
A Scalable Approach to Fuzzy Rough Nearest
Neighbour Classification with Ordered Weighted

Averaging Operators

Oliver Urs Lenz1[0000−0001−9925−9482], Daniel Peralta1,2[0000−0002−7544−8411],
and Chris Cornelis1[0000−0002−7854−6025]

1 Department of Applied Mathematics, Computer Science and Statistics, Ghent
University {oliver.lenz,chris.cornelis}@ugent.be http://www.cwi.ugent.be

2 Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation
Research, Ghent University daniel.peralta@irc.vib-ugent.be

https://www.irc.ugent.be

Abstract. Fuzzy rough sets have been successfully applied in classifica-
tion tasks, in particular in combination with OWA operators. There has
been a lot of research into adapting algorithms for use with Big Data
through parallelisation, but no concrete strategy exists to design a Big
Data fuzzy rough sets based classifier. Existing Big Data approaches use
fuzzy rough sets for feature and prototype selection, and have often not
involved very large datasets. We fill this gap by presenting the first Big
Data extension of an algorithm that uses fuzzy rough sets directly to
classify test instances, a distributed implementation of FRNN-OWA in
Apache Spark. Through a series of systematic tests involving generated
datasets, we demonstrate that it can achieve a speedup effectively equal
to the number of computing cores used, meaning that it can scale to
arbitrarily large datasets.

Keywords: Fuzzy rough sets · OWA operators · Big Data · Apache
Spark

1 Introduction

Fuzzy rough sets [7] encode two complementary types of uncertainty: degrees of
membership, and the approximation of concepts. This expressiveness has led to
their adoption in a variety of machine learning contexts. Fuzzy Rough Nearest
Neighbours (FRNN), introduced in [9] (as FRNN-FRS), was an attempt to use
fuzzy rough sets directly for classification and obtain better results than existing
lazy learners like Fuzzy Nearest Neighbours (FNN) and k Nearest Neighbours
(kNN). FRNN considers the lower and upper approximation of each class and
classifies a test instance based on its membership in these.

Like other lazy learners, FRNN does not require training and so can be
applied directly to classify test instances with a training set. FRNN is also con-
ceptually attractive because its predictions are directly interpretable. Upper ap-
proximation membership encodes to what extent a test instance is similar to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55899522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 O. U. Lenz et al.

the training instances of a class, and so possibly belongs to this class. Lower
approximation membership encodes to what extent a test instance is not similar
to the training instances of other classes and so necessarily belongs to this class.

However, it was pointed out by [17] that, as originally defined, FRNN makes
predictions that are necessarily identical to those of traditional 1NN. This fact,
and the more general observation already made in [9] that FRNN is sensitive
to noise, motivated a number of revised proposals. In this paper we focus on
FRNN-OWA, introduced in [15], which incorporates Ordered Weighted Aver-
aging (OWA) operators into the definition of lower and upper approximation.
This involves the application of weight vectors, and the choice of these weight
vectors offers a great degree of flexibility. For example, because lower and upper
approximations are calculated for each class, it is possible to use different types
of weights for different classes. This idea has been applied successfully by [15]
and subsequent studies [19] and [20] to imbalanced datasets, where a judicious
choice of weights increases the signal of the minority class.

Over the course of the past two decades, ever larger quantities of data have
become available as potential inputs for machine learning algorithms, to the
point where the performance of machine learning algorithms is often no longer
constrained by the availability of training data, but by the capability of the al-
gorithms to handle training data. One popular tactic to increase data processing
capacity is to break down the work of an algorithm into a series of parallel tasks,
and to execute these tasks on a cluster of computing cores. A number of frame-
works exist that automate many of the aspects of parallel cluster computing,
including Apache Spark [11], which we use in this paper.

