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Abstract.

Objective: Sparse-view computed tomography (CT) reconstruction has been at the

forefront of research in medical imaging. Reducing the total X-ray radiation dose to the

patient while preserving the reconstruction accuracy is a big challenge. The sparse-view

approach is based on reducing the number of rotation angles, which leads to poor

quality reconstructed images as it introduces several artifacts. These artifacts are more

clearly visible in traditional reconstruction methods like the filtered-backprojection

(FBP) algorithm.

Approach: Over the years, several model-based iterative and more recently deep

learning-based methods have been proposed to improve sparse-view CT reconstruction.

Many deep learning-based methods improve FBP-reconstructed images as a post-

processing step. In this work, we propose a direct deep learning-based reconstruction

that exploits the information from low-dimensional scout images, to learn the projection-

to-image mapping. This is done by concatenating FBP scout images at multiple

resolutions in the decoder part of a convolutional encoder-decoder (CED).

Main Results: This approach is investigated on two different networks, based on

Dense Blocks and U-Net to show that a direct mapping can be learned from a sinogram

to an image. The results are compared to two post-processing deep learning methods

(FBP-ConvNet and DD-Net) and an iterative method that uses a total variation (TV)

regularization.

Significance: This work presents a novel method that uses information from both

sinogram and low-resolution scout images for sparse-view CT image reconstruction. We

also generalize this idea by demonstrating results with two different neural networks.

This work is in the direction of exploring deep learning across the various stages of the

image reconstruction pipeline involving data correction, domain transfer and image

improvement.
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1. Introduction

The impact of deep learning has been immense over the last few years in the field of

medical imaging (Litjens et al. 2017, Greenspan et al. 2016). Medical image reconstruction

has also benefited hugely from the various advances in neural network architectures

(Wang et al. 2020, Yedder et al. 2021, Reader et al. 2020). In the specific case of CT image

reconstruction, there has been active interest in sparse-view and low-dose reconstruction

scenarios. In both cases, severe artifacts are introduced in reconstructed images either

due to incomplete projections or low counts. Many established model-based iterative

methods account for the low-dose and sparse-view settings to remove artifacts and noise

from the reconstruction (Nuyts et al. 1998, Elbakri & Fessler 2002, Liu et al. 2013).

However, these methods require the knowledge of the noise and artifacts statistics and

generally have longer reconstruction times (Kim et al. 2014). Deep learning-based

methods on the other hand are claimed to achieve reconstructed images with quality on

par with iterative techniques and in a much shorter time frame (Leuschner et al. 2021).

In this work, we predominantly focus on sparse-view CT image reconstruction.

A straight forward way to introduce deep learning architectures in the image

reconstruction pipeline is to improve the images estimated by traditional reconstruction

methods. While it is possible to train a convolutional neural network (CNN) to regress

directly from the measurement (raw data) domain to the image domain, the use of CNN

entirely in the image domain makes it fast and relatively easy to implement. Typically

within this approach the training data consists of sparse-view reconstructions with FBP

and the corresponding full-view reconstructed images. The authors in Jin et al. (2017)

use U-Net with a residual connection for denoising and artefact removal in the sparse-view

estimate, while the work in Zhang et al. (2018) called DD-Net, uses DenseNet with

deconvolution for the same purpose. It is interesting to note that the networks have an

encoder-decoder structure, wherein the encoder finds a compact representation of the

input domain and the decoder learns to map this representation to the target domain.

The dimensions of the input are reduced through the encoder as we go deeper into the

layers. On the other hand, each of the decoder layers samples up these feature maps

to eventually arrive at the output dimensions. Deep learning algorithms were also used

for data correction in the projection domain. For example Lee et al. (2018) uses U-Net

to map sparse-view sinograms to full-view sinograms and then reconstruct the images

using FBP.

The hybrid methodology of unrolled iterative networks combines model-based and

neural network approaches exploring the benefits of both methods. One example in this

regard is Gupta et al. (2018) where a U-Net is used to encode the prior, i.e., to project

the current estimate to the prior image set while gradient descent enforces measurement

consistency. Neural networks can be also used to replace traditional operators in

optimization strategies as shown by Adler & Öktem (2018). The reconstruction using

these hybrid methods can be computationally expensive since it requires running an

optimization procedure at test time. Another recent work specific to sparse-view CT
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was proposed by Wu et al. (2021). Their methodology named DRONE, consists of three

modules namely embedding, refinement and awareness. The first module estimates the

missing views in the sparse-view sinogram through neural network. An image is then

estimated with FBP, which goes through the refinement module for artifact removal and

image enhancement. Finally, the awareness module using compresses sensing techniques,

establishes data consistency with the measurement data.

An alternative approach is using deep learning-based methods to directly map

from projection to image space. The challenge in this approach is the management

of data and the number of parameters required for learning the mapping. In Li et al.

(2019) the authors proposed an architecture termed iCT-Net consisting of 12 layers

that are a combination of convolutions and modified fully-connected layers. The 12

layers are separated into segments and are trained separately before being combined

for end-to-end training. To reduce the number of parameters in learning the mapping

for full resolution CT reconstruction, Fu & De Man (2019) proposed a breakdown of

the problem into smaller fragments that can be mapped onto a hierarchical network

architecture. The approach proposed in Ye et al. (2018) converts the sinogram data into

a stack of back projections for each angle, which are then fed into a CNN. The spatial

in-variance of the CNN is exploited to learn the mapping from these single view stacked

back projections onto reconstructed images. Currently, we observe that adversarial

networks are increasingly used in scenarios with high-resolution images. In Thaler et al.

