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Abstract In this chapter, we present a tutorial about fuzzy answer set programming
(FASP); we give a gentle introduction to its basic ideas and definitions. FASP is a
combination of answer set programming and fuzzy logics which has recently been
proposed. From the answer set semantics, FASP inherits the declarative nonmono-
tonic reasoning capabilities, while fuzzy logic adds the power to model continuous
problems. FASP can be tailored towards different applications since fuzzy logics
gives a great flexibility, e.g. by the possibility to use different generalizations of
the classical connectives. In this chapter, we consider a rather general form of FASP
programs; the connectives can in principal be interpreted by arbitrary [0,1]n→ [0,1]-
mappings. Despite that very general connectives are allowed, the presented frame-
work turns out to be an intuitive extension of answer set programming.

1 Introduction

In this chapter we will present and illustrate the basic definitions of fuzzy answer set
programming (FASP). In recent years a variety of approaches to FASP have been
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proposed (e.g. [5], [10], [12], [21]). This framework is a generalization of answer
set programming using fuzzy logics, a class of logics whose semantics are based on
truth values taken from the unit interval [0,1] [9]. Answer set programming (ASP)
[1] is a tool for modeling combinatorial search problems in a declarative way. It has
its roots in logic programming and nonmonotonic reasoning.

Nonmonotonicity enables human-like reasoning; humans constantly revise their
knowledge when they obtain new information. In contrast, classical logic works
monotonically; when new knowledge is added, the set of conclusions that can be
inferred increases. To overcome this limitation of classical logic when imitating
human reasoning, several nonmonotonic logics, e.g. autoepistemic logic [14] and
default logic [17], and logic programming with negation-as-failure such as ASP [7]
have been proposed. In logic programming, and ASP in particular, nonmonotonicty
is obtained by the negation-as-failure operator “not”. The difference with classical
negation ¬ is that ¬a is true if we can derive ¬a, whereas nota is true is we fail to
derive a. Note that this means that ASP can deal with incomplete information; one
can draw conclusions if information is absent.

The basic idea of ASP is that a search problem is translated into an ASP program,
i.e. a set of rules of the form α← β . Such a rule indicates that whenever the body β

holds, the head α holds as well. The expression α is a disjunction of literals and β

a conjunction of extended literals. A literal is an atom or an expression of the form
¬a with a an atom. An extended literal is a literal or an expression of the form not l
with l a literal. Given an ASP program, the idea is to find a minimal set of literals
that can be derived from the program. A program can have several of such “answer
sets” or none at all. The answer sets then correspond to the solutions of the original
search problem. Let us consider a concrete example. Suppose one wants to color
the vertices of a graph in either black or white but adjacent nodes must be colored
differently. This search problem can be modeled by the program P:

black(X) ← notwhite(X)
white(X)← notblack(X)

← edge(X ,Y )∧white(X)∧white(Y )
← edge(X ,Y )∧black(X)∧black(Y )

The first two rules express that each node should have exactly one of the two col-
ors. The last two rules are constraints expressing that two nodes connected by an
edge should have a different color. The empty head of a constraint can be thought
of as always being “false”. Hence, a constraint rule only holds if its body is false
as well. Note that we use variables X and Y ; this is to allow a compact descrip-
tion of the problem. By grounding the program, i.e. replacing the variables in all
meaningful ways, one gets all the rules. For instance, for a graph with nodes a
and b, the first rule from the program P above, gives rise to the grounded rules
“black(a)← notwhite(a)” and “black(b)← notwhite(b)”. In addition, a number of
facts, rules of the form “edge(a,b)←” with a and b nodes, are added to the program.
The empty body of a fact can be thought of as always being “true”. Hence, such a
rule implies that there is an edge between node a and b, since a rule with a body that
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is true can only hold if the head is true as well. After grounding the program, the
answer set semantics defines the solutions to the program. For instance, if there are
three nodes a, b and c such that there is an edge between a and b and one between b
and c, then there are two answer sets. One of these will contain the atoms black(a),
white(b) and black(c) and the other the atoms white(a), black(b) and white(c).