Handling large amounts of data is a particular challenge for lazy learners like
FRNN-OWA, which have to process the entire training set when they receive
a test instance. Since the application of fuzzy rough sets in machine learning
problems is a relatively recent, ongoing endeavour, it is not surprising that while
there exist distributed implementations of kNN [13] and Fuzzy kNN [12] classi-
fication, no Big Data implementation exists of a fuzzy rough set classifier. The
few implementations that do try to extend the use of fuzzy rough sets to a Big
Data context focus on preprocessing algorithms like Fuzzy Rough Feature and
Prototype Selection, and only one has been applied to a real dataset with more
than 1 million instances [8].

This paper seeks to address this absence by presenting the first Big Data
implementation of an algorithm that uses fuzzy rough sets directly to classify
test instances (FRNN-OWA). By effectively parallelising the FRNN-OWA algo-
rithm, our implementation can be scaled to arbitrarily large datasets by adding
additional computing cores. We demonstrate this through a series of system-
atic tests on generated datasets of up to 224 instances. In addition, we show
that our implementation can be used to classify test instances with real datasets
containing over 10 million instances.

In Section 2 of this paper, we first define and explain the motivation for
FRNN-OWA and give an overview of existing attempts at Big Data implemen-
tations of algorithms involving fuzzy rough sets. We then formulate our proposal



A Scalable Approach to FRNN-OWA 3

in Section 3, describe our experimental setup in Section 4 and present the results
in Section 5. We conclude in Section 6 that our implementation demonstrates the
viability of using large quantities of available data to classify unseen instances
with fuzzy rough sets.

2 Background

2.1 Fuzzy Rough Nearest Neighbour Classification with OWA
operators

Recall the following concepts from fuzzy rough set theory. An information system
(X,A) consists of a set of instances X and a set A of attributes a : X −→ Va. A t-
norm T : [0, 1]×[0, 1] −→ [0, 1] is an associative, commutative and monotonically
increasing binary operation for which 1 is an identity element. An implication
I : [0, 1]× [0, 1] −→ [0, 1] is a binary operation that is monotonically decreasing
in its first argument and monotonically increasing in its second argument, and
for which I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0. An indiscernibility
relation R : X × X −→ [0, 1] is a fuzzy tolerance relation (i.e. reflexive and
symmetric) such that (∀a ∈ A : a(x) = a(y)) =⇒ R(x, y) = 1.

Given an information system (X,A) and a choice of indiscernibility relation
R on X, t-norm T and implication I, the upper and lower approximations of a
fuzzy set C in X are defined as in (1).

C(y) = max
x∈X

(T (R(y, x), C(x))

C(y) = min
x∈X

(I(R(y, x), C(x))
(1)

In FRNN, C can be any of the crisp decision classes, and a test instance y
is classified to the class C for which the average of C(y) and C(y) is highest.
For crisp C and the minimum t-norm min( · , · ) and Kleene-Dienes implication
max(1− · , · ), which [9] uses, (1) simplifies to (2).

C(y) = max
x∈C

(R(y, x))

C(y) = min
x/∈C

(1−R(y, x))
(2)

It can be seen from (2) that a test instance necessarily has the highest mem-
bership degree in the lower and upper approximations of the class of the most
indiscernible training instance. Since the indiscernibility relation R corresponds
inversely to a generalised metric, the most indiscernible training instance is the
nearest neighbour under this metric, meaning that FRNN is indistinguishable
from 1NN classification.

To solve this, FRNN-OWA replaces max and min in (2) with Ordered Weigh-
ted Averaging (OWA) operators, which were first defined in [21]. For a given



4 O. U. Lenz et al.

k-dimensional weight vector w with values in [0, 1] that sum to 1, the OWA op-
erator Fw corresponding to w acts on any k-dimensional vector v by rearranging
its coefficients such that they descend, and taking the inner product with w.
With abuse of notation, we will also apply Fw to sets of size k.

