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Main Variables & Parameters

A is a set of parameters denoting a general non-degenerate FDLset.

ai is a parameter denoting the length of FDLi, i = 0, . . .N , with ai ∈ A.

Al is a rv denoting the number of arrivals during an arbitrary slot l, in DT
[→Chapter 2].

Bk is a rv denoting the burst size of burstk. This is synonymous to the transmis-
sion time, or, in queueing terms, the service time of a burst.

D is a parameter denoting the granularity of a degenerate FDL set. It only applies
to such sets, and is not defined in the case of a non-degenerateFDL set.

Hk is a rv denoting the scheduling horizon of burstk, that is, the earliest time
until all previous bursts will have left the system, as seen by arriving burst
k.

N is a parameter denoting the optical buffer size. The number of lines in an FDL
set, including the line with length zero, isN + 1.

Rk is a rv denoting the reactivation time following burstk [→Chapter 3].

Tk is a rv denoting the inter-arrival time of burstk, defined as the time between
the arrival of burstk and the arrival of the next burst.

Uk is an auxiliary rv associated with burstk, defined asUk = Bk − Tk.

Vk is a rv denoting the void size that burstk creates upon arrival, defined as
Vk = Wk − Hk.

Wk is a rv denoting the waiting time of burstk, that is, the time that burstk
spends in the buffer between the instant of arrival and the instant that trans-
mission commences. In this work, it is used interchangeablywith “delay”.

Xk is a rv denoting the batch size of batchk [→Chapter 2].

Yk is a rv denoting the unavailable period following the arrival of burstk

[→Chapter 3].

Zk is a rv denoting the number of losses during the unavailable period associated
with burstk [→Chapter 3].
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Terms

Burst is a term borrowed from OBS context. In an OPS context, it can simply
be replaced by “packet”.

Classic buffer is used interchangeably with “RAM buffer” or “non-optical buf-
fer”. It refers to a buffer with continuous waiting room, that doesn’t suffer
performance loss from voids.

Degeneratebuffer settings have FDL lengths that are multiples of the granu-
larity D. Such settings are also called equidistant, and are opposedto non-
degenerate settings.

Equidistant is a synonym for “degenerate”, and is opposed to “non-equidistant”.

FDL buffer and “optical buffer” are used interchangeably in Chapters 2to 6 of
this work.

Memoryless distributionis used as an umbrella term for the geometric dis-
tribution (in DT) and the negative-exponential distribution (in CT).

Transform function is used as an umbrella term for pgf (in DT) and lst (in
CT) in this work.



Samenvatting
—Summary in Dutch—

¶ Glasvezel is het standaardmedium voor lange-afstandscommunicatie. Grote
steden zijn verbonden met optische DWDM (Dense Wavelength Division Multi-
plexing) verbindingen, en hebben op die manier datadebieten van meer dan 10
Tbit/s per vezel ter beschikking. Pakketschakelen over deze optische verbindingen
vereist evenwel dat de transmissiecapaciteit van de verbinding ook gehandhaafd
kan worden bij het schakelen in de knooppunten. Aangezien huidige pakketschake-
laars de data in het tragere elektronische domein verwerken, wordt het schake-
len stilaan het knelpunt als het op netwerksnelheid aankomt. Nieuwe, pakketge-
örienteerde technologieën zoals OPS (Optical Packet Switching) en OBS (Optical
Burst Switching) kunnen dit knelpunt omzeilen, door te schakelen in het optische
domein. In de resulterende optische schakelaars zijn buffers een afdoende oplos-
sing voor conflicten, die zich voordoen wanneer twee of meer datapakketten op
hetzelfde moment over dezelfde uitgang willen beschikken.Aangezien licht niet
tot stilstand kan gebracht worden, buffert men de data door ze met behulp van
een schakelmatrix doorheen een vertragingslijn (Fiber Delay Line, FDL) van vol-
doende lengte te sturen, gekozen uit een set van FDL’s. Zodoende introduceert
optisch schakelen een nieuw type buffer, dat het onderwerp van dit doctoraats-
proefschrift uitmaakt.

Optisch schakelen (zowel OPS als OBS) bevindt zich nog steeds in de onder-
zoeksfase, en het tijdstip voor werkelijke (commerciële)verbreiding is alsnog een
vraagteken. Zoals El-Bawab1 het stelt: “zodra alle technologische ingrediënten
volgroeid en kosteneffectief zijn, en wanneer de telecomindustrie klaar is voor de
stap.” Wanneer de omslag van elektronisch schakelen naar optisch schakelen zich
voltrekt is moeilijk te voorspellen, maar de technische en operationele drijfveren
voor de visie van de optische laag zijn authentiek: de netwerkarchitectuur heeft
nood aan vereenvoudiging, flexibiliteit, intelligentie enschaalbaarheid. Optisch
schakelen komt aan deze nood tegemoet, en optische buffers vormen in dit verhaal
een klein maar zonder twijfel vitaal onderdeel.

In de huidige situatie heeft optisch schakelen nog steeds afte rekenen met
enkele (technologische) kinderziekten, en heeft het bovendien nood aan nauwkeu-
rige hulpmiddelen voor de prestatie-analyse van het beoogde netwerk. Dit laatste

1T.S. El-Bawab.Optical Switching. Springer, 2006.
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is cruciaal, aangezien het netwerkarchitecten toestaat omde prestatiewinst af te
schatten die men van de overgang van elektronisch schakelennaar optisch schake-
len mag verwachten, en bovendien toestaat om het geassocieerde netto kosten-
plaatje te maken. Dergelijke middelen voor prestatie-analyse kunnen bekomen
worden door delen van het beoogde netwerk, zoals de FDL buffers, in een sto-
chastisch model te gieten. Stochastische modellering van FDL buffers heeft de
laatste jaren veel aandacht genoten [1–37], en vormt ook de invalshoek van dit
boek, dat grotendeels gebaseerd is op [1–9].

Het geheel van FDLs en schakelmatrix vormt een optische buffer, met lijn-
lengtes die typisch (maar niet noodzakelijk) een veelvoud zijn van een basiswaarde
D, genaamd de granulariteit. Een kenmerkende eigenschap is dat bursts (of pakket-
ten) in een optische buffer pas beschikbaar zijn wanneer ze de toegewezen vertrag-
ingslijn verlaten, in plaats van op willekeurige tijdstippen, zoals in het geval van
een klassieke RAM buffer. Dit heeft tot gevolg dat er zich periodes voordoen
waarin het uitgangskanaal beschikbaar is maar ongebruikt blijft, ondanks het feit
dat er nog bursts in de buffer wachten om verzonden te worden.Deze periodes
heten leemtes (Engels: voids), en treden niet op in het gevalvan klassieke buffers.
Wanneer we de vergelijking maken met klassieke RAM buffers,kunnen we van
deze leemtes enkel een prestatievermindering verwachten.De leemtes zijn inhe-
rent verbonden aan de structuur van de FDL buffer, en kunnen wel gereduceerd,
maar niet uitgeschakeld worden.

Overigens impliceert het eindig aantal vertragingslijnenniet alleen dat er leem-
tes optreden, maar ook dat er een maximaal realizeerbare vertraging is, gelijk
aan de lengte van de langste lijn. Dit creëert een effect datin de wachtlijntheo-
rie meestal ongeduld wordt genoemd, en dat resulteert in hetverlies van bursts,
telkens wanneer een burst een grotere vertraging moet ondergaan dan realizeer-
baar is. Bemerk dat dit verschilt van de situatie bij klassieke buffers met eindige
grootte, waar een bovengrens wordt opgelegd aan het aantal bursts dat gelijktijdig
in de buffer kan aanwezig zijn. Wanneer we de vergelijking maken met klassieke
RAM buffers, leidt ongeduld evenwel niet noodzakelijk tot een prestatieverlies.
Veeleer vormt het een karakterisatie van de eindigheid van de buffer die comple-
mentair is aan de typische karakterisatie, door middel van een bovengrens op het
aantal beschikbare wachtplaatsen.

In dit opzicht hebben alle prestatiemodellen in dit werk gemeen dat ze het
gecombineerde effect van leemtes en ongeduld in rekening brengen. Deze mo-
dellen dienen hoofdzakelijk als werktuig voor prestatie-analyse. Meer bepaald
staan ze toe om het prestatieverlies ten gevolge van leemteste ondervangen, en dit
door de ontwerpsparameters (in de eerste plaats de granulariteit) met dit doel af
te regelen. De voornaamste prestatiematen zijn de verlieskans en de gemiddelde
wachttijd van bursts. Deze worden bekomen voor algemene aannames voor de
tussenaankomsttijden en de burst- (of pakket-)groottes, en dat voor een algemeen
tijdskader (zowel discrete tijd als continue tijd). De analyse is generiek gesteld in
termen van de betrokken parameters, en staat een netwerkarchitect toe om haar in
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te zetten voor een waaier van toepassingen. Het meest voor dehand liggende doel
is de optimalisatie van de vezellengten met het oog op minimaal verlies. Een ander
typisch gebruik is de bepaling van de minimale buffergrootte, nodig om te voldoen
aan gegeven prestatievereisten.

Wat de opbouw van dit werk betreft kunnen we spreken van complementaire
hoofdstukken, aangezien elk een andere methodologie hanteert: met tranformaties
(Hoofdstuk 2), met Markovketens (Hoofdstuk 3), met ongeduld (Engels: impa-
tience) (Hoofdstuk 4), en met stochastische regeneraties (Hoofdstuk 5). Deze
methodes worden achtereenvolgens behandeld, en staan toe om het FDL-buffer-
probleem op grotendeels complementaire wijze te belichten. Naar de mening
van de auteur levert de aanpak met transformaties de vanuit mathematisch oog-
punt elegantste prestatie- en stabiliteitsanalyse op, die, voor een lezer met enige
vertrouwdheid met wachtlijntheorie, een maximaal inzichtin de werking van op-
tische buffersystemen toestaat. De aanpak met Markovketens staat dan weer toe
om de meest accurate resultaten te bekomen, en levert in sommige gevallen zelfs
een oplossing in gesloten gedaante op. De aanpak met ongeduld biedt dan weer
een andere kijk, en laat de in mathematisch opzicht eenvoudigste manier van
oplossen toe. Tenslotte reikt de aanpak met regeneraties ons een elegante meth-
ode aan om stabiliteitsvoorwaarden op te stellen voor een zeer brede klasse van
FDL-buffersystemen.

Zodoende voegt het geheel van deze vier benaderingen een consistent en ma-
thematisch onderbouwd raamwerk toe aan het debat omtrent optische buffering.
Het kan van waarde zijn voor lezers die op zoek zijn naar elementaire inzichten
over, prestatie-analyses voor, of intuı̈tie omtrent de werking van optische buffers.
Gezien de essentiële rol van prestatie-analyse in de verbreiding van nieuwe tech-
nologieën, zien wij voor dit doctoraatsproefschrift ook een rol weggelegd als pleit-
bezorger voor optische buffers, en, in het algemeen, optische netwerken.





Summary

¶ Optical fiber is the standard carrier for data transport overlong distances.
Nowadays, major cities are connected by dense wavelength division multiplex-
ing links (DWDM), enabling transmission capacities of over10 Tbit/s per fiber.
Packet switching over these optical links, however, requires that the transmission
speeds over the links are matched by equivalent switching capacities in the nodes.
As current packet switches perform data processing in the (slower) electronic do-
main, the switching is becoming the bottleneck in terms of network speed. Novel
packet-oriented technologies like optical packet switching (OPS) and optical burst
switching (OBS) promise to alleviate this bottleneck, by performing the switch-
ing in the optical domain. In the resulting optical switches, buffers provide an
appropriate solution to external blocking, that occurs whenever two or more data
packets contend for the same output at the same time. Since light cannot be stored
“in place”, data is buffered by sending it through a Fiber Delay Line (FDL) of
sufficient length, chosen from a set of FDLs by means of a switching matrix. As
such, optical switching gives rise to an essentially new type of buffering, that is
the subject of this doctoral dissertation.

Optical switching (OPS as well as OBS) is still in its research phase, and the
timing for wide-spread adoption is an as yet unanswered question. Quoting El-
Bawab2: “as soon as all technological ingredients are fully matureand cost-effec-
tive, and when the telecommunications market is ready for this step.” When ex-
actly the shift from electrical switching to optical switching will take place is hard
to predict, but the technical and operational drivers for the vision of the optical
layer are genuine: the network architecture needs simplification, agility, flexibil-
ity, intelligence, and scalability. Optical networking comes up to these needs, and
optical buffering, although but a small piece of this optically-switched network,
surely provides a vital piece.

At this point, optical switching still needs to overcome some (technological)
teething troubles, but also requires accurate tools for theperformance evaluation
of the envisaged network. The latter is key, since it allows network architects to
predict the performance gain that the shift from electronicswitching to optical
switching will bring about, and further allows to draw up theoutline of associated
net costs. Such performance evaluation tools can be obtained by casting parts of
the envisaged network, such as the FDL buffers, in a stochastic model. Stochastic

2T.S. El-Bawab.Optical Switching. Springer, 2006.
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modeling of FDL buffers has received much attention in recent years [1–37], and
also constitutes the line of approach of this book, that is largely based on [1–9].

The FDLs, together with the switching matrix, constitute anoptical buffer sys-
tem, with line lengths that are typically (but not necessarily) a multiple of a basic
valueD, called the granularity. An essential characteristic is that bursts (or pack-
ets) present in the optical buffer are only available when they leave the assigned
delay line, rather than at arbitrary (“random”) instants, like in the case of a classic
RAM buffer. This results in periods during which the outgoing channel remains
unused, even though bursts are still present in the buffer and awaiting transmis-
sion. These periods are called voids, and do not come about inthe case of a classic
buffer. When compared to a classic RAM buffer, the effect of voids is strictly a
performance degradation. The voids are implied by the FDL buffer structure, and
can be mitigated, but not annihilated.

On the other hand, the limited number of delay lines implies that there is a
maximum achievable delay, namely the length of the longest line. This creates an
effect that is commonly referred to as impatience in queueing literature, and results
in burst loss, whenever a burst finds that its required waiting time is larger than the
maximum achievable delay. Note that this is different from the classic case of
finite buffer size, where the number of bursts that can be present in the buffer is
bounded. When compared to a classic RAM buffer, the effect ofimpatience is not
necessarily a performance degradation. Rather, it provides a characterization of
buffer finiteness that is complementary to the typical limiton buffer size, namely
an upper bound on the number of waiting places.

As such, taking into account the combined effect of voids andimpatience is
key in all the performance models presented in this work. Themain scope of these
models is to provide a performance evaluation tool to mitigate the performance
loss due to voids, by fine-tuning the involved design parameters (in the first place,
the granularity) to this end. Main performance measures of interest are the loss
probability (LP) and the waiting time of bursts. These are derived for general as-
sumptions on the inter-arrival times and burst (or packet) sizes, and also for general
time setting (both discrete-time (DT) and continuous-time(CT)). The analysis is
generic in terms of the involved parameters, so allowing a network architect to de-
ploy it for a wide variety of applications. Most obvious purpose is the optimization
of the fiber lengths for minimal loss. Another typical use is to determine the buffer
size needed, so as to meet given performance requirements.

As for the structure of this work, the chapters are complementary, in that each
represents a different methodological approach: with transform functions (Chap-
ter 2), with Markov Chains (Chapter 3), with impatience (Chapter 4) and with
stochastic regenerations (Chapter 5). These methods will be treated subsequently,
and will allow to shed light on the FDL buffering problem mostly in a complemen-
tary way. In the author’s opinion, the approach with transform functions yields the
most elegant mathematical performance and stability results, that, for the reader
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acquainted with queueing theory, allow for maximal insightinto the functioning
of FDL buffers. The approach with Markov Chains allows for the most accurate
loss performance results, and in some cases even yields closed-form solution. The
approach with impatience provides an alternate view to the system, that allows
to obtain results of minimal mathematical complexity. Finally, the approach with
regenerations offers an elegant way to establish stabilityresults for a very broad
class of FDL buffer systems.

As such, the whole of these four approaches adds to the debateon optical
buffering a consolidated framework for performance evaluation with firm math-
ematical basis. It can prove an asset to readers looking for essential insight in,
performance tools for, and intuition on an optical buffer’scapabilities. Further,
given the essential role of performance evaluation in the propagation of new tech-
nologies, this dissertation both directly and indirectly stimulates the deployment
of optical buffers in actual networks, and the deployment ofoptical networking in
general.





1
Introduction

¶ This doctoral dissertation is devoted to the performance modeling of optical
buffers. As a vital part of the next-generation backbone network, optical buffers
provide a hot topic in present networking research, challenging engineers to think
beyond the limitations of present-generation network technology. Sometimes, this
implies giving up old ideas about what a technology is, was orhas been. Some-
times, this implies introducing into communications networks elements and tech-
niques that never were employed for that purpose before. Always, this includes
the evaluation of the cost and the performance of the newly proposed technology.