Unfortunately, ASP is not suitable for expressing continuous optimization prob-
lems since it is limited to expressing problems in boolean logic. For example, sup-
pose one wants to travel by car from one city to another in Winter. The driving
time that is needed to do this depends on several factors; for instance the amount
of snow, the distance and the traffic. These concepts are a matter of degree rather
than boolean properties, thus we cannot directly use ASP to model this problem.
One solution to this problem is to allow propositions to be true to a certain degree
in [0,1] and to generalize the syntax and semantics of ASP using fuzzy logics. We
can then write the rule

driving time ← f (snow,distance, traffic)

where “driving time”, “snow” and “traffic” now have to be seen as atoms that can
be assigned a degree in [0,1]. The function f defines how these degrees have to be
combined to give the driving time. Note that it is not realistic to assume that f is
a linear function. For example, if it starts to snow, not even taking into account the
other factors, then the driving time will increase very fast; after that the increase
of driving time due to the snow will slow down. In practice, one can use statistical
information to define f . Finally, remark that FASP is used to deal with partial truth
and not with uncertainty or vagueness. See [6] for a discussion on the difference be-
tween these concepts. To deal with uncertainty, among others, ASP can be extended
with possibility theory (e.g. [15]) or with probability theory (e.g. [3]).

The basic idea of FASP is to model search problems with continuous domains.
A continuous search problem can then be translated into a FASP program, i.e. a
set of rules of the form α ← β where α and β are built from atoms, expressions
of the form nota with a an atom, constants and connectives that can in principal
be interpreted by arbitrary [0,1]n → [0,1]-mappings. Such a rule now intuitively
means that the truth degree of α must be greater or equal to the truth degree of β .
Reconsider our example about the driving time. The rule

snow← 0.2

can be used to indicate that it snows to at least degree 0.2 which could mean, de-
pending on how you define the degree of snow, that the snow melts immediately
when it touches the ground. This rule is thus satisfied if it snows to degree 0.9.
However this attaches a higher value to “snow” than the rule actually supports. If
the degree of “snow” does not depend on other atoms, it is reasonable to attach the
degree 0.2 to “snow”. This is in line with the idea of ASP which attempts to make
as few literals true as possible to satisfy the rules of a program. Hence here we are
interested in finding the lowest truth degrees that we can assign to each of the atoms,
such that the rules are still satisfied. Although α and β may be built from very gen-
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eral connectives, FASP can model search problems entirely similar as ASP does for
search problems with discrete domains.

Although it has been studied by several authors, FASP is by far not as developed
as ASP. For example, very little is known about its computational complexity and
few techniques are known to compute the answer sets of FASP programs. Also,
many extensions proposed for ASP have not yet been considered in FASP. With
the exceptions of e.g. [12], [18] and [20], most work is even restricted to FASP
programs with exactly one atom in the head.

In the following section, we will give the necessary background on fuzzy logics
followed by an introduction to FASP in Section 3. We present a motivating real life
example in Section 4 and some remarks and open problems about FASP in Section
5.

2 Background on fuzzy logics

Fuzzy logics [9] form a class of logics whose semantics are based on truth degrees
taken from the unit interval [0,1]. We will consider general fuzzy logics whose for-
mulas are built from a set of atoms A, the truth constants in [0,1]∩Q and arbitrary
n-ary connectives for each n ∈ N. A fuzzy interpretation is a mapping I : A→ [0,1],
also called a fuzzy set on A. The set of all fuzzy sets on A will be written as F (A).
We can extend a fuzzy interpretation I as follows. Each n-ary connective f is inter-
preted by a function f : [0,1]n→ [0,1]. For instance, the n-ary connective “average”
can correspond to the function [0,1]n → [0,1] : (x1, . . . ,xn) 7→ 1

n ∑
n
i=1 xi. We define

[ f (α1, . . . ,αn)]I = f([α1]I , . . . , [αn]I) for formulas αi (1≤ i≤ n). For c ∈ [0,1]∩Q
we have [c]I = c. If C is a set of formulas we say that I is a fuzzy model of C iff
[α]I = 1 for all α ∈C; we write this as I |=C. For fuzzy interpretations I1, I2 ∈F (A)
we write I1 ≤ I2 iff I1(a)≤ I2(a) for all a∈ A. If I1 ≤ I2 and I1 6= I2, we write I1 < I2.
A fuzzy model I is a minimal fuzzy model of a set of formulas C if there does not
exist a fuzzy model J of C such that J < I.

