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Abstract
Background. Automated brain tumor identification facilitates diagnosis and treatment planning. We evaluate the 
performance of traditional machine learning (TML) and deep learning (DL) in brain tumor detection and segmen-
tation, using MRI.
Methods. A systematic literature search from January 2000 to May 8, 2021 was conducted. Study quality was as-
sessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Detection meta-analysis was per-
formed using a unified hierarchical model. Segmentation studies were evaluated using a random effects model. 
Sensitivity analysis was performed for externally validated studies.
Results. Of 224 studies included in the systematic review, 46 segmentation and 38 detection studies were eligible 
for meta-analysis. In detection, DL achieved a lower false positive rate compared to TML; 0.018 (95% CI, 0.011 to 
0.028) and 0.048 (0.032 to 0.072) (P < .001), respectively. In segmentation, DL had a higher dice similarity coefficient 
(DSC), particularly for tumor core (TC); 0.80 (0.77 to 0.83) and 0.63 (0.56 to 0.71) (P < .001), persisting on sensitivity 
analysis. Both manual and automated whole tumor (WT) segmentation had “good” (DSC ≥ 0.70) performance. 
Manual TC segmentation was superior to automated; 0.78 (0.69 to 0.86) and 0.64 (0.53 to 0.74) (P = .014), respec-
tively. Only 30% of studies reported external validation.
Conclusions. The comparable performance of automated to manual WT segmentation supports its integration into 
clinical practice. However, manual outperformance for sub-compartmental segmentation highlights the need for 
further development of automated methods in this area. Compared to TML, DL provided superior performance for 
detection and sub-compartmental segmentation. Improvements in the quality and design of studies, including ex-
ternal validation, are required for the interpretability and generalizability of automated models.

Key Points

 • Human expertise outperformed automated methods in sub-compartmental 
segmentation. 

 • DL performed superiorly to TML for detection and sub-compartmental 
segmentation. 

 • Transparency and generalizability of models should be improved. 

Automated brain tumor identification using 
magnetic resonance imaging: A systematic review 
and meta-analysis
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Brain tumors present a significant burden on healthcare 
worldwide due to the neurological deficits produced and 
subsequent poor prognosis, with an average 5-year survival 
of 35% in malignant subtypes.1 MRI is the gold standard mo-
dality engendering brain tumor diagnosis and subsequently 
informing surgical intervention, radiotherapy planning, and 
chemotherapy. Inevitably, qualitative MRI assessment has 
always been subject to high inter-rater variability, as well as 
being a notoriously laborious process.2 However, the emer-
gence of Artificial Intelligence (AI) has sparked the hope of 
overcoming these limitations.

The advent of Computer-Aided Diagnosis (CAD) using 
AI can potentially improve brain tumor patient out-
comes. Traditional machine learning (TML) techniques 
have become widely used for image classification but 
are restricted by a requirement for specifying “feature 
vectors” for extraction from the raw data.3 Conversely, 
deep learning (DL) techniques provide effective and au-
tomatic representation of complex image features, which 
has contributed to their increased popularity,3 but the in-
terpretation of automatically identified features remains 
a problem.4 In addition, both TML and DL techniques are 
vulnerable to overfitting and selection bias.5 Therefore, 
to safely use CAD in clinical settings, large robust studies 
which evaluate their quality and generalizability are cru-
cial.4 Holistic and standardized evaluation of scientific 
reporting is facilitated by established guidelines, such as 
the recently proposed Checklist for Artificial Intelligence in 
Medical Imaging (CLAIM).6

The research on AI in neuro-oncology imaging has 
been amplified by the introduction of open access image 
datasets, such as the annual Multimodal Brain Tumor 
Segmentation Challenge (BRATS).7 This provides the ideal 
foundation for an in-depth review to identify optimal au-
tomated methods. Three former systematic reviews 
and meta-analyses evaluated performance of AI-related 
techniques in neuro-oncological imaging.8–10 However, 
these focused on specific brain tumor types and whole 
tumor (WT) segmentation, and none have evaluated sub-
compartmental segmentation nor addressed performance 
disparities between CAD and human expert segmentation. 
Moreover, there remains a paucity in comprehensively 

assessing the quality of studies in this field. We present 
the largest systematic review and meta-analysis that ob-
jectively evaluates performance of automated detection 
and segmentation techniques and assesses the reporting 
quality of included studies.

