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Chapter 1

Introduction

This thesis is devoted to the study of processes in the propagation of electromag-
netic fields. We do not aim at one particular problem, actually very different
kinds of topics are analyzed here. We deal with direct problems as well as with
inverse ones, low frequency electromagnetism is discussed and consequently the
wave propagation problem in high frequency domain is studied.

Study of electromagnetic materials and their behavior is of a huge interest
for the technological world. Its importance originates from the increasing re-
quirements for high performance devices as motors, transformers, radars, . . . .
To improve the character of electromagnets, new models, accurate numerical
schemes and their rigorous analysis are needed to be worked out. Some numer-
ical techniques and approaches on how to model and design electrical machines
and devices are for example analyzed in the books of Sadiku and Hameyer-
Belmans [49, 76].

The properties and behavior of electric and magnetic fields are described by
a set of four partial differential equations, namely Maxwell’s equations.

1.1 Maxwell’s equations

”To anyone who is motivated by anything beyond the most narrowly practical,
it is worthwhile to understand Maxwell’s equations simply for the good of his
soul.” J.R.Pierce

1



2 Introduction

The equations accounting for the facts that a compass needle points north,
that light bends when it enters water, that your car starts when you turn the
ignition key, . . .
Maxwell’s equations in all their glory:

∇ ·D = ρ Gauss’s electric law, (1.1)
∇ ·B = 0 Gauss’s magnetic law, (1.2)
∇×E = −∂tB Faraday’s law, (1.3)
∇×H = J + ∂tD Ampère - Maxwell’s law. (1.4)

In case of a time-varying field when the electric and magnetic field exist simul-
taneously, the following physical quantities are involved:

H magnetic field intensity (A m−1);

E electric flux intensity (V m−1);

B magnetic flux density (magnetic induction) (Wb m−2);

D electric flux density (C m−2);

J electric current density (A m−2);

ρ electric charge density (C m−3).

These four partial differential equations summarize the experimental re-
sults of Coulomb, Ampère, Gauss and Faraday. They got their name after
J. C. Maxwell who, as the first one, wrote them down in 1864 and fixed them up
so that they made mathematical sense. He introduced the idea of displacement
current, which generalizes Ampère law and makes it valid in “all situations”.
This detection allowed him to foresee the physical phenomenon of propagation
of electromagnetic waves. Maxwell’s great discovery was that light is an elec-
tromagnetic wave whose speed can be measured by making purely electric and
magnetic measurements.

The first equation describes that the flux of the vector D is not conservative,
i.e. there is a difference between the electric fluxes entering and leaving the
volume. The sign for the net charge is included in the symbol itself: if ρ is
positive, the net flux is outward; if ρ is negative, the net flux is inward.

Gauss’s law for magnetism states that isolated magnetic poles do not exist.
Magnetic flux is conservative, i.e. the same amount of magnetic flux is entering
and leaving the volume.
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Equation (1.3) implies that by changing a magnetic field an electric field is
produced.

The last equation was Maxwell’s great achievement. He realized that Ampère’s
law in original state

∇×H = J (1.5)

“misses something”. He discovered that there are at least two ways of setting
up a magnetic field: by means of a current and by means of changing electric
field. In general, we must allow for both principles.
To try out Maxwell’s scheme (1.4), we want the flux of the right hand side to
be well defined, in other words, we want its divergence to be zero. The diver-
gence of the left hand side is automatically zero using the well-known identity
∇ · (∇× .) = 0 and therefore the divergence of the right hand side of (1.4) has
to vanish as well, i.e.

0 = ∇ · J + ∂t(∇ ·D). (1.6)

Substituting (1.1) into the latter equality we arrive at

0 = ∇ · J + ∂tρ. (1.7)

Thus, an important consequence of Maxwell’s law (1.4) is conservation of charge.1

Further, we invented that by adding ∂tD (called displacement current) into
Ampère’s law, a symmetric relation between magnetic and electric field holds,
i.e. changing an electric field accordingly induces a magnetic field. The reason
why the displacement current was not included in the equations earlier is that it
is not detectable in all circumstances. The electric induction of magnetic fields
is observable only if the electric field oscillates fast, that is when the electro-
magnetic radiation is important. The high–frequency electromagnetism case is
discussed in the second part of my thesis.

For a more exhausting review on Maxwell’s equations we refer a reader to
[15, 65, 79].

1.2 Steady state, eddy current problem

The first part of the thesis is devoted to low-frequency electromagnetism. In this
case, when electromagnetic radiation is unimportant, the displacement current

1Ampère’s law itself was not consistent with the conservation law as the condition ∇·J = 0
holds only for stationary currents.
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can be safely neglected. Maxwell’s equations are then linked by the so-called
constitutive laws for linear and isotropic media:

J = Ja + σE, (1.8)
D = εE, (1.9)
B = µH. (1.10)

In addition to these we define the following scalar functions describing the prop-
erties of the media

ε electric permittivity (Fm−1),

µ magnetic permeability (Hm−1),

σ electric conductivity (Sm−1).

The magnetic permeability and the electric permittivity are moreover positive
and bounded. In anisotropic materials, where the material properties depend
on the direction of the field, ε and µ are 3 x 3 positive–definite matrix functions
of the position. The conductivity of the medium can be zero, when speaking
about insulators. Further, Ja is the applied current density and σE represents
the induced current density.

Using the constitutive laws (1.8)-(1.10), Maxwell’s equations (1.1)–(1.4) with
negligible displacement current term take the form of

∇ · (εE) = ρ, (1.11)
∇ · (µH) = 0, (1.12)
∇×E = −µ∂tH, (1.13)
∇×H = Ja + σE. (1.14)

The first equation can be considered as a definition for ρ and can be left out.
Relation (1.12) is a direct consequence of (1.13), it does not need to be included
into the system as well. We end up with “Maxwell’s model of memory-less linear
materials” which consists of the remaining two equations (1.13) and (1.14).

To cut down the number of unknowns the first order Maxwell’s system is
reduced to a single parabolic equation expressed either in terms of the magnetic
fieldH or the electric field E. The choice is usually determined by the boundary
conditions. The analysis of both systems is fully analogous. Focusing on the
electric field formulation one gets

σ∂tE +∇× (µ−1∇×E) = −∂tJa. (1.15)
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In addition, the eddy current formulation in terms of the magnetic field reads

µ∂tH +∇× (σ−1∇×H) = ∇× (σ−1Ja). (1.16)

The E–formulation (1.15) is used more often in the literature. One of the
reasons is that it can be applied also when σ = 0. Throughout the thesis we
do not consider the case of insulating regions. Consequently, we acquire the
existence of a unique weak solution to (1.15) or (1.16) in appropriate spaces.

For a more detailed description of the eddy current model see [51, 78]. Finite
element approximations for eddy current problems are proposed in [3, 50].

1.3 Boundary conditions

Any differential problem must be supplemented with certain conditions. If they
are given at a time point from which the evolution of the process starts, we
call them initial values. Since Maxwell’s equations do not hold at the interface
between different materials (e.g. copper–air), also boundary conditions (BCs)
must be given. Physically, these conditions express the properties of the material
surrounding the computing domain Ω through the fields on ∂Ω. It is expected
that the BCs allow for the existence of a unique solution in Ω.

Let us consider the case of two media with various electric and magnetic
properties occupying two regions separated by the surface S as is depicted in
Figure 1.1. The vector ν denotes outward unit normal to Region 2. For ∇×E
in (1.15) to be well defined, the vector ν×E has to be continuous across S. We
write,

ν × (E1 −E2) = 0 on S. (1.17)

Here, E1 denotes the limiting value of E approaching S from Region 1, E2 is
the limit of electric field from the other region.

Moreover, the continuity of the normal components of µH across S is ex-
pressed in the following way

ν · (µ1H1 − µ2H2) = 0. (1.18)

The continuity conditions (1.17) and (1.18) hold for any electromagnetic
field. But we cannot assume the analogue of (1.17) for magnetic fields. In
general, we have

ν × (H1 −H2) = JS , (1.19)

where JS is the surface current density.
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Region 2S

Region 1
E1, H1

E2, H2

ν

ε2, µ2

ε1, µ1

Figure 1.1: Geometry of the surface and subdomains in discussion of interface
boundary conditions.

The presence of singularities in the charge density ρ may cause jumps in the
normal component of εE

ν · (ε1E1 − ε2E2) = ρS , (1.20)

where ρS represents the surface charge density.
It is required that the tangential component of E and the normal component

of B are continuous while crossing S. On the other hand, if ρS and JS are
different from zero, the tangential component of H and the normal component
of D jump across the material boundary.

Now, let us focus on some physical interpretations of BCs. For instance,
suppose that the material in Region 1 is a perfect conductor, i.e. σ1 → ∞.
From Ohm’s law (1.8) one can heuristically see that if the current density J
remains bounded then the electric field vanishes, E1 → 0. We arrive at the
perfect conducting boundary condition for E2,

E2 × ν = 0. (1.21)

Another type of a homogeneous BC reads

∇×E2 × ν = 0. (1.22)

In general, BC of the first type (1.21) and of the second type (1.22) could be
non-homogeneous. Then, one considers

E2 × ν = G1 (1.23)

or
∇×E2 × ν = G2. (1.24)
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The boundary condition (1.24) describes the temporal variations of an external
magnetic field. The conditions mentioned above can be prescribed for an electric
field E as well as for a magnetic field H.

Further, to depict the relation between the flux and the potential, the BC of
the third type is used as will be discussed in the next subsection. Throughout the
thesis this condition defines either imperfectly conducting or absorbing character
of the domain’s boundary.

1.3.1 Boundary condition of third type

If the material on one side of the boundary, e.g. in Region 2, is a non-perfect
conductor but allows the field to penetrate a small distance, imperfectly con-
ducting boundary condition reads

H2 × ν + λ(E2 × ν)× ν = 0, (1.25)

where the impedance λ is a positive function of the position on the surface, see
[30, 31]. In the first part of the thesis related to low–frequency electromagnetism
we consider an imperfectly conducting BC written in a reversed order, namely

ν ×E2 − ν × λ (H2 × ν) = 0. (1.26)

The condition of this type is known as Silver-Müller BC. When λ(x) = x, the
BCs (1.25), (1.26) represent the classical Silver-Müller condition (see [22, 40]).
It is a first order approximation to the so-called “transparent” BC, i.e. no energy
loss is observed on the boundary. It can be found in the literature under other
names as well such as Leontovich or impedance BC, see [37, 58, 61, 62]. For
more information about the Silver-Müller BC we highly recommend the book
of Müller [66].

In Chapters 7 and 8 a numerical method to approximate the scattering prob-
lem posed on an unbounded domain has been developed. Thus, an auxiliary
boundary with Silver-Müller absorbing boundary condition is introduced suffi-
ciently far from the scatterer. A condition prescribed at an artificial boundary
to simulate the solution in an open domain is said to be absorbing if

(E ×H) · ν ≥ 0, (1.27)

see, e.g. [37, §7.12]. The authors use various synonyms for absorbing BC, e.g.
dissipative, scattering or reflecting BC.



8 Introduction

If equality holds in (1.27), the boundary is called conservative. If the vector
fields E and H satisfy the stronger condition

(E ×H) · ν ≥ C
(
‖E × ν‖2 + ‖H × ν‖2

)
(1.28)

then the boundary is said to be strictly absorbing.
The general BC with the absorbing character considered along the time-

dependent problem is given by a hereditary model of the following form (see [37]),

E×ν = η0(x)H ×ν×ν+
∫ ∞

0

η(x, u)H(x, t−u)×ν×νdu u ∈ R+. (1.29)

The BC (1.29) satisfies the definition (1.28) of a strictly absorbing boundary
condition. For the proof see [37, §7.13]. We come back to this condition in the
second part of the thesis.

An accurate prescription for absorbing BC depends on various aspects, e.g.
quality of the material, definition of the problem setting, . . . Thus, for instance,
for time-harmonic problem the tangential electric field and tangential magnetic
field are related by

E(x, ω)× ν = λ(x, ω)H(x, ω)× ν × ν, (1.30)

where λ is an appropriate, possibly complex, scalar and ω is an angular fre-
quency. Because λ depends on ω, the relation (1.30) cannot be transferred to
arbitrary time-dependent fields. Fabrizio and Morro showed in [38] that the
(1.29) is a generalization of (1.30) to time-dependent fields.

There are many approaches for obtaining absorbing BCs. The question is
whether they are better than the mentioned Silver-Müller one. Webb and Kanel-
lopoulos [95] have derived a family of operators of increasing order. The lowest
operator is exactly the Silver-Müller condition. The higher order operators re-
quire an extra regularity what seems difficult to fulfill in general applications.
Furthermore, Grote and Keller [44, 45] construct BC of an arbitrary order by
the analysis of the series expansion. The major criticism of their work is that
the auxiliary domain has to be spherical. An alternative approach, proposed by
Mur [67], uses absorbing BC appropriate for the Helmholtz equation on each
component of scattered field. This approach is difficult to implement.

BCs arise naturally from the variational formulation of Maxwell’s equations.
For more information on this topic, see [5].
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1.4 Overview of the thesis

The thesis is divided into three parts: direct problems in low–frequency elec-
tromagnetism, direct problems in high–frequency electromagnetism and inverse
problems in low–frequency electromagnetism.

Direct problems in low–frequency electromagnetism

In the first part we aimed at a time dependent eddy current equation for
the magnetic field H when a non–perfect contact of two different materials is
considered on the boundary.

Firstly, in Chapter 5, we consider a boundary value problem (4.5) with a
nonlinear vector function G defined by (4.3). Thus, the monotone and non-
Lipschitz continuous nonlinearity on the boundary is considered. We establish
the existence and uniqueness of a weak solution, design the non-linear time dis-
crete approximation scheme based on the backward Euler method and prove
the convergence of the approximations to a weak solution on the basis of Minty-
Browder’s trick [36]. Finally, the linear dependence of the error of the approx-
imation on the length of the time step is derived. The proposed scheme stays
nonlinear.

The numerical results of Chapter 5 will be presented at the international con-
ference on Mathematical Modeling and Computational Physics 2009 in Dubna.
Theoretical results are summarized in the paper [83] published in Journal of
Computational and Applied Mathematics.

Chapter 6 is based on the article [98] submitted to the Journal of Mathemat-
ical Analysis and Applications. Here we focus on the linearization and the full
discretization of the previous problem setting (4.5). In this case, we consider the
power law (4.4) which implies that the nonlinear vector function G is Lipschitz
continuous. This property improves the error estimates for the time discretiza-
tion. Linearization is performed using the well-known fixed-point principle,
whereas for discretization in space Whitney’s edge elements (Section 6.2.2) are
employed. First, we prove the well-posedness of the proposed method. Then,
we show the convergence of the approximations to a weak solution and finally
we derive the error estimates depending on the choice of the discretization pa-
rameters. Based on our numerical results we regard the method as fast, robust
and stable.

Most of the theoretical and numerical results have been presented at the
ICNAAM 2008 conference and are summarized in the proceedings of this con-
ference, see [97].
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Direct problems in high–frequency electromagnetism

The high-frequency domain (Chapter 7) includes the study of electromag-
netic waves and propagation of energy through matter. These problems are
mostly posed on an unbounded domain. Since 1977, the method of Artificial
Boundary Condition (ABC) has been widely used for wave problems.

In Chapter 8 we use the one of the simplest ABCs, called Silver-Müller
condition with a dissipative character. Here, the boundary condition of a linear
nature is assumed. The way we are dealing with the ABC is motivated by the
work of H. Barucq [7], where the theory of propagation of electromagnetic waves
in unbounded domain is elaborated in two dimensions. This work stimulated
us to extend the mentioned problem to three dimensions. At the NumAn 2008
conference, a detailed analysis of the proposed problem, i.e. the well-posedness,
the time discretization based on the backward Euler method, the long-time
stability results for the time discrete approximate solution and the error estimate
for the time discrete scheme have been presented.

Significant results appeared already in the proceedings of the conference,
see [82]. The whole article [84] is submitted to the journal Applied Numerical
Mathematics.

Inverse problems in low–frequency electromagnetism

The third part of the thesis is devoted to the inverse problems in low-
frequency electromagnetism. In Chapter 9 we introduce the principle of inverse
problems and consequently, in the following chapter, we aim at the material
characteristic determination.

In the specific problem discussed in Chapter 10, the missing material con-
stant turns out to be a measure for the electromagnetic losses. The time-
discretization scheme is applied to the proposed problem. We introduce a side
condition which guarantees uniqueness of a solution. Furthermore, we inves-
tigate the character of the loss function. Thanks to its continuity, decreasing
character and asymptotic nature the existence of the solution can be proved.

Some results of this chapter have been presented at the international confer-
ence ACOMEN 2008 ([99]). The whole paper [100] will appear in the Journal
of Computational and Applied Mathematics.
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(Electromechanical)

  (Maxwell’s Equations)

−Chapter 4−
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Time discretizationTime discretization

Full discretization

DIRECT PROBLEMS
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−Chapter 1−
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Figure 1.2: Overview of the thesis

Numerical experiments

The end of each chapter is devoted to numerical examples confirming the the-
oretical results. All the computations are performed using The Finite Element
Toolbox ALBERT developed in 2000 by a team of German mathematicians [77].
For approximation of electric and magnetic fields the Whitney elements imple-
mented by Baňas [9] and Cimrák [24] are used. Whitney’s finite elements are
discussed in Section 6.2.

In the experiments, we consider the computational domain occupied by ferro-
magnetic material to be a unit cube in R3. This domain is split into a tetrahedral
mesh. Throughout the thesis we prove either theoretically or numerically, that
the finer the mesh, the more exact our approximation is. The basic mesh con-
sists of 6 tetrahedra. The refinement process, in our case non-adaptive, is based
on the bisection method, see [57]. By each refinement, the number of tetrahedra
increases exponentially, i.e. nr = 23nr−1, where nr−1 represents the number of
tetrahedra of the previous refinement. The concept how the discretization pa-
rameter h decreases in consequence of refining, and meanwhile the number of
tetrahedra and related number of degrees of freedom (DOF) increase, can be
seen in Table 1.1.
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n◦ ref. h n◦ tetrahedra n◦ tetr. on Γ n◦ DOF

0
√

3 6 6 19
1

√
3/2 48 48 98

2
√

3/4 384 336 604
3

√
3/8 3 072 1 776 4 184

4
√

3/16 24 576 8 112 31 024
5

√
3/32 196 608 34 608 238 688

Table 1.1: The influence of refining on the character of the used tetrahedral
mesh. In numerical experiments maximum fivefold mesh refinement is used.
The more refinements are applied, the more the discretization parameter h
tends to zero and the more tetrahedra are used. We monitor the number of
tetrahedra on the boundary Γ and the number of degrees of freedom (DOF) as
well.

Solving the time dependent problems, the computations are realized on time
interval [0,1].

For all numerical experiments computers with Intel Pentium IV 630 proces-
sor clocked at 3GHz with 1GB RAM memory were used.



Chapter 2

Nederlandse samenvatting

In dit proefschrift worden verschillende processen besproken aangaande de golf-
propagatie van elektromagnetische velden. We concentreren ons niet op slechts
één specifiek probleem, maar beschouwen verschillende onderwerpen. Dit bete-
kent dat we zowel directe als inverse problemen bestuderen en zowel laagfrequent
als hoogfrequent elektromagnetisme beschouwen.

De studie van elektromagnetische materialen en hun gedrag is van groot
belang in onze technologische wereld. Om de karakteristieken van zulke mate-
rialen te verbeteren, is het van cruciaal belang om nieuwe modellen en accurate
numerieke schema’s te ontwikkelen.

De eigenschappen van elektrische en magnetische velden worden beschre-
ven door een stelsel van vier partiële differentiaalvergelijkingen, de zogenaamde
Maxwell vergelijkingen. Deze vergelijkingen worden gegeven in (1.1) - (1.4),
met H het magnetisch veld, E het elektrisch veld, B de magnetische inductie,
D de diëlektrische verplaatsing en J de elektrische stroomdichtheid.

De theorie van de Maxwell-vergelijkingen wordt besproken in Hoofdstuk 1.
In Hoofdstuk 3 wordt een kort overzicht gegeven van de nodige definities, sym-
bolen en functieruimten nodig voor de variationele analyse van de zwakke for-
mulering van deze vergelijkingen.

Verder bestaat dit proefschrift uit drie grote delen, namelijk: directe pro-
blemen in laagfrequent elektromagnetisme, directe problemen in hoogfrequent
elektromagnetisme en inverse problemen in laagfrequent elektromagnetisme.

13
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Directe problemen in laagfrequent elektromagnetisme

Het overgrote deel van elektromagnetische toestellen, zoals motoren, relais-
schakelingen en transformatoren, wordt beschreven in het laagfrequente domein
(zie Hoofdstuk 4). Al deze toestellen werken bij stroomfrequenties lager dan en-
kele tientallen kHz. Strikt genomen kan elke toepassing waarbij de diëlektrische
verplaatsingD verwaarloosd kan worden, een laagfrequente toepassing genoemd
worden. In dat geval, corresponderend met een zogenaamde “steady-state” (zie
Sectie 1.2), kunnen we in het algemeen het elektrisch veld E en het magnetisch
veld H als onafhankelijke grootheden beschouwen.

In het eerste deel bestuderen we een tijdsafhankelijke “eddy current” ver-
gelijking voor het magnetisch veld H met een niet-lineaire randvoorwaarde die
een veralgemening is van de klassieke Silver-Müller voorwaarde (zie [22, 37, 40,
58, 61]) voor niet-perfecte geleiders. Het stelsel wordt dan gegeven door

∂tH +∇×∇×H = 0 in Ω,
ν ×∇×H = ν ×G (H × ν) op Γ. (2.1)

In Hoofdstuk 5 bekijken we eerst een niet-perfecte randvoorwaarde uitgedrukt
door de vectorfunctie

G(H × ν) = ν ×
(
|H × ν|α−1

H × ν
)

met α ∈ (0, 1]. Op die manier wordt het monotone, niet-Lipschitz continue en
niet-lineaire karakter van de rand in rekening gebracht. Verder bekomen we
existentie en uniciteit van een zwakke oplossing in een geschikte functieruimte
onder minimale regulariteitseisen op de rand en voor de beginvoorwaarden. We
ontwerpen een niet-lineair tijdsdiscreet approximatieschema gebaseerd op Rot-
he’s methode. De convergentie van deze approximatie naar de zwakke oplossing
wordt bewezen door gebruik te maken van Minty-Browder’s techniek (zie [36]).
Deze steunt op de monotoniciteit van de niet-lineaire operator. Dit bewijs is
tevens het hoofdresultaat van dit hoofdstuk. Tot slot wordt de foutafschatting
voor de tijdsdiscretisatie bepaald. Deze fout blijkt lineair afhankelijk te zijn
van de tijdsvariabele. Het hoofdstuk wordt afgesloten met een aantal nume-
rieke experimenten, die de efficiëntie van de beschreven methode bevestigen.
In deze experimenten gebruiken we de Newton methode voor het oplossen van
niet-lineaire steady-state partiële differentiaalvergelijkingen.

De numerieke resultaten van dit hoofdstuk zullen gepresenteerd worden op de
internationale conferentie Mathematical Modeling and Computational Physics
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2009 in Dubna. De theoretische resultaten werden gepubliceerd, [83].

Hoofdstuk 6 is gebaseerd op een artikel dat reeds opgestuurd werd voor pu-
blicatie, [98]. Hier richten we onze aandacht op de linearisatie en de volledige
discretisatie van het voorgaande probleem (2.1). In dit geval wordt de niet-
lineaire relatie tussen het magnetische en het elektrische veld op de grens licht
aangepast. Bovendien wordt de niet-lineaire vector G nu Lipschitz-continu ver-
ondersteld door de machtswet (4.4). Dit laat toe om de foutafschatting voor de
tijdsdiscretisatie, gebaseerd op de methode van Rothe, te verbeteren. Meer be-
paald vinden we dat de tijdsdiscretisatiefout kwadratisch afhangt van de lengte
van de tijdsstap. De linearisatie wordt uitgevoerd met behulp van het “fixed-
point” principe, terwijl voor de ruimtediscretisatie gebruik gemaakt wordt van
Whitney elementen (zie [65]). Eerst tonen we de welgesteldheid van de voorge-
stelde methode aan. Vervolgens bewijzen we de convergentie van de methode
en leiden we foutafschattingen af die afhangen van de keuze van de discretisatie-
parameters: lengte van de tijdsstap, grid-verfijning en het stopcriterium tussen
de iteraties in één tijdsstap.

We bestuderen de afhankelijkheid van de relatieve fout van onze methode
ten opzichte van elke parameter, namelijk α, η, τ en h op een aantal numerieke
voorbeelden. De convergentiesnelheid beantwoordt aan onze verwachtingen en
is in een aantal gevallen zelfs beter. A priori zou men verwachten dat een
linearisatieschema gebaseerd op een “fixed-point” principe traag is, maar onze
numerieke resultaten doen ons besluiten dat de methode snel, robuust en stabiel
is.

Wat betreft de interne iteraties, daalt de relatieve fout initiëel snel om ver-
volgens relatief constant te blijven. De reden hiervoor is dat in het begin de
linearisatiefout dominant is, maar bij toenemend aantal iteraties gedomineerd
wordt door de discretisatiefout. We concluderen dat hoe kleiner het grid, des te
kleiner de relatieve fout. Hierbij dient evenwel opgemerkt te worden dat de grid-
diameter binnen redelijke grenzen gekozen dient te worden om een excessieve
toename in computertijd en geheugengebruik te vermijden.

Het merendeel van de theoretische en numerieke resultaten uit dit hoofdstuk
werden gepresenteerd op de conferentie ICNAAM 2008 en werden samengevat
in een proceedingsbijdrage, [97].