We will now recall some generalizations of the classical connectives. Specifi-
cally, triangular norms (short t-norm) are used to generalize classical conjunction.
These are mappings T : [0,1]2→ [0,1] that are commutative, associative, increasing
and for which it holds that T(x,1) = x for each x∈ [0,1]. Disjunction can be general-
ized by a triangular conorm (short t-conorm). These are mappings S : [0,1]2→ [0,1]
that are commutative, associative, increasing and for which it holds that S(x,0) = x
for each x ∈ [0,1]. Logical implication can be generalized by an implicator, i.e. a
function I : [0,1]2→ [0,1] such that I(0,0) = I(0,1) = I(1,1) = 1 and I(1,0) = 0
and I is decreasing in the first component and increasing in the second. Given a
t-norm T, the residual implicator IT of T, defined as

IT(x,y) = sup{λ | λ ∈ [0,1] and T(x,λ )≤ y}
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satisfies all these conditions. If T is a left-continuous t-norm, then for all x,y ∈ [0,1]
it holds that x ≤ y iff IT(x,y) = 1 ([9]). In general, residual implicators are a good
choice to generalize classical implication since they satisfy a generalization of
the modus ponens rule: T(x,IT(x,y)) ≤ min(x,y). For continuous t-norms T there
is an even stronger property: T(x,IT(x,y)) = min(x,y). Consider a residual im-
plicator I and a t-norm T. The biresiduum of I and T is defined as ET,I(x,y) =
T(I(x,y),I(y,x)). This function is a generalization of the logical equivalence. Note
that I does not need to be the residual implicator of T; for an arbitrary residual
implicator I it holds that either I(x,y) = 1 or I(y,x) = 1. Finally, negation can be
generalized by a negator, i.e. a function N : [0,1]→ [0,1] such that N is decreas-
ing, N(1) = 0 and N(0) = 1. Every implicator I induces a negator NI defined as
NI(x) = I(x,0).

Logics whose semantics are based on (left-)continuous triangular norms form
an important subclass of fuzzy logics; they generalize the classical logical connec-
tives in a natural way. In examples we will often use the fuzzy logic based on the
Łukasiewicz t-norm. For the connectives conjunction ⊗, disjunction ⊕, implication
→ and negation ¬, and a fuzzy interpretation I ∈F (A) we then have

• [α⊗β ]I = max([α]I +[β ]I−1,0)
• [α⊕β ]I = min([α]I +[β ]I ,1)
• [α → β ]I = min(1− [α]I +[β ]I ,1)
• [¬α]I = 1− [α]I

Łukasiewicz logic is often used in applications because it preserves many nice prop-
erties from classical logic. Moreover, among the t-norm based logics, Łukasiewicz
logic is the only one with a continuous residual implicator. This means that a set of
formulas in Łukasiewicz logic can be seen as a set of constraints on continuous func-
tions. This logic is also closely related to mixed integer programming. McNaughton
[13] showed this in a non-constructive way and Hähnle [8] gave a concrete trans-
lation from a set of formulas in Łukasiewicz logic into a mixed integer program.
Finally, Łukasiewicz logic is also very close to linear logic, see e.g. [?].

More general, truth values do not need to be values in [0,1]. An arbitrary com-
plete lattice will do the trick as well. We restrict to the unit interval because it is
intuitive and convenient in practice.