For the special cases of the basis vectors e1 = 〈1, 0, . . . , 0〉 and ek = 〈0, . . . , 0, 1〉,
we get Fe1 = max and Fek = min. While the choice of weights is in principle
open, the idea of FRNN-OWA is to use weights that approximate max and min,
such that the contribution of training instances to the membership of a test in-
stance to the lower and upper approximations of a class gradually vanishes as
the training distances are ranked further away from the test instance.

Thus, FRNN-OWA changes (2) into (3).

C(y) = Fw1
({R(y, x)|x ∈ C})

C(y) = Fw2
({1−R(y, x)|x ∈ X \ C})

(3)

Note that the use of OWA operators becomes computationally costly as the
number of instances in the training set increases, since we need to to sort all train-
ing instances for each test instance. The computational complexity of FRNN-
OWA is O(dn + n log(n)) per test instance, for n = |X| and d = |A|.

2.2 Big Data implementations of fuzzy rough sets

The existing literature on using fuzzy rough sets in a Big Data context is limited,
and has focused on preprocessing algorithms, which reduce the size of training
data, improve its quality, or both, by acting on its instances, its attributes, or
both.

The first publication to explicitly adapt a fuzzy rough set algorithm for Big
Data was by Asfoor et al [1]. The authors point out that for a given informa-
tion system (X,A) and fuzzy set C in X, the time complexity of calculating
the membership of each instance of X in the lower and upper approximations of
C is O(dn2). In addition, the resulting indiscernibility matrix has size O(dn2),
and storing it in memory becomes highly problematic as n grows. They solve
these challenges with a distributed implementation in Message Passing Inter-
face (MPI) that avoids calculating and storing the whole matrix. This work was
continued by Vluymans et al [18], who present a distributed implementation
in Apache Spark of Fuzzy Rough Prototype Selection (FRPS), a preprocessing
algorithm for kNN classification developed in [16] and adapted in [18] for kNN
regression. Asfoor [2] also adapts OWA-FRPS, a more robust version of FRPS
with OWA operators, into a distributed implementation (POWA-FPRS) that
approximates the ordered weighted average by partitioning the data and cal-
culating the ordered weighted average of the ordered weighted averages within
these partitions.

Jensen & Mac Parthaláin [10] point out that the calculation of fuzzy rough
sets scales badly to large numbers of instances, and that this is further com-
pounded if the feature space is also large. They propose three variants of Fuzzy
Rough Feature Selection (FRFS). In nnFRFS and nnFDM (based on FRFS



A Scalable Approach to FRNN-OWA 5

with Fuzzy Discernability Matrices), the indiscernibility relation is modified to
only consider the k nearest neighbours of each instance. Fuzzy Rough Feature
Grouping (FRFG) introduces a preliminary step in which overlapping groups
of correlated features are defined. For each pass, only the most decisive feature
from each group is considered, and other features in the same group are then
skipped, thus reducing the number of candidates that have to be evaluated.

A number of other authors have presented Big Data implementations of
FRFS. Qian et al [14] propose to reduce the computational cost of FRFS by
relaxing the calculations of the lower and upper approximations, potentially re-
ducing the specificity of the resulting feature selection. Zeng et al [22, 23] present
a mechanism to incrementally update fuzzy rough approximations in a hybrid
information system (HIS) (in which a hybrid metric combines different types of
attributes) and apply this to feature selection. Finally, Hu et al [8] present a
distributed implementation of multi-kernel attribute reduction using kernelised
fuzzy rough sets, and evaluate the results for Support Vector Machines (SVM)
and Classification and Regression Trees (CART).

As can be seen in Table 1, half of these works only use datasets with up to a
few thousand instances. The connected studies of [1, 18, 2] work with generated
datasets of up to 10,000,000 instances and only [8] tests on real datasets with
more than one million instances.