In this context, the present work adds to the debate on optical buffering a con-
solidated framework for performance evaluation with firm mathematical basis. It
can prove an asset to readers looking for essential insight in, performance tools for,
and intuition on an optical buffer’s capabilities. Further, given the essential role of
performance evaluation in the propagation of new technologies, this dissertation
both directly and indirectly stimulates the deployment of optical buffers in actual
networks, and the deployment of optical networking in general.

Before moving to the stochastic modeling, which forms the heart of this work,
we first provide the reader with a concise introduction to optical networking and
optical buffering, essential to grasp the implications of the performance results we
obtained. This is the material of the current chapter.



2 CHAPTER1

1.1 Access Networks vs. Backbone Networks

Given the rampant ubiquity of the Internet, and the apparentdependence of eco-
nomics upon it, the backbone is bound to process an immenselygrowing amount
of traffic. In the whole of a computer network, the backbone isthe central part of
the network, as opposed to the peripheral parts, that constitute the access network.
The access network is that part of the network where individual users connect with
the network. In present Belgium, we typically think of wiredtechnologies like
for example twisted pair (ADSL, ADSL2(+), VDSL(2)) and coax(DOCSIS) and
of wireless technologies, such as for example GSM, WiFi. Typically, the access
network delivers service locally, to a limited number of users. As such, the con-
nection speed (or, bandwidth) of individual users needs to be sufficient to provide
good service, but the aggregated traffic of different users on the same connection
does not result in very large bandwidth, since the number of users is limited. Fur-
ther, note that, for instance in Belgium, the maximum amountof bandwidth that a
single user can consume is limited not only by their subscription type, but also by
the physical properties of the access medium itself, namelycopper wire. State-of-
the-art technology allows for (theoretical) speeds of up to250 Mbit/s over twisted
pair (VDSL2, as of 2008) and 400 Mbit/s over coax (DOCSIS 3.0,as of 2008),
which is actually no match for the theoretical capacity of a single optical fiber,
mentioned below. Therefore, private users in Belgium typically have access at
rates of 1-100 Mbit/s, whereas massive deployment of Fiber to the Home (FTTH)
currently enables access speeds of up to 1 Gbit/s for privateusers in Japan.

Opposed to this, the backbone network (or, for short, backbone) typically de-
livers service internationally, even globally, to a huge amount of users. The back-
bone thus conveys the aggregated data of thousands of users per link, and carries
data world-wide, interconnecting cities by long-haul links of hundreds of km, con-
necting different backbone nodes. The connections betweenbackbone nodes con-
sist of optical fibers, that apply Dense Wavelength DivisionMultiplexing (DWDM,
a more recent version of WDM) to carry multiple lightwaves atdifferent frequen-
cies on one single-mode optical fiber, realizing total data rates well beyond the
Tbit/s with one fiber. As of 2008, state-of-the-art optical fiber technology enables
up to 160 channels at an equal number of wavelengths, with a data rate of typ-
ically 40 Gbit/s per channel, ranging up to 160 Gbit/s per channel. To name a
recent example: a total data rate of 12.8 Tbit/s was obtainedover a 2550 km link,
as demonstrated at ECOC 2007 in September 2007 [38]. As a reference: the first
transatlantic telephone cable to use optical fiber (TAT-8) went into operation in
1988, operating at first with one wavelength, and allowing for a bandwidth of 280
Mbit/s.
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1.2 Alleviate the Bottleneck

In early computer networks (1980s and earlier), the physical properties of the
link itself constituted the limiting factor for connectionspeed. As noted by El-
Bawab [39], the extensive deployment of Wavelength Division Multiplexing in the
1990s annihilated this bottleneck, so creating a new one, namely the switching.
In current backbone networks, packets travel hop-by-hop inthe form of light, but
are converted into electricity in order to extract header data, buffer them, convert
them back to light and transmit them to the next hop. As such, the switching is
done by electronics, and requires intermediary conversions: from optical to elec-
trical (O/E), and then back from electrical to optical (E/O). The combination of
the latter two conversions is referred to as O/E/O conversion. Given that the lat-
ter is done on a channel per channel basis, it does not only create a tremendous
multiplication of switching elements (one electronic circuit per channel), but also
introduces conversion delay, while limiting flexibility and scalability [40]. Further,
even with complicated electronic circuits able to handle the switching at sufficient
speed, the current trend is that optical transmission capacity grows faster than elec-
tronic processing capacity [41], making electronics the most likely bottleneck of
the next-generation network.

1.3 Wavelength-Routing Optical Networks

Although the solution that wavelength routing provides is not the focus of the cur-
rent work, it is an optical technology that is actually deployed in present networks,
and therefore worth mentioning [42–44]. The central concept in this approach is
to set up wavelength paths (or lightpaths) between a source-destination pair. Once
set up, such wavelength path allows data to flow in optical form, without O/E/O
conversion in-between. In this context, a connection without conversion is called
transparent, since it allows for light beams to travel through it purely in the form
of light. Opposed to this, a connection with conversion is called opaque, since it
does not allow for light beams to pass through it without intermediary conversion
to electrical form. The backbone nodes in-between allowingfor such transparent
connection are Optical Cross Connects (OXCs).

Although this approach allows to avoid O/E/O conversion, animportant dif-
ference with the optical switching considered in this work is that a wavelength-
routing network is essentially circuit-switched. This means that typically, a packet
travels from source to destination trough a connection thatspans multiple nodes,
and that is set up beforehand. This is opposed to (pure) packet-switched networks,
where packets are routed locally hop-by-hop, and no (higher-level) connection is
set up beforehand. To see this, consider the following example, that also occurs
in [44]. A wavelength-routing network carries IP traffic, and a lightpath is created
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between source-destination pair A and C, by passing from router A, over B, to
C. With this given, at the IP layer, router A sees a direct connection to router C,
with large capacity, associated with the wavelength of the lightpath that was set
up. The IP protocol being essentially connectionless, the IP routers are unaware of
the intermediate routers on the path, and just see a link between A and C at their
disposition for packet forwarding. Since this link gets assigned an entire wave-
length in a fixed manner, this capacity is no longer availablefor packet forwarding
along other links. For example, if router B wants to route packets over the link
between B and C, it cannot re-use the wavelength associated with the lightpath
between A and C, even if no data is transmitted over it at the given time. The
same goes for the situation where for example another routerD would want to
route packets to router C over router B. As such, an increasednumber of wave-
lengths is needed to fulfill the bandwidth demands of a given traffic matrix. This
essential drawback can be partially overcome with Automatically Switched Opti-
cal Networks (ASONs), where wavelength paths are set up by the control plane,
without explicit intervention of the network operator, allowing to adapt to traffic
variations on medium to large timescale (several minutes tohours or days). Still,
flexibility of the connection is low, and the network is operated mainly as a set
of source-destination pairs, rather than as an actual topology-aware network. This
results in poor usage of resources, because bottleneck links between source and
destination cannot be avoided by routing over alternate links, as it can be done in
topology-aware networks.

Finally, note that OXCs are available on the market today, and are typically
relatively cheap in terms of cost per Tbit/s. Since they do not require O/E/O con-
version, and also are not to allow fast reconfiguration times, it is possible to use
low-cost technologies like Micro-Electromechanical Systems (MEMs) for the im-
plementation [45].

1.4 Optical Packet and Burst Switching

The drawback of wavelength-routing optical networks is that it does not allow to
re-use wavelengths of a lightpath for other traffic. This is actually a specific case of
a more general consideration, as proposed in (the introduction of) [43]. There, Per-
ros distinguishes between circuit-switched and packet-switched networks. Typical
examples of circuit-switched networks include the above-mentioned wavelength-
routing optical networks, and telephone networks. Typicalexamples of packet-
switched networks include approaches with virtual circuits (connection-oriented
networks, like ATM and frame relay) on the one hand, and approaches with data-
grams (connectionless networks, like IP) on the other hand.Main advantage of
circuit-switched networks is that they are easy to control and provide robust oper-
ation. However, it is well-known that circuit-switching isnot very efficient from
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a bandwidth perspective. Opposed to this, packet-switching allows for point-to-
point connections, without making the allocation of intermediary nodes strictly
necessary. This allows for statistical multiplexing, since numerous traffic flows
can be treated at once from hop to hop, implying that the entire fiber can be shared
by all data arriving at the node. Combining different flows results in more effi-
cient resource usage and better overall performance. This is applied in the current
electronically-switched networks (with O/E/O conversion), and provides a con-
siderable performance advantage over circuit-switching.In this regard, although
wavelength-routing optical networks do allow to circumvent the electronic bottle-
neck, they are compromised in that they do not allow for the indispensable statis-
tical multiplexing, needed to maximize resource utilization.

1.4.1 Optical Packet Switching

Optical packet switching (OPS) is presented as key solutionto these problems
[46–51], by performing packet switching in the optical domain. On the one hand,
optical switching avoids the costly O/E/O conversions thatoccur on the path in-
between a source-destination pair, providing thus a transparent connection. On the
other hand, OPS allows for flexible routing, and benefits fromthe advantages of
packet switching in general, amongst others statistical multiplexing.

For the most flexible implementation, all operations are to be moved to the
optical domain: optical packets arrive at network nodes in the form of light, the
packet header is extracted optically, the header is interpreted optically, the packet is
switched to the desired destination optically, and the header information is rewrit-
ten optically, all on a packet-by-packet basis. The latter description concerns OPS
in its purest form, and is often referred to as all-optical packet switching. Given
that especially the control is very hard to implement optically, even an implemen-
tation with electronic control is commonly referred to as OPS [48], but never as
all-optical packet switching. In this regard, slightly different types of OPS coexist,
but all have in common that the payload is switched optically, in packets of limi-
ted length. The continuous interest in OPS is also reflected in numerous research
projects [40,49,51–57].

1.4.2 Optical Burst Switching

In recent years, Optical Burst Switching (OBS) [58, 59] received much attention
from the research community, as it provides a practical compromise between wave-
length routing and packet switching. The main motivation isto relax the stringent
technological requirements that OPS imposes, mainly by (i)assembling packets
into larger bursts, which reduces the burden on control, andby (ii) transmitting
data and control separately and performing control electronically, which avoids
the reading and writing of packet headers in the optical domain.
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While the simplest instance of OPS can be understood as IP packet switching
in the optical domain, OBS is somewhat more particular in itsapproach. Also,
note that the name OBS does not identify a single architecture, in that many OBS
papers consider implementations that deviate considerably from [58], that nev-
ertheless remains the main reference for OBS. In an OBS network, packets are
assembled into larger data bursts (DBs) (or, for short, bursts1), that are provided
each with a Burst Header Packet (BHP). The assembly of burstsand creation of
BHPs is done in ingress OBS edge nodes. This burstification process is typically
either threshold-based or age-based (for variable packet length) [60], and (rather
seldom) strictly threshold-based (for fixed-length bursts) [61]. After burstification,
each burst/BHP pair is sent to their destination (an egress OBS edge node) through
OBS core nodes. The burst is transmitted over a data channel,while the BHP is
sent over a dedicated control channel. Depending on the control protocol, BHPs
are transmitted ahead of the burst with a certain offset time, calculated beforehand
so as to compensate for the processing delays of the BHPs in subsequent nodes.
The burst is transmitted transparently (without O/E/O conversion), whereas the
BHP goes through O/E/O conversions at every node, to allow for a (more) feasible
control. The control itself consists in configuring each node so as to allow forward-
ing the burst to the correct output when it arrives [51, 62], so permitting the burst
to reach the egress node, where the burst is disassembled. This configuration re-
quires a reservation mechanism; especially in case multiple wavelengths are avail-
able to realize the correct forwarding, a variety of reservation mechanisms such
as Horizon Scheduling [51], Latest-Available UnscheduledChannel (LAUC) [62]
and Latest-Available Unused Channel with Void-Filling (LAUC-VF) [62] exist.

In this work, we will consider optical buffers in both an OBS and OPS context.
For notational convenience, we will consistently use the word “burst” rather than
“packet” in the following, unless we want to make explicit reference to an OPS
or electronic packet switching context. We note however that the word “burst” is
mostly used interchangeably with “packet” in this work, andresults equally hold
for OPS, and, in principle, for any optical switching designthat involves optical
buffering.

Finally, note that optical switching (OPS as well as OBS) is still in its research
phase, and the timing for wide-spread adoption is an often-recurring, as yet unan-
swered question. El-Bawab provides his answer in [39] (Sect. 1.4.1): “as soon
as all technological ingredients are fully mature and cost-effective, and when the
telecommunications market is ready for this step.” Furtheron, he mentions three
main reasons for the eventual adoption of optical networks.First, the true drivers
for optical switching are genuine: simplifying the networkarchitecture, while pro-
viding flexibility, intelligence and scalability. Second,the progress made in several

1In literature, these bursts are often referred to as data bursts (DBs). Since the shorter term “burst”
does not lead to confusion, we prefer to use the latter name throughout this work.
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optical technologies, especially in optical switching, isreal and impressive. Third,
the annual growth of the Internet is a fact. The yearly incremental increase in
traffic volume might not be matched by revenue growth for carriers (due to the
bussiness model), but nevertheless urges to provide additional bandwidth in the
future. For further detail, we refer to [39].

1.5 Contention Resolution

In every network, burst (or packet) contention occurs whenever two or more bursts
head for the same destination simultaneously. In the following, we look at three
possibilities to deal with this in an optical network, one ofthem being buffering.

Given that OBS and OPS process individual bursts (or packets), contention nat-
urally arises whenever two or more bursts want to use the sameoutput on the same
wavelength at the same time. Of these contending bursts, onecan be transmitted
on the desired wavelength immediately, while the others have to be dealt with by
means of a contention resolution scheme. In classic (electrical) packet-switched
networks, contention resolution is provided very simply, by a store-and-forward
technique, which stores contending packets in a memory bank, and sends them
out as soon as the desired output port turns available again.The memory bank is
implemented by means of electronic random-access memory (RAM). Since light
cannot easily be stored in a RAM buffer, a somewhat less straight-forward way
of contention resolution is to be adopted. In the context of OPS, Yao and his co-
authors [63, 64] identify three dimensions for contention resolution in OBS/OPS:
space, wavelength and time. This corresponds to following three strategies:

1. Deflection routing (space), also called space deflection in [63, 64], is a
multi-path routing technique, that reroutes bursts that lose the contention
to other than the preferred next-hope node. The main idea is that the bursts
will eventually be routed to their proper destinations. Clearly, the latter can
only be the case if the network is not too severely congested.Especially in
the case of severe traffic congestion, deflection routing is known to cause a
significant increase in (effective) load.

2. Wavelength conversion(wavelength) offers a solution by converting a con-
tending burst to another wavelength, but on the same output port. It is a very
straight-forward technique, that does not cause extra burst latency, jitter, and
re-sequencing problems. However, it comes at the cost of additional channel
capacity, and necessitates a wavelength converter at the given point.

3. Fiber delay line buffering (time) allows bursts that lose the contention to
wait, by sending them through a piece of fiber of appropriate length. This
solution is the optical counterpart of electronic RAM, and shares some of
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its benefits, in that it allows to deal with contention locally, without requir-
ing the use of additional link capacity. However, FDL buffers have a large
physical size, which implies considerable implementationcost.

Apart from these three possibilities, note that a network does not necessarily
require contention resolution. In principle, a network that drops all bursts that
cause contention might also function, on the condition thatprotocols in higher
network layers are able to compensate for such losses. However, even in that case,
it can be expected that a network without contention resolution will exhibit poor
performance due to poor resource usage and high burst/packet loss probability.

Typically, the three presented forms of contention resolution are considered in
combination. A typical contention resolution then begins with seeking an available
wavelength on the preferred output port. If none is available, optical buffering is
applied. If the buffer is full, an available wavelength is sought on the deflection
output port. If the latter does not succeed, the burst is dropped. In general, it is
accepted that a combination of wavelength conversion and FDL buffering provides
the best performance in terms of resource usage [64], with deflection routing only
as a possible third recourse. Therefore, the combination ofwavelength conversion
and optical buffering is also the most typical setting in testbed situations. The
superior performance of this combination over single-wavelength optical buffering
will also be confirmed by the results presented in this work, see Sect. 2.5.

The contention resolution scheme outlined here was originally proposed for
OPS, but equally goes for OBS. In principle, OBS does not necessitate the use
of FDL buffers [58], since the involved resource reservation mechanism should
be able to operate also without buffers. However, performance results for OBS
networks point out that also for burst switching, a combination of wavelength con-
version and FDLs provides the best results [65], possibly with a converter pool and
shared buffering [66].