3 Fuzzy answer set programming (FASP)

Recall the example from the introduction of the chapter. Suppose you want to travel
by car from one city to another and you want to have an idea about the time needed
to do this. The driving time can depend on several factors, for instance the amount
of snow, the distance and the traffic. These concepts are a matter of degree rather
than boolean properties, thus we cannot directly use ASP to model this problem.
One solution is to allow propositions to be true to a certain degree in [0,1] and
to generalize the syntax and semantics of ASP using fuzzy logics. We now see
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“driving time”, “snow” and “traffic” as atoms that can be assigned a truth value
in [0,1]. To do this, an appropriate rescaling is needed. For instance, “snow” will
have truth value 0 if there is no snow at all and it will have a truth degree x > 0 if
there is snow, but it will be given a different value depending on how much snow
falls from the sky and if it melts or not. The degree of “driving time” then depends
on f (snow,distance, traffic) with f corresponding to a [0,1]3→ [0,1]-mapping that
is increasing in each of its arguments. In practice, this function f can be defined by
using statistical information. We can then write the rule

driving time ← f (snow,distance, traffic).

The syntax and semantics of FASP, as we will define below, can deal with such
general functions f . A lower bound on the driving time can then be found in an
answer set that corresponds to a solution of the FASP program.

3.1 Programs and fuzzy models

Consider a set of atoms A. An atom corresponds to a property that may have a certain
truth degree in [0,1], not restricted to only 1 (true) or 0 (false).

Definition 1. A FASP program is a finite set of rules of the form

r : g(a1, . . . ,an)← f (b1, . . . ,bm,not1 c1, . . . ,notk ck),

with ai,b j,cl ∈ A∪ ([0,1]∩Q) (i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . ,k}), f
and g resp. (m+ k)-ary and n-ary connectives. We assume f resp. g is interpreted
by a function f : [0,1]m+k → [0,1] resp. g : [0,1]n → [0,1] such that f and g are
increasing in all their arguments. We also assume that← is interpreted by a residual
implicator and each negation-as-failure operator notj corresponds to a negator Nj.
We refer to the rule by its label r.

Note that in line with the tradition in logic programming we write a rule as α← β

where← is actually an implication→. Also remark that in the definition of rules, we
restrict to rational numbers to ensure that the language remains recursively enumer-
able. The expression g(a1, . . . ,an) is called the head rh of rule r and f (b1, . . . ,bm,
not1 c1, . . . ,notk ck) is called the body rb. Typically the connectives correspond to the
connectives from a given fuzzy logic (see Section 2), but other choices, e.g. averag-
ing operators, can be useful as well. A rule of the form “0← a” is usually written
as “← a” and a rule of the form “a← 1” as “a←”.

If the connectives in Definition 1 are restricted to compositions of the classical
connectives, i.e. conjunctions in the body and disjunctions in the head, and the truth
values are restricted to 0 and 1, we obtain the same syntax as classical ASP. Note
that in classical ASP, it is for example not needed to consider disjunctions in the
body of rules since a rule a← b∨ c can be expressed by the two rules a← b and
a← c. As will become clear, for FASP this is not the case.



Fuzzy Answer Set Programming: An Introduction 7

By using fuzzy interpretations (see Section 2), one can assign truth degrees to
atoms and rules. For instance, in a FASP program, a rule

open← 0.5

is modeled by a fuzzy interpretation I iff I(open)≥ 0.5.

Definition 2. A fuzzy interpretation I of a FASP program P is an element of F (BP),
with BP the set of atoms occurring in P. A fuzzy interpretation I is called a fuzzy
model of P iff [r]I = 1 for all r ∈ P.

If we restrict the fuzzy interpretations in Definition 2 to mappings BP→{0,1},
we get classical interpretations of ASP programs.

Recall that we are interested in the “minimal” knowledge that can be derived
from a program: from a single rule “open← 0.5”, we want to derive that the truth
degree of “open” is 0.5. One can use minimal fuzzy models to deal with this.

Example 1. Consider the following program P:

r1 : open ← notclosed
r2 : closed ← notopen

We assume that “←” and “not” correspond to resp. the Łukasiewicz implicator and
the Łukasiewicz negator. The properties “open” and “closed” can be given a value
[0,1] depending on the extent, e.g. the angle, to which a door is opened resp. closed.
Each combination of degrees of “open” and “closed”, not necessarily meaningful,
is represented by a fuzzy interpretation. The rule r1 intuitively means that the door
is open to a degree greater or equal than the extent to which the door is not closed.
Rule r2 implies the opposite property. Specifically, a fuzzy interpretation I models
the program P iff

I(open) ≥ 1− I(closed)
I(closed) ≥ 1− I(open).