Materials and Methods

Search Strategy

This systematic review and meta-analysis were con-
ducted in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses statement11 
(PROSPERO; CRD42021247925). We searched PubMed, 
Web of Science, and Scopus for studies published be-
tween January 1, 2000, and May 8, 2021. The search was 
initially performed on June 19, 2020 and updated on May 
8, 2021. The search strategy is found in the Supplementary 
Appendix. The search was limited to publications written 
in English. The citations of included articles were hand-
searched to identify additional appropriate articles.

Inclusion and Exclusion Criteria

Studies were included if they developed or validated a 
semi-automatic or fully automatic adult brain tumor detec-
tion or segmentation method using MRI. Exclusion criteria: 
(1) studies reporting tumor classification or tumor grading 
methods only; (2) studies utilizing MRI spectroscopy only 
for method development; (3) studies reporting methods on 
pediatric, pituitary, and/or brainstem tumors only; (4) ab-
stracts or conference proceedings; and (5) no performance 
metrics reported.

Study Selection and Data Extraction

Extracted citations were imported into the Rayyan system-
atic review site (https://www.rayyan.ai) for study selec-
tion. Following removal of duplicates, titles and abstracts 
were screened, and full texts of relevant publications 

Importance of the Study

Despite the increasing research on artificial 
intelligence techniques in medical imaging, 
their safe implementation into clinical practice 
depends on rigorous and generalizable evi-
dence. This study systematically evaluated the 
performance of automated brain tumor detec-
tion and segmentation methods, and assessed 
the quality of reporting using the Checklist for 
Artificial Intelligence in Medical Imaging guide-
line. Although automated and manual methods 
in whole tumor segmentation performed com-
parably, manual methods performed better 
in sub-compartmental segmentation. Within 

automated methods, deep learning was found 
to be superior to traditional machine learning 
in detection and sub-compartmental segmen-
tation, but explaining this was hindered by the 
paucity in reported methods of model inter-
pretability. Less than a third of studies reported 
external validation of their automated method. 
The variability found in study reporting under-
mines the credibility of automated methods, 
impacting their benefit for patients and health 
systems. Hence, there is a need for adher-
ence to international reporting standards and 
guidelines.

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/4/1/vdac081/6594312 by guest on 07 July 2022

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac081#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdac081#supplementary-data
https://www.rayyan.ai


3Kouli et al. Automated brain tumor detection and segmentation
N

eu
ro-O

n
colog

y 
A

d
van

cesautomated methods, deep learning was found 
to be superior to traditional machine learning 
in detection and sub-compartmental segmen-
tation, but explaining this was hindered by the 
paucity in reported methods of model inter-
pretability. Less than a third of studies reported 
external validation of their automated method. 
The variability found in study reporting under-
mines the credibility of automated methods, 
impacting their benefit for patients and health 
systems. Hence, there is a need for adher-
ence to international reporting standards and 
guidelines.

reviewed. Study screening was completed by two inde-
pendent reviewers (O.K., J.D.S.), with disagreements re-
solved through a consensus-based approach with the 
wider group.

Two independent reviewers (O.K., A.H.) extracted study 
characteristics from included studies with disagreements 
resolved through consensus. Data extracted included: (1) 
Author; (2) year; (3) dataset(s) utilized with the number 
of patients/images; (4) type of tumors(s) studied; (5) MRI 
modality; (6) performance evaluation metrics; (7) type 
of algorithm utilized; (8) feature extraction; (9) inference 
time in slice/second for segmentation; (10) user interac-
tion (ie, automatic vs semi-automatic); and (11) validation 
technique(s).