(2018) a Wasserstein generative adversarial network is proposed for sparse-view CT image

reconstruction (Arjovsky et al. 2017). The authors used a combination of L1 loss and

adversarial loss to train their network. The generator in their work is a U-Net and the

discriminator a typical classification CNN. It is to be noted that the authors performed

their experiments on down-sampled images of resolution 128× 128. In our earlier work

referred to as DUG-RECON (Kandarpa et al. 2020), we used a three-stage network to

divide the image reconstruction problem into denoising, domain mapping and resolution

improvement. We used a residual UNet for denoising the sinograms, then a double-UNet

architecture to map the sinogram to image, and finally a super ResNet to improve image

estimate. The approach was tested with both positron emission tomography (PET) and

CT data.

1.1. Main Contribution

The main drawbacks of current deep learning-based direct image reconstruction

algorithms are the tedious training process necessary to train large networks with

large number of trainable parameters and the requirement of high memory in case

of high-resolution CT images. In this work we propose a new method for direct

deep learning based sparse-view CT image reconstruction with fully convolutional

networks. We use two networks, namely Fully Convolutional Densenets and U-Net

(Jégou et al. 2017, Ronneberger et al. 2015). An important characteristic of both these

architectures is the presence of concatenation from the encoding layers to the decoding
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layers that ensures the usage of features from the input for the reconstruction. Specifically,

for application in sparse-CT image reconstruction, the network would have sparse-view

sinograms as input and reconstructed images as output. The original application

in the medical imaging field of both these architectures was in image segmentation,

where the image-to-image mapping operates in the same image domain. Medical image

reconstruction on the other hand involves mapping between two different domains

(sinogram to image). In order to help the network to learn the mapping from sinogram

to image, we propose the use of low-resolution FBP scout images and concatenate them

with the feature maps of the decoder.

These custom concatenations enable architectures that were previously used for

denoising/artifact removal to learn a mapping from sparse sinograms to full-resolution

CT images for the same number of training examples. One characteristic feature of

reconstructions generated by deep learning-based methods is the blurriness of the outputs.

To counteract this we used perceptual loss involving features extracted from two different

levels of VGG16 network (Block 1 and Block 3). Since the exclusive use of perceptual loss

results in unrealistic artifacts we couple it with a L1 loss. The proposed approach called

Low-Resolution Reconstruction-Aware Convolutional Encoder-Decoder (LRR-CED),

consists of a CED network with two blocks in both the encoder and the decoder that

takes in as input a reshaped sparse sinogram which has the same dimensions as the

output image. A concatenation of two resolutions h1 × w1 and h2 × w2 is incorporated

in the decoder.

The main contributions of our work are summarized as follows:

• A new approach for sparse-view CT image reconstruction using fully-convolutional

networks

• Use of lower resolution FBP scout images which enable the networks that are

predominantly used for denoising to learn the more complex mapping from sinogram

to image domain with the same number of training examples.

• An ablation study to highlight the impact of the combination of sinograms and the

proposed concatenations.

• Two neural networks are implemented to test this approach using different levels of

sparsity in the sinograms.

1.2. Paper Organization

This paper is organized as follows: Section 2 explains the proposed reconstruction

approach; Section 3 presents the experimental results, hyperparameter selection and

ablation study; Section 4 and Section 5 are the discussion and conclusion sections

respectively.
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2. Methods

2.1. CT Physical Model

Let an image be represented by x ∈ Rm and the scanner measurement by b ∈ Rn where

m is the number of voxels and n is the number of measurements. In two-dimensional

(2-D) CT imaging n depends on the number of detectors nd and the number of angles

na. The task of medical image reconstruction corresponds to finding a mapping from

b to x. The measurement b is a random vector modeling the number of detection

(photon counting) at each of the n detector bins, and follows a Poisson distribution with

independent entries, i.e.,

b ∼ Poisson(b̄(x)) (1)

where, b = [b1(x), . . . , bn(x)]
⊤ ∈ Rn and b̄(x) = [b̄1(x), . . . , b̄n(x)]

⊤ ∈ Rn is the expected

number of counts (noiseless), which is a function of the image x.

The image x ∈ Rm is a vectorized input image (also referred to as attenuation)

representing the measure of X-rays absorbed or scattered as they pass through the

patient. In a monochromatic setting, the expected number of counts b̄(x) is given by

the Beer-Lambert law, i.e.,

b̄i(x) = I · exp(−[Px]i) ∀i = 1, . . . , n (2)

where, I is the intensity and P ∈ Rn×m is a system matrix such that each entry [P ]i,j
represents the contribution of the j-th image voxel to the i-th detector. Given the raw

projections b̄, we take the logarithm as follows

yi = log

(
I

bi

)
∀i = 1, . . . , n (3)

where we assumed that the intensity I is sufficiently high so that bi > 0 for all i. Image

reconstruction is based on finding a suitable image x̂ that approximately solves

y = P x̂ (4)

where y = [y1, . . . , yn]
⊤ ∈ Rm. The reconstruction can also be achieved with more

sophisticated iterative techniques that account for the stochastic properties of the

measurement (1) (Nuyts et al. 1998, Elbakri & Fessler 2002).

In a sparse-view setting, the number of rotation angles of the detector is decreased

in order to reduce the radiation passing through the patient. This leads to a degradation

in image quality due to artifacts caused by the reduction in the number of projection

angles in the measurement y.