Directe problemen in hoogfrequent elektromagnetisme

Tot het hoogfrequentiedomein (zie Hoofdstuk 7) behoren de studie van elek-
tromagnetische golven en de voortplanting van energie door materie. Dergelijke
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problemen worden meestal op onbegrensde gebieden geformuleerd. Numerieke
methoden voor de oplossing van uitwendige problemen hebben in het verleden
speciale aandacht gekregen. Sinds het pionierswerk van Engquist en Majda (zie
[35]) in 1977 werd de methode van de “Artificial Boundary Condition” (ABC)
veelvoudig toegepast om golfproblemen op te lossen. Deze methode introduceert
een artificiële grens in het beschouwde onbegrensde gebied om het computati-
oneel domein te beperken. Een ABC wordt dan opgelegd als de relatie die de
sporen van de golf op de fictieve grens verbindt en de voortplanting van de
golf door het oppervlak (van het computationeel domein naar het uitwendige)
modelleert.

In Hoofdstuk 8 gebruiken we één van de eenvoudigste ABCs, namelijk de
Silver-Müller randvoorwaarde met dissipatief karakter. Er wordt verder veron-
dersteld dat deze randvoorwaarde lineair is. De moeilijkheid van het probleem
ligt in het feit dat het volledige Maxwell stelsel beschouwd moet worden en
dat bij hoge frequenties de elektrische en magnetische velden onderling afhan-
kelijk zijn. In dit proefschrift behandelen we de ABC steunend op het werk
van H. Barucq (zie [7]), waar de voortplanting van elektromagnetische golven
in twee dimensies over een onbegrensd domein besproken wordt. We zijn er-
in geslaagd om het vermelde probleem te veralgemenen naar drie dimensies.
Een gedetaileerde analyse werd gepresenteerd op de NumAn 2008 conferentie,
met name de welgesteldheid, de tijdsdiscretisatie steunend op de achterwaartse
Euler methode en de lange-tijd stabiliteit voor de benaderde oplossing en de
foutafschatting. Deze fout blijkt lineair afhankelijk te zijn van de keuze van de
tijdsstap τ .

Een deel van deze resultaten werd gepubliceerd in een proceedingsbijdrage
(zie [82]). Verder werd een volledig artikel opgestuurd voor publicatie, zie [84].

Inverse problemen in laagfrequent elektromagnetisme

Het derde en laatste deel van dit proefschrift is gewijd aan de studie van
inverse problemen in laagfrequent elektromagnetisme. In Hoofdstuk 9 introdu-
ceren we het principe van inverse problemen en vervolgens richten we ons in
Hoofdstuk 10 op de bepaling van materiaalkarakteristieken.

Het bepalen van ongekende materiaaleigenschappen of geometrische data
vormt een interessant onderzoeksthema binnen het elektromagnetisme, met dui-
delijke praktische relevantie. Aangezien er steeds strengere eisen gesteld worden
aan hoogperformante toestellen, is het essentieel voor het ontwerp van elektro-
magnetische elementen dat bv. elektromagnetische verliezen, de permeabiliteit
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en de elektrische conductiviteit accuraat bepaald kunnen worden.
In het specifieke probleem behandeld in Hoofdstuk 10, is de te bepalen ma-

teriaalkarakteristiek een maat voor de elektromagnetische verliezen.
Na het geven van een wiskundige formulering van het probleem en van de de-

finitie van elektromagnetische verliezen passen we een tijdsdiscretisatie-schema
toe op het probleem, zoals gewoonlijk gebaseerd op de achterwaartse Euler me-
thode. In Sectie 10.3 introduceren we een specifieke randvoorwaarde die later
gebruikt wordt om de uniciteit van de oplossing te garanderen. Vervolgens on-
derzoeken we het karakter van de verliesfunctie. Steunend op de continüıteit,
dalend karakter en asymptotische aard van deze functie kunnen we het bestaan
van de oplossing bewijzen. Zoals gewoonlijk wordt de laatste sectie gewijd aan
een aantal numerieke experimenten.

Een aantal van de resultaten uit dit hoofdstuk werden gepresenteerd op de
ACOMEN 2008 conferentie (zie [99]). Verdere resultaten werden gepubliceerd
in [100].

Berekeningen

Het einde van elk hoofdstuk is gewijd aan numerieke voorbeelden die de
theoretische resultaten bevestigen. Al deze berekeningen werden uitgevoerd met
behulp van het pakket ‘The Finite Element Toolbox ALBERT’ ontwikkeld in
2000 door een team van Duitse wiskundigen (zie [77]). Voor de benadering van
elektrische en magnetische velden werd gebruik gemaakt van Witney elementen,
zoals gëımplementeerd door Baňas [9] en Cimrák [24].

In de experimenten beschouwen we telkens de eenheidskubus in R3 als com-
putationeel domein.
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Chapter 3

Functional analysis

This chapter is a brief overview of main definitions, symbols and spaces. Its
goal is to provide a sufficient background for understanding variational analysis
of weak formulations of Maxwell’s equations. For a summary we also refer to
the book Function spaces written by Kufner, John and Fuč́ık [59].

3.1 Basic knowledge

Throughout this thesis we consider an open bounded domain Ω ⊂ R3 with a
Lipschitz continuous boundary ∂Ω, usually denoted by Γ. A key property of
this type of domain is that it has a well-defined unit outward normal vector ν
at almost every point on Γ.

There are many criteria for smoothness of mathematical functions. The
most basic criterion may be continuity. The space of all continuous functions
defined on Ω is denoted by C(Ω). A function is said to be of class Ck(Ω) if
its derivatives up to the order k exist and are continuous. The function is said
to be of class C∞(Ω), or smooth, if it has derivatives of all orders. Ck0 (Ω) is
defined as the set of functions belonging to Ck(Ω) with a compact support in Ω.
The last subset of Ck(Ω) which has to be mentioned, namely Ck(Ω), includes
functions with bounded and uniformly continuous derivatives up to the order k
in Ω.

Any normed vector space X has a corresponding dual vector space X∗ that
consists of all continuous linear functionals defined on X. A norm of a contin-

19
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uous linear functional f is defined by

‖f‖X∗ = sup
x∈X

|f(x)|
‖x‖X

.

This turns the dual X∗ into a normed vector space, a Banach space.
Let J be a canonical mapping from a Banach space X into its second dual

X∗∗. A Banach space X is said to be reflexive if J(X) = X∗∗.
To become more familiar with the topic of functional analysis we refer to the
book of Rudin [75].

So far we talked about functions of a real variable and their appropriate
spaces. We now turn to an analysis of vector functions. To distinguish the
notation, the vector functions are in bold. Throughout the thesis we work with
vector functions of a vector variable in R3.

The Lebesgue spaces Lp(Ω) for p ≥ 1, see [29], are named after the fa-
mous french mathematician Henri Lebesgue. They form an important class of
examples of Banach spaces and are defined as follows:

Lp(Ω) =

{
u ∈ Ω→ R3; ‖u‖p =

(∫

Ω

|u(x)|p dx
)1/p

<∞
}
.

In words, Lp(Ω) is the set of all measurable functions whose absolute value
raised to the p-th power has a finite Lebesgue integral. A special case arises
when p = 2 (it is basic example of a Hilbert space) and we will use a simpler
notation ‖·‖ instead of ‖·‖2.

A Hilbert space ([47, 48]) is a vector space on which a scalar product is
defined. The scalar product between two real vectors u,v ∈ Rn is denoted by
u · v. The notation (u,v) is used for the scalar product in the L2(Ω) space

(u,v) =
∫

Ω

u · v. (3.1)

The L2(Ω)-inner product on the boundary Γ is written as (u,v)Γ =
∫

Γ

u · v.

A similar notation 〈u,v〉 is used for the duality relation, i.e. u ∈ U and
v ∈ U∗. The Lebesgue spaces Lp(Ω) and Lq(Ω) are dual to each other if their
exponents p, q > 1 are dual (conjugate) to each other, i.e. if 1/p+ 1/q = 1.

When 1 < p <∞, the space Lp(Ω) is reflexive.

Remark 3.1 The relation (3.1) can be interpreted either as a scalar product or
as a duality relation.
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We now proceed to the properties of mappings used in the theory of mono-
tone operators. We come back to this theory in Chapter 5 when proving the
existence and uniqueness of a weak solution to the boundary value problem.

By Lipschitz continuity of a mapping F : X → Y we mean that there exists
a constant C ≥ 0 such that the inequality

‖F (x)− F (y)‖Y ≤ C ‖x− y‖X
holds for all x,y in the definition domain of the mapping F .

Let X be a real normed space. Then the mapping F : X → X∗ is said to
be monotone if

〈F (x)− F (y),x− y〉 ≥ 0 (3.2)

for all x,y from the definition domain of the mapping F . If the equality in (3.2)
holds only for x = y, then F is said to be strictly monotone.

The same mapping F : X →X∗ is said to be coercive if

〈F (x),x〉 ≥ c(‖x‖X) ‖x‖X ,

where c(t) for t ≥ 0 is a real–valued function such that c(t)→∞ as t→∞.
Coercivity is also one of the properties of bilinear forms. A bilinear form

a : X ×X → R is said to be coercive or X-elliptic if there exists a constant
C > 0 such that

a(x,x) ≥ C ‖x‖2X ∀x ∈X.

Another concept we have to be familiar with is that of the convergence.
Let {xn} be a sequence in a normed linear space X. Then the sequence {xn}
converges to x ∈X

. strongly : xn → x if lim
n→∞

‖xn − x‖X = 0;

. weakly : xn ⇀ x if lim
n→∞

φ(xn) = φ(x) ∀φ ∈X∗.

3.2 Sobolev spaces

We have already mentioned that continuity is the basic criterion of a function
smoothness. A stronger notion of smoothness is that of differentiability and an
even stronger is that the derivative also be continuous. Differentiable functions
are important in many areas, and in differential equations in particular. But
it has been observed in the 20th century that the spaces C1,C2, etc. are not
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exactly the right spaces to study solutions of differential equations. The reason
is that the classical solution of differential equation does not always exist, so we
have to look for the variational one. The variational theory builds on Sobolev
spaces. Thus, we conclude that Sobolev spaces are a necessary replacement for
the spaces of continuous functions in which one looks for solutions of partial
differential equations.

In this chapter we summarize some basic results concerning Sobolev spaces.
The basic references for this material are the books of Adams [1] and Girault
and Raviart [42].

Let C∞0 (Ω)∗ denote the dual space to C∞0 (Ω), often called the space of
distributions on Ω.
Let α = (α1, . . . , αN ) ∈ NN and set

|α| =
N∑

i=1

αi.

The distributional derivative ∂αu ∈ C∞0 (Ω)∗ of a function u ∈ C∞0 (Ω)∗ is
defined by

〈∂αu,φ〉 = (−1)|α|〈u, ∂αφ〉 ∀φ ∈ C∞0 (Ω).

In the case of an |α|–times differentiable distribution u, the derivative ∂αu
coincides with the usual notation

∂αu

∂xα
=

∂|α|u

∂xα1
1 . . . ∂xαNN

.

We are now ready to introduce the fundamental Sobolev space for each
integer k ≥ 0 and real p : 1 ≤ p ≤ ∞

Wk,p(Ω) = {v ∈ Lp(Ω) | ∂αv ∈ Lp(Ω) for all |α| ≤ k}, (3.3)

which is a Banach space if it is equipped with the norm

‖v‖Wk,p(Ω) =


 ∑

|α|≤k

∫

Ω

|∂αv|p



1/p

. (3.4)

In other words, it is the space of functions defined almost everywhere in Ω
having distributional derivatives in Lp(Ω) up to the order k.

The space Wk,p(Ω) is separable for 1 ≤ p <∞ and reflexive for 1 < p <∞.
Sobolev spaces with p = 2 are especially important because they form a Hilbert
space; we use a special notation Hk(Ω) in this case.
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The following theorem states that functions from the Sobolev space Wk,p(Ω)
are more regular than functions from the Lebesgue space Lq(Ω) (see [69] for the
proof).

Theorem 3.1 If kp ≤ 3 then Wk,p(Ω) ⊂ Lq(Ω) for 1/q = 1/p− k/3 and there
exists a constant C such that

‖u‖Lq(Ω) ≤ C ‖u‖Wk,p(Ω) ∀u ∈Wk,p(Ω).

The analysis of Maxwell’s equations is a bit more complicated. When speak-
ing about the regularity of the solution, it is necessary to use Sobolev spaces
of fractional order. In a few words we go into these spaces in the following
subsections.

3.2.1 The space H(div; Ω)

In this section we state some results concerning the Hilbert space of vector
functions with square–integrable divergence denoted by

H(div; Ω) = {u ∈ L2(Ω);∇ · u ∈ L2(Ω)} (3.5)

and equipped with the graph norm

‖u‖H(div;Ω) =
(
‖u‖2L2(Ω) + ‖∇ · u‖2L2(Ω)

)1/2

. (3.6)

To ensure continuity conditions across interfaces between dissimilar materials,
it is necessary to check if functions in H(div; Ω) have a well–defined normal
component on Γ. For a function v ∈ C∞(Ω) the normal trace operator is
defined as

γn(v) = v |Γ ·ν. (3.7)

The following theorem, see [42], shows that this continuity condition is satisfied.

Theorem 3.2 Let Ω ⊂ R3 be a bounded Lipschitz domain with unit outward
normal ν. Then

(1) the mapping γn defined by (3.7) can be extended by continuity to a con-
tinuous linear map γn from H(div; Ω) onto H−1/2 (Γ);

(2) the following Green’s theorem holds for functions v ∈ H(div; Ω) and test
functions φ ∈ H1(Ω):

(v,∇φ) + (∇ · v, φ) = 〈φ, γn(v)〉Γ. (3.8)
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3.2.2 The space H(curl ; Ω)

Now, we focus on the space of central importance for Maxwell’s equations. It
corresponds to the space of finite–energy solutions:

H(curl ; Ω) = {u ∈ L2(Ω);∇× u ∈ L2(Ω)}. (3.9)

This space of vector functions with L2(Ω) integrable curl operator are associated
with the graph norm

‖u‖H(curl ;Ω) =
(
‖u‖2L2(Ω) + ‖∇ × u‖2L2(Ω)

)1/2

. (3.10)

Further, we introduce the subspace H0(curl ; Ω) = closure of C∞0 (Ω) in
norm (3.10). The following Lemma 3.1 gives an alternative characterization of
functions in H0(curl ; Ω), for proof see [42].

Lemma 3.1 Let Ω ⊂ R3 be a bounded Lipschitz domain and let u ∈ H(curl ; Ω)
be such that for every φ ∈ C∞(Ω)

(∇× u,φ)− (u,∇× φ) = 0.

Then u ∈ H0(curl ; Ω).

In order to use H(curl ; Ω) as the energy space for Maxwell’s equations, it
has to be verified that functions in this space have a well–defined tangential
trace [2, 16–18]. For any smooth vector function v ∈ C∞(Ω) there are two
traces defined by

γt(v) = ν × v |Γ,
γT (v) = (ν × v |Γ)× ν. (3.11)

The trace γt gives rise to the following theorem.

Theorem 3.3 Let Ω ⊂ R3 be a bounded Lipschitz domain. Then

(1) the trace mapping γt can be extended by continuity to a continuous linear
map from H(curl ; Ω) into H−1/2(Γ);

(2) the following Green’s theorem holds for any v ∈ H(curl ; Ω) and any test
function φ ∈ H1(Ω):

(∇× v,φ)− (v,∇× φ) = 〈γt(v),φ〉Γ. (3.12)

Remark 3.2 The map γt is not surjective.
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A similar result for the mapping γT is not valid for Lipschitz domains, be-
cause even when v ∈ H1(Ω), γt is not regular enough. Therefore, we follow the
idea of [20] to define the trace space Y (Γ) :

Y (Γ) :=
{
f ∈ H−1/2(Γ)

∣∣∣ ∃v ∈ H(curl ; Ω) with γt(v) = f
}
,

with norm
‖f‖Y (Γ) = inf

v∈H(curl ;Ω);γt(v)=f
‖v‖H(curl ;Ω) .

We then have the following result.

Theorem 3.4 The space Y (Γ) is a Hilbert space. Then

(1) the trace mapping γt : H(curl ; Ω)→ Y (Γ) is surjective;
the map γT : H(curl ; Ω)→ Y (Γ)∗ is well-defined;

(2) for any v ∈ H(curl ; Ω) and φ ∈ H(curl ; Ω) one has

(∇× v,φ)− (v,∇× φ) = 〈γt(φ), γT (v)〉Γ. (3.13)

The definition of the trace space Y (Γ) is not easy to use as one cannot judge
whether f belongs to Y (Γ) unless one constructs its extension to the whole Ω
and tests if this extension belongs to H(curl ; Ω).

For more exhaustive information about trace spaces, see [16–18].

Remark 3.3 For a Lipschitz domain it is known that γT is surjective. The
proof can be found in [18].



26 Functional analysis



Part I

Direct problems in
low-frequency

electromagnetism





Chapter 4

Problem formulation

The low-frequency domain includes the major part of electromagnetic devices
like motors, relays and transformers. These are all applications at power fre-
quencies below a few tens of kHz. Strictly speaking, any application in which
displacement currents can be neglected is a low-frequency application. This case
corresponds to a steady state (see Section 1.2), and we can, in general, study
electric fields and magnetic fields as separate quantities.

We consider an open bounded domain Ω ⊂ R3 with a Lipschitz boundary
Γ occupied by a ferromagnetic material. The electromagnetic field in Ω is de-
scribed by the vector fields B- the magnetic induction, H- the magnetic field,
and E- the electric field as was introduced in the first chapter. Further, we
assume linear magnetic materials, governed by the constitutive law (1.10)

B = µ0H.

The scalar µ0 denotes the magnetic permeability of free space. The whole
domain Ω is assumed to be conductive, i.e. σ > 0.

We deal with the steady state eddy current problem already derived in Sec-
tion 1.2, i.e.

∇×H = Ja + σE,
∂tB +∇×E = 0. (4.1)

The system (4.1) is accompanied with a non-linear boundary condition be-
tween the normal components of H and E, corresponding to a non-perfect
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G(H×ν)

H×ν

(a) power law (4.3)

ba H×ν

G(H×ν)

(b) modified power law (4.4),
also called Lipschitz continu-
ous case

Figure 4.1: The sketch of the dependence of the vector functionG on the normal
component of the magnetic field H used in our model to illustrate a non-perfect
contact of two materials on the boundary.

contact of different materials at the boundary. In other words, the material on
one side of the boundary does not allow the field to penetrate without loosing
energy. This can be described in terms of an absorbing boundary condition, see
(1.27). For a non-perfect contact see relations (1.25) and (1.26). Simplified, we
consider the following power law non-linearity

ν ×E = ν ×G (H × ν) . (4.2)

The aim of this part of the thesis is to analyze two different forms of the
nonlinear vector field G following from the power law (4.2).

Firstly, we consider a non-perfect boundary condition expressed by the vector
function

G (H × ν) = |H × ν|α−1
H × ν α ∈ (0, 1] (4.3)

depicted in Figure 4.1(a). Notice that (4.2) leads to the following dissipation of
energy on the boundary

(E ×H) · ν = G (H × ν) · (H × ν) = |H × ν|α+1
.

The derivation of the magnetic field in the zero region is unbounded, therefore
we associate the power law (4.3) with the degenerate case. That is, the behavior
of the conductor is unpredictable for very small values of H.
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In order to guarantee an appropriate mathematical behavior of the problem,
the nonlinearity G is slightly modified, namely:

G(H × ν) =





aα−1H × ν 0 ≤ |H × ν| < a,
|H × ν|α−1H × ν a ≤ |H × ν| ≤ b,
bα−1H × ν b < |H × ν|

(4.4)

for some fixed positive constants 0 < a < b, see Figure 4.1(b). The definition
(4.4) assures that the newly defined vector field is Lipschitz continuous. The
proof of this important analytical property can be found in Chapter 6 and it
is also the reason why we refer to this modified problem as to the Lipschitz
continuous case.

One can also consider a more general functionG, which is continuous, mono-
tone and coercive in appropriate spaces. Then, as would be expected, the anal-
ysis of the problem is more difficult.

A non-linear degenerate BC (4.3) is considered for the generalization of the
classical Silver-Müller condition, see Section 1.3.1.

For ease of the exposition, we set µ0 = σ = 1 and Ja = 0, in order to focus
on the non-linearity in the problem setting.

By employing the constitutive law (1.10) and after eliminating the electric
field from the system of Maxwell’s equations (4.1) we arrive at the boundary
value problem in terms of the magnetic field only

∂tH +∇×∇×H = 0 in Ω,
ν ×∇×H = ν ×G (H × ν) on Γ. (4.5)

Hence, the variational formulation of (4.5) together with initial condition
reads as follows:
Find H(t) ∈ V , such that

(∂tH,ϕ) + (∇×H,∇×ϕ) + (G(H × ν),ϕ× ν)Γ = 0,
H(0) = H0

(4.6)

holds for any ϕ ∈ V and for almost every t ∈ (0, T ).
Depending on the choice of the power law nonlinearity, V denotes an ap-

propriate space of functions. It is specified for the Lipschitz and degenerate
(non-Lipschitz) problem separately.

Once the problem is defined, a numerical scheme for finding an approxi-
mation of the solution needs to be developed. We keep sticked to this goal
throughout the following two chapters.
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Chapter 5

Time discretization

This chapter is based on the article [83] where our main goal is to design a
time-discrete numerical scheme for the approximation of an exact solution to
the problem (4.5). The Silver-Müller boundary condition (4.2) is coupled with
the power law nonlinearity (4.3).

The stabilization of Maxwell’s equations with space-time variable coefficients
by means of linear or non-linear Silver-Müller boundary condition has been
studied in [70]. This is based on some stability estimates that are obtained
using the “standard” identity with multiplier and appropriate properties of the
feedback.

The decay rates for the energy for the full Maxwell’s system have been
derived in [30, 31]. The Galerkin approximation of a solution for a linear Silver-
Müller BC has been studied in [23].

This chapter splits naturally into a few sections. First, we establish exis-
tence and uniqueness of a weak solution in a suitable function space under the
minimal regularity assumptions on the boundary Γ and the initial data H0.
We design a non-linear time-discrete approximation scheme. Time discretiza-
tion is performed using the well known Rothe’s method, see e.g. [55]. The a
priori estimates are helpful in the next section for proving the convergence of
our method. The proof of Theorem 5.2 based on Minty-Browder’s trick is re-
garded as the main theoretical result of this chapter. Finally the error estimates
for the time discretization are derived in Theorem 5.3. The chapter ends with
some numerical experiments confirming the efficiency of the proposed scheme.
These results will be presented at the international conference on Mathematical
Modeling and Computational Physics 2009 in Dubna.
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Taking the degenerate non-Lipschitz power law (4.3) as a boundary condi-
tion to the problem (4.5), the variational formulation together with an initial
condition reads

(∂tH,ϕ) + (∇×H,∇×ϕ) +
(
|H × ν|α−1

H × ν,ϕ× ν
)

Γ
= 0,

H(0) = H0

(5.1)

for any ϕ ∈ V and for almost all t ∈ (0, T ).
In this case the space of test functions is denoted by

V = {ϕ ∈ H(curl ; Ω); ϕ× ν ∈ L1+α (Γ)} ,

which is a natural choice for our problem. V is a reflexive Banach space endowed
with the sum-norm ‖ϕ‖V = ‖ϕ‖H(curl ;Ω) + ‖ϕ× ν‖L1+α(Γ). The dual space to
V is denoted by V ∗.

5.1 Discretization scheme

The time discretization is based on the backward Euler’s method as was men-
tioned. We use an equidistant partitioning with a time step τ = T

n , for any
n ∈ N. Therefore, the time interval [0, T ] is divided into n subintervals [ti−1, ti]
with ti = iτ . For any function z we introduce the following notation

zi = z(ti), δzi =
zi − zi−1

τ
.

We suggest the non-linear recurrent approximation scheme for i = 1, . . . , n
and ϕ ∈ V

(δhi,ϕ) + (∇× hi,∇×ϕ) +
(
|hi × ν|α−1

hi × ν,ϕ× ν
)

Γ
= 0,

h0 = H0.
(5.2)

5.1.1 Well–posedness

The existence and uniqueness of a weak solution on each time step is guaranteed
by the following lemma.

Lemma 5.1 Assume H0 ∈ V ∗. Then there exists a uniquely determined
hi ∈ V solving (5.2) for any i = 1, . . . , n.
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Proof: We apply the theory of monotone operators (see [41, 91]) to show the
existence of a weak solution to the boundary value problem (5.2). We consider
a non-linear operator G(h) : V → V ∗ defined by

(G(h),ϕ) :=
(
h

τ
,ϕ

)
+ (∇× h,∇×ϕ) +

(
|h× ν|α−1

h× ν,ϕ× ν
)

Γ

for any ϕ ∈ V .
Now, we introduce the real-valued function g

g(s) = sα−1 for s > 0. (5.3)

Thus, our nonlinearity takes the form G(x) = g(|x|)x for all x ∈ R3.
The Gâteaux differential of G(x) in the direction h is

DG(x,h) = g′(|x|)h · x|x| x+ g(|x|)h.

The monotonicity of G(x) follows from [91], i.e. for some θ ∈ (0, 1) it holds

(G(x+ h)−G(x),h)Γ = ((DG(x+ θh),h),h)Γ

= g(|x+ θh|)|h|2 + g′(|x+ θh|) (h · (x+ θh))2

|x+ θh|
≥ [g(|x+ θh|)− |g′(|x+ θh|)| |x+ θh|] |h|2
≥ α|x+ θh|α−1|h|2
≥ 0.

(5.4)
Further, we can write

(G(h),h) =
‖h‖2
τ

+ ‖∇ × h‖2 +
∫

Γ

|h× ν|1+α.

One can easily see that for 0 < τ < 1

(G(h),h)
‖h‖V

≥
‖h‖2H(curl ;Ω) + ‖h× ν‖1+α

L1+α(Γ)

‖h‖H(curl ;Ω) + ‖h× ν‖L1+α(Γ)

−→∞

as ‖h‖V →∞.
The findings above immediately imply that G(h) is monotone, hemi-continuous

and V -coercive. Thus, according to the theory of monotone operators (cf. Va-
jnberg [91, Thm. 18.2]) we see that if h0 ∈ V ∗, then for any i = 1, . . . , n there
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exists a weak solution hi ∈ V . The uniqueness of each weak solution (for any
time layer i) follows from

(G(u)− G(v),u− v) ≥ ‖u− v‖2H(curl ;Ω) .

