role in eliminating excess levels of SOCS proteins after 

receptor activation, and may be involved in restoring cellular responsiveness for 

subsequent stimulation. Interestingly, SOCS2,-6 and -7 can also bind to them selves, 

suggesting the possibility of self-elimination. A full and global insight in the precise 

inhibitory effects will thus require careful analyses of the interaction pattern at the 

cytokine receptor, at the targeted SOCS protein and at the level of self interaction, 

bearing in mind the effect of the differences in binding affinities and relative 

expression levels of all components. 

Whereas SOCS1 through 3 and CIS have been studied extensively, so far little is 

known about the physiological role of the other four SOCS proteins, SOCS4-7.  We 

therefore analyzed matrix-wise all possible inter-SOCS interactions. This interaction 

map shows two characteristics: first, SOCS2 appears to bind to all SOCS proteins, 

including itself, and second, SOCS6 and SOCS7 display exactly the same binding 

profile.  

In line with a SOCS-counteracting role of SOCS6, we could show that its expression 

potentiates signalling via the GHR, IFNaR and LR, in a way quite similar to what we 

observed for SOCS2. Similar datasets were also obtained for leptin signalling in the 

physiologic relevant hypothalamic N38 cell line. These novel findings on SOCS6 

provide an explanation for the significant enhancement in glucose metabolism 

observed in SOCS6 transgenic mice (31).  More evidence for a positive role for 

SOCS6 in cytokine signalling also comes from studies in Drosophila melanogaster 

where Socs44A (that is similar to SOCS6) was shown to enhance the activity of the 

GFR/MAPK signalling cascade, in contrast to Socs36E (similar to SOCS5) (56). 
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Since several SOCS molecules can mediate similar regulatory effects, functional 

redundancy is not unlikely.  This may be particularly true for (but not limited to) 

SOCS6 and SOCS7 that show high homology and similarity in binding specificity (45).  

Compensatory effects between SOCS cross-modulating molecules may perhaps have 

an effect on the phenotypes of SOCS2, -6 and -7 deficient mice (23,45,57), 

warranting analysis of double knock-out mice that may uncover additional 

physiological activities of particular SOCS proteins.  It is of note that the SOCS-box is 

not limited to the SOCS protein family, but that at present 128 proteins harboring a 

SOCS-box have been described in the mammalian genome (according to Pfam 

database). 

In summary, our findings point to the existence of a subfamily of SOCS proteins 

consisting of SOCS2, -6 and –7, capable of controlling SOCS protein stability. This 

functional cross-modulation between SOCS proteins requires the SOCS-box, probably 

both as inter-SOCS binding domain, and as functional recruitment motif for elongin 

BC-containing E3 ubiquitin ligases.  This observation that several SOCS proteins not 

solely act as inhibitors of cytokine signalling should be taken in consideration in the 

evaluation of gene knock-out studies, and may be of relevance for several human 

pathologies. 
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Conclusions 
 
Interactions between proteins are fundamental to virtually every biological process. 

Proteins can function as components of large, highly structured complexes that carry 

out specific biological roles within the cell. Examples include complex enzymatic 

machines such as the proteasome or the different signalosomes, but also ribosomes 

or enhanceosomes that interface with other macromolecules. Likewise, the basic 

cellular structure is maintained and controlled by the protein-based cytoskeleton. 

Most of these protein-protein interactions are quite stable. However, since cellular 

processes are context-dependent, they are subject to regulation, often by temporary 

protein-protein interactions.  

 

As described in chapter 4, a broad range of both biochemical and genetic techniques 

have been developed to study the interactions between proteins. The in-depth 

characterisation of a particular protein-protein interaction or the comprehensive 

large-scale determination of protein-protein interactions within a particular organism 

requires the complementary use of different methodologies, with each tool adding 

unique advantages and opportunities as well as having specific drawbacks. It is thus 

not so surprising that the recently described large-scale TAP-based identification for 

protein-protein interactions in yeast showed less than 75% overlap with the datasets 

previously obtained by yeast two-hybrid based strategies (Gavin et al., 2006).  