2.2. Proposed Low Resolution Reconstruction aware CED Model

Supervised deep learning-based methods learn the mapping between the measurement y

and the corresponding reconstructed image x. In the case of direct deep learning-based
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image reconstruction this mapping is typically learned via neural networks which can be

represented as a function Fθ:Rn → Rm with trainable parameters θ ∈ Rnp :

x̂ = Fθ(y) . (5)

where, x̂ is the predicted image.

Most of the works in direct reconstruction for sparse-view CT represent F with

a neural network with fully-connected layers. These networks require huge memory

and large datasets for training. As an alternative to this, we propose the use of fully

convolutional encoder-decoder networks that have lesser trainable parameters and are

faster to train.

The main idea is to enforce data consistency by providing estimates at different

resolutions x̂r ∈ Rmr , mr < m, r = 1, . . . , R:

x̂ = Fθ(y, (x̂r)
R
r=1) (6)

where each x̂r ∈ Rmr is an approximate solution of

y = PUrx̂r (7)

with Ur ∈ Rm×mr being an upsampling operator.

In a typical CED, the encoder learns the representation of the input domain and

the decoder learns to map this representation to the corresponding image in the output

domain. In the specific case of a CED for medical image reconstruction, the encoder

operates in the sinogram space and the decoder in the image space. Based on this

hypothesis, we propose to concatenate the estimates at different levels of the decoder

part of the network. The function of these concatenations is to help the network learn

the structure of the image. The feature maps at different levels of the decoder have

different resolutions. Hence, concatenating the estimate x̂r at different levels requires

the estimate to be of the appropriate resolution. The different convolutional layers in the

decoder work towards arriving at a clear reconstructed image that is free of artifacts and

noise. The estimate x̂r is obtained with a sparse sinogram, hence it is artifact-ridden and

noisy. Therefore, concatenating the estimate x̂r at a level closer to the output resolution

is counter productive as the network has lesser number of convolutional layers to correct

the noise and artifacts. On the other hand the estimate at lower resolutions has lesser

structural information compared to the estimates at higher resolution. The selection

of x̂r should ensure a balance between aiding the network to learn the structure of the

image and enabling it to correct the artifacts and noise.

Our method, namely Low-Resolution Reconstruction-Aware Convolutional Encoder-

Decoder (LRR-CED), was implemented with R = 2 and the image estimates x̂r were

obtained by FBP at lower resolution. With the help of a series of experiments, we

determined the best possible configuration for concatenating x̂r. In Section 3.4.1, we

present quantitative evaluation of the effect of these concatenations on the reconstructed

images. In Section 3.5, through an ablation study we establish the combined impact of

sinogram and the proposed concatenations on the reconstructed image quality.
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We investigate LRR-CED with two different variations for F , LRR-CED(D) with

Fully Convolutional DenseNets and LRR-CED(U) with U-Net, which are discussed in

Section 2.2.1 and Section 2.2.2.

2.2.1. Fully Convolutional Dense Networks A fully convolutional dense network was

used as first variation of LRR-CED. Dense networks Huang et al. (2017) are based on

the hypothesis that connecting all the layers to each other in a feed forward fashion

leads to higher accuracy and easier training of the network. A typical dense block

of three layers is depicted in Figure 1(a). The extension of dense networks for image

segmentation was proposed by Jégou et al. (2017). The three blocks involved in the

construction of this network are Dense Block (DB) with l layers, Transition Up (TU)

and Transition Down (TD). The combination of these three blocks helps in building an

encoder-decoder structure suitable for tasks dealing with image-to-image domain transfer.

Each layer consists of batch normalization, rectified linear unit (ReLU) activation and

3 × 3 convolution. TD includes: batch normalization, ReLU, 1 × 1 Convolution and

2× 2 max pooling. Finally, TU includes a 3× 3 transposed convolution with stride 2.

The important modification to the architecture blocks in our work is the removal of the

dropout layers. The fully convolutional dense network with proposed concatenations is

represented in Figure 1(b). The complete architecture details are given in Figure 1(c).

2.2.2. U-Net One of the most established architectures for image-to-image translation

is U-Net, which we used as second variation of LRR-CED (called from here on-wards as

LRR-CED(U)). A typical U-Net consists of Convolution, Activation (ReLU) and Pooling

layers in the encoder and Upsampling, Convolution and Activation in the decoder. We

have used U-Net without the dropout, similar to the dense network. The U-Net is

represented in Figure 2.

2.2.3. Loss Function The aim of a supervised data-driven image reconstruction task is

to predict an image that is as close as possible to the ground truth (GT) image. The

appropriate loss function to achieve this is the mean absolute error (MAE) which is

defined as follows:

MAE(x⋆, x̂) =
1

m

m∑
j=1

|x⋆
j − x̂j| (8)

where x⋆ = [x⋆
1, . . . , x

⋆
m]

⊤ ∈ Rm and x̂ = [x̂1, . . . , x̂m]
⊤ ∈ Rm are respectively the true

image and predicted image.

In order to improve the resolution of reconstructed images, many deep learning

approaches have used the perceptual loss as proposed by Johnson et al. (2016). This

loss uses a pre-trained neural network to extract features from the predicted image and

the GT. It can be defined as follows:

Pk(x
⋆, x̂) = |[VGG16]k(x

⋆)− [VGG16]k(x̂)|, k = 1, . . . , 5 (9)

Page 7 of 27 AUTHOR SUBMITTED MANUSCRIPT - PMB-112662.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



8

Layer

Layer

Layer

C

C

C

Output

Input

(a) Dense Block

DenseBlock

DenseBlock

DenseBlock

DenseBlock

DenseBlock

C

C C

C

TD

TD TU

TU

ConvolutionConvolution

Concatenation

Transition Down

Transition Up

128x128

64x64

(b) LRR-CED(D)

Input (Sinogram)

32, 3x3 Convolutions

DB (4 layers) + TD

DB (5 layers) + TD

DB (5 layers) + TD

DB (7 layers) + TD

DB (10 layers) + TD

DB (12 layers) + TD

DB (15 layers)

TU + DB (12 layers)

TU + DB (10 layers)
Concatenate x

1

TU + DB (7 layers)
Concatenate x

2

TU + DB (5 layers)

TU + DB (4 layers)

1x1 Convolution

Sigmoid Activation

Output (Image)

(c) Architecture Summary.