�

5.2 A priori estimates

As a starting point for proving the convergence and estimating the error of the
time discrete scheme, a priori estimates are needed to be done. They are derived
for hi for each time step i = 1, . . . , n.

Lemma 5.2 Assume H0 ∈ L2(Ω). Then there exists a positive constant C
such that (for any j = 1, . . . , n)

‖hj‖2 +
j∑

i=1

‖hi − hi−1‖2 +
j∑

i=1

‖∇ × hi‖2 τ +
j∑

i=1

‖hi × ν‖1+α
L1+α(Γ) τ ≤ C.

Proof: Setting ϕ = hi in (5.2), multiplying by τ and summing up for i = 1, . . . , j
we have

j∑

i=1

(δhi,hi) τ +
j∑

i=1

‖∇ × hi‖2 τ +
j∑

i=1

‖hi × ν‖1+α
L1+α(Γ) τ = 0.

For the first term on the left–hand side we use the Abel summation and we
deduce

‖hj‖2 +
j∑

i=1

‖hi − hi−1‖2 +
j∑

i=1

‖∇ × hi‖2 τ +
j∑

i=1

‖hi × ν‖1+α
L1+α(Γ) τ ≤ C ‖h0‖2 .

�

For next a priori estimates we need the following technical lemma.

Lemma 5.3 Let g : R → R be a non-negative continuous function such that
G(s) := g(s)s is monotonically increasing. Let ΦG be the primitive function of
G. Then for any vectors a, b ∈ R3 we have

ΦG(|b|)− ΦG(|a|) ≤ g(|b|)b · (b− a).
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Proof: From the mean-value theorem and the Cauchy inequality we deduce

ΦG(|b|)− ΦG(|a|) =
∫ |b|

|a|
g(s)s ds = g(θ)θ(|b| − |a|)

≤ g(|b|)|b|(|b| − |a|) = g(|b|)
(
|b|2 − |b||a|

)

≤ g(|b|)b · (b− a)

for some θ between |a| and |b|. �

A slightly higher regularity of the initial data H0 implies better regularity
of hj , as the following lemma shows.

Lemma 5.4 Assume H0 ∈ V . Then there exists a positive constant C such
that (for any j = 1, . . . , n)

j∑

i=1

‖δhi‖2 τ + ‖∇ × hj‖2 +
j∑

i=1

‖∇ × (hi − hi−1)‖2 + ‖hj × ν‖1+α
L1+α(Γ) ≤ C.

Proof: Settingϕ = δhi in (5.2), multiplying by τ and summing up for i = 1, . . . , j
yields

j∑

i=1

‖δhi‖2 τ +
j∑

i=1

(∇× hi,∇× [hi − hi−1])

+
j∑

i=1

(
|hi × ν|α−1hi × ν, [hi − hi−1]× ν

)
Γ

= 0.

(5.5)

For the third term we apply Lemma 5.3 and we have
j∑

i=1

(
|hi × ν|α−1hi × ν, [hi − hi−1]× ν

)
Γ

≥ 1
α+ 1

j∑

i=1

∫

Γ

[
|hi × ν|α+1 − |hi−1 × ν|α+1

]

=
1

α+ 1

(
‖hj × ν‖1+α

L1+α(Γ) − ‖h0 × ν‖1+α
L1+α(Γ)

)
.

Thus, applying the Abel summation to the second term in (5.5), we obtain
j∑

i=1

‖δhi‖2 τ+‖∇ × hj‖2+
j∑

i=1

‖∇ × (hi − hi−1)‖2+‖hj × ν‖1+α
L1+α(Γ) ≤ C ‖h0‖V .

�
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t0 t1 t2 t3 t4 t5

(a) piecewise linear in time func-
tion f5(t)

t0 t1 t2 t3 t4 t5

(b) step in time function f5(t)

Figure 5.1: Definition of piecewise linear and step in time functions related to
a general function f(t) plotted as a curved line

5.3 Convergence

In this section we prove the convergence of our approximate solution to a weak
solution of (5.1) in suitable function spaces.

First, we introduce the continuous piecewise linear in time vector field hn
(i = 1, . . . , n), see Figure 5.1(a), given by

hn(0) = H0,
hn(t) = hi−1 + (t− ti−1)δhi for t ∈ (ti−1, ti].

Next, we define the step vector field hn, see Figure 5.1(b)

hn(0) = H0,

hn(t) = hi for t ∈ (ti−1, ti].

Using the new notation, we rewrite (5.2) as (for any ϕ ∈ V )

(∂thn,ϕ) +
(
∇× hn,∇×ϕ

)
+
(∣∣hn × ν

∣∣α−1
hn × ν,ϕ× ν

)
Γ

= 0. (5.6)

Now, we prove that the sequences {hn} and {hn} are Cauchy in appropriate
function spaces.
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Theorem 5.1 Let H0 ∈ V . Then there exists a positive C such that

max
t∈[0,T ]

‖hn(t)− hm(t)‖2 +
∫ T

0

∥∥∇× [hn − hm]
∥∥2

+
∫ T

0

∫

Γ

[
|hn × ν|

α+1
2 − |hm × ν|

α+1
2

]2
≤ C

(
1
n

+
1
m

)
.

Proof: Let n and m be arbitrary natural numbers. We subtract (5.6) for n = m
from (5.6). Then we put ϕ = hn−hm and we integrate the equation over (0, t)
for any t ∈ [0, T ]. We get

∫ t

0

(∂thn − ∂thm,hn − hm) +
∫ t

0

∥∥∇× (hn − hm)
∥∥2

+
∫ t

0

(
|hn × ν|α−1hn × ν − |hm × ν|α−1hm × ν,hn × ν − hm × ν

)
Γ

=
∫ t

0

(
∂thn − ∂thm,hn − hn + hm − hm

)
.

(5.7)

The first term on the left can be written as
∫ t

0

(∂thn − ∂thm,hn − hm) = 1
2 ‖hn(t)− hm(t)‖2 .

For the second term in (5.7) we use the following algebraic inequality, which
can be proved in a standard way and which is valid for any a, b, y, z ≥ 0

4ab
(
y
a+b
2 − z a+b2

)2

≤ (a+ b)2 (ya − za)
(
yb − zb

)
. (5.8)

From (5.8) and the Cauchy inequality we deduce
(
|y|α−1y − |z|α−1z

)
(y − z) = |y|α+1 + |z|α+1 − |z|α−1zy − |y|α−1zy

≥ |y|α+1 + |z|α+1 − |z|α|y| − |y|α|z|
= (|y|α − |z|α) (|y| − |z|)
≥ 4α

(α+ 1)2

(
|y|α+1

2 − |z|α+1
2

)2

.

Therefore, the boundary term in (5.7) can be estimated from below as follows
∫ t

0

(
|hn × ν|α−1hn × ν − |hm × ν|α−1hm × ν,hn × ν − hm × ν

)
Γ

≥ 4α
(α+ 1)2

∫ t

0

∫

Γ

[
|hn × ν|

α+1
2 − |hm × ν|

α+1
2

]2
.
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The right-hand side in (5.7) can be estimated using the Cauchy inequality. We
successively deduce

∫ t

0

(
∂thn − ∂thm,hn − hn + hm − hm

)

≤ C
∫ t

0

(‖∂thm‖+ ‖∂thn‖)
(‖∂thn‖

n
+
‖∂thm‖
m

)

≤ C
(

1
n

+
1
m

)
.

Collecting all estimates we arrive at

‖hn(t)− hm(t)‖2 +
∫ t

0

∥∥∇× [hn − hm]
∥∥2

+
∫ t

0

∫

Γ

[
|hn × ν|

α+1
2 − |hm × ν|

α+1
2

]2
≤ C

(
1
n

+
1
m

)
,

which is valid for any t ∈ [0, T ]. From this we easily derive the desired result.�

Our next step is to show the existence of a weak solution of (5.1). To do
this, we use the stability results of the previous lemmas and Theorem 5.1.

Theorem 5.2 (convergence) Let H0 ∈ V . Then there exists a H ∈ V such
that

(i) hn →H in L2 ((0, T ),H(curl ; Ω))

(ii) hn →H in L2 ((0, T ),L2(Ω))

(iii) ∂thn ⇀ ∂tH in L2 ((0, T ),L2(Ω))

(iv) ν×|hn×ν|α−1hn×ν → ν×|H×ν|α−1H×ν in Lα+1
α

(
(0, T ),Lα+1

α
(Γ)
)

(v) H is the weak solution of (5.1).

Proof:
(i) and (ii) of Theorem 5.1 claims that hn is a Cauchy sequence in L2 ((0, T ),L2(Ω)).
According to Lemma 5.4 we see that

∫ T

0

∥∥hn − hn
∥∥2 ≤ C

n2

∫ T

0

‖∂thn‖2 ≤
C

n2
→ 0.
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Thus hn and hn have the same limit in L2 ((0, T ),L2(Ω)). Combined with The-
orem 5.1 this implies that hn is a Cauchy sequence in L2 ((0, T ),H(curl ; Ω)) ⊂
L2 ((0, T ),L2(Ω)), from which we easily conclude the proof.

(iii) The assertion follows readily from Lemma 5.4 and

(hn(t),ϕ)− (H0,ϕ) =
∫ t

0

(∂thn,ϕ)

passing to the limit for n→∞.
(iv) Using (i) and the continuous embedding γ : ϕ 7→ ϕ×ν from H(curl ; Ω)

onto H−1/2 (div,Γ) (cf. Cessenat [19, p.35]) we have

hn × ν →H × ν in L2

(
(0, T ),H−1/2 (div,Γ)

)
. (5.9)

From Lemma 5.4 we see that hn × ν ∈ Lα+1 ((0, T ),Lα+1(Γ)), which is a re-
flexive Banach space. According to (5.9) we deduce that hn × ν ⇀ H × ν in
Lα+1 ((0, T ),Lα+1(Γ)). In particular, the trace of H(t) belongs to Lα+1(Γ) a.e.
in (0, T ), so H(t) belongs to V a.e. in (0, T ).

Now, we are going to use the Minty-Browder trick (cf. [36]), which exploits
the monotone structure of a non-linear operator. Due to the monotonicity (see
Lemma 5.1) we can write
∫ T

0

(
|hn × ν|α−1hn × ν − |u× ν|α−1u× ν,hn × ν − u× ν

)
Γ
≥ 0, (5.10)

which is valid for any vector field u with u× ν ∈ Lα+1 ((0, T ),Lα+1(Γ)).
Now, we let n→∞ in (5.10). We have

∫ T

0

(
|u× ν|α−1u× ν,hn × ν − u× ν

)
Γ

→
∫ T

0

(
|u× ν|α−1u× ν,H × ν − u× ν

)
Γ
.

From Lemma 5.4 we see that ν × |hn×ν|α−1hn×ν ∈ Lα+1
α

(
(0, T ),Lα+1

α
(Γ)
)

,

which is a reflexive Banach space. Therefore, ν×|hn×ν|α−1hn×ν ⇀ ν×z×ν
in Lα+1

α

(
(0, T ),Lα+1

α
(Γ)
)

. Thus

∫ T

0

(
|hn × ν|α−1hn × ν,u× ν

)
Γ
→
∫ T

0

(z × ν,u× ν)Γ .
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Further, we obtain

lim
n→∞

∫ T

0

∫

Γ

|hn × ν|α+1 = lim
n→∞

∫ T

0

(
|hn × ν|α−1hn × ν,hn × ν

)
Γ

= lim
n→∞

∫ T

0

−
(
∂thn,hn

)
−
(
∇× hn,∇× hn

)

=
∫ T

0

− (∂tH,H)− (∇×H,∇×H)

= lim
n→∞

∫ T

0

− (∂thn,H)−
(
∇× hn,∇×H

)

= lim
n→∞

∫ T

0

(
|hn × ν|α−1hn × ν,H × ν

)
Γ

=
∫ T

0

(z × ν,H × ν)Γ .

(5.11)
Therefore, passing to the limit for n→∞ in (5.10) we obtain

∫ T

0

(
z × ν − |u× ν|α−1u× ν,H × ν − u× ν

)
Γ
≥ 0.

Now, we set u = H + εw for any w with w × ν ∈ Lα+1 ((0, T ),Lα+1(Γ)) and
any ε > 0. We get

∫ T

0

(
z × ν − | (H + εw)× ν|α−1 (H + εw)× ν,w × ν

)
Γ
≤ 0.

Passing ε→ 0 we can write
∫ T

0

(
ν × z × ν − ν × |H × ν|α−1H × ν,w

)
Γ
≤ 0.

Now, replacing w by −w, we deduce that also the reverse inequality holds and
therefore ∫ T

0

(
ν × z × ν − ν × |H × ν|α−1H × ν,w

)
Γ

= 0,

which yields the desired result

ν × z × ν = ν × |H × ν|α−1H × ν

in the dual space of admissible test fields.
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Hence, the relation (5.11) implies

lim
n→∞

∫ T

0

∫

Γ

|hn × ν|α+1 =
∫ T

0

∫

Γ

|H × ν|α+1.

This, together with the fact that

ν × |hn × ν|α−1hn × ν ⇀ ν × z × ν = ν × |H × ν|α−1H × ν

in Lα+1
α

(
(0, T ),Lα+1

α
(Γ)
)

implies the strong convergence in this space.
(v) We start from (5.6). Integrating this identity over (0, t) for any t ∈ (0, T )

yields
∫ t

0

(∂thn,ϕ) +
∫ t

0

(
∇× hn,∇×ϕ

)
+
∫ t

0

(∣∣hn × ν
∣∣α−1

hn × ν,ϕ× ν
)

Γ
= 0.

We pass to the limit for n→∞. For the first term we use (iii), for the second
term (i) and finally for the third term we apply (iv). We arrive at
∫ t

0

(∂tH,ϕ) +
∫ t

0

(∇×H,∇×ϕ) +
∫ t

0

(
|H × ν|α−1

H × ν,ϕ× ν
)

Γ
= 0.

Finally, differentiating the resulting identity with respect to the time variable
t, concludes the proof. �

5.4 Error estimates

Let us note that Theorem 5.1 immediately implies the error estimates for the
time discretization method.

Theorem 5.3 (error estimates) Let H0 ∈ V . Then there exists a positive
constant C such that

max
t∈[0,T ]

‖hn(t)−H(t)‖2 +
∫ T

0

∥∥∇× [hn −H]
∥∥2

+
∫ T

0

∫

Γ

[
|hn × ν|

α+1
2 − |H × ν|α+1

2

]2
≤ Cτ.

Proof: The proof follows exactly the same line as in Theorem 5.1, therefore we
omit it. Formally it can be obtained from Theorem 5.1 by letting m→∞. �
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5.5 Numerical experiments

The efficiency of the backward Euler method (5.2) is demonstrated on several
numerical examples. To find the exact solution that solve original problem (5.1)
is not completely trivial. Therefore we choose exact solution and accordingly we
adapt the right-hand side and the boundary condition of the original problem.
The problem becomes more complicated, but on the other hand we are able to
evaluate the exact error of the method.

The test problem reads as follows:

∂tH +∇×∇×H = F in Ω ,
ν ×∇×H = ν × (|H × ν|α−1H × ν) + J on Γ. (5.12)

Applying the backward Euler method yields

1
τ

(Hi,ϕ) + (∇×Hi,∇×ϕ) +
(
|Hi × ν|α−1Hi × ν,ϕ× ν

)
Γ

+ (J ,ϕ)Γ

= (F ,ϕ) +
1
τ

(Hi−1,ϕ) .

Even though the problem is discretized in time, it still retains its nonlinear
character. Therefore we apply the Newton method, see Appendix, as a standard
tool for solving nonlinear PDEs.
First, an auxiliary functional F (v) for v ∈ V with its Fréchet derivative has to
be defined. We can write

(F (v),ϕ) =
1
τ

(v,ϕ) + (∇× v,∇×ϕ) +
(
|v × ν|α−1v × ν,ϕ× ν

)
Γ

+ (J ,ϕ)Γ − (F ,ϕ)− 1
τ

(Hi−1,ϕ) ,

(DF (v)ϕi,ϕj) =
1
τ

(ϕi,ϕj) + (∇×ϕi,∇×ϕj)

+|v × ν|α−1

[
(α− 1) < v × ν,ϕi × ν >< v × ν,ϕj × ν >

|v × ν|2
]

Γ
+|v × ν|α−1

[
< ϕi × ν,ϕj × ν >

]
Γ
,

where ϕi,ϕj ∈ V .
On each time level Newton’s method solves:

F (Hi) = 0 .

Starting with an initial guess H0 = 0 one computes

DF (Him)dm = F (Him) for m > 0
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and sets
Him+1 = Him − dm

until ‖dm‖ < 1.0 · 10−6 .
The parameter of nonlinearity α is chosen following the theory, i.e. α ∈ (0, 1].

The closer to zero this parameter is, the more nonlinear the nature of the prob-
lem is and hence more difficult to solve. For α = 1 the problem acquires linear
character and our scheme is “flawless”.1

The efficiency of the combination of Newton’s and backward Euler’s method
is studied on the basis of the absolute error from Theorem 5.3:

max
t∈[0,T ]

‖hn(t)−H(t)‖2 +
∫ T

0

∥∥∇× [hn −H]
∥∥2

+
∫ T

0

∫

Γ

[
|hn × ν|

α+1
2 − |H × ν|α+1

2

]2
.

(5.13)

5.5.1 Exact solution linear in space and quadratic in time

First, we consider the problem (5.12), where the vector fields F and J are given
in such a way that the exact solution H(x, t) fulfills

H(x, t) =




5x2 − 8x1 + t2

8x0 − 10x2 + 2t2 + 1
10x1 − 5x0 + 3t2


 . (5.14)

Theorem 5.3 states the linear dependency of the absolute error of the nu-
merical scheme on the choice of discretization parameter τ . In our experiments
two parameters of nonlinearity, namely α = 0.1 and α = 0.7, were chosen. The
accuracy of the numerical scheme was tested for six different lengths of the time
step τ . As one can see in Figure 5.2, the absolute error decreases linearly with
the decreasing value of the parameter τ .

We have also studied the sensibility of our problem to the size of the mesh.
As Tables 5.1 and 5.2 show, the accuracy of the calculated solutions does not
depend on the mesh refinement. This is due to the fact that the exact solution to
our test problem is linear in space and as such exactly fits by Whitney’s elements
even on a coarse grid. As a consequence the absolute error is not decreasing; on
the contrary, a slight increase is observed because of accumulation of calculation

1The computational error between our approximation and the exact solution gains values
in ∗.10−31. Such a number is considered a machine zero.
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error. In the case of big nonlinearity, α = 0.1, the length of the time step τ = 0.1
is not adequate to the choice of the discretization parameter h. In other words,
the combination of a too big time step with a too fine mesh causes divergence
of the numerical scheme.

The influence of different values of α ∈ {0.03, 0.1, 0.2, . . . , 0.9, 1} is plotted in
Figure 5.3. Parameter α approaching zero renders the problem more nonlinear
and the absolute error bigger.

We can conclude that the performed experiments converge in line with our
expectations.
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−5

−4

−3

−2

−1

log(tau)

lo
g(

er
ro

r)

alpha = 0.1

alpha = 0.7

Figure 5.2: The linear dependence of the absolute error (5.13) of the numerical
scheme (5.2) on the choice of the time step τ and the nonlinearity parameter α.
The smaller τ , the more accurate the approximation is. Smaller α yields bigger
absolute error. Exact solution (5.14) and mesh of 604 DOFs are considered.

τ 0.1 0.05 0.02 0.01 0.005 0.002
1 ref. 2.734e-02 6.519e-03 1.106e-03 2.820e-04 7.12e-05 1.15e-05
2 ref. 2.818e-02 6.708e-03 1.139e-03 2.903e-04 7.33e-05 1.18e-05
3 ref. 2.866e-02 6.827e-03 1.159e-03 2.954e-04 7.46e-05 1.20e-05
4 ref. 2.908e-02 6.925e-03 1.176e-03 2.997e-04 7.57e-05 1.22e-05

Table 5.1: The dependence of the absolute error (5.13) of the numerical scheme
(5.2) on the choice of the time step τ and refinement of the mesh. The error
decreases with the decreasing time step. The refinement of the mesh has no
effect on the accuracy. Exact solution (5.14) and parameter of nonlinearity
α = 0.7 are considered.



5.5. Numerical experiments 47

τ 0.1 0.05 0.02 0.01 0.005 0.002
1 ref. 5.690e-02 1.312e-02 2.233e-03 5.697e-04 1.43e-04 2.31e-05
2 ref. 5.861e-02 1.343e-02 2.287e-03 5.835e-04 1.47e-04 2.37e-05
3 ref. DIV 1.369e-02 2.327e-03 5.939e-04 1.49e-04 2.41e-05
4 ref. DIV 1.389e-02 2.364e-03 6.033e-04 1.52e-04 2.45e-05

Table 5.2: The dependence of the absolute error (5.13) of the numerical scheme
(5.2) on the choice of the time step τ and refinement of the mesh. The error
decreases with decreasing time step. The refinement of the mesh has no effect on
accuracy. For some inconvenient combination of discretization parameters the
method diverges. Exact solution (5.14) and parameter of nonlinearity α = 0.1
are considered.
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Figure 5.3: The absolute error (5.13) of the approximation scheme (5.2) in-
creases with α approaching zero. The exact solution (5.14), the time step
τ = 0.01 and the mesh of 604 DOFs are considered.

5.5.2 Exact solution nonlinear in space

Now, we consider the problem (5.12), where the vector fields F and J are given
in such a way that the exact solution H(x, t) fulfills

H(x, t) =




5 sin(x2)− 8 sin(x1) + t4

8 sin(x0)− 10 sin(x2) + 2t4 + 1
10 sin(x1)− 5 sin(x0) + 3t4 + 2


 . (5.15)
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The convergence of the method with diminishing τ agrees with our theo-
retical results. The accuracy of the numerical scheme is tested for six different
lengths of the time step τ . As one can see in Table 5.3, the absolute error
decreases with decreasing values of parameter τ .

Here, the impact of the mesh refinement on the accuracy of the numerical
scheme is obvious as well, because the periodic solution (5.15) cannot be fitted
with Whitney’s elements precisely. The efficiency of the method is studied for
the mesh refined 1,2,3,4 and 5 times. The finer the mesh we work on, the more
precise the approximation we get.

With diminishing τ and with the mesh fine enough we are able to improve
the absolute error of our approximation from 0.725 to 0.002. The only problem
is that the computations on the mesh with 238688 DOFs (five times refined
basic mesh) are very time demanding, see Table 5.4.

τ 0.1 0.05 0.02 0.01 0.005 0.002
1 ref. 7.251e-01 5.633e-01 5.721e-01 5.832e-01 5.890e-01 5.926e-01
2 ref. 3.424e-01 1.696e-01 1.476e-01 1.454e-01 1.461e-01 1.469e-01
3 ref. 2.488e-01 7.206e-02 4.260e-02 3.794e-02 3.690e-02 3.673e-02
4 ref. 2.257e-01 4.769e-02 1.631e-02 1.101e-02 9.645e-03 9.284e-03
5 ref. 2.199e-01 4.159e-02 9.709e-03 3.977e-03 2.622e-03 2.388e-03

Table 5.3: The dependence of the absolute error (5.13) of the numerical scheme
(5.2) on the choice of the time step τ and refinement of the mesh. Exact
solution (5.15) and parameter of nonlinearity α = 0.7 are considered.

τ 0.1 0.05 0.02 0.01 0.005 0.002
1 ref. 00:00:23 00:00:35 00:01:24 00:04:22 00:06:25 00:10:09
2 ref. 00:01:26 00:02:18 00:05:31 00:10:43 00:20:31 00:46:22
3 ref. 00:05:54 00:09:21 00:23:00 00:45:21 01:25:57 03:22:24
4 ref. 00:27:51 00:45:20 01:40:58 03:14:54 06:30:47 14:26:45
5 ref. 03:03:56 04:24:50 08:37:33 18:09:40 39:46:55 70:00:19

Table 5.4: Computational time of the simulations from Table 5.3 (hh:mm:ss).
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5.6 Conclusions

We have studied the initial boundary value problem (5.1) describing the evo-
lution of electromagnetic fields in a bounded domain, in case of a non–perfect
contact of two different materials is considered on the boundary. The nonlinear
time–discrete approximation scheme (5.2) based on the backward Euler method
has been proposed. Convergence of the approximate solution towards the exact
one has been proved and the results have also been confirmed by numerical
experiments.

For solving the nonlinear steady–state PDE the Newton method was used.
In numerical analysis, it is the best known method for finding the roots of a real-
valued function. The advantage of the Newton method is, that if the iteration
process begins sufficiently close to the desired root, the convergence is remark-
ably quick. Unfortunately, when iteration begins far from the solution, the
method can easily lead to incorrect results. The meaning of “sufficiently close”
and “remarkably quick” depends on the problem. Thus, good implementation
of the method together with “well-behaved” problem overcome possible con-
vergence failures. Furthermore, depending on the complexity of the problem,
an appropriate ratio between the discretization parameters has to be chosen,
otherwise the method can diverge, as we could see on an example with too fine
mesh and too big time step (Table 5.2). Additionally, by setting up all parame-
ters adequately we can avoid an excessive consumption of computational time,
Table 5.4.

In [80] the authors consider a similar degenerate problem where the nonlin-
earity is not assumed on the boundary but inside the domain. Such a prob-
lem setting describes the processes of magnetization of type-II superconductors.
The rate of the convergence numerically obtained by Slodička and Buša in [80]
is slower than ours. This conclusion is not surprising, as the nonlinearity in the
whole domain may cause more inaccuracy than the nonlinearity acting only on
the boundary.

