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Abstract
Current benchmarks for optical flow algorithms evaluate the estimation either directly by comparing the predicted flow 
fields with the ground truth or indirectly by using the predicted flow fields for frame interpolation and then comparing the 
interpolated frames with the actual frames. In the latter case, objective quality measures such as the mean squared error are 
typically employed. However, it is well known that for image quality assessment, the actual quality experienced by the user 
cannot be fully deduced from such simple measures. Hence, we conducted a subjective quality assessment crowdscouring 
study for the interpolated frames provided by one of the optical flow benchmarks, the Middlebury benchmark. It contains 
interpolated frames from 155 methods applied to each of 8 contents. For this purpose, we collected forced-choice paired 
comparisons between interpolated images and corresponding ground truth. To increase the sensitivity of observers when 
judging minute difference in paired comparisons we introduced a new method to the field of full-reference quality assess-
ment, called artefact amplification. From the crowdsourcing data (3720 comparisons of 20 votes each) we reconstructed 
absolute quality scale values according to Thurstone’s model. As a result, we obtained a re-ranking of the 155 participating 
algorithms w.r.t. the visual quality of the interpolated frames. This re-ranking not only shows the necessity of visual quality 
assessment as another evaluation metric for optical flow and frame interpolation benchmarks, the results also provide the 
ground truth for designing novel image quality assessment (IQA) methods dedicated to perceptual quality of interpolated 
images. As a first step, we proposed such a new full-reference method, called WAE-IQA, which weights the local differences 
between an interpolated image and its ground truth.

Keywords Visual quality assessment · Frame interpolation · Artefact amplification · Weighted error

Introduction

As one of the basic video processing techniques, frame 
interpolation, namely computing interpolated in-between 
images in image sequences, is a necessary step in numer-
ous applications such as temporal up-sampling for gener-
ating slow-motion videos [17], nonlinear video re-timing 
in special effects movie editing [24], and frame rate con-
version between broadcast standards [26]. One of the main 
concepts in frame interpolation is motion compensation. In 
this context, required frames are obtained by interpolating 
the image content along the path of motion. Thereby, the 
apparent motion in terms of the so-called optical flow can 
be derived in various ways. Typical approaches for this task 
include block matching techniques [11], frequency-based 
approaches [26], variational methods [31] or convolutional 
neural networks [3, 17].
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Since the quality of the interpolated frames heavily 
depends on the underlying optical flow algorithm, the evalu-
ation of the results is a critical issue. However, currently, 
there is only one optical flow benchmark that offers the 
assessment of interpolated frames: the Middlebury bench-
mark [2]. Regarding the quality of the motion estimation, it 
considers angular and endpoint errors between the estimated 
flow and the ground truth flow. More importantly, it also 
offers a direct evaluation of the corresponding motion-com-
pensated interpolation results between frame pairs, which 
is based on the root mean squared error (RMSE) and the 
gradient normalized RMSE between the interpolated image 
and the ground truth image.

In general, the direct evaluation of the frame interpola-
tion results is useful, since the accuracy of the motion esti-
mation is not always directly related to the quality of the 
motion-compensated frame interpolation. For example, 
motion errors in low-textured regions are less noticeable in 
the interpolation result than motion errors in highly-textured 
regions. However, specifically designed error measures such 
as the gradient normalized RMSE even revert this relation 
and penalize interpolation errors in high-textured regions 
less severely which adapts the error measure to the short-
comings of motion-based frame interpolation techniques 
instead of trying to assess the frame interpolation quality 
adequately. Moreover, it is well known that even the stand-
ard mean square error can be misleading and may not reli-
ably reflect image quality as perceived by the human visual 
system (HVS) [42]. This fact also becomes obvious from 
the Middlebury web-page, where some of the interpolated 
images have the same RMSE but exhibit obvious differences 
in image quality (see Fig. 1). Evidently, there is a clear need 
to improve the assessment of motion-compensated interpo-
lation results. Therefore, we propose to change the quality 
assessment in such a way that the evaluation of the results 
takes perceived visual quality assessment into consideration.

Regarding visual quality assessment methods, we take 
full-reference image quality assessment (FR-IQA) into con-
sideration, since ground truth in-between images are avail-
able in the Middlebury benchmark. There are several FR-
IQA methods that consider the HVS, which were designed 
to estimate image quality degradation due to common arte-
facts, namely the ones caused by processing such as data 
compression or by losses in data transmission. However, the 
artefacts induced by optical flow algorithms lead to interpo-
lated images with different specific distortions (see Fig. 2).

In this article we show that nine of the most popular 
objective FR-IQA methods have rather low correlations 
with the evaluations made by human observers, regardless 
of whether the methods are based on the HVS or just on 
pixel-wise errors such as RMSE; see Table 4 (in “Weighted 
absolute error as FR-IQA” Sect.). The VSI [48] method is 
one of the best FR-IQA methods. When trained and tested 

on the LIVE database it yields a Spearman rank-order cor-
relation coefficient (SROCC) of 0.952 w.r.t. ground truth 
consisting of mean opinion scores (MOS) from a controlled 
lab study [35]. However, even VSI only obtained an SROCC 
of 0.5397 w.r.t. scale values reconstructed from paired com-
parisons when applied to the interpolated images by optical 

Fig. 1  Two interpolated frames, each with two different methods. 
RMSE values in each pair are equal, but the visual quality differs in 
each pair, in particular in the zoomed regions

Fig. 2  Specific distortions in interpolated images. Left column: detail 
of the ground truth images Backyard and Basketball. Right column: 
corresponding detail of the interpolated counterparts (with distor-
tions)
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flow algorithms. This demonstrates that current FR-IQA 
methods are not able to cope with the specific distortion 
types that arise in interpolated frames produced by optical 
flow algorithms. Therefore, a new FR-IQA method specifi-
cally designed for such images is needed. However, before 
the research in such FR-IQA methods can proceed, ground 
truth data, namely subjective quality scores of such images 
need to be collected, a first set of which is provided by our 
study.

Regarding the subjective quality evaluation, lab-studies 
are well established due to their reliability. In particular, 
the experimental environment and the evaluation process 
can be controlled. However, it is time-consuming and costly, 
which severely limits the number of images to be assessed. 
In contrast, crowdsourcing studies can be less expensive. 
Moreover, the reliability of crowdsourcing has been proven 
to be acceptable, if the results are properly post-processed 
by outlier removal [32].