Figure 1: Different components of LRR-CED(D): (a) Representation of a dense block

with three layers; (b) LRR-CED(D) with Fully convolutional dense network with x1 at

64 × 64 and x2 at 128 × 128 (for the sake of representation we included only 5 dense

blocks in the figure); (c) Complete architecture summary

where [VGG16]k(x
⋆) and [VGG16]k(x̂) are the features extracted from block k of the

VGG16 neural network with respectively the GT and the predicted image as inputs

(Simonyan & Zisserman 2014). The features extracted from higher layers of the neural

network contain generic information (edges, contrast, etc.) while the deeper layers have

finer task-specific details. The VGG16 network was pre-trained on Image-Net data Deng

et al. (2009) which is far from a medical context. Hence, the higher-level generic features

were found to be more relevant for the task of medical image reconstruction. We observed

that using extracted features from two different levels, namely Block 1 and Block 3, of

the VGG16 network proved to be most effective.

The final loss function that was used for training both the aforementioned networks

is defined as follows:

L(x⋆, x̂) = αMAE(x⋆, x̂) + β(P1(x
⋆, x̂) + P3(x

⋆, x̂)) (10)

where P1 and P3 are perceptual loss from the extracted features of the two different

blocks above-mentioned, α and β are weights which were set to 10 and 0.5 during the

training phase.
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3x3 Convolution
1x1 Convolution
max-pool 2x2
Up-sample 
Convolution 2x2
Concatenation

sinogram Image

 FBP estimate
    (256x256)

  FBP estimate
     (128x128)

(a) LRR-CED(U)

Input (Sinogram)

3 layers of 32, 3x3 Convolutions

Output (Image)

Max pooling

3 layers of 64, 3x3 Convolutions

Max pooling

3 layers of 128, 3x3 Convolutions

Max pooling

3 layers of 512, 3x3 Convolutions

Max pooling

3 layers of 256, 3x3 Convolutions

256, 3x3 Transposed Convolutions

2 layers of 256, 3x3 Convolutions

128, 3x3 Transposed Convolutions

2 layers of 128, 3x3 Convolutions

64, 3x3 Transposed Convolutions

2 layers of 64, 3x3 Convolutions

32, 3x3 Transposed Convolutions

2 layers of 32, 3x3 Convolutions

1x1 Convolution

Concatenate x
1

Concatenate x
2

Concatenate x
1

(b) Architecture Summary

Figure 2: Different components of LRR-CED(U): (a) LRR-CED(U): U-Net with x1 at

64× 64 and x2 at 128× 128. (b) Complete architecture summary.

2.3. Dataset

The data used in this work is from the Large-Scale CT and PET/CT Dataset for Lung

Cancer Diagnosis (Lung-PET-CT-Dx) (Li et al. 2020, Clark et al. 2013). Details of the

dataset are given in Table 1. The images in this dataset were reconstructed using FBP

on full-angular coverage measurement data. We used the ASTRA toolbox, for data

processing to create the projection-image pairs (Van Aarle et al. 2016). A fan-beam

geometry with a source to detector distance at 1500 mm and source to the center of the

rotation at 1000 mm were considered. The number of detectors was set to 700 and the

number of angles was varied to generate different levels of sparsity (na = 20, 40, 60, 90

and 120). The source was rotated 360 degrees around the object, the angular sampling

was adjusted to generate different sparsity configurations. The noise-free projection

data were obtained using the Beer-Lambert law (2) with an input emission intensity of

105. The final projection data were obtained by adding Poisson noise (i.e., (1)) to the

noise-free projection data. We finally generated the FBP estimates from the noise-added

sparse-projections which were used in training the networks as explained previously.

The estimates at different lower resolutions were obtained through nearest-neighbor
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interpolation of the images at full-resolution (512 × 512). The sinograms which are

inputs to the network are resized using the same interpolation technique. Sample images

from the dataset used are shown in Figure 3.

Table 1: Dataset Description

Dataset Statistics

Modalities CT

Number of Participants 355

Number of Studies 436

Number of Series 1295

Number of 2-D Image slices 251,135

CT Matrix size 512

2.4. Training

We implemented the architectures described in the previous section using TensorFlow

and Keras (Abadi et al. 2016, Chollet et al. 2015). A subset of the dataset consisting

of 22,000 2-D CT images was used in this study. We then split the data into 30,000

images for training and 2,000 images for testing. The sinograms and FBP estimates were

generated using the ASTRA toolbox as described above. The sinograms were resized to

512× 512 to ensure symmetry with the images for easier training of the network. The

FBP estimates x̂1 and x̂2 were resized to the resolutions required for concatenation to

the proposed networks. The neural networks were independently trained for each of the

sparse-view settings with Na = 20, 40, 60, 90 and 120. The choice of x1 and x2 were

at 64 × 64 and 128 × 128 resolutions for LRR-CED(D) and 128 × 128 and 256 × 256

resolutions for LRR-CED(U). The networks were trained for 50 epochs with Adam

optimizer with a decay of 10−4.