The numerical experiments were presented on some academic examples.
Without loss of generality, we formulated the problems as simply as possible
with the electromagnetic parameters σ and µ equal to 1. These examples serve
as a good starting point, but it would of course be interesting to test the de-
rived scheme on problems with real data and monitor the convergence rate in
this case.
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Chapter 6

Full discretization

By applying discretization in time to the time–dependent nonlinear problem
(4.6), this changes into the recurrent steady–state scheme of the form

(δhi,ϕ) + (∇× hi,∇×ϕ) + (G(hi × ν),ϕ× ν)Γ = 0,
h0 = H0

(6.1)

for any ϕ ∈ V .
The problem is that the scheme (6.1) is still nonlinear. Thus, we first lin-

earize the scheme. Afterwards, discretization in space is performed.
The main goal of this chapter is to use the results from the previous chapter

to design a linear time- and space-discrete numerical method for the approxi-
mation of the exact solution to the nonlinear boundary value problem (4.6).

From now on the constitutive law (4.4) is considered, so we refer to this case
as to the non-degenerate Lipschitz continuous case.

The chapter is organized as follows. First, we discuss the additional prop-
erties of the nonlinear vector function G in case it is Lipschitz continuous.
Thanks to the new character of the nonlinearity, the error estimates of the
time-discretized scheme can be improved in comparison with the results for the
non-Lipschitz case derived in Chapter 5. As a next step we linearize our prob-
lem using the well-known fixed-point principle. Finally, discretization in space is
performed. Here, Whitney’s edge elements are employed. The fully-discretized
linear scheme is proposed in Section 6.3. We derive error estimates depending
on the choice of the discretization parameters, on basis of which the convergence
is shown. The numerical experiments confirming the efficiency of the developed
scheme can be found in the last section.

51
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The results of this chapter were presented at the international conference
ICNAAM 2008 and are summarized in the proceedings of this conference [97].
The whole article [98] was submitted to the Journal of Mathematical Analysis
and Applications.

6.1 Time discretization

The backward Euler method is a standard tool for discretization in time, see
Section 5.1. The suggested non-linear recurrent approximation scheme (6.1) is
valid for i = 1, . . . , n and ϕ ∈ V .

We consider the following space of test functions

V = {ϕ ∈ H(curl ; Ω); ϕ× ν ∈ L2 (Γ)}

throughout this chapter. The space V is a reflexive Banach space endowed with
the sum-norm ‖ϕ‖V = ‖ϕ‖H(curl ;Ω) + ‖ϕ× ν‖L2(Γ).

In the previous chapter we have proved the well–posedness of the problem
for the general case, namely we considered a non-Lipschitz continuous nonlinear
vector function G defined by (4.3). Note, that the proof of the existence and
uniqueness of hi for each time step i = 1, . . . n (Lemma 5.1) is also valid for a
less general case, thus, it can be omitted.

As in Chapter 5, we define the nonlinearity G(x) = g(|x|)x where the aux-
iliary function g is given by

g(s) =





aα−1 0 ≤ s < a,
sα−1 a ≤ s ≤ b,
bα−1 b < s

for some fixed positive constants 0 < a < b.
As our problem is now Lipschitz continuous, the error estimates can be

improved. To obtain new results we use the following properties of the nonlinear
vector field G:

Lemma 6.1 For all s, t ∈ R3 there holds

(G(s× ν)−G(t× ν), (s− t)× ν) ≥ αbα−1|(s− t)× ν|2

and

|G(s× ν)−G(t× ν)| ≤ aα−1|(s− t)× ν| (Lipschitz continuity) .
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Proof: The lemma is easy to prove by writing out the Gâteaux differential of
G(x) in the direction h:

DG(x,h) =





aα−1h 0 ≤ |x| < a,
(α− 1)|x|α−3(x · h)x+ |x|α−1h a ≤ |x| ≤ b,
bα−1h b < |x|.

Consequently,

(DG(x,h),h) ≥





aα−1|h|2 0 ≤ |x| < a,
α|x|α−1|h|2 a ≤ |x| ≤ b,
bα−1|h|2 b < |x|.

Thus, we obtain

(G(x+ h)−G(x),h) = (DG(x+ θh,h),h) ≥ C|h|2 for θ ∈ (0, 1)

with constant C = αbα−1, where α ∈ (0, 1].
The Lipschitz continuity follows from the fact that

|[g(|x|)x]
′ | ≤ aα−1 for ∀x ∈ R, α ∈ (0, 1] .

�

6.1.1 A priori estimates

Next, we derive suitable a priori estimates for hi on each time level i = 1, . . . , n.
We start with the following compatibility condition needed for Lemma 6.2.

(∂tH(0),ϕ) + (∇×H(0),∇×ϕ) + (G(H(0)× ν),ϕ× ν)Γ = 0 (6.2)

for any ϕ ∈ V . This condition expresses compatibility between the boundary
data and the initial condition where H0 ∈ V and says that the variational
equation (4.6) is satisfied at the time t = 0. Next, we define

δh0 := ∂tH0 := −∇×∇×H0 .

As far as the compatibility is defined, the following stability result can be ob-
tained.
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Lemma 6.2 Let the vector field G satisfy Lemma 6.1. Moreover assume H0 ∈ V
satisfies (6.2). Then there exists a positive constant C such that

‖δhj‖2 +
j∑

i=1

‖δhi − δhi−1‖2 +
j∑

i=1

τ ‖∇ × δhi‖2 +
j∑

i=1

τ ‖δhi × ν‖2Γ ≤ C

holds for any j = 1, . . . , n .

Proof: We subtract (6.1) for i = i − 1 from (6.1), then we set ϕ = δhi and
finally sum up the result for i = 1, . . . , j . This yields

j∑

i=1

(δhi − δhi−1, δhi) +
j∑

i=1

(∇× (hi − hi−1),∇× δhi)

+
j∑

i=1

(G(hi × ν)−G(hi−1 × ν), δhi × ν)Γ = 0 .

For i = 0 we use the compatibility condition. Further we employ the properties
of G (Lemma 6.1) together with Abel’s summation applied to the first term to
get the desired result. �

6.1.2 Error estimate

First, we introduce the continuous piecewise linear in time vector field hn given
by

hn(0) = H0,
hn(t) = hi−1 + (t− ti−1)δhi for t ∈ (ti−1, ti]

and define the step in time vector field hn

hn(0) = H0,

hn(t) = hi for t ∈ (ti−1, ti] .

Using the new notation we rewrite (6.1) as (for any ϕ ∈ V )

(∂thn,ϕ) +
(
∇× hn,∇×ϕ

)
+
(
G(hn × ν),ϕ× ν

)
Γ

= 0 . (6.3)

Now, we are in a position to derive that, if the vector field G satisfies
Lemma 6.1, then the error of the approximation scheme (6.1) is quadratically
dependent on the choice of discretization parameter τ .
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Theorem 6.1 Let the assumptions of Lemma 6.2 be fulfilled. Then there exists
a positive constant C such that

max
t∈[0,T ]

‖hn(t)−H(t)‖2 +
∫ T

0

∥∥∇× (hn −H)
∥∥2

+
∫ T

0

∥∥(hn −H)× ν
∥∥2

Γ
≤ Cτ2.

Proof: Subtracting (4.6) from (6.3) and sequentially setting ϕ = hn −H one
gets

(∂t(hn −H),hn −H) +
(
∇× (hn −H),∇× (hn −H)

)

+
(
G(hn × ν)−G(H × ν), (hn −H)× ν

)
Γ

= 0 .

After integration in time we arrive at

1
2
‖hn(t)−H(t)‖2 +

∫ t

0

∥∥∇× (hn −H)
∥∥2

+
∫ t

0

(
G(hn × ν)−G(H × ν), (hn −H)× ν

)
Γ

=
∫ t

0

(
∇× (hn −H),∇× (hn − hn)

)

+
∫ t

0

(
G(hn × ν)−G(H × ν), (hn − hn)× ν

)
Γ
.

Applying Lemma 6.1 and Young’s inequality to the right–hand side one obtains

1
2
‖hn(t)−H(t)‖2 +

∫ t

0

∥∥∇× (hn −H)
∥∥2

+ αbα−1

∫ t

0

∥∥(hn −H)× ν
∥∥2

Γ

≤ ε
∫ t

0

∥∥∇× (hn −H)
∥∥2

+ Cε

∫ t

0

∥∥∇× (hn − hn)
∥∥2

+ε
∫ t

0

∥∥G(hn × ν)−G(H × ν)
∥∥2

Γ
+ Cε

∫ t

0

∥∥(hn − hn)× ν
∥∥2

Γ
.

Using Lemma 6.2 and invoking the Lipschitz continuity of G we obtain

1
2
‖hn(t)−H(t)‖2 + (1− ε)

∫ t

0

∥∥∇× (hn −H)
∥∥2

+(αbα−1 − a2(α−1)ε)
∫ t

0

∥∥(hn −H)× ν
∥∥2

Γ
≤ Cετ2 .

The last inequality is valid for any t > 0. Therefore

1
2

max
t∈[0,T ]

‖hn(t)−H(t)‖2 + (1− ε)
∫ t

0

∥∥∇× (hn −H)
∥∥2

+(αbα−1 − a2(α−1)ε)
∫ t

0

∥∥(hn −H)× ν
∥∥2

Γ
≤ Cετ2 .
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Choosing an appropriate ε we conclude the proof. �

6.2 Space discretization

Whitney finite elements is our tool for discretization in space. Because they
satisfy the continuity conditions between two elements, they are convenient for
approximating the fields E and B. The existence and uniqueness of the approx-
imation is based on the Lax-Milgram lemma. The dependence of the approxi-
mation error on the choice of an approximation space results from Céa’s lemma.
Both statements can be found in the Appendix, Thm. 10.5 and Thm. 10.6.

6.2.1 Finite elements

The finite element method originates from the need for solving complex elastic-
ity and structural analysis problems in civil and aeronautical engineering. Its
development can be traced back to the work by Alexander Hrennikoff (1941)
and Richard Courant (1942). Their different approaches share one essential
characteristic: discretization of a continuous domain into a set of discrete sub-
domains, usually called elements. In the seventies, the French mathematician
Ciarlet [21] introduced finite elements as a triple consisting of

i) a geometric domain T . In general we make a decomposition of the com-
putational domain Ω into sub-domains T (triangles, rectangles), i.e. we
can write Ω =

⋃n
i=1 Ti.

ii) a finite-dimensional vector space of functions on a single element T that
are convenient to implement, e.g. polynomials PT .

iii) a set of degrees of freedom ΣT . If this set of linear functionals on PT
is chosen in such a way, that the value given for each degree of freedom
uniquely determines a function in PT , then the finite element is said to be
unisolvent.

The last what is needed to be defined is operator r(f) ∈ PT interpolating
sufficiently smooth function f defined on T to the finite dimensional space. An
interpolation operator satisfies σ(r(f)− f) = 0 for all σ ∈ ΣT .

More details on finite elements in general and their applications in electro-
magnetism can be found in [65].
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6.2.2 Edge Whitney’s elements

For our purposes we use Whitney’s finite elements as introduced by Whitney [96]
in 1957. Different types of Whitney’s elements are known, e.g. nodal, edge,
facial, . . . The most suitable for the approximation of the magnetic intensity
field H are Whitney’s edge elements. Indeed, this particular approximating
element is continuous in the tangential part when moving through neighboring
elements, which coincides with the continuity property of the field H. In the
literature, this property is known as H(curl ; Ω)-conformity and a proof can be
found in [42] or [65].

To characterize edge Whitney’s elements precisely, the definition of the triple
(T, PT ,ΣT ) from the previous section has to be given.

We assume our computational domain to be polyhedral and divided into
tetrahedra. Thereby we get the tetrahedral mesh M with a tetrahedron as
a basic element T . The set of all tetrahedra is denoted by T . Each element
consists of 4 vertices, 6 edges and 4 faces. Speaking of a conforming mesh, the
tetrahedra can intersect either along a common face, an edge, in the node or
they do not intersect at all. The mesh M is said to be regular if there exist
constants C, h > 0 such that

hT /ρT ≤ C ∀T ∈ T . (6.4)

Here, hT is the diameter of the smallest sphere containing T , ρT is the diameter
of the largest sphere contained in T and

h = max
T∈T
{hT }.

From now on we use for the mesh the symbolMh to emphasize the connection
with the specific discretization parameter h. Our aim is to show that the finer
the mesh we construct (h→ 0), the more exact the approximation is.

The space of functions PT is generated by polynomials of degree one. We
define it as follows

PT := {p(x) = a× x + c |a, c ∈ R3,x ∈ T}. (6.5)

Let ei, i = 1, . . . , 6 be the edges of the tetrahedron T and let u be a function
belonging to W 1,s(T ) for some s > 2. Then the set of degrees of freedom reads

ΣT := {Mei , i = 1, . . . , 6}, (6.6)
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where
Mei(u) :=

∫

ei

u · τ ei ds. (6.7)

The vector τ ei represents the unit directional vector of the edge ei.
To finish the definition of edge elements, the basis functions have to be

specified. Let e = {0, 1} be one edge of the tetrahedron T = {0, 1, 2, 3}. Then
the basis function we associated with the edge e is defined by the relation

we = w0Ow1 − w1Ow0. (6.8)

By wi we denote the linear function taking value 1 in the vertex i and value 0
in all other vertices of the tetrahedron, i.e. wi(j) = δi,j

1 for i, j = 0, . . . , 3 and
wi + wj = 1 on the edge {i, j}. The vector Owi denotes the gradient of the
function wi.

We proceed with the computation of the circulation of we along the edge e.
We work with one single tetrahedron T = {0, 1, 2, 3}. Let A be the orthogonal
projection of the vertex 0 to the plane given by the vertices 1,2,3. Furthermore,
h0 denotes the height of the tetrahedron in the vertex 0 and h0 =

−→
A0. As

w0 = 0 in the plane 1, 2, 3, its gradient Ow0, is perpendicular to this plane. The
whole situation is depicted in Figure 6.1(a).

To evaluate Me(we) we can write

Me(we) =
∫

e

we · τ e ds =
∫

e

w0Ow1 · τ e ds−
∫

e

w1Ow0 · τ e ds

= Ow1 · τ e
∫

e

w0 ds− Ow0 · τ e
∫

e

w1 ds.

The scalar product satisfies Ow0 · τ e = |Ow0||τ e| cosα, where α is the angle
between the vectors Ow0 and τ e, see Figure 6.1(b). Because of the identity
|e| cosα = −h0, with |e| denoting the length of the edge e, one obtains

Ow0 · τ e = |Ow0||τ e| cosα = −h0|Ow0||e|−1 = −|e|−1,

where the last equality follows from the mean value theorem

(Ow0,h0) = w0(0)− w0(A) = 1.

Analogously, Ow1 · τ e = |e|−1. Finally, the circulation of we along the edge e
equals

Me(we) = |e|−1

∫

e

w0 + w1ds = 1.

1In literature the symbol δi,j denotes the Kronecker’s δ–function.
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(a) Geometry of tetrahedron.

1

0
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e

h0

τ e

α

▽w0

(b) Computation of the scalar
product.

Figure 6.1: Whitney’s edge elements

One can verify that the latter relation equals zero along the other edges of the
tetrahedron. Thus, we conclude Mei(wej ) = δi,j for i, j = 1, . . . , 6.

For detailed proofs and an overview of all kinds of Whitney’s elements we
refer to [24, Chapter 3] and [53, Chapter 4].

6.2.3 Approximation properties

In this section we give some approximation properties of Whitney’s edge ele-
ments. These are helpful for obtaining error estimates later on.
In the following lemmas we suppose that the meshMh is regular and the inter-
polation operator rh is defined by

Mei(u− rh(u)) = 0 ∀i = 1, . . . , 6. (6.9)

Lemma 6.3 Let Mh be a regular mesh on Ω . If u ∈ Hs(Ω) and ∇ × u ∈
Hs(Ω) for some 1

2 + δ < s ≤ 1 with δ > 0 , then

‖u− rhu‖L2(Ω) + ‖∇ × (u− rhu)‖L2(Ω) ≤ Chs
(
‖u‖Hs

(Ω) + ‖∇ × u‖Hs
(Ω)

)
.

Lemma 6.4 Suppose u ∈ Hs(Ω) and ∇ × u ∈ Hs(Ω) for some 1
2 < s ≤ 1 .

Then

‖ν × (u− rhu)× ν‖L2
t (Γ) ≤ Chs−1/2

(
‖u‖Hs

(Ω) + ‖∇ × u‖Hs
(Ω)

)
.
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The space L2
t (Γ) is defined as follows:

L2
t (Γ) = {u ∈ (L2(Γ))3 | ν · u = 0 on Γ}.

6.3 Fully discretized linear scheme

Finally we suggest a linear numerical scheme discretized in time and space for
finding an approximation of the solution to the problem (4.6). First we put
uh0 = rhH0. Then for each i > 0 and k > 0 uhi,k ∈ V h is the solution of the
boundary value problem

(uhi,k,ϕ
h) + τ(∇× uhi,k,∇×ϕh) + τL(uhi,k × ν,ϕh × ν)Γ

= (uhi−1,ϕ
h) + τL(uhi,k−1 × ν,ϕh × ν)Γ − τ(G(uhi,k−1 × ν),ϕh × ν)Γ

(6.10)
valid for all ϕh ∈ V h. We define the stopping criterion for some η ≥ 1:

If
∥∥∥uhi,ki − uhi,ki−1

∥∥∥ ≤ τη and
∥∥∥(uhi,ki − uhi,ki−1)× ν

∥∥∥
Γ
≤ τη

=⇒ STOP and uhi := uhi,ki .

(6.11)

The exact value of τη will be discussed later.
The described algorithm is depicted in Figure 6.2. The parameter h denotes
the mesh refinement, i the time layer and ki the number of iterations in one
time step (which can differ from one time step to the other). The vector field G
follows definition (4.4). The linearization coefficient L > 0 is chosen such that
quick convergence of the proposed iteration scheme is assured. We can derive,
similarly as in [54, Remark 1], the optimal value for this parameter. We come
back to this question later (see Remark 6.1). The existence and uniqueness of
a weak solution is guaranteed by the Lax-Milgram lemma.

Further we need to define a real function b(s) := g(s) − L and an auxiliary
operator

B(s× ν) = G(s× ν)− Ls× ν. (6.12)

Now we need to check if the introduced stopping criterion (6.11) is appropri-
ate. In other words, we need to prove the convergence of the sequences {uhi,k},
{uhi,k × ν} for k → ∞ . The following property of the auxiliary vector field B
is used in the proof:
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linearized full discretized computational scheme

next time step

k++

hh
i−1

hh
i,k

hh
i,0 = hh

i−1

hh
i,k = hh

i

∥∥(hh
i,k − hh

i,k−1)× ν
∥∥

Γ
≤ τ η

∥∥hh
i,k − hh

i,k−1

∥∥ ≤ τ η

Figure 6.2: Flowchart of the proposed fully discretized scheme

Lemma 6.5 For all s, t ∈ R3 the following inequality holds

|B(s× ν)−B(t× ν)|Γ ≤M |(s− t)× ν|Γ ,

where M(L) > 0 equals

M = M(L) = max{|aα−1 − L|, |αbα−1 − L|} for α ∈ (0, 1] .

Proof: We follow the idea of the proof of [54, Lemma 1].
The mean value theorem is used in the form

|b(s)s− b(q)q| ≤ max
θ≥0
{[b(θ)θ]′}|s− q| for ∀s, q ≥ 0.

Using the definition of real functions g and b, we obtain the first derivative of
the scalar function b(θ)θ:

[b(θ)θ]′ =





aα−1 − L 0 < θ < a,
αθα−1 − L a < θ < b,
bα−1 − L b < θ.

(6.13)
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Lαaα−1 aα−1bα−1αbα−1

|bα−1 − L|
maxθ{|αθα−1 − L|}
|aα−1 − L|

Figure 6.3: Evaluation of the value of M in Lemma 6.5.

Now, our task is to find the sup{[b(θ)θ]′} for all θ ≥ 0. It is easy to see that it
is one of these three functions, specifically

sup
θ≥0
{|[b(θ)θ]′|} = max{|aα−1 − L|, max

a<θ<b
{|αθα−1 − L|}, |bα−1 − L|}.

A sketch of these functions can be found in Figure 6.3. After introducing the
new notation M(L) = max

θ≥0
{|[b(θ)θ]′|}, we conclude that

M = M(L) = max{|aα−1 − L|, |αbα−1 − L|} for α ∈ (0, 1].

Thus, for all non-negative real numbers s, q it holds

|b(s)s− b(q)q| ≤M |s− q|. (6.14)

The fact that

|b(s)| ≤ max{|aα−1 − L|, |bα−1 − L|} ≤M (6.15)

can easily be verified as well for all s > 0.
We continue with the algebraic identity valid for all vectors s, t ∈ R3

|B(s)−B(t)|2 = |b(|s|)s− b(|t|)t|2
= [b(|s|)|s| − b(|t|)|t|]2 + 2b(|s|)b(|t|)[|s||t| − (s, t)].

(6.16)
Using the Cauchy inequality

|s||t| − (s, t) ≥ 0
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together with (6.14) and (6.15) we obtain from (6.16)

|B(s)−B(t)|2 ≤M2||s| − |t||2 + 2M2[|s||t| − (s, t)] = M2|s− t|2,

which completes the proof . �

6.3.1 Convergence to the auxiliary problem

We show that (6.10) converges for k →∞ to the following auxiliary problem:
Find vhi ∈ V h,v0 = u0 = rhH0 such that

(vhi ,ϕ
h) + τ(∇× vhi ,∇×ϕh) + τ(G(vhi × ν),ϕh × ν)Γ = (uhi−1,ϕ

h) (6.17)

holds for any ϕh ∈ V h. The existence of a unique solution vi can be proved using
the previously mentioned theory of monotone operators (see [91]). Therefore the
proof is omitted.

Theorem 6.2 Suppose Lemma 6.5 is satisfied. If uhi,k and vhi are the solutions
to the boundary value problem (6.10) and the auxiliary problem (6.17), then

∥∥uhi,k − vhi
∥∥ ≤

√
τL

(
M

L

)k ∥∥(vhi − uhi,0)× ν
∥∥

Γ
,

∥∥∇× (uhi,k − vhi )
∥∥ ≤

√
L

(
M

L

)k ∥∥(vhi − uhi,0)× ν
∥∥

Γ
,

∥∥(uhi,k − vhi )× ν
∥∥

Γ
≤

(
M

L

)k ∥∥(vhi − uhi,0)× ν
∥∥

Γ

holds for any k > 0, i > 0, h > 0 and τ < 1 .

Proof: Rewriting equation (6.17) yields

(vhi ,ϕ
h) + τ(∇× vhi ,∇×ϕh) + τL(vhi × ν,ϕh × ν)Γ

= (uhi−1,ϕ
h) + τL(vhi × ν,ϕh × ν)Γ − τ(G(vhi × ν),ϕh × ν)Γ .

(6.18)

Subtracting (6.18) from (6.10) and recalling (6.12) we obtain

(uhi,k − vhi ,ϕh) + τ
(
∇× (uhi,k − vhi ),∇×ϕh

)
+ τL

(
(uhi,k − vhi )× ν,ϕh × ν

)
Γ

= τ
(
B(vhi × ν)−B(uhi,k−1 × ν),ϕh × ν

)
Γ
.
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Next, we set ϕh = uhi,k − vhi :
∥∥∥uhi,k − vhi

∥∥∥
2

+ τ
∥∥∥∇× (uhi,k − vhi )

∥∥∥
2

+ τL
∥∥∥(uhi,k − vhi )× ν

∥∥∥
2

Γ

= τ
(
B(vhi × ν)−B(uhi,k−1 × ν), (uhi,k − vhi )× ν

)
Γ
.

Using Cauchy’s inequality and the boundedness of the auxiliary operator B,
proved in Lemma 6.5, one gets
∥∥∥uhi,k − vhi

∥∥∥
2

+ τ
∥∥∥∇× (uhi,k − vhi )

∥∥∥
2

+ τL
∥∥∥(uhi,k − vhi )× ν

∥∥∥
2

Γ

≤ τ
∥∥∥B(vhi × ν)−B(uhi,k−1 × ν)

∥∥∥
Γ
·
∥∥∥(uhi,k − vhi )× ν

∥∥∥
Γ

≤ τM
∥∥∥(vhi − uhi,k−1)× ν

∥∥∥
Γ
·
∥∥∥(uhi,k − vhi )× ν

∥∥∥
Γ
.

Starting from the last inequality we can estimate the boundary term as follows

τL
∥∥∥(uhi,k − vhi )× ν

∥∥∥
2

Γ
≤ τM

∥∥∥(vhi − uhi,k−1)× ν
∥∥∥

Γ
·
∥∥∥(uhi,k − vhi )× ν

∥∥∥
Γ

=⇒
∥∥∥(uhi,k − vhi )× ν

∥∥∥
Γ
≤ M

L

∥∥(vhi − uhi,k−1)× ν
∥∥

Γ

=⇒
∥∥∥(uhi,k − vhi )× ν

∥∥∥
Γ
≤

(
M

L

)k ∥∥(vhi − uhi,0)× ν
∥∥

Γ
.

Using this result, the “curl” term estimation is processed

∥∥∥∇× (uhi,k − vhi )
∥∥∥

2

≤ L

(
M

L

)2k ∥∥(vhi − uhi,0)× ν
∥∥2

Γ
.

Analogously we get the last missing estimate.
Because of Lemma 6.6, which proves the existence of a parameter L > 0

such that M(L) < L , we conclude that {uhi,k} and {uhi,k × ν} are convergent
sequences for k →∞. �

Lemma 6.6 There exists L > 0 such that M(L) < L .

Proof: If L ≥ (aα−1 + αbα−1)/2 then M = L − αbα−1 for α ∈ (0, 1] and the
statement of the lemma is fulfilled directly. �

Remark 6.1 (Optimal value of the parameter L)
To get a satisfying convergence the ratio M(L)/L has to be minimized. Let us
consider the derivative of the mentioned function. For α ∈ (0, 1] we consider
two cases:
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i) If L > (aα−1 +αbα−1)/2 then M(L) = L−αbα−1. The derivative is then
given by

∂L

(
M(L)
L

)
=
αbα−1

L2
> 0 .

