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Abstract: Cytokines interact with their receptors in the extracellular space to control immune 

responses. How the physicochemical properties of the extracellular space influence cytokine 

signaling is incompletely elucidated. Here, we show that the activity of interleukin (IL)-2, a 

cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within 

the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, 

effector differentiation and anti-tumor immunity by CD8+ T cells and renders high-dose IL-2 

therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein 

(Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Ra with higher affinity, triggers STAT5 

activation and drives CD8+ T cell effector function more potently at acidic pH than at neutral pH. 

Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection 

with reduced on-target toxicity in normal tissues. Finally, we show that sensitivity to pH is a 

generalizable property of a diverse range of cytokines with broad relevance to immunity and 

immunotherapy in healthy and diseased tissues. 

One Sentence Summary: Gaggero et al., show that pH-selective IL-2 mutein exert potent 

responses with limited systemic toxicity. 
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INTRODUCTION 

Cytokines are small, secreted proteins that control all aspects of the immune response (1, 

2). Despite their potential to treat cancer, few cytokines have reached the clinic due to limited 

efficacy and severe systemic toxicities (3), emphasizing the urgent need for more specific and less 

toxic cytokine-based therapies. Cytokines activate signaling via receptor dimerization, triggering 

activation of the JAK (Janus kinase)/STAT (Signal Transducer and activator of transcription) 

signaling pathway but can also control the activity of diverse serine/threonine kinase signaling 

networks (4, 5). Interleukin-2 (IL-2) is a powerful regulator of immunity (6). High-dose IL-2 

therapy is approved for the treatment of metastatic renal cell carcinoma and metastatic melanoma, 

but partial efficacy and high levels of systemic on-target toxicity have hindered its wider use (7). 

IL-2 binds a surface receptor comprised of IL-2Ra, IL-2Rb and gc chains, triggering the activation 

of the JAK1/JAK3/STAT5 signaling pathway (8, 9). In addition to STAT5, IL-2 engages non-

STAT pathways that contributes to shape its immuno-modulatory properties (8).  

Cancers develop mechanisms to evade and scape the immune response, key among them 

is the establishment of an immunosuppressive microenvironment (10). A hallmark of the tumor 

microenvironment (TME) is acidosis. Production of lactic acid by tumor cells results in an acidic 

environment of pH ~6.2-6.5, contrasting with pH ~7.4 found in normal tissues (11–13). The 

physicochemical environment of tumors profoundly shapes tumor-immune responses. It inhibits 

the proliferation and cytotoxic activities of CD8 T and NK cells (14, 15) and the differentiation of 

monocytes into DCs, thus affecting anti-tumor T cell responses (16). However, mechanisms by 

which it does so are incompletely elucidated. Given that cytokines interact with their receptors in 

the extracellular space, we asked whether the acidic extracellular environment of tumors 

compromises the activity of IL-2 within tumors.  
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RESULTS  

Acidic extracellular environment disrupts IL-2 signaling  

We first asked whether acidic pH, similar to that found within the TME, alters IL-2 signaling and 

activity. We found that IL-2-driven STAT5 phosphorylation within pre-activated CD8+ T cells 

was substantially reduced when cells were cultured in media acidified to pH 6.5 (reflecting the pH 

found within tumors) from pH 7.5 through addition of HCl (Fig. 1A and Fig. S1A and B). IL-2 

appears to be a weak agonist at acidic pH, with the amplitude of STAT5 phosphorylation, rather 

than the potency (EC50) being affected. Similar results were found when media was acidified 

through addition of lactic acid, but not through addition of NaCl (Fig. 1B). Interestingly, pH 

sensitivity was not unique to IL-2, with many other cytokines also exhibiting pH dependency (Fig. 

S1C and D). These preliminary data suggest that activity of several cytokines might be regulated 

by the pH of the extracellular environment in which they operate. 

We observed that IL-2 activated STAT5 to the same extent at pH 6.5 and 7.5 in resting 

IL-2Ra-negative CD8+ T cells, in contrast to IL-2Ra-positive pre-activated CD8+ T cells, 

suggesting that acidic pH interferes with the binding of IL-2 to IL-2Ra (Fig. S1E). To test this 

hypothesis, we took advantage of previously characterized IL-2Ra+ and IL-2Ra– YT cell lines 

(17). Similar to pre-activated CD8+ T cells, IL-2-driven signaling in IL-2Ra+ YT cells but not IL-

2Ra– YT cells was diminished under acidic pH (Figure S1F), confirming that binding of IL-2 to 

IL--2Ra is pH-dependent. Moreover, using IL-2 surface-displayed on yeast, and microscale 

thermophoresis (MST), we confirmed that IL-2:IL-2Ra binding is severely reduced at pH 6 or 

lower (Fig. 1C and Fig. S1G).  IL-2 binding to IL-2Rb was only weakly affected by changes in 

acidic pH (Fig. S1H), indicating that this a specific effect affecting the IL-2:IL-2Ra interaction.  
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IL-2 anti-tumor activity is blocked by the acidic TME 

We next investigated whether the acidic pH found in the TME negatively impacts IL-2 therapy. 

We administered bicarbonate in vivo to neutralize the acidic pH of the TME (6). Combining 

bicarbonate treatment with IL-2 (IL-2 conjugated to the Fc portion of human IgG4 (Fc-IL-2) to 

extend the half-life of IL-2 in vivo) improved anti-tumor responses in the B16.SIY melanoma 

model (Fig 1D and S2A-C). Since lactic acid released by tumors is one of the major contributors 

to the acidic TME, we used previously described B16.SIY melanoma cells lacking expression of 

lactate dehydrogenase A and B (LDHA/B) to further assess the effect of intratumoral acidosis on 

IL-2 therapy (13). Mice were injected with wild type (WT) B16.SIY cells or with LDHA/B double 

knock-out (LDHA/B DKO) B16.SIY cells and treated with IL-2 (Fig. S2D). Fc-IL-2 therapy 

minimally reduced tumor growth and increased survival in mice bearing B16.SIY WT tumors 

(Fig. 1E and S2E). However, in mice bearing LDHA/B DKO B16.SIY tumors, Fc-IL-2 therapy 

significantly reduced tumor growth and increased survival (Fig. 1D and S2E), again suggesting 

that tumor acidosis impairs the efficacy of IL-2 therapy.  

We evaluated IL-2 activity in CD8+ T cells from WT and LDH DKO B16.SIY tumor-

bearing mice by directly measuring pSTAT5 levels via flow cytometry in blood versus tumor-

infiltrating CD8+ T lymphocytes upon IL-2 administration. While no difference was observed in 

the levels of IL-2-induced STAT5 phosphorylation in blood CD8+ T cells (Fig. 1F), STAT5 

signaling was significantly reduced in tumor-infiltrating CD8+ T cells within WT tumors compared 

with LDH-DKO tumors (Fig. 1G), demonstrating that IL-2 signaling is diminished by the acidotic 

environment of tumors. Fc-IL-2 treatment did not significantly increase the number of CD8+ T 

tumor-infiltrating lymphocytes (TIL) or the ratio of CD8+ T cells to Treg cells in LDHA/B DKO 

B16.SIY as compared with B16.SIY tumors (Fig. S2F-I). However, in LDHA/B DKO B16.SIY 
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tumors, Fc-IL-2 treatment markedly increased the capacity of CD8 TIL to produce IFN-g and TNF 

(Fig. 1H, I) and reduced the frequency of exhausted CD8+ T cells (Fig. 1J, K). These findings show 

that the acidic pH found within tumors inhibits IL-2-driven immunotherapy responses.  