The ‘in vitro’ biochemical methodologies comprise affinity-based purification of 

protein complexes including peptide affinity chromatography, tandem affinity 

purification and co-immunoprecipitation analysis, which were all used throughout this 

thesis. These tools allow detection of binary interactions as well as large 

macromolecular protein complexes and can be applied in a variety of cell types and 

organisms. Combined with mass spectrometry and database searching they allow 

high-throughput analysis. However since cell lysis is inevitable in biochemical 

analysis, the normal cellular context of protein complexes may be corrupted. 

Moreover, given the dynamic of a cellular context, many protein-protein interactions 

involved in temporal intracellular processes including receptor signal transduction 

systems are transient and may therefore not be detectable using biochemical 

methodologies.  
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The genetic two-hybrid approaches are ‘in vivo’ techniques that rely on linking 

proteins to functional polypeptides in such a way that when these proteins interact in 

a living cell a detectable signal is generated. The widely used yeast two-hybrid 

method detects protein-protein interactions in intact yeast cells based on 

reconstruction of functional transcription factors. The yeast two-hybrid technique can 

very easily be up-scaled for high throughput analysis using either random cDNA 

library screening or using arrays based on complete orfeomes. However, there are 

some major drawbacks to the technique. Because the protein interactions occur in 

the nucleus the method is not suitable for membrane-anchored or large proteins. 

Numerous false positives occur due to the transcription-based read-out that is also 

located in the nucleus. Moreover, posttranslational modifications are not always 

correctly reproduced in yeast cells and modification-dependent protein interactions 

are therefore difficult to identify.  

A variety of alternative two-hybrid systems in yeast mammalian cells, including the 

MAPPIT technique, have been developed to overcome these problems. MAPPIT, 

which was developed in our lab, functions in intact mammalian cells and is founded 

on the basic principles of type I cytokine receptor signalling (Eyckerman et al., 

2001). The method relies on functional complementation of a STAT3 recruitment-

deficient LR with the STAT3-recruiting domains of the gp130 chain when interaction 

of the fused proteins occurs. JAK2-mediated phosphorylation of the STAT3 

recruitment sites then allows STAT3 docking and activation. STAT3 subsequently 

translocates to the nucleus and induces an easily detectable luciferase reporter gene. 

The MAPPIT method is versatile and adds some unique advantages to existing 

methods. The analytic use of MAPPIT is simple and does not require specialized 

machinery (Eyckerman et al., 2002). The MAPPIT technique takes benefit from the 

fact that STAT molecules have the intrinsic capacity to shuttle from the cytosol to the 

nucleus. Therefore the signal read-out in MAPPIT depends on interactions occurring 

in the cytosolic submembranery space and does not require translocation of bait or 

prey proteins to the nucleus. Interactor and effector zones are thus separated, 

eliminating direct interference of the bait or prey proteins with activation of the 

reporter gene. In addition, the fact that the read-out depends on ligand-driven 

receptor activation adds a supplemental level of control to monitoring interactions. 

Taken together, an intrinsic characteristic of MAPPIT is the low rate of false positive 
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results. A disadvantage of this is that because of the crucial role for STAT3 in 

transferring the MAPPIT signal to the reporter read-out system, bait proteins that 

directly lead to activation of STAT3 can not be used in MAPPIT. In addition, prey 

proteins associating with the cytosolic tail of the LR or with JAK2 may also cause 

false positive signals. However, when using two chimeric receptors with different 

extracellular domains and only one carrying a C-terminal bait, false positives due to 

LR or JAK2 association can easily be identified. Over the past years a list of such 

false positive interactors was worked out, with examples including the Ring finger 

protein 41 and the p85 subunit of PI-3K. We generated the GGS-MAPPIT variant, 

wherein most of the intracellular LR tail is replaced by a stretch of GGS repeats. This 

variation of MAPPIT eliminates false positives that are due to LR (but not JAK2) 

interaction. Since the MAPPIT approach is based on the cytokine-induced JAK-STAT 

signalling pathway in intact mammalian cells it is especially suited for, but not limited 

to examining protein-protein interactions that occur in signalling cascades. Both 

modification-independent and JAK2-mediated tyrosine phosphorylation-dependent 

interactions can be detected. An adapted MAPPIT variant, heteromeric MAPPIT, was 

developed that allows identification of modification-dependent interactions other than 

tyrosine phosphorylation, e.g. serine phosphorylation (Lemmens et al., 2003). In this 

thesis, we also demonstrated that weak, transient interactions could be detected, 

likely as a consequence of the inherent features of the signalling-based strategy. In 

further support of this, we showed the dynamic nature of the interaction of a 

STAT5B prey with the EpoR using electrophoretic mobility shift assays (EMSA). After 

recruitment to the receptor, STAT5B preys translocate to the nucleus and bind to 

STAT5 responsive DNA motifs (Montoye et al., 2005).  