Table 1. Articles with Big Data implementations of fuzzy rough algorithms — largest
numbers of training instances in generated and real datasets

Article Generated Real

[1] Asfoor et al 2014 10,000,000 —
[18] Vluymans et al 2015 10,000,000 320,395
[2] Asfoor 2015 10,000,000 320,395
[10] Jensen & Mac Parthaláin 2015 — 832
[14] Qian et al 2015 — 2310
[23] Zeng et al 2015 — 2800
[22] Zeng et al 2017 — 2800
[8] Hu et al 2018 — 4,898,431

Present study 16,777,216 11,000,000

The studies mentioned above have demonstrated the usefulness of scalable
implementations of fuzzy rough prototype and feature selection. However, the
potential to apply fuzzy rough classification algorithms in a big data context
remains untapped, which is what we wish to address.



6 O. U. Lenz et al.

3 A scalable version of FRNN-OWA

We propose a parallel implementation of FRNN-OWA that can classify test
instances with arbitrary large datasets in a fixed amount of time if we add
sufficient parallel computing power.

FRNN-OWA is a ‘nearest neighbour’ classifier in the sense that if we use
suitable weights, the influence of training instances vanishes as the training dis-
tances are ranked further away from a given test instance. So while, as mentioned
in Sec. 2.1, sorting the entire set of training instances for each test instances is
computationally costly, the precise order among the more distant training in-
stances is actually of little consequence. For this reason, we adapt an idea from
[10] (discussed in Sec. 2.2) and restrict the application of OWA weights to the
k nearest training instances of a test instance y, within a class C for the upper
approximation and without for the lower approximation, for some value k. We
denote these by NN(y, C) and NN(y,X \ C) respectively.

The definitions for the upper and lower approximation which we use are given
in (4), and we classify a test instance y to the class C for which the average of
C(y) and C(y) is highest.

C(y) = Fw1({R(y, x)|x ∈ NN(y, C)})
C(y) = Fw2({1−R(y, x)|x ∈ NN(y,X \ C)})

(4)

We have chosen to use additive weights in this paper, defined as w1 =

( 2(k+1−i)
k(k+1) )1≤i≤k and w2 = ( 2i

k(k+1) )1≤i≤k, and to set k = 20, after initial testing

with different types of weights and a range of values for k on datasets of various
sizes convinced us that these generally produce good results.

The time complexity of sorting all distances for every class is O(n log(n)),
whereas the time complexity of identifying the k closest distances per class is just
O(n). Since we do need to sort the k smallest distances per class, our proposal
reduces the overall time complexity per test instance from O(dn + n log(n)) to
O(dn+ n+ 2ck log(k)), where c is the number of classes. Since k and c are kept
constant, for large n this further reduces to O((d + 1)n). Thus, this variant of
FRNN-OWA scales linearly with training set size.

There exist several different frameworks for parallel computing that provide
different trade-offs between ease of use, automated performance optimisation and
user control. Since our main objective is to demonstrate the conceptual viability
of our approach, rather than to obtain the absolutely fastest run times possible,
we have chosen to implement our algorithm in Spark, which offers a relatively
straightforward path to parallelisation. We implement FRNN-OWA through the
Python API of Spark, using high-level dataframe operations that allow us to ex-
press operations as SQL instructions which are automatically distributed across
the nodes in the cluster.

Our implementation is structured as follows:

0. Initialise Spark.
1. Read the training set, combine all attributes into a feature vector. If the

attributes are numerical, scale the features to [0, 1].



A Scalable Approach to FRNN-OWA 7

2. Read the test set, combine all attributes into a feature vector. If the at-
tributes are numerical, apply the same scaling as in step 1.

3. Optional: divide the training set from step 1 into a large number of small
partitions.

4. Fill a dataframe of length k with additive weights.
5. Broadcast the test set from step 2 to all partitions, cross join with the train-

ing set from step 1, calculate the distance between each pair of test and
training instances and select the k closest distances per class per test in-
stance.

6. Cache the dataframe from step 5.
7. Join the weights from step 4 with the distances from step 5, multiply, and

sum per class and test instance to get the upper approximations.
8. For every test instance and class, join the weights from step 5 with the

k closest training instances from step 5 that do not belong to that class,
multiply, and sum to get the lower approximations.