In our preliminary work [25], with the help of crowd-
sourcing, we have implemented paired comparisons to col-
lect subjective quality scores of the interpolated images 
in the Middlebury benchmark, denoted as StudyMB 1.0. 
However, the limitation of StudyMB 1.0 is that the quality 
differences between some of the images are hardly visible. 
Even though in the instructions we had highlighted the 
main degraded parts according to our visual observation, 
still some of the image pairs could not be well judged by 
the subjects. For instance, both of the images shown in 
Fig. 3, which were displayed as a pair in StudyMB 1.0, 
were assigned the same quality score, although the quality 
differences between them become obvious when inspected 
in detail. Another limitation of StudyMB 1.0 is that in the 
paired comparison crowd workers were asked to identify 

the image with the better quality and not the image which 
better matches with the ground truth image that was not 
shown. This may have created a bias as also ground truth 
images may carry some distortions, in particular motion 
artefacts.

The primary metric to evaluate the performance of objec-
tive IQA methods is the SROCC, i.e., a rank-order correla-
tion. An increased accuracy of image quality ranking could 
benefit the development of objective IQA methods. Thus, we 
improved the design of the subjective study in the following 
three ways. (1) Artefact zooming: We help users identify the 
degradation by providing zoomed image portions that con-
tain the most noticeable artefacts. (2) Artefact amplification: 
We increase the local differences of the interpolated images 
w.r.t. the ground truth images without significantly changing 
the average color properties of the images in the changed 
areas. (3) In the paired comparisons, we additionally pro-
vided the ground truth image, and the task was to identify 
the interpolated image closer to the ground truth. We will 
argue and show by an additional experiment that although 
our artefact zooming and amplification may change the per-
ceived quality of an image, it will not distort the results of 
paired comparisons in terms of the ranking of the participat-
ing images.

In this paper, we implemented this improved paired 
comparisons of interpolated images given by optical flow 
algorithms in the Middlebury interpolation benchmark 
and re-ranked them accordingly (denoted as StudyMB 2.0). 
Comparing the old ranking according to RMSE in the Mid-
dlebury benchmark and the re-ranking according to our 
improved subjective study then allows us to judge the suit-
ability of existing quality metrics.

The outcome of our study is clear. It demonstrates that 
current FR-IQA methods are not suitable for assessing the 
perceived visual quality of interpolated frames that have 
been created by using optical flow algorithms. Consequently, 
using the collected subjective scores as ground truth, we 
propose a novel FR-IQA method. It is based on a weighted 
absolute error (WAE) which locally assigns different weights 
to absolute errors between the interpolated image and its 
ground truth.

Summarizing, compared to [25], the contribution of the 
current journal paper is threefold:

• We provide better subjective quality scores via artefact 
amplification and zooming, which serve as a basis for the 
development and evaluation of new FR-IQA methods.

• Based on the new scores, we reveal the poor performance 
of existing FR-IQA methods when predicting the quality 
of motion compensated frame interpolation.

• We further propose a weighted error based FR-IQA 
method, which is specifically designed for the frame 
interpolation with motion compensation.

Fig. 3  A pair of images that obtained the same average score in 
StudyMB  1.0. However, quality differences exist, especially in the 
zoomed-in parts (see the portions in black rectangles)
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Related work

As the recent literature on frame interpolation shows, there 
is mainly one benchmark that is considered for evaluating 
the performance of frame interpolation methods: the Mid-
dlebury benchmark. Originally designed for the evaluation 
of optical flow algorithms, this benchmark also offers an 
evaluation of motion-based frame interpolation results based 
on the calculated optical flow. To this end, it compares the 
interpolated frames with the ground truth in-between images 
that have been obtained by recording or rendering the origi-
nal image sequence with a higher frame rate. Hence, despite 
of its original focus on evaluating optical flow methods, in 
the last few years this benchmark has become the de facto 
standard for the evaluation and comparison of frame inter-
polation algorithms; see e.g. [26, 27, 31].

Apart from the Middlebury benchmark, there are also two 
other datasets that are, however, less frequently considered 
for evaluation. While some interpolation algorithms like [10, 
22] use the UCF 101 dataset [36] for training and testing, 
others like [9, 46] considered the videos from [39, 40].

Regarding the assessment of the interpolation quality, 
both the Middlebury benchmark and the other data sets 
rely on standard metrics, such as MSE, PSNR, or SSIM 
to measure the differences between the interpolated result 
and the ground truth in-between image. However, to the 
best of our knowledge, there have been no attempts so far 
to analyze how useful these metrics actually are to measure 
the quality of motion-compensated frame interpolation.

Regarding the amplification of artefacts we applied pixel 
value range expansion. This method was so far only adopted 
in reverse tone mapping operators (rTOMs), aiming to give 
low dynamic range images (LDR) the appearance of a higher 
dynamic range (HDR) without annoying artefacts [41]. The 
general technique of rTOM first identifies the brightest areas 
of the image, yielding a certain kind of expansion map. 
Those bright areas are then expanded to a significant extent 
using different dynamic range expansion functions, whereas 
the rest of the pixels of the image are kept unchanged or 
only slightly modified [7]. To the best of our knowledge, 
such idea of amplifying the pixel value range for increasing 
the error visibility was not adopted in any subjective image 
quality assessment study so far.

Prior knowledge

Subjective study

Absolute category rating (ACR) is a subjective testing 
methodology where the test items are presented one at a 

time and are rated independently on a five-point ordinal 
scale, i.e., Bad (1), Poor (2), Fair (3), Good (4), and Excel-
lent (5).

Another common type of subjective testing, degradation 
category rating (DCR), presents both a test item and a high 
quality reference. The reference item can be presented first, 
or both items are presented simultaneously. The purpose of 
DCR is to evaluate the degree of distortion and how it influ-
ences perceived quality. Observers are asked to rate if the 
degradation is “very annoying” (rating of 1), “annoying” 
(2), “slightly annoying” (3), “perceptible, but not annoying” 
(4) or “imperceptible” (5), resulting in the subjective ratings 
ranging from 1 to 5 [16].

ACR or DCR are easy and fast to implement, however, 
they have several drawbacks [5, 13]. Participants can mis-
understand the categories of the rating scale because they 
are not explained sufficiently well, and due to their personal 
interpretation of the ACR or DCR scale. The effect is par-
ticularly obvious in crowdsourcing experiments, where par-
ticipants have a wide range of cultural backgrounds and vari-
ous levels of expertise with subjective studies of this kind. 
Moreover, the perceptual distance between two consecutive 
scale values, e.g., between 1 and 2, should ideally be the 
same. However, in practice, this can hardly be achieved [13]. 
Also, it is not easy to detect when a participant intentionally 
or carelessly gives false ratings.

