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Technical Article

Introduction

Recent developments in the miniaturization of electronic 
hardware and computer processing have had a profound 
impact on medical imaging in the 21st century. Although 
most ultrasound scanners found in a human medical context 
today are cart-based, handheld and low-power point-of-care 
ultrasound scanners have the potential to revolutionize the 
availability of ultrasonic imaging across the world. Key 
areas of innovation for ultrasound system design include 
improvements to power consumption and battery life, form 
factor and portability, and cost.1,2

Battery-operated ultrasound scanner design consequently 
focuses on improving sensitivity without sacrificing effi-
ciency and cost. Advanced imaging techniques requiring 
high computational load such as Plane Wave imaging or 
Synthetic Transmit Aperture imaging, or even increasing 
number of hardware receive channels to increase sensitivity, 
can have a direct impact on efficiency and cost, therefore 
other methods of improving sensitivity should be examined.

Pulse compression has been used in a wide range of tech-
nologies from it’s conception in radar imaging through to 
telecommunications and ultrasonic imaging, which first saw 
successful implementation in diagnostic ultrasound machines 
in the 1990s3 and grew in popularity as ultrasound scanners 

reached the Mechanical Index (MI) limit imposed by regula-
tory bodies.

Pulse compression using binary phase coded excitations 
are of particular interest to low-power, low-cost ultrasound 
scanner design as binary codes only require simple bi-level 
pulse generation architectures, rather than LFM “chirp” 
imaging which requires costly and complex multilevel pulser 
hardware.4 One binary phase coded excitation scheme of 
note uses the Golay complementary sequences, consisting a 
pair of equal length codes with autocorrelation functions 
which sum to produce a central peak of 2N , where N  is the 
length of the code in positive and negative symbols, and zero 
range side-lobes.5 Golay complementary codes require two 
transmit-receive cycles to obtain a single line of sight, mean-
ing non-stationary features can corrupt the complementary 
summation, leading many to discard them.4 Despite this, 
some have found their use in blood flow imaging6,7 and 
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Abstract
Recent advances in electronics miniaturization have led to the development of low-power, low-cost, point-of-care ultrasound 
scanners. Low-cost systems employing simple bi-level pulse generation devices need only utilize binary phase modulated 
coded excitations to significantly improve sensitivity; however the performance of complementary codes in the presence 
of nonlinear harmonic distortion has not been thoroughly investigated. Through simulation, it was found that nonlinear 
propagation media with little attenuative properties can significantly deteriorate the Peak Sidelobe Level (PSL) performance 
of complementary Golay coded pulse compression, resulting in PSL levels of −62 dB using nonlinear acoustics theory 
contrasted with −198 dB in the linear case. Simulations of 96 complementary pairs revealed that some pairs are more robust 
to sidelobe degradation from nonlinear harmonic distortion than others, up to a maximum PSL difference of 17 dB between 
the best and worst performing codes. It is recommended that users consider the effects of nonlinear harmonic distortion 
when implementing binary phase modulated complementary Golay coded excitations.
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others have devised motion compensation techniques to 
ensure good summation.3

Every aspect of pulse compression using binary phase 
coded excitations must therefore be optimized to gain the most 
performance for low-power, low-cost ultrasound systems.

There has, to date, been very little research into the interac-
tion of complementary Golay codes with nonlinear acoustics 
theory. A seminal paper covering pulse compression for ultra-
sonic imaging reviewed the use of both Golay and Chirp coded 
excitations in detail for ultrasound scanners.4 Although an 
extremely informative paper, issues surrounding nonlinear 
propagation and attenuation were only briefly investigated. 
Simulations of Golay codes propagating through linear and 
nonlinear media, with B/A of 0 and 8 respectively, were com-
pared across a range of attenuation values and authors found 
that, although the sidelobes of binary phase codes increase due 
to harmonic distortion, sidelobe levels reduced as attenuation 
increased. This indicated that frequency dependent attenuation 
was aiding the reduction of harmonics in Golay codes, thus 
maintaining satisfactory complementary summation.

However, ultrasound in medical settings rarely travels 
through homogenous tissue. Anatomical heterogeneities 
present propagation media of varying acoustic properties, for 
example, the skin layer, fat, muscle, and fluid-filled regions 
as in obstetric imaging. As such, the degree of attenuation 
cannot be guaranteed.