MAPPIT appears to be remarkably insensitive to sterical constraints. We have shown 

in this thesis that the CIS prey protein can be recruited to the Y985 and Y1077 

positions in the LR in a LR-MAPPIT setup as well as to C-terminally fused EpoR 

domains in the classic MAPPIT system. This demonstrates that prey recruitment can 

occur at various positions of the chimeric bait receptor and, since both CIS 

association and prey-dependent STAT recruitment and activation depend on tyrosine 

phosphorylation, implies that the receptor-associated kinase can recognize and 

phosphorylate all these positions. This topological flexibility is probably due to a high 

degree in free rotation of the unstructured intracellular receptor tail. This is in line 
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with the fact that although the crystal structure of extracellular receptor domain was 

determined for several cytokine receptors, little is known about the structure of 

intracellular receptor domains (Walter, 2002).  An alternative explanation could 

perhaps involve ligand-dependent alterations in the on-off rate of the kinase 

association with the receptor. The GGS-MAPPIT variant which was mentioned above, 

may add to the flexibility of the system.  

MAPPIT experiments can be performed in a variety of mammalian cells as was 

demonstrated in this thesis. In many cases, this should allow MAPPIT-based 

examination of protein-protein interactions in the same cellular background as the 

signal transduction pathways are analysed. For some cell types however, 

endogenous STAT3 expression levels may be insufficient to generate a MAPPIT 

signal. In certain cell types, e.g. hematopietic cell types, this may be overcome by 

switching to a more abundant STAT molecule e.g. STAT5, which requires fusion of 

the prey proteins to the STAT5-recruiting βc chain (Montoye et al., 2006).  

As the biochemical methodologies and the yeast two-hybrid technique mentioned 

above, MAPPIT does not allow real time registration of protein-protein interactions, 

which is a unique feature of the FRET and BRET (bioluminescence resonance energy 

transfer) methodologies. These more complicated techniques identify interactions 

between proteins in intact cells based on resonance energy transfer between protein-

conjugated donor and acceptor molecules. 

Next to analytic applications, MAPPIT can be used as a screening tool based on 

reporter genes that allow selection by either selective medium or by FACS sorting 

(Eyckerman et al., 2002; Lievens et al., 2004). Future prospects for the MAPPIT 

methodology include the direct in-cell monitoring of activated phospho-STAT3 by 

means of InfraRed imaging with the Odyssey equipment (LI-COR). Since this 

eliminates the reporter amplification step, it will allow very fast read-out and opens 

the way to automatisation of the system. Other adaptations to the MAPPIT technique 

include reverse MAPPIT that permits the identification of compounds that disrupt 

specific protein-protein interactions and MASPIT (mammalian small molecule-protein 

interaction trap), a three-hybrid system for compound target identification 

(Eyckerman et al., 2005; Caligiuri et al., 2006). 
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In this thesis we focussed mainly on regulation of LR signalling. Leptin is known to 

act as an adipostat in energy homeostasis. It is produced in white adipose tissue and 

communicates the status of body fat reserves to the hypothalamus. It is also 

involved in a number of other often peripheral processes including immune 

regulation. Since alterations in normal leptin action have severe pathological 

implications, it is important to understand the mechanisms that regulate leptin 

signalling.  

 

Until recently, the study of negative regulation of LR signalling was mainly restricted 

to PTP-1B and SOCS3. PTP-1B is a protein tyrosine phosphatase that predominantly 

targets LR signalling by dephosphorylation of JAK2 (Cheng et al., 2002; Kaszubska et 

al., 2002; Lund et al., 2005; Zabolotny et al., 2002). PTP-1B deficient mice are 

hypersensitive to leptin and protects them from high fat diet obesity, indicating that 

PTP-1B is a key mediator involved in leptin resistance (Elchebly et al., 1999). The 

precise sub-cellular location of LR signalling inhibition by this mostly endoplasmic 

reticulum-associated phosphatase remains to be clarified.  