Alternatively, paired comparisons (PC) can solve some 
of the problems of ACR and DCR. In a PC test, items to 
be evaluated are presented as pairs. In a forced-choice set-
ting, one of the items must be chosen as the preferred one. 
Although the results of a PC test might be harder to interpret 
caused by the indirect reconstruction of quality scale values 
from the preference ratings in a set of pairs, the main advan-
tage of this strategy is that it is highly discriminatory, which 
is very relevant when test items have nearly the same quality.

However, when implemented naively, comparing N items 
would require 

(
N

2

)
 comparisons, too many to be practical, 

when N is on the order of 100, for example. In our case, for 
each of the 8 sequences, we would have to compare N = 155 
images, giving a total of 95,480 pairs.

A practical solution to this problem is to resort to the 
concept of randomly paired comparisons that is based on 
randomly choosing a fraction of all possible paired com-
parisons. This strategy is not only more efficient, it also has 
been proven to be as reliable as full comparisons [44]. After 
obtaining results from these comparisons, subjective scores 
have to be reconstructed. This can be done based on Thurs-
tone’s model [23, 37] or the Bradley-Terry model [4].

Thurstone’s model

Thurstone’s model provides the basis for a psychomet-
ric method for assigning scale values to options on a 1-D 
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continuum from paired comparisons data. It assumes that 
an option’s quality is a Gaussian random variable, thereby 
accommodating differing opinions about the quality of an 
option. Then each option’s latent quality score is revealed 
by the mean of the corresponding Gaussian.

The result of a paired comparison experiment is a square 
count matrix C denoting the number of times that each 
option was preferred over any other option. More specifi-
cally, for n comparisons of option Ai with option Aj , Ci,j 
gives the number of times Ai was preferred over Aj . Simi-
larly, Cj,i in the count matrix denotes the number of times 
that Aj was preferred over Ai , and we have Ci,j + Cj,i = n.

According to Thurstone’s Case V, subjective qualities 
about two options A and B are modelled as uncorrelated 
Gaussian random variables A and B with mean opinions �A , 
�B and variances �A2, �B2 , respectively. When individuals 
decide which of the two options is better, they draw realiza-
tions from their quality distributions, and then choose the 
option with higher quality. More specifically, they choose 
option A over option B if their sample from the random 
variable A − B (with mean �AB = �A − �B and variance 
�AB

2 = �A
2 + �B

2 ) is greater than 0. Therefore, the prob-
ability of a subject to prefer option A over B is:

where �(⋅) is the standard normal cumulative distribution 
function (CDF).

Thurstone proposed to estimate P(A > B) by the empiri-
cal proportion of people preferring A over B, which can be 
derived from the count matrix C as:

The estimated quality difference �̂�AB can be derived from 
inverting Eq. 1, giving:

known as Thurstone’s Law of Comparative Judgment, where 
�−1(⋅) is the inverse standard normal CDF, or z-score. Least-
squares fitting or maximum likelihood estimation (MLE) 
can be then applied to estimate the scale values �A for all 
involved stimuli A. For more details we refer to [38].

(1)P(A > B) = P(A − B > 0) = 𝛷

(
𝜇AB

𝜎AB

)
,

(2)P(A > B) ≈
CA,B

CA,B + CB,A

.

(3)�̂�AB = 𝜎AB𝛷
−1

(
CA,B

CA,B + CB,A

)

Subjective quality assessment: StudyMB 2.0

Data and study design

In order to re-rank the methods in the Middlebury bench-
mark, we implemented paired comparisons based on Thurs-
tone’s model with least-squares estimation to obtain subjec-
tive judgments of the image qualities. In the benchmark, 
there are 8 sets of 155 interpolated images each, most of 
which had been generated by optical flow methods.1 To run 
a complete set of possible comparisons would require col-
lecting ratings for 8 × 155 × 154∕2 pairs, which is too many 
for practical purposes. However, it is sufficient to compare 
only a subset of these pairs. Therefore, we randomly sample 
pairs within each of the 8 sets, such that the 155 images 
form a random sparse graph with a vertex degree of 6, i.e., 
each image was to be randomly compared to 6 other images, 
which resulted in 465 × 8 = 3720 pairs of images. We ran 
the experiment using the Amazon Mechanical Turk (AMT) 
platform [1]. We mixed the eight sets of image pairs and ran-
domized their display order. Crowd workers were shown, in 
turn, a single pair of images per page. Payments were made 
for each completed pair. We collected 20 votes per pair. In 
total, 293 crowd workers participated in our experiment.

In order to increase the sensitivity of the subjective detec-
tion of minute differences between two interpolated images, 
we applied two methods. 

1. Artefact amplification Interpolated images in the bench-
mark differ from the ground truth images. The pixel-
wise differences w.r.t. the ground truth images were 
artificially increased for display and judgment.

2. Artefact zooming Artefacts due to interpolation based 
on optical flow tend to be localized in images, for exam-
ple, nearby edges of moving objects. To steer the atten-
tion of the crowd workers towards these most heavily 
degraded image portions, these regions were displayed 
also enlarged below the full image above.

The crowdsourcing interface for one comparison is shown in 
Fig. 4. It contains the zoomed image regions with the most 
severe distortions for each of the images to be compared and 
additionally the ground truth image, in full size and with 
the zoomed portion. In the next two subsections we give the 
details for these two methods.

1 When we ran the experiments in March 2019, there were altogether 
155 methods in the Middlebury benchmark, including a number of 
additional, new methods compared to [25].
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Boosted paired comparison

When evaluating the performance of objective IQA meth-
ods, the primary metric is the SROCC, i.e., a rank-order 
correlation. The absolute quality values are secondary; 
however, their ordering is most relevant. Thus, if the 
ground truth for an objective IQA would rank an item A 
higher than B, then it is desired that this relation also holds 
true for the estimated qualities of A and B by the objective 
IQA method. If one directly compares the quality values 
between ground truth and predictions, one usually applies 
a nonlinear regression beforehand to align the predicted 
quality values as much as possible with the ground truth 
quality values. Only after such an alignment the Pearson 
linear correlation (PLCC) gives results that are suitable for 
comparison of different objective IQA methods.

Similarly, for the Middlebury benchmark it is the rank-
ing of the different methods for optical flow, and respec-
tively for frame interpolation that is most relevant and 
not the particular scalar quality values themselves. For 
the purposes of our research, therefore, the precision of 
the absolute values in our subjective quality study is less 
important than their correct perceptual ordering. The 
boosted paired comparison, i.e., the artefact amplification 
and the zooming basically is designed as a monotonic and 
even linear operation (spatial scaling by zoom and lin-
ear scaling of pixel intensity differences) which can be 
expected not to reverse the subjective ordering for per-
ceived quality.