By considering for example the rule

r3 : open ← 0.5

we add the information that the door must be open to at least degree 0.6. The mini-
mal fuzzy model of the program only containing rule r3 is the fuzzy interpretation I
such that I(open) = 0.6. As will become clear later, the fuzzy interpretation I with
I(open) = 0.6 and I(closed) = 0.4 is an answer set of the program consisting of rule
r1, r2 and r3.

One can consider different types of programs, depending on the rules they con-
tain. Programs without negation-as-failure are called positive, programs with exactly
one atom in the head are called normal and normal programs that are positive are
called simple. Let us discuss these programs more in detail. We start with general-
izing the idea of forward chaining from ASP to simple programs.
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3.2 Simple programs and answer sets

For simple programs, the minimal fuzzy model exists and is unique [?]. Similar
to ASP, minimal fuzzy models of simple FASP programs can be characterized by
forward chaining, as illustrated below and subsequently defined more formally.

Example 2. Consider the program P:

a← 0.1
b← 0.8
c ← a⊕b
a← b⊗ c

First, consider the fuzzy interpretation I0 : BP → [0,1] : x 7→ 0 by which every
atom has truth degree 0. However, I0 is not a fuzzy model: for example the first
rule imposes that the truth degree of a must be greater or equal to 0.1. Let us
increase the truth values by defining I1 : BP → [0,1]. To model a ← 0.1 and
b ← 0.8, we put I1(a) = 0.1 and I1(b) = 0.8. To model the third rule, we put
I1(c) = max(I1(a)⊕ I1(b),0) = 0.9. We check if I1 models the last rule. This is
not the case since I1(a) = 0.1 and I1(b)⊗ I1(c) = 0.7. We need to adjust I1 once
more: we define a new fuzzy interpretation I2 with I2(a) = 0.7, I2(b) = I1(b) and
I2(c) = I1(c) The fuzzy interpretation I2 is the unique minimal fuzzy model of P.

Definition 3. Consider a simple FASP program P. A fuzzy interpretation I is the
answer set of P if it is the minimal fuzzy model of P.

For simple programs the minimal fuzzy model, i.e. the answer set, coincides with
the least fixpoint of the immediate consequence operator ΠP [5]. This operator maps
fuzzy interpretations to fuzzy interpretations and is defined as

ΠP(I)(a) = sup{[rb]I | (a← rb) ∈ P},

for a ∈BP and a fuzzy interpretation I. Intuitively, the minimal fuzzy model of a
simple FASP program corresponds to the maximal information one can derive by
forward chaining until no new knowledge can be discovered anymore.

Note that, unlike ASP, it is not always possible to compute this fixpoint in a
finite number of steps. Consider for instance the program containing the single rule
“a← a+1

2 ”. It will take infinitely many steps taken by the immediate consequence
operator to find the least fixpoint I(a) = 1 [19].

If constraints, i.e. rules in which the head is a constant, are allowed in simple
programs, the least fixpoint of the immediate consequence will exist, but there may
be no fuzzy model at all.

Example 3. Consider the program P:

a← 1
0← a
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The least fixpoint of ΠP is the fuzzy interpretation I with I(a) = 1. However, P has
no fuzzy model since there cannot exist a fuzzy interpretation M such that M(a)≥ 1
and 0 ≥ M(a). To deal with constraints one can use the fact that a fuzzy interpre-
tation I is an answer set of P∪C, with P a simple FASP program and C a set of
constraints iff I is an answer set of P and a fuzzy model of C.

3.3 Positive programs and answer sets

If the heads of the rules in a positive program P can be more general formulas than
only single atoms, P can have several minimal fuzzy models, or none at all. In any
case, they present the minimal knowledge that can be derived from P.