The minimal value is obtained for L = (aα−1 + αbα−1)/2.

ii) If 0 < L < (aα−1 + αbα−1)/2 then M(L) = aα−1 − L. For the derivative
we obtain

∂L

(
M(L)
L

)
=
−aα−1

L2
< 0 .

Then the function is decreasing and the minimum is obtained for
L = (aα−1 + αbα−1)/2 as well.

From these two cases we conclude that L = (aα−1 + αbα−1)/2 is the optimal
value of the parameter L.

6.3.2 A priori estimates

For the final result the following a priori estimate is essential.

Theorem 6.3 Let the operators G and B satisfy Lemma 6.1 and Lemma 6.5.
Then there exists a constant C > 0 such that

∥∥δuhj
∥∥2

+
j∑

i=1

∥∥δuhi − δuhi−1

∥∥2
+

j∑

i=1

τ
∥∥∇× δuhi

∥∥2
+

j∑

i=1

τ
∥∥δuhi × ν

∥∥2

Γ
≤ C .

Proof: We start from the discrete linearized system

(δuhi,k,ϕ
h) + (∇× uhi,k,∇×ϕh) + (G(uhi,k × ν),ϕh × ν)Γ

= (B(uhi,k × ν)−B(uhi,k−1 × ν),ϕh × ν)Γ .
(6.19)

Now we perform the following operations. First we set k = ki, then we subtract
(6.19) for i = i− 1 from (6.19). Next we set ϕh = δuhi and after summation for
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i = 1, . . . , j we get

j∑

i=1

(δuhi − δuhi−1, δu
h
i ) +

j∑

i=1

(∇× (uhi − uhi−1),∇× δuhi )

+
j∑

i=1

(G(uhi × ν)−G(uhi−1 × ν), δuhi × ν)Γ

=
j∑

i=1

(B(uhi,ki × ν)−B(uhi,ki−1 × ν), δuhi × ν)Γ

−
j∑

i=1

(B(uhi−1,ki−1
× ν)−B(uhi−1,ki−1−1 × ν), δuhi × ν)Γ .

The left–hand side is estimated by applying Abel’s summation and the property
of the nonlinear operator G. The Cauchy-Schwartz inequality, the boundedness
of the auxiliary operator B and the stopping criterion (6.11) are used for the
estimation of the right–hand side. This yields

1
2

∥∥δuhj
∥∥2

+
1
2

j∑

i=1

∥∥δuhi − δuhi−1

∥∥2
+

j∑

i=1

τ
∥∥∇× δuhi

∥∥2

+αbα−1

j∑

i=1

τ
∥∥δuhi × ν

∥∥2

Γ
≤ 1

2

∥∥δuh0
∥∥2

+ 2
j∑

i=1

Mτη
∥∥δuhi × ν

∥∥
Γ
.

Further by Young’s inequality one obtains

1
2

∥∥δuhj
∥∥2

+
1
2

j∑

i=1

∥∥δuhi − δuhi−1

∥∥2
+

j∑

i=1

τ
∥∥∇× δuhi

∥∥2

+ (αbα−1 − ε)
j∑

i=1

τ
∥∥δuhi × ν

∥∥2

Γ

≤ 1
2

∥∥δuh0
∥∥2

+ Cε

j∑

i=1

M2τ2η−1

≤ Cε(1 + τ2η−2)
≤ C .

Choosing some small fixed ε > 0 concludes the rest of the proof. �



6.3. Fully discretized linear scheme 67

6.3.3 Convergence to fully discretized linear problem

First we define the continuous piecewise linear in time vector field uhn given by

uh0 = rhH0,
uhn(t) = uhi−1 + (t− ti−1)δuhi for t ∈ (ti−1, ti]

and the step in time vector field uhn

uh0 = rhH0,
uhn(t) = uhi for t ∈ (ti−1, ti].

The next theorem provides the estimate of the error between the weak so-
lution to variational problem (4.6) and the step vector field uhn–solution to the
approximation scheme (6.10).

Theorem 6.4 Let the operator G be Lipschitz continuous. Suppose H ∈H1(Ω)
and ∇×H ∈H1(Ω). Then the following estimate holds (for h, τ < 1 and η ≥ 1)

max
t∈[0,T ]

∥∥H(t)− uhn(t)
∥∥2 ≤ C(τ2 + h) .

Proof: We subtract the discrete linearized system (6.19) from the approximation
scheme (6.1) for ϕ = ϕh and set k = ki. We assume the test function ϕh =
rhhi − uhi . Next we multiply the obtained equation by τ and sum it up for
i = 1, . . . , j.

j∑

i=1

τ
(
δ(hi − uhi ),hi − uhi

)
+

j∑

i=1

τ
(
∇× (hi − uhi ),∇× (hi − uhi )

)

+
j∑

i=1

τ
(
G(hi × ν)−G(uhi × ν), (hi − uhi )× ν

)
Γ

=
j∑

i=1

τ
(
δ(hi − uhi ),hi − rhhi

)
+

j∑

i=1

τ
(
∇× (hi − uhi ),∇× (hi − rhhi)

)

+
j∑

i=1

τ
(
G(hi × ν)−G(uhi × ν), (hi − rhhi)× ν

)
Γ

+
j∑

i=1

τ
(
B(uhi,ki−1 × ν)−B(uhi,ki × ν), (rhhi − hi + hi − uhi )× ν

)
Γ
.

Using the Abel summation on the first term on the left–hand side and embracing
the first property of the operatorG (Lemma 6.1), Cauchy-Schwartz’s inequality,
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Hölder’s inequality and Young’s inequality with some small fixed ε > 0, one
obtains

1
2

∥∥hj − uhj
∥∥2

+
1
2

j∑

i=1

(
(hi − uhi )− (hi−1 − uhi−1)

)2

+
j∑

i=1

τ
∥∥∇× (hi − uhi )

∥∥2
+ αbα−1

j∑

i=1

τ
∥∥(hi − uhi )× ν

∥∥2

Γ

≤ 1
2

∥∥H0 − uh0
∥∥2

+

√√√√
j∑

i=1

τ
∥∥δ(hi − uhi )

∥∥2

√√√√
j∑

i=1

τ ‖hi − rhhi‖2

+ε
j∑

i=1

τ
∥∥∇× (hi − uhi )

∥∥2
+ Cε

j∑

i=1

τ ‖∇ × (hi − rhhi)‖2

+ε
j∑

i=1

τ
∥∥G(hi × ν)−G(uhi × ν)

∥∥2

Γ

+Cε
j∑

i=1

τ ‖(hi − rhhi)× ν‖2Γ + Cε

j∑

i=1

τ
∥∥B(uhi,ki−1 × ν)−B(uhi,ki × ν)

∥∥2

Γ

+ε

(
j∑

i=1

τ ‖(rhhi − hi)× ν‖2Γ +
j∑

i=1

τ
∥∥(hi − uhi )× ν

∥∥2

Γ

)
.

Using the results from Lemma 6.2 and Theorem 6.3, the boundedness of the
operator B (Lemma 6.5) followed by stopping criterion (6.11) and finally the
Lipschitz continuity of G, we successively deduce that

1
2

∥∥hj − uhj
∥∥2

+ (1− ε)
j∑

i=1

τ
∥∥∇× (hi − uhi )

∥∥2

+(αbα−1 − εa2(α−1) − ε)
j∑

i=1

τ
∥∥(hi − uhi )× ν

∥∥2

Γ

≤ 1
2

∥∥H0 − uh0
∥∥2

+ C

√√√√
j∑

i=1

τ ‖hi − rhhi‖2

+Cε

(
j∑

i=1

τ ‖∇ × (hi − rhhi)‖2 +
j∑

i=1

τ ‖(hi − rhhi)× ν‖2Γ + τ2η

)
.

Rewriting this in the notation of the piecewise continuous and piecewise constant
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functions and recalling that uh0 = rhH0 we have

1
2

∥∥hn(t)− uhn(t)
∥∥2

+ (1− ε)
∫ t

0

∥∥∇× (hn − uhn)
∥∥2

+(αbα−1 − εa2(α−1) − ε)
∫ t

0

∥∥(hn − uhn)× ν
∥∥2

Γ

≤ 1
2
‖H0 − rhH0‖2 + C

√∫ t

0

∥∥hn − rhhn
∥∥2

+Cε

(∫ t

0

∥∥∇× (hn − rhhn)
∥∥2

+
∫ t

0

∥∥(hn − rhhn)× ν
∥∥2

Γ
+ τ2η

)
.

Using the continuity of the interpolant rh we arrive at

∥∥hn(t)− uhn(t)
∥∥2 ≤ ‖H0 − rhH0‖2 + C

√∫ t

0

‖H − rhH‖2

+Cε

(∫ t

0

‖∇ × (H − rhH)‖2 +
∫ t

0

‖(H − rhH)× ν‖2Γ + τ2η

)
.

To assure the convergence of the method, the three differences ‖H − rhH‖,
‖∇ × (H − rhH)‖ and ‖(H − rhH)× ν‖Γ have to be estimated with respect
to the L2 norm. At this point we use the statements from Lemma 6.3 and
Lemma 6.4, where the approximation properties of Whitney’s elements are
summarized. These estimates depend on the regularity of the solution H. To
estimate the boundary term we bring into account the following equality:

‖(H − rhH)× ν‖Γ = ‖ν × (H − rhH)× ν‖Γ .
The triangle inequality
∥∥H(t)− uhn(t)

∥∥2 ≤ 1
2
‖H(t)− hn(t)‖2+

1
2

∥∥hn(t)− hn(t)
∥∥2

+
1
2

∥∥hn(t)− uhn(t)
∥∥2

together with Theorem 6.1 concludes the proof. �

It can be shown that the error estimate between the weak solution to the
variational problem (4.6) and the piecewise linear vector field uhn has the same
dependence on the discretization parameters.

Theorem 6.5 Let the operator G be Lipschitz continuous. If H ∈H1(Ω) and
∇×H ∈H1(Ω), then for h, τ < 1 and η ≥ 1 one has

max
t∈[0,T ]

∥∥H(t)− uhn(t)
∥∥2 ≤ C(τ2 + h) .
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Proof: The proof follows from the triangle inequality and the previous theorem:
∥∥H(t)− uhn(t)

∥∥2 ≤ 1
2

∥∥H(t)− uhn(t)
∥∥2

+
1
2

∥∥uhn(t)− uhn(t)
∥∥2

≤ C(τ2 + h).

�

6.4 Numerical experiments

In this section we present some numerical examples to confirm the effectivity of
the linearized scheme (6.10), (6.11). The dependence of the relative error

max
t∈[0,T ]

∥∥H(t)− uhn(t)
∥∥

‖H(t)‖ (6.20)

on each parameter of the method, i.e. α, η, τ and h, is studied separately. The
choice of the parameter α ∈ (0, 1] coincides with the theory. The linearization
parameter L is chosen to be optimal in the sense of Remark 6.1.

Let the computational domain Ω occupied by the ferromagnetic material
be a unit cube in R3. On the boundary Γ we consider a Neumann boundary
condition. As the exact solution is known, we can calculate the error of the
method accurately. Consequently, the problem becomes more complex, namely:
Find H ∈ V such that

H +∇×∇×H = F in Ω,
ν ×∇×H = ν ×G(H × ν) + J on ΓNeu,

H0 = 0 in Ω.
(6.21)

The numerical scheme (6.10) is slightly changed to

1
τ

(uhi,k,ϕ
h) + (∇× uhi,k,∇×ϕh) + L(uhi,k × ν,ϕh × ν)Γ

= (F ,ϕh)− (J ,ϕh)Γ +
1
τ

(uhi−1,ϕ
h)

+L(uhi,k−1 × ν,ϕh × ν)Γ −
(
G(uhi,k−1 × ν),ϕh × ν

)
Γ
,

(6.22)

and is combined with the stopping criterion (6.11).
The nonlinear vector field G is defined as follows

G(H × ν) =





0.01α−1H × ν 0 ≤ |H × ν| < 0.01,
|H × ν|α−1H × ν 0.01 ≤ |H × ν| ≤ 100,
100α−1H × ν 100 < |H × ν|.

(6.23)
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We solve the system (6.21),(6.23) for three different types of exact solutions:

. exact solution linear in space and time

H1(x, t) =




5x2 − 8x1 + t
8x0 − 10x2 + t
10x1 − 5x0 + t


 ; (6.24)

. exact solution linear in space and nonlinear in time

H2(x, t) =




(5x2 − 8x1)(sin(2πt) + 2)
(8x0 − 10x2)(sin(2πt) + 2)
(10x1 − 5x0)(sin(2πt) + 2)


 ; (6.25)

. exact solution nonlinear in space and linear in time

H3(x, t) =




5 sin(x2)− 8 sin(x1) + t
8 sin(x0)− 10 sin(x2) + t
10 sin(x1)− 5 sin(x0) + t


 . (6.26)

The data functions F and J acting in (6.21) depend on the choice of the exact
solution.

6.4.1 Dependence of the relative error on the parameters
of the method

The impact of the parameter η on the relative error is tested on the problem
with linear exact solution (6.24) and is given in Figure 6.4. We observe that the
value of η = 3 gives satisfactory results and therefore this value of parameter is
used for the rest of the experiments. Note that based on the theory the choice
of η = 1 should be enough. By choice of η = 3 we want to make sure that the
iteration error can be neglected.

Next, we investigate the dependence on the parameter of nonlinearity α. If
α = 1, the problem (6.21), (6.23) acquires linear character and the computa-
tional scheme (6.22), (6.11) is quick and precise. If α tends to zero, the nature
of the problem becomes more nonlinear with impact on increase of the relative
error. The evolution of the error in time is plotted in Figures 6.5 and 6.6.

The dependence of the error on the length of the time step τ is studied on the
problems with exact solutions (6.24) and (6.25), see Figures 6.7 and 6.8. The
problem with linear exact solution (6.24) yields better results than the theory
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predicts; the dependence of the error on τ can be approximately fitted by the
function f(τ) = τ2.9. Possibly, this result is influenced by the choice of the
exact solution and is not valid in general. If the problem with sinusoidal exact
solution (6.25) is considered the dependence of the error on the length of the
time step is linear, which is in line with the derived theoretical results.

Finally we study the sensibility of our problem to the size of the mesh which
we use for computations. As Table 6.2 shows, the accuracy of the approximation
does not depend on the size of the mesh if the exact solution (6.24) is consid-
ered. The reason is that the linear solution (6.24) can be fitted by Whitney’s
elements exactly, thus the “coarse mesh” is suitable enough to reach satisfying
accuracy of our model. In this case, the best approach is to use the basic mesh
consisting of 6 elements. Otherwise, by refining, calculation errors accumulate.
The impact of the mesh refinement on the relative error is well visible in Fig-
ure 6.9. In order to see this dependence, the problem with the sinusoidal in
space exact solution (6.26) is taken. Here, the exact solution cannot be interpo-
lated by Whitney’s elements precisely. This discretization (interpolation) error
is reported in Table 6.1. The discretization error is the minimal attainable error.
By refining the mesh we are able to obtain a better approximation of the exact
solution, but still we have to set up all parameters adequately in order to avoid
an excessive consumption of computational time.2
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Figure 6.4: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) on the parameter η. Linear in time exact solution (6.24) is
considered. The parameters α = 0.2, τ = 0.05, h =

√
3 and L = 19.9 are fixed.

The relative error can be decreased by choosing η ≥ 3.

2If we refine the basic mesh 4 times, we compute on 24 576 elements what requires much
patience if solving more complicated problems.
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Figure 6.5: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) in time on different choice of nonlinearity parameter α.
The smaller α is chosen, the more nonlinear the problem and the less precise
the approximation of the exact solution. Linear in time exact solution (6.24),
τ = 0.05, h =

√
3 and η = 3 are considered.
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Figure 6.6: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) in time on the parameter of nonlinearity α. Sinusoidal
in time exact solution (6.25) is considered. A smaller time step is needed, in
comparison with the problem with linear exact solution (Figure 6.5), to ob-
tain satisfactory accuracy. The parameters τ = 0.001, h =

√
3 and η = 3 are

considered.



74 Full discretization

−3.1 −2.6 −2.1 −1.6
−8

−7

−6

−5

−4

−3

−2

log(tau)

lo
g 

(r
el

at
iv

e 
er

ro
r)

Figure 6.7: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) on the length of the time step τ . Linear in time exact
solution (6.24) is considered. The fixed parameters α = 0.2, h =

√
3, η = 3 and

L = 19.9 are used. The rate of convergence is approximately 2.9, which is much
better result than our estimate from Theorem 6.5.
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Figure 6.8: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) on the length of the time step τ . Sinusoidal in time exact
solution (6.25) is considered. The fixed parameters α = 0.2, h =

√
3, η = 3 and

L = 19.9 are used. The rate of convergence is 0.99, which coincides with our
estimate from Theorem 6.5.
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Figure 6.9: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) on the choice of the discretization parameter h. The ex-
act solution (6.26) with sinusoidal behavior in the space variable is considered.
The parameters α = 0.2, τ = 0.05, η = 3 and L = 19.9 are fixed. The rate of
convergence is 0.9, which is better result than our estimate from Theorem 6.5.

n◦ ref. h discret. error relative error comput. time

0
√

3 0.072319 0.071533 00:00:02
1

√
3/2 0.053718 0.053352 00:00:14

2
√

3/4 0.029336 0.029259 00:01:42
3

√
3/8 0.014982 0.014973 00:13:08

4
√

3/16 0.007530 0.008050 02:00:25

Table 6.1: Summarized results from Figure 6.9. The dependence of the relative
error tracks the values of the discretization error ‖H0 − rhH0‖.

6.4.2 Convergence of the approximation in one time layer

In the previous subsection the development of the relative error in time was
shown, depending on all the method parameters. Here, we investigate the con-
vergence of our approximation within one particular time layer. As one can see
in Figure 6.2, it is an iterative process which stops when the difference between
two consecutive iterations in the domain as well as on the boundary is smaller
than some fixed value τη.
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n◦ ref. h relative error comput. time

0
√

3 0.001729 00:00:02
1

√
3/2 0.001401 00:00:15

2
√

3/4 0.002083 00:01:50
3

√
3/8 0.002808 00:13:02

4
√

3/16 0.003336 02:01:01

Table 6.2: The dependence of the relative error (6.20) of the numerical
scheme (6.22), (6.11) on the mesh refinement. Linear in time exact solu-
tion (6.24) is considered. The parameters τ = 0.05, α = 0.2, η = 3 and L = 19.9
are fixed. With more refinements the relative error increases slightly because of
accumulation of calculation errors.

We consider fixed parameters h, τ and η. For each parameter of nonlinearity
α, an optimal value of L is chosen in line with Remark 6.1.

If the parameter α approaches zero, more iterations are required to obtain
the same accuracy. This phenomenon is visible both when the linear exact
solution (6.24) or the periodical one (6.26) is considered, see Tables 6.3 and 6.4,
respectively. Such a behavior was expected, because with smaller α the nature
of the problem becomes more nonlinear and consequently more complex.

In the previous subsection we discussed that the sinusoidal exact solution
(6.26) can be fitted by Whitney’s elements only with precision reported as dis-
cretization error. The magnitude of the discretization error for the basic mesh
and mesh 1, 2, 3 and 4 times refined can be found in Table 6.1. Thus, if the
mesh consists of 3072 elements (3 refinements of the basic mesh), the exact so-
lution (6.26) is fitted by Whitney’s edge elements with an error of about 1.5%.
The discretization error is the minimal error which can be reached. If the relative
error reaches this “limit” value, no more iterations are needed, see Figure 6.10.
The convergence of the method is fast, its slope depends on parameter α.
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relative error
α L n◦ iter. first iter. last iter.

0.1 31.55 40 0.014701 0.000858
0.2 19.91 29 0.014483 0.000507
0.3 12.56 21 0.014355 0.000295
0.5 5.025 11 0.014244 0.000109
0.7 2.078 6 0.014206 0.000043
0.9 1.076 4 0.014190 0.000003

Table 6.3: The evolution of the relative error (6.20) of the approximation
scheme (6.22), (6.11) in one time layer. The problem with linear exact solu-
tion (6.24) is considered. The parameters τ = 0.05, η = 3 and an optimal L are
fixed. The mesh consists of 48 elements (1 refinement).

Remark 6.2 (The situation on the boundary)
The convergence of our approximation on the boundary within one particular
time layer is studied using the relative error

max
t∈[0,T ]

∥∥H(t)− uhn(t)
∥∥

Γ

‖H(t)‖Γ
. (6.27)

Again, if the parameter α approaches zero, more iterations are required in
order to obtain the same accuracy, see Table 6.5.

If the mesh consists of 3072 elements (3 refinements of the basic mesh), the
exact solution (6.26) is fit on the boundary by Whitney’s edge elements with an
error of about 0.9 %. The discretization error is the minimal error which can be
reached. If the relative error reaches this “limit” value, no more iterations are
needed, see Figure 6.11.
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relative error
α L n◦ iter. first iter. last iter.

0.1 31.55 47 0.022021 0.015079
0.2 19.91 36 0.021783 0.014975
0.3 12.56 27 0.021642 0.014919
0.5 5.03 14 0.021521 0.014865
0.7 2.08 7 0.021471 0.014831
0.9 1.08 4 0.021441 0.014809

Table 6.4: The evolution of the relative error (6.20) of the approximation
scheme (6.22), (6.11) in one time layer. Problem with sinusoidal exact solu-
tion (6.26) is considered. The parameters τ = 0.05, η = 3 and an optimal L are
fixed. The mesh consists of 3072 elements (3 refinements).
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Figure 6.10: The relative error (6.20) of the approximation scheme (6.22), (6.11)
depending on the number of iterations. The nonlinearity is given by (6.23) and
sinusoidal in space exact solution (6.26) is considered. The mesh consists of
3072 elements. The exact solution can be fitted by Whitney’s elements with a
discretization error of 1.5%. Hence, it is the smallest error which can be reached.
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relative error on Γ
α L n◦ iter. first iter. last iter.

0.1 31.55 47 0.016554 0.010162
0.2 19.91 36 0.015999 0.009795
0.3 12.56 27 0.015643 0.009610
0.5 5.03 14 0.015330 0.009473
0.7 2.08 7 0.015213 0.009408
0.9 1.08 4 0.015159 0.009371

Table 6.5: The evolution of the relative error (6.27) of the approximation
scheme (6.22), (6.11) in one time layer on the boundary of the domain.
Problem (6.26) with sinusoidal exact solution is considered. The parameters
τ = 0.05, η = 3 and an optimal L are fixed. The mesh consists of 3072 elements
(3 refinements).
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Figure 6.11: The same situation as in Figure 6.10, but the norm is calculated
only on the boundary. The exact solution can be fitted on the boundary by
Whitney’s elements with a discretization error of 0.9%. Hence, it is the smallest
error which can be reached.
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6.5 Conclusions

In this chapter we have proved theoretically and also numerically the conver-
gence of the proposed scheme (6.10), (6.11) to the boundary value problem (4.6)
with constitutive law (4.4). This nonlinear scheme describes the evolution of
electromagnetic fields in a bounded domain, when a non–perfect contact be-
tween two different materials is considered on the boundary.

Thanks to the new character of the nonlinear vector function G (by using a
cut-off for large and small values of magnetic field, see (4.4)), the error estimate
for the time discretization was improved in comparison with Chapter 5.

The convergence of the approximation scheme with respect to the length of
the time step τ coincides with the theory. The convergence with respect to the
size of the mesh h is even faster than the derived estimates predict. However,
the numerical experiments can be influenced by the choice of the exact solution.

The linearization scheme is based on the fixed-point principle. One could
have expected the method to be slow, see [53], where the author needs several
hundred internal iterations to reach the stopping criterion. Nevertheless, based
on our numerical results we regard the method as fast, robust and stable. The
main reason is that the nonlinearity in the whole domain, as was investigated
by Jańıková in [53], causes more difficulties and decelerates the method more
than the nonlinearity acting only on the boundary.

Figures 6.10 and 6.11 illustrate that the internal iterations have the same
character. The relative error decreases rapidly at the beginning and stays rela-
tively constant after a while. The reason is that the relative error is obtained as
a sum of the linearization and the space discretization error. In the beginning
the linearization error is dominant but with increasing number of iterations it
becomes subjacent to the discretization one. Thus, we can conclude that the
finer the mesh, the smaller the relative error. However, the mesh diameter has
to be chosen reasonably to avoid an excessive increase of computational time
and memory consumption.
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Chapter 7

Problem formulation

The high-frequency domain includes the study of electromagnetic waves and
propagation of energy through matter. Because a high–frequency domain is
difficult to define, we assume a domain of electromagnetic fields in which the
displacement currents cannot be neglected.

If the computing domain Ω coincides with the complement of a bounded
domain Ωint, Ω = R3 − Ωint, we speak of an exterior boundary value problem.
Numerical methods for the solution of exterior problems have received special
attention in the past. Since the pioneering work of Engquist and Majda [35]
in 1977, the method of Artificial Boundary Condition (ABC) has been widely
used for wave problems. On top of standard boundary conditions imposed on
the domain boundary, an additional condition at infinity must be added. This
condition represents an ABC used for truncation of an unbounded propagation
domain to a bounded one suitable for computations. An ABC is then given
as a relation linking the traces of the wave on the fictitious boundary and ap-
proximately models the propagation of the wave through the surface, from the
computational domain to its exterior. Moreover, it is a guaranty of unique and
well-posed solution to the differential problem.

There are many important areas of applications where artificial boundaries
are used. We can also find them in the literature under the name dynamic or
evolution, because they describe the processes outside the computational do-
main which change dynamically and develop in the time. Typical examples are
found in local weather prediction, see [32, 72], geophysical calculations involving
acoustic and elastic waves, see [14, 56]. The dynamic BCs are very natural in
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many mathematical models as heat transfer in a solid in contact with moving
fluid, thermoelasticity and diffusion phenomena, see [73]. They also appear in
study of the Stefan problem when the boundary material has a large thermal
conductivity and sufficiently small thickness. Hence, the boundary material is
regarded as the boundary of the domain. A degenerate elliptic–parabolic prob-
lem with nonlinear dynamic BCs and with applications in the Stefan problem
is considered, for instance, in [4].