Therefore the robustness of Golay sidelobe cancelation in 
nonlinear propagation media can be better understood by 
first ignoring attenuative effects and considering in isolation 
the impact of nonlinear harmonic distortion.

This paper will examine in simulation the impact of non-
linear harmonic distortion on the sidelobe cancelation per-
formance of complementary Golay codes. Some background 
knowledge pertinent to this article will be presented, fol-
lowed by a description of the model used to simulate acous-
tic propagation. Harmonic distortion of Golay codes will be 
investigated and compared using Peak Sidelobe Level (PSL), 
followed by an analysis of 96 simulated complementary 
sequences.

Pulse Compression

Sets of binary codes exist which are suitable for constructing 
coded excitations, whereby the symbols of each code can be 
represented by +1 or −1. Rather than direct transmission, the 
accepted method of implementing binary coded excitation in 
ultrasound imaging is to modulate a base sinusoidal pulse 
train of length N  cycles with 0 to π phase shifts to represent 
+1 and −1 code symbols.4

Two commonly used sets of binary sequences suitable 
for pulse compression in ultrasound are Barker sequences 
and Golay complementary sequences. For the purposes of 
this research, we will consider only Golay complementary 
sequences.

Golay Coded Excitation

Transmission, decode, and summation steps of the binary 
complementary series devised by Golay5 are well described 
in literature.4,8

The convolution stage of pulse compression is imple-
mented as a matched filter, with the template constructed via 
the time-reversal of the transmitted coded excitation. Note 
that the matched filter result generates peaks at points of par-
tial correlation symmetrically around the mainlobe. These 
sidelobes are an artifact of the correlation process and can 
appear as weak peaks on either side of the mainlobe after 
envelope detection.

If not adequately minimized, the axial resolution of a sys-
tem using pulse compression imaging will be significantly 
reduced: high amplitude sidelobes would mask mainlobe 
echoes from nearby weakly echogenic, and potentially sig-
nificant, targets.9 The aim of good pulse compression imple-
mentation, therefore, is to transmit sequences which give a 
mainlobe at the point of maximum correlation and sidelobes 
close to zero at all other points.

The final stage of pulse compression using Golay codes is 
complementary summation, whereby the mainlobes are rein-
forced to provide a single peak at 2N  and sidelobes are can-
celed as a result of destructive interference. Note that the 
sidelobes must be identical, albeit inverted, to provide per-
fect cancelation to 0.

Impact of Nonlinearity on Pulse Compression

Nonlinear variations between pressure and density in propa-
gation media cause waveform compressional and rarefac-
tional pressure components to travel at different speeds, 
altering the amplitude, shape, and spectra of the propagating 
waveform. The peak compression components of the wave-
form accelerate toward π / 2, whereas the peak rarefaction 
components decelerate to approach π / 2.10 This is reflected in 
the spectra of the waveform as upper harmonics of the funda-
mental increase.

The decoding matched filter extracts a known signal 
which has been distorted by some linear process, such as 
additive white noise, however the harmonic distortion cre-
ated by nonlinearities nonlinear propagation media will logi-
cally cause the receiving matched filter template to be 
suboptimal, as the positive and negative portions of the 
waveform travel toward and away from the zero crossing, 
respectively.

Various metrics have been proposed as indicators of non-
linearity, and, although no single metric is best placed to rep-
resent all facets of nonlinear propagation,11 the Spectral 
Index (SI ) has the benefit of representing harmonic distor-
tion across the whole frequency spectrum and is agnostic of 
pulse shape and frequency, source pressure, and material 
properties12:
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Where fa is arbitrarily chosen at 1.5 fc, where fc  is the 
fundamental, and Pf  is the power of the frequency spectrum. 
This metric will be used to represent the degree of harmonic 
distortion present in the following simulations.