In this doctoral dissertation, the focus is on FDL bufferingas means of con-
tention resolution. In most of this work, a single output wavelength is considered,
except in Sect. 2.5 and 5.2, where also the combined impact ofwavelength conver-
sion and FDL buffering is considered. In queueing lingo, this amounts to a system
with a single server, and to a system with multiple servers, respectively.

1.6 Buffering for Optical Networks

Similar to RAM buffering, optical buffering can be deployedat the switch output
or input. Such strategies are treated first in this section. Next, given that our
work focuses on an output buffer within an optical node of an optical network, it is
instructive to look into a recent example of a research project that proposes exactly
this setting. Then, we add a note on the implementation of FDLbuffers.



INTRODUCTION 9

1.6.1 Buffering Strategy

As a means of contention resolution, buffering can be deployed according to dif-
ferent strategies, that are known already for classic RAM buffers in non-optical
networks. Taking the listing of [67] as a reference, we identify as typical al-
ternatives output buffering, input buffering, shared buffering and buffering with
recirculations.

While output buffering deals with contention at the output,input buffering
resolves contention by buffering contending bursts beforethey enter the switch. It
has similar implementation complexity, compared to outputbuffering, but lowered
performance, due to (the well-known effects of) head-of-line blocking [68, 69].
Shared buffering can be understood as a variant of output buffering, but is much
more complex to implement optically [67]. It also provides buffering at the output,
but then for multiple fibers at once, instead of being dedicated to just one output
fiber (like in the case of output buffering). It was studied inmore detail, also
from a performance evaluation perspective, in [33–35,66].The fourth option is to
let bursts recirculate from the output of a space switch backto the input. When
implemented optically, typically many recirculations arerequired, implying high
loss and accumulation of amplifier noise with each recirculation. A stochastic
approach to this problem can be found in [36,37,70].

1.6.2 A Recent Example

Many research projects propose optical switches that include fiber delay lines for
the buffering [52–56, 67, 71–74]. As mentioned, we assume output buffering, and
associate the buffer with one output fiber. In literature, this is a common assump-
tion, that is applied for example recently in the IST-LASAGNE project [49, 75].
Rather than proposing a proper switch design, we prefer to take the generic OPS
switch architecture proposed for the latter project as a reference, as displayed in
Fig. 1.1 (Figure source: [49]). It includes contention resolution at the output, in
the general form of FDL buffering and wavelength conversion. Also, since each
wavelength realizes merely a link between two switches, rather than an entire con-
nection between source and destination, it is possible thatdifferent wavelengths
are realizing different routes if the protocol requires this. (This occurs in for ex-
ample OBS, where the entire connection is set up beforehand.) As a result, two
situations can occur:

1. Thec channels on the outgoing fiber all have different destinations. Then,
given that no deflection routing is applied, all differentc wavelengths in the
FDL buffer are used for independent destinations, and, as a result, the buffer
implementsc different queues that are independent. Each of thec queues
can be studied separately, as a single-wavelength FDL buffer, or, in terms of
queueing systems, as a single-server system.
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Figure 1.1: LASAGNE node architecture as proposed in the IST-LASAGNE project.

2. Of thec channels on the outgoing fiber,c0 (≤ c) have a common destina-
tion. Then, again given that no deflection routing is applied, the group of
c0 wavelengths is associated with one destination, and buffercontrol has ac-
cess to multiple wavelengths for contention resolution. This case is consid-
ered in Sect. 2.5, and results in a variety of possible scheduling algorithms.
Depending on the scheduling algorithm, the buffer will benefit to a certain
extent of multiplexing gain, since the use of multiple wavelengths allows
to spread contending packets (or bursts) more evenly over different output
wavelengths. In terms of queueing systems, the buffer system of c0 wave-
lengths corresponds to a multi-server queue. As for the remaining c − c0

wavelengths, similar considerations go.

Further, while a study of the entire node architecture is beyond the scope of the cur-
rent work, it is instructive to mention the components involved in the LASAGNE
architecture. As shown in Fig. 1.1, the fibers at the input each carry a number of
wavelengths (in this case, four), that are first demultiplexed, usually by means of a
simple prism. Second, each wavelength enters an AOLS block (All-Optical Label
Swapping). Each AOLS block allows for correct all-optical packet forwarding,
with separation of the packet payload (at 40 Gb/s) and label (at 10 Gb/s), header
extraction and interpretation, new label generation and insertion. The wavelength
on which the packet leaves the AOLS is further involved in thescheduling, since it
is determining in the followed path through the arrayed-waveguide grating (AWG).
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Traversing a wiring matrix, the last step is the contention resolution and multiplex-
ing block, especially relevant for the current work.

Finally, note that in the IST-LASAGNE project, the aim was toimplement also
the contention resolution all-optically. As such, also theFDL buffers had to be pro-
vided with optical control, which is apparently more feasible if the buffer is placed
at the input. For this reason, an all-optical variant of lower control complexity was
placed at the input. Note however that in most cases, the factthat output buffering
demands electronic control is hardly to be considered a drawback, as treated in the
next note.

Note on the Control of Output FDL Buffers

Just as illustrated in Fig. 1.1, we assume output buffering.As mentioned in the
previous section, the fact that output buffering is best implemented with electronic
control might seem to compromise the applicability of our results. Indeed, input
buffering is typically the approach in research projects that aim for all-optical im-
plementation, with the control performed in the optical domain [40]. However,
most importantly, whenever it is not a prerequisite to do theswitching entirely in
the optical domain, there is a general consensus [39,76] that control should be done
in the electronic domain, for reasons of feasibility, speedand robustness. Further,
note that there are also other considerations that make output buffering preferable
over input buffering, such as the better performance, mentioned in Sect. 1.6.1. At
any rate, independently of whether the control is done optically or electronically,
the results of this work are valid for any optical buffer thatcarries the payload
in optical form. As such, this includes buffer settings of OPS (not necessarily
all-optical), and (potentially) all variants of OBS that contain buffers.

1.7 FDL Buffers

In the above, we mostly treated the broader context of FDL buffering; below, we
shift focus to the anatomy of the buffer itself: the structure, the related performance
problem, the control algorithms, and also to some alternatives to FDL buffering.

1.7.1 FDL Buffer Structure

A conceptual diagram of the buffer studied in this work is given in Fig. 1.2. Recall
that this buffer is associated with one output port (or output line), and thus, bursts
coming in from the input channels (3) are all destined for this output port. The
fiber delay lines (1) are provided with an input and output switching matrix (2) to
allow to switch bursts coming in from various input channelsto any delay line. In
general, the switching can be done to several output fibers (4), however, given the
huge capacity of one single fiber, it is realistic to assume only one output fiber, that
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Figure 1.2: Conceptual diagram of a single-stage FDL buffer, with fiber delay lines (1),
input and output switching matrix (2), input (3) and output lines (4) and with the
possibility of feedback (5).

can carry one or multiple output wavelengths (see further).Taking the terminology
of Hunter as a starting point [67] (also adopted in [63, 64]) FDL buffer types may
be further categorized according to following properties.

• Degenerate (equidistant) or non-degenerate (non-equidistant). While
the lengths of the FDLs can be chosen freely in principle, a common as-
sumption is to let the lengths of the fibers be multiples of some basic value
D, called the granularity (a term coined in [24]). According to the definition
of [77], the former is called non-degenerate, and the latterdegenerate. Com-
pletely equivalent are the terms coined in [17], where a degenerate setting is
referred to as equidistant, and the non-degenerate settingas non-equidistant.
The latter terms originate from the fact that a set of degenerate FDL lengths
constitutes an equidistant grid when set out on a time axis, while the oppo-
site is true when non-degenerate optical buffers are considered. In this work,
we will use the somewhat more often encountered terms “degenerate” and
“non-degenerate”. In case of a degenerate buffer setting, the FDL set will be
referred to by means of its most characteristic parameter, namely the gran-
ularity, whereas for the non-degenerate buffer setting, the FDL set will be
denoted as a general setA.

• Number of Fibers. A basic property of an optical buffer is the number of
FDLs it has at its disposal; this relates univocally to its sizeN , defined as
the number of FDLs that have non-zero length. Since an FDL setis always
required to have a delay line of zero length, it is natural notto include this in
the FDL count, even though the amount of fibers amounts toN + 1. Even
though the number of FDLs is always finite in practice, in two chapters of
this work (Chapter 2 and 5), a mathematical model is presented that assumes
infinite buffer size. The reason for this assumption is that it leads to a math-
ematically more elegant solution. However, to derive results that are valid
for finite buffer size, a heuristic is presented in Chapter 2,that is able to
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convert results for infinite buffer size to results for finitebuffer size in an
accurate manner. Also, a study of the stability of an infinite-sized buffer is
included in Chapter 5. As such, both infinite-sized (in Chapter 2 and 5) and
finite-sized buffers (in all chapters) are considered in this work.

• Feed-forward versus feedback.In the feedback setting, bursts at the output
can be fed back to the input of the buffer again with a feedbackline (indi-
cated by (5) in Fig. 1.2), while this is not allowed in a feed-forward setting.
Feedback is similar, but not identical to the buffer with recirculations. In the
latter case, the entire buffer is placed in the feedback loop, while feedback
takes place within the buffer. Feedback allows to improve buffer utilization,
but brings about the same issues as buffers with recirculation, notably the
accumulation of amplifier noise with each feedback loop, that is different
for each burst.

• Number of stages.A single-stage buffer like the one in Fig. 1.2 allows a
burst to go through exactly one delay line chosen from one setof FDLs, to
then leave the buffer (feed-forward) or possibly return to the input (feed-
back). Such a single-stage buffer is in general easy to control. In a multi-
stage buffer, bursts go through as many lines as there are stages, to then leave
the buffer (feed-forward) or possibly return to the input (feedback). When
compared to a single stage, multiple stages, saym, (potentially) allow for
more effective contention resolution, since requested delays can be realized
with better approximation, as the sum ofm delay line lengths of choice. On
the one hand, this leads to smaller voids especially when thebuffer is (al-
most) empty. On the other hand, if many bursts are already present in the
buffer, the optimal combination of them delay line lengths might be im-
possible, if one of the lines is already reserved by previously arrived bursts.
Then, one is to turn to a combination ofm delay lines with larger total delay,
leading again to larger voids. Further, the implementationcost is consider-
ably higher than that of a single stage buffer, since the costrises proportion-
ally with the number of switching matrices involved. Finally, note that, if no
feedback is applied, the number of delay lines crossed is identical for each
burst, which makes the noise accumulation problem less important than in
the setting with feedback enabled. A prime example of multi-stage FDL
buffering is the SLOB (Switch with Large Optical Buffers) [71]. As such,
multi-stage architectures provide a feasible approach from an implementa-
tion point-of-view, but do remain more expensive than single-stage settings,
and are (probably for that reason) less applied in testbed settings. It is not
considered further in this work, but would provide an interesting extension,
since it is not improbable that multi-stage buffers provides a competitive
alternative to single-stage buffers in the long run, especially if switching
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matrix cost reduces over time.

• Number of wavelengths.Intrinsically, an FDL buffer can always be used on
multiple wavelengths, but naturally, the input and output switching matrix
must have switching capabilities on all these wavelengths.Increasing the
number of wavelengths allows for a proportional increase incapacity, but
increases the price. In this dissertation, both the case of asingle wavelength
and of multiple wavelengths is studied.

• Wavelength conversion capability. Further, as mentioned in Sect. 1.6.2,
an FDL buffer might either have no, limited, or full wavelength conver-
sion capability, that is provided by means of tuneable wavelength converters
(TWCs). Such TWCs are not depicted in Fig. 1.2, but can be available to
buffer control before or just after the input switching matrix. Depending on
the availability of TWCs, four possibilities occur.

– Full wavelength conversion: Buffer control can convert incoming bursts
to whatever wavelength, and can choose whatever channel ofc chan-
nels, given that it is available.

– Limited number of wavelength converters: A shared pool of TWCs
is available. This is studied, for example, in [66]. Buffer control can
convert some, but not all of the incoming bursts to output wavelengths,
but sometimes runs out of wavelength converters. In that case, an in-
coming burst with wavelengthλi is obliged to queue until wavelength
i becomes available again, even if another wavelength (different from
i) becomes available sooner.

– Limited wavelength conversion capability: Incoming bursts on wave-
lengthλi can only be converted to “near” wavelengthsλj . Here, the
difference betweenλi andλj remains smaller than a given small value
d, |λj − λi| ≤ d. This results in cheaper TWCs, and is studied, for
example, in [78]. Buffer control can convert incoming bursts only to
some of the available channels.

– No wavelength conversion: Buffer control simply lets incoming burst
on wavelengthλi go (and, if necessary, wait) for channeli. As such,
behavior of this system is identical toc single-wavelength buffers.

In this work, whenever the multi-wavelength system is considered, we have
adopted full wavelength conversion. We note that, in general, limitations
on wavelength conversion capabilities can severely degrade performance.
However, it is known that this degradation remains small if the limitations
are not too tight, and a sufficient number of wavelength converters [66] com-
bined with sufficient wavelength conversion capability [78] is provided.
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• Number of input channels. While the number of input channels ((3) in
Fig. 1.2) is an important design parameter for optical switch design, it is not
taken into account explicitly in this work. Incorporating this design para-
meter into the system model is possible in principle, and would allow for
an even more generic modeling of the optical buffer. However, since all the
other design parameters mentioned here play an even larger role, this ex-
tension is out of the scope of the current work, and the modeling is done
without specific assumptions on the number of inputs. More precisely, it
is assumed that the number of inputs is (theoretically) infinite. As a con-
sequence, the performance results obtained in this work aresomewhat pes-
simistic when compared to the results that one would obtain if the number
of inputs is taken into account. The discrepancy between both cases (infinite
versus finite number of input channels) is however expected to be minor if
the number of input channels is not too small when compared tothe number
of output wavelengths, say for example 2 times or more.

The buffer we consider in this work is a single-stage feed-forward buffer. A a
point of reference, note that this is also the setting considered in the OASIS switch
of the RACE ATMOS project [55, 79], and in the Broadcast and Select Switch
of the ACTS KEOPS project [54, 80]. In most of this work, the buffer is single-
wavelength; in Sect. 2.5 and 5.2, the multi-wavelength caseis treated, and full
wavelength conversion capability is assumed.

1.7.2 The Performance Trade-Off

If a buffer can only realize delays belonging to a limited set,

how does this restriction impact buffer performance? (1.1)

That is, in one sentence, the performance problem that the advent of FDL
buffers raised. The fact that the set of possible delays is limited, results in a per-
formance trade-off between two interweaved sources of loss.

Voids On the one hand, given that an FDL buffer provides only a limited number
of delays, not all delay values are realizable. One cannot assign the exact delay
value needed, but typically a somewhat larger delay, equal to the exact length of
the chosen line. Even without taking into account the specific control algorithm
(which forms the material of Sect. 1.7.3) this implies that some capacity will
inevitably be lost on the outgoing channel: when bursts are present in the buffer,
they may not be available yet for transmission, since they are still traversing the
delay line. The capacity loss shows up asvoidson the outgoing channel, defined
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as the periods during which the channel remains unused, despite of the fact that
there are bursts in the buffer that are to use it. Since the void size is upper-bounded
by the difference between fiber delay line lengths, the loss due to voids can be
minimized typically by taking short lines, with small differences in length.

Impatience On the other hand, the limited number of delay lines implies that
there is a maximum achievable delay, namely the length of thelongest line. This
creates an effect that is commonly referred to as impatiencein queueing literature
[81, 82], and results in burst loss, whenever a burst finds that its waiting time is
larger than the maximum achievable delay. Note that this is different from the
classic case of finite buffer size, where the number of burstspresent in the buffer is
bounded. The loss due to impatience can be minimized by taking long line lengths,
especially for the longest line.

As such, the trade-off consists herein, that one is to take FDL lengths not too
long, so as to minimize the effect of voids, and not too short,so as not to lose too
many bursts due to impatience.

While impatience is the main source of loss, the occurrence of voids results in
increased waiting times, and so indirectly also contributes significantly to the loss
probability. Performance loss due to voids is typical for FDL buffers, and has no
counterpart in the electronic case with RAM buffering, where packet transmission
can start whenever the outgoing channel is available. Not only does this problem
generate new challenges in terms of buffer control (see Sect. 1.7.3 ), it also poses
an interesting new performance modeling question. As set out in the first stochastic
analysis [24], the problem is new from both a mathematical and a technical point-
of-view.

As a mathematical problem, the limitation on the number of delays was never
treated in queueing theory (save the pioneering work of Lakatos [20,21]), and it is
clear that the problem cannot be transformed into a known queueing problem—this
goes even for the problem’s simplest instance, namely an optical M/M/1 queue.