In [26] the stability of parabolic problems with special type of nonlinear
dynamic BC, namely Wentzell BC, is studied. Such a boundary value problem
can model a diffusion process, for example, the heat equation with a heat source
on the boundary. Specially in [26] the authors discussed the situation when the
heat source on the boundary depends nonlinearly on the heat flow across and
the temperature on the boundary and the heat can transfer along the boundary.
For more information about the parabolic problems with dynamic Wentzell BCs,
see [25, 39, 94].

The monograph [90] is devoted to the heat equation in the perforated do-
main. There the authors deal with the case in which the perforations are pe-
riodically distributed and their size is uniform. The dynamic BC is considered
on the surface of the holes.

Heat equation supplied with dynamic BCs of reactive type is studied in [92].

Arrieta, Quittner and Bernal also treat parabolic problems with nonlinear
dynamic BCs. In [6] they are interested in the largest possible growth of the
nonlinear terms in appropriate spaces.

The wave equation with second order nonstandard dynamic BCs is discussed,
for instance, in [93]. A one dimensional model describes transversal small oscil-
lations of an elastic rod with a tip mass on one endpoint, while the other one is
pinched (see [27, 46]). A two dimensional model introduced in [43] deals with
a vibrating membrane. A three dimensional model elaborated in [10] describes
small irrotational perturbation from the rest state of a gas contained in a locally
reacting chamber.

In this and the following chapter, an ABC with linear character is assumed.
Unlike in the low-frequency part, see Chapters 5 and 6, the difficulties with the
nonlinearity fall out. The complexity of the exterior boundary problem origi-
nates in its mathematical description by the full system of Maxwell’s equations
whereas at high frequencies, the electric and magnetic fields are interdependent.
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Let Ω be a bounded domain of R3 whose boundary ∂Ω consists of two dis-
connected parts Σ and Γ that are both regular enough to define a normal vector
ν outwardly directed to ∂Ω . The geometry of the computational domain is
depicted in Figure 7.1(b). The boundary Γ corresponds to the surface limit-
ing a regular body, namely the scatterer, which is perfectly conducting. The
boundary Σ is also regular, satisfies Γ ∩ Σ = ∅ and it is the exterior boundary
of Ω.

The way we deal with the ABC is motivated by the work of H. Barucq [7],
where the theory of propagating electromagnetic waves in an unbounded domain
is elaborated in two dimensions. She studied a TE-polarized electromagnetic
field (E, H) described by the Maxwell equations

ε∂tE −CurlH = 0, µ∂tH + curlE = 0 in O × (0,∞),
divE = 0 in O × (0,∞),
E(x, 0) = E0(x), H(x, 0) = H0(x) in O,
E × ν = J on Γ× (0,∞).

(7.1)

The parameters ε and µ are the dielectric constants, O is an unbounded
domain of R2. The boundary of O is denoted by Γ and is regular enough to
define a normal vector ν outwardly directed to O. If ∂1 and ∂2 denote the
spatial derivatives, the operators Curl and curl are respectively defined by

Curlϕ = (∂2ϕ,−∂1ϕ)t, curlv = ∂1v2 − ∂2v1

and they coincide with the usual definition of the curl operator curl = ∇× as
follows. Consider the vector ϕ = (0, 0, ϕ)t where ϕ only depends on x1 and x2.
Then, curlϕ = Curlϕ. In the same way, if v = (v1, v2, 0)t with v1 and v2 only
depending on x1 and x2, then curl v = (0, 0, curl v)t . The source J is assumed
to be compactly time-supported in [0, T ] .

Barucq showed that the unbounded domain O can be truncated by an aux-
iliary surface Σ in O. She also characterized the propagation of (E, H) from
the interior of Σ to its exterior by a first order condition

∂t(E × ν +H) = α(x)E × ν + β(x)H on Σ× (0,∞). (7.2)

Here the functions α and β are regular functions defined on Σ, given by

α(x) =
κ(x)

4
− γ(x) and β(x) = −κ(x)

4
− γ(x), (7.3)
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µ = 1

Γ
ν

(a) Unbounded domain.
Background of scatterer
surrounded by air or
vacuum.

D

ε = 1
µ = 1

ν
Γ Σ

ν

(b) Bounded domain suit-
able for computations. An
absorbing boundary condi-
tion prescribed on the aux-
iliary boundary Σ.

Figure 7.1: Geometry of the scatterer and the boundaries. The boundary Γ
of the scatterer is perfectly conducting. An unbounded domain of propagation
of electromagnetic waves is truncated by introducing an artificial boundary Σ
limiting the computational domain. A suitable boundary condition is assumed
on this artificial boundary.

where γ is an arbitrary regular function defined on Σ and κ is the curvature
of Σ . From the convexity of the area one can conclude that κ is non-negative.
The condition (7.2) has been derived using pseudodifferential calculus, see [86].
Barucq analyzed the Maxwell system along with (7.2) and showed the well-
posedness and long time behavior of the solution. Her work stimulated us to
extend the mentioned problem to three dimensions.

Thus, the 3D case of (7.1) is studied. We consider the mixed problem1:
Find {E,H} solution to

∂tE −∇×H = 0, ∂tH +∇×E = 0 in Ω× (0,∞),
E(x, 0) = E0(x), H(x, 0) = H0(x) in Ω,
E × ν = 0 on Γ× (0,∞),
∂t (E × ν −H × ν × ν) = αE × ν − βH × ν × ν on Σ× (0,∞).

(7.4)

Note that the last equation in (7.4) represents a 3D analogue of (7.2) – see also
[37, p. 354].

1For simplicity, we put ε = µ = 1, J = 0.
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Throughout the following chapter we assume that

∃K < 0 : 0 > α(x) > K and 0 > α(x) ≥ β(x) ∀x = (x1, x2, x3)t ∈ Σ, (7.5)

which means that the boundary Σ has a positive curvature.
Further, in Chapter 8, we formulate the variational formulation to the bound-

ary value problem (7.4) and specify the appropriate function spaces of test func-
tions. The goal of the next chapter is to design a numerical scheme for solving
the mentioned variational problem.

Let us note that our analysis is also valid in 2D.
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Chapter 8

Time discretization

The aim of this chapter is to propose an efficient numerical approximation of
the solution to the scattering problem arising from the propagation of electro-
magnetic fields through an unbounded domain, see Figure 7.1(a). We study a
system of time-dependent Maxwell’s equations (7.4) with a first order boundary
condition on an artificial part of the boundary.

One of the simplest ABCs is the Silver-Müller condition with dissipative
character (cf. [22, 40]). The combination of the second order Maxwell system
with the first order BC has been studied in [8], where the asymptotic analysis has
been worked out. Model of absorbing boundary was suggested by Bérenger [12,
13] in 1994. The revolutionary method of Perfectly Match Layer (PML) yields
no reflection at any wave number and any angle of incidence of the scattered
wave at the “sponge” layer interface.

This chapter, based on the article [84], is organized as follows. After the
rigorous definition of the problem we propose the time-discretization scheme
using the backward Euler method, as we have done in previous chapters. Con-
sequently the well-posedness of the problem in 3D is proved in Lemma 8.1. In
Section 8.2 the long-time stability results for the time discrete approximate so-
lution are derived. The main results are formulated in Theorems 8.1 and 8.2.
Here, the linear dependence of the error of proposed time-discrete scheme on
the choice of the time step τ is shown.

Most of the theoretical results of this chapter were presented at the interna-
tional conference NumAn 2008 and are summarized in the paper [82], published
in the proceedings of the conference.
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Considering the problem setting (7.4) introduced in Chapter 7, the related
variational formulation reads

(∂tE,ϕ)− (∇×H,ϕ) = 0,
(∂tH,ψ) + (E,∇×ψ) = (E × ν,ψ)Σ ,
(∂t (E × ν −H × ν × ν) , ξ)Σ = (αE × ν − βH × ν × ν, ξ)Σ

(8.1)

for any ϕ ∈ V ,ψ ∈ W , ξ ∈ L2 (Σ) and for a.e. t ∈ [0,∞). The spaces of test
functions are defined as follows

V = {ϕ ∈ H(curl ; Ω); ϕ× ν = 0 on Γ, ϕ× ν ∈ L2 (Σ)},
W = {ϕ ∈ H(curl ; Ω); ϕ× ν ∈ L2 (Σ)}.

Both spaces are endowed with the same graph norm

‖ϕ‖2V = ‖ϕ‖2W = ‖ϕ‖2H(curl ;Ω) + ‖ϕ× ν‖2L2(Σ) .

8.1 Discretization scheme

Using the standard backward Euler method for time discretization, we suggest
the following linear recurrent approximation scheme for i ∈ N:

(1) start from ei−1,hi−1, taking into account e0 = E0 ,h0 = H0 .

(2) solve the system of PDEs with unknowns ei,hi

(δei,ϕ)− (∇× hi,ϕ) = 0,
(δhi,ψ) + (ei,∇×ψ) = (ei × ν,ψ)Σ ,
(δei × ν − δhi × ν × ν, ξ)Σ = (αei × ν − βhi × ν × ν, ξ)Σ

(8.2)

for any ϕ ∈ V ,ψ ∈W , ξ ∈ L2 (Σ) .

First we analyze the BC on Σ :

δ (ei × ν − hi × ν × ν) = αei × ν − βhi × ν × ν
= α (ei × ν − hi × ν × ν) + (α− β)hi × ν × ν.

Applying the backward Euler method to the discretization in time one obtains
the following solution

ei × ν − hi × ν × ν =

(1− τα)−i[e0 × ν − h0 × ν × ν] + τ(α− β)
i∑

j=1

(1− τα)j−i−1hj × ν × ν .

(8.3)
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This can be recast as

ei × ν − hi × ν × ν = Bi−1 + τ(α− β)(1− τα)−1hi × ν × ν, (8.4)

where

Bi−1 = (1− τα)−i[e0×ν−h0×ν×ν] + τ(α−β)
i−1∑

j=1

(1− τα)j−i−1hj ×ν×ν .

Hence, we find

ei × ν = Bi−1 +
[
1 + τ(α− β)(1− τα)−1

]
hi × ν × ν.

The next lemma shows the existence of ei,hi on each time step.

8.1.1 Well–posedness

Lemma 8.1 Let E0,H0 ∈ L2(Ω) and E0 × ν,H0 × ν ∈ L2 (Σ). Assume
(7.5). Then for any i ∈ N and any fixed sufficiently small τ , there exist uniquely
determined ei ∈ V ,hi ∈W satisfying (8.2) .

Proof: Suppose that we want to prove the existence and uniqueness of the
solution for the following system

(e,ϕ)− τ (∇× h,ϕ) = (a,ϕ) ,
(h,ψ) + τ (e,∇×ψ) + τ (Kh× ν,ψ × ν)Σ = (b,ψ) + τ (B,ψ)Σ ,

(8.5)

where

K = [1 + τ(α− β)(1− τα)−1] ≥ 1 , (a,ϕ) = (ei−1,ϕ) ,
(B,ψ)Σ = (Bi−1,ψ)Σ , (b,ψ) = (hi−1,ψ) (8.6)

for any ϕ ∈ V ,ψ ∈W and some a, b ∈ L2(Ω) ,B ∈ L2 (Σ).
We approximate the spaces V ,W by their finite dimensional subspaces

V k = [ϕ1, . . . ,ϕk] and W l = [ψ1, . . . ,ψl] , respectively. Assume the follow-
ing approximation property

lim
k→∞

‖ϕ− Pkϕ‖V = lim
l→∞

‖ψ − Plψ‖W = 0 (8.7)

for any ϕ ∈ V ,ψ ∈W . Here Pk , Pl denote the projectors on V k,W l, respec-
tively. The approximation of (8.5) reads

(ek,ϕ)− τ (∇× hl,ϕ) = (a,ϕ) ,
(hl,ψ) + τ (ek,∇×ψ) + τ (Khl × ν,ψ × ν)Σ = (b,ψ) + τ (B,ψ)Σ

(8.8)
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for any ϕ ∈ V k, ψ ∈W l.
We are looking for ek,hl of the form ek =

∑k
i=1 eiϕi and hl =

∑l
i=1 hiψi .

Substituting this into (8.8), we obtain the following linear algebraic system
(where the superscript T denotes the transpose)

Aek − Chl = f ,
CTek + Bhl = g + h (8.9)

with
A = ((ϕi,ϕj)Ω)i,j=1,...,k

B = ((ψi,ψj)Ω + τ(Kψi × ν,ψj × ν)Σ)i,j=1,...,l

C = τ((∇×ψi,ϕj)Ω)i=1,...l ;j=1...k

f = ((a,ϕj)Ω)Tj=1,...,k

g = ((b,ψj)Ω)Tj=1,...,l

h = τ((B,ψj)Σ)Tj=1,...,l.

(8.10)

The matrices A and B are symmetric and positive definite. Eliminating ek from
(8.9a) and setting the result into (8.9b) yields

ek = A−1f + A−1Chl ,[
B + CTA−1C

]
hl = g + h− CTA−1f .

(8.11)

Due to the fact that the matrix B + CTA−1C is regular, we have proved the
existence of a unique solution ek ∈ V k and hl ∈W l of (8.8).

As a next step we need uniform a priori estimates for ek and hl with respect
to k and l. Therefore we set ϕ = ek ,ψ = hl in (8.8) and sum both equations.
We get

‖ek‖2 + ‖hl‖2 + τ (Khl × ν,hl × ν)Σ = (a, ek) + (b,hl) + τ(B,hl)Σ.

After applying Young’s inequalities to the scalar product on the right-hand side,
we obtain

‖ek‖2 + ‖hl‖2 + ‖hl × ν‖2Σ ≤ C(τ)
(
‖a‖2 + ‖b‖2 + ‖B‖2Σ

)
,

which is valid for any k, l ∈ N .
Further we deduce

|(∇× hl,ϕ)| = |(∇× hl,ϕ− Pkϕ) + (∇× hl, Pkϕ)|
=
∣∣∣∣(hl,∇× (ϕ− Pkϕ))− (hl × ν,ϕ− Pkϕ)Σ +

1
τ

(ek − a, Pkϕ)
∣∣∣∣

≤ ‖hl‖ ‖∇ × (ϕ− Pkϕ)‖+ ‖hl × ν‖Σ ‖ϕ− Pkϕ‖Σ +
1
τ
‖ek − a‖ ‖Pkϕ‖

≤ C(τ) ‖ϕ‖V ,
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which yields that

‖∇ × hl‖V ∗ = sup
‖ϕ‖V ≤1

(∇× hl,ϕ) ≤ C(τ).

Due to the reflexivity of L2(Ω),L2 (Σ) and V ∗ we can choose subsequences
from ek and hl (denoted by the same symbol again) such that

ek ⇀ e in L2(Ω),
hl ⇀ h in L2(Ω),
hl × ν ⇀ u× ν in L2 (Σ) ,
∇× hl ⇀ w in V ∗.

(8.12)

Now, for any ϕ ∈ H0(curl ; Ω) ⊂ V it holds

(∇× hl,ϕ) = (hl,∇×ϕ)
↓ ↓

(w,ϕ) = (h,∇×ϕ) ,

which implies that w = ∇× h.
Further, for any ϕ ∈ V we have

(∇× hl,ϕ) = (hl,∇×ϕ) − (hl × ν,ϕ)Σ

↓ ↓ ↓
(∇× h,ϕ) = (h,∇×ϕ) − (u× ν,ϕ)Σ ,

which implies that u× ν = h× ν.
In view of the approximation property (8.7), we deduce for any ϕ ∈ V that

(ek, Pkϕ) = (ek,ϕ) + (ek, Pkϕ−ϕ) k→∞−→ (e,ϕ) ,
(a, Pkϕ) = (a,ϕ) + (a, Pkϕ−ϕ) k→∞−→ (a,ϕ)

and
|(∇× hl,ϕ− Pkϕ)| ≤ ‖∇ × hl‖V ∗ ‖ϕ− Pkϕ‖V

≤ C(τ) ‖ϕ− Pkϕ‖
k→∞−→ 0 for any l.

Therefore we can pass to the limit in (8.8a) for k, l→∞ to obtain (8.5a), which
can be written as follows

(e,ϕ)− (a,ϕ) = τ (∇× h,ϕ) .
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The left-hand side can be seen as a bounded linear functional on L2(Ω) be-
cause of e,a ∈ L2(Ω). Hence, using a density argument and the Hahn-Banach
theorem, see Appendix, we conclude that ∇×h ∈ L2(Ω). This implies h ∈W .

Analogously we can also proceed in (8.8b) to arrive at (8.5b), which can be
written as

(h,ψ)− (b,ψ) = −τ (∇× e,ψ) ,

where ∇× e ∈W ∗.
Due to the fact that h, b ∈ L2(Ω), we analogously deduce that ∇× e ∈ L2(Ω).
Further, E0 × ν ∈ L2 (Σ) together with (8.3) yield e× ν ∈ L2 (Σ), i.e. e ∈ V ,
which concludes the proof. �

8.2 A priori estimates

The next step is to derive suitable a priori estimates for ei ,hi ; i ∈ N. They are
obtained in the following lemmas.

We start with some preparatory work concerning integral inequalities. To
prove the first lemma it is essential to know that when an integral kernel a
satisfies

(−1)j a(j)(t) ≥ 0 ∀t > 0 ; j = 0, 1, 2 ; a′ 6= 0,

this implies the strong positiveness of the kernel a – see Staffans [85] – i.e.,

∫ T

0

∫ t

0

a(t− s)Φ(s)Φ(t) ds dt ≥ 0 ∀T > 0 , Φ ∈ C([0, T ]) . (8.13)

Inspired by the continuous case, we show that an inequality similar to (8.13)
holds true in a discrete form. Denoting bj = a(tj+1) for j ∈ {0, 1, . . . }, one can
easily check that {bj}∞j=0 ∈ l∞ is positive, convex and then (see Zygmund [101])

b0
2

+
∞∑

j=1

bj cos(jΘ) ≥ 0 ∀Θ ∈ R .

Hence, applying McLean-Thomée [63, Lemma 4.1], we get

Bk(φ) =
k∑

i=1

i∑

j=1

bi−jφ
jφi ≥ 0 ∀φ = (φ1, . . . , φk) ∈ Rk , k ≥ 1 .
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This can be rewritten as follows

τ2
k∑

i=1

i∑

j=1

a(ti−j+1)φjφi ≥ 0 ∀φ = (φ1, . . . , φk) ∈ Rk , k ≥ 1 . (8.14)

Remark 8.1 The non-negativity of the term Bk(φ) can be proved using the
Fourier transform (denoted by )̂, so that, e.g.

b̂(θ) =
∞∑

j=0

bje
ijθ .

Using Parseval’s theorem, we have, by simple calculation, with φj = 0 for
j /∈ 1, . . . , k ,

Bk(φ) =
1

2π

∫ 2π

0

b̂(θ)|φ̂(θ)|2dθ =
1

2π

∫ 2π

0

< b̂(θ)|φ̂(θ)|2dθ ,

where the latter equality follows since Bk(φ) is real-valued. As b̂ = < b̂ =
∞∑

j=0

bj cos(jΘ) ≥ 0, this yields the result.

Lemma 8.2 Let the assumptions of Lemma 8.1 be fulfilled. Then there exists
a positive constant C such that for all k ∈ N and any sufficiently small τ > 0 it
holds

‖ek‖2 +
k∑

i=1

‖ei − ei−1‖2 + ‖hk‖2 +
k∑

i=1

‖hi − hi−1‖2 + τ

k∑

i=1

‖hi × ν‖2Σ ≤ C.

Proof: By setting ϕ = ei, ψ = hi in (8.2), one can sum both equations and
obtain

(δei, ei) + (δhi,hi)− (hi, ei × ν)Σ = 0 .

By multiplying with τ and summing for i = 1, . . . , k we have

k∑

i=1

τ (δei, ei) +
k∑

i=1

τ (δhi,hi)−
k∑

i=1

τ (hi, ei × ν)Σ = 0 .
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Using Abel’s summation for the first two terms, we deduce

‖ek‖2 +
k∑

i=1

‖ei − ei−1‖2 + ‖hk‖2 +
k∑

i=1

‖hi − hi−1‖2 − 2
k∑

i=1

τ (hi, ei × ν)Σ

= ‖e0‖2 + ‖h0‖2 .
(8.15)

Next we set expansion of the boundary term (8.3) into (8.15) and obtain

‖ek‖2 +
k∑

i=1

‖ei − ei−1‖2 + ‖hk‖2 +
k∑

i=1

‖hi − hi−1‖2 + 2τ
k∑

i=1

‖hi × ν‖2Σ

−2τ
k∑

i=1

(
hi, (1− τα)−i[e0 × ν − h0 × ν × ν]

)
Σ

+2(α− β)τ2

∫

Σ

k∑

i=1

i∑

j=1

(1− τα)j−i−1(hi × ν) · (hj × ν)

= ‖e0‖2 + ‖h0‖2 .

The third boundary term is nonnegative because of (8.14). We apply Young’s
inequality to the second boundary term, yielding

‖ek‖2 +
k∑

i=1

‖ei − ei−1‖2 + ‖hk‖2 +
k∑

i=1

‖hi − hi−1‖2 + τ

k∑

i=1

‖hi × ν‖2Σ

≤ C
(
‖e0‖2 + ‖h0‖2 + ‖e0 × ν‖2Σ + ‖h0 × ν‖2Σ

)
,

which concludes the proof. �

Lemma 8.3 Let the assumptions of Lemma 8.1 be fulfilled. Moreover assume
∇ ·E0 ∈ L2(Ω). Then ∇ · ei = ∇ ·E0 in L2(Ω) for any i = 1, . . . , n .

Proof: The existence of ei and hi follows from Lemma 8.1.
Let us set ϕ = ∇Φ into (8.2a) for any Φ ∈ C∞0 (Ω). Using Green’s formula for
the second term and due to the fact that ∇×∇Φ = 0, we recursively obtain

(ei,∇Φ) = (E0,∇Φ) .

Applying integration by parts, we have

(∇ · ei,Φ) = (∇ ·E0,Φ) .
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The last equality is valid for all Φ ∈ C∞0 (Ω). According to the assumption
on ∇ · E0, the right-hand side of the last identity can be seen as a bounded
linear functional on L2(Ω). The density of C∞0 (Ω) in L2(Ω) together with the
Hahn-Banach theorem conclude the proof. �

Remark 8.2 Note that according to Lemma 8.3 the following implication is
valid:

∇ ·E0 = 0 =⇒ ∇ · ei = 0, ∀i ∈ N.

For the next lemma we need the following compatibility condition1

(∂tE(0),ϕ)− (∇×H0,ϕ) = 0,
(∂tH(0),ψ) + (∇×ψ,E0)− (ψ,E0 × ν)Σ = 0 (8.16)

for any ϕ ∈ V ,ψ ∈W .

The compatibility condition (8.16) is satisfied for smoother initial data,
namely for E0 ∈ V and H0 ∈ W . Then Green’s theorem can be applied
to (8.16). We define

δe0 := ∂tE(0) := ∇×H0, δh0 := ∂tH(0) := −∇×E0 .

Lemma 8.4 Assume (7.5), E0 ∈ V and H0 ∈W . Then there exists a positive
constant C such that

‖δek‖2 +
k∑

i=1

‖δei − δei−1‖2 + ‖δhk‖2 +
k∑

i=1

‖δhi − δhi−1‖2

+τ
k∑

i=1

‖δhi × ν‖2Σ ≤ C

holds for all k ∈ N.

Proof: We subtract (8.2) for i = i − 1 from (8.2), then we substitute ϕ = δei,
ψ = δhi. For i = 0 we use the compatibility condition

(δei − δei−1, δei)− (∇× (hi − hi−1), δei) = 0,
(δhi − δhi−1, δhi) + (∇× δhi, ei − ei−1)− (δhi, (ei − ei−1)× ν)Σ = 0.

1Compatibility between the boundary data and the initial condition, stating that the
Maxwell equations (8.1) are satisfied at the time t = 0.
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Adding both equations together and summing the result again for i = 1, . . . , k,
we have
k∑

i=1

(δei − δei−1, δei) +
k∑

i=1

(δhi − δhi−1, δhi) =
k∑

i=1

(δhi, (ei − ei−1)× ν)Σ .

Applying Abel’s summation on the left, we deduce

‖δek‖2 +
k∑

i=1

‖δei − δei−1‖2 + ‖δhk‖2 +
k∑

i=1

‖δhi − δhi−1‖2

= ‖δe0‖2 + ‖δh0‖2 + 2τ
k∑

i=1

(δhi, δei × ν)Σ .

Putting together the discrete boundary condition (8.2c) and the expansion (8.3),
we obtain

‖δek‖2 +
k∑

i=1

‖δei − δei−1‖2 + ‖δhk‖2 +
k∑

i=1

‖δhi − δhi−1‖2 + 2τ
k∑

i=1

‖δhi × ν‖2Σ

= ‖δe0‖2 + ‖δh0‖2 + 2τ
k∑

i=1

(
δhi, α(1− τα)−i(e0 × ν − h0 × ν × ν)

)
Σ

+2τ

kX
i=1

 
δhi, α

"
(α− β)

iX
j=1

τ(1− τα)j−i−1hj × ν × ν + hi × ν × ν

#
− βhi × ν × ν

!
Σ

.

Applying Young’s and Hölder’s inequalities and Lemma 8.2 on each boundary
term on the right-hand side, we get in a straightforward way (ε > 0)

‖δek‖2 +
k∑

i=1

‖δei − δei−1‖2 + ‖δhk‖2 +
k∑

i=1

‖δhi − δhi−1‖2

+(2− ε)τ
k∑

i=1

‖δhi × ν‖2Σ ≤ Cε.