K-Wave Simulation

The k-Wave toolbox for MATLAB can be used to assess 
nonlinearity through different media. The tool iteratively 
solves coupled first-order acoustic equations in one, two, and 
three dimensions, a more efficient method than solving the 
equations using finite element methods. For a detailed 
description and experimental validation of the k-Wave tool-
box, see Treeby and Cox,13 Treeby et al.,14 and Martin et al.15

The simulation is designed as a 2D 40mm × 40mm body 
of water at 20�C (properties listed in Table 1) with an arc 
acoustic source object representing a concave element round 
transducer of 18mm diameter and 75mm radius. 2048 × 2048 
grid points represent the simulation space, giving a grid 
spacing of 19µm, including a PML of 40 × 40 grid points. 
The maximum spatial frequency supported by the grid is 
37MHz. A binary sensor mask is used to place 100  sensors 
in the axial midpoint of the propagation medium at steps of 
0.4mm per sensor, thus mimicking a hydrophone moving in-
step with wave propagation. This approach reduces simula-
tion complexity, as compared to placing reflecting scatterers 
within the medium, since only the interaction of transmitted 
Golay codes with nonlinear harmonic distortion is investi-
gated. The CFL number is 0.3, resulting in a temporal sam-
pling frequency of 248MHz which is far greater than the 
maximum reproducible spatial frequency, but necessary to 
ensure stable simulations.

The input source signal is designed to mimic the limited 
bandwidth of a typical ultrasound transducer. Transmissions 
are first defined as a square wave pulse train to imitate the 
behavior of bi-level pulsers used in conventional ultrasound 
systems and modulated according to Golay codes, for exam-
ple, given in Table 2 generated by the MATLAB code pre-
sented in Trots et al.8 Transmissions are then filtered through 
a 512-tap bandpass FIR filter with center frequency of 1 MHz 
and 85% fractional bandwidth, resulting waveforms are 
given in Figure 1. A final non-causal filtering step is included, 

as recommended by the k-Wave documentation to eliminate 
high frequencies from the transmit signal that are not sup-
ported by the grid, before the input signal is amplified by a 
source pressure of 3MPa. Although most diagnostic ultra-
sound source pressures fall below this level, 3MPa was 
required to generate harmonic distortion with the above 
stated simulation space and grid point density.

The B/A parameter of nonlinearity can be omitted when 
defining the medium properties in k-Wave to allow investi-
gation only of linear propagation. Simulations of comple-
mentary pairs are conducted for both nonlinear and linear 
cases, represented in all plots by a solid line and dashed line 
respectively.

Simulations are performed using the optimized C++ 
program, providing an order of magnitude speed increase 
when run on an NVIDIA CUDA-enabled GPU. The follow-
ing simulations are performed on a Windows Server with an 
Intel Xeon Silver 4214 CPU @ 2.20 GHz processor, 32 GB 
RAM, and an NVIDIA Quadro P2000 GPU with 5 GB 
GDDR5 memory.

Decoding is performed with a matched filter using the 
time-reversal of the square wave signals shown in dashed 
lines in Figure 1 as the template, with number of coefficients 
equal to the length of the transmitted pulse at the temporal 
sampling rate.

Sidelobe cancelation performance is quantified by the Peak 
Sidelobe Level (PSL), defined as the ratio of the peak main-
lobe to that of the peak sidelobe in decibels, given in (2):

 
PSL log

max A

max A
mainlobe

sidelobe

= 20 10
( )

( )  
(2)

Results

Consistent with both the theory and simulation of a conven-
tional sinusoid, Golay waveforms prior to decoding become 
distorted in both the peak compression and rarefaction phases 
throughout the propagation distance.

The differences between the time-domain view of linear 
and nonlinear codes are not as prominent after decoding, 
proving the effectiveness of the matched filter.

Table 3 compares the SI  of the conventional sinusoid 
and Golay codes. Spectral energy transferred from the funda-
mental of the coded excitations follows the same trend as 
that of the conventional sinusoid. SI  of all waveforms are 
below 25% for 20 mm of the 40 mm simulation space, then 
rapidly increase at a rate of at least 2% per mm until the 
maximum recorded point at 36 mm, indicating that the 

Table 1. Material Properties of Water @ 20ºC.

ρ (kg/m3) c (m/s) B/A α0 (dB/MHzy–cm) y

998 1482.8 4.96 2.17e-3 2.00

Table 2. Complementary Symbols for Code A and Code B.

Golay A + + + + + − − +
Golay B + + − − + − + −
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greatest waveform distortion occurs in the latter half of the 
simulation. Further, the SI of the complementary sum is 
notably lower than that of the sinusoid or coded excitations.