As a performance evaluation problem, it will be shown in thiswork that it is
impossible to optimize the optical buffer parameters, so asto be optimal for any
given value of the traffic load. Further, the high sensitivity of buffer performance
to the parameter setting forms a second complication, that cannot be ignored when
one actually builds an optical switch. As such, the performance evaluation prob-
lem received considerable attention in recent years, with many basic optical buffer
settings treated either through analysis or through simulation.

Finally, note that [20, 21] did provide the problem with an alternate setting,
that is however completely equivalent, as argued in [5]. Lakatos studied a problem
connected with the landing of airplanes, where arriving airplanes are obliged to
wait for a discrete number of orbits of fixed length before landing. This system has
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a degenerate waiting room, which he refers to as cyclic-waiting, while some more
recent publications in this tradition [83] speak of a Lakatos-type queueing system.
Mykhalevych [83] notes correctly that this system differs fundamentally from a
retrial system [84]; a general explanation of the differences can be found in [83].
Note that no impatience was considered for the arriving planes, so the equivalence
between the FDL buffering system and the Lakatos-type queueing system is only
complete for the case of infinite buffer size.

1.7.3 Control Algorithms

At this point, we highlight some aspects of optical buffering related not to the
structure, but to the way in which the buffer is controlled. Most relevant in the
context of this doctoral dissertation are the delay-line assignment algorithm (for
both single- and multi-wavelength systems) and the wavelength assignment algo-
rithm, that together constitute the contention resolutionscheme.

Delay-Line Assignment Algorithm For a single-wavelength system, a delay-
line assignment algorithm determines how bursts are scheduled, so as to avoid
contention. In this work, we impose a First-In-First-Out (FIFO) scheduling, which
corresponds unambiguously to the following delay-line assignment algorithm.

1. Buffer control keeps track of the scheduling horizon, which is the earliest
time at which all previous bursts will have left the system.

2. Whenever a new burst arrives, the burst is sent to the smallest delay line that
can provide a large enough delay, so as not to overlap with previous bursts.

This delay-line assignment algorithm is consistently assumed throughout this
work. Nevertheless, other algorithms exist.

• In [15], Walraevens and his co-authors investigate a “shortest FDL line first”
delay-line assignment algorithm, where contention is onlypartly resolved,
leading to an algorithm of minimal complexity. This algorithm does not
need to keep track of any system state, but has lowered performance when
compared to FIFO scheduling.

• The delay-line assignment algorithm in [14] allows to accommodate extra
bursts, by keeping track of several independent queues within one FDL
buffer. This algorithm allows to obtain better buffer utilization for a given
number of fibers, but is somewhat more complex than FIFO scheduling, and
results in increased waiting times.

• In [72], an advanced delay-line assignment algorithm is proposed, that keeps
track of the departure instances and burst sizes of all bursts present in the
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buffer. Since there is always a finite time between the end of the transmis-
sion of a burst and the start of the transmission of the next burst (namely
the voids, mentioned in Sect. 1.7.2), this scheduling algorithm aims to fill
up these voids, by letting newly arrived bursts be transmitted (if possible)
during such void. This method is referred to as void-filling.

Wavelength Assignment Algorithm For a multi-wavelength system, similar
principles apply, but with the difference that now, next to delay-line assignment,
also the wavelength assignment algorithm plays its part.

For clarity’s sake, let us first characterize a situation with contention. When
buffer control detects that a number of bursts, sayr (0 ≤ r), need to be switched
to the same output port at the same time, contention does not necessarily arise.
Some of the wavelengths, sayt (0 ≤ t ≤ c), are available immediately, while the
other ones (c − t in number) are already reserved by other bursts (some of them
being transmitted, others waiting their turn in the buffer). As such, no bursts have
to be buffered ifr ≤ t, and all can be transmitted instantaneously, on separate
wavelengths. Whenr > t, t bursts can be transmitted directly, and the others
(r − t in number) are buffered. Withc different wavelengths available to queue
for, a wavelength assignment algorithm has to be adopted. Inthis work (Sect. 2.5
and 5.2), the following three algorithms are considered.

• Join-The-Shortest-Queue (JSQ): Here, in all circumstances, bursts join the
shortest of thec queues. Of the three, this algorithm is known to have best
performance in terms of loss and delay, especially in case ofhigh traffic
load. Main drawback of this algorithm is that it has higher implementation
complexity than the other two algorithms.

• Round-Robin (RR): Whenever a burst is sent to queuei, the next one is sent
to queuei + 1, and so on until queuec, that is followed by queue1 again.
Performance is less than for JSQ, but is sometimes comparable, as will be
shown below. Further, hardware implementation complexityis low.

• Random (RND): Each burst is sent to one of the channels in random order.
Performance is worst in this case, because the load is not spread intelli-
gently among different queues, and one queue can have an overflow, while
another is almost empty. As such, performance is equal to that of c separate
single-wavelength buffers, that receive a fraction1/c of the total load. From
the implementation point-of-view, this performance weakening occurs when
bursts are passed on to the queues in a more or less random order.

Further, note that even with JSQ, this contention resolution scheme is still
rather simple, since the delay-line assignment within a wavelength is controlled
by keeping track of only the scheduling horizon (just like inthe single-wavelength
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case). A more advanced method is to keep track of all departure instances and
burst sizes on all wavelengths, and apply a void-filling algorithm that first chooses
what void to fill, to then assign both the wavelength and the delay line at once.
Such algorithms are studied in [72].

1.7.4 Optical Buffers other than FDL Buffers

While the feed-forward FDL buffer we study is probably the most often-assumed
type of optical buffer [42], some alternatives have been proposed over the years,
mainly with the scope of reducing footprint (physical size)and component count.
This being a monograph on optical buffering, we cannot ignore the existence of
several optical buffers that do not consist of a set of fiber delay lines.

Miniaturization The main motivation to search for alternatives of FDL-based
buffers is miniaturization. An FDL-based buffer, althoughperfectly feasible with
off-the-shelf components, and well-performing in terms ofcapacity, is indeed large
in terms of physical size. For typical OBS specifications (10Gbit/s link, 100 kbit
burst sizes), one needs approximately 2 km of fiber to delay the light for 10µs,
that is, for the duration of a burst. To limit the total footprint, an optical buffer typ-
ically consists of only a small number of FDLs, which impliesthat loss is seldom
negligible. Also, the high component count (amounting to the number of fiber de-
lay lines) makes it somewhat impractical for mass production, and motivates the
search for a design with either (i) a reduced number of fibers,(ii) reduced length
for each fiber, or (iii) a combination of both advantages. As such, the alternative
approaches have in common that they aim for miniaturization. Main challenges in
the miniaturization however are the high cost, and the difficulty to obtain sufficient
capacity for broadband applications.

Recirculation Loop The most viable alternative to the feed-forward buffer we
consider is probably the recirculation loop, as studied in for example [36,37,85]. It
can be understood in principle as the buffer displayed in Fig. 1.2, with the feedback
line (5) enabled. However, the most common implementation,as for example
proposed in the LASOR project [57], has the FDL set cut down toa single fiber,
placed in a loop. Usually, only a single burst with length shorter than the loop
length can enter, and leaves the loop after an integer multiple of recirculations.
The entire optical buffer is then a limited set of such fiber loops (typically about
ten), able to accustom the same number of bursts.

The stochastic performance of such buffers is somewhat better than that of
feed-forward FDL buffers with the same number of lines. Thisis so, since bursts
can exit the loop after every recirculation, whereas burstsin (a long line of) a feed-
forward structure are bound to travel through the entire line before being able to
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exit. Main drawbacks are however the increased cost of the switching element,
and the difficulty to scale such buffers beyond their typically small size.

Slow-Light Devices Although still in their research phase, slow-light devices
also provide future candidates to replace FDL buffers in thelong run [85]. While
FDL-based buffers delay the light by increasing the length of the path the light
goes through, slow-light devices delay the light by decreasing its group velocity.
Slow-light buffers can be categorized in two types: devicesusing material-based
resonances, and those using coupled resonant structures (CRS). Devices of the
first group exploit the resonance between an electromagnetic field and a polar-
izable medium, either based on electromagnetically-induced transparency or on
population oscillation by means of a carrier population grating. The second group,
with CRS, uses gratings or photonic crystal defects to lengthen the total lightpath
through repeated reflections. More detail can be found in [86, 87], as for now it
is important to note that these methods are very expensive when compared with
FDL-based buffering, especially when one takes into account the very small ca-
pacities, in the order of hundreds to thousands of bits, amounting to typically less
than a single burst.

Optical Flip-Flops Another product of recent research is the optical flip-flop.
Mentioning just one of many possible designs, the optical flip-flop presented in
[88] is based on erbium-ytterbium-doped fiber absorption. Exploiting the effects
of fluorescence allows to obtain an optical bistable device,that again has only very
small capacity (much smaller than the typical size of a burst), but may provide a
competitive rival to the FDL-based buffer setting in the long run.

Small Buffers? Further, note that in the search for possible alternative designs,
some performance loss (when compared to that of a feed-forward FDL-based de-
sign) is considered acceptable. Given that the buffering performance of a feed-
forward FDL buffer is already less than that of a classic buffer, this is far from
self-evident. While in [24], it is still argued that opticalbuffers can achieve very
low loss rates if the buffer size is large enough, this argumentation is no longer
found in more recent publications. Remarkably, the buffer size is treated in [85]
as a secondary requirement, arguing that if access links areslower than the back-
bone network and the traffic is smoothed, then a capacity of ten packets (or bursts)
per output port is needed for 80% throughput, as proposed in [89], propagating an
idea that was formulated also in [90], and earlier in [91]. There, it is put forward
that although current core routers are provisioned with very large buffer memory
(state-of-the-art core routers incorporate line cards operating with more than one
GB of RAM), good performance can be obtained with smaller buffer sizes.
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As such, whether or not small buffers suffice for broadband applications is
a topic of debate, with no definite answer to date. At any rate,of all possible
implementations of optical buffers, the one we assume in this work is not only the
most feasible for implementation, but also the single one that is not compromised
by this debate. Feed-forward FDL buffers can indeed come up to the generally
accepted bandwidth requirements in the backbone, and even provide not-so-small-
sized buffers. This said, in the rest of this work, the term “optical buffer” is used
interchangeably with “FDL buffer”.

1.8 This Doctoral Dissertation

1.8.1 Time Setting

In this doctoral dissertation, optical buffer performancewill be studied both in
discrete-time (DT) and continuous-time (CT) setting. Rather than developing no-
tation for both time settings independently, we chose to denote the DT random
variable (rv) and its CT counterpart by the same name, and indicate clearly what
time setting is intended. Since the CT stochastic description of optical buffers has
a lot in common with that of DT, at some points in Chapter 2, it is possible to
present relations that are valid for both time settings at once. Such property will
be indicated by placing an asterisk above the relation symbol, for example, “

∗
=”

instead of “=”.

1.8.2 Extended Kendall Notation

As mentioned, the main aim of this doctoral dissertation is to provide an answer
to question (1.1). This question is posed for quite different system settings, and
as such, it is useful to delimit the set of attributes, neededto uniquely define the
systems described in this work. It comes out that we can use the well-known
Kendall notation, supplemented with three additional attributes.

Firstly, all systems studied share the assumption on inter-arrival and burst size
distribution, namely that both are independent and identically-distributed (iid).
Also, the number of wavelengths in an optical buffer system provides a good par-
allel with the number of servers in a classic queueing system. As such, in the case
of CT, the original threefold Kendall notation [92] (of the form A/B/C) provides a
good basis to denote the exact assumptions on inter-arrivaltimes (A), burst sizes
(B) and the number of wavelengths (C).

As for time setting, in case of DT, a practical modification ofthe Kendall no-
tation is provided by Bruneel and Kim, in [93]. However, given that we define the
arrival process through the inter-arrival times, rather than through the number of
arrivals per slot, this notation is not convenient in this work. Therefore, we prefer
to add the time setting (DT/CT) explicitly as a first attribute.
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extended Kendall notation section

degenerate infinite-sized M/G/1 DT 2.2.3
” ” ” CT 2.2.4, 2.2.5
” ” M/M/1 CT 2.2.8.1
” ” M/D/1 CT 2.2.8.2

” ” M X/G/1 DT 2.3
” ” GI/G/1 DT 2.4
” ” M/G/c DT 2.4

non-degenerate finite-sized M/G/1 DT 3.1.4
” ” ” CT 3.1.6
” ” GI/G/1 DT 3.2
” ” M/D/1 DT 3.3.3.2
” ” ” CT 3.3.3.3

degenerate ” M/M/1 DT 3.4.2.3, 4.5
” ” ” CT 3.4.2.4, 4.4

non-degenerate infinite-sized GI/G/1 CT 5.1
” ” GI/G/c CT 5.2

Table 1.1: Systems studied in this doctoral dissertation, denoted with extended Kendall
notation, with reference to the relevant section.

For the second attribute, we are to mention the number of FDLsincluded in
the buffer. The well-known fourfold extension of the Kendall notation (of the form
GI/G/1/K) is not fit for this purpose, since “K” refers to a limited number of waiting
places, whereas we want to express a system with impatience (see Sect. 1.7.2).
Therefore, we explicitly mention whether the buffer is finite-sized or infinite-sized.

As third attribute, we indicate whether the FDL set is degenerate or not (see
Sect. 1.7.1). Note that the non-degenerate case is the most general case, that
encompasses all degenerate settings. As such, in the context of this work, it suffices
to use the classic Kendall notation, and add three attributes, namely CT or DT,
finite-sized or infinite-sized, and degenerate or non-degenerate, to describe the
buffer system intended.

Finally, note that, in a more general context, the single-wavelength case should
have an extra attribute to specify the delay-line assignment algorithm (see Sect.
1.7.3), but that this is unnecessary in this work, since it isalways FIFO. In the
multi-wavelength case, two attributes should be added: thedelay-line and the
wavelength assignment algorithm. In this work, FIFO is combined with RND,
RR, and JSQ.

In the style of Table 1 in [92], we also include here a similar table, namely
Table 1.1, that displays the main systems studied here, and the relevant sections.
(Some special cases, like a mixed geometric distribution for burst sizes or inter-
arrival times, are not explicitly mentioned in the table, but are also treated in this
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work.) Hereby, note that MX denotes a memoryless arrival process with batch
arrivals.

1.8.3 Four Main Approaches

As for the structure of this work, the chapters are complementary, in that each rep-
resents a different methodological approach: with transform functions (Chapter 2),
with Markov Chains (Chapter 3), with impatience (Chapter 4)and with stochastic
regenerations (Chapter 5).

The approach with transform functions of Chapter 2 presentsresults that are
obtained in terms of transform functions of the involved random variables (rv’s).
Here, “transform functions” is an umbrella term that encompasses probability gen-
erating functions (pgf’s) in case of a DT setting, and Laplace-Stieltjes transforms
(lst’s) in case of a CT setting. This approach capitalizes ontechniques developed
for classic (non-optical) buffers, and allows to fit the analysis within the general
framework of queueing theory. In both time settings, the FDLlengths are assumed
multiples of the granularityD (degenerate buffer setting). The obtained expres-
sions are exact for infinite buffer size, and can be convertedinto approximative
results for finite buffer size by means of a heuristic. For CT,the case of a Poisson
arrival process and general iid burst size distribution is studied, for a single out-
put. For DT, we consider the analysis for a Bernoulli arrivalprocess with batch
arrivals, for general iid batch and burst size distributionand a single output wave-
length. This model is then applied to study the impact of (local) synchronization
on buffer performance. Further, also a DT model for general iid inter-arrival times
and burst sizes is developed, for a single output wavelength. This is then applied
to study the impact of (a mild form of) correlation in the arrival process on buffer
performance. Secondly, it is also applied to study the performance of an optical
buffer with wavelength conversion.

The second approach for performance evaluation is with Markov chains (Chap-
ter 3). It focuses primarily on the transitions of the imbedded Markov chain, and
less on the actual way in which arriving bursts join the queue. The merit hereof is
that it allows for a very concise and exact description of optical buffers for finite
sizes and general line lengths (not necessarily multiples of D). It yields a numeri-
cal method to obtain the exact waiting time probabilities and loss probability, for a
memoryless arrival process and general iid burst size distribution, both in DT and
CT, and for general iid inter-arrival time and burst size distribution, in DT. Also,
results are examined further, to obtain exact closed-form expressions independent
of time setting, for a degenerate buffer setting with eitherbounded burst size, or
memoryless burst size distribution.

The approach with impatience (Chapter 4) highlights the similarities between
optical buffers and queues with impatience, and exploits this resemblance to show
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that exact results for queues with deterministic impatience can lead to good ap-
proximations for optical buffer performance. This is verified explicitly in CT, for
a Poisson arrival process and negative-exponential burst size distribution.