Reporting and Quality Evaluation

The reporting quality of studies was assessed according 
to CLAIM.6 The risk of bias and applicability was assessed 
using the Quality Assessment of Diagnostic Accuracy 
Studies 2 (QUADAS-2) guideline,12 with consideration of 
some CLAIM items (see Supplementary Appendix). Three 
reviewers (O.K., A.H., D.B.) independently appraised in-
cluded studies with any disagreements resolved through 
consensus. A “good” domain was deemed by its reporting 
in ≥70% of studies.

Definitions

DL was referred to studies that utilized deep neural net-
works as their method of choice. TML was referred to 
methods not classified as DL. Detection studies were 
defined as those that reported performance results for 
techniques that identified the presence of a tumor in an 
image. Segmentation studies were defined as those that 
reported performance results for techniques that seg-
mented brain tumors, whether it was WT, tumor core (TC), 
and/or enhancing tumor (ET) segmentations as defined 
by BRATS.7 Following previous work, dice similarity coef-
ficient (DSC) of ≥0.7 was considered to represent “good” 
overlap.13

Statistical Analysis

A meta-analysis was conducted for both automated de-
tection and segmentation studies to compare DL with TML 
methods and to evaluate the segmentation performance of 
CAD to that of manual experts. Studies providing perfor-
mance metrics for their method on different datasets were 
assumed to be independent of each other. This is because 
we are interested in providing an overview of the two 
methods rather than exact point estimates.

For detection methods, contingency tables consisting 
of True Positive, False Positive, False Negative, and True 
Negative were constructed. For studies that did not directly 
provide contingency tables, missing data were calcu-
lated with Review Manager 5.3 (https://revman.cochrane.
org/) using sensitivity, specificity, and number of images. 
If neither contingency tables nor sufficient data were re-
ported for computation, then the study was excluded 

from meta-analysis. A  unified hierarchical summary re-
ceiver operating characteristic model was developed for 
the detection meta-analysis. Summary estimates of sensi-
tivity and specificity with 95% CIs were derived using the 
random-effects bivariate binomial model parameters and 
equivalence equations of Harbord et al.14 The reason for 
using the hierarchical model is that it considers the corre-
lation between sensitivity and specificity, accounting for 
within-study variability, as well as variability (also called 
heterogeneity) in effects between studies (ie, between-
study variability). Receiver operating characteristic (ROC) 
curves were used to plot summary estimates of sensitivity 
against false positive rate (FPR, ie, 1-specificity). The ROC 
curve plots also exhibit the uncertainty around the sum-
mary estimates via 95% confidence regions, and hetero-
geneity between accuracy estimates via 95% prediction 
regions.

Segmentation methods were evaluated using a random 
effects model, and reported in terms of pooled DSC, a 
universally used and reported metric. The restricted max-
imum likelihood estimator was used to calculate the het-
erogeneity variance (τ 2). The inverse variance method 
was used to calculate a pooled effect size. Knapp-Hartung 
adjustments were used to calculate the confidence in-
terval. A  prerequisite for study inclusion in the meta-
analysis was reporting outcome of interest (ie, DSC), in 
combination with an SD. Subgroup analysis comparing 
tumor types was performed where possible. A compara-
tive analysis was conducted to evaluate the performance 
of CAD versus human experts. Sensitivity analysis was 
performed looking at studies that only performed out-of-
sample external validation. Subgroup or sensitivity anal-
ysis was avoided when the number of studies in a group is 
small (n < 5). Study heterogeneity was formally evaluated 
using Higgins’ inconsistency index (I2) (I2 > 50%  =  sig-
nificant heterogeneity). All analyses were performed 
in R (version 4.0.2, http://www.r-project.org/) using the 
tidyverse, metaDTA, dmetar, meta, and ComplexUpset 
packages.

Results

Our search identified 2367 records, of which 1515 re-
cords were screened (Figure 1). An additional 22 texts 
were identified through cross-referencing. Two-hundred 
and sixty-two full texts were assessed for eligibility and 
224 were included in the systematic review: 188 seg-
mentation and 46 detection studies (10 studies reported 
both detection and segmentation results; see “Eligible 
Studies” in Supplementary Appendix). Forty-six segmen-
tation15–60 and 38 detection39,42,45,61–95studies were eligible 
for meta-analysis.