 

Engineering of a pH-selective IL-2 mutein 

Given that IL-2 is unable to function at acidic extracellular pH, we used directed evolution to 

identify IL-2 mutants with improved binding to IL-2Ra at low pH. We created mutant libraries of 

IL-2 by introducing mutations to the 13 amino acid residues at its interface with IL-2Ra (Fig. 2A 

and Fig. S3A, B) using degenerate “NDT” codons encoding for Gly, Val, Leu, Ile, Cys, Ser, Arg, 

His, Asp, Asn, Phe, and Tyr amino acids. The mutant library was displayed on the surface of yeast 

by fusion to the yeast protein Aga2p (Fig. 2A). In vitro directed evolution was performed by 

sequential enrichment of yeast binding decreasing concentrations of the IL-2Ra ectodomain at 

pH 5 (Fig. 2A), leading to the identification of an IL-2 variant, hereinafter named Switch-2, 

characterized by Thr37His, Arg38Leu, Thr41Ser, Phe42Tyr, and Lys43Gly mutations (Fig. S3A, 

B). We found that Switch-2 not only displayed higher binding to IL-2Ra at low pH but that its 

behavior was pH-selective, reflected in lower binding at neutral pH as compared to WT IL-2 

(Fig. 2B and S3C). Mutations in Switch-2 did not alter its affinity towards IL-2Rb at neutral and 

acidic pH compared to IL-2 (Fig. S1H and S3D). Next, we assessed the ability of IL-2 and Switch-2 

to interact with IL-2Ra on the membrane of living cells at neutral versus acidic pH using single-

molecule total internal fluorescence (TIRF) microscopy (Fig. 2C). For this purpose, IL-2Ra fused 

to an N-terminal SNAPf-tag was stably expressed in HeLa cells and sub-stoichiometrically 

labelled with SNAP-Surface 547 to ensure robust quantification by single molecule localization. 

After adding DY647-labelled IL-2 and Switch-2, respectively, IL-2Rα and IL-2 densities were 
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measured in individual cells by dual-color single molecule localization microscopy to quantify 

relative binding levels at different pH (Fig. 2C, D and Movie S1-4). These experiments showed 

substantially reduced IL-2 binding to IL-2Ra at pH 6 as compared to neutral pH. By contrast, 

Switch-2 showed an opposing relationship, exhibiting a strong ligand-receptor interaction at acidic 

pH and minimal interaction at neutral pH, again confirming its pH-selective binding to IL-2Ra 

(Fig. 2D). Analysis of thermal unfolding profiles revealed that IL-2 and Switch-2 exhibited 

comparable thermal stability not affected by low pH (Fig. S3E), indicating that low pH specifically 

inhibits IL-2 signaling by hindering cytokine-receptor interaction and not by reducing protein 

stability in the cellular context. 

To determine the structural basis by which Switch-2 exhibits pH-dependent receptor 

binding, we solved the structure of the Switch-2:IL-2Ra complex to 3.2-Å resolution (Fig. 2E). 

Superposition of the complexes formed by Switch-2 and wild-type IL-2 showed no major 

perturbations in their receptor binding architecture, with a root mean square deviation (RMSD) of 

1.56 Å. At the Switch-2:IL-2Ra binding interface, side-chain densities were clear for the amino 

acid mutations found in Switch-2 (Fig. S4A). Despite overall similarity in the topology of binding 

between the IL-2 and Switch-2 complexes, the electrostatic interaction networks of the two 

structures differed significantly in the mutated region (Fig. 2E, F). In the IL-2:IL-2Ra structure an 

extensive network is observed. Inter-chain salt bridges are located at either end of this region, 

formed by Glu29:Lys43 and Asp6:Arg38 of IL-2Ra and IL-2 respectively (Fig. 2F). The side 

chain of Arg38 is positioned such that it may form a further hydrogen bond to His120 of IL-2Ra, 

which itself can also form a second hydrogen bond to Asn27 of IL-2Ra (Fig. 2F). Much of this 

network is lost in Switch-2, replaced with just a single inter-chain hydrogen bond between Tyr42 

of Switch 2 and Asn27 of IL-2Ra (Fig. 2F). 
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A close examination of the IL-2-IL-2Ra binding interface reveals a putative "pH Switch" 

consisting of the interaction between Arg38 in IL-2 and His120 in IL-2Ra (Fig. 2F). We 

hypothesized that at the low pH in the TME, His120 would become protonated, resulting in release 

of IL-2 from IL-2Ra, and therefore lack of signaling. To test this hypothesis, we ran molecular 

dynamics (MD) simulations of the IL-2-IL-2Rα complex and Switch-2-IL-2Rα complex with 

histidine side chains protonated (corresponding to pH 6) or neutral (mimicking pH 7) and 

examined the structural stability of the complexes (Fig. S4B). For IL-2-IL-2Rα at pH 6, the 

complex fully dissociated within 4 μs in two out of five replica simulations, while the complex did 

not dissociate within 4 μs in any of the five replicas at pH 7, suggesting that the lowered stability 

of IL-2-IL-2Rα at acidic pH is due to protonation of histidines. In line with this, in the simulations 

that show dissociation, Arg38 and His120 are separated before the interaction interface is fully 

disrupted (Fig. S4C and Movie S5). For Switch-2-IL-2Rα, the complex did not dissociate within 

4 μs in any of the five replicas at pH 6 or pH 7, suggesting that the decreased pH sensitivity of 

Switch-2 is due to loss of the Arg38-His120 interaction. To ensure that dissociation was not the 

result of protein unfolding caused by high temperature in the simulations, we calculated the 

backbone RMSD over time for IL-2 and the IL-2 binding domain of IL-2Ra and we observed in 

both cases that there is no substantial unfolding (Fig. S5). Interestingly, Switch-2 has a histidine 

substitution at position 37, which is near Asp4 and Asp5 in IL-2Ra (Fig. 2F). It is thus tempting 

to speculate that Switch-2 presents a distinct “pH Switch" centered around His37, which reinforces 

the stability of the Switch-2:IL-2Ra interface under acidic conditions. 

Next, we investigated Switch-2 functionality at acidic pH. First, we characterized the levels 

of STAT5 phosphorylation induced by IL-2 and Switch-2 in non-preactivated and pre-activated 

CD8+ T cells at pH 7.5 and 6.5. In resting IL‑2Ra-negative CD8+ T cells, both IL-2 and Switch-
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2 induced comparable STAT5 activation at pH 6.5 and 7.5 (Fig. 2G). In pre-activated CD8+ T cells 

however, IL-2 triggered stronger STAT5 activation at pH 7.5 than at pH 6.5 (Fig. 2H). Switch-2, 

on the other hand, exhibited opposing behavior, triggering more potent STAT5 activation at pH 

6.5 than at pH 7.5 (Fig. 2H). Similar results were obtained comparing IL-2Ra– and IL-2Ra+ YT 

cells (Fig. S6A, B). We further confirmed that the pH-selective behavior of Switch-2 is dependent 

upon IL-2Ra, observing its loss when the Il2ra gene was disrupted using CRISPR in pre-activated 

cells (Fig. S6C). Similar results were obtained in lactic acid-containing low pH media (Fig. S6D). 

STAT5 signaling appeared to be more sensitive to acidic pH than other IL-2-driven signaling 

pathways, including ERK1/2, Akt, S6R, which displayed distinct levels of pH sensitivity (Fig 

S6E-H). Stimulation of Treg cells with IL-2 and Switch-2 at pH 6.5 and 7.5 yielded comparable 

results to those obtained with pre-activated CD8+ T cells (Fig. S6I).  

 

Switch-2 triggers more potent CD8+ T cell effector function at acidic pH 

IL-2 drives T cell expansion and acquisition of effector functions, including the production of 

IFN-g (18). Consistent with prior studies, we observed that acidic pH inhibits T cell expansion 

during the activation phase (Fig. S7A) (14) and T cell effector functions (19). We therefore 

investigated the ability of CD8+ T cells stimulated with either IL-2 or Switch-2 to expand and 

produce effector cytokines in neutral and acidic pH conditions. CD8+ T cells were initially 

activated with anti-CD3 and anti-CD28 antibodies at pH 7.5, and then switched to either pH 7.5 

or 6.5 media in the presence of IL-2 or Switch-2. Whereas IL-2 induced CD8+ T cell proliferation 

at pH 7.5, its effect was reduced at pH 6.5 (Fig. S7B, C). Switch-2, on the other hand, induced 

CD8+ T cell proliferation both at pH 7.5 and 6.5 (Fig. S7B, C). Considering that cytokine secretion 

is pH-sensitive (20–23), we next studied cytokine secretion profiles by activated CD8+ T cells 

stimulated with IL-2 or Switch-2 at pH 7.5 or 6.5. Expansion in IL-2 elicited strong cytokine 
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secretion by CD8+ T cells at pH 7.5, but almost fully lost its activity when cells were cultured at 

pH 6.5 (Fig. 3A). Switch-2 on the other hand, elicited almost a mirror image in terms of pH-

selectivity, triggering stronger cytokine release by CD8+ T cells at pH 6.5 than at pH 7.5 (Fig. 3A). 