In order to clarify this effect, we have carried out an 
additional crowdsourcing experiment that demonstrates 
the increased sensitivity of boosted paired comparison. 
Moreover, it shows that the accuracy of the ranking of the 
resulting quality values is not only maintained w.r.t. the 
case without boosting, but even increased (see “On the 
potential of boosted paired comparisons” Sect.). Before we 
get to that, we present the technical details of the proposed 
artefact amplification and zooming in the following two 
subsections.

Artefact amplification by local RGB transformation

Since the human visual system is not sensitive enough to 
reliably detect the quality differences for many of the inter-
polated images [25], we artificially emphasized the defects 
by linearly scaling up the differences relative to the ground 
truth. Following Weber’s law [8], given an interpolated 
image, we basically enlarged the RGB pixel differences 
for all pixels linearly, following

where v is an original RGB (ground truth) component value, 
and 𝛼 > 1 is a fixed amplification factor. For 24 bit color 
images, the transformed RGB component values should not 
be outside the range [0, 255], which could be achieved by 
common clamping. However, clamping is a nonlinear opera-
tion which might actually remove differences in artefacts 
between two interpolated images. Therefore, we propose to 
reduce the amplification factor � at pixels where the linear 
RGB transformation would require clamping, to the maxi-
mal � without requiring clamping. See Algorithm 1 for the 
details.

v̂� = v + 𝛼(v̂ − v),

Fig. 4  Interface of the crowdsourcing experiment. The full-sized 
ground truth image was displayed in the experiment overview sec-
tion, with the most noticeable degraded parts highlighted. Zoomed 
portions of the interpolated images were provided as pairs, with the 
ground truth placed in the middle



Quality and User Experience (2020) 5:8 

1 3

Page 7 of 18 8

As shown in Figs. 5 and 6, before the pixel value range 
amplification, it is extremely hard to distinguish the quality 
differences between the original pair of images. After the 
amplification the differences become much more obvious 
and thus easier for participants in our experiment to provide 
reliable annotations.

Artefact zooming

In addition to boosting pixel value differences, we also 
zoomed into the relevant regions that have the most notice-
able degradation. Such regions of each set of images were 
extracted via the following steps (see Fig. 7):

• Step 1: Gaussian Smoothed Average Error Image
  For the n-th image In of 155 interpolated images 

from the same scene, the absolute error compared to 
the ground truth image I0 was first computed, giving an 
absolute error image En = |In − I0|. The mean of all 155 
absolute error images is 

Eavg =
1

155

155∑

n=1

|In − I0|.

 A Gaussian filter (standard deviation of 20) was applied 
to the average error image Eavg , resulting in the Gaussian 
smoothed average error image, Ẽavg.

• Step 2: Segmentation
  Using Otsu’s method [28], the smoothed average error 

image Ẽavg was segmented into two or more parts. The 
most noticeable degraded portions were then extracted 
by bounding boxes around the segmented parts.

On the potential of boosted paired comparisons

The purpose of boosted paired comparison is to increase 
the perceptual sensitivity w.r.t. small distortions allowing to 
better distinguish different distortion magnitudes. In order to 
demonstrate this effect, we need to change to an experimen-
tal context in which the ordering of ground truth quality is 
available.2 For this purpose we have chosen a sequence of 
images, that were reconstructed from JPEG image compres-
sions of the same pristine original image at different bitrates. 
Here we may assume that a higher bitrate corresponds to 
higher image quality, which provides the ground truth order-
ing of the image sequence.

In order to investigate the effect of artefact amplification 
and zooming, we carried out two PC experiments. The first, 
denoted as Plain PC, is the conventional PC experiment. The 
second experiment carries out the same set of PCs, however, 
with artefact amplification and artefact zooming, denoted as 
Boosted PC.

We took 12 JPEG distorted images, with a resolution 
of 1920 × 1080 pixels (width×height), at 12 distinct qual-
ity levels, from the MCL-JCI dataset [18]. Let us denote 
them by I0,… , I12 , where I0 is taken to be the original source 
image, and the ordering is with increasing distortion levels. 
We cropped the images to 600 × 480 pixels for the plain 
PC experiment. For the boosted PC experiment, we manu-
ally cropped the images to a resolution of 280 × 310 pix-
els. After amplifying the artefacts using Algorithm 1 with 

Fig. 5  a Full size ground truth image of Mequon. b Zoomed part of (a). c Zoomed part of an interpolated image (original, without artefact 
amplification). d Artefact amplified version of (c). Distortions in d are more visible than in (c), especially for the parts in the red rectangles

2 We cannot use the images from the Middlebury benchmark because 
there is no ground truth quality or ordering available.
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amplification factor � = 1.5 , we spatially scaled them up by 
a zoom factor of 1.5, resulting in images of size 420 × 465.

For each experiment, we had the 57 image pairs (Ik, Il) 
with |k − l| ≤ 6 and k < l judged by crowdsourcing on the 
AMT platform. For each PC, we collected 50 subjective rat-
ings. We evaluated and compared the performances of the 

two experiments in two ways. (1) We computed the SROCC 
between the subjective quality scales and the ground truth 
ordering according to bitrate. (2) We computed the true 
positive rate (TPR) for each PC. The TPR is defined as the 
fraction of judgments that correctly indicated the better 
quality image, i.e., the image that was less distorted in a 
pair. Increasing the sensitivity of paired comparisons would 
result in an increase of the TPR. The results are shown in 
Fig. 8 and Table 1. As can be seen, the TPR of boosted PC is 
much higher than that of plain PC in most cases. Moreover, 
boosted PC provided a much higher SROCC to the ground 
truth as compared to plain PC. This indicates that boosted 
PC not only increases the sensitivity of the PC test, but also 
increases the accuracy of the ranking.3

Outlier removal

We have little control over the experimental environment 
of crowd workers on AMT. In order to obtain high-quality 
experimental results, reliability controls are required. The 
de-facto control mechanism for reliability screening in 

Fig. 6  Top row: examples of degraded images (A and B) used in 
StudyMB 1.0. Bottom row: the corresponding amplified versions 
from StudyMB 2.0, together with the ground truth images. The 
ground truth was not available to study participants in StudyMB 1.0. 
For the top row images in StudyMB 1.0, the quality differences are 
difficult to distinguish. After artefact amplification, the distortions 
become much more noticeable (second row), in particular when com-

pared to the ground truth image. The distortions in images A in both 
examples become more obvious, compared to those in images B. For 
instance, the amplified distortions in image A, left example, bottom 
row, cover a wider area and have a higher magnitude than those in 
image B. Similarly, for the example on the right, the distortions 
in image A on the left of the teddy-bear, and the bottom leaves, are 
prominent, appearing to be over-sharpened