The fifth chapter sheds light on the stability of infinite-sized optical buffer
systems with general FDL line lengths. A general characterization based on sto-
chastic regeneration allows to establish sufficient conditions for the stability of
single-wavelength optical buffers in CT, without making any specific assumption
on the FDL line lengths, or the distribution of inter-arrival times and burst sizes.
This result is then extended to account for the case of multiple wavelengths.

Finally, Chapter 6 presents conclusions, and includes an outlook on possible
future work.

1.8.4 List of Publications

The following publications, save two, have provided the material for this doctoral
dissertation. The bibliographic data is followed by a reference to the relevant chap-
ter. Note that the contents of Chapter 4 and Sect. 5.2 has not been published nor
submitted at the time of writing.

International Journals (A1)

1. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, A Performance Model
for an Asynchronous Optical Buffer, Performance Evaluation 62 Vol. 1-4
(2005), pp. 313–330. [identical to conference proceedings publication 3]
[→ Chapter 2]

2. W. Rogiest, K. Laevens, J. Walraevens and H. Bruneel, Analyzing a Degen-
erate Buffer with General Inter-Arrival and Service Times in Discrete Time,
Queueing Systems 56 Vol. 3-4 (2007), pp. 203–212. [→ Chapter 2]

3. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Modeling the Perfor-
mance of FDL Buffers with Wavelength Conversion, Submittedto IEEE
Transactions on Communications,currently under revision. [→ Chapter 2]

4. W. Rogiest, J. Lambert, D. Fiems, B. Van Houdt, H. Bruneel and C. Blondia,
A Unified Model for Synchronous and Asynchronous FDL Buffersallow-
ing Closed-Form Solution, Submitted to Performance Evaluation, currently
under revision. [→ Chapter 3]

International Journals (not A1)

1. W. Rogiest, D. Fiems, K. Laevens and H. Bruneel, Tracing anOptical Buf-
fer’s Performance: an Effective Approach, Lecture Notes inComputer Sci-
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ence (LNCS), Vol. 4465 (2007), pp. 185–194. [identical to conference
proceedings publication 6] [→ Chapter 3]

2. W. Rogiest, D. Fiems, K. Laevens and H. Bruneel; A Light-Weight Perfor-
mance Model for Optical Buffers, International Journal of Communications
Networks and Distributed Systems (IJCNDS), Vol. 1(3) (2008), pp. 282–
295. [→ Chapter 3]

3. J. Lambert, W. Rogiest, B. Van Houdt, D. Fiems, C. Blondia and H. Bruneel,
A Hessenberg Markov Chain for Fast Fibre Delay Line Length Optimiza-
tion, Lecture Notes in Computer Science (LNCS), Vol. 5055 (2008), pp.
101–113. [identical to conference proceedings publication 8]

Conference Proceedings (full paper)

1. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Analysis of an Asyn-
chronous Optical Buffer, Proceedings of the COST279 Twelfth Manage-
ment Committee Meeting, COST279TD(04)034, Antalya, February 2005.
[→ Chapter 2]

2. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Analysis of an Asyn-
chronous Single-Wavelength FDL Buffer, Proceedings of theNineteenth In-
ternational Teletraffic Congress (ITC 19), pp. 1917–1926, Beijing, August
2005. [→ Chapter 2]

3. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, A Performance Model
for an Asynchronous Optical Buffer, Proceedings of the IFIPWG 7.3 Inter-
national Symposium on Computer Performance, Modeling, Measurements,
and Evaluation (PERFORMANCE 2005), Juan-Les-Pins, October 2005.
[identical to A1-journal publication 1] [→ Chapter 2]

4. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel; Optical Buffers, Batch
Arrivals and Synchronization; Proceedings of the second Conference on
Next Generation Internet Design and Engineering (NGI 2006), pp. 176–
183, Valencia, April 2006. [→ Chapter 2]

5. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Quantifying the Impact
of Wavelength Conversion on the Performance of Fiber Delay Line Buffers,
Proceedings of the Sixth International Workshop on OpticalBurst/Packet
Switching (WOBS 2006 West), paper 131, pp. 1–10, San Jose, October
2006. [→ Chapter 2]

6. W. Rogiest, D. Fiems, K. Laevens and H. Bruneel, Tracing anOptical Buf-
fer’s Performance: an Effective Approach, Proceedings of the First Euro-
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FGI International Conference on Network Control and Optimization (NET-
COOP 2007), Avignon, June 2007. [identical to not-A1 journal publication
1] [→ Chapter 3]

7. W. Rogiest, D. Fiems, K. Laevens and H. Bruneel, Exact Performance Analy-
sis of FDL Buffers with Correlated Arrivals, Proceedings ofthe Fourth IEEE
and IFIP International Conference on Wireless and Optical Communications
Networks (WOCN 2007), Singapore, July 2007. [→ Chapter 3]

8. J. Lambert, W. Rogiest, B. Van Houdt, D. Fiems, C. Blondia and H. Bruneel,
A Hessenberg Markov Chain for Fast Fibre Delay Line Length Optimiza-
tion, Proceedings of the 15th International Conference on Analytical and
Stochastic Modelling Techniques and Applications (ASMTA’08), Cyprus,
June 2008. [identical to not-A1 journal publication 3]

Conference Proceedings (abstract)

1. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Analysis and perfor-
mance evaluation of optical buffers, Book of Abstracts sixth FirW PhD Sym-
posium Ghent University, p. 104, Ghent, November 2005. [→ Chapter 2]

2. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Analysis of a Lakatos-
type queueing system with general service times, the Twentieth Conference
on Quantitative Methods for Decision Making, ORBEL 20, pp. 95–97,
Ghent, January 2006. [→ Chapter 2]

3. J. Walraevens, B. Van Houdt, J. Lambert, W. Rogiest, D. Fiems, V. Inghel-
brecht, C. Blondia, H. Bruneel, Contention resolution in next-generation
optical node architectures, Book of Abstracts of the COST 291 / GBOU
ONNA Workshop on Design of Next Generation Optical Networks: from
the Physical up to the Network Level Perspective, p. 30, Ghent, February
2006. [→ Chapter 2]

4. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, Modeling the Perfor-
mance of a Multi-Wavelength Optical Buffer: a Round-Robin Approach,
Proceedings of the Third EuroNGI Workshop on New Trends in Modelling,
Quantitative Methods and Measurements (WP IA.8.1), pp. 1–4Torino, June
2006. [→ Chapter 2]

5. W. Rogiest, K. Laevens, J. Walraevens and H. Bruneel, Analyzing a Degen-
erate Buffer with General Inter-Arrival and Service Times in Discrete Time,
Book of Abstracts of the Second Madrid Conference on Queueing Theory
(MCQT ’06), pp. 49–50, Madrid, July 2006. [→ Chapter 2]
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6. W. Rogiest, D. Fiems, K. Laevens and H. Bruneel, An effective modeling for
the performance analysis of optical buffers, Book of Abstracts of the Second
Benelux Workshop on Performance Analysis of CommunicationSystems, p.
22, Antwerp, February 2007. [→ Chapter 3]

7. W. Rogiest, D. Fiems, K. Laevens and H. Bruneel, Capturingan optical
buffer’s performance with a Markov chain, Proceedings of the Euro-FGI
Workshop on New Trends in Modelling, Quantitative Methods and Mea-
surements, pp. 90–93, Ghent, June 2007. [→ Chapter 3]

8. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, BufferingLight: Achilles’
Heel of the Next-Generation Backbone Network, Book of Abstracts of the
Eighth FirW PhD Symposium Ghent University, p. 23, Ghent, December
2007. [→ Chapter 2 and 3]

Work in Progress

1. W. Rogiest and H. Bruneel, Optical Buffers for Variable Length Packets:
Closed-Form Expressions,submitted to IEEE Communications Letters. [→
Chapter 3]

2. W. Rogiest, K. Laevens, D. Fiems and H. Bruneel, The Impactof Syn-
chronization on the Performance of FDL Buffers,submitted to International
Journal of Electronics and Communications (AEÜ). [→ Chapter 2]

3. W. Rogiest, E. Morozov, D. Fiems, K. Laevens and H. Bruneel, Stability of
Single-Wavelength Optical Buffers,submitted to European Transactions on
Telecommunications (ETT). [→ Chapter 5]

Awards

1. W. Rogiest, Best Student Paper Award at the Nineteenth International Tele-
traffic Congress (ITC 19), Beijing, August 2005.
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2
Performance Evaluation with

Transform Functions

¶ In this chapter, we present a variety of performance models for optical buffers,
that were all developed by relying on transform functions throughout the analysis.
Here, “transform functions” is an umbrella term that encompasses probability gen-
erating functions (pgf’s) for a DT setting, and Laplace-Stieltjes transforms (lst’s)
for a CT setting. This approach we apply to various FDL buffersettings, that all
share the property that they are infinite-sized and degenerate.

Pioneering in the stochastic modeling of FDL buffers are [20], in the more
general queueing context of cyclic-waiting, and [24], in the specific context of
optical networks. In recent years, the number of contributions providing stochastic
models of optical buffers has grown impressively [1–37], ofwhich [24] probably
still remains the most often cited. Rather than discussing all of these contributions
here subsequently, we refer to some of them in more detail only later on, in the
chapters where they are most relevant.

While not in terms of transform functions, the analysis provided in [24] also
relies on results derived for infinite system size, to then derive results for the finite
system. There, and in [25,26], Callegati provides an approximate analysis of a de-
generate M/M/1 buffer in CT. Making use of general notions ofqueueing theory,
he constructs an iterative procedure to provide results forboth finite and infinite
buffer size. This approach is generalized in [27], where a similar iterative proce-
dure is provided for the multi-wavelength case, for JSQ wavelength assignment.

In [10], Laevens and Bruneel provide the first analysis of FDLbuffers in terms
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of transform functions. They analyze an infinite-sized degenerate M/G/1 FDL
buffer in DT with pgf’s, and rely on a heuristic to obtain approximate results for
finite buffer size. The contribution of [10] in the context ofthis chapter is para-
mount, in that it was this paper that showed that (i) the impact of voids can be
traced in an exact manner by means of pgf’s, (ii) the effect ofimpatience can be
approximated well by means of a heuristic, and that (iii) theanalysis can be done
in a mathematically elegant form. While [10] shows that these arguments hold
in case of Bernoulli arrivals, for an M/G/1 buffer in DT, thischapter presents the
extension of this approach to the more general casesMX /G/1, also considered
in [3], GI/G/1 [6] and M/G/c [4]. Further, the extension toward CT, treated earlier
in [2], is also investigated in this chapter, showing that anM/G/1 in CT can still be
analyzed, but with somewhat more complex expressions. (Themain complication
in the CT case is that the solution for general burst size distribution contains an
infinite sum.)

Independent of [10] or [2], [32] provided an analysis of a degenerate infinite-
sized M/M/1 queue in CT also in terms of transform functions.More precisely,
Hong and his co-authors provide an expression for the lst of the modified burst size
(there called modified service time), a rv introduced to capture the performance
loss due to voids, defined as the sum of the burst size and the void size. The
expression for the lst takes into account the correlation between the void sizes and
the burst sizes, but makes several simplifying assumptions. Firstly, the correlation
between the void sizes and the inter-arrival times is ignored. Secondly, it is not
taken into account that, when a burst arrives in an empty system, the void size
equals zero. This allows to consider a classic (non-optical) M/G/1 buffer system,
with modified burst sizes, as an approximation of the original system. Since the
approach of [2] (presented below in Sect. 2.2) is exact for infinite buffer size, it
comes as no surprise that the expressions for the lst’s in [32] do not correspond to
the ones we present in Sect. 2.2.8.1, even though they are framed for exactly the
same system setting.

Further, in [18], the topic of optical buffers is treated from a different perspec-
tive, as a queue with correlated service and inter-arrival times. After the derivation
of general results for such type of queues, a separate section is devoted to the
application of this framework to optical buffers with fixed-length bursts. Indeed,
focusing on the evolution of the scheduling horizon, an optical buffer can be mod-
eled as a classic buffer model, but with an augmented burst size for bursts that
find the system non-empty upon arrival. As such, the model of [18] allows to
study a degenerate infinite-sized SM/D/1 in DT (using the notation of Sect. 1.8.2,
with SM standing for a discrete-time semi-Markov arrival process). While these
assumptions are not more general than for example the degenerate infinite-sized
GI/G/1 in DT of [6], [18] currently provides the only analysis in FDL buffering
literature that allows to trace the queue length distribution, that is, the distribution
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of the number of bursts awaiting transmission in the buffer.Notice that the lat-
ter cannot be obtained directly from the steady state distribution of the scheduling
horizon, and the approach of this doctoral dissertation would require significant
modification to obtain the complete distribution of the queue length1.

At this point, we refer to Chapter 1 and to the introductory part of Chapter 3-5
for further references, and now move to the results we obtained with transform
functions. In the following, we first supply the reader with general notions for
the infinite buffer system in Sect. 2.1. Complementary to this, Sect. 2.1.6 presents
a general method, that allows to obtain approximate resultsfor finite buffer size
from exact results obtained for infinite buffer size. From then on, specific instances
of this general framework are considered: Sect. 2.2 highlights the comparison of
synchronous and asynchronous single-wavelength optical buffers for memoryless
inter-arrival time distribution, while Sect. 2.3 focuses on the impact of synchro-
nization in this context, by means of a batch arrival process. Sect. 2.4 considers
general instead of memoryless inter-arrival times. The latter not only allows to
study the impact of correlated arrivals in that section, butalso of wavelength con-
version, in Sect. 2.5.

2.1 Stochastic Model

In this section, the general modeling assumptions of this chapter are introduced,
including the buffer setting itself, and the rv’s involved in the queueing process.
For the single-wavelength system, two alternative system equations are given, that
are valid regardless of the specific distribution of the involved rv’s, and regardless
of time setting. Also, a general approach to the question of stability is introduced,
that is again independent of the time setting. As such, this section provides the
starting point for the following sections, that consider specific instances of this
framework in detail.

2.1.1 Time Setting

In most of this chapter, the model we construct has a DT setting. Events are as-
sumed to take place synchronously, at the beginning of time slots, which is fre-
quently proposed in the context of optical switching. This implies that all time-
related variables and measures, including the granularityD, are expressed as mul-
tiples of the slot size, that may be arbitrary, and is therefore not mentioned explic-
itly in this work. In the unslotted case, inter-arrival times and burst sizes may also
be continuous (asynchronous). In general it is so that one can approximate the CT

1Although Little’s theorem does allow to extract the mean queue length from the mean sojourn time,
one is to add the buffer occupancy to the system description explicitly in order to obtain the entire queue
length distribution. Since tracing either the scheduling horizon or the waiting times equally allows to
extract the most important performance measures, we do not elaborate on this in the current work.
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case arbitrarily closely if one takes a very small slot size and scales the involved
variables and measures accordingly. Such is also done further on, when we treat a
basic asynchronous buffer setting with a pgf approach.

2.1.2 Buffer Setting

In this chapter, we initially assume an infinite-sized buffer (N = ∞), and only
focus on the finite-sized buffer setting in a next step. Utilizing the terms and setting
introduced in Chapter 1, the buffer for which we obtain performance results is
degenerate and of sizeN . It is thus a set ofN + 1 delay lines, with lengths
expressed as multiples of the granularityD (0 × D, 1 × D . . .N × D) and is
part of a network node, located at an output port that gives access to a single
outgoing fiber. Except in Sect. 2.5, we assume that a single wavelength on the
outgoing fiber is accessible. In queueing parlance, this corresponds to a single-
server system. Further, recall that the buffer is intended for contention resolution.
Whenever a contending burst arrives in a non-empty buffer, it is queued at least
until all previous bursts have left the system, and in FIFO order. This amounts
to a specific one delay-line assignment algorithm, reflectedin the evolution of the
scheduling horizon explained next.

2.1.3 Evolution of the Scheduling Horizon

Bk

decreases 1 unit per slot

B +Dk é ùHk/D

Hk

Hk+1

Tk

 D

 D

Figure 2.1: The FIFO delay-line assignment in optical buffers corresponds to a scheduling-
horizon process. The figure illustrates this for a DT setting, with D = 2 slots. A
burst of sizeBk = 2 slots has to wait for at leastHk = 3 slots, so as to avoid
contention with previously arrived bursts. Since the FDL buffer can only realize
delays that are multiples ofD = 2 slots, burstk has to wait forD⌈Hk/D⌉ = 4
slots.