2.5. Quantitative Analysis

The metrics used for evaluating the reconstructed images were structural similarity index

(SSIM) and peak signal-to-noise ratio (PSNR). They are defined as follows:

SSIM(x⋆,x) =
(2µx⋆µx + c1)(2σx⋆x + c2)

(µ2
x⋆ + µ2

x + c1)(σ2
x⋆ + σ2

x + c2)
(11)

where µx⋆ and µx are the mean of x⋆ and x respectively, σ2
x⋆ and σ2

x are the variance of

x⋆ and x, σx⋆x is the covariance between x⋆ and x , c1 = (k1L)
2 and c2 = (k2L)

2 where

k1 = 0.01 and k2 = 0.03 by default,

PSNR = 20 log10

(
L− 1

RMSE

)
(12)
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            Sinogram                     FBP Estimate                 GT

700x60

700x90

700x120

700x40

700x20

Figure 3: Samples from the dataset: Sinograms with different sparse-view configurations

along with their corresponding FBP estimate.

where L is the maximum intensity in the image and root mean squared error (RMSE) is

given by

RMSE(x⋆, x̂) =

√√√√ 1

m

m∑
j=1

(x⋆
j − x̂j)2 . (13)
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3. Results

3.1. Experimental Results with Simulated Data

Fig. 4 shows the images reconstructed with LRR-CED(D) for various degrees of sparsity

in the projections. Images from various parts of the patient volume are displayed at

different HUT windows for clearer evaluation of the proposed approach. We observe the

improvement in the reconstructed images with the decrease in sparsity in the views. The

images reconstructed with na = 120 appear closest to the GT. The soft tissue regions in

the images reconstructed with less than 60 views show artifacts which are not present

with the use of more projections. Similarly in Fig. 5, we show the images reconstructed

with LRR-CED(U).

The reconstruction algorithms used for comparing with the proposed method were

two post-processing deep learning methods namely FBP-ConvNet (Jin et al. 2017) and

DD-Net (Zhang et al. 2018), and an iterative method (penalized weighted least-squares

(PWLS)-TV). The FBP-ConvNet is based on U-Net and the DD-Net consists of dense

blocks and deconvolution layers. For the PWLS-TV method we have used a FISTA

solver with Prox TV to implement the TV regularizer (Beck & Teboulle 2009).

In Fig. 6 and Fig. 7 we present a comparison of reconstructed images using

different algorithms with 60 and 90 views respectively. The top row consists of the

GT and the reconstructed image by proposed LRR-CED(D) approach. The second

row consists of images with LRR-CED(U) and the FBP-ConvNet. The third row

consists of images reconstructed with PWLS-TV and DD-Net. Finally the last row has

the image reconstructed with FBP. We have also performed the reconstruction using

different regularization parameters to select the optimal parameter’s setting. The region

highlighted in yellow is zoomed and displayed alongside the corresponding image. These

methods are quantitatively compared in Table 2 and Table 3.

We observe that the deep learning methods perform better than the iterative

and analytical methods. The images reconstructed with U-Net based methods namely

LRRCED(U) and FBP-ConvNet, have very similar characteristics: The contrast is higher

and they perform better quantitatively. However, images reconstructed with DenseNet

by comparison show less noise and streaking artifacts. These visual observations can be

more clearly seen in the zoomed images shown in Fig. 6. This is further reiterated in the

intensity plot profiles shown in Fig. 8 and Fig. 9, where the LRR-CED(D) results are

closer to the GT. In accordance with the metrics tabulated in Table 2 and Table 3, we

find that the plots of deep learning-based methods are very close to that of the GT. Even

though the proposed approach with typical CEDs performs a task which is more complex

than denoising, the metrics indicate that the quality has not deteriorated compared to a

standard post-processing approach.
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                                                                         LRRCED (D)

          GT                  120 Views             90 Views              60 Views             40 Views              20 Views     

Figure 4: Images reconstructed with LRR-CED(D) approach with different sparse-view

configurations, i.e., projections with Na = 120, 90, 60, 40 and 20. For better visual

inspection images in first row are displayed in −40± 600 HUT window, the second row

in −340± 400 HUT and the third in −150± 400 HUT.

                                                                         LRRCED (U)

          GT                  120 Views             90 Views              60 Views             40 Views              20 Views     

Figure 5: Images reconstructed with LRR-CED(U) approach with different Sparse-View

configurations, i.e., projections with Na = 120, 90, 60, 40 and 20. Images in first row are

displayed in −40± 600 HUT window, the second row in −340± 400 HUT and the third

in −150± 400 HUT.
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Table 2: Quantitative comparison of various reconstruction algorithms with SSIM and

PSNR for projections with 60 views

Metric FBP PWLS-TV FBP DD-Net LRR-CED LRR-CED

ConvNet (D) (U)

SSIM 0.16 0.89 0.90 0.88 0.89 0.90

PSNR 11.57 30.79 31.58 30.04 30.04 30.20

Table 3: Quantitative comparison of various reconstruction algorithms with SSIM and

PSNR for projections with 90 views

Metric FBP PWLS-TV FBP DD-Net LRR-CED LRR-CED

ConvNet (D) (U)

SSIM 0.19 0.91 0.93 0.90 0.91 0.92

PSNR 13.57 32.49 35.27 32.47 32.70 32.86

3.2. Experiments with Real Data

The proposed networks were initialized with the weights from the previous study and

were then trained on the real data. The real data used in this study was part of the

Low Dose CT grand challenge (McCollough 2016). The data constituted of 10 patients,

acquired with flying spot technique and a helical scan. It was a subset of the larger

Mayo CT clinic database (Moen et al. 2021). The data from nine patients constituting

of 3,994 2-D slices was used for training and the trained network was tested on another

patient data. The three-dimensional (3-D) sinograms obtained from the helical scan

were converted into 2-D sinograms through the single slice re-binning method employed

in (Kim et al. 2017). We further resampled the sinograms reducing the number of views

to 64. The number of detector panels was 734. The FBP estimates were generated from

these sparse-view sinograms and resized for training the LRR-CED.