Moreover, at acidic pH, cytokines associated with effector function, such as IFN-g, GM-CSF, and 

TNF were upregulated to a greater extent in cells expanded with Switch-2 than with IL-2 (Fig. 3A) 

(24). These results were confirmed using intracellular staining and flow cytometry (Fig. 3B and 

Fig. S7D, E).  

To further define the effects of extracellular acidic pH on IL-2 activity at the molecular 

level, we performed RNA-seq analysis on CD8+ T cells after 4 hours of stimulation with IL-2 

variants in neutral or acidic pH conditions. Remarkably, principal component analysis of global 

gene expression profiles showed that cells treated with Switch-2 at pH 7.5 and 6.5 grouped together 

with cells treated with IL-2 at pH 6.5 and 7.5, respectively (Fig. 3C). In keeping with these results, 

gene set enrichment analysis (GSEA) showed that differentially expressed genes between Switch-2 

and IL-2-stumulated cells at pH 6.5 were significantly enriched for IL-2-signature genes (25) 

generally induced by IL-2 at pH 7.5 (Fig. S8A). This data further supports the preferential activity 

of Switch-2 in acidic versus neutral pH. To identify IL-2-driven genes most sensitive to the effects 

of pH, we compared IL-2- and Switch-2-driven genes in CD8+ T cells cultured at pH 7.5 and pH 

6.5. While the number of IL-2-induced genes at neutral pH was severely attenuated at acidic pH, 

the number of genes induced by Switch-2 at neutral and acidic pH was comparable (Fig. S8B). 

Differentially-expressed genes were grouped into nine unique clusters (Fig. 3D and Data S1), with 

clusters 1 and 2 enriched in immune-related gene sets, including those involved in IL-2-STAT5 

signaling (Fig. S8C). Cluster 2 comprised IL-2-driven genes whose expression levels were 

significantly reduced at acidic pH (Fig. 3D). Switch-2, on the other hand, induced upregulation of 
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these genes at acidic pH while exhibiting weak activity at neutral pH (Fig. 3D). Cluster 2 included 

genes associated with T cell activation and effector function (Hk2, Ifng, Il2ra, Il18r1, Ccl17, 

Cxcl10, Gzma and Gzmb) (18, 26, 27) (Fig. 3E and Fig. S8D-F). Some IL-2-induced genes, such 

as Bcl2 and Cish, show less sensitivity to changes in pH, agreeing with our data showing that pH 

differentially affect IL-2 signaling (Fig. 3E). 

 Taken together, these data support the notion that acidic pH limits IL-2-induced gene 

expression programs within CD8+ T cells, and that the pH-selective activity of Switch-2 is 

reflected in the global gene expression changes it induces at acidic and neutral pH.  

A pH-selective effect of Switch-2 versus IL-2 on STAT5 signaling within murine CD8+ T 

cells could be observed in vitro (Fig. S9A). We next characterized binding and signaling activity 

of Switch-2 versus IL-2 in vivo. IL-2 binding is followed by rapid internalization of the IL-2-IL-2R 

complex (28). To trace IL-2 binding and/or uptake in vivo, we administered AF647-labelled Fc-

IL-2 and Switch-2 to B16.SIY tumor-bearing mice and analyzed its binding/uptake by CD8+ T 

cells 30 min after the injection of the labeled IL-2 on day 11 when there was no difference in tumor 

size between IL-2- and Switch-2-treated mice. We found that IL-2 was preferentially taken up by 

IL-2Ra+ CD8+ T cells in peripheral blood and lung compared with those found within the tumor 

or tumor-draining lymph-nodes (tdLNs), which are considered acidic niches (Fig 3F and Fig. S9B-

F) (29). By contrast, Switch-2 was preferentially taken up by IL-2Ra+ CD8+ T cells within the 

tumor and tdLNs compared with those in peripheral blood and lung (Fig. 3F and Fig. S9B-F). 

Moreover, by selecting for each condition CD8+ TILs expressing comparable levels of IL-2Ra, it 

is possible to observe that Switch-2 uptake by CD8+ TILs is stronger than IL-2 uptake, opposite 

to what we observed in the lung (Fig. 3F). IL-2Ra is a direct target of IL-2 induced pSTAT5. 

Correspondingly, in contrast to IL-2, Switch-2 treatment led to higher IL-2Ra expression on CD8+ 
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T cells within tumor and tdLNs compared to blood and lung CD8+T cells. Furthermore, in line 

with these data, Fc-IL-2 induced STAT5 phosphorylation preferentially in CD8+ T cells in the 

blood, while Fc-Switch-2 triggered STAT5 phosphorylation at a greater extent in the tumor and 

tdLN (Fig. S9G-L). Overall, these observations confirm the preferential in vivo activity of Switch-

2 within acidic pH tissue environments.  

 

Switch-2 elicits potent anti-tumor immune responses 

High-dose IL-2 treatment can activate cytotoxic T and Natural Killer (NK) cell-mediated tumor 

killing, resulting in complete responses in 7% of metastatic melanoma patients treated (30). Yet 

its therapeutic efficacy is limited by poor activation of TILs within the TME. Our data 

demonstrated that intra-tumoral acidosis profoundly limits IL-2 activity within the TME (Fig. 1C-

K and Fig. S2). Indeed, a large number of TILs within the tumor are dysfunctional (31). 

Importantly, TILs isolated from tumors can be reactivated and expanded in vitro in the presence 

of IL-2. These data suggest that improper targeting and function of IL-2 within the TME might 

limit its in vivo efficacy. Given its enhanced activity at acidic pH, we tested the therapeutic efficacy 

of Switch-2 in four different tumor models. Switch-2 therapy led to stronger anti-tumor responses 

compared to IL-2 in the immunogenic MC38 colon carcinoma model, with more than one third of 

animals achieving full remission (Fig. 4A and Fig. S10A, B). The cured animals rejected a 

subsequent rechallenge with MC38, demonstrating the induction of durable anti-tumor immunity 

by Switch-2 (Fig. 4B). In the 4T1 mammary cancer model, Fc-Switch-2 treatment significantly 

reduced the rate of tumor growth while Fc-IL-2 had a minimal effect (Fig. 4C and Fig. S10C-F). 

Similar results were observed in the B16.SIY tumor model, where Fc-Switch-2 therapy 

significantly delayed tumor growth and increased survival (Fig. 4D and Fig. S10G, H). Notably, 

when Fc-Switch-2 therapy was combined with sodium bicarbonate treatment, the beneficial anti-
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tumor effect of Switch-2 was completely abrogated, further supporting pH-switchable nature of 

Switch-2 in vivo (Fig. S10I-K). Moreover, the combination of anti-PD-L1 and Switch-2 treatment 

controlled established B16.SIY tumors more effectively than anti-PD-L1 and IL-2 treatment alone 

(Fig. S11). Overall, these data demonstrate potent anti-tumor efficacy of Switch-2 in a variety of 

solid tumor models.  

Previous studies have shown that lactic acidosis in tumors is less prevalent in small tumors 

such as early metastatic lesions (32). Thus, we investigated the effect of Switch-2 on anti-tumor 

immunity to lung metastases. Mice were intravenously injected with B16-F10-mCherry-OVA 

tumor cells and treated with IL-2 or Switch-2 therapy for five days. Both Fc-IL-2 and Fc-Switch-

2 induced robust anti-tumor responses (Fig. S12A-C) with concomitant increase in the frequency 

of lung SIINFEKL peptide:MHC tetramer-binding CD8+ T cell populations compared to the 

untreated group, although the relative frequency of CD8+ and Treg cells remained unchanged (Fig. 