At this point, we focus on how arriving bursts join the queue of a single-
wavelength degenerate buffer, so as to realize a FIFO delay-line assignment al-
gorithm. While this happens independently of time setting,the relation between
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the involved rv’s is illustrated in Fig. 2.1 for a DT setting,with D = 2 slots.
Numbering bursts in the order of their arrival, the inter-arrival time Tk (5 slots in
Fig. 2.1) captures the time between thekth arrival instant and the next. The burst
sizeBk is the time it takes to transmit thekth burst. Upon arrival, burstk has to
wait for at least an amountHk, the time needed for all previously arrived bursts
to be served. This amount we call the scheduling horizonHk, as observed by the
kth burst upon arrival. Due to the buffer’s degeneration, theburst has to wait for a
waiting timeWk, that is a multiple ofD and is sufficiently long, that is,Wk ≥ Hk.
The evolution of these variables can be captured in one system equation, namely

Hk+1
∗
=

[

D ·

⌈

Hk

D

⌉

+ Bk − Tk

]+

. (2.1)

Here, the expression⌈x⌉ is the ceiling function, equal to the smallest integer
greater than or equal tox, while the notation[x]

+ is shorthand for max(x, 0).
Further, recall that

∗
= denotes that the equation is valid for both time settings, DT

and CT. This equation contains two non-linearities. Introducing some additional
notation, we can split this equation into two parts. The firstnon-linearity is

Hk+1
∗
= [Gk − Tk]

+
, (2.2)

with

Gk
∗
= Bk + Wk , (2.3)

while the second one is

Wk
∗
= D ·

⌈

Hk

D

⌉

. (2.4)

In the following, we refer to the non-linearity in (2.2) as the queueing effect, since
it occurs frequently in classic queueing analysis. The non-linearity in (2.4) we
refer to as the granularity effect, since it reflects the degenerate structure of the
FDL buffer.

As mentioned, the buffer’s degenerate structure typicallyresults in additional
waiting, sinceWk ≥ Hk. This additional waiting results in periods during which
the outgoing channel remains unused, despite of bursts still present in the buffer.
As mentioned earlier in Sect. 1.7.2, these periods are called voids. Their duration
or size, denoted asVk, relates toWk andHk as

Vk
∗
= Wk − Hk . (2.5)

As said, the occurrence of voids comes at a price, and resultsin an essential per-
formance gap when compared to classic buffers, for which no void comes about.
In this regard, the performance optimization of optical buffers often comes down
to minimizing the average void size.
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Further, regardless of time setting, we will always assume in this work that the
burst sizesBk and inter-arrival timesTk form two sequences of iid rv’s. Further-
more, burst sizes and inter-arrival times are mutually independent.

2.1.4 Evolution of the Waiting Time

Although the system description can be done perfectly well in terms of the schedul-
ing horizon, with (2.2) and (2.4), a description based on thewaiting time some-
times proves useful, especially when considering the maximum tolerable load in
Sect. 2.2.6. Although not self-evident, the evolution of the waiting times can be
captured without considering the scheduling horizon explicitly, and follows di-
rectly from the combination of (2.1) and (2.4). Irrespective of time setting,

Wk+1
∗
=

[

Wk + D ·

⌈

Bk − Tk

D

⌉]+

, (2.6)

provides a description of the system in its own right, that proves useful in many
cases2. Note, however, that it only identifies the voids in an implicit manner, and
that the void size is still defined in the easiest way through (2.5).

2.1.5 Maximum and Equivalent Load

Maximum Load As mentioned in Sect. 2.1.2, we assume infinite buffer size,
and obtain results first for the infinite system. Due to this, stability is not guar-
anteed, since the waiting times and scheduling horizon can grow unboundedly if
on average too much work arrives. The amount of work is traditionally defined
through the traffic loadρ, defined as the average amount of arriving work (in the
form of bursts) over the average inter-arrival time,

ρ
∗
=

E[Bk ]

E[Tk ]
. (2.7)

which is independent of time setting (as indicated by “∗” in “
∗
=”) All derivations

in the following will assume that the system is stable, whichrequires the offered
loadρ to be below some maximum valueρmax,

ρ
∗
< ρmax ,

that is typically less than unity, unlike conventional queues (where it is unity).

2This description also serves well if burst sizesBk and inter-arrival timesTk were correlated with
each other, but independent from arrival to arrival. The latter however goes beyond the scope of this
work, and theBk andTk are assumed iid, and without correlation between them, as mentioned.
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In this regard, it is instructive to compare the evolution ofthe waiting times, as
given by (2.6), to that of a classic buffer system. Independent of time setting, the
waiting times in a classic system evolve as

Wk+1
∗
= [Wk + Bk − Tk]+ .

Clearly, in the classic system, the drift of the waiting timeprocess is brought about
by the difference of burst sizes and inter-arrival times,Bk − Tk. Demanding the
system to be stable then corresponds to demandingnegative drift(in the sense ex-
plained in Chapter 5), so as to assure that the probability that a non-empty system
empties again is strictly larger than zero, and that this event takes place within
finite time3. In terms of the involved rv’s, the stability condition for the classic
system is that the expected value of the drift is smaller thanzero on average,

E[Bk − Tk ]
∗
< 0 ,

which obviously is just another instance of the well-known conditionρ
∗
< 1.

As for the optical system, the drift in the optical waiting time process (2.6) is
generated by

D

⌈

Bk − Tk

D

⌉

,

which is always larger than or equal toBk − Tk, and relates to the occurrence of
voids (but only implicitly, as mentioned in Sect. 2.1.4). Asa result, also the net
drift is larger than in the classic case, and the stability condition now is

E

[⌈

Bk − Tk

D

⌉]

∗
< 0 , (2.8)

which yields a more restrictive condition than in the classic case, that is,

ρ
∗
< ρmax

∗
≤ 1 .

Notice that the negative drift condition (2.8) is valid onlyfor degenerate buffer
structures. Its counterpart for non-degenerate buffer structures is (5.11), as dis-
cussed in Chapter 5.

Equivalent Load Given the gap between the maximum tolerable load of a clas-
sic system and that of an optical system, we can define an equivalent load, that
incorporates the effect of the voids into an altered definition of the load. While
an exact tracing of the voids is again only possible by involving the scheduling
horizon, we rather extend the notion ofdrift, as mentioned in the previous section,

3A more detailed characterization of stability is given in Chapter 5.
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since this yields a simple description, and performs well when applied in heuristics
for the finite system (see below). More precisely, we define the equivalent load as

ρeq
∗
= 1 +

E
[

D ·
⌈

Bk−Tk

D

⌉]

E[Tk ]
, (2.9)

which is very similar to the expression of the classic load (2.7), especially when
written as

ρ
∗
= 1 +

E[Bk − Tk]

E[Tk ]
.

Note however, that the equivalent load does not simply replace the classic load in
general, and should not be applied in this manner. For example, while it is well-
known for an M/G/1 classic system in CT that the probability of finding an empty
system upon arrival equals1− ρ, this is not the case for an optical system: neither
(1− ρ) nor (1− ρeq) provides an answer, and the probability in question can only
be determined after full system analysis. In this regard, the exact definition ofρeq

is prone to discussion: Pr[H = 0] = 1 − ρ̂eq can indeed provide a alternative def-
inition for an alternative equivalent load̂ρeq, but leads to impractical expressions,
whose form is highly sensitive to the assumptions on the inter-arrival time and
burst size distributions. Therefore, such alternative definitions are not explored
further, and we maintain (2.9) as definition of the equivalent load throughout this
work. As such, the notion of an equivalent load is a useful concept to capture sta-
bility and yields good results in the application of heuristics, but does not provide
a solid basis for the analysis of the entire system4. On the other hand, this provides
another illustration of the fact that an optical buffer model differs fundamentally
from a classic buffer model, and calls for an analysis in its own right.

Specific instances of the equivalent load are considered in Sect. 2.2.6, and later
on also for more general assumptions, in Sect. 2.3.5 and Sect. 2.4.4.

2.1.6 Heuristics for the Loss Probability

In this chapter, the approach will always be to obtain exact results in the transform
domain (in terms of either pgf’s (DT) or lst’s (CT)) first, fora system of infinite
size. Only in a second step, a heuristic is applied, and provides us with approx-
imate expressions to calculate the (burst) loss probability (LP), given the buffer
sizeN . Since the same heuristics are applied consistently throughout this chapter,
we prefer to present the general approach here, and will refer to it when specific
instances are considered. Given that the heuristics capitalize on a dominant pole
approximation of tail probabilities, we first specify the method with which we ob-
tain the involved tail probabilities in Sect. 2.1.6.1, to then treat the heuristic itself
in Sect. 2.1.6.2.

4This is opposed to the situation of for example a classic M/M/1 system in CT, that can be analyzed
almost entirely in terms of only the traffic load.
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2.1.6.1 Dominant Pole Approximation

For the dominant pole approximation, we first consider the DTcase. We assume
the system stable, and assume that the analysis yielded an exact expression for the
pgf H(z) of the steady-state distribution associated with the scheduling horizon
H . The scope of this section is to show how tail probabilities can be extracted
from this pgf. To allow for such approximation, we assume that the burst size and
inter-arrival time distributions do not possess a heavy tail, and that the associated
pgf’s have a single dominant pole.

The starting point is the relation

Pr[H > n] = Res

[

1

zn+1
·
H(z) − 1

z − 1

]

z=0

, (2.10)

that implies the calculation of the residue atz = 0. If we assume thatH(z) has no
singularities other than isolated poles, (2.10) becomes

Pr[H > n] = −
∑

l

Res

[

1

zn+1
·
H(z) − 1

z − 1

]

z=zl

,

where the summation indexl runs over all poleszl of H(z). This relation can now
be approximated by keeping only the dominant poles, namely those poles with
smallest modulus. As such, a good approximation is

Pr[H > n] ≈ −
∑

k

Res

[

1

zn+1
·
H(z) − 1

z − 1

]

z=zk

, (2.11)

where the summation indexk only runs over the poleszk of H(z) with smallest
modulus. The most common case is that such a dominant pole is unique. How-
ever, for the current analysis of a degenerate buffer with granularityD, it will
come out thatH(z) (andW (z)) haveD dominant poles, of the formzk = z0εk

(k = 0 . . . D − 1), with z0 being (by definition) the positive real one, andεk the
D different complexDth roots of unity. Without going into detail here, we al-
ready mention that this will not constitute a stumble block for a dominant pole
approximation, and it will always be possible to write the approximate relation as

Pr[H > n] ≈
C(n)

zn
0

, (2.12)

where we introduce the notationC(n) to lay emphasis on the quasi-geometrical
tail decay, with decay ratez0. The functionC(n) will prove periodical, that is
C(n + mD) = C(n) (m ∈ N), while for n = ND, we will even be able to
simplify theC(ND) further. Note that this quasi-geometric tail decay can onlybe
assumed because burst size and inter-arrival time distribution are not heavy-tailed,
as assumed above.

As for the CT case, a similar approach is possible, and will beexplained further
in Sect. 2.2.7.
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2.1.6.2 Two Heuristics

For conventional queues in CT, fed by a Poisson process of bursts of iid size,
a relation exists between (the distributions of) the unfinished work in an infinite
system and that in a finite system of, say, capacityM (in time units), see for
example [94]. This relation leads to an expression for the loss probability in the
finite system of the form

(1 − ρ)

ρ

Pr[W∞ > M ]

1 − Pr[W∞ > M ]
, (2.13)

whereW∞ denotes the unfinished work in the infinite system (as seen by arrivals),
and this independent of time setting. When dealing with degenerate buffers, one
can translate this into a heuristic for the loss probabilityof an arbitrary arriving
burst (LP), as

LP
∗
≈

(1 − ρeq)

ρeq

Pr[H∞ > ND]

1 − Pr[H∞ > ND]
. (2.14)

Here,H∞, the scheduling horizon in an infinite optical buffer, fulfills the role of
W∞, ND is the capacity of the system andρeq is the so-called equivalent load,
that is, the load on the system taking into account the overhead created by the
voids, as introduced in Sect. 2.1.5. Note that formula (2.13) assumes only excess
unfinished work is lost, that is, bursts arriving at a nearly full system can still be
partially buffered, while in our model, a burst that cannot be delayed sufficiently
long due to lack of an appropriate delay line, is dropped entirely.

For small LP, a modified heuristic

LP
∗
≈ (1 − ρeq)

Pr[H∞ > ND]

1 − Pr[H∞ > ND]
, (2.15)

(that is, dropping the factorρeq in the denominator) turns out to be more accurate.
In this chapter, we will refer to (2.14) as “heuristic A” and to (2.15) as “heuristic B”
respectively.

It is worth to point out that the same heuristics can also be used to evaluate the
LP in overloaded systems, that is, when the equivalent load exceeds100%. Strictly
speaking, no equilibrium distribution then exists for e.g.H∞. The transform
function (a pgf in case of DT, an lst in case of CT) that is used to approximate
Pr[H∞ > ND], however, remains a proper function. Formally then, one canstill
compute the quantities Pr[H∞ > ND], that will no longer represent probabilities,
but still yield a good approximation of the loss probabilitywhen plugged into the
heuristic, as will be illustrated several times throughoutthis chapter.

For severely overloaded systems, there is a rather simple, intuitive heuristic.
For both classic and optical queues, whenρ → ∞, the loss probability will ap-
proximately equal

LP
∗
≈

ρ − 1

ρ
for ρ ≫ 1 .
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Since such a system will be busy nearly always, the carried load will be close to
one. The lost load then equalsρ − 1, leading directly to the above approximation.
As ρ → ∞, the formal value (not a probability) for Pr[H∞ > ND] obtained
with the dominant pole approximation goes to infinity, and thus the same limit is
retrieved in formula (2.13). Not surprisingly then, for degenerate buffers, heuristic
A turns out to be more accurate than heuristic B whenρeq ≫ 1. This will be
illustrated by numerous numerical examples further in thischapter.

Further, for finite degenerate buffer systems, also the situation where the gran-
ularity is much larger than the average inter-arrival time E[Tk ], D/E[Tk ] ≫ 1

provides an interesting case. In such a system, after a shortperiod of transient
behavior, due to the FIFO delay-line assignment algorithm,the system will guide
all traffic through the longest line, even in case of low load.Indeed, one can verify
that, forD/E[Tk ] ≫ 1, the equivalent load (2.9) becomes much larger than unity,
ρeq ≫ 1. As such, the system will always be full. In terms of loss performance,
it will behave like a bufferless system, whereas the delay will be fixed, and equal
to the length of the longest line,ND. In case of a memoryless arrival process, the
LP formula for such a system is extremely simple, namely,

LP
∗
≈

ρ

1 + ρ
for D/E[Tk ] ≫ 1 . (2.16)

Also in the case of a more general (not memoryless) arrival process, neither heuris-
tic A nor heuristic B offer accurate results, and one is to treat the system as a
(simple) bufferless one to obtain correct results.

Finally, if the granularity of a finite degenerate buffer is much smaller than
E[Tk ], D/E[Tk ] ≪ 1, then also the capacityND is very small. Therefore, the
system’s LP also approaches that of a bufferless one, while the waiting time turns
zero. As such, in case of a memoryless arrival process andD/E[Tk ] ≪ 1, For-
mula (2.16) equally applies.

2.2 Model for Memoryless Arrivals

In this section, we present the results obtained for the caseof memoryless arrivals,
for both the DT and CT setting. With memoryless arrivals, we intend that the
inter-arrival time has a memoryless distribution, being anumbrella term for geo-
metric distribution in DT, and a negative-exponential distribution in CT. For the
DT setting, results were obtained earlier by Laevens and hisco-authors ( [10],
later [11,13]), and are repeated here as a reference. For theCT setting, the results
were disseminated through [2]. Within this chapter devotedto the pgf approach,
the current section is the only one to treat both DT and CT.
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2.2.1 Buffer Setting and Traffic Setting

The buffer model of the current section is exactly as described in Sect. 2.1.2.
To proceed with the analysis of (2.2) and (2.4) under the current assumptions,

we introduce further notation, that also reflects the memorylessness of the inter-
arrival timesTk. Also, we define appropriate functions in a transform domain:
pgf’s in DT, lst’s in CT.

Traffic Setting for DT In our analysis, we use both the probability mass function
(pmf) and the pgf of the involved variables. The burst sizesBk, for example, have
a common pmf

b(n) = Pr[Bk = n] , n ∈ N0 ,

that is completely general, except for the conditions0 ≤ b(n), and
∑+∞

n=1 b(n) =

1. The resulting pgf is the z-transform of the pmf, namely

B(z) = E[zBk ] =

+∞
∑

n=1

znPr[Bk = n] , z ∈ C ,

and likewise for the other variablesTk, Hk, Gk andWk. Throughout this work, we
will commonly assume the burst size distribution either geometric or deterministic.
In the former case, the pmf is given by

b(n) = f · f̄n−1 , n ∈ N0 ,

with parameterf , f̄ = 1 − f , which implies for the mean E[Bk ] = 1/f ; the
corresponding pgf is

B(z) =
fz

1 − f̄ z
, z ∈ C .