We present the results for four different slices across the patient volume and their

quantitative evaluation in Figure 10 and Table 4, respectively. We observe that the

reconstructed images with the proposed networks have similar characteristics as the ones

from the simulation study. The transfer learning strategy ensures that the quality of the

reconstructed images is maintained even with very limited training data.

3.3. Stability Study

One of the major challenges to data-driven neural network approaches is the ability

to generalize over different types of test data. The extent to which a neural network

is stable when presented with data different from the training data is the focus of

this study. This topic has been extensively evaluated in the article by Antun et al.

(2020). The authors analyzed the impact of tiny perturbations and small structural

changes in sampling and image domain on the reconstructed images. They also observed
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                                     GT                                                                       LRR-CED (D)

                            LRR-CED (U)                                                                FBP-ConvNet                              
         

                                PWLS-TV                                                                     DD-Net

                                    FBP

Figure 6: Comparative analysis for 60 views: From the top left corner, we have GT

image, reconstructions with LRR-CED(D). In the second row reconstructed images with

LRR-CED(U) and FBP-ConvNet. The third row consists of images reconstructed with

PWLS-TV and DD-Net. Finally the last row has the image reconstucted with FBP.

the way in which a change in sampling (sparsity in CT for example) could influence

performance. In our work centered around sparse-view CT image reconstruction, we

performed a series of experiments with different levels of sparsity in the testing data.

The proposed network LRR-CED(D) was trained separately on each of the sparsity

configurations, (Na = 20, 40, 60, 90 and 120). It was then tested using the sinograms and

the corresponding FBP estimates for all of the possible values of Na considered.

The results are displayed in Fig 11. The top row corresponds to network trained

with 20-view data, the second with 40-view data and so on. The trend is towards an
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                                     GT                                                                       LRR-CED (D)

                             LRR-CED (U)                                                                FBP-ConvNet                             
          

                                PWLS-TV                                                                      DD-Net

                                     FBP

Figure 7: Comparative analysis for 90 views: From the top left corner, we have GT

image, reconstructions with LRR-CED(D). In the second row reconstructed images with

LRR-CED(U) and FBP-ConvNet. The third row consists of images reconstructed with

PWLS-TV and DD-Net. Finally the last row has the image reconstucted with FBP.

improvement in overall image quality with reduced sparsity in the sinograms. On one

hand, we observe that in the scenarios where the testing data has more sparsity than

the training data, the artifacts in the reconstructed images are more clearly visible. This

is clearly seen in the last two rows in Figure 11, where the network was trained on 90

views and 120 views data and the images reconstructed with lower Na are ridden with

artifacts. On the other hand, the image quality especially in the soft tissue regions is

higher when the network is trained and tested on data with more views. The proposed

network maintains stability in the reconstructed images with the increase in the sampling
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Figure 8: Intensity plot profile for the region marked in red from Fig. 6 comparing LRR-

CED(D), FBP-ConvNet and DD-Net to the GT in (a) and LRR-CED(U), FBP-ConvNet

and DD-Net in (b)
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Figure 9: Intensity plot profile for the region marked in red from Fig. 7 comparing LRR-

CED(D), FBP-ConvNet and DD-Net to the GT in (a) and LRR-CED(U), FBP-ConvNet

and DD-Net in (b)
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           GT                              LRRCED (D)                    LRRCED (U)

                                                                    

a

b

c

d

Figure 10: Real data study: Images reconstructed with the proposed approaches across

4 different slices displayed in the window 40± 200 HUT.

in the testing data. However, when the testing data has fewer views than the training

data, artifacts are present in the reconstructed images.

3.4. Hyperparameter Optimization

Finding the optimal hyperparameters is an important aspect of training neural networks.

The common hyperparameters in a typical CNN are number of filters, number of layers,

etc. These interdependent hyperparameters determine the rate of convergence and

require task-specific experimentation to arrive at the best possible configuration. The

Page 18 of 27AUTHOR SUBMITTED MANUSCRIPT - PMB-112662.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



19

Table 4: Quantitative comparison of images reconstructed with the proposed algorithms

w.r.t. GT across different slices in the patient volume from the real dataset displayed in

Fig. 10

Image Metric LRRCED(D) LRRCED(U)

a SSIM 0.89 0.92

PSNR 35.70 36.64

b SSIM 0.88 0.92

PSNR 35.19 36.13

c SSIM 0.94 0.92

PSNR 40.86 42.04

d SSIM 0.84 0.91

PSNR 33.37 34.59

unique hyperparameters in our proposed approach are the resolutions of concatenated

FBP estimates. The number of training examples is another important component that

varies depending on the task and the trainable parameters of the neural network selected

for the task. In this section we discuss our experiments that determined the selection of

these two important hyperparameters.