Fig. 7  Extraction of the most noticeable degraded portions of 
Dumptruck. Upper left: average image (of 155 images in total). Upper 
right: Gaussian smoothed average error image Ẽavg . Lower left: seg-
mentation of Ẽavg using Otsu’s method. Lower right: corresponding 
bounding box in the original image

3 The above investigation was taken from a larger set of experiments 
on boosted PC for several types of distortions. That pilot study is 
included in the supplementary materials for further information of the 
reviewers.
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crowdsourcing is test questions, regarding content and con-
sistency [14]. However, we do not know the ground truth, 
nor do we have expert opinions to rely on as in [15]. Using 
personal judgment to define test questions may wrongly 
bias user opinions towards the authors’ expectations. Thus, 
we decided not to use test questions during the experiment. 
Nonetheless, it is essential to screen workers after the crowd-
sourcing experiment is completed, in order to remove ill-
intended or non-attentive participants, and improve scoring 
reliability. For this purpose, there are several established 
procedures that have been developed under the umbrella of 
user rating screening (URS) [14]. All ratings of identified 
unreliable workers should be removed from the analysis of 
the data.

We propose an iterative URS method that is particularly 
suited for paired comparison experiments. In our case we 
have 8 sets of images that are scaled independently from PCs 
of many crowd workers. For simplicity, let us first restrict to 
a single set, and point out later how to generalize to several.

The goal of the outlier detection is to identify a subset 
of workers whose collective PCs can be regarded as being 
in disagreement with the PCs of the remaining workers. To 
quantify the disagreement of a subset of workers with the 

rest, one may reconstruct the scale values from the remain-
ing PCs as “ground truth” and then consider the true posi-
tive rate for the PCs of workers in the selected subset. Sub-
sets with smaller TPR can be regarded as those exhibiting 
larger disagreement. In place of the TPR one can use the 
log-likelihood of the PCs of the subset of workers, which 
becomes available by means of the scale reconstruction and 
its underlying probabilistic model. This was done in [29] for 
all subsets consisting of a single worker, and workers were 
classified as outliers, based on a statistic of the resulting 
log-likelihood, followed by visual inspection.

In our approach we set a certain percentage of PCs that 
should remain and strive to identify a minimal subset of 
workers that most strongly disagrees with the remaining 
workers and such that the number of all retained PCs is 
close to the target percentage. Since it is computationally 
infeasible to proceed by complete enumeration, consider-
ing all subsets of workers, we propose an iterative method, 
as described in Algorithm 2. Starting out with the recon-
structed scale values, derived from the entire dataset of PCs, 
we compute the TPR for the set of PCs of each worker. We 
iteratively remove workers with the smallest TPR until the 
desired number of retained PCs from the remaining work-
ers is reached. From these remaining PCs we reconstruct 
updated scale values, and repeat the procedure, starting out 
again with the complete pool of workers. The iteration termi-
nates successfully when the same set of workers is identified 
in two subsequent iteration steps. In the case with our data, 
just a few iterations sufficed.

The procedure generalizes straightforwardly to our case 
in which we have several sets of images with comparisons 
only between image pairs chosen from the same set. In each 
iteration separate reconstructions have to be made, one per 
set. For our experimental crowdsourcing data, we arrived at 
the resulting threshold on the worker TPR of 0.6209, keep-
ing 40% of the total set of PCs. Note that a TPR of 0.5 can 
already be achieved solely by guessing. The outlier detection 
iterative procedure converged after 4 iterations. As shown 
in Fig. 9, out of all the 293 workers that participated in the 
experiment, 75 (25.6%) did not pass the TPR of 0.5, indi-
cating that they were making random decisions. Hence, a 
higher percentage needed to be removed such that workers 
with a TPR close to 0.5 would not be accepted. We consid-
ered a screening percentage at 40% (with TPR of 0.5565 
and 36.52% workers to removed), 50% (with TPR of 0.6071 
and 48.12% workers to be removed) and 60% (with TPR 
of 0.6209 and 52.9% workers removed). In StudyMB 1.0, 
where we had a training session (quiz) before the experiment 
and hidden test questions during the experiment, 54% of the 
workers were not allowed to continue due to failing the quiz 
(consisting entirely of test questions) and 14% of the remain-
ing workers were removed during the experiment because 
of failing the hidden test questions. In total 60.44% of the 

Fig. 8  True positive rate (TPR) and 95% confidence intervals for 57 
image pairs (after 100 times bootstrapping)

Table 1  Rank order correlations and their confidence intervals 
between scale reconstructions and ground truth. The SROCC values 
shown are the means from 100 bootstraps

SROCC CI (95%)

Plain PC 0.8895 [0.8771, 0.9018]
Boosted PC 0.9864 [0.9846, 0.9881]



 Quality and User Experience (2020) 5:8

1 3

8 Page 10 of 18

workers were considered unreliable. Hence, in StudyMB 2.0, 
we aimed at a similar screening rate, which means removing 
60% of the ratings (with a TPR of 0.6209 and 52.9% workers 
to be removed).

Re‑ranking results

In our study we chose to compare image pairs only within 
each of the eight sets of 155 images. Using the collected 
comparative judgments we reconstructed absolute quality 
scale values for each image using Thurstone’s model and 
the code provided by Li et al. [20]. However, because we did 
not have cross-set comparisons available, the range of values 
reconstructed for each set are independent of each other. 
We propose a simple procedure to align the reconstructed 
scales, by introducing virtual anchors. We added two ficti-
tious images as anchors. One of them represents the worst 
quality among all the images, and the other one is like the 

ground truth image, with a quality that is better than that of 
all the other images.

After reconstruction of the scale values for the 155 + 2 
images in each set, we linearly rescaled the quality scores 
such that the quality of the virtual worst quality image 
became 0, and that of the ground truth image became 1. In 
this way, we rescaled the reconstructed scores to the interval 
[0, 1].4

Each set was scaled and ranked separately. Then the aver-
age quality of a method was obtained by taking the mean of 
the (scaled) quality values of the 8 sets, which resulted in 
an overall rank. Figure 10 shows the histogram of the recon-
structed quality scores of all the 8 sets of images. Besides, 
the histogram of the average quality scores of 155 methods 
is depicted in Fig. 11.