9. Join the upper and lower approximations from steps 7 and 8 and for every
test instance, select the class for which the sum of the approximations is
highest.

10. Divide the number of test instances from step 9 for which the predicted class
matches the actual class by the total number of test instances and report
the accuracy.

Step 3 was used only to prevent out-of-memory errors with the largest datasets
when using multiple executors per node. Anecdotally, it seemed to increase run
times, and so we did not include step 3 with our baseline measurements with
only one core, so as not to obtain unduly positive speedups.

Step 5 is the costliest step, because it involves a cross join between training
and test instances. Broadcasting the test set makes it available on all partitions,
which means that the training set does not have to be replicated across partitions.
Ordinarily, Spark would not preserve the resulting dataframe after its use in step
7, and would have to recalculate step 5 for step 8. To prevent this, we cache the
dataframe in step 6.

4 Experimental setup

All experiments were performed on the Golett cluster of the Ghent University
Tier-2 of the Flemish Supercomputer Centre (VCS). The computing nodes of
the Golett cluster are equipped with 2 x 12-core Intel E5-2680v3 (Haswell-EP
@ 2.5 GHz) processors, 64 GB memory and 500 GB hard drives, and connected
by FDR-10 InfiniBand. The experiments were run in Spark clusters of up to 64
executors, 4 cores per executor and 16 GB memory per executor. These Spark
clusters occupied up to 32 nodes of the Golett cluster, with 8 cores per node.
The algorithm was implemented in Spark 2.4.0 and run with the Hadoop Yarn
resource manager.

The shared nature of the Golett cluster and the general inavailability of fully
free nodes necessitated the choice of using only 8 cores per node, while limiting



8 O. U. Lenz et al.

the number of cores per executor to 4 meant that two executors fit precisely onto
one node. During initial testing, increasing the number of nodes per executor
far above 4 led to diminishing returns. Of the 64 GB of memory per node, 8
GB was reserved for the operating system. Our cluster was limited to using one
third of the remaining 56 GB on the basis of using one third of the number of
cores. Thus, we chose 16 GB of memory per executor to maximise this resource,
whereas in practice this amount was limited to 9.33 GB per executor.

The scaling of our implementation was tested on a series of generated datasets
with varying training set sizes. Each training set had 20 real-valued attributes
and 10 classes. Training set size varied from 210 to 224.

The algorithm was also tested on four real datasets from the UCI Machine
Learning Repository [6], summarised in Table 2. SUSY [4], HEPMASS [3] and
HIGGS [4] are three large datasets of Monte Carlo simulations of particle physics
collisions. The attributes are all real and indiscernibility was defined as the
complement of the Manhattan distance, with both attributes and distance scaled
to [0, 1]. Poker hand [5] is a slightly smaller dataset of possible hands of cards
in the game of poker. It was included here because its attributes are categorical,
necessitating a different indiscernibility relation. We chose the complement of
the Hamming distance scaled to [0, 1].

Table 2. Real datasets used in the present study, properties

Name Number of
instances

Attribute type Number of
attributes

Number of
classes

Poker hand 1,025,010 categorical 10 10
SUSY 5,000,000 real 18 2
HEPMASS 10,500,000 real 28 2
HIGGS 11,000,000 real 28 2

Our primary performance measure is Tp,n, the time it takes using p cores to
classify one test instance with n training instances. Time measurement starts
with the initialisation of Spark and ends with the calculation of the accuracy.
We report the average run time per test instance, derived from running the
algorithm with a test set of 100 instances. These were, respectively, generated in
addition to the generated training sets, and drawn and subtracted from the real
training sets. For the generated training sets, we also report a speedup figure
Sp,n which is defined as T1,n/Tp,n.