S12D-G). Furthermore, the number of NK cells in tumor-bearing lungs was significantly increased 

by Fc-IL-2 and Switch-2 treatment, although Switch-2 had a stronger effect (Fig. S12H). Overall, 

these data reveal potent anti-tumor efficacy of both IL-2 and Switch-2 in driving immunity to early 

metastatic lesions.  

To gain mechanistic insight into how Switch-2 leads to more potent anti-tumor responses, 

we characterized tumor infiltrating lymphocytes and draining lymph node cells using the B16.SIY 

model using flow cytometry (Fig. 4E-H and Fig. S13). Switch-2 and IL-2 triggered a small but not 

significant increase in the CD8/Treg ratio as compared to PBS-treated controls (Fig. S13A-D). 

Switch-2, on the other hand, induced greater CD8+ T cell proliferation with concomitant increase 

in the frequency of SIY antigen-specific CD8+ TIL and an increase in the frequency of infiltrating 

NK cells (Fig. 4E, F and S13E, F), a feature of effective IL-2 anti-tumor responses. This was 
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accompanied by greater IFN-g and TNF production by CD8+ T cells in Switch-2 treated animals 

(Fig. 4G, H and S13G, H). Notably, a higher fraction of CD8+ TILs in Switch-2-treated animals 

had a CD44+ effector phenotype, yet no major changes was observed in the levels of the exhaustion 

markers PD-1 and TIM3 compared to IL-2-treated animals (Fig. S13I-M). Similar results were 

obtained in tdLN, including increased frequencies of tumor-specific CD8+ T cells upon Switch-2 

treatment versus IL-2 (Fig. S14), consistent with our previous data demonstrating superior activity 

of Switch-2 in LNs (Fig. S9D, E). In agreement with these observations, FTY720 treatment, which 

inhibits immune cell egress from lymph nodes, resulted in reduced anti-tumor responses by both 

IL-2 and Switch-2 (Fig. S14H-K). However, Switch-2 treatment retained higher activity than IL-

2 treatment in combination with FTY720 administration, supporting the idea that Switch-2 is more 

active than IL-2 within the TME. Overall, these data indicate that the superior anti-tumor activities 

of Switch-2 are mediated via induction of effector CD8+ T cells responses. 

To gain a deeper insight into how Switch-2 regulates CD8+ TILs, we performed single-cell 

RNA-seq analysis of TILs from B16.SIY tumors treated with Fc-IL-2 or Fc-Switch-2. Clusters 5 

and 6 contained cytotoxic CD8+ T cells with a higher frequency of Klrd1 (CD94) and Gzma, 

expression, respectively, while both clusters expressed Itgb1, which encodes CD29 (Fig. 5A, B 

and S15A, B and Data S2) (33–35). We observed that the distribution of the CD8+ TILs from the 

IL-2 and Switch-2-treated mice was mostly overlapping and distinct from the PBS group (Fig. 

S15C), and characterized by higher proportion of proliferating cells (Fig. S15D). Importantly, 

however, Switch-2 treatment caused an increase in the frequency of cytotoxic CD8+ T cells 

forming clusters 5 and 6 (Fig. 5C). Analysis of differentially expressed genes between Switch-2 

versus IL-2 groups confirmed Switch-2 treatment increased expression of genes associated with 

cytotoxic T cell function (Fig. 5D and Data S3).  
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Reduced systemic toxicity upon Switch-2 therapy 

A major limitation of current IL-2 therapies is their high systemic toxicity, characterized by 

vascular leak syndrome (36). We hypothesized that Switch-2 therapies would be less toxic, due to 

its low activity at neutral pH found in peripheral tissues. To test this, we subjected mice to high-

dose therapy with the two IL-2 variants. We found that high IL-2 doses induced pulmonary oedema 

as indicated by increased wet weight of lungs following treatment, whereas high dose Switch-2 

therapy caused substantially less pulmonary oedema and vascular permeability (Fig. 6A-C). This 

was paralleled by reduced activity of Switch-2 in the periphery and lungs in mice injected with 

Switch-2 compared to IL-2 (Fig. S9D-I) (29) as well as  lower percentages of NK cells in the 

periphery in mice injected with Switch-2 (Fig. 6D, E). On the other hand, we found that Switch-2 

increased the numbers of NK and cells in the LNs at higher extent than IL-2 (Fig. 6F). These data 

further demonstrate Switch-2 displayed biased activity towards acidic pH tissue environments in 

vivo, thus leading to strong anti-tumour activities with minimal peripheral toxicity. 

DISCUSSION  

Collectively, these data demonstrate that cytokines are exquisitely sensitive to the pH of the tissue 

in which they operate. The practical implications of these findings are significant. By exploiting 

directed evolution, we improved the tissue-specific activity, efficacy and systemic toxicity profile 

of IL-2, defining Switch-2 as a potential new immunotherapy for cancer, alone or in combination 

with checkpoint blockade or adoptive cell therapy.  

Currently, the majority of new IL-2 therapeutics are focused on biasing the activity of IL-

2 towards its dimeric receptor, which consists of IL-2Rβ and IL-2Rγ, and away from its high 

affinity trimeric receptor, which includes IL-2Ra. These new IL-2 therapies stimulate NK cells 
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and certain subsets of T cell expressing the dimeric, and not the trimeric, form of the receptor. 

However, this approach fails to exploit expression by highly-activated tumor-specific T cells of 

both IL-2Ra and IL-2Rb. In addition, this approach expands peripheral NK cells, which have been 

shown in mice to cause vascular leak syndrome (37). Switch-2 represents a highly differentiated 

therapy in which the balance of signaling has been adjusted to favor the trimeric form of the IL-2 

receptor only in the acidic tumor environment while significantly reducing its activity in peripheral 

blood. Switch-2 challenges the dogma that selective binding to dimeric IL-2 receptor is the optimal 

approach for tumor therapy, and improves IL-2 bioactivity within the tumor microenvironment 

while avoiding IL-2 mediated toxicity. While here we focus on IL-2, our data show that pH 

sensitivity might be a generalizable phenomenon relevant to a broad spectrum of cytokines; 

however, more in depth studies are necessary to confirm this observation. Our findings therefore 

provide a basis for exploring the effect of pH and other physicochemical characteristics of the 

extracellular environment on cytokine activity and function in healthy and diseased tissues.   

 

MATERIALS AND METHODS 

Cell culture and media 

B16.SIY WT and B16.SIY LDHA/B DKO (kindly provided by Marina Kreutz, University of 

Regensburg) (13), IL-2Ra- YT (kindly provided by Jamie Spangler, John Hopkins University) 

and IL-2Ra+ YT (38), and 4T1 (ATCC, CRL-2539) cells were cultured in RPMI 1640 with 

GlutaMAX supplemented with 10% fetal bovine serum (FBS) and penicillin/streptomycin. IL-

2Ra- and IL-2Ra+ YT cells were validated by Eurofins. MC38 (Kerafast, ENH204-FP) were 

cultured in Dulbecco’s modified MEM (DMEM) with GlutaMAX supplemented with 10% FBS, 

penicillin/streptomycin, 0.1 mM minimum non-essential amino acids, 1 mM sodium pyruvate, and 
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10 mM HEPES. B16-F10-mCherry-OVA (kindly provided by Max Krummel, University of 

California San Francisco) were passaged in DMEM supplemented with 10% FBS and 

penicillin/streptomycin. HeLa cells (ATCC, CCL-2) stably transfected with SNAPf-IL-2Ra were 

cultured in MEM medium supplemented with Earle’s balanced salts, glutamine, 10% FBS, non-

essential amino acids, and HEPES buffer without addition of antibiotics. For baculovirus 

preparation and protein production, Spodoptera frugiperda (Sf9; ThermoFisher, 12659017) and 

Trichoplusia ni (High Five; ThermoFisher, B85502) cells were cultured in SF900 III SFM media 

(Invitrogen; 12658027) and in Insect Xpress media (Lonza; BELN12-730Q), respectively. Human 

T cells were cultured in RPMI 1640 with GlutaMAX (Gibco, 61870036) supplemented with 10% 

FBS, minimum non-essential amino acids, 1 mM sodium pyruvate, and penicillin/streptomycin. 