The evolution of sidelobes with increasing SI  for the non-
linear case can also be seen in Table 3, where “Pre” and “Post” 
denote the sidelobe levels on either side of the mainlobe of the 
complementary sum. PSL rises from −148dB at the transducer 
face to −70dB at Z mm= 36  whereas the sidelobes for the lin-
ear case, not shown in Table 3, peak at −196dB.

PSL values nearest to and furthest from the transducer 
face for values of Z in the nonlinear case are given in  
Table 3, which rises logarithmically from −198dB at the 
transducer face then rapidly to a knee-point of −94dB at 
Z mm=16  before leveling off to approach −70dB at 
Z mm= 36 . The linear PSL, not shown, consistently hovers 
around −196dB for the duration of the propagation.

Normalized and dB plots of the complementary sum at 
z mm= 28  are shown in Figure 2, with nonlinear and linear 
cases depicted by the solid and dashed lines respectively. 
Whilst the mainlobe of the complementary sum is similar in 
both cases, the sidelobes of the nonlinear simulation are sig-
nificantly higher than the linear case, as seen by the dB plot.

As seen in Table 3, the notably lower SI  of the comple-
mentary sum compared to conventional sinusoid is reflected 
in Figure 2(b), where the upper harmonic levels of the non-
linear case are considerably lower than the fundamental. 
Note that the spectra after decoding preserves the odd-num-
bered harmonics.

Simulations are repeated with a range of 96 different algo-
rithmically-generated complementary pairs8 to assess their 
relative performance.

Box plots of PSL against Z  for 96 code pairs are shown in 
Figure 3 with the mean value represented by the dashed line. 

PSL values after the mainlobe are not shown here but follow 
a trend similar to that shown in Table 3. Results were obtained 
for the linear case, where the PSLs for all simulations were 
consistently below −196dB.

Sidelobe levels are widely distributed at the transducer 
face, however the inter-quartile range rapidly narrows at 
Z mm=12  and above, indicating that all simulated codes 
degrade with nonlinear harmonic distortion. For Z mm= 36 , 
maximum and minimum ranges are −70dB and −94dB 
respectively, proving that some codes present a higher PSL 
than others under harmonic distortion. Both mean and 
median PSL values increase logarithmically with Z.

It is well known that Golay swap sets exist, whereby a 
Golay code can be inverted and/or reversed to yield a new 
complementary pair. Two such swap sets were identified 
within the 96 simulated codes, notated hereafter for brevity 
in hexadecimal, and given in Table 4. Codes within the swap 
set exhibit different PSL values in the presence of nonlinear-
ity. The nonlinear case shows significant variation on either 
side of the mainlobe. By selecting Code B 47 instead of E2, 
for instance, the pre-mainlobe PSL degrades by 16dB whereas 
the post-mainlobe PSL improves by 13dB. All linear case 
PSLs were found to be consistently below −110dB. Different 
swap sets were also identified and results logged, which 
showed comparable results.

Complementary pairs were sorted in order of their PSL 
performance for both before and after the mainlobe at 
Z mm= 36 . The best and worst performing codes are given in 
Table 5, again in hexadecimal notation, with corresponding 
source transmission waveforms in Figure 4. For pair A D= 8  
& B = 82, the post-mainlobe PSL was −62 dB for the nonlin-
ear case, compared to −198 dB for the linear case. Linear 
PSLs for both pairs in Table 5 were consistently below 
–150 dB.

Figure 1. Phase-modulated 1 MHz square wave codes (dashed) 
and transmitted result after 85% fractional bandwidth bandpass 
filter (solid) for Golay (a) and (b) top and bottom respectively.

Table 3. Spectral Index (%) of Golay Codes Given in Table 2  
Prior to Decoding and After Complementary Summation, 
Compared with Conventional Sinusoid, for Increasing Distance 
Z From the Transducer Face. Also Shown are the PSL Values for 
Before and After the Mainlobe, Denoted “Pre” and “Post.”.