Example 4. Consider the program P:

a⊕b ← 0.3
a ← b
b ← 0.1

A minimal fuzzy model of P is the fuzzy interpretation I such that I(a) = 0.2 and
I(b) = 0.1. But, for example I′ such that I′(a) = 0.15 and I′(b) = 0.15 is a minimal
fuzzy model as well. On the other hand the program

min(a,0.5)← b
b ← 0.1⊕a

has no (minimal) fuzzy models. Indeed, for a fuzzy interpretation I to model this
program it must hold that min(0.1+ I(a),1)≤min(I(a),0.5). If 0.1+ I(a)≤ 1, this
would imply that 0.1+ I(a) < I(a) and if 0.1+ I(a) ≥ 1, then it would follow that
1 < 0.5.

Definition 4. Consider a positive FASP program P. A fuzzy interpretation I is an
answer set of P if it is a minimal fuzzy model of P.

Note that the immediate consequence operator cannot be used for programs with
more than one atom in the heads of rules; the truth value of the body of a rule does
not necessarily have an equal impact on the truth values of each of the atoms in the
head.

3.4 General programs and answer sets

In this section, we will generalize the definitions of ASP to arbitrary FASP pro-
grams. For FASP programs that are not positive, answer sets can no longer be de-
fined directly in terms of minimal fuzzy models.
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Example 5. Consider for example the program

a ← a
0 ← nota

with “not” interpreted by the Łukasiewicz negator. The only minimal fuzzy model
is I such that I(a) = 1. However, the justification for deriving a truth value for a
only depends on itself, so this fuzzy model is not in line with the intuition of for-
ward chaining. To solve this problem, we will reduce a general FASP program to a
positive FASP program.

Intuitively, we “guess” an answer set I and replace all negation-as-failure literals
notc by their fuzzy interpretation [notc]I . For the program from Example 1

open ← notclosed
closed ← notopen

a suitable guess would be I with I(open) = 0.6 and I(closed) = 0.4; a door is closed
to the degree 0.4 if it is opened to the degree 1−0.4 = 0.6. Let us now consider the
same program, but we replace “notclosed” and “notopen” by their fuzzy interpreta-
tions under I:

closed← 0.4
open ← 0.6

The minimal fuzzy model of this program is exactly I. Hence, I was a stable guess
and we say that it is answer set of the program.

Note that Ix with Ix(open) = x and Ix(closed) = 1− x with x ∈ [0,1] are stable
guesses as well.

Definition 5. Consider a FASP program P and a fuzzy interpretation I. The reduct
rI of a rule r in P w.r.t. I is obtained by replacing all expressions of the form notj a
by the fuzzy interpretation [notj a]I . The reduct PI of P w.r.t. I is the set of rules

PI = {rI | r ∈ P}.

Note that this definition generalizes the well-known Gelfond-Lifschitz transfor-
mation [7], used to transform general ASP programs to positive ASP programs.

Formally, we have the following definition.

Definition 6. Consider a FASP program P and a fuzzy interpretation I. I is called an
answer set of P iff I is an answer set of PI .

A FASP program can have several answer sets as in Example 5, or none at all, as
in Example 6.

Example 6. Consider the program P consisting of the one rule

p← not p

with “not” interpreted by the negator N : [0,1]→ [0,1] with N(x) = 0 if x > 0 and
N(0) = 1. For each fuzzy interpretation I with I(p) > 0 we have that PI is is the
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positive program consisting of the rule

p← 0.

The unique minimal model of PI is J with J(p) = 0, hence our original guess I is
clearly not a minimal model of PI . If, on the other hand, we start with this fuzzy
interpretation J(p) = 0, then we obtain for PJ the rule

p← 1.

J is not a fuzzy model of PJ , let alone a minimal fuzzy model. We conclude that P
has no answer sets.

However, if a different negator is used, this program can have an answer set for
instance if not is interpreted by the Łukasiewicz negator. For a guess M(p) = x with
x ∈ [0,1], we now obtain for PM the rule

p← 1− x.

Hence, M is the minimal fuzzy model of PM if x = 1− x or x = 0.5.