In the latter case, the pmf is given by

b(n) = δn,B , z ∈ N0 ,

whereδi,j denotes the Kronecker delta, that is one ifi = j, and zero everywhere
else; the associated pgf is

B(z) = zB , z ∈ C .

Imposing a memoryless distribution for the inter-arrival times, we define the
pmf of theTk as

t(n) = Pr[Tk = n] = p · p̄n−1 , n ∈ N0 , (2.17)

with parameterp, where we denoted̄p = 1 − p, implying E[Tk ] = 1/p. For the
pgf, we obtain

T (z) = E[zTk ] =
pz

1 − p̄z
, z ∈ C .
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Traffic Setting for CT For the CT setting, we use the lst of the cumulative dis-
tribution function (cdf) of the involved variables. The burst sizesBk now have a
common cdf

FB(x) = Pr[Bk ≤ x] , x ∈ R
+ .

The exact form of this distribution is completely general, except for some common
assumptions:FB(x) is a right-continuous non-decreasing function, withFB(0) =

0 andlimx→∞ FB(x) = 1 (and thus,0 ≤ FB(x) ≤ 1). This yields as lst

BL(s) = E[e−sBk ] =

∫ ∞

0

e−sxdFB(x) , s ∈ C ,

and, again, likewise for the other variablesTk, Hk, Gk andWk. Note that we
use a calligraphic L (“L”) here and in the rest of this work, to indicate that the
intended transform function is an lst (BL(·)), and not a pgf (B(·)). In Sect. 2.2.8,
the burst size distribution will be assumed negative-exponential and deterministic,
respectively. The cdf for the former is

FB(x) = 1 − e−µx , x ∈ R
+ ,

with µ the parameter, and E[Bk ] = 1/µ. The pgf is then

BL(s) =
µ

µ + s
, s ∈ C .

The cdf of the latter is

FB(x) = H(x − B) , x ∈ R
+ ,

with H(·) the Heaviside step function, andB equal to the fixed burst size. The
corresponding pgf is

BL(s) = e−sB , s ∈ C .

The memorylessness of the inter-arrival times implies a negative-exponential
distribution, corresponding to the following cdf,

FT (x) = 1 − e−λx , x ∈ R
+ ,

with parameterλ and resulting mean E[Tk ] = 1/λ, for which the lst is obtained as

TL(s) = E[e−sTk ] =
λ

λ + s
.

2.2.2 Equilibrium Distribution

As mentioned first in Sect. 2.1.5, we will assume a maximum load, further spec-
ified in Sect. 2.2.6, below which stability is guaranteed. Instable regime, the
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distributions ofHk, Wk andGk converge, fork → ∞, to a unique stochastic equi-
librium distribution, independent of the initial system conditions. The pgf’s and
lst’s obtained are associated with this equilibrium, that is assumed throughout this
work for the analysis. ByH we will denote a generic rv following that distribution,
and likewise for the other rv’s, yieldingW , G, T andB.

2.2.3 Analysis

In [10], both the queueing effect[x]+ and the granularity effect⌈x⌉ were studied
in a DT setting. The queueing effect (2.2) yielded the following relation between
the pgf’s of the variables involved:

H(z) =
p

z − p̄
G(z) + K

z − 1

z − p̄
, (2.18)

where the sum of rv’s of (2.3) translates into a product of pgf’s, that is,

G(z) = B(z)W (z) , (2.19)

and whereK in (2.18) denotes a constant (here,G(p̄)) of which the exact value
can be determined most easily later on, by means of the normalization condition.

The solution to the granularity effect was captured by the following relation:

W (z) =

D−1
∑

k=0

1

D

zD − 1

zεk − 1
H(zεk) , (2.20)

where the symbolsεk = e j 2πk/D represent theD different complexDth roots of
unity. In another context, this relation was published earlier in somewhat modified
form (floor instead of ceiling function, see formula (13) in [95]). To allow for a CT
solution of the granularity effect, we will reorder the terms in the sum as follows,

W (z) =
∑

k

1

D

zD − 1

zεk − 1
H(zεk) , (2.21)

where the summation indexk now runs over⌈−D/2⌉ < k ≤ ⌈D/2⌉.
Using the property thatW (zεk) = W (z), which follows directly from the fact

that the rvW is always an integer multiple ofD, one can combine (2.18), (2.19)
and (2.21), to obtain that

W (z) = K

(

∑

k

1

D

zD − 1

zεk − p̄

)

·

(

1 −
∑

k

1

D
·
zD − 1

zεk − 1

pB(zεk)

(zεk) − p̄

)−1

.

With the identity
xD−1

zD − xD
=
∑

k

1

D

1

(zεk) − x
, (2.22)
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the expression simplifies to

W (z) = K

(

p̄D−1(zD − 1)

zD − p̄D

)

·

(

1 −
∑

k

1

D
·
zD − 1

zεk − 1

pB(zεk)

(zεk) − p̄

)−1

. (2.23)

The constantK follows from the normalization conditionW (1) = 1, as

K =





1

p
− E[B ] −

D − 1

2
−
∑

k 6=0

1

εk − 1

p

εk − p̄
B(zεk)



 ·

(

Dp̄D−1

1 − p̄D

)−1

.

(2.24)
Having determinedW (z), H(z) then follows readily from (2.18), as

H(z) =
K · p · p̄D−1 · (zD − 1) · B(z)

(z − p̄)(zD − p̄D)
(

1 −
∑

k
1
D · zD−1

zεk−1
pB(zεk)
(zεk)−p̄

) + K
z − 1

z − p̄
. (2.25)

2.2.4 Analysis for CT: Limit Procedure

Our goal is to derive, for the asynchronous system,HL(s), the lst of the equilib-
rium distribution of the scheduling horizonH as seen by arrivals. In this subsec-
tion, we discuss a limit procedure that allows to retrieveHL(s) from H(z).

To correctly convert results from DT to CT, one should first observe quantities
in the discrete domain. A distinction can be made between time-related quantities
and counting-related quantities. The former scale with theslot size∆, the latter
do not. For example, the scheduling horizonH of Sect. 2.2.3 is expressed in slots,
and actually representsH∆ in absolute time. To avoid confusion, we here denote
the DT version of the rvH with HDT, and the CT version withHCT; and likewise
for DDT andDCT. We can now find a simple relation between the pgf and lst, as

HL(s) = E[e−sHCT ] = lim
∆→0

E[(e−s∆)HDT ] = lim
∆→0

H(e−s∆) ,

that is, we need to substitutez by e−s∆ in the pgfH(z) before taking the limit
∆ → 0. The average inter-arrival time1/p · ∆ scales as1/λ, the granularity size
asDDT∆ = DCT. While we limit ourselves to this simple recipe, we refer the
interested reader to Appendix B of [96] for its mathematicalbackground.

Applying this limit procedure on the DT solution (2.18) for the queueing effect
yields the CT expressions

HL(s) =
λ

λ − s
GL(s) − K

s

λ − s
, (2.26)

and
GL(s) = WL(s)BL(s) .
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(In taking the limit, here and in the following, the rules of de l’Hôpital need to be
applied frequently, to deal with for example indeterminateforms of type0/0.)

Concerning the granularity effect, equation (2.21) results in the CT expression

WL(s) =
∑

k

1

D

1 − e−sD

s + j 2πk/D
HL(s + j 2πk/D) , (2.27)

wherek now runs from−∞ to +∞, andDCT is again represented byD.
Note thatWL(s) is periodic too, in the sense that

WL(s) = WL(s + j 2πn/D) ,

for anyn ∈ Z. This property now allows combining (2.26) and (2.27) to yield

WL(s) =

(

−K
∑

k

1

D

1 − e−sD

λ − (s + j 2πk/D)

)

·

(

1 −
∑

k

1

D

1 − e−sD

t

λBL(t)

λ − t

∣

∣

∣

∣

t=s+j 2πk/D

)−1

.

A further simplification can be made by using
∑

k

1

D

1

(λ − s) + j 2πk/D
= −

1

1 − e(λ−s)d
, (2.28)

which follows from applying the limit procedure on (2.22) (wherex = 1, and we
substitutes by (λ − s)). We then find

WL(s) =

(

K
1 − e−sD

1 − e(λ−s)D

)

·

(

1 −
∑

k

1

D

1 − e−sD

t

λBL(t)

λ − t

∣

∣

∣

∣

t=s+j 2πk/D

)−1

.

(2.29)
This is exactly the expression we would have found applying the limit procedure
directly to equation (2.23).

The remaining unknown constantK (for CT, as opposed to (2.24), for DT) can
be determined, either by applying the limit procedure once more, or by ensuring
normalization ofWL(s). The final result reads

K =





1

λ
− E[B ] −

D

2
−
∑

k 6=0

λ

t − λ

BL(t)

t

∣

∣

∣

∣

t=s+j 2πk/D



 ·

(

−
D

1 − e−λD

)−1

.

(2.30)
Equations (2.26), (2.29) and (2.30) together fully specifyHL(s), as

HL(s) =
K · λ · (1 − e−sD) · BL(s)

(λ − s)(1 − e(λ−s)D)

(

1 −
∑

k
1
D

1−e−sD

t
λBL(t)

λ−t

∣

∣

∣

t=s+j 2πk/D

)

− K
s

λ − s
, (2.31)
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which indeed is similar to the expression of the scheduling horizon’s pgf for DT,
(2.25).

2.2.5 Analysis for CT: Direct Approach

To consolidate the results of Subsection 2.2.4, we show how they can also be
obtained directly. The complexity of the transform-based solution of the queueing
effect, mentioned in the above, critically depends on the exact form of the lst of
T . (The same goes, in terms of the pgf ofT , for the DT case, as discussed in
for example [93].) For exponentially-distributedT , the complexity is limited, and
results in the CT expression

HL(s) =
λ

λ − s
BL(s)WL(s) − K

s

λ − s
,

that is, the result we obtained via the limit procedure. A direct proof is rather
straightforward. Introducing, for convenience, an auxiliary rv G = B + W , with
cdfFG(t) (t > 0) and lstGL(s) = BL(s)WL(s), one has, starting from Eq. (2.2),

HL(s) =

∫ ∞

0

dFG(g)

∫ ∞

0

dFT (t) e−s[g−t]+

=

∫ ∞

0

dFG(g)

∫ ∞

0

dFT (t) e−s(g−t)

+

∫ ∞

0

dFG(g)

∫ ∞

t

dFT (t)
(

e−s·0 − e−s(g−t)
)

= GL(s)TL(−s) +

∫ ∞

0

dFG(g)

∫ ∞

g

λe−λtdt
(

1 − e−sge+st
)

= GL(s)
λ

λ − s
+

∫ ∞

0

dFG(g)

(

e−λg − e−sg λ

λ − s
e−(λ−s)g

)

= GL(s)
λ

λ − s
+ GL(λ)

(

1 −
λ

λ − s

)

= GL(s)
λ

λ − s
− K

s

λ − s
.

whereK = GL(λ) denotes the same constant as in (2.26), of which the exact value
can be determined most easily later on, by means of the normalization condition.

The second non-linearity to tackle is the granularity effect, as stated above in
Eq. (2.4). The transform-based solution can be obtained by expressingWL(s)

in terms of the probability density function (pdf)h(x) of H . However,H is a
“mixed” rv, in that its density functionh(x) is continuous forx > 0, but pos-
sesses a discontinuity atx = 0, that accounts for a discrete probability. As such,
h(x)dx = Pr[x ≤ H < x + dx] for x ∈ R0, while h(x) = Pr[H = 0] for x = 0.
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This however poses no further mathematical difficulty, and the expression for (2.4)
in terms of lst’s is easily obtained as

WL(s) = h(0) +
+∞
∑

k=0

∫ D

0+

h(u + kD)e−s(k+1)Ddu ,

Rewriting the sum on the right-hand side by introducing the comb function
∑

l δt,lD

(with δi,j still the Kronecker delta) we have

WL(s) = h(0) +

+∞
∑

k=0

∫ D

0+

du h(u + kD)e−s(k+1)D

·

∫ D

0+

dx e−s(u−x)
+∞
∑

l=−∞

δu−x,lD .

Note that the Kronecker delta only has effect whenu − x = 0, that is, forl = 0.
Using the Fourier expansion

+∞
∑

k=−∞

δx,kD =

+∞
∑

k=−∞

1

D
e j 2πkx/D ,

and rearranging some terms, we can proceed as

WL(s) = h(0) +

+∞
∑

k=0

∫ D

0+

du h(u + kD)e−s(k+1)D

·

∫ D

0+

dx e−s(u−x)
+∞
∑

l=−∞

1

D
e−j 2πl(u−x)/D

= h(0) + e−sD

∫ D

0+

dx

+∞
∑

l=−∞

1

D
e(s+j 2πl/D)x

·
+∞
∑

k=0

∫ D

0+

du h(u + kD)e−s(u+kD)−j 2πlu/D

= h(0) + e−sD
+∞
∑

l=−∞

1

D

e(s+j 2πl/D)D − 1

s + j 2πl/D

·
+∞
∑

k=0

∫ D

0+

du h(u + kD)e−(s+j 2πl/D)·(u+kD) .

In the last step we used the obvious identity

e−(j 2πl/D)kD = 1 ,
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for any l, k ∈ Z, which allowed us to arrive at an expression in terms ofu + kD

only in the integral foru. That integration then, combined with the sum overk,
amounts to integrating overR0, that is,

WL(s) = h(0) + e−sD
+∞
∑

l=−∞

1

D

e(s+j 2πl/D)D − 1

s + j 2πl/D

∫ ∞

0+

dt h(t)e−(s+j 2πl/D)t

= h(0) +

+∞
∑

l=−∞

1

D

1 − e−sD

s + j 2πl/D

(

HL(s + j 2πl/D)− h(0)
)

.

Using identity (2.28) once more, we find that the terms involving h(0) cancel out,
yielding

WL(s) =
∑

l

1

D

1 − e−sD

s + j 2πl/D
HL(s + j 2πl/D) ,

as before in (2.27). As such, the combination of both non-linearities leads to the
same solution as the one obtained with the limit procedure, namely (2.31).

2.2.6 Maximum and Equivalent Load

As mentioned in Sect. 2.1.5 and 2.2.2, stability requires the offered loadρ to be be-
low some maximum valueρmax, that is typically less than unity, unlike in conven-
tional queues. The current DT case was treated first in [10], or, more elaborately,
in [11]. To derive the stability condition, it can be intuitively understood that, for
a buffer with infinite size, the queue length grows unboundedly if the load is too
high. For optical buffers, this happens even before the classic loadρ = E[B ]/E[T ]

reaches unity. We can characterize a case of unbounded growth by

lim
k→∞

Pr[Hk = 0]
∗
= 0 ,

and this independent of time setting. Taking into account the expression for the
scheduling horizon ((2.25) for DT, (2.31) for CT) and waiting time ((2.23) for DT,
(2.29) for CT), this occurs whenK ((2.24) for DT, (2.30) for CT)) becomes zero.

To capture the instability quantitatively, one can define a maximum tolerable
arrival intensity as1/E[T ], that delineates stability. For DT, this ispmax, that is
the solution to the implicit expression (implicit, asp occurs also on the right-hand
side of the equation)

1

p
= E[B ] +

D − 1

2
+
∑

k 6=0

p

εk − p̄

B(εk)

εk − 1
. (2.32)

The symbolsεk still represent theD different complexDth roots of unity, as in
(2.21). The solution is thus function of the FDL granularityD, the complete pgf
of the burst-size distribution, and can be found from (2.32)with a simple bisection
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algorithm. Note that it is indeed consistent with (2.8), of which it is a specific
instance, for DT and geometric inter-arrival times.

Related, we can define an equivalent load, that incorporatesthe effect of voids
into an altered definition of the load. For DT, we obtain

ρeq = p



E[B ] +
D − 1

2
+
∑

k 6=0

1

εk − 1

pB(εk)

εk − p̄



 ,

that plays a key role in the application of the heuristics below, since it allows for
results for finite systems. Hereby, note that the exact definition of ρeq is prone to
discussion, as argued in Sect. 2.1.5. Remark thatρeq indeed equals one when the
arrival intensity reachespmax, as should, and is consistent with the general expres-
sion forρeq, namely (2.9). From here, it is also possible to define an equivalent
burst size,Beq, with

Beq = E[B ] +
D − 1

2
+
∑

k 6=0

1

εk − 1

pB(εk)

εk − p̄
,

that allows to writeρeq = p · Beq, a counterpart to the classic loadρ = p · E[B ].
Denoting the maximum tolerable arrival intensity withλmax for CT, the limit

procedure easily yields thatλmax is the solution to

1

λ
= E[B ] +

D

2
+
∑

k 6=0

λ

t − λ

BL(t)

t

∣

∣

∣

∣

t=s+j 2πk/D

,

that is again an implicit expression, yielding a value forλmax with a bisection al-
gorithm (combined with a fit approximation for the infinite sum). Corresponding,
we can define an equivalent load as

ρeq = λ



E[B ] +
D

2
+
∑

k 6=0

λ

t − λ

BL(t)

t

∣

∣

∣

∣

t=s+j 2πk/D



 ,

which is again consistent with the general expression (2.9).