5 Results

Table 3 summarises the run times of our distributed implementation of FRNN-
OWA for various generated training set sizes and various numbers of cores, and
Table 4 the resultant speedups with respect to the baseline of using only one
core. The speedups are also plotted in Fig. 1.



A Scalable Approach to FRNN-OWA 9

Table 3. Run times in seconds per test instance of FRNN-OWA applied to generated
training sets of different sizes, for different numbers of cores

Cores Training set size

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 0.83 0.83 1.3 1.3 1.9 3.1 6.1 11 21 50 104 201 428 858 1627
2 0.37 0.44 0.63 0.86 1.3 1.8 3.1 5.8 11 27 68 78 202 424 876
4 0.33 0.39 0.55 0.81 1.2 1.0 1.6 3.0 5.4 12 29 39 82 273 356
8 0.54 0.41 0.74 1.0 1.0 1.0 1.3 1.6 3.1 5.9 18 20 39 95 189

16 0.44 0.54 0.59 0.86 1.1 1.1 1.8 1.0 1.5 3.1 6.0 13 27 55 110
32 0.38 0.50 0.65 0.94 1.2 1.1 1.1 1.3 1.1 1.8 3.8 5.9 15 21 42
64 0.55 0.75 0.86 1.4 1.3 1.2 1.2 1.4 1.1 2.2 3.2 6.0 12 11 23

128 0.51 0.63 0.71 1.0 1.2 1.2 1.3 1.2 1.2 1.4 2.0 4.1 6.7 7.2 14
256 0.75 0.77 1.0 1.2 1.5 1.5 1.5 1.4 1.3 1.5 1.5 2.1 7.2 6.4 14

Values rounded for readability to two significant digits (< 100) or whole integers (≥ 100)

Table 4. Speedups of FRNN-OWA applied to generated training sets of different sizes,
for different numbers of cores

Cores Training set size

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2.2 1.9 2.1 1.5 1.4 1.7 2.0 2.0 1.9 1.9 1.5 2.6 2.1 2.0 1.9
4 2.5 2.1 2.4 1.6 1.6 3.0 3.8 3.7 4.0 4.3 3.6 5.2 5.2 3.1 4.6
8 1.5 2.0 1.8 1.3 1.8 2.9 4.8 6.9 7.0 8.5 5.9 10 11 9.1 8.6

16 1.9 1.5 2.2 1.5 1.7 2.9 3.5 11 14 16 17 15 16 16 15
32 2.2 1.6 2.0 1.3 1.6 2.8 5.6 9.1 20 28 27 34 28 41 38
64 1.5 1.1 1.5 0.89 1.5 2.5 5.1 8.3 19 23 32 33 35 79 72

128 1.6 1.3 1.9 1.3 1.5 2.5 4.8 9.2 18 35 52 49 65 120 118
256 1.1 1.1 1.3 1.0 1.3 2.1 4.2 8.1 16 34 68 95 59 133 115

Values rounded for readability to two significant digits (< 100) or whole integers (≥ 100)



10 O. U. Lenz et al.

210 212 214 216 218 220 222 224

Training set size

1

2

4

8

16

32

64

128

256

Sp
ee

du
p

1

2

4

8

16

32

64
128
256

Fig. 1. Speedups for different numbers of cores, with FRNN-OWA applied to generated
training sets of different sizes

The results show first of all that there is a certain amount of random fluc-
tuation, which is to be expected on shared infrastructure. For training sets with
fewer than 211 instances, the overhead of the implementation is the dominating
factor, and run time is effectively constant. For training sets with fewer than
213 instances, overhead is still large enough that it negates the effect of adding
more cores: speedup is constant. As training set size grows beyond 213 instances,
the speedup with p cores starts to climb more or less linearly until it reaches its
theoretical maximum, p. This is reflected in the distinct diagonal cluster of lines
in Fig. 1. Only the maximal configuration with 256 cores does not reach its full
potential speedup within the space of these dataset sizes.