Study Characteristics

Study characteristics are shown in Supplementary Table 
1 (segmentation) and Supplementary Table 2 (detection). 
40.6% (n =95) of studies used DL and 59.4% (n = 139) used 
TML methods. There was a clear increase in the use of DL 
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from 2018 (Supplementary Figure 1). Most studies utilized 
a fully automated algorithm (n = 222; 94.9%).

80.7% (n = 189) used data from open-access repositories, 
with BRATS being the most popular of them (n  =  156; 
66.7%). 29.0% (n  =  68) used local datasets, all of which 
were retrospectively collected data. 11.9% (n  =  28) used 
both local and public datasets. 2.1% (n = 5) did not specify 
dataset(s) used (Supplementary Figure 2). Publicly avail-
able datasets are detailed in Supplementary Table 3.

The most studied tumors were high-grade gliomas 
(HGG) (n  =  173; 73.9%) and low-grade gliomas (LGG) 
(n = 171; 73.1%), with 59.0% (n = 138) of studies involving 
both (Supplementary Figure 3). 9.8% (n = 23) did not re-
port the type of tumor studied. Regarding MRI sequences, 
T2 (n  =  169; 72.2%), fluid-attenuated inversion recovery 
(FLAIR) (n  =  165; 70.5%), T1-contrast enhanced (T1CE) 
(n = 164; 70.1%), and T1 (n = 143; 61.1%) modalities were the 
most studied (Supplementary Figure 4). 48.3% (n = 113) of 
studies combined all these sequences, and 20.1% (n = 47) 
used just one for the algorithm development. A small mi-
nority (n = 19, 8.1%) did not report the type of MRI used.

The most common metrics used for evaluating per-
formance were DSC (n  =  168; 71.8%) and sensitivity 

(n = 168; 71.8%) (Supplementary Figure 5). 55.1% (n = 129) 
of studies reported internal validation. 31.2% (n  =  73) 
used random split validation and 32.1% (n  =  75) used 
resampling methods (Supplementary Figure 6). Overall, 
less than a third of studies (n  =  70; 30%) performed ex-
ternal validation. Specifically, 49.5% (n = 47/95) of DL and 
16.5% (n = 23/139) of TML studies reported external valida-
tion (Supplementary Figure 7). Details of algorithm perfor-
mance and validation techniques of studies are found in 
Supplementary Table 4 (segmentation) and Supplementary 
Table 5 (detection). Regarding segmentation inference 
time, DL methods performed the fastest (median: 0.2  s/
MRI slice, interquartile range [IQR]: 0.1–0.9), whereas 
fully automated TML methods achieved a median of 2.6 s 
(IQR: 1.1–12.6) and semi-automated techniques achieved 
48.16  s (IQR: 6.2–134.9) (P < .001; Kruskal-Wallis test) 
(Supplementary Figure 5).

Reporting Quality

Detailed CLAIM assessment is presented in Supplementary 
Table 6 (segmentation) and Supplementary Table 7 (detec-
tion). With respect to “good” reported CLAIM items, 95.3% 

  

Medline/PubMed

(n = 692)
Web of science

(n = 814)

Records screened based on
title and abstract

(n = 1515)

Duplicated records removed
(n = 852)

Records excluded
(n = 1231)

Full text articles excluded (n = 38)
- Abstracts or conference proceedings (n = 17)
- Tumour grading/classification method (n = 9)
- Unclear/No performance metrics (n = 7)
- Method not applied to brain tumours (n = 3)
- Method applied on paediatric tumours only (n = 1)
- Method not applied on MRI scans (n = 1)

Full text articles assessed
(n = 262)

Total articles included in the
review

(n = 224)

Detection articles
(n = 46)*

Segmentation articles
(n = 188)*

Articles included in
meta-analysis

(n = 38)

Articles included in
meta-analysis

(n = 46)

Scopus

(n = 861)

Additional records identified
from citation searching

(n = 22)

Figure 1. Study selection flow diagram (*10 studies reported both detection and segmentation results).
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(n = 223) stated the source of the data (CLAIM item 7) and 
86.8% (n = 203) clearly reported how ground truths were 
derived (CLAIM items 14–18). Almost all studies reported 
detailed model structure and initialization of parameters 
(CLAIM items 22–24). 83.8% (n  =  196) clearly reported 
training procedures and hyperparameters in sufficient de-
tail (CLAIM item 25) (Supplementary Figure 9).