As part of a typical negative feedback loop, SOCS3 was identified as a potent 

inhibitor of LR signalling (Bjorbaek et al., 1998). Neuronal-cell specific SOCS3 

deficiency or haploinsufficiency leads to leptin hypersensitivity in the hypothalamus 

of mice and suggests an important role for SOCS3 in central leptin regulation and 

resistance (Howard et al., 2004; Mori et al., 2004). SOCS3 terminates LR signalling 

by inhibiting JAK kinase activity via its KIR domain. It was shown to associate with 

the membrane proximal Y985 in the LR and to a lesser extent also with the Y1077 

position (Suzuki et al., 1998; Bjorbaek et al., 2000; Eyckerman et al., 2000).  

 

In the work presented in this thesis, we used the MAPPIT technique to introduce CIS 

and SOCS2 as two new interaction partners of the LR. We examined the binding 

properties of SOCS proteins in greater detail and investigated the functional cross-

modulation between SOCS proteins.  

 

Overall, the highly related SOCS proteins, CIS and SOCS2, show a great overlap in 

their interaction pattern with cytokine receptors including with the GHR and most of 

the tyrosines in the EpoR (Montoye et al., 2006; Uytendaele and Lemmens, in 
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preparation). Using both the LR-MAPPIT and GGS-MAPPIT variants we could 

demonstrate a differential interaction pattern of CIS and SOCS2 with tyrosines of the 

LR. Whereas both CIS and SOCS2 associate with the Y1077 position, only CIS 

interacts with the membrane proximal Y985. We also demonstrated differences in 

binding properties for the LR. For SOCS2 we suggested a role in regulation of STAT5 

activation. Similar data were obtained in both HEK293 cells and in haematopoietic 

TF-1 cells. Furthermore, while SOCS2 did not associate with Y985 of the LR, we 

found that SOCS2 can also block interaction of CIS with this position.  

 

Using both MAPPIT and peptide affinity chromatography we demonstrated that 

besides the SH2 domain, the SOCS-box of SOCS proteins can also contribute to 

substrate recognition. The SOCS-box of CIS is essential for interaction with EpoR and 

LR. Deletion of the SOCS-box or mutation of a single conserved C-terminal tyrosine 

completely prevented receptor interaction and resulted in abrogation of the inhibitory 

effect of CIS on EpoR signalling. In line with this, the SOCS-box of CIS was reported 

before as essential for the apoptotic effect of CIS on erythroid progenitor cells 

(Ketteler et al., 2003). Conversely, the SOCS-box was of no importance for 

interaction of CIS with MyD88, a universal adaptor protein in TLR signalling. This 

effect of the SOCS-box on receptor association seems to be an exclusive property of 

CIS since the SOCS-box was not essential for binding of the other tested SOCS - 

substrate interactions.  

From modelling studies based on the recently determined crystal structure of the 

SOCS2 and elongin B/C complex one can assume that the C-terminus of CIS is also 

buried in the interface between the SH2 domain and the SOCS-box, suggesting that 

it is not directly involved in CIS interaction with the receptor or in elongin C binding 

(Bullock et al., 2006). Tandem affinity purification experiments confirmed that the C-

terminal tyrosine of CIS is not directly involved in association with the elongin B/C 

complex. Similar to these observations, the C-terminus of another SOCS-box protein, 

the Von Hippel-Lindau protein, was also demonstrated to be involved in substrate 

recognition (Lewis et al., 2004). It is tempting to speculate that the mechanism by 

which the SOCS-box regulates receptor association of CIS may involve modification 

of the C-terminal tyrosine. Tyrosine phosphorylation of SOCS proteins has been 

described before, including phosphorylation of the corresponding C-terminal tyrosine 
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of SOCS3 which was found to abrogate the interaction with elongin C (Cacalano et 

al., 2001; Haan et al., 2003). Metabolic labelling revealed that CIS can be 

phosphorylated but future efforts are needed to identify the specific phosphorylation 

sites in the protein. It will be of interest to further clarify the underlying regulatory 

mechanisms. 