SI (%) PSL (dB)

Z (mm) Sinusoid Code A Code B Sum Pre Post

0 6.15 9.04 14.42 2.28 −198 −148
4 7.98 10.48 16.16 2.98 −118 −120
8 10.97 12.58 16.95 2.92 −104 −104
12 17.24 17.88 21.58 3.86 −94 −97
16 14.56 15.79 20.67 3.25 −88 −93
20 22.37 20.72 24.07 3.81 −85 −87
24 33.70 30.35 32.14 5.95 −81 −81
28 45.34 40.98 41.80 8.63 −78 −76
32 56.88 52.07 51.96 11.47 −76 −72
36 65.90 61.58 60.98 14.10 −75 −70
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Discussion

Simulations presented here reveal that sidelobe levels of 
complementary pairs deteriorate in the presence of nonlinear 
harmonic distortion, with PSLs found to be significantly 
higher in the nonlinear case than that of the linear case. 
Previous work determined that this would have little effect in 
materials with high frequency dependent attenuation proper-
ties, however it must be acknowledged that this is not the 
case in all materials, be it anatomical or otherwise.

Significant harmonic distortion was observed throughout 
the propagation of phase modulated Golay codes in simula-
tion. Although decoding led to a marked reduction in har-
monic content, final complementary summation revealed 
significant sidelobe levels, indicating that the matched filter 
using the template of an ideal code was not optimal. PSL rose 
from, on average, −151dB at the transducer face to −71dB at 
Z mm= 36  prior to the mainlobe.

Although the average PSL of −71dB relative to the main-
lobe is likely acceptable for 12-bit ADC architectures, side-
lobes of some complementary pairs registering as high as 
−62dB would degrade interpretation of targets. Further, sid-
elobes would be more apparent on newer architectures built 
around 14-bit ADC devices with dynamic ranges of −84dB 
relative to full scale.

An investigation into 96 complementary pairs revealed 
that some codes perform significantly better than others. A 
trade-off clearly exists between PSL performance on either 
side of the mainlobe. Golay swap sets exhibited such behav-
ior, with code pairs within a swap set giving better PSL per-
formance prior to the mainlobe rather than afterward. Of all 
96 simulated codes, the codes with the lowest and highest 
combined PSLs at Z mm= 36 , that is, the best and worst 
 performers, were A CA= , B = 06 and A D= 8 , B = 82, 
respectively.

Figure 2. Complementary summation of decoded Golay codes recorded at 28 mm from the transducer face with nonlinear and linear 
cases represented by the solid and dashed lines respectively. 2(a) shows the final pulse compressed waveform, with notable sidelobes on 
either side of the mainlobe. 2(b) shows the corresponding spectrum. 2(c) shows a dB plot of the complementary summation waveform, 
where a significant difference can be seen between the nonlinear and linear cases. (a) Golay Complementary Sum, (b) Spectrum of Golay 
Sum, and (c) Golay Complementary Sum (dB Scale).

Figure 3. Box plots of PSL against Z for 96 Golay 
complementary pairs for the nonlinear case, with mean PSL result 
depicted by the dashed line.
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The reason why some complementary pairs result in 
lower PSLs than others is understandably of significant 
importance. The number of +1 to −1 transitions were investi-
gated, as were the number of positive and negative symbols, 
and whether codes began with +1 or −1 symbols—none of 
which provided definitive answers. Further, the logarithmic 
increase of PSL seen in Figure 3 does not follow the same 
trend line as that of the SI  for either code transmissions or the 
summed result. The SI  of coded excitations presented in 
Table 3 increase faster than that of the conventional sinusoid 
in the first 16mm of propagation, indicating that energy is 
more readily transferred to higher harmonics. Note, however 
that the spectrum of a linear Golay code contains higher har-
monics than that of the conventional sinusoid due to the 
complex wave shape.

Notably the level of all even harmonics is far reduced 
after decoding due to the convolution theorem. The fre-
quency response of each matched filter exhibits stopbands at 
even harmonics with complex passbands at odd harmonics. 
Further investigation into the interaction of this complicated 
frequency response with nonlinear Golay waveforms is 
clearly valuable but outwith the scope of this paper.

The asymmetry metric p pc r/ 12 presents the amount of 
distortion present in a waveform as the ratio of the peak com-
pressional component to that of peak rarefaction. This was 
investigated for the coded excitations and found to follow a 
similar trend to that of SI , so does not indicate a correlation 
between asymmetry and PSL.