However, only 1.3% (n = 3) of studies clarified missing 
data handling. No studies reported sample size calcula-
tions (CLAIM item 19). Less than two-thirds (n = 144, 61.5%) 
specified how data was partitioned (CLAIM item 20). Only 
32.5% (n = 76) of studies reported uncertainty around per-
formance metrics (CLAIM item 29). 67.1% (n = 157) studies 
reported performing internal and/or external validation 
(CLAIM item 32). Just 2.6% (n = 6) specified inclusion and 
exclusion flow of participants or images (CLAIM item 
33) and only 6% (n = 14) defined demographics and clinical 
characteristics of cases in each partition (CLAIM item 34). 
Ten studies made the algorithm source code publicly avail-
able (CLAIM item 41; for available links to source codes see 
Supplementary Table 8).
Risk of bias and applicability assessment—Detailed 
QUADAS-2 assessment is presented in Supplementary 
Table 9 (segmentation) and Supplementary Table 10 (detec-
tion). In the patient selection domain of risk of bias, 21.4% 
(n = 50) studies were considered to have unclear or high 
risk of bias as they did not express the exclusion criteria 
in the utilized dataset(s). In the reference standard do-
main, 13.2% (n = 31) were deemed to have unclear or high 
risk of bias as they did not clearly define how the ground 
truth segmentation was derived. In terms of applicability, 
the main source of concern was in the index test domain; 
31.6% (n = 74) had high applicability concerns as they did 
not validate the algorithm (Supplementary Figure 10).

Meta-analysis

Detection meta-analysis—Thirty-eight detection studies 
provided sufficient data to construct contingency tables (69 
tables). Only one study performed an external validation. 
28.9% (n  =  11; 20 tables) of studies utilized DL methods 
and the remaining 71.1% (n  =  27; 49 tables) utilized TML 
methods (Table 1).

Overall, the pooled sensitivity was 0.98 (95% CI, 0.97 to 
0.99) and the FPR was 0.035 (95% CI, 0.025 to 0.048). DL 
and TML had comparable sensitivity, but DL achieved a 
lower FPR compared to TML; 0.018 (95% CI, 0.011 to 0.028) 
and 0.048 (95% CI, 0.032 to 0.072) (P < .001), respectively 
(Figures 2A and 2B).

Segmentation meta-analysis—Due to limited numbers 
of semi-automated studies, segmentation meta-analysis 
solely focused on fully automated methods. Forty-six 
fully automated segmentation studies provided sufficient 
data to be included in the meta-analysis. 34.8% (n = 16) of 
studies utilized DL and 65.2% (n = 30) utilized TML methods. 
Less than half (n = 19; 41.3%) of studies performed external 
validation. 97.8% (n = 45) of studies provided segmentation 
results for WT, 41.3% (n = 19) for TC and 39.1% (n = 18) for ET.

Overall, a DSC of 0.84 (95% CI, 0.82 to 0.87; I2 = 99.99%) 
for WT, 0.72 (95% CI, 0.67 to 0.76; I2 = 99.99%) for TC, and 

0.73 (95% CI, 0.69 to 0.76; I2 = 99.99%) for ET (Figure 3A; 
Supplementary Table 11) were achieved. This persisted on 
sensitivity analysis of externally validated studies; a DSC 
of 0.85 (95% CI, 0.82 to 0.87; I2  =  99.97%) was achieved 
for WT and 0.76 (95% CI, 0.70 to 0.80; I2 = 99.96%) for TC 
(Figure 3A; Supplementary Table 12).