By Definition 6 it follows that an answer set of a FASP program P is also a fuzzy
model of P. One can even prove that it must be a minimal fuzzy model of P [?]. The
converse however does not hold.

Example 7. Recall the program from Example 5

a← a
0← nota

with “not” interpreted by the Łukasiewicz negator. The only minimal fuzzy model
is the fuzzy interpretation I such that I(a) = 1. However it is not an answer set since
I is not a minimal fuzzy model of

a← a
0← 0

4 Motivating example

Forest fires cause massive loss of vegetation and animal life. If a fire is detected
on time, suppression units are able to reach the fire in its initial stages which is
important to avoid huge losses. Moreover suppression costs will be considerably
reduced. Wireless sensor networks can be effectively used for this purpose [22].
These networks consist of a number of devices that can sense their environment
and communicate wirelessly. We will use FASP to determine, given measurements
made by the sensors about the temperature, if there are sensors that are not working
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optimally and if so, within what range we can reasonably assume the temperature to
be.

Suppose we have n sensors. By assuming an appropriate linear rescaling, we can
see temperature as a value in [0,1]. Although we will not be able to derive an exact
temperature, we will try to find a subinterval of [0,1] in which we may assume the
temperature to be. More specifically, for each sensor i ∈ {1, . . . ,n}, we denote the
upper bound on the exact temperature at its location as tup

i and the lower bound as
t low
i . The measured temperature is t ′i . The sensor network defines a weighted graph G

as follows. The vertices are the sensors and there is an edge with weight wi j ∈ [0,1]
between the vertices corresponding to sensor i and sensor j. The value wi j is such
that we can reasonably assume, based on the locations of sensors i and j that the
temperature difference between these locations must be less than 1−wi j. Finally,
we suppose that bi represents the error on the temperature measured by sensor i.

We can write the following program P. For i, j ∈ {1, . . . ,n} we have the rules

1. t low
i ← t ′i ⊗notbi

2. tup
i ← t ′i ⊕bi

3. bi⊕b j← (t ′i = t ′j)⊗wi j

where we use the connectives from Łukasiewicz logic and assume that the negation-
as-failure operator is interpreted by the Łukasiewicz negation. The constants t ′i = t ′j,
which define the degree to which t ′i and t ′j are different are defined as 1− (t ′i ↔ t ′j)
with↔ the Łukasiewicz biresiduum.

Rules 1 and 2 define the relationship between the actual and the measured tem-
perature. For a fuzzy interpretation I to model these rules, it most hold for each
sensor i that I(t ′i)− I(bi)≤ I(t low

i ) and I(t ′i)+ I(bi)≤ I(tup
i ). An answer set I is such

that I(tup
i ) and I(t low

i ) will be chosen minimal. Rule 3 imposes that if the difference
between t ′i and t ′j is too large with respect to 1−wi j, then there must be something
wrong with sensors i and/or j. The semantics of FASP makes sure that the “total
error” is distributed over sensor i and j in a minimal way.

Consider as a concrete example a forest with three sensors. Suppose we have
t ′1 = 0.4, t ′2 = 0.9 and t ′3 = 0.5 and w1,2 = 0.8, w1,3 = 0.8 and w2,3 = 0.8. Hence, we
have I(t ′1 = t ′2) = 0.5, I(t ′1 = t ′3) = 0.1 and I(t ′2 = t ′3) = 0.4.

For I to be a fuzzy model of rule 3, it most hold, for each sensor i that

max(I(t ′i = t ′j)+ I(wi j)−1,0)≤ I(bi)+ I(b j),

or more specifically,

1. 0.3≤ I(b1)+ I(b2)
2. 0≤ I(b1)+ I(b3)
3. 0.2≤ I(b2)+ I(b3)

A possible “guess” for an answer set I could be such that I(b1) = 0.29, I(b2) =
0.01 and I(b3) = 0.19. From rules 1 and 2, we obtain that for I to be an answer set of
P, i.e. a minimal fuzzy model of PI , we must have I(t low

1 ) = 0.11 and I(tup
1 ) = 0.69,

I(t low
2 ) = 0.89 and I(tup

2 ) = 0.91, I(t low
3 ) = 0.31 and I(tup

3 ) = 0.69.
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Another possibility is a fuzzy interpretation J with J(b1) = 0.15, J(b2) = 0.15
and J(b3) = 0.05.