 

Earlier reports described both inhibitory and stimulatory effects of SOCS2 on GH 

signalling in vivo and in vitro (Favre et al., 1999; Greenhalgh et al., 2002; Metcalf et 

al., 2000). It was suggested that SOCS2 can interfere with the negative regulatory 

function of other SOCS proteins (Dif et al., 2001; Favre et al., 1999; Pezet et al., 

1999). We used the MAPPIT technique to demonstrate that SOCS2 can bind to 

members of the SOCS family, which was confirmed by co-immunoprecipitation. We 

suggest that SOCS2 targets these SOCS proteins for proteasome-mediated 

degradation and that this phenomenon depends on elongin B/C association with the 

SOCS-box of SOCS2. Moreover, the SOCS-box of the target protein also appeared 

essential. We demonstrated that SOCS2 antagonizes SOCS1 and SOCS3 in a SOCS-

box-dependent manner and restores signalling via GHR, IFNγ and LR. The 

unexpected discovery that SOCS2 interfered with the interaction of CIS at the Y985 

position of the LR, could also be explained by the direct interaction of SOCS2 with 

SOCS-box of CIS. Recently, others have reported that SOCS2 enhances IL-2 and IL-3 

induced signalling by interfering with other SOCS proteins (Tannahill et al., 2005). 

We demonstrated that like SOCS2, SOCS6 and SOCS7 also interact with all members 

of the SOCS protein family and that SOCS6, like SOCS2, interferes with SOCS-

mediated inhibition. Unlike SOCS1 and 3 that are typically induced in a rapid and 

transient manner upon stimulation, SOCS2 expression usually occurs late after 

cytokine stimulation and is more prolonged (Adams et al., 1998; Brender et al., 

2001; Pezet et al., 1999; Tannahill et al., 2005). It was reported that the advanced 

stage of chronic myeloid leukaemia (CML) in man is associated with elevated levels 

of SOCS2 (Schultheis et al., 2002). It appears that SOCS over-expression in vivo can 

lead to certain pathologies demonstrating the significance of a tight control on SOCS 

protein expression levels. SOCS2 and possibly SOCS6 and SOCS7 may be involved in 

restoring cellular sensitivity by overcoming the inhibitory effect of other SOCS 

proteins.  
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The over-expression of SOCS6 in transgenic mice enhances both insulin sensitivity 

and glucose metabolism suggesting that, similar to SOCS2 in GHR signalling, SOCS6 

positively regulates insulin signalling (Li et al., 2004). To further determine the 

precise role of SOCS6 in insulin signalling the effect of SOCS6 on downstream 

signalling molecules needs to be examined. Of note, although deficiency of SOCS6 or 

SOCS7 in mice results in relatively mild phenotypes at birth, the double knock-out 

mice are embryonically lethal, perhaps pointing to the loss of redundant functions of 

SOCS6 and SOCS7. (Krebs et al., 2002; Krebs et al., 2004; Hilton, personal 

communication). More detailed analysis is needed to fully understand these different 

phenotypes and their implications for SOCS protein function and cross-regulation.  

 

The binding modus of SOCS-SOCS interactions will also need further examination. 

SOCS-SOCS interactions are currently studied in greater detail using MAPPIT and co-

precipitation experiments. Mutagenesis analysis will be used to map the motifs 

involved in the interaction between the SOCS proteins, although full understanding of 

SOCS-SOCS interactions will require co-crystallization and detailed biochemical 

analyses, e.g. by BIAcore biosensor technology. It is clear that the kinetics of 

expression but also the relative expression levels and binding affinities of SOCS 

proteins and their target proteins will ultimately determine the signalling amplitude. 

Adding even more complexity to the system, we identified in this thesis a novel layer 

of inter-SOCS regulation, likely involved in restoring basal responsiveness. Detailed 

analysis of expression patterns and binding affinities of all interaction partners in a 

selected model cellular background will be required to fully chart the relative 

importance of each of these variables.  

 

Taken together, our findings suggest a broader role for the SOCS-box of SOCS 

proteins. As reported before, the SOCS-box is involved in targeting associated 

proteins for degradation and in SOCS protein stability. In the course of this thesis 

project, we demonstrated that the SOCS-box can also be essential for interaction 

with cytokine receptors and that it plays an essential role in cross-modulation 

between SOCS-proteins. 
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