Choosing a sufficiently small but positive ε concludes the proof. �

Lemma 8.5 Let the conditions of Lemma 8.4 be fulfilled. Then

‖∇ × hi‖+ ‖∇ × ei‖ ≤ C

for all i ∈ N.
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Proof: The statement of the lemma follows from the density of (C∞0 (Ω))3 in
L2(Ω), Lemma 8.4, the Hahn-Banach theorem and (8.2) – see also the similar
consideration at the end of the proof of Lemma 8.1. �

Lemma 8.6 Let the conditions of Lemma 8.4 be fulfilled. Then

‖hi × ν‖Σ + ‖ei × ν‖Σ + τ

k∑

i=1

‖δei × ν‖2Σ ≤ C

for all i ∈ N.

Proof: The assertion concerning hi × ν follows from Lemma 8.4 and

hi × ν = h0 × ν + τ

i∑

j=1

δhj × ν.

Using (8.3) we deduce that

‖ei × ν‖Σ ≤ ‖hi × ν × ν‖Σ +
∥∥(1− τα)−i

∥∥
L∞(Σ)

‖e0 × ν − h0 × ν × ν‖Σ

+ ‖α− β‖L∞(Σ) τ

i∑

j=1

∥∥(1− τα)j−i−1
∥∥
L∞(Σ)

‖hj × ν × ν‖Σ

≤ C


1 + τ

i∑

j=1

∥∥(1− τα)j−i−1
∥∥
L∞(Σ)




≤ C.

The relation τ
∑k
i=1 ‖δei × ν‖

2
Σ ≤ C can be readily obtained from (8.2c). �

8.3 Error estimates

We introduce continuous piecewise linear in time vector fields eτ , hτ (τ is the
time step) given by

eτ (0) = E0,
eτ (t) = ei−1 + (t− ti−1)δei for t ∈ (ti−1, ti], i ∈ N

and

hτ (0) = H0,
hτ (t) = hi−1 + (t− ti−1)δhi for t ∈ (ti−1, ti], i ∈ N.
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Next, we define step vector fields eτ , hτ

eτ (0) = E0, eτ (t) = ei,

hτ (0) = H0, hτ (t) = hi for t ∈ (ti−1, ti], i ∈ N.
Using the new notation we rewrite (8.2) into a more suitable form for our pur-
poses

(∂teτ ,ϕ)−
(
∇× hτ ,ϕ

)
= 0,

(∂thτ ,ψ) + (eτ ,∇×ψ)− (ψ, eτ × ν)Σ = 0,
(∂teτ × ν − ∂thτ × ν × ν, ξ)Σ =

(
αeτ × ν − βhτ × ν × ν, ξ

)
Σ
,

(8.17)

which holds for any ϕ ∈ V , ψ ∈W , ξ ∈ L2 (Σ).
Now we have the following lemma.

Lemma 8.7 Let the conditions of Lemma 8.4 be fulfilled. Assume T > 0. Then
eτ and hτ are Cauchy sequences in C([0, T ],L2(Ω)) and hτ × ν is a Cauchy
sequence in L2([0, T ],L2 (Σ)).

Proof: We subtract the first two lines of (8.17) for τ = µ from (8.17) and get

(∂t(eτ − eµ),ϕ)−
(
∇× (hτ − hµ),ϕ

)
= 0,

(∂t(hτ − hµ),ψ) + (eτ − eµ,∇×ψ)− (ψ, (eτ − eµ)× ν)Σ = 0.

Further we set ϕ = eτ − eµ, ψ = hτ − hµ , sum both equations and integrate
over (0, ζ) for any ζ > 0. We obtain

1
2
‖eτ (ζ)− eµ(ζ)‖2 +

1
2
‖hτ (ζ)− hµ(ζ)‖2 −

∫ ζ

0

(
hτ − hµ, (eτ − eµ)× ν

)
Σ

=
∫ ζ

0

(∂t(eτ − eµ), eτ − eτ + eµ − eµ) +
∫ ζ

0

(
∂t(hτ − hµ),hτ − hτ + hµ − hµ

)
.

(8.18)
For the first term on right-hand side we deduce using the Hölder inequality and
Lemma 8.2∣∣∣∣∣

∫ ζ

0

(∂t(eτ − eµ), eτ − eτ + eµ − eµ)

∣∣∣∣∣

≤
√∫ ζ

0

‖∂t(eτ − eµ)‖2
√∫ ζ

0

‖eτ − eτ + eµ − eµ‖2

≤ C
√∫ ζ

0

‖∂teτ‖2 + ‖∂teµ‖2
√∫ ζ

0

τ2 ‖∂teτ‖2 + µ2 ‖∂teµ‖2

≤ C(τ + µ).

(8.19)
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The second term on the right is estimated in the same way, i.e.
∣∣∣∣∣

∫ ζ

0

(
∂t(hτ − hµ),hτ − hτ + hµ − hµ

)
∣∣∣∣∣ ≤ C(τ + µ). (8.20)

According to the mean-value theorem we have for t > s and some θ ∈ (s, t)
∣∣(1− tα)−i − (1− sα)−i

∣∣ =
∣∣αi(1− θα)−i−1(t− s)

∣∣ ≤ C(1− sα)−i−1|t− s|.
(8.21)

By using the standard algebraic inequality

e = lim
x→0

( 1
x

1
x − 1

) 1
x

<

( 1
x

1
x − 1

) 1
x+1

,

the following estimation can be obtained

|eατi − (1− τα)−i| <

(( 1
ατ

1
ατ−1

) 1
ατ +1

)ατi
−
(( 1

ατ
1
ατ−1

) 1
ατ

)ατi

=
(( 1

ατ
1
ατ−1

)ατi) 1
ατ +1

−
(( 1

ατ
1
ατ−1

)ατi) 1
ατ

=
(( 1

ατ
1
ατ−1

)ατi) 1
ατ [ 1

ατ
1
ατ−1

− 1
]

= eατi ατ
1−ατ

≤ Cτ .

(8.22)

The latter inequality is valid for any bounded α and τ → 0.
In virtue of (8.3) we have for t ∈ (ti−1, ti]

eτ (t)× ν = hτ (t)× ν × ν + eαt (e0 × ν − h0 × ν × ν)

+(α− β)
∫ t

0

eα(t−s)hτ (s)× ν × ν ds

+
[
(1− τα)−i − eαt

]
(e0 × ν − h0 × ν × ν)

+(α− β)
i∑

j=1

∫ tj

tj−1

[
(1− τα)j−i−1 − eα(t−s)

]
hjτ (s)× ν × ν ds

+(α− β)
∫ ti

t

eα(t−s)hτ (s)× ν × ν ds.

(8.23)
A similar interpretation holds true for eµ(t)× ν with t ∈ (tk−1, tk].
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As far as we are familiar with the relation for eµ(t)×ν and eτ (t)×ν, the last
term on the left in (8.18) can be written as a sum of the following subintegrals:

−
∫ ζ

0

(
hτ − hµ, (eτ − eµ)× ν

)
Σ

=
∫ ζ

0

(
(hτ − hµ)× ν, (hτ − hµ)× ν

)
Σ

+
∫ ζ

0

(
(hτ − hµ)× ν, (α− β)

∫ t

0

eα(t−s) (hτ (s)− hµ(s)
)
× ν ds

)

Σ

−
∫ ζ

0

(
(hτ − hµ)× ν,

[
(1− µα)−k − (1− τα)−i

]
(e0 − h0 × ν)

)
Σ

−
∫ ζ

0


(hτ − hµ)× ν, (α− β)

i∑

j=1

∫ tj

tj−1

[
eα(t−s) − (1− τα)j−i−1

]
hjτ (s)× ν ds




Σ

−
∫ ζ

0


(hτ − hµ)× ν, (α− β)

k∑

j=1

∫ tj

tj−1

[
(1− µα)j−k−1 − eα(t−s)

]
hjµ(s)× ν ds




Σ

−
∫ ζ

0

(
(hτ − hµ)× ν, (β − α)

∫ ti

t

eα(t−s)hτ (s)× ν ds
)

Σ

−
∫ ζ

0

(
(hτ − hµ)× ν, (α− β)

∫ tk

t

eα(t−s)hµ(s)× ν ds
)

Σ

= I1 + I2 − I3 − I4 − I5 − I6 − I7.

The first integral is obvious. The second one will be treated later. Let us begin
with the third one by applying Young’s inequality:

I3 =
∫ ζ

0

(
(hτ − hµ)× ν,

[
(1− µα)−k − (1− τα)−i

]
(e0 − h0 × ν)

)
Σ

≤ ε
∫ ζ

0

∥∥(hτ − hµ)× ν
∥∥2

Σ
+ Cε

∫ ζ

0

∥∥(1− µα)−k − (1− τα)−i
∥∥2

Σ

≤ ε
∫ ζ

0

∥∥(hτ − hµ)× ν
∥∥2

Σ
+ Cε

∫ ζ

0

∥∥(1− µα)−i − (1− τα)−i
∥∥2

Σ

≤ ε
∫ ζ

0

∥∥(hτ − hµ)× ν
∥∥2

Σ
+ C(τ2 + µ2).

The second inequality is based on the assumption that with the time step µ the
time interval is more finely divided than with the time step τ . In consequence
holds i < k. The last inequality follows from (8.21).
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The integrals I4 and I5 have the same character. Both of them can be estimated
using Young’s and Hölder’s inequalities together with relation (8.22). This yields

I5 =

Z ζ

0

 
(hτ − hµ)× ν, (α− β)

kX
j=1

Z tj

tj−1

h
(1− µα)j−k−1 − eα(t−s)

i
hjµ(s)× ν ds

!
Σ

≤ ε
Z ζ

0

‚‚(hτ − hµ)× ν
‚‚2

Σ
+ Cε

Z ζ

0

‚‚‚‚‚
kX
j=1

Z tj

tj−1

h
(1− µα)j−k−1 − eα(t−s)

i
hjµ(s)× ν

‚‚‚‚‚
2

Σ

≤ ε
Z ζ

0

‚‚(hτ − hµ)× ν
‚‚2

Σ
+ Cε

Z ζ

0

kX
j=1

Z tj

tj−1

‚‚‚(1− µα)j−k−1 − eα(t−s)
‚‚‚2

Σ

‚‚hjµ(s)× ν
‚‚2

Σ

≤ ε
Z ζ

0

‚‚(hτ − hµ)× ν
‚‚2

Σ
+ Cµ2.

Finally, for the integrals I6 and I7 we have

I7 =
∫ ζ

0

(
(hτ − hµ)× ν, (α− β)

∫ tk

t

eα(t−s)hµ(s)× ν ds
)

Σ

≤ ε
∫ ζ

0

∥∥(hτ − hµ)× ν
∥∥2

Σ
+ Cε

∫ ζ

0

∫ tk

t

∥∥∥eα(t−s)hµ(s)× ν
∥∥∥

2

Σ
ds

≤ ε
∫ ζ

0

∥∥(hτ − hµ)× ν
∥∥2

Σ
+ C(µ2) .

Therefore, using Lemma 8.6, the Cauchy and Young inequalities, we deduce
that

−
∫ ζ

0

(
hτ − hµ, (eτ − eµ)× ν

)
Σ

≥ (1− 5ε)
∫ ζ

0

∥∥(hτ − hµ
)
× ν

∥∥2

Σ

+
∫

Σ

(α− β)
∫ ζ

0

(
hτ (t)− hµ(t)

)
× ν

∫ t

0

eα(t−s) (hτ (s)− hµ(s)
)
× ν ds dt

−Cε
(
τ2 + µ2

)
.

Choosing a sufficiently small positive ε and involving (8.13) we obtain

−
∫ ζ

0

(
hτ − hµ, (eτ − eµ)× ν

)
Σ
≥ 1

2

∫ ζ

0

∥∥(hτ − hµ
)
× ν

∥∥2

Σ
− C

(
τ2 + µ2

)
.

(8.24)
Finally, collecting (8.18)-(8.20) and (8.24), we deduce that

‖eτ (ζ)− eµ(ζ)‖2 + ‖hτ (ζ)− hµ(ζ)‖2 +
∫ ζ

0

∥∥(hτ − hµ
)
× ν

∥∥2

Σ
≤ C (τ + µ) ,
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which is valid for any ζ > 0. Therefore

max
ζ∈[0,T ]

‖eτ (ζ)− eµ(ζ)‖2 + max
ζ∈[0,T ]

‖hτ (ζ)− hµ(ζ)‖2 +
∫ T

0

∥∥(hτ − hµ
)
× ν

∥∥2

Σ

≤ C (τ + µ) ,
(8.25)

which concludes the proof. �

Theorem 8.1 Let the conditions of Lemma 8.4 be fulfilled. Assume T > 0.
Then there exists a solution to (8.1) in [0, T ].

Proof: The assertion can be readily obtained from (8.17) by passing τ → 0 using
the a priori estimates from the previous lemmas. �

Now, we are ready to derive the error estimates for the linear approximation
scheme (8.2).

Theorem 8.2 Let the conditions of Lemma 8.4 be fulfilled and assume T > 0.
Then

(i) max
ζ∈[0,T ]

‖eτ (ζ)−E(ζ)‖2 + max
ζ∈[0,T ]

‖hτ (ζ)−H(ζ)‖2 +

Z T

0

‚‚`hτ −H´× ν‚‚2

Σ
≤ Cτ

(ii)
∫ T

0

‖(eτ −E)× ν‖2Σ ≤ Cτ.

Proof:
(i) Follows directly from (8.25) by passing to the limit µ→ 0.
(ii) We have E× ν,H × ν ∈ C([0, T ],L2 (Σ)) due to Lemmas 8.4 and 8.6. The
sequence hτ × ν is convergent in the space L2([0, T ],L2 (Σ)). Passing to the
limit for τ → 0 in (8.23) we obtain

E(t)× ν = H(t)× ν × ν + eαt (e0 × ν − h0 × ν × ν)

+(α− β)
∫ t

0

eα(t−s)H(s)× ν × ν ds.
(8.26)

We subtract (8.26) from (8.23) and we deduce in a straightforward way that
∫ T

0

‖(eτ −E)× ν‖2Σ ≤ Cτ.

�

Let us note that the uniqueness of the solution to (7.4) follows from Theo-
rem 8.2.
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Remark 8.3 Following step by step the idea from the book [37], the artificial
condition for problem (7.4) would change slightly into the form

∂t (E × ν −H × ν × ν) = −βH × ν × ν on Σ× (0,∞) (8.27)

with coefficient α = 0. We can show that the problem stays stable, what is also
intuitively expected. Solving the differential equation (8.27) yields

H × ν × ν(t) = eβtH(0)× ν × ν +
∫ t

0

eβ(t−s)∂tE × ν ds.

Using this result, the variational formulation of the problem reads

(∂tE,ϕ)− (H,∇×ϕ) = −
(
eβtH(0)× ν × ν +

∫ t

0

eβ(t−s)∂tE(s)× ν ds,ϕ× ν
)

Σ

,

(∂tH,ψ) + (∇×E,ψ) = 0.
(8.28)

The stability of the problem is checked by a standard technique, i.e. setting
ϕ = E,ψ = H, summing both equations and integrating them with respect to
time. We obtain

1
2
‖E(ζ)‖2 +

1
2
‖H(ζ)‖2 +

∫ ζ

0

(
eβtH(0)× ν × ν,E × ν

)
Σ

+
∫ ζ

0

(∫ t

0

eβ(t−s)∂tE(s)× ν,E(t)× ν
)

Σ

=
1
2
‖E(0)‖2 +

1
2
‖H(0)‖2 .

Now, Green’s identity is applied to the second boundary term
∫ ζ

0

(∫ t

0

eβ(t−s)∂tE(s)× ν,E(t)× ν
)

Σ

=
∫ ζ

0

([
eβ(t−s)E(s)× ν

]t
0

+ β

∫ t

0

eβ(t−s)E(s)× ν,E(t)× ν
)

Σ

and finally we can write

1
2
‖E(ζ)‖2 +

1
2
‖H(ζ)‖2 +

∫ ζ

0

(
eβtH0 × ν × ν,E × ν

)
Σ

+
∫ ζ

0

‖E × ν‖2Σ

−
∫ ζ

0

(
eβtE0 × ν,E × ν

)
Σ

+ β

∫ ζ

0

∫ t

0

(
eβ(t−s)E(s)× ν,E(t)× ν

)
Σ

=
1
2
‖E(0)‖2 +

1
2
‖H(0)‖2 .
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Using Young’s and Cauchy’s inequality one obtains

1
2
‖E(ζ)‖2 +

1
2
‖H(ζ)‖2 + (1− 2ε− |β|ε)

∫ ζ

0

‖E × ν‖2Σ

≤ 1
2
‖E(0)‖2 +

1
2
‖H(0)‖2 + Cε

∫ ζ

0

∥∥eβt
∥∥2

Σ

+|β|
[
Cε

∫ ζ

0

∫ t

0

‖E(s)× ν‖2Σ

]
.

Choosing sufficiently small ε we have

‖E(ζ)‖2 + ‖H(ζ)‖2 +
∫ ζ

0

‖E × ν‖2Σ ≤ C + C

∫ ζ

0

∫ t

0

‖E(s)× ν‖2Σ .

Finally, Gronwall’s lemma is applied to the boundary term on the left–hand side,
yielding

‖E(ζ)‖2 + ‖H(ζ)‖2 +
∫ ζ

0

‖E × ν‖2Σ ≤ C

and the stability of the proposed scheme is proved. Only the boundedness of the
function β needs to be assumed. Thus, without loss of generality, either the
absorbing boundary condition (8.27) or the BC (7.4) proposed by Barucq can be
chosen for the next analysis.

8.4 Conclusions

We have studied the exterior boundary value problem with an Artificial Bound-
ary Condition on one part of the boundary describing the propagation of elec-
tromagnetic waves through matter. We found an efficient time-discrete approx-
imation scheme (8.2) based on the backward Euler method. A detailed analysis
of the approximate solution was done and a linear dependence of the error of
the presented method on the choice of the time step τ was proved.

There is still some potential future work how to improve and develop the
results of this chapter. For example the discretization in space could be studied
and the stability results and convergence of the approximate solution towards
the exact one could be proved. In addition, one should determine the depen-
dence of the error of this full discretized system on the size of the mesh. This
was done in Chapter 6 for a different type of problem.
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Furthermore, instead of a linear Artificial Boundary Condition (7.4d) a non-
linear ABC could be considered to make the problem more general and more
complex.

Another challenge for future research would be an implementation of the
proposed discretized scheme. The optimality of the theoretically derived error
estimates and sensibility of the scheme on the method parameters should be
studied on numerical experiments.
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Part III

Inverse problems in
low-frequency

electromagnetism





Chapter 9

Problem formulation

When speaking about an inverse problem a question comes across ones mind:
Inverse to what? We call two problems inverse to each other if the formulation
of one problem includes the other one. From historical reasons the simpler
problem, which was studied earlier is denoted as direct, the other one is then
the inverse one. In practice, we naturally detect which problem we have in mind.
If one wants to predict the future state of a physical system from the knowledge
of the relevant parameters, material properties and physical laws, one solves
the direct problem. On the other hand, to solve the inverse problem means
to determine the value of some model parameters from the observed system
evolution (Figure 9.1). Solving an inverse problem is not an easy task since a
solution might not exist, or different parameter values can be consistent with the
data (the solution is not unique), or the solution does not depend continuously
on the data. This is why we consider inverse problems to be typically ill–posed in
the sense of Jacques Hadamard, see Definition 9.1. On top of that, discovering
parameters of the model may require the exploration of a huge parameter space.

Inverse problems have been widely studied in medical applications - Com-
puterized Tomography [71], physical chemistry - time resolved fluorescence [60],
high temperature superconductivity [28], heat conduction [11, 33, 68] and in
other diffusion processes. To the inverse problems for Maxwell’s equations is
solely devoted monograph [74].

If the direct and corresponding inverse problem are linear, the standard
theory for the ill–posed linear operator equation

Fx = y (9.1)
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model parameters
material properties

DP future state?
(a)

physical parameters
determination of ? IP observations

(b)

Figure 9.1: Difference between the direct (DP) and the inverse problem (IP).

is applicable. Here, F is a bounded linear operator between Hilbert spaces X
and Y.

Definition 9.1 (Hadamard, 1932) The problem (9.1) is said to be well-posed
in the sense of Hadamard if the following conditions are fulfilled

1. ∀y ∈ Y ∃x ∈ X : Fx = y.

2. A solution x to the problem (9.1) is uniquely determined by the element
y. In other words, the inverse F−1 of the operator F exists.

3. The solution x depends continuously on the element y. In other words,
the operator F−1 is continuous.

If at least one of these conditions is not fulfilled, the problem is said to be
ill–posed in the sense of Hadamard.

Thus, the problem (9.1) is well–posed in the sense of Hadamard if and only
if there exists a continuous inverse F−1 of the operator F defined on the whole
space Y. A typical example of an ill-posed operator equation (9.1) is when F
is a linear selfadjoint compact operator between Hilbert spaces, for a proof see
e.g. [64, Chapter 1.2].

In general, the inverse F−1 is not defined on the whole Y. Fortunately,
this condition can be bypassed by relaxing the notion of the solution. We will
search for a solution in the least square sense (Definition 9.2). In general, the
least square solution differs from the exact solution x to (9.1), but as the inverse
problems usually involve perturbed data, they have to be regularized and hence
changed anyway.

Moreover, the fulfillment of the first Hadamard’s condition is closely related
to the fulfillment of the third one. Following Ivanov (1978), the inverse F−1 of
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a linear injective continuous operator F is bounded if and only if for the range
R(F) ⊆ Y holds R(F) = R(F). Using this result we conclude that if the range
R(F) of the operator F is closed in Y, then inverse F−1 is continuous and thus
the third Hadamard’s condition is satisfied.1

A violation of the second Hadamard’s condition is considered to be much
more problematic. It might happen that there are more candidates for a solu-
tion. Then one either has to decide which one is of interest, e.g. the solution
with the smallest norm defined in Definition 9.2 (this possibility is not appro-
priate for all applications), or to check the model for completeness. Usually
this means that the available data are not sufficient to determine the solution
(knowing a height of a main-mast is not sufficient to calculate captain’s age)
and one has to make additional measurements.

Definition 9.2 Let F : X→ Y be a bounded linear operator. Then

. x ∈ X is called a least square solution of Fx = y if

‖Fx− y‖ = inf{‖Fz − y‖ ; z ∈ X}. (9.2)

. x ∈ X is called the best-approximate solution of Fx = y if x is a least
square solution of Fx = y and

‖x‖ = inf{‖z‖ ; z is a least square solution of Fx = y} (9.3)

holds.

The best-approximate solution is unique. Choosing the least-square solution
with a minimal norm is not always optimal. It is often desirable to replace ‖x‖
in (9.3) by the minimization of ‖Lx‖, where L is usually a differential operator.

The most characteristic feature of an inverse problem is the violation of
the third Hadamard’s condition. Even a very small perturbation of input data
can cause big changes of an output. Traditional numerical methods for ap-
proximating a problem whose solution does not depend continuously on the
data, become unstable. That is why regularization methods for the stabilization
of inverse problems were invented. It started with pioneering works of A.N.
Tikhonov [87–89]. One has to keep in mind that when using this regulariza-
tion approach one does not solve the same problem anymore. The whole art of
applying regularization methods is to find a compromise between accuracy and
stability.

1From the closedness of the rangeR(F) follows the boundedness and thereby the continuity
of the inverse operator F−1, F being linear.
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For a nice overview of the classical theory of ill–posed problems and related
regularization techniques we refer to the monograph [34].

This part of the thesis is devoted to the identification of the electromagnetic
losses on the boundary, which are considered to be constant. This type of
problem is also known as constant identification. The problem is related to the
eddy current problem in low-frequency electromagnetism, derived in Section 1.2.
Both, the direct and corresponding inverse problem are linear.



Chapter 10

Constant determination

This chapter is based on the article [100], the results of which were presented
at the international conference ACOMEN 2008 and are summarized in the pro-
ceedings [99].

After being familiar with the problem setting and with the definition of
the electromagnetic loss, the time-discretization scheme, as usually based on
the backward Euler method is applied to the proposed problem. In Section
10.3 a specific side condition is introduced and used later to guarantee the
uniqueness of the solution. Furthermore, we investigate the character of, let’s
say, a loss function. Continuity, monotonicity and an asymptotic behavior of
the loss function deliver existence of the solution. In line with our good practice,
the last section is devoted to numerical experiments.

10.1 Introduction and physical motivation

For a design of electromagnetic devices, an accurate evaluation of the material
characteristics of the magnetic circuit, such as the electromagnetic loss P , the
permeability µ and the electrical conductivity σ, is essential. The importance
comes from the increasing requirements set for high performance devices. Classi-
cally, the electromagnetic losses of magnetic materials are quantified by means
of a standard measurement equipment, enforcing a time dependent magnetic
field to the body of the test sample. For this type of measurement equipment,
one obtains the iron losses P in the ferromagnetic material under investigation
starting from two sensor signals. The first signal is related to the time dependent
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magnetic field H enforced at the surface of the material body while the second
signal defines the time dependent magnetic flux in the material. The latter is
directly related to the induced electric field E at the surface of the material
body. The loss originates from the eddy currents present in the material.

The measured losses are also related to the electromagnetic fields at the
surface of the body of the test sample through the pointing vector S = E×H.
Indeed, given a surface A of the body of the material, the iron loss is

P =
∮

A

(E ×H) · ν ds. (10.1)

Let us derive the precise mathematical model describing this situation. Con-
sidering the quasi-static case of electromagnetic propagation at a single fre-
quency, the time–dependent problem (1.11)–(1.14) can be reduced to the fol-
lowing time–harmonic Maxwell system

∇ · (εE) = ρ, (10.2)
∇ · (µH) = 0, (10.3)
∇×E = −iωµH, (10.4)
∇×H = Ja + σE. (10.5)

The fields E and H represent complex–valued amplitudes, see [65]. For the
simplicity we maintain our notation from the time-dependent case. The to-
tal current density consists of the applied current density Ja and the induced
current density σE. For ease of exposition, we set Ja = 0.