When the pH of the media was adjusted to conduct short or long-term experiments, HCl was used 

to acidify the media and 20 mM HEPES pH 6.5 was added to maintain stable the pH at 6.5 in the 

presence of 5% CO2. An equivalent amount of HEPES pH 7.5 was added to the media at pH 7.5. 

In the case of murine T cells, the media was further supplemented with 50 mM b-mercaptoethanol. 

Protein production 

Human IL-2 (residues 1-133) and Switch-2 were cloned into the pFB-CT10HF vector in frame 

with the N-terminal gp67 and the C-terminal histidine tag; human IL-2Ra ectodomain (residues 

1-217) was cloned in the same vector with a C-terminal biotin acceptor peptide (BAP)-

LNDIFEAQKIEWHW followed by a histidine tag; for in vivo experiments, the Fc portion of 

human IgG4 was cloned at the N-terminal of IL-2 and Switch-2. Proteins were produced using the 

baculovirus expression system. Briefly, vectors were recombined in DH10Bac bacteria (Gibco) 

and the generated bacmid were used to generate the baculovirus. Baculovirus was produced and 

amplified in Sf9 cells and used to infect High Five cells for protein expression. Two days after 
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infection, His-Pur Ni-NTA resin (Invitrogen; 88222) was used to capture the proteins released in 

the cell culture supernatant. Proteins were purified by size exclusion chromatography on a 

Superdex 75 Increase column (GE Healthcare; 29-1487-21). Proteins were conserved in 10 mM 

HEPES (pH 7.2) and 150 mM NaCl (HBS buffer). In the case of IL-2Ra, the protein was reduced 

with 10 mM cysteine, alkylated with 20 mM iodoacetamide (39), and biotinylated with BirA ligase 

in the presence of 100 µM biotin. For analysis of in vivo IL-2 uptake, Fc-IL-2 and Fc-Switch-2 

were labelled with 4-fold excess of Ester NHS 647 Alexa Fluor (ThermoFisher, A20006). Proteins 

used for in vivo experiments were confirmed endotoxin-free by Pierce LAL Chromogenic 

Endotoxin Quantification Kit (ThermoFisher; 88282). 

For microscopy experiments, IL-2 and Switch-2 were cloned into the pMAL vector in frame with 

N-terminal Maltose Binding Protein (MBP) and YbbR tag (DSLEFIASKLA peptide) (40), and a 

C-terminal histidine tag. BL21 Escherichia coli cells were used to express the protein upon O/N 

induction with 1mM IPTG at 20 °C. The periplasmic fraction was isolated by osmotic shock and 

recombinant proteins were captured by His-Pur Ni-NTA resin. Proteins were purified by size 

exclusion chromatography on a Superdex 75 Increase column. Site-specific enzymatic labelling 

via the ybbR-tag was performed using coenzyme A conjugated with DY647P1 maleimide (DY647, 

Dyomics) and the phosphopantetheinyl transferase Sfp as described previously (41). 

Human T cell isolation and culture 

Peripheral Blood Mononuclear Cells (PBMCs) of healthy donors were isolated from buffy coats 

(Etablissement Français du Sang) by density gradient centrifugation using Pancoll human (Pan 

Biotech, P04-60500). 200x106 PBMCs were stained with 15 µl of anti-human CD8 FITC antibody 

(Clone HIT8a; Biolegend; 300906) for 15 min at 4 °C, washed and incubated with 70 µl anti-FITC 

microbeads (Miltenyi; 130-048-701). CD8+ T cells were isolated by magnetic separation using LS 
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columns (Miltenyi; 130-042-401) and activated for 3 days in complete media using coated anti- 

human CD3 antibody (Clone OKT3; Biolegend; 317326) and 2 µg/ml soluble anti-human CD28 

antibody (Clone CD28.2; Biolegend; 302934). Activation was always carried on at neutral pH 7.5, 

except when specifically indicated. For proliferation assay, CD8+ T cells were labelled with 

CellTrace Violet (Thermo Scientific; C34557) prior to T cell activation following the manufacturer 

protocol. For mRNA purification, activated CD8+ T cells were rested O/N, transferred in complete 

media pH 7.5 or 6.5 and stimulated for 4 h with 10 nM IL-2 or Switch-2. Activated CD8+ T cell 

used for analyzing cytokine expression and for secretome analysis were cultured for 3 days in 

media at pH 7.5 or 6.5 in the presence of 10 nM IL-2 or Switch-2 and subsequently stimulated for 

4 h. Cell stimulation cocktail containing transport inhibitors (eBioscience; 00-4975-93) was used 

for cytokine expression analysis by flow cytometry. Supernatant for Luminex analysis were 

collected upon stimulation with cell stimulation cocktail (eBioscience; 00-4970-93). 

CD4+ cells were isolated using 40 µl of anti-human CD4 FITC antibody (Clone A161A1; 

Biolegend; 357406) following the same protocol of CD8+ T cell isolation.  

Signaling experiments 

IL-2 signaling was evaluated on YT cells, freshly isolated CD8+, pre-activated CD8+ T cells after 

resting O/N, and on Treg cells from freshly isolated CD4+ T cells. Cells were stimulated for 15 

min with the indicated amount of IL-2 or Switch-2 in media at pH 7.5 or 6.5. In the case of time-

course experiments cells were stimulated for 6 h, 3h, 2 h,1 h, 30 min, 15 min with 10 nM or 10 

pM IL-2. IL-2 signaling in Treg cells was evaluated after 15 min stimulation of freshly isolated 

total CD4 cells.     

Sample processing and staining for flow cytometry analysis 
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Cells were incubated with Zombie aqua Fixable viability kit (Biolegend; 423101) for 20 min at 4 

°C and then stained for surface markers 30 min at 4 °C in MACS buffer (Miltenyi; 130-091-221) 

using anti-human CD8 FITC, anti-human CD3 BV711 (clone UCHT1; Biolegend; 300463), or 

anti-human CD25 APC (clone M-A251; Biolegend; 356110). For the analysis of cytokine 

expression, cells stained for surface markers were subsequently fixed and permeabilised using BD 

Cytofix/Cytoperm kit (BD Biosciences; 554714). Anti-human IL-2 BV421 (clone MQ1-17H12; 

Biolegend, 500328), anti-human TNFa PE/Dazzle 594 (clone Mab11; Biolegend, 502946), and 

anti-human IFNg APC (clone B27; Biolegend, 506510) were used. All the antibodies were used at 

1:100. 

For dose-response and kinetic experiments, stimulated cells were immediately fixed with 2% PFA 

for 15 min at RT. Cells were subsequently washed with PBS and permeabilised with ice-cold 

methanol for 30 min on ice and fluorescently barcoded as previously described (42). In brief, 

individual wells were stained with a combination of different concentrations of PacificBlue 

(Thermo Scientific; 10163) and DyLight800 NHS-dyes (Thermo Scientific; 46421). 16 barcoded 

samples were pooled together and stained for surface markers with anti-human CD3 BV711, anti-

human CD4 FITC or anti-human CD8 FITC and for phosphoproteins with 1:100 anti-STAT5 PE 

(clone 47/Stat5; BD Biosciences; 612567), 1:100 anti-ERK1/2 AF647 (clone 4B11B69; 

Biolegend, 677504), 1:50 anti-Akt AF647 (clone 193H2; Cell Signaling Technologies, 2337S), 

and 1:100 anti-S6R PE (clone D57.2.2E; Cell Signaling Technologies; 5316S) in MACS buffer 

for 1h at RT. In the case of signaling experiments on Treg cells, samples were washed and stained 

with 1:10 anti-human FoxP3 AF647 (clone 259D/C7; BD Biosciences; 560045) using the 

FoxP3/transcription factor staining buffer set (eBioscience; 00-5523-00).  
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For in vivo analysis of STAT5 phosphorylation, tumor-draining lymph node (tdLN) and tumor 

samples were mechanically disrupted on a cell strainer directly in Lyse/Fix buffer (BD 