The best three methods ranked by the subjective study, 
i.e., SuperSlomo [17], CyclicGen [21], and CtxSyn [27] 

Fig. 9  TPR of all the ratings submitted by each worker. The red line 
denotes the TPR of 0.6209 as our threshold for removing a worker. 
The blue line indicates the TPR of 0.5, which could be achieved by 
guessing

Fig. 10  Histogram of reconstructed quality scores of all the 8 sets of 
images obtained in StudyMB 2.0

Fig. 11  Histogram of average quality scores over 8 sets obtained in 
StudyMB 2.0

4 All images and their reconstructed quality values, accompanied 
by their corresponding rankings, are available on our website: http://
datab ase.mmsp-kn.de/. The differences between the re-ranking 
(ranked according to subjective study) and their corresponding rank-
ing in the Middlebury benchmark (ranked according to RMSE) are 
also available on our website: http://datab ase.mmsp-kn.de/.

http://database.mmsp-kn.de/
http://database.mmsp-kn.de/
http://database.mmsp-kn.de/
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ranked 3rd, 2nd, and 1st in the Middlebury benchmark, 
respectively. Overall, as shown in Fig.  12, 45 methods 
showed (average) rank differences within 10, and 31 meth-
ods gave (average) differences of more than 50 between their 
re-rankings and the rankings in the Middlebury benchmark.5

As an overall analysis, Table 2 shows the bootstrapped 
(after 1000 iterations) SROCC values accompanied by the 
95% confidence intervals (CI) between the ranking in the 

Middlebury benchmark (i.e., ranking according to RMSE) 
and the re-ranking according to our subjective study. Note 
that the CI of SROCC was computed by transforming the 
rank correlation score into an approximate z-score using the 
Fisher transform [33]. In a nutshell, a CI of probability p is 
given by tanh(arctan r ±�−1(p)∕

√
n − 3) , where r denotes 

the estimated SROCC, n is the sampling size, and �−1 is the 
inverse of the standard normal CDF. In order to visualize the 
result, we computed the disagreement level as 1 − SROCC 
as shown in Fig. 13.

Comparisons between StudyMB 2.0 and 1.0

As mentioned before, we implemented StudyMB 1.0 in our 
preliminary work [25]. Similar as StudyMB 2.0, in StudyMB 
1.0, we also used paired comparisons and crowdsourcing to 
collect subjective quality scores of the interpolated images in 
the Middlebury benchmark. However, there exist a number 
of differences between these two experiments, leading to 
differences in the subjective scores obtained.

Differences in data

In StudyMB 1.0, we evaluated the interpolation perfor-
mances of 141 optical flow methods. 14 more methods 
were added in StudyMB 2.0, resulting in 155 optical flow 
methods. Note that for later comparisons between these two 
experiments, we ignored those 14 more methods in Stud-
yMB 2.0 to make them comparable.

Differences in study design

The first difference regarding study design is that, instead 
of launching eight separate jobs (in StudyMB 1.0), each of 
which consists of the same contents, we mixed all the eight 
sets as one job in StudyMB 2.0. This avoided the phenom-
enon of semantic satiation [6, 30] which can occur not only 
in text but also in images.

Secondly, in the instructions of StudyMB 2.0, we did 
not only highlight degraded parts as in StudyMB 1.0, but 
we also amplified the pixel value range of the interpo-
lated images for increasing the visibility of the quality 

Fig. 12  Ranking differences between RMSE and ground truth (by 
StudyMB 2.0)

Fig. 13  Disagreement level with 95% confidence interval

Table 2  Correlations between RMSE and ground truth (by StudyMB 2.0) after 1000 iterations

RMSE Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

SROCC 0.5389 0.3803 0.6135 0.7839 0.5043 0.2495 0.5699 0.6902 0.5193
CI (95%) [0.5025,0.5734] [0.3352, 

0.4237]
[0.5801, 

0.6448]
[0.7630, 

0.8031]
[0.4647, 

0.5419]
[0.2004, 

0.2973]
[0.5339. 

0.6038]
[0.6621, 

0.7164]
[0.4805, 

0.5561]

5 Some methods are specifically tailored for frame interpolation 
(e.g., SuperSlomo) and others for optical flow estimation (e.g., Deep-
Flow2).
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differences and zoomed the most noticeable parts, in order 
to draw attention to the regions of interest and make it 
easier for participants to perform their task.

The third difference is that in StudyMB 2.0 the ground 
truth image was provided as a reference, and was pre-
sented between the two images to be compared. Subjects 
were asked to select the image that represents the ground 
truth more faithfully. On the other hand, in StudyMB 
1.0, no ground truth was provided, and the subjects had 
been requested to select the image with apparently better 
quality, which is not necessarily the image closest to the 
reference.

Sensitivity to quality differences

As described in Eq. 2, the probability P(A > B) in the 
count matrix C denotes the empirical proportion of peo-
ple preferring A over B. Thus, P = 0.5 illustrates that 
options A and B got exactly the same number of votes in 
the subjective study (i.e., A and B are of the same quality), 
whereas P = 0 or P = 1 depicts the fact that either A or B 
obtained all the votes whereas the other one got no vote 
(i.e., A or B is much better than the other one). Therefore, 
the distribution of the probabilities in the count matrices 
can properly reveal the sensitivity to quality differences of 
the subjective study. To this end, we computed the cumula-
tive distribution function (CDF) of the aggregated prob-
abilities in all the count matrices (of all the eight sets) 
for both of the two experiments, and fitted their CDFs to 
probability density function (PDF). As shown in Fig. 14, 
the PDF for StudyMB 1.0 has a triangular shape with a 
peak at probability 0.5, which illustrates that for many 
of the image pairs in the experiment, their quality differ-
ences are hardly distinguishable. In contrast, the peak at 
probability 0.5 was less pronounced StudyMB 2.0, which 
indicates that in StudyMB 2.0 differences of image qual-
ity were detected more frequently. Moreover, the PDF for 
StudMB 2.0 has a higher density near probability 0 and 1 
compared to StudyMB 1.0. This shows that in StudyMB 
2.0 there were more image pairs for which the participants 
unanimously voted for for the left or right image. Compar-
ing the PDFs between these two experiments shows that 
the study design of StudyMB 2.0 increased the sensitivity 
to image quality differences for the subjects as compared 
with StudyMB 1.0.

True ranking fidelity

In StudyMB 1.0, the subjects were asked to select the better 
quality image without the ground truth being available as a 
reference. As shown in Fig. 15, this design has a negative 
effect. Some types of distortions, such as blurriness, in some 
cases, can enhance the perceptual quality, thus leading to a 
reversed ordering of the underlying techniques. This effect 
was avoided by design in StudyMB 2.0; the ground truth 
image was shown as a reference and subjects were requested 
to select the artefact-amplified image that more faithfully 
represents the ground truth.