Remark 10.1 The differential system (1.11)–(1.14) is changed to the latter
algebraic one (10.2)–(10.5) using Fourier transformation. The relation between
the fields E,H from time–domain and corresponding fields Ê, Ĥ from frequency
domain reads

Ê(x, ω) =
∫ ∞

−∞
E(x, t)e−iωt dt,

Ĥ(x, ω) =
∫ ∞

−∞
H(x, t)e−iωt dt,

where i =
√
−1 and ω = 2πf > 0 denotes the frequency of radiation of the

electromagnetic waves.
A function of time is a representation of a signal with perfect time resolution,

but no frequency information, while the Fourier transform of such a function
yields perfect frequency resolution, but no time information. The location of the
Fourier transform at a point is given by phase.
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Remark 10.2 In physics and engineering, a phase vector, or phasor, is a rep-
resentation of a sine wave whose amplitude, phase and frequency are time-
invariant. Phasors reduce the dependencies on parameters to three independent
factors, what simplifies certain kinds of calculations. In many applications us-
ing phasors, one leaves the amplitude static and phase information combines
algebraically. The term phasor therefore often refers to just two factors, phase
and frequency. In older texts, it is also referred to as a sinor.

Eliminating the electric field from the system of Maxwell‘s equations (10.4)–
(10.5) leads to the boundary value problem in terms of the magnetic field only

σµiωH +∇×∇×H = 0. (10.6)

The computational problem becomes more difficult when the penetration
“skin” of the conductor is narrow in comparison with its geometric dimensions.
In this case, the electromagnetic fields are closely concentrated near the con-
ductor boundaries and decay very fast in directions normal to these boundaries.
These speedy spatial variations cause numerical difficulties. Fortunately, they
can be circumvented by using the idea of impedance boundary condition, see
Section 1.3.1. This BC is based on the local penetration of electromagnetic
fields, i.e. at each boundary point, tangential components of electric and mag-
netic fields are related to each other.

In the frequency domain, for a frequency f , the relation between the phasors
of the electric field E and the magnetic field H at the boundary of a linear
conducting medium, B = µH, can be expressed mathematically as follows:

E × ν = η̂(H × ν), (10.7)

where η̂ is the impedance matrix defined as

η̂ =
√
ωµ

σB
ei
π
4 · Λ̂ (10.8)

with σB representing the magnetic permeability on the boundary and Λ̂ the
rotation matrix over 90◦

Λ̂ =
(

0 −1
1 0

)
.

After substituting the equality (10.8) in (10.7) multiplied by σ and recalling
∇×H = σE we arrive at

∇×H × ν =

√
iωµσ2

σB
H × ν × ν. (10.9)
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In practical applications σ, σB ≥ 0 and µ = a − ib. We try to build our
mathematical model as simple as possible with aim to focus our attention on
its inverse character. That is why we set µ = −i. This substitution allows us
to work with real fields from now on.

Setting µ = −i is equivalent to including a time delay of the magnetic
induction B relative to the magnetic field intensity H, when speaking of a
linear conducting material. This delay can be due to eddy current effects or
hysteresis effects. Moreover, the BH loop becomes a circle.

Note that the impedance BCs are not exact descriptions of the reality unless
the skin depths are small in comparison with the geometric dimensions of the
conductor.

Finally, our problem reads

ωσH +∇×∇×H = 0.

A direct problem of this type is usually accompanied by one of the following
standard boundary conditions

H × ν = a or ∇×H × ν = b .

By employing relation (10.9) the physical importance of another type of the
boundary condition arises, namely

∇×H × ν = λH × ν × ν, where λ =

√
ωσ2

σB
.

10.2 Problem formulation

We consider a ferromagnet occupying a bounded domain Ω ⊂ R3 with Lipschitz
continuous boundary Γ split into three complementary, non-empty and non-
overlapping parts, Γ = ΓDir + ΓNeu + Γloss. The outward normal to Γ is
denoted by ν. Our object of interest is to identify a coefficient λ describing
the electromagnetic losses. More precisely, the following inverse eddy current
problem is studied:

Problem 1. Find (λ,Hλ) ∈ (R+, H(curl ; Ω)) such that

KHλ +∇×∇×Hλ = 0 in Ω,
Hλ × ν = 0 on ΓDir,

∇×Hλ × ν = g × ν on ΓNeu,
∇×Hλ × ν = λ(Hλ × ν × ν) on Γloss
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for a given, regular enough, source g .

10.2.1 Methodology

At the first glance Problem 1 appears to be similar to the following one:

Problem 2. Find (h, u) ∈ (R+, H
1(Ω)) such that

pu+∇ · (−K∇u) = f in Ω,
u = 0 on ΓDir,

−K∇u · ν = g on ΓNeu,
−K∇u · ν = hu on Γin,

where K, p, f and g are given data and Γin denotes the inaccessible part of the
boundary.

The partial differential equations in both problems are equivalent. This can be
easily seen using the well-known identity

−4H = ∇×∇×H −∇(∇ ·H)

and taking ∇ ·B = 0 into account, so then ∇ ·H = 0 as well. The difference
between Problem 1 and Problem 2 lies in the regularity of the corresponding
solutions and in the boundary conditions.

Many inverse problems originate from the linear steady-state elliptic bound-
ary value Problem 2.

If one considers the heat conduction, the recovery of the convective transfer
coefficient h from the overspecified data was done in [81]. The identification
was based on the difference between the outside and inside temperature on Γin,
in L2(Γin) sense. Slodička and Van Keer have considered the whole boundary
accessible, but on the part Γin the data are not known precisely, but in an
average sense only.

A very similar problem setting can be obtained from the problem of corrosion
detection, see [52] , where the coefficient h represents the corrosion damage.
Here, the author works with a thin plate, as thick domains cause instabilities
of the numerical approach. The data of the problem consist of the prescribed
current flux and voltage measurements on an accessible part of the specimen’s
boundary. The inverse problem is to determine quantitative information about
corrosion occurring on an inaccessible part of the domain.
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10.3 Assumptions

As a direct consequence of the Lax–Milgram lemma, Problem 1 can have an
infinite number of solutions depending on the free positive parameter λ at Γloss .
Our goal is to design an additional boundary condition, which guarantees the
uniqueness of a solution. As will be shown later this can be ensured by the
following side condition, called iron loss boundary condition

0 < M =
∫

Γloss

|Hλ × ν|2 < lim
λ→0+

m(λ). (10.10)

The function m(λ) will be specified later.

We assume that

0 < Kmin ≤ K ≤ Kmax a.e. in Ω,
g ∈ L2(ΓNeu) . (10.11)

Then the variational formulation of Problem 1 reads

K(Hλ,ϕ)Ω + (∇×Hλ,∇×ϕ)Ω + (g,ϕ× ν)ΓNeu + λ(Hλ × ν,ϕ× ν)Γloss = 0
(10.12)

for any ϕ ∈ V .
The space of test functions is defined by

V = {ϕ ∈ H(curl ; Ω); ϕ× ν = 0 on ΓDir} .

This is a natural choice for Problem 1. V is a reflexive Banach space endowed
with the standard norm ‖·‖H(curl ;Ω).

Now the question is where the information about the electromagnetic loss
P defined by (10.1) is hidden within the latter formulation. Analyzing the
boundary term, we get the following equality

(∇×Hλ,ϕ× ν)Γloss = λ(Hλ × ν,ϕ× ν)Γloss .

Setting ϕ = Hλ and recalling that ∇×H = E yields

(E,Hλ × ν)Γloss = λ ‖Hλ × ν‖2Γloss .

The left–hand side of the last result can be rewritten into a more suitable form

(E ×Hλ,ν)Γloss = λ ‖Hλ × ν‖2Γloss .
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Using (10.1) we obtain
P = λ ‖Hλ × ν‖2Γloss ,

describing the physical relation between the coefficient λ and the iron loss P .
In a priori estimates we need the definition of the Sobolev norm of fractional

order, see also [65, p.58] .

Definition 10.1 The norm on H−1/2(Γ) is defined as

‖ν × v‖H−1/2(Γ) = sup
g∈H1/2(Γ)

|〈ν × v, g〉Γ|
‖g‖H1/2(Γ)

.

Corollary 10.1
From Definition 10.1 it follows that ‖ν × v‖H−1/2(Γ) ≤ C ‖v‖H(curl ;Ω).

10.4 A priori estimates

The first lemma gives the uniform estimate of Hλ in the H(curl ; Ω)-norm and
its trace with respect to λ > 0 .

Lemma 10.1 Let (10.11) be satisfied. Then, for a solution (λ,Hλ) to the
Problem 1, there exists a positive constant C such that

‖Hλ‖2H(curl ;Ω) + 2λ ‖Hλ × ν‖2Γloss ≤ C ∀λ > 0 .

Proof: The assertion can be readily proved by taking ϕ = Hλ in (10.12) and
using the Young inequality, Definition 10.1 and its corollary. We obtain

K ‖Hλ‖2 + ‖∇ ×Hλ‖2 + λ ‖Hλ × ν‖2Γloss
≤ ‖g‖H1/2(ΓNeu) . ‖ν ×Hλ‖H−1/2(ΓNeu)

≤ Cε ‖g‖2H1/2(ΓNeu) + ε ‖ν ×Hλ‖2H−1/2(ΓNeu)

≤ Cε ‖g‖2H1/2(ΓNeu) + ε ‖Hλ‖2H(curl ;Ω) .

Multiplying the latter inequality by 2 yields

(2− ε) ‖Hλ‖2H(curl ;Ω) + 2λ ‖Hλ × ν‖2Γloss ≤ C.

Considering sufficiently small ε concludes the proof. �
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We introduce a real function m(λ) : [0,∞)→ [0,∞) given by

m(λ) = ‖Hλ × ν‖2Γloss .
Hence, the function m(λ) is defined in terms of the weak solution Hλ of (10.12).

Let us study first the behavior of the introduced function m(λ) .

Lemma 10.2 (Continuity) Let (10.11) be satisfied. Then the function m(λ)
is continuous on (0,∞) .

Proof: Following the definition of continuity, lim
ε→0
|m(λ)−m(λ+ε)| = 0 needs to

be shown. Thus, let us fix any λ > 0 and choose a small parameter ε satisfying
|ε| < λ . Subtracting (10.12) from (10.12) for λ = λ+ ε one obtains

K(Hλ+ε −Hλ,ϕ) + (∇× (Hλ+ε −Hλ),∇×ϕ)
+λ((Hλ+ε −Hλ)× ν,ϕ× ν)Γloss + ε(Hλ+ε × ν,ϕ× ν)Γloss = 0 .

(10.13)
This can be written equivalently as

K(Hλ+ε −Hλ,ϕ) + (∇× (Hλ+ε −Hλ),∇×ϕ)
+(λ+ ε)((Hλ+ε −Hλ)× ν,ϕ× ν)Γloss + ε(Hλ × ν,ϕ× ν)Γloss = 0 .

(10.14)
Summing up (10.13) and (10.14) and choosing ϕ = Hλ+ε −Hλ we obtain

2K ‖Hλ+ε −Hλ‖2 + 2 ‖∇ × (Hλ+ε −Hλ)‖2
+(2λ+ ε) ‖(Hλ+ε −Hλ)× ν‖2Γloss

+ε((Hλ+ε +Hλ)× ν, (Hλ+ε −Hλ)× ν)Γloss = 0 .
(10.15)

Using Lemma 10.1 for the last term on the left we deduce

lim
ε→0

∣∣∣ε
(
(Hλ+ε +Hλ)× ν, (Hλ+ε −Hλ)× ν

)
Γloss

∣∣∣
= lim
ε→0
|ε|
∣∣∣‖Hλ+ε × ν‖2Γloss − ‖Hλ × ν‖2Γloss

∣∣∣
≤ lim
ε→0

C|ε|
(

1
λ+ε + 1

λ

)

≤ lim
ε→0

C|ε|
λ

= 0 .

(10.16)

Thus, the absolute value of the sum of the first three terms in (10.15) tends to
0 for ε→ 0 . From the non-negativity of each of these terms follows

lim
ε→0
‖Hλ+ε −Hλ‖H(curl ;Ω) = 0 and lim

ε→0
‖(Hλ+ε −Hλ)× ν‖Γloss = 0 .
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Using Cauchy’s inequality, Lemma 10.1 and the last relation yields

lim
ε→0
|m(λ+ ε)−m(λ)| = lim

ε→0

∣∣∣‖Hλ+ε × ν‖2Γloss − ‖Hλ × ν‖2Γloss
∣∣∣

= lim
ε→0

∣∣∣
(
(Hλ+ε +Hλ)× ν, (Hλ+ε −Hλ)× ν

)
Γloss

∣∣∣
≤ lim

ε→0
‖(Hλ+ε +Hλ)× ν‖Γloss ‖(Hλ+ε −Hλ)× ν‖Γloss

≤ C

λ
lim
ε→0
‖(Hλ+ε −Hλ)× ν‖Γloss

= 0 ,

which proves the continuity of the function m(λ) . �

As a next step the monotonicity, more precisely the decreasing behavior of
the function m(λ) is proved.

Lemma 10.3 (Decreasing nature) Let (10.11) be satisfied. Moreover as-
sume ε > 0 and λ > 0. Then m(λ+ ε) ≤ m(λ) .

Proof: The first three terms in formula (10.15) are nonnegative and ε > 0, thus,
from the last term one obtains

m(λ+ ε) = ‖Hλ+ε × ν‖2Γloss ≤ ‖Hλ × ν‖2Γloss = m(λ) .

�
Lemma 10.4 (Asymptotic character) Let (10.11) be satisfied. Then it holds
that lim

λ→∞
m(λ) = 0.

Proof: Resulting from Lemma 10.1 we have

λ ‖Hλ × ν‖2Γloss ≤ C ∀λ > 0.

Thus, the statement of the lemma is directly concluded

lim
λ→∞

m(λ) = lim
λ→∞

λ ‖Hλ × ν‖2Γloss
λ

= 0 .

�

Now, we are in a state to prove the well–posedness of Problem 1 equipped
with the side condition (10.10).
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Theorem 10.1 If the assumptions (10.11) are fulfilled and λ > 0, then for any
0 < M < lim

λ→0+
m(λ) there exists a unique weak solution to the inverse boundary

value problem (10.12), (10.10) .

Proof: The existence of a weak solution is directly guaranteed by Lemmas 10.1-
10.4. We still have to show its uniqueness.
Suppose there exist two solutions. Then one of the three following cases can
occur:

(i) Let (λ,H) and (λ̃,H) be two different solutions of (10.12), (10.10). Sub-
tracting the variational equations for both solutions from each other and
setting the test function ϕ = H, one gets

(λ− λ̃) ‖H × ν‖2Γloss = 0 .

Hence, ‖H × ν‖2Γloss = 0 contradicts with M > 0 .

(ii) Now, let (λ,H) and (λ, H̃) be two solutions of (10.12), (10.10). Using the
same steps as in previous case, but setting ϕ = H − H̃ one obtains

K
∥∥∥H − H̃

∥∥∥
2

+
∥∥∥∇× (H − H̃)

∥∥∥
2

+ λ
∥∥∥(H − H̃)× ν

∥∥∥
2

Γloss
= 0 .

On account of (10.11) and of λ > 0 the last relation implies H = H̃ .

(iii) Finally let (λ,Hλ) and (λ + ε,Hλ+ε) with ε > 0 and λ ≥ 0 both solve
(10.12), (10.10). Resulting from formula (10.15) and recalling that each
solution satisfies the side condition (10.10), i.e. ‖Hλ+ε × ν‖2Γloss = M =
‖Hλ × ν‖2Γloss the equation yields

2K ‖Hλ+ε −Hλ‖2 + 2 ‖∇ × (Hλ+ε −Hλ)‖2
+(2λ+ ε) ‖(Hλ+ε −Hλ)× ν‖2Γloss = 0 .

(10.17)

This gives a contradiction, because the left-hand side is strictly positive
due to Hλ 6= Hλ+ε.
The proof is done on the basis of these three cases.

�
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Remark 10.3 Suppose µ = −i and σ = σB. Then the Problem 1 reads

λ2Hλ +∇×∇×Hλ = 0 in Ω,
Hλ × ν = 0 on ΓDir,

∇×Hλ × ν = g × ν on ΓNeu,
∇×Hλ × ν = λ(Hλ × ν × ν) on Γloss

with λ =
√
ωσ, i.e. the processes on the boundary influence the behavior of

the electromagnet in the domain. This is not a common situation because the
boundary conditions describing the properties of the material surrounding the
computational domain should be independent on the processes acting inside of
the domain. In this case, assuming convenient data, the existence of the solution
is assured, while the uniqueness cannot be proved (we are not able to show the
decreasing character of the iron loss function).

10.5 A numerical experiment

Let Ω be a unit cube in R3 . The boundary Γ is split into two pieces as follows:
on the bottom and the upper face of the cube the iron loss boundary condition
is prescribed, on the side faces the Neumann boundary condition is considered.
We apply our method to this test problem:1

Find (λ,Hλ) ∈ (R+, H(curl ; Ω)) satisfying

Hλ +∇×∇×Hλ = f in Ω,
∇×Hλ × ν = g1 × ν on ΓNeu,
∇×Hλ × ν = λ(Hλ × ν × ν) + g2 × ν on Γloss,∫

Γloss

(Hλ × ν)2 = 1.33 ,

where the data functions f , g1 and g2 are defined such that

λ = 1.24,

Hλ =




x2 − x1

x0 − x2

x1 − x0




is the exact solution, (see Figure 10.1).

1Note that the analysis stays valid also for inhomogeneous case.
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Figure 10.1: Exact solution.

Figure 10.2 shows the graph of the numerically obtained function m(λ). For the
determination of Hλ from the boundary value problem (10.12) for each given
λ the Newton method is used, see Appendix. Thus, we solve:

F (H) = 0 .

Starting with an initial guess H0 = 0 we compute

DF (Hm)dm = F (Hm) for m > 0

and set
Hm+1 = Hm − dm

until ‖dm‖ < 1.0 · 10−4 . The functional F (v) and its Fréchet derivative DF (v)
for v ∈ H(curl ; Ω) are defined by

(F (v),ϕj) = (v,ϕj) + (∇× v,∇×ϕj) + (g1,ϕj × ν)ΓNeu

+ λ(v × ν,ϕj × ν)Γloss + (g2,ϕj × ν)Γloss − (f ,ϕj),
(DF (v)ϕi,ϕj) = (ϕi,ϕj) + (∇×ϕi,∇×ϕj) + λ(ϕi × ν,ϕj × ν)Γloss ,

where ϕi,ϕj ∈ V .
To our numerical scheme the finite element method is applied. The compu-
tational domain is split into 384 tetrahedra (2 refinements of the basic mesh)
with mesh diameter h =

√
3/4 . There is no need to split the domain into more

subdomains. Due to the linearity of our problem this “coarse mesh” is suitable
enough to reach the necessary accuracy of our model. For the approximation of
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Figure 10.2: Numerically obtained graph of the iron loss function m(λ). The
behavior of the function is consistent with the theory. The three properties
(continuity, monotonicity and asymptotic character) assure the existence of a
unique solution for any amount of iron loss M on the boundary.

the magnetic field Hλ Whitney’s edge elements are used, see Section 6.2.2.
The Newton method is chosen again to determinate the Robin coefficient λ for
which the iron loss boundary condition is satisfied. Here, the next approxima-
tion is given by

λnew = λold −
m(λ)
m′(λ)

,

where

m′(λ) =
m(λ+ h)−m(λ− h)

2h

with h = 0.005.
Figure 10.3 and Table 10.1 show the convergence of Newton’s method. We have
started with λ = 0.01 and the algorithm has stopped after five iterations with
the prescribed precision |m(λ)−1.33| < 0.0001 . The following errors have been
obtained for the last approximation:

‖Hλ −Hλapp‖L2(Ω) = 5.920896 · 10−09,

‖Hλ −Hλapp‖H(curl ;Ω) = 3.180161 · 10−08,

|λ− λapp| = 4.29 · 10−4.
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λ0 λ1 λ2 λ3 λ

m0

m1

m2

m3
M

Figure 10.3: The convergence of the Newton method. The algorithm is quick
and stops after five iterations.

Iter. λ m(λ) error in %
1 0.010 28.379 127.47%
2 0.132 13.438 48.68%
3 0.341 6.206 14.40%
4 0.682 2.858 2.40%
5 1.240 1.330 0.00%

Table 10.1: Precision of the Newton iterations. The situation from Figure 10.3.
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10.6 Conclusions

We have proved the well–posedness of the inverse recovery problem for time–
harmonic evolution of electromagnetic waves. The efficiency of the numerical
method has been tested by numerical experiments.

The aim of this section was to prove that the information about the iron
losses on a part of the boundary is sufficient to guarantee the existence and
the uniqueness of the solution. Another possible approach (that is also widely
used in the literature) would be to accept the fact that the mathematical model
admits more solutions. Then, however, an additional information is needed to
decide which solution to choose as the right one.

A generalization of the problem of the determination of unknown information
on one part of the boundary has a large potential for future study. A complex
valued permeability in the form µ = a − ib should be considered which will
lead to a mathematical model with more practical applications. Note that in
this case one will work over the field of complex numbers. Moreover, the error
analysis should be performed.

A challenge for the future research would also be to divide the boundary into
an accessible and inaccessible part. On the inaccessible part the impedance BC
with unknown parameter λ will be prescribed and no other information will be
available. On the other hand, to compensate this lack of data we will consider
the rest of the boundary overspecified.

Furthermore, one could consider the parameter λ not to be a constant but
a function depending on the space or on the time variable. The latter requires
then working with the time-dependent domain.
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Appendix

Basic algebraic (in)equalities

Vector identities

(a× b)× c = (c · a) b− (c · b) a
(a× b) · (c× d) = (a · c) (b · d)− (a · d) (b · c)

(a× b) · c = a · (b× c) = b · (c× a)

Green’s formula

(∇×ϕ,ψ)Ω = (ϕ,∇×ψ)Ω + (ν ×ϕ,ψ)∂Ω

Abel’s summation
m∑

i=1

ai(bi − bi−1) = ambm − a0b0 −
m∑

i=1

bi−1(ai − ai−1)

Cauchy–Schwartz’s inequality

(f, g) ≤ ‖f‖ ‖g‖

For the following inequalities we suppose p, q ≥ 1 to be conjugate, i.e.,
1/p+ 1/q = 1.

Hölder’s inequality
(f, g) ≤ ‖f‖p ‖g‖q

Young’s inequality

(f, g) ≤ fp

p
+
gq

q

131
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Modified Young’s inequality

(f, g) ≤ ε ‖f‖2 + Cε ‖g‖2

Minkowski inequality (triangle inequality in Lp)

‖f + g‖p ≤ ‖f‖p + ‖q‖p

Simple mathematical analysis

Theorem 10.2 (Gronwall’s lemma) Let r(t), h(t), y(t) be continuous real
functions defined on the interval [a, b] such that r(t), h(t) ≥ 0. Suppose that

y(t) ≤ h(t) +
∫ t

a

r(s)y(s)ds for a ≤ t ≤ b.

Then

y(t) ≤ h(t) +
∫ t

a

h(s)r(s)e
R t
s
r(τ)dτds

is valid for all t ∈ [a, b].

Theorem 10.3 (Gronwall’s lemma - discrete version) Let {Ai}, {ai} be
the sequences of nonnegative real numbers and let q ≥ 0. Suppose

ai ≤ Ai +
i−1∑

j=1

ajq

holds for i ∈ N. Then

ai ≤ Ai + eqi
i−1∑

j=1

Ajq.

Fundamental theorem on monotone operators

Theorem 10.4 Let F (x) be a hemicontinuous, monotone and coercive operator
mapping a reflexive Banach space X into X∗. Then the mapping F : X →X∗

is surjective, i.e., the equation F (x) = v has a solution for any v ∈X∗.
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General functional analysis

Theorem 10.5 (Lax-Milgram lemma) Let a be a bounded coercive bilinear
functional on a Hilbert space H. Then for every bounded linear functional f on
H, there exists a unique u such that

a(u, φ) = f(φ) (10.18)

for all φ ∈ H.

Theorem 10.6 (Céa’s lemma) Suppose Hh ⊂ H, h > 0, is a family of finite-
dimensional subspaces of a Hilbert space H. Suppose a : H × H → C is a
bounded, coercive, sesquilinear form and f ∈ H ′. Then the problem of finding
uh ∈ Hh such that

a (uh, φh) = f(φh) for all φh ∈ Hh

has a unique solution. If u ∈ H is the exact solution solving (10.18) then there
is a constant C independent of u, uh and h such that

‖u− uh‖H ≤ C inf
vh∈Hh

‖u− vh‖H . (10.19)

Estimate (10.19) is said to be a quasi-optimal error estimate of approximate
solution.

Theorem 10.7 (Hahn-Banach theorem) Suppose M is a subspace of a vec-
tor space X, p is a seminorm on X and f is a linear functional on M such that

|f(x)| ≤ p(x), x ∈M.

Then f extends to a linear functional Λ on X that satisfies

|Λx| ≤ p(x), x ∈ X.

Obvious consequence of Theorem 10.7 for a normed space is:

Theorem 10.8 If f is a continuous linear functional on a subspace M of a
locally convex space X then there exists Λ ∈ X∗ such that Λ = f on M .
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Newton’s method

In numerical analysis, Newton’s method (also known as the Newton-Raphson
method) is perhaps the best known method for finding good approximation
to the root of a real-valued function f(x). The process of finding solution is
iterative. Starting form some initial guess x0, a new estimate is found from

xk+1 = xk −
f(xk)
Df(xk)

.

Here, Df(xk) is the Fréchet derivative of f in xk. Newton’s method converges
remarkably quickly if the iteration process starts close enough to the real solution
x∗.

Remark 10.4 Newton’s method can also be used to find local maxima and local
minima of a functional f(x). In this case, new estimate is given by

xk+1 = xk − [Hf(xk)]−1∇f(xk).

Symbol Hf(xk) denotes a Hessian matrix of f in xk.
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[81] M. Slodička and R. Van Keer. Determination of the convective transfer coeffi-
cient in elliptic problems from a nonstandard boundary condition. In J. Maryška,
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