Biosciences, 558049). Blood was immediately diluted in the Lyse/Fix buffer. Samples where fixed 

for 7 min, washed, permeabilized with Perm buffer III (BD Biosciences, 558050) for 30 min. Cells 

were subsequently stained for 1h at RT with 1:100 anti-mouse CD3 PerCP-Cy5.5 (clone 17A2; 

Biolegend, 100218), anti-mouse CD8 PE-Cy7 (clone 53-6.7; Biolegend, 10722), 1:200 anti-

mouse-CD45 BV711 (clone 30-F11; Biolegend, 103147), 1:30 anti-STAT5 PE. For the other 

analysis, single cell suspension of murine lungs and lymph nodes were obtained by mechanical 

disruption on a cell strainer. Red blood cells were lysed using RBC lysis buffer for mouse (Alfa 

Aesar; J62150). For phenotypical analysis, B16.SIY subcutaneous tumor and lungs from B16-F10-

mCherry-OVA metastatic model were cut in small pieces and digested with 1 mg/ml collagenase 

(Sigma, C6885) and 0.1 mg/ml DNase I (StemCell, 07470) in RPMI/25 mM HEPES for 50 min at 

37 °C under shaking. The cell suspension was passed through a cell strainer and subsequently 

resuspended in PBS at 106 cells/ml. An equal volume of Lympholyte-M (Cedarlane; CL5031) was 

underlaid and the samples were centrifuged at 1,200 g for 20 min. The lymphocyte layer was 

collected, washed with PBS, resuspended in 4 ml of 37% isotonic solution of Percoll (Cytiva; 

17089101), and centrifuged 10 min at 600 g. In the case of the lungs from the metastatic melanoma 

model the samples were subsequently incubated for 3 min with the RBC lysis buffer. For the in 

vivo IL-2 tracking experiments, samples were mechanically disrupted on a cell strainer. For 

analysis of cytokine expression, the samples from two mice were pooled together and cells were 

stimulated for 4 h at 37 °C with Cell Stimulation Cocktail (Thermo Fisher; 00-4675-93) After 

treatment with TruStain FcX (anti-mouse CD16/32) Antibody (Biolegend; 101320), samples were 

incubated for 10 min at RT with R-PE labelled Pro5 MHC Pentamer (ProImmune) specific for H-
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2Kb SIYRYYGL or with BV421-H-2K(b)/SIINFEKL (OVA257-268) MHC Tetramer (kindly 

provided by NIH Tetramer Core Facility), washed and then stained for surface and intracellular 

markers following the same procedure described before. The following antibodies were used: 

1:200 anti-mouse CD3 PerCP-Cy5.5 (clone 17A2; Biolegend; 100218), 1:200 anti-mouse CD4 

BV605 (clone RM4-5; Biolegend; 100548), 1:200 anti-mouse CD4 AF700 (clone GK1.5; 

Biolegend; 100430), 1:200 anti-mouse CD8 AF488 (clone 53-6.7; Biolegend 100723), 1:200 anti-

mouse-CD45 BV711 (clone 30-F11; Biolegend; 103147), 1:200 anti-mouse CD122 PE/Dazzle 

594 (clone TM-b1; Biolegend; 123217), 1:100 anti-mouse PD-1 BV785 (clone 29F-1A12; 

Biolegend; 135225), 1:50 anti-mouse TIM3 BV421 (clone RMT3-23; Biolegend; 119723), anti-

mouse NK1.1 BV605 (clone PK136; Biolegend; 108739) anti-mouse FoxP3 PE (clone FJK-16s; 

eBioscience; 12-5773-82), 1:100 anti-mouse Ki67 PE-Cy5 (clone SolA15; eBioscience; 15-5698-

82), 1:200 anti-mouse NK1.1 BV605 (clone PK136; Biolegend; 108739), 1:50 anti-mouse CD44 

APC-Cy7 (clone IM7; Biolegend, 103027), 1:20 CD62L APC (clone MEL-14; Biolegend, 

104412), 1:100 anti-mouse CD25 BUV395 (clone PC61; BD Biosciences, 564022), 1:200 anti-

mouse TNFa BV605 (clone MP6-XT22; Biolegend; 506329), 1:200 anti-mouse IFNg APC (clone 

XMG1.2; Biolegend; 505809).   

Flow cytometry was performed using LSR Fortessa X20 (BD) instrument and data were analyzed 

with FlowJo software (TreeStar Inc, version 10) or with FCS express 7 (DeNovo Software). 

Animal models 

6-weeks old female C57Bl/6JRj mice (Janvier) were subcutaneously injected in the right flank 

with 3x104 B16.SIY WT or B16.SIY LDHA/B DKO or with 3.5x105 MC38 cells in PBS and 

Matrigel (1:1) (Corning; 356232). For the metastatic melanoma model 6x105 cells in 150 µl PBS 

were intravenously injected. 20 µg of Fc-IL-2 or Switch-2 were administered intraperitoneally 
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(i.p). from day 7, when the size of the subcutaneous tumor reached 100 mm3, until day 11. When 

indicated, mice were treated with 200mmol/l NaHCO3 in the drinking water starting 3 days prior 

tumor injection and until the end of the experiment (23). 100 µg of InVivoMAb anti-mouse PD-

L1 (clone 10F.2H11; BioXCell, BE0361) or InVivoMAb rat IgG2b isotype control (BioXCell, 

BE0090) were administered i.p. at 7, 10 and 13. Treatment with 50 µg FTY720 (Sigma, SML0700) 

was performed every 4 days by i.p. injections starting from day 5 until the end of the experiment. 

In the case of the MC38 model, surviving mice were rechallenged at day 88 with subcutaneous 

injection of 3.5x105 in the left flank in parallel with control age-matched mice. 105 4T1 cells were 

injected in 6-weeks old female Balb/cByJRJ mice (Janvier) and treated with i.p. injections of 20 

µg of Fc-IL-2 or Fc-Switch-2 from day 7 to day 13. Tumor was measured using a calliper and 

tumor volume was calculated using the formula length x width2/2. For in vivo analysis of STAT5 

phosphorylation and IL-2 uptake, mice were sacrificed 30 min after the last injection of IL-2. In 

the case of IL-2 uptake studies, the last injection was performed using AF647-labelled Fc-IL-2 or 

Fc-Switch-2 or an equimolar amount of AF647 in the PBS-treated group. For the analysis of TILs, 

mice were sacrificed at day 15 after tumor injection, for B16.SIY subcutaneous model, or at day 

16, for B16-F10-mCherry-OVA metastatic model. For toxicity test 20 or 50 µg of Fc-IL-2 or 

Switch-2 were given for 5 consecutive days by i.p. injections and mice were sacrificed the day 

after the last injection. The blood vessel permeability in the lung was assessed by retro-orbital 

injection of 50 µl of 50 mg/ml Evens blue 30 min before sacrificing the mice. Lungs were perfused 

with PBS, dried O/N at 80°C, weighted, and incubated O/N in 1.5 ml of formamide at 55°C. The 

amount of extracted dye was evaluated by measuring the OD at 260 nm and the ng of Evans blue 

per mg of dry lung tissue was calculated. Pulmonary oedema (pulmonary wet weight) was 

evaluated by measuring the wet weight after lung collection and subtracting the dry weight after 
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the lungs were exsiccated O/N at 80 °C. Animals experiments were conducted in accordance with 

the “Ministère de l'enseignement supérieur, de la recherche et de l'innovation” (protocol #19862-

2019022809122912). 

Generation and selection of IL-2 library  

Adapting a previously described protocol for yeast display (43), we cloned IL-2 cDNA in pCT302 

vector for the expression in yeast. The IL-2 library was generated assembling 8 overlapping 

primers, among which two of them containing the homology regions necessary for the combination 

with the pCT302 vector (Table S1). Three of the primers had NDT codons (encoding for Gly, Val, 

Leu, Ile, Cys, Ser, Arg, His, Asp, Asn, Phe, Tyr amino acids) used to randomly mutate Thr37, 

Arg38, Thr41, Phe42, Lys43, Glu60, Glu61, Glu63, Leu66, Glu68, Val69, Asp109, and Glu110 

residues. The PCR product was further amplified using Lib Fw and Lib Rv primers (Table S1), at 

a final concentration of 10 µM, to obtain at least 25 µg of DNA. 