3.4.1. Concatenation Resolution Selection To select the best possible configuration for

concatenation in the proposed approach, we trained the networks with a fixed set of

hyper-parameters and different combinations of concatenations. We discuss the results

with LRR-CED(D) in this regard. The number of training samples were set to 10,000

for all the experiments. The training data were projections with 90 views, corresponding

FBP reconstructed images and the GT. The training was done for 25 epochs. Each

of the concatenation setting was evaluated on 5 test patients. The average SSIM for

each patient was plotted for each of the experiment setting. In Fig. 12(a) we have the

average SSIM vs Patient plot for single concatenation at a specific resolution. Similarly

Fig. 12(b) consists of plots for double concatenation at two different resolutions. The

double concatenation at 64×64, 128×128 overall leads to the best metrics, thus becoming

our choice for the experiments in this work. These results are tabulated in Table 5.

3.4.2. Training Examples Analysis One of the biggest challenges in any data driven

algorithm is the selection of training examples required for the experiments. It is

important to analyze this hyper-parameter as it serves as an important factor for the

network to be reproducible and scalable. We varied the number of training examples for

the best concatenation setting from the previous section and the 90-view scenario. The

evaluation was similar to the previous experiment with the average SSIM for 5 patients.

The results from these experiments are tabulated in Table 6. As seen in Fig. 13(a), the

performance of the network improves along with the increase in the number of training
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                                                                Number of views for Testing
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Figure 11: Stability study: Each row corresponds to the network trained on specific

value of Na, and tested with all the possible values of Na.

examples. Although there was only a marginal difference in the performance of the

network with 20,000 or 30,000 training examples, we observed that training with higher

training samples reduced artifacts caused due to the perceptual loss in the reconstructed

images. Hence, the choice of number of training examples was 30,000 in our experiments.

The average SSIM values across the test patients tend to get similar as the number of

training examples increases.

3.4.3. Epochs for Training Analysis Another important hyperparameter is the number

of epochs for training the neural network. To ensure a balance between efficient utilization

of computing resources and optimum performance of the network, it is necessary to

select an appropriate number of training epochs. We trained our network with 10,000

training examples and the best double concatenation configuration from 3.4.1, varying
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the number of training epochs. Using a similar evaluation methodology as above we

compared the average SSIM for LRR-CED(D) trained for 10, 20, 50 and 100 epochs. As

seen in Fig. 13(b) and Table 7, increased training time leads to better metrics. However,

we observe that for neural network trained for 50 and 100 epochs, the average SSIM is

almost identical. Hence, we choose to train our network for 50 epochs in our experiments.

3.5. Ablation Study

We performed an ablation study to understand the impact of the proposed concatenations

on the neural network performance. DenseNet described earlier was trained for 50 epochs

on 20,000 data samples in three different scenariosas shown in Figure 14, two of which used

either a sinogram consisting of randomly distributed Gaussian noise and no low-resolution

concatenations: (i) true sinogram and the reconstructed image only (no low-resolution

concatenations), (ii) Gaussian noise sinogram, low-resolution concatenations and the

reconstructed images, and (iii) true sinogram, low-resolution concatenations and the

reconstructed images.

The image predictions by the three different neural networks are shown in Figure 15.

DenseNet without the low-resolution concatenations does produce images with some

structural information, but the other two configurations generate images of much better

quality. We observe that the concatenations indeed help the network learn the structure

of the image, while the sinograms contribute in artifact and noise removal. This is

reflected upon closer inspection of the third and fourth images in Figure 15. The

images predicted with LRR-CED(D) trained using the randomly distributed Gaussian

noise sinogram instead of the true sinogram have artifacts and noise which is also seen

quantitatively in Table 8. The best metrics and image quality are demonstrated by the

neural network trained on the combination of sinograms and low-resolution estimates

labeled as LRR-CED(D) in Figure 15.

Table 5: Average SSIM for different configurations of concatenations

Concatenated Average SSIM

FBP Resolution P1 P2 P3 P4 P5

(32× 32) 0.82 0.86 0.88 0.86 0.80

(64× 64) 0.85 0.88 0.90 0.88 0.82

(128× 128) 0.85 0.87 0.90 0.89 0.81

(256× 256) 0.58 0.88 0.85 0.88 0.79

(512× 512) 0.66 0.78 0.82 0.75 0.73

(32× 32, 64× 64) 0.83 0.77 0.80 0.80 0.68

(64× 64,128× 128) 0.85 0.88 0.91 0.89 0.83

(128× 128, 256× 256) 0.67 0.78 0.83 0.84 0.70
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Table 6: Average SSIM for different number of training examples

Number of Training Average SSIM

examples P1 P2 P3 P4 P5

1, 000 0.82 0.79 0.86 0.85 0.72

5, 000 0.84 0.77 0.86 0.84 0.69

10, 000 0.85 0.88 0.91 0.89 0.83

20,000 0.89 0.90 0.91 0.90 0.82

30, 000 0.89 0.89 0.90 0.90 0.82

Table 7: Average SSIM for different number of epochs for training

Number of Epochs Average SSIM

for Training P1 P2 P3 P4 P5

10 0.85 0.89 0.91 0.91 0.85

20 0.86 0.89 0.91 0.90 0.86

50 0.88 0.90 0.92 0.92 0.88

100 0.88 0.90 0.92 0.92 0.86

P1 P2 P3 P4 P5

0.6

0.7

0.8

0.9

Patients

A
ve
ra
ge

S
S
IM

32× 32 64× 64
128× 128 256× 256
512× 512

(a) Single concatenations

P1 P2 P3 P4 P5
0.65

0.7

0.75

0.8

0.85

0.9

Patients

A
ve
ra
ge

S
S
IM

[32× 32; 64× 64] [64× 64; 128× 128]
[128× 128; 256× 256] 128× 128

(b) Double concatenations

Figure 12: Comparison of concatenations for the particular case of 90 views evaluated

with SSIM on 5 different patients from the dataset. The best metrics were found with

concatenations at 64× 64 and 128× 128 resolutions.