The answer sets provide us with all possible ways in which the “total error” can
be “divided” over the sensors. For each such setting, we also obtain an upper and
lower bound on the actual temperature at the locations of the sensors.

5 Some remarks about FASP

In ASP, there are two types of negation: negation-as-failure and strong negation.
When an atom a and its negation ¬a both appear in the head of rules, there is the
possibility of inconsistency. In a fuzzy context, the classical definition of consis-
tency must be modified since a literal a and its negation ¬a can be both true in a
consistent way. One solution could be to define fuzzy interpretations of a program
P as elements in LP, i.e. the set of literals in P and to add the rules 1← a⊕¬a for
each a ∈LP. In [21], degrees of consistency of fuzzy interpretations are discussed.

Logic programming, which contains ASP as a special case, has had a significant
impact on the development of nonmonotonic logics and vice versa [2]. It is closely
related to e.g. autoepistemic, equilibrium and default logic. Equilibrium logic [16]
is one of the most general approaches to ASP. Programs, seen as sets of formu-
las in equilibrium logic, can be arbitrary propositional theories without restrictions
on where the two types of negation may occur. When restricting to the syntax of
ASP, there is a one-to-one correspondence between the equilibrium models of a
program and its answer sets. This result is generalized to FASP in [18] by intro-
ducing a fuzzy equilibrium logic. Even when very general constructs such as in this
chapter are allowed, the answer sets of a FASP program correspond to its fuzzy
equilibrium models. Furthermore, a reduction from the problem of finding fuzzy
equilibrium models to the problem of solving a particular bilevel mixed integer pro-
gram is proposed, allowing to implement reasoners already existing for these types
of problems for FASP. By using the complexity of fuzzy equilibrium logic, it was
also shown that computational complexity of FASP is equal to that of ASP in the
general case. This means that in general, adding fuzziness to ASP, does not imply
an increase in the computational complexity. In [?] some results about the compu-
tational complexity of FASP with Łukasiewicz semantics are presented. For simple
programs a correspondence to an open problem was shown, which indicates that
setting the complexity may not be easy. However, there is P-membership for several
interesting subclasses. The correspondence between autoepistemic logic and ASP
[11] was generalized in [4].

As was illustrated by examples, some FASP programs have no solutions. In prac-
tice however, it might be suitable to opt for an imperfect solution. One strategy is
to add weights to the rules in a FASP program: rules do not have to be satisfied
to degree 1. In [?], aggregated FASP is proposed. The idea is not to immediately
state the extent to which each rule should be satisfied, but to let an aggregator func-
tion determine an overall score of suitability of a solution. Contrary to the case of
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classical ASP, there is not yet an efficient FASP solver, even without considering
aggregators. A well-known technique for ASP consists of translating a program to
a propositional theory whose models correspond to the answer sets of the program.
In [?] the first steps towards an efficient FASP solver are taken by generalizing the
ideas of translating an ASP program to a SAT instance. A FASP solver could then
use existing techniques for solving fuzzy satisfiability problems such as mixed in-
teger programming. The completion of a FASP program is introduced and it was
shown that in case the program has no cyclic dependencies, which induce so called
loops, the models of this completion are the answer sets of the original program.
For programs that contain loops, a reduction to fuzzy SAT is proposed using a gen-
eralization of the notion of loop formulas in ASP to FASP [?]. One of the most
important issues that still need to be tackled for building a good solver is optimizing
the grounding of FASP programs.

6 Conclusions

We presented an introduction to fuzzy answer set programming, a recently devel-
oped framework that is suitable for modeling search problems with continuous do-
mains. The syntax and semantics make FASP highly configurable and applicable in
different domains. However, a lot of topics still need to be investigated, FASP is by
far not as developed as ASP. Little is known about the computational complexity of
specific fragments and there are almost no techniques available to actually calculate
answer sets.
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