S. cerevisiae strain EBY100 was transformed by electroporation with 25 µg of insert DNA and 5 

µg of the linearized and purified plasmid. Transfected yeasts were grown in SDCAA media for 1 

day at 30°C and in SGCAA for 2 days at 20°C at each round of selection. The library, with a size 

of 5x107, was screened by magnetic-activated cell sorting (MACS) using LS column (Miltenyi; 

130-042-401): the first round of selection was carried on with 1010 cells and the subsequent ones 

with 108 cells to ensure at least 10-fold coverage for each round. Biotinylated IL-2Ra ectodomain 

was used at different concentrations to select pH-resistant IL-2 variants: more in detail, the first 

two rounds were performed using IL-2Ra tetramer at 100 nM in pH 5, the third and fourth round 

with 1 µM and 100 nM IL-2Ra monomer, respectively. IL-2Ra tetramers were generated by 

incubating IL-2Ra and Streptavidin (SA)-Alexa 647 at a ratio of 4:1. 

Crystallography  



 25 

Proteins were expressed and purified as described above. The CD25:Switch2 complex was formed 

by mixing CD25 at 32 µM with Switch-2 protein at a 20% excess based on molarity followed by 

dialysis overnight against 20mM BisTris pH 6.0, 150 mM NaCl. The complex was purified using 

a pre-equilibrated Superdex 75 (10/300 GL, Cytiva) gel filtration column. The final purified 

complex was concentrated to 7 mg/ml using a 30 kDa cut-off Amicon Ultracel device (Millipore). 

The sample was prepared for crystallization by filtration through a 0.2 mM centrifugal filtration 

device (Neo Biotech). 

Crystallization was performed by hanging drop vapor diffusion in 24 well Linbro plates (Hampton 

research) by mixing drops containing 0.75 µl each of reservoir and protein solution which was 

then equilibrated against 500 ml of reservoir solution. The reservoir solution consisted of 19% 

PEG 3350, 0.2 M sodium tartrate dibasic dihydrate and 10% glycerol, yielding a final pH of 6.9 in 

the crystallization drop. The plates were incubated at 18 °C, and crystals formed over the course 

of a week. The crystals were harvested with additional cryoprotection provided by passage through 

a smear of Paratone-N (Hampton research) on a glass slide and subsequent plunge cooling in LN2. 

Data were collected at Beamline I03 Diamond Light Source (U.K.) using an Eiger2 XE 16M 

detector (Dectris). The data were processed using Xia2/Dials (44) and scaled using aimless (45) 

from the CCP4 suite (46). Molecular replacement was performed using Phaser (47) with the IL-2 

and CD25 coordinates from PDB entry 2b5i (39) used as the search model. One strong solution 

was found in space group P3221, with a single complex present in the asymmetric unit. Refinement 

was performed using Phenix Refine (48), between cycles of manual analysis and rebuilding 

performed using Coot (49). Molprobity (50) was used for structure evaluation and validation. Full 

processing and refinement statistics are presented in Table S2. 

RNA-seq analysis 
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RNA of human CD8+ T cells was purified using Quick-RNA Microprep kit (Zymo Research; 

R1051). Clean sequence reads were obtained by removing bad quality reads from raw data using 

fastp. Reads were removed when containing adapter, when containing more than 10% of uncertain 

nucleotides (N) in either R1 or R2 or when containing more than 50 percent low quality nucleotides 

(Base Quality less than 5). Read mapping and quantification were performed by Novogene using 

STAR v2.6.1d with mismatch=2 and FeatureCounts v1.5.0-p3 software with the GRCh38 human 

genome. Differential expression analysis was performed using DESeq2 (51), and heatmaps were 

realized with pheatmap R packages. GSEA analysis was performed using GSEA 4.1.0 and 

compare to the IL-2 gene signature described in Mitra S. et al. 2015 (25). Within the top 500 

variable genes, 476 significantly differentially expressed genes (padj < 0.05, Log2(fold change) > 

0.6) were clustered by hierarchical clustering. Functional enrichment analysis was 

performed on clusters using enricher function from clusterProfiler R packages (52) and hallmark 

gene sets v7.4 from MsigDB. 

ScRNA-seq sample preparation 

Mice were sacrificed the day after the end of the therapy and tumors were excised and tumor 

infiltrating lymphocytes were enriched using lymphocyte M density gradient protocol. Then 

MagniSort mouse CD8 T cell enrichment kit (ThermoFisher, 8804-6822-74) was used to enrich 

for CD8+ TILs from the cell suspension. An equal amount of cell from each biological replicates 

(n=3) was pooled together and stained using Zombie aqua Fixable viability kit, anti-mouse CD3 

PerCP-Cy5.5, and anti-mouse CD8 PE (Biolegend, 100708). Live CD3+CD8+ cells were sorted 

and used for scRNA-seq. 13,000 cells were loaded on 10x Genomics Chromium system and 

libraries were prepared with Chromium Next GEM Single Cell 3’ Reagent Kit v3.1 (dual index) 

following manufacturer’s instructions.  
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scRNA-seq analysis 

Raw sequencing data were processed and aligned to mouse genome (GRCm38) with 10x Genomic 

Cell Ranger pipeline (53) (version 6.1.2). Single cell data were then analyzed using Seurat (54) R 

package (version 4.1.0). Low quality cells with number of detected genes < 300 and mitochondrial 

genes RNA content > 7% and putative cell multiplets with number of detected genes > 6000 were 

excluded from the analysis. Single cell count data were normalized and genes with highly variable 

expression were identified using SCTransform methods. Using CellCycleScoring function, each 

cell was associated with either G1, S or G2/M cell cycle phase. Cell cycle association was done 

depending on expression score of genes related to each cell cycle phase in each cell. All used cell 

cycle genes were mouse version of human genes provided in Seurat package. The 3000 most 

variable genes were used to compute 30 principal components with principal component analysis 

(PCA). Shared nearest neighbor graphs were built using all principal components. Cells were then 

clustered according to shared nearest neighbor graphs using Louvain algorithm with resolution 

parameter set to 0.5. Embedding of cells in a 2D space was computed with Unique Manifold 

Approximation and Projection (UMAP) on all principal components. Small clusters of cells with 

high expression of genes specific to myeloid, melanoma or NK cells were removed from the 

dataset. Myeloid cells clusters were identified by high expression of Cd74, Cd68, Tyrobp. A 

melanoma cancer cells cluster was identified by high expression of Mlana. An NK cells cluster 

was identified by high expression of Ncr1, Klrb1c, Tyrobp. Remaining cells were reanalyzed using 

the exact same pipeline from normalization to 2D space embedding and setting resolution 

parameter to 0.4 for clustering. In total 12044 cells passed all filtering steps, 4045 from PBS 

sample, 1701 from Fc-IL-2 sample and 6298 from Fc-Switch-2 sample. 
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Differentially expressed genes between group of cells were determined using Wilcoxon test. Only 

genes expressed in at least 10% of cells in either group and with at least an average absolute log2 

fold change of 0.2 were tested. Multiple testing correction for p-values was done using Bonferroni 

correction based on the total number of genes in the dataset. Genes with adjusted pvalue < 0.05 

were considered differentially expressed. 

Statistical analysis 

Data are presented as mean ± s.e.m. of at least three independent experiments and multiple groups 

comparisons were performed using one-way ANOVA with Tukey’s correction unless otherwise 

stated. Survival curves are represented as Kaplan-Meier curves and statistical significance was 

determined by Log-rank test with Bonferroni’s correction. ns = not significant, *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. All the analysis were performed using Prism 9 software (GraphPad). 
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Figures:  

Fig. 1. Low pH impairs IL-2 activity. (A) Dose-response of STAT5 phosphorylation in pre-

activated CD8+ T cells stimulated with IL-2 in pH 7.5 or 6.5 media. (B) Dose-response of STAT5 

phosphorylation in pre-activated CD8+ T cells stimulated with IL-2 in media at pH 7.5 +/-12 mM 
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NaCl, or in media at pH 6.5 generated by addition of 12 mM HCl or 15 mM Lactic Acid (LA). 