4. Discussion

The use of deep learning architectures in the framework of medical image reconstruction

is propelled by potentially faster reconstruction without compromising on the quality
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(a) Training Examples Analysis
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50 100

Training Epochs

(b) Training epochs analysis

Figure 13: Comparison of Average SSIM for 5 different Patient data for 90 views with

varying number of training samples. The configuration of the network is the one with best

performance from the analysis in Fig. 12(a).(concatenations at 64× 64 and 128× 128).

      Input                    Concatenation                                            Output
                                                                                        (Reconstructed Image)

nonei)

ii)

iii)

+

+

+

Figure 14: Schematic representation of configurations used in the ablation study: (i)

true sinogram and the reconstructed image only (no low-resolution concatenations);

(ii) randomly distributed Gaussian noise sinogram, low-resolution concatenations and

the reconstructed images; (iii) true sinogram, low-resolution concatenations and the

reconstructed images.

of the images. To this end, hybrid image reconstruction involving unrolled iterative

algorithms with embedded deep learning architectures do not significantly reduce the

reconstruction time. Hence, the use of deep learning architectures for either improving

images from a fast analytic algorithm or direct reconstruction becomes more relevant for

their incorporation into the image reconstruction pipeline. One significant problem for

direct image reconstruction is the requirement of large and complex networks to learn

the mapping from sinograms to images without the help of any reconstruction estimate.
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           GT                                DenseNet                        LRR-CED(D)                     LRR-CED(D)
                                     (without concatenations)      (with Gaussian noise)     
                        

             (i)                                    (ii)                                  (iii) 

Figure 15: Ablation study: Predictions from different configurations of the network.

Table 8: Ablation Study: Quantitative comparison of different configurations of the

DenseNet

Sl.No. True Concatenations Gaussian noise SSIM PSNR

sinograms sinograms

(i) ✓ ✗ ✗ 0.29 12.05

(ii) ✗ ✓ ✓ 0.70 28.89

(iii) ✓ ✓ ✗ 0.88 32.53

The networks used for post-processing on the other hand are simpler and relatively easy

to train. In this work we attempted to use these post-processing networks for the direct

image reconstruction task along with low-resolution scout images from direct analytical

method. We show that concatenating FBP estimates at lower resolutions is sufficient to

allow the network to learn the mapping from sinogram to image space. Through the

use of two different networks with the concatenation approach we demonstrate that this

idea can be applied to CEDs in general.

In the sparse-view CT scenario artifact removal along with denoising increases the

challenges of getting a clean well-resolved image. We observed that the use of traditional

loss functions (L1 or L2) resulted in blurry images. To tackle this and to improve the

sharpness of the images we used perceptual loss along with the standard L1 loss. The

reconstructed images with our proposed LRR-CED(D) and LRR-CED(U) have higher

SSIM and PSNR than images reconstructed with a traditional iterative algorithm and

standard deep learning based post-processing methods DD-Net and FBP-ConvNet. The

similarity in the images from the deep learning methods stems from the fact that the

choice of networks used in our proposed work was inspired from post-processing CEDs.

The contribution in this work is the use of these networks to learn the mapping from

sparse sinograms to images with the same amount of training examples, which is possible

only with the proposed addition of the concatenations. Through the ablation study from

Section 3.5, we reiterate the contribution of both the sinogram and the low-resolution

concatenations for image reconstruction. The CED without the concatenations could
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learn the mapping but it would need much higher number of training examples for image

quality comparable to other methods.

We are currently exploring the possibility of using image estimates from earlier

iterations of standard iterative algorithms while ensuring that the trade-off between time

and image quality is not compromised. The use of other alternative architectures is also

being explored to arrive at reconstructed images which perform significantly better than

existing post-processing approaches. We are working on experiments with low-dose CT

and other tomographic reconstruction modalities to establish the adaptability of the

proposed approach.

Recently, transformer based networks incorporating the self attention mechanism

have been proposed in a variety of medical imaging tasks Pan et al. (2021). proposed

Multi-domain Integrative Swin Transformer Network (MIST) for sparse-view CT image

reconstruction that outperforms FBP-ConvNet. It is interesting to note that the details

in various organs and soft tissue regions are well resolved compared to other popular

reconstruction methods. We intend to work on transformer based networks for bringing

about further improvements in our proposed method.

5. Conclusions

In this work we studied the use of fully convolutional encoder-decoder networks in

direct sparse-CT image reconstruction. We introduced a new approach that uses lower

dimension FBP estimates as concatenations to help the network learn the mapping

from sinogram to image space. In the context of image reconstruction, we inject the

information from the inverse of a CT physical system (FBP estimate) as a feature map in

the decoder. We presented two variations of the proposed approach namely LRR-CED(D)

using fully convolutional dense networks and LRR-CED(U) using U-Net. The proposed

neural networks reconstruct images that are either better or are on par with traditional

reconstruction algorithms and post-processing deep learning based approaches (DD-Net

and FBP-ConvNet). A single pass of a sparse sinogram through the network results in

reconstructed images without the artifacts and noise which are severely present in the

concatenated FBP estimates. Finally, this idea of using task specific concatenations that

enable one to have control over what the network learns, can be extended to various

other problems in medical imaging.
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