The above results confirm that harmonic distortion can neg-
atively impact the PSL performance of complementary Golay 
codes, but note the ideal conditions used to generate high SI.

The acoustic shock equation12:

 

σ
β π

ρ
=

20 0

0 0
3

p f z

c  
(3)

dictates that the formation of shock is proportional to the 
material coefficient of nonlinearity β, transmitted source 
pressure p0, source frequency f0, and distance from the 
transmitter z.

The source pressure of 3MPa used in the above simula-
tions is higher than that used in diagnostic medical ultra-
sound imaging, thus simulations from Figure 1 were repeated 
with lower transmitted pressures of 0.8MPa. This resulted in 
a Golay sum at z mm= 36  with SI of 3.26% and a peak PSL 
of –97 dB. Note that the effects of frequency dependent 
attenuation in tissue would further attenuate upper harmon-
ics thus reducing PSL.4

It is therefore unlikely that complementary Golay codes 
would develop high sidelobe levels in medical diagnostic 
ultrasound imaging as a result of nonlinear harmonic 
distortion.

Although the results presented here are only a result of 
simulation data, it is worth noting that the k-Wave simulation 
toolbox has been verified as accurate with experimental data 
and that the number of observations presented here are easier 
obtained in simulation than experimentally. Further, the above 
simulations make use of “turning off” nonlinear acoustics 
physics which is of course not possible experimentally.

Conclusion

The goal of this article was to examine sidelobe degradation 
of complementary Golay coded excitations in the presence of 
nonlinear harmonic distortion, which was achieved by simu-
lating the propagation of the complementary transmissions 
in water with both linear and nonlinear acoustics theory 
using the k-Wave toolbox for MATLAB.

Previous authors have shown that frequency dependent 
attenuation in homogenous media can sufficiently attenuate 
harmonic distortion of complementary codes, thus maintain-
ing satisfactory summation.4 However, the simulation results 
presented here confirm that propagation through water, and 
therefore other materials with very little frequency depen-
dent attenuation properties, can lead to increased sidelobe 
levels. Whilst the harmonic distortion observed in this paper 
originates from the nonlinear relationship between pressure 
and density in tissue and fluids, the results are applicable 
regardless of the source of nonlinearity; distortion may arise 
from multiple sources in the imaging chain between signal 
generation to matched filter reception.

These findings demonstrate that sidelobe performance of 
complementary Golay codes will degrade in the presence of 
nonlinear harmonic distortion, but that the safety limits on 
medical diagnostic ultrasound imaging will prevent such 

Table 4. Comparison of PSLs Before and After the Mainlobe for 
Golay Swap Sets Notated in Hexadecimal Recorded at  
Z = 36mm, Denoted as “Pre” and “Post” Respectively.

Code A Code B PSL Pre (dB) PSL Post (dB)

ED E2 −84 −63
ED B8 −78 −66
ED 47 −68 −76
ED 1D −74 −65
BE B1 −79 −68
BE 8D −63 −76
BE 72 −66 −67
BE 4E −62 −67

Table 5. Code Pairs Notated in Hexadecimal with Highest  
and Lowest PSLs Before and After the Mainlobe Recorded at  
Z = 36mm, Denoted as “Pre” and “Post” Respectively.

PSL (dB)

Code A Code B Pre Post
CA 06 −75 −79
8D 82 −66 −62
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artifacts from appearing in clinical B-Mode imaging. These 
findings may, however, have implications for other areas of 
ultrasonic systems, such as NDT.

It is recommended that system designers aiming to extract 
the maximum performance of ultrasound devices using pulse 
compression with complementary codes must consider that 
nonlinear harmonic distortion can degrade PSL performance, 
and that proper selection of Golay codes which give desir-
able cancelation properties should be used.

Readers should also be aware that these results have 
implications for not only ultrasonic devices in nonlinear 
propagation media, but to other technologies where sources 
of nonlinearity can distort transmitted complementary codes.

Future research can build on these observations with sim-
ulations approximating anatomical structures with varying 
nonlinear materials, experimental validation with hydro-
phones, and also determining why some complementary 
Golay codes perform better in the presence of nonlinear har-
monic distortion than others.
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