TML versus DL segmentation meta-analysis—DL was com-
parable to TML for WT segmentation, 0.86 (95% CI, 0.84 to 
0.88; I2 = 99.99%) and 0.83 (95% CI, 0.80 to 0.87; I2 = 99.99%; 
P  =  .21), respectively (Figure 3A; Supplementary Table 
11). This was relatively consistent on sensitivity analysis; 
0.87 (95% CI, 0.85 to 0.88; I2  =  100%) and 0.81 (95% CI, 
0.73 to 0.89; I2 = 99.94%; P = .10), respectively (Figure 3A; 
Supplementary Table 12).

In terms of TC segmentation, DL achieved a statistically 
significant higher DSC compared to TML, 0.80 (95% CI, 0.77 
to 0.83; I2 = 99.97%) and 0.63 (95% CI, 0.56 to 0.71; I2 = 100%; 
P < .001). This remained unchanged on sensitivity analysis; 
0.80 (95% CI, 0.77 to 0.83; I2 = 99.97%) and 0.64 (95% CI, 
0.49 to 0.79; I2 = 99.87%; P = .009), respectively.

Finally, for ET segmentation, DL methods achieved 
higher DSC when compared to TML, 0.75 (95% CI, 0.72 to 
0.78; I2 = 99.91%) and 0.69 (95% CI, 0.59 to 0.78; I2 = 100%), 
respectively. However, this did not reach statistical signifi-
cance (P = .17).

Subgroup analysis by tumor  type—Most studies (91.3%; 
n = 42/46) applied their segmentation method on gliomas 
(91.3%; n = 42/46) HGG and 84.78% (n = 39/46; LGG), 10.87% 
(n = 5/46) on metastatic brain tumors, 4.35% (n = 2/46) on 
meningiomas, and 1.79% (n  =  1/46) on nerve sheath tu-
mors. 58.69% of studies (n = 27/46) sufficiently categorized 
their segmentation results by tumor type required for sub-
group analysis (Supplementary Table 13).

Since few studies applied their segmentation tech-
niques to meningiomas and nerve sheath tumors, they 
could not be included in subgroup analyses. The sub-
group analysis thus compared HGG, LGG, and meta-
static brain tumors. Only WT segmentation results for 
metastatic brain tumors were possible to compute due 
to limited studies. ET segmentation was predominantly 
performed on HGG, thereby excluding it from subgroup 
analysis. It was not possible to compare DL and TML 
methods in diagnosing different types of tumors due to 
the small number of studies.

For WT segmentation, no difference was observed be-
tween HGG, LGG, and metastatic tumors, 0.83 (95% 
CI, 0.79 to 0.86; I2  =  99.99%), 0.80 (95% CI, 0.74 to 0.86; 
I2  =  99.98%) and 0.80 (95% CI, 0.74 to 0.86; I2  =  99.95%; 
P = .64), respectively (Figure 3B; Supplementary Table 13). 
For TC segmentation, a higher DSC was achieved for HGG 
compared to LGG, 0.67 (95% CI, 0.60 to 0.74; I2 = 99.97%) 
and 0.49 (95% CI, 0.37 to 0.61; I2  =  99.98%; P  =  .0027), 
respectively.

Automated versus human expert segmentation—Only 
30.4% (n  = 14/46) of studies provided sufficient data for 
comparison between automated and expert manual seg-
mentation for WT and TC segmentation. All studies in-
cluded multiple (>1) independent expert operators for 
generating ground truth segmentations; one study (7.1%) 
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 8 Kouli et al. Automated brain tumor detection and segmentation

utilized two operators and 13 (92.9%) utilized four op-
erators as part of the BRATS challenge (Supplementary 
Table 14).

For WT segmentation, both achieved “good” perfor-
mance, but higher DSC was achieved in the manual group 
than the automated group 0.86 (95% CI, 0.85 to 0.86; 
I2  =  99.90%) and 0.80 (95% CI, 0.73 to 0.87; I2  =  99.98%; 
P = .11), respectively (Figure 3C; Supplementary Table 14). 
However, for TC segmentation, manual segmentation out-
performed automated segmentation, 0.78 (95% CI, 0.69 to 
0.86; I2 = 99.94%) and 0.64 (95% CI, 0.53 to 0.74; I2 = 99.98%; 
P = .014), respectively.