Screening methods

The screening methods of these two experiments are differ-
ent. In StudyMB 1.0, there was a training session before the 
experiment, and test questions were also used to ensure the 
reliability during the experiment. However, in StudyMB 2.0, 
there was neither a training session before the experiment, 
nor test questions during the experiment. The outliers were 
only removed when the experiment was finished. Although 
the reliability of StudyMB 1.0 might be better than Stud-
yMB 2.0 due to setting test questions, it could also be more 

Table 3  Correlations of 
reconstructed scale values 
between StudyMB 1.0 and 2.0

Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

PLCC 0.5464 0.4453 0.2548 0.8358 0.4219 0.4287 0.8446 0.7399 0.4006
SROCC 0.5361 0.3883 0.2861 0.8322 0.4056 0.3977 0.8594 0.6909 0.4287
KROCC 0.3882 0.2711 0.1807 0.6387 0.2719 0.2699 0.6740 0.5086 0.2906

Fig. 14  Density of aggregated probabilities in all the eight count 
matrices of StudyMB 1.0 and 2.0
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biased. On one hand, since there was no reference provided 
in StudyMB 1.0, it was hard to set test questions for subtle 
differences, thus the crowd workers might be more biased 
than in StudyMB 2.0. On the other hand, the screening pro-
cedure in StudyMB 2.0 relies on agreement between work-
ers, thus more neutral and less biased.

Differences in subjective scores

The differences in data and study design between StudyMB 
1.0 and StudyMB 2.0 lead to the differences of subjective 
scores obtained for the interpolated images. In this regard, 
we investigated the correlations of scale values and re-rank-
ing results between these two experiments.

Scale value correlations

Figure 17 shows a scatter plot of the reconstructed scale 
values of each image in StudyMB 1.0 and 2.0. It can be 
seen that the correlation of the reconstructed scale values 
between these two experiments is not that high. Moreover, 

we computed PLCC, SROCC, and Kendall’s rank-order 
correlation coefficient (KROCC) between the scale values 
obtained in these two experiments. As shown in Table 3, the 
aforementioned three correlations between these two experi-
ments are 0.55 (PLCC), 0.54 (SROCC) and 0.39 (KROCC) 
on average, which indicates an obvious difference of the sub-
jective quality scores obtained for the same images.

Re‑ranking differences

Figure 16 shows the differences of the re-rankings of 141 
optical flow methods between StudyMB 1.0 and 2.0. It can 
be seen that, on average, there are 43 methods whose re-
rankings differ fewer than 10 places, and 56 methods have 

Fig. 15  Top row: example degraded images (A and B) used in Stud-
yMB 1.0, ground truth was not provided. Subjects were asked to 
select the image of better quality. Bottom row: the corresponding 
amplified versions from StudyMB 2.0 with the ground truth presented 
in between A and B. Subjects were asked to compare images A and 
B with the ground truth to find which is more faithfully reproducing 
it. In StudyMB 1.0, image A received a higher score than B, while in 
StudyMB 2.0, A received a much lower score than B. In StudyMB 
1.0, image A looks smoother than image B. As no ground truth was 
provided as a reference, image A was considered as of better quality. 
The smoothing effect was reduced due to artefact amplification, and 
the underlying degradation was emphasized. For the images in Stud-
yMB 2.0, distortions are more obvious in image A than in image B 
when compared with the ground truth. Hence, image A was given a 
lower quality

Fig. 16  Re-ranking differences between StudyMB 1.0 and 2.0

Fig. 17  Scatter plot of reconstructed scale values of each image in all 
the sequences in StudyMB 1.0 and 2.0
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re-ranking differences more than 20 places. Overall, the re-
ranking differences further illustrate that there exist large 
differences of the quality scores obtained for the same inter-
polated images between these two experiments.

In summary, the main difference between StudyMB 1.0 
and 2.0 is that we adopted artefact amplification as well as 
artefact zooming in StudyMB 2.0, which increased the sensi-
tivity of the subjective study to a large extent. This gives rise 
to more precise and better scaled subjective quality scores 
of the interpolated images than the ones obtained in Stud-
yMB 1.0.

Weighted absolute error as FR‑IQA

As described in “Re-ranking results” Sect., the re-ranking 
result of our subjective study shows that RMSE cannot 
reveal the perceptual quality of interpolated frames well. 
In fact, besides RMSE, most of the current FR-IQA meth-
ods cannot cope with the specific distortions that arise in 
interpolated frames produced by optical flow algorithms. 
As shown in Table 4, seven of the most popular objective 
FR-IQA methods, SSIM [42], MS-SSIM [43], MAD [19], 

FSIM [49], GMSD [45], VSI [48], VIF [34] and GN-RMSE 
[2], gave low correlations with the subjective judgements.

For example, VSI, one of the best FR-IQA methods based 
on saliency, yielded an SROCC of 0.952 when trained and 
tested on the LIVE database. However, when we applied 
the same method to the interpolated images by optical flow 
algorithms, VSI gave an SROCC of only 0.5397. This is 
likely due to two reasons:

• The artefacts induced by optical flow algorithms lead to 
interpolated images that exhibit different, task-specific 
distortions that are not sufficiently taken into account in 
the IQA method.

• Saliency based methods like VSI focus on the most sali-
ent image regions. However, these may be just those that 
are not the most severely distorted parts, as shown in 
Fig. 18b, c.

Furthermore, we extracted the saliency map for the same 
image using GBVS [12], one of the most widely used sali-
ency detection methods. It can be seen from Fig. 18d that 
the resulting saliency map differs from the smoothed average 
error image to a large extent as well.