Table 5 shows the run times of our implementation of FRNN-OWA applied
to the real datasets, which demonstrate that our implementation can be used to
classify instances using FRNN-OWA with very large training sets.



A Scalable Approach to FRNN-OWA 11

Table 5. Run times per test instance of FRNN-OWA applied to real datasets, with
256 cores

Name Time (s)

Poker hand 1.2
SUSY 4.3
HEPMASS 27
HIGGS 30

6 Conclusion and further work

In this paper we have argued that until now, classifiers based on fuzzy rough sets
have not been fit to handle Big Data, and that other attempts to adapt fuzzy
rough sets for use with Big Data have mostly involved demonstrations on not
very large datasets. To address this, we have presented the first implementation
of a classifier based on fuzzy rough sets that can be scaled to handle arbitrarily
large datasets. We have proposed a parallelised version of FRNN-OWA that can
divide execution time over as many computing cores as is required.

To evaluate the performance of our implementation, we divised a series of
systematic experiments, measuring run time on generated datasets varying in
size from 210 to 224 instances, and calculating the speedup obtained by using
between 1 and 256 computing cores. The results of these experiments showed
that with sufficiently large datasets, the execution time of our implementation is
effectively reduced by a factor equal to the number of computing cores. We then
demonstrated that our implementation can be used for classifying test instances
with a number of large real datasets of up to 11,000,000 instances.

We believe that the work presented in this paper constitutes a necessary first
step towards adapting fuzzy rough sets for Big Data, and that it enables both
the application of fuzzy rough sets to concrete classification problems, as well as
several types of further research.

Having restricted the application of OWA operators to the k nearest neigh-
bours of a test instance, a natural question to ask is what value for k is sufficiently
large. In the future we wish to determine whether it is necessary to tune k for
each dataset or whether a certain value is always good enough. This question
also has to take into account the choice of weights. In fact, restricting the appli-
cation of OWA operators to the k nearest neighbours opens up for consideration
new types of weights whose accuracy reaches a global maximum for value of k
and decreases as k approaches the full training set size.

We also want to investigate whether we can further reduce the computational
complexity of FRNN-OWA by approximating some of the calculations. It is easy
to think of Big Data merely in terms of large datasets that pose computational
challenges. However, as data becomes available ever more easily in ever greater
quantities, the types of questions that we want to answer change. Traditionally,
researchers have asked which machine learning model can produce the best clas-
sification results for a given training set. But in a context where the amount



12 O. U. Lenz et al.

of training data is essentially unlimited, it may be more relevant to ask which
machine learning model can produce the best classification results in a given
amount of time. If the accuracy loss from approximating parts of FRNN-OWA
is less than the accuracy gain from the additional training data that can be
processed in the same amount of time, this may be a worthwile trade-off.

Acknowledgement

The research reported in this paper was conducted with the financial support
of the Odysseus programme of the Research Foundation – Flanders (FWO). D.
Peralta is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO).

References

1. Asfoor, H., Srinivasan, R., Vasudevan, G., Verbiest, N., Cornelis, C., Tolentino, M.,
Teredesai, A., De Cock, M.: Computing fuzzy rough approximations in large scale
information systems. In: Big Data (Big Data), 2014 IEEE International Conference
on. pp. 9–16. IEEE (2014)

2. Asfoor, H.M.: Fuzzy Rough Set Approximations in Large Scale Information Sys-
tems. Master’s thesis, University of Washington (2015)

3. Baldi, P., Cranmer, K., Faucett, T., Sadowski, P., Whiteson, D.: Parameterized
machine learning for high-energy physics. arXiv preprint arXiv:1601.07913 (2016)

4. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy
physics with deep learning. Nature communications 5, 4308 (2014)

5. Cattral, R., Oppacher, F., Deugo, D.: Evolutionary data mining with automatic
rule generalization. Recent Advances in Computers, Computing and Communica-
tions 1(1), 296–300 (2002)