For HGG tumors, manual segmentation outperformed 
automated 0.88 (95% CI, 0.87 to 0.88; I2 = 28.85%) and 0.81 
(95% CI, 0.74 to 0.87; I2 = 99.98%; P =  .015), respectively. 
Conversely, manual was comparable to automated seg-
mentation for LGG; 0.84 (95% CI, 0.83 to 0.85; I2 = 95.68%) 
and 0.79 (95% CI, 0.68 to 0.90, I2  =  99.96%, P  =  .33), 
respectively.

Discussion

To date, this is the largest meta-analysis evaluating auto-
mated brain tumor segmentation and detection methods. 
Automation provides benefits including elimination of 
human inter-rater variability and reduced inference time2; 
particularly DL methods, which showed an impressive me-
dian inference time of 0.2 seconds/MRI slice.

Previous studies have concluded that, in general, au-
tomated methods are comparable to human expertise in 
terms of performance.10,96 However, our research high-
lights that this only holds true for WT segmentation in 
brain tumors. Notably, we found that manual methods 
outperformed automated techniques for TC segmenta-
tion. Sub-compartmental segmentation, including TC, is 
a major influence on tumor progression monitoring and 
radiotherapy planning.97 Hence, our finding cautions the 
application of machine learning in all its potential uses in 
routine clinical practice and highlights the need for further 
research on sub-compartmental automated segmentation 
(TC and ET). Since most methods used conventional MRI 
scans (ie, T1, T2, T1CE, and FLAIR), future studies could 
combine these multimodal sequences with other special-
ized MRI sequences to increase the number of features, 
assessing for potential enhanced segmentation results. 
Soltaninejad et al.30 and Durmo et al.98 incorporated fea-
tures obtained from diffusion-weighted and diffusion 
tensor imaging and showed promising results in the auto-
mated identification of brain tumors. Including other MRI 
sequences in publicly available datasets, such as BRATS, 
could facilitate investigations into the diagnostic value of 
additional features.

Regarding automated detection, we have replicated the 
findings of Cho et al.’s systematic review on brain tumor 
metastasis8; DL had a significantly lower FPR than TML, 
whilst sensitivity between the two methods remained 
similar. To the best of our knowledge, there has been no 
previous evaluation of automated sub-compartmental 
segmentation of brain tumors. Our study extends confi-
dence in DL to tumor segmentation; the DL group achieved M
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“good” (DSC ≥ 0.7) performance for all segmentation 
types (WT, TC, ET), whereas for TML, “good” performance 
was limited to WT segmentation. This trend persisted 
with sensitivity analysis investigating only externally val-
idated studies, reinforcing these results. DL techniques 
support the automatic identification of complex features 
unlike TML, which requires hand-crafted feature vectors.3 
However, the advantages of DL remain ambiguous, due to 
its “black box” nature; the interpretability of learned fea-
tures and the explainability of the model’s decisions could 
be improved.3,4 Certain methods, such as saliency maps or 
feature attribution attempt to deduce how these learning 
algorithms detect complex features.99 However, just 2.1% 
(n = 5) of studies reported such methods, hindering model 
interpretation. This highlights the importance of future 
work reporting DL interpretation to improve comprehen-
sion and transparency of algorithmic predictions.

Van Kempen et al.9 reported good performance of ma-
chine learning algorithms for glioma WT segmentation, 
also showing that automated segmentation for both HGG 
and LGG were comparable. Our subgroup analysis, strati-
fied by tumor type, showed “good” performance, and no 
statistically significant difference between tumor types 
for WT segmentation. However, this was not consistent 
for TC segmentation; both HGG and LGG tumors did not 
reach “good” performance as was evident for WT. This is 
clinically pertinent, because of the aforementioned value 
of reliable automated sub-compartmental segmentation in 
treatment pathways. HGG TC segmentation performance 
was found to be significantly better than LGG. This may be 
due to LGG’s slow growth, lack of surrounding vasogenic 
edema, and poor enhancement on MRI, making LGGs radi-
ologically more difficult to identify.98 Moreover, HGGs are 
highly proliferative tumors resulting in higher lesion con-
trast and enhancement, making them radiologically more 
noticeable.98 This study shows that although manual WT 