Table 4  SROCC of Rankings between FR-IQA and Our Subjective Study

FR-IQA Average Mequon Schefflera Urban Teddy Backyard Basketball Dumptruck Evergreen

MS-SSIM 0.5485 0.4517 0.6575 0.7249 0.4502 0.2527 0.7105 0.6274 0.5129
RMSE 0.5423 0.3831 0.6179 0.7868 0.5059 0.2531 0.5734 0.6930 0.5249
VSI 0.5397 0.4295 0.5166 0.7577 0.4810 0.2673 0.6568 0.6903 0.5180
GMSD 0.5383 0.4407 0.6038 0.7619 0.4605 0.2722 0.6087 0.6276 0.5313
SSIM 0.5370 0.4715 0.6121 0.7067 0.4162 0.2383 0.7169 0.6281 0.5066
FSIM 0.5339 0.4591 0.5732 0.7240 0.5088 0.2368 0.6009 0.6576 0.5106
GN-RMSE 0.5236 0.4515 0.6148 0.6868 0.3620 0.2719 0.7055 0.6147 0.4812
MAD 0.5220 0.3373 0.6256 0.6997 0.5236 0.2333 0.6009 0.6586 0.4970
VIF 0.5133 0.4067 0.6032 0.7134 0.5130 0.4176 0.5065 0.4286 0.5171
WAE-IQA 0.5493 0.3910 0.6206 0.7969 0.5092 0.2703 0.5790 0.6947 0.5326

Fig. 18  a Average image over 155 interpolated images of Dumptruck. 
b Gaussian smoothed average error image (obtained by first taking 
the average error image over 155 images and then smoothed), which 

depicts the most degraded parts of image (a) compared to its ground 
truth. c Saliency map of (a) extracted using SDSP [47], the method 
adopted by VSI. d Saliency map of (a) extracted by GBVS



Quality and User Experience (2020) 5:8 

1 3

Page 15 of 18 8

The other FR-IQA methods mainly rely on a global dif-
ference between the distorted image and its ground truth. 
Let us consider for example SSIM, MAD, FSIM, and 
GMSD. SSIM and MAD mainly compare the similarity 
of luminance and contrast between the distorted image and 
the ground truth. The other two, GSIM and GMSD, are 
based on the similarity of gradient magnitude. As shown 
in Fig. 19, the main regions of the errors extracted by 
these four methods are to some extent similar and consist-
ent with the most noticeable portion as shown in Fig. 7. 
However, they still could not estimate the perceptual 
quality of motion-compensated interpolated images well 
(giving an average SROCC of 0.5370, 0.5220, 0.5339 and 

0.5383, respectively). This may be caused by localized 
distortions, while FR-IQA methods typically make com-
parisons globally.

To overcome this problem, we propose a method based 
on weighted absolute error (WAE-IQA). It computes the 
differences between an interpolated image and its ground 
truth for each pixel. Only pixels with a sufficiently large 
interpolation error are fully weighted and pixels with 
small errors are discounted. In addition a mild nonlinear 
scaling allows to shape weighted average error for better 
performance.

The proposed method WAE proceeds as follows (see 
Figs. 20, 21, 22).

Fig. 19  Visualization of SSIM, GMSD, FSIM, MAD when com-
puting the image quality between the average interpolated image 
(denoted as distorted image) and its ground truth of Dumptruck. 
Upper row, first three: distortion maps of SSIM, GMSD and FSI. The 
brighter the parts are, the more the distorted image differs from its 

ground truth. Upper row, the last: the estimation of the visibility of 
artefacts in the distorted image given by MAD. Brighter parts denote 
the higher visibility of the artefacts. Lower row: Gaussian smoothed 
image (of Kernel 10) of its upper corresponding image

Fig. 20  Related functions in WAE-IQA of Dumptruck with param-
eters a1 = 8.7285, a2 = 4.6443, a3 = 0.7516, s = 28.0186, t = 0.0973 . 
Left: logistic weight function w(x) = 1∕(1 + e−s(x−t)) . Middle: Poly-

nomial function of absolute error f (x) = a1x + a2x
2 + a3x

3 . Right: 
Weighted absolute error function w(x)f(x)
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• Images are converted from RGB to 8-bit grayscale, giv-
ing an interpolated grayscale image Î and the correspond-
ing grayscale ground truth image I.

• The pixelwise absolute errors of Î are computed and nor-
malized to 1, which gives the normalized absolute error 
image I′ : 

• For normalized absolute errors x ∈ [0, 1] we define a 
weight w(x) ∈ [0, 1] by the logistic function 

 where the slope s ∈ [0,∞) and the shift t ∈ [0, 1] are 
parameters to be chosen.

• Normalized absolute errors x ∈ [0, 1] also nonlinearly 
scaled using a polynomial of degree 3, 

 where a1, a2, a3 ∈ [0,∞) are parameters to be chosen.
• The weighted absolute error is 

I� =
1

255
|Î − I|.

w(x) =
1

1 + e−s(x−t)
,

f (x) = a1x + a2x
2 + a3x

3,

(4)WAE =

∑
pixel errors x w(x)f (x)∑

pixel errors x w(x)
.

We selected the parameters s, t, a1, a2, a3 optimally in terms 
of SROCC on the training sets in an 8-fold leave-one-out 
(LOO) cross-validation. We made use of the 155 × 8 inter-
polated images in the Middlebury benchmark together with 
their scale values obtained in our subjective study. For each 
LOO cross-validation, we used 7 sets for training, and the 
other set as the test set. The SROCC results on the test set 
for each cross-validation is shown in Table 4. Moreover, we 
applied all mentioned FR-IQA methods, including WAE-
IQA to the artefact amplified images. However, the results 
of applying FR-IQA methods on artefact amplified images 
did not show improved performance.

Conclusion and future work

We have adopted a well designed visual quality assessment 
to the Middlebury benchmark for frame interpolation mostly 
based on optical flow methods. Using artefact amplifica-
tion, the sensitivity of our subjective study was increased 
significantly. Our study confirms that only using RMSE as 
an evaluation metric for image interpolation performance 
is not representative of subjective visual quality. Also cur-
rent FR-IQA methods do not provide satisfying results on 
those interpolated images. This is due to the fact that such 
images, especially the ones generated by optical flow algo-
rithms have specific distortions that are quite different from 

Fig. 21  Histogram of related values in WAE-IQA of Dumptruck with parameters a1 = 8.7285, a2 = 4.6443, a3 = 0.7516, s = 28.0186, t = 0.0973

Fig. 22  Visualization of WAE for Dumptruck with parameters and squared errors used in RMSE
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artefacts commonly addressed by conventional IQA meth-
ods. Hence, we proposed a novel FR-IQA method based on 
a weighted absolute error (WAE-IQA). However, the results 
illustrate that the quality assessment for motion-compen-
sated frame interpolation is a difficult task and there is still 
plenty of room for improvement.

As part of our future work, a further investigation of 
boosted PC for different image contents and different dis-
tortion types is ongoing. In this larger study, we will include 
a DCR experiment to investigate the differences between 
DCR and PC of two test images with respect to a displayed 
reference image. In the future, we also plan to make use of 
flow fields as side information to further improve the per-
formance of evaluating the perceptual quality of motion-
compensated interpolated images. Besides, in order to deal 
with the specific artefacts caused by motions in such images, 
we will investigate adopting video saliency detection meth-
ods as well as video quality assessment methods based on 
spatio-temporal information on such images. Furthermore, 
we will investigate adopting artefact amplification to I/VQA 
methods in order to improve their performances universally.
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