6. Dua, D., Karra Taniskidou, E.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

7. Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal
of General System 17(2-3), 191–209 (1990)

8. Hu, Q., Zhang, L., Zhou, Y., Pedrycz, W.: Large-scale multimodality attribute
reduction with multi-kernel fuzzy rough sets. IEEE Transactions on Fuzzy Systems
26(1), 226–238 (2018)

9. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classi-
fication. In: International Conference on Rough Sets and Current Trends in Com-
puting. pp. 310–319. Springer (2008)

10. Jensen, R., Mac Parthaláin, N.: Towards scalable fuzzy–rough feature selection.
Information Sciences 323, 1–15 (2015)

11. Karau, H., Konwinski, A., Wendell, P., Zaharia, M.: Learning spark: lightning-fast
big data analysis. O’Reilly Media, Inc. (2015)

12. Maillo, J., Luengo, J., Garćıa, S., Herrera, F., Triguero, I.: Exact fuzzy k-nearest
neighbor classification for big datasets. In: 2017 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). pp. 1–6. IEEE (2017)

13. Maillo, J., Ramı́rez, S., Triguero, I., Herrera, F.: kNN-IS: An iterative spark-based
design of the k-nearest neighbors classifier for big data. Knowledge-Based Systems
117, 3–15 (2017)



A Scalable Approach to FRNN-OWA 13

14. Qian, Y., Wang, Q., Cheng, H., Liang, J., Dang, C.: Fuzzy-rough feature selection
accelerator. Fuzzy Sets and Systems 258, 61–78 (2015)

15. Ramentol, E., Vluymans, S., Verbiest, N., Caballero, Y., Bello, R., Cornelis, C.,
Herrera, F.: IFROWANN: imbalanced fuzzy-rough ordered weighted average near-
est neighbor classification. IEEE Transactions on Fuzzy Systems 23(5), 1622–1637
(2015)

16. Verbiest, N., Cornelis, C., Herrera, F.: OWA-FRPS: A prototype selection method
based on ordered weighted average fuzzy rough set theory. In: International Work-
shop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing. pp.
180–190. Springer (2013)

17. Verbiest, N., Cornelis, C., Jensen, R.: Fuzzy rough positive region based nearest
neighbour classification. In: Fuzzy Systems (FUZZ-IEEE), 2012 IEEE International
Conference on. pp. 1–7. IEEE (2012)

18. Vluymans, S., Asfoor, H., Saeys, Y., Cornelis, C., Tolentino, M., Teredesai, A.,
De Cock, M.: Distributed fuzzy rough prototype selection for big data regression.
In: Fuzzy Information Processing Society (NAFIPS) held jointly with 2015 5th
World Conference on Soft Computing (WConSC), 2015 Annual Conference of the
North American. pp. 1–6. IEEE (2015)

19. Vluymans, S., Fernández, A., Saeys, Y., Cornelis, C., Herrera, F.: Dynamic affinity-
based classification of multi-class imbalanced data with one-versus-one decompo-
sition: a fuzzy rough set approach. Knowledge and Information Systems 56(1),
55–84 (2018)

20. Vluymans, S., Sánchez Tarragó, D., Saeys, Y., Cornelis, C., Herrera, F.: Fuzzy
rough classifiers for class imbalanced multi-instance data. Pattern Recognition 53,
36–45 (2016)

21. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria
decisionmaking. IEEE Transactions on systems, Man, and Cybernetics 18(1), 183–
190 (1988)

22. Zeng, A., Li, T., Hu, J., Chen, H., Luo, C.: Dynamical updating fuzzy rough
approximations for hybrid data under the variation of attribute values. Information
Sciences 378, 363–388 (2017)

23. Zeng, A., Li, T., Liu, D., Zhang, J., Chen, H.: A fuzzy rough set approach for incre-
mental feature selection on hybrid information systems. Fuzzy Sets and Systems
258, 39–60 (2015)