Data are the pooled results of 3 independent experiments with technical duplicates. (C) Schema 

showing staining of IL-2-expressing yeast with biotinylated IL-2Ra and AF647-conjugated 

streptavidin (left panel). Dose-dependent binding at different pH of IL-2Ra serial dilutions to the 

surface of IL-2-expressing yeast (right panel). (D) Effects of IL-2 treatment on tumor growth of 

B16.SIY tumors with or without NaHCO3 treatment (n=12 for each group). (E) Growth and 

survival curves of B16 WT or LDH KO tumors (n=12 for each group). (F, G) STAT5 

phosphorylation in CD8+ T cells from blood (F) and tumor (G). Representative histogram plots 

(left panel) of STAT5 phosphorylation and scatter plots (right panels) of the mean (n=6 for each 

group). (H-K) Dot plots of representative samples (H, J) and percentages (I, K) showing the 

expression of IFN-g and TNF (H, I) and PD-1 and TIM3 (J, K) in CD8+ T cells. Each symbol 

represents a single mouse (F, G, K) (n=18) or two mice pooled together (I) (n=9). Data are the 

pooled results of two (D-G) or three independent experiments (C, I, K). Statistical significance 

was determined by one-way ANOVA with Tukey’s correction (D, E left panel, F, G, I, K) or by 

Log-rank test with Bonferroni’s correction (E right panel).  

Fig. 2. Selection of a pH-resistant IL-2 variant. (A) Schematic representation of the IL-2 mutant 

library expressed at the yeast surface and interacting with the biotinylated IL-2Ra tetramer (left 

panel). Amino acids that were mutated during the generation of the IL-2 library are displayed in 

red. Histogram overlays assessing IL-2Ra staining of the library at each round (Rd) of selection 

at pH 5 is shown (right panel). (B) Dose-dependent binding at different pH of IL-2Ra serial 

dilutions to IL-2 or Switch-2 displaying yeasts. (C) Quantification of the IL-2/IL-2Ra interaction 

at the plasma membrane of live cell by dual color TIRF microscopy with labelled IL-2Ra and IL-

2 (left panel) and representative images showing trajectories from 100 consecutive frames of 
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simultaneous dual color imaging of IL-2 and Switch-2 binding to IL-2Ra-expressing HeLa at 

different pH. (D) Graph showing the IL-2 binding normalized to the IL-2Ra cell surface 

expression. Each data point representing the result from a single cell. Significance was calculated 

by Kolmogorov-Smirnov test. (E) Overlay of the IL-2:IL-2Ra and Switch-2:IL-2Ra complex 

crystal structures. IL-2 and Switch-2 engage IL-2Ra with identical geometry (RMSD=1.56Å). The 

RMSD represents alignment of all atoms. Superposition of the C-alpha positions of the complexes 

formed by Switch-2 or wild-type IL-2 (pdb entry 1Z92) along with their partner CD25, with a root 

mean square deviation (RMSD) of 1.53 Å2 over 235 residues. IL-2 is colored in cyan and Switch-

2 in slate blue. IL-2Ra is colored in yellow for the IL-2 and Switch-2 complexes. (F) Close-up 

views of the IL-2:IL-2Ra (left panel) and Switch-2:IL-2Ra (right panel) binding interfaces. 

Hydrogen bonds and salt bridges are shown as purple dashed lines. Hydrogen bonds were defined 

using standard accepted values of ~2.5 to 3.5 Å, with salt bridge lengths extending to 4.5 Å. Under 

each inset box a two-dimensional interaction map of the IL-2:IL-2Ra or Switch-2:IL-2Ra 

interface is shown. Amino acids are depicted as nodes in the interaction maps. Interactions between 

amino acids are shown as solid blue lines. (G, H) Dose-response curve of phospho-STAT5 induced 

by IL-2 and Switch-2 at pH 7.5 and 6.5 in not pre-activated (G) and pre-activated CD8 T cells (H). 

Data are the pooled results of two (B) or three independent experiments (G, H).  

Fig. 3. The IL-2 mutein Switch-2 is preferentially active at acidic pH. (A, B) Analysis of 

cytokine expressed by pre-activated CD8+ T cells after 3 days of culture at pH 7.5 or 6.5 in the 

presence of 10 nM IL-2 or Swtich-2. Cells were stimulated with PMA/ionomycin and supernatant 

of stimulated cells was analyzed by Luminex assay (A). The bubbles represent the amount of the 

released cytokines that has been normalized to control condition (IL-2 pH 7.5 = 100). (B) Dot plot 

showing the expression of IFN-g and TNF in one representative donor out of five. (C) Principal 



 39 

component analysis (PCA) of RNA-seq data. Pre-activated CD8+ T cells from three different 

donors were stimulated for 4 h after resting O/N. (D, E) Heatmap of the 476 top variable and 

significant genes (D) and of a set of T cell-specific genes (E). Gene expression is represented as 

z-score. (F) IL-2Ra-dependent uptake of labelled Fc-IL-2 and Fc-Switch-2 in CD8+ T cells from 

mouse tumor and lung (left panels). In the right panel the AF647 uptake within cells expressing 

similar levels of IL-2Ra (red gate in the left panel) is shown.   

Fig. 4. Switch-2 therapy stimulates potent anti-tumor immunity and tumor control. (A) 

Tumor growth and survival curve of MC38-bearing mice (n=12). (B) Tumor volume in MC38-

rechallenged and age-matched control mice (n=5). (C) Weight of 4T1 tumor. (D) Tumor growth 

and survival curve of B16.SIY WT-bearing mice (n=10 for PBS, n=12 for Fc-IL-2 and Fc-Switch-

2). (E, F) Representative dot plot (E) and percentages (F) of antigen-specific CD8+ T cells in 

B16.SIY WT-bearing mice (n=12). (G, H) Representative dot plot (G) and percentages (H) of 

TNF and IFN-g expression in CD8+ T cell infiltrating B16.SIY WT tumor (n=9). Each symbol 

represents a single mouse (C, F) or two mice pooled together (H) and data are the pooled results 

of two (A-F) or three independent experiments (H). Significance was determined by one-way 

ANOVA with Tukey’s correction (A and D left panel, C, F, H,) or by Log-rank test with 

Bonferroni’s correction (A and D right panel).  

Fig. 5. scRNA sequencing reveals induction of potent cytotoxic CD8+ cell responses within 

tumors after Switch-2 therapy. (A) UMAP from scRNA-seq colored by cluster. (B) Heatmap of 

CD8+ T cell clusters depicting the top 20 differentially expressed genes of each 8 clusters. (C) Bar 

plot of the proportion of each sample in the different clusters normalized by the total number of 

cells of each sample. (D) Volcano plot of the differentially expressed genes in Fc-Switch-2 versus 

Fc-IL-2 sample in cluster 5 and 6. 
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Fig. 6. Switch-2 drives reduced toxicity in systemic tissues. (A) Mice were treated for 5 days 

with i.p. injections of 100 µl PBS or 20 or 50 µg of Fc-IL-2 or Switch-2 for 5 days. (B) 

Representative images of lung tissue stained with hematoxylin and eosin after treatment with Fc-

IL-2 and Fc-Switch-2. (C, D) Pulmonary edema evaluated by lung wet weight (C) and amount of 

Evans blue per mg of lung tissue (D) after treatment with Fc-IL-2 and Fc-Switch-2 (n=6). (E, F) 

Percentage of NK cells in blood (E) and LN (F) of mice treated with either PBS, 20 µg of Fc-IL-

2 or Fc-Switch-2. (B-F) Each symbol represents a single mouse and data are the pooled results of 

two independent experiments. Significance was determined by one-way ANOVA with Tukey’s 

correction.  

 

  

 

 

 
