segmentation statistically outperformed automated seg-
mentation for HGG, both achieved “good” performance 
(DSC ≥ 0.7). On the other hand, for LGG tumors, manual 
and automated segmentation were statistically compa-
rable in terms of performance; however, only manual seg-
mentation achieved “good” performance. This could be 
because LGGs can simply conform to normal anatomy (eg, 
expanding gyri), making them difficult to diagnose, espe-
cially when small. This further highlights the need for fu-
ture work on improving machine learning performance to 
segment LGG more accurately to achieve comparable re-
sults to that of manual segmentation.

Reporting guidelines reinforce robust evaluation and 
generalizability of diagnostic models. The recent CLAIM 
checklist, developed on the foundations of earlier well-es-
tablished guidelines, is the first to address AI applications 
in medical imaging. This is the first study to adopt this per-
tinent guideline for the comprehensive assessment of re-
porting quality for brain tumor identification. Although 
over 70% of studies detailed data sources, model design, 
and ground truth definitions, only a minority reported 
missing data handling, data partitioning, study participant 
flow, and external validation. This is consistent with Yusuf 
et al.’s systematic review5 which found poor reporting of 
the study participant flow, the distribution of disease se-
verity, and model validation techniques within ML-based 
diagnosis models. Such findings reiterate the necessity for 
studies to employ guidelines to aid their interpretation and 
reusability. This is paramount in ensuring reliable research 
is the basis of pioneering novel techniques into clinical 
practice.

The absence of external validation jeopardizes the 
generalizability of models for clinical use. Our study 
highlights such a limitation, with only 41.3% (n = 19/46) 
of segmentation and 2.6% (n = 1/38) of detection studies 
in the meta-analysis undertaking external validation. 
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detection meta-analysis.
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To address this, we performed a sensitivity analysis on 
segmentation models that were externally validated, 
which showed similar results to the original analysis. To 

ensure that future studies externally validate their ma-
chine learning algorithms, authors should utilize the 
CLAIM guideline when reporting their study. In addition, 
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Figure 3. Segmentation meta-analysis for (A) all studies and externally validated only studies, stratified by deep learning (DL) and traditional ma-
chine learning (TML), (B) subgroup segmentation meta-analysis by tumor type (high-grade glioma [HGG], low-grade glioma [LGG], and metastatic 
brain tumor [MET]), and (C) automated versus human segmentation.
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Figure 3. Segmentation meta-analysis for (A) all studies and externally validated only studies, stratified by deep learning (DL) and traditional ma-
chine learning (TML), (B) subgroup segmentation meta-analysis by tumor type (high-grade glioma [HGG], low-grade glioma [LGG], and metastatic 
brain tumor [MET]), and (C) automated versus human segmentation.

  

journals should encourage authors to provide details 
about elements of reporting outlined CLAIM for edi-
tors and reviewers during the assessment of AI-related 
manuscripts in medical imaging. Secondly, high heter-
ogeneity was observed which may be due to methodo-
logical diversity in machine learning techniques. Thirdly, 
only a quarter of included studies were eligible for meta-
analysis because of inadequate reporting, particularly 
the uncertainty values of performance metrics, thus 
compromising data availability. This issue has been rec-
ognized by non-neuro-oncology systematic reviews.96 
Fourthly, most studies failed to report manual segmen-
tation results, impeding a direct comparison of the 
techniques. To promote standardization of ground-truth 
images for training AI algorithms, experts should utilize 
structured reporting during manual segmentation.100 
Finally, most studies tested and trained their algorithms 
on open-access datasets. We propose that available au-
tomated algorithms be applied to prospective, routinely 
collected MRI data to assess performance and feasibility 
for use in daily clinical practice.

To conclude, we found promising results for the use of AI 
algorithms in brain tumor identification and highlight the 
areas for future research. Further improvements to study 
design are needed, with adherence to reporting guidelines, 
which will avail transparent evaluation and generalizability 
of diagnostic AI models.
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Supplementary material is available at Neuro-Oncology 
Advances online.
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