2.2.7 Heuristics for the Loss Probability

Results up to now related to an optical buffer of infinite size. In order to obtain the
loss probability (LP) in a finite system, that is, a system with only (N + 1) fiber
delay lines (realizing delays in the set{0, D, . . . , ND}) we rely on the heuristics
presented in Sect. 2.1.6. Like there, we assume that the distribution of the burst
sizes is not heavy-tailed and that its pgf (in DT) or lst (in CT) has no singularities
other than poles.
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While the expression forρeq is treated in Sect. 2.2.6, we can again combine
results of the synchronous FDL buffer [10] with the limit procedure to find expres-
sions for the unknown Pr[H∞ > ND] in heuristic A (2.14) en B (2.15). These
tail probabilities can indeed be computed by an (approximate) inversion of the pgf
B(z), using the dominant pole approximation of (2.12) first in DT,then to move
to CT with a limit procedure, and obtain the inversion of the lstHL(s).

As for (2.12) in DT,z0 is the dominant pole ofH(z) (and ofW (z)). It is real,
positive and larger than 1. This approximate geometric behavior occurs under
rather mild conditions on the burst size distribution, a sufficient condition is for
example that the pgf of the burst sizes is a rational function. Note, however, that
the analysis in the above only requires that E[B ] < ∞ (and that the system is
stable). When, for instance, the burst size distribution possesses a heavy tail, the
distribution of H∞ would not decay geometrically as above, but would have a
heavy tail too. This would require a different approximate inversion formula.

The constantC(ND) (see Sect. 2.12) for DT can be obtained from residue
theory and is given by

C(ND) = −
1

z0

D

zD
0 − 1

(

lim
z→z0

W (z)(z − z0)

)

.

Applying the limit procedure once more, we find that for asynchronous buffers, in
CT,

Pr[H∞ > ND] ≈
C(ND)

γN
,

where we introducedγ = e−s0DCT = lim∆→0 zDDT∆
0 for convenience. Here,s0

denotes the dominant pole ofHL(s) andWL(s) along the negative real line. In
general, a simple bisection algorithm (with possibly an initial search for the ap-
propriate starting interval) suffices to determineγ numerically. In some cases, an
explicit expression can also be found, see for example below.

As mentioned in Sect. 2.1.6, the same heuristics can also be used to evalu-
ate the LP in overloaded systems, when the equivalent load exceeds100%. The
transformHL(s) that is used to approximate Pr[H∞ > ND] remains a proper
function, and formally, one can still compute the quantities Pr[H∞ > ND], the
only caveat being thatγ is then to be found in the interval[0, 1), that is,s0 > 0.
The expression for the constantC(ND) remains the same. (When the equivalent
load is exactly100%, s0 = 0 andγ = 1. In principle, this requires somewhat
modified expressions. Here, we do not pursue this issue further.)

2.2.8 Special Cases

In this section, we take a look at the LP for three special cases for the burst size
distribution: exponential, deterministic and a mixture ofdeterministic burst sizes.
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For all three of them, the infinite sum appearing in a.o. equations (2.29), (2.31)
and (2.30) can be removed. One obtains closed-form formulasfor the lstHL(s)

and for the performance measures derived therefrom. Results given here were
obtained via the limit procedure. Formulas for the corresponding DT systems are
given in [13].

2.2.8.1 Exponentially-Distributed Burst Sizes

As was the case for the inter-arrival timesT , exponentially-distributed burst sizes
can be considered as the limit (for slot sizes going to zero) of geometrically distrib-
uted burst sizes. Assuming the distribution given in Sect. 2.2.1 forB, expression
(2.29) forWL(s) simplifies significantly to

WL(s) =
1 − e−(s+µ)D

1 − e−µD
·

γ − 1

γ − e−sD
,

with

γ =
µ + λ

µe−µD + λe+λD
.

The constantC(ND) appearing in the approximation for the tail distribution be-
comes

C(ND) =
1 − γe−µD

γ (1 − e−µD)
.

Moreover, we can obtain an explicit expression for the waiting time probabili-
ties. Therefore, it suffices to rewriteWL(s) as

WL(e−sD) = w(0) + (1 − w(0))
ζ̄e−sD

1 − ζe−sD
,

with

ζ = γ−1 = (µe−µD + λe+λD)/(λ + µ) , ζ̄ = 1 − ζ , (2.33)

F̄ = e−µD , F = 1 − F̄ ,

w(0) = Pr[Wk = 0] = ζ̄/F .

Here, note that we adoptζ andF as notation to stress that they are identical to
theζ andF that appear in the results of Sect. 3.4.2.3 and 3.4.2.4, where the same
degenerate M/M/1 buffer setting is studied, but then in the case of finite buffer
size. Notice how the discrete nature of theWk is reflected inWL(s): it suffices to
replacee−sD with zD, to obtain the pgf of the waiting time distribution, expressed
as integer multiples ofD. From this, one can extract also the other waiting time
probabilities explicitly, as

w(n) = Pr[Wk = nD] = (1 − w(0)) · ζ̄ · ζn−1 , n ∈ N0 . (2.34)
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As such, the waiting time probabilitiesw(n) for n ≥ 1 can be found through a
geometric relation, but do not follow ageometric distribution, sincew(0) does not
adhere to (2.34). From here, the mean waiting time is easily found as

E[W ] = D ·
1 − w(0)

ζ̄
= D ·

{

1

ζ̄
−

1

F

}

. (2.35)

Finally, note that in the above-mentioned Sect. 3.4.2.3 and3.4.2.4, the expression
for thew(n) and E[Wk ] is derived also in the case of finite buffer size, and coun-
tered with similar expressions for DT.

We further obtain

ρeq = 1 +
λD

µ + λ

(

λ

1 − e−µD
+

µ

1 − e+λD

)

. (2.36)

for the equivalent load.
Note further that, in this case, it is straightforward to verify that

ρeq = 1 ⇔ γ = 1 ⇔ s0 = 0 ,

as mentioned above. The condition under whichρeq = 1 fully agrees with the one
that can be found by taking the appropriate limit of the condition derived in [11]
for the synchronous case.

With these formulas at hand, one can easily calculate the LP via one of the
heuristics given above. Some numerical results are shown onthe left pane of
Fig. 2.2. It compares results from simulation (points connected by dotted lines)
with those obtained via heuristic A (solid gray curves) or heuristic B (solid black
curves). The mean burst size E[B ] was set to 50µs, which corresponds to circa
60 kB at 10 Gbit/s. The granularityD varied from 0 to 100µs (in steps of 5µs
during the simulations). The number of available FDLs was set to N = 20. The
figure shows results for different input load levelsρ = λE[B ].

The heuristics are a bit pessimistic, that is, they overestimate the LP. Heuristic
B is more accurate for low input load levels, but does not converge to the right
asymptotic value whenρeq ≫ 1, as predicted. (Here,ρeq → ∞ asD → ∞,
while in the actual system,ρeq plays a minor role whenD → ∞, since then
LP → ρ/(1 + ρ)). For these high loads, heuristic A performs better. Compared to
the method of Callegati [26], one gains somewhat in accuracy, especially for low
load values or small buffer sizes. Furthermore, since for this special case, explicit
formulae were obtained, the numerical complexity involvedin our results is close
to zero.

There is an optimal granularityD (in terms of LP) , shifting to lower values
for higher input load levels, as was the case in synchronous systems, see [10]. As
we will illustrate in the next section, the optimal value also depends on the burst
size distribution.
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Figure 2.2: The heuristics capture the performance of an asynchronous optical buffer well,
both in the case of negative-exponential and deterministicburst size distribution.
The solid gray curves represent heuristic A, the solid blackcurves heuristic B, while
the points connected by dotted lines are simulation points.The LP of the CT M/G/1
case is set out as a function ofD, for varying D (in µs), E[B] = 50 µs, and
N = 20.

Further, as a reference, we compare performance results of both a synchronous
and asynchronous system setting, as first presented in [1]. In Fig. 2.3(a), the LP is
plotted as a function of the granularity, in the case of memoryless burst sizes. The
curves now have a different meaning, as bothρ = 60%, andN = 20 are fixed,
and different curves correspond with different slot sizes∆. The (mean) burst size
is still set to 50µs, and the granularityD again varies from 0 to 100µs. In order
of increasing LP, the first three sets of curves (lowest LP curves) show results for
a DT setting, with a finite slot size∆, obtained with heuristic B. The first two sets
(points connected by dotted lines) are valid for∆ = 10 µs,∆ = 5 µs respectively.
The third set has a slot size∆ = 1 µs, and is depicted with solid black curves.
(The DT step, although not visible, is∆ = 1 µs.). The last set (highest LP curves)
represents the LP for a CT setting, and is also obtained with heuristic B. In DT,
the memoryless burst size distribution corresponds to the geometric distribution,
in CT to the exponential distribution.

Clearly, higher values for the time slot sizes result in lower LP. For gradually
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reducing time slot sizes, curves evolve to the limit distribution of zero slot size, that
is, the asynchronous case. For the memoryless burst size distribution considered,
the curves mostly preserve their smooth shape.

The above comparison suggests a better performance for synchronized systems
in terms of loss probabilities. Note, however, that all curves assumed that at most
one arrival can occur per slot. As such, this comparison doesnot allow to quantify
the impact of synchronization, which calls for a separate analysis in Sect. 2.3, by
means of a batch arrival model. For the current case, resultsillustrate however that
the assumption on time setting (CT or DT) has a crucial impacton the exact value
of the loss probability, but less on the optimum.

2.2.8.2 Deterministic Burst Sizes

In this case, all bursts are of lengthB. In order to proceed, we need to expressB

asaD − b, wherea ≥ 1 and0 ≤ b < D. That is,a = ⌈B/D⌉ andb = aD − B.
With this convention, the limit procedure yields

WL(s) =
−
(

a
(

1 − e−λD
)

− e−λ(D−b)
) (

1 − e−sD
)

e−saDe−λ(D−b) (1 − e−sD) + (e−λD − e−sD) (1 − e−saD)
.

The equivalent load is now given by

ρeq = 1 + λD

(

a −
e−λ(D−b)

1 − e−λD

)

,

and reaches100% when

a =
e−λ(D−b)

1 − e−λD
,

again in agreement with what one would obtain by taking the appropriate limit of
the condition given in [11] for this specific case. The dominant poleγ = e−s0D

now has to be determined as the solution of

γae−λ(D−b)(1 − γ) + (e−λD − γ)(1 − γa) = 0 .

For ρeq < 1, γ is to be found in(1,∞). Sinceγ = e−s0D, this easily translates
into the well-known characterization of stability of lst’s, namelys0 < 0. (This is
a particular instance of the more general stability condition, requiring all poles to
be in the left half-plane.) Forρeq > 1, γ it is situated in(0, 1), ands0 > 0.

Further, the constant needed in the approximation of Pr[H∞ > ND] is given
by

C(ND) =
−
(

a
(

1 − e−λD
)

− e−λ(D−b)
)

aγa(γ − e−λD) − γ(1 − γa) − γa(γ + γa − a)e−λ(D−b)
.
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Figure 2.3: Although for the same traffic and buffer setting,these curves differ completely
due to to the different time setting, both in the case of memoryless and deterministic
burst size distribution. As the slot length∆ ∈ {0, 1, 5, 10} (in µs) increases, LP
lowers, and this for any value of the granularityD (µs). These figures were obtained
for E[B] = 50 µs,ρ = 60%, andN = 20.

Finally, note that in the case thatB = D (with a = 1, b = 0), the expression
for WL(s) simplifies to

WL(s) =
ζ̄

1 − ζe−sD
,

with ζ = eλD − 1, andζ̄ = 1 − ζ. Given the lst’s simple form, it is possible to
obtain the waiting time probabilities explicitly, as

w(n) = Pr[Wk = nD] = ζ̄ · ζn , n ∈ N , (2.37)

and the equivalent load reaches100% whenζ = 1. That the latter special instance
(B = D) does indeed provide an interesting case, is argued in the next chapter, in
Sect. 3.3, where also the expression for the waiting time probabilities in case of a
finite buffer is derived.

Some results for this case are given in Fig. 2.2(b), for similar parameter setting
as that of Fig. 2.2(a). Again, the (mean) burst size was set to50 µs, the granu-
larity D varied from 0 to 100µs, and the number of available FDLs was set to
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N = 20. The shape of the curves is substantially different from theones for
negative-exponential burst size distribution, and the LP can be more than an order
of magnitude smaller. Again, heuristic B is more accurate for lower values of the
LP, but does not converge to the correct limit forρeq ≫ 1. There are now several
“notches” in the curves, occuring for those values ofD for which B is divisable
by D, that is, forb = 0. As in the case for exponentially-distributed burst sizes in
Sect. 2.2.8.1, the global optimum value ofD is sensitive to the load, and decreases
when the load increases. However, here, the optimum granularity, sayD0, does
not vary in a continuous fashion, but rather jumps from a larger divisor ofB to a
smaller divisor ofB when the load increases. Indeed, as Fig. 2.2(b) illustrates, D0

is equal toB for ρ = 40%, whereasD0 = B/2 for ρ = 60%, andD0 = B/3

for ρ = 80%. This effect was reported earlier in [10], and is characteristic to a
degenerate M/D/1 buffer setting.

Just like we did for the burst sizes with negative-exponential distribution, we
also compare performance results of the synchronous and asynchronous system
setting. Figure 2.3(b) presents the LP as a function of the granularity, as obtained
with heuristic B, forρ = 60%, N = 20, E[B ] = B = 50 µs, D ranging from 0
to 100µs. Curves are plotted for∆ = 10 µs and∆ = 5 µs (points connected by
dotted lines),∆ = 1 µs (solid black curves), and the CT case (solid grey line, the
one with highest loss).

Just as it was the case for memoryless burst sizes, also for fixed burst sizes,
higher values for the time slot lengths result in lower LP. Here, however, the im-
pact of slot size variation is larger, and the curves all display the local optima
(“notches”), typical for the deterministic burst size distribution. Since all curves
for DT assumed that at most one arrival can occur per slot, we can again draw no
conclusions on the exact impact of synchronization, but rather refer to Sect. 2.3.

2.2.8.3 Mixtures of Deterministic Burst Sizes

It is rather straightforward to extend the above results to mixtures of for example
deterministic burst sizes. Burst lengths then take on a limited number of valuesBi

(i = 1, . . . , R) with probabilitiesαi (
∑

αi = 1). We again express eachBi as
aiD − bi as above. The limit procedure results in

WL(s) =

−

R
∑

i=1

αi

{(

ai

(

1 − e−λD
)

− e−λ(D−bi)
)

(

1 − e−sD
)

}

R
∑

i=1

αi

{

e−saiDe−λ(D−bi)
(

1 − e−sD
)

+
(

e−λD − e−sD
) (

1 − e−saiD
)

}

,
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Figure 2.4: The analysis provides an accurate approximation of the loss probability also
for a mixture of deterministic burst sizes. These figures were obtained for varying
D (in µs),E[B] = 50 µs, withPr[B = 45] = 0.75 andPr[B = 65] = 0.25.

and

ρeq = 1 + λD

(

R
∑

i=1

αi

{

ai −
e−λ(D−bi)

1 − e−λD

}

)

.

The dominant poleγ = e−s0D has to be determined from

R
∑

i=1

αi

{

γaie−λ(D−bi)(1 − γ) + (e−λD − γ)(1 − γai)
}

= 0 .

The constant needed in the approximation of Pr[H∞ > ND] is given by

C(ND) =

−
P

R
i=1 αi{ai(1−e−λD)−e−λ(D−bi)}P

R
i=1 αi{aiγai (γ−e−λD)−γ(1−γai)−γai (γ+γai−ai)e−λ(D−bi)}

.

Results forR = 2 are shown in Fig. 2.4(a). Burst sizes areB1 = 45 µs and
B2 = 65 µs with probabilityα1 = 0.75 andα2 = 0.25 respectively, the average
burst size being 50µs again. The shape of the curves clearly resembles those
depicted in Fig. 2.3, and the “local optima” induced by the predominant 45µs
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burst sizes can easily be distinguished. However, the optima are not as pronounced
as in the (single-valued) deterministic case, due to the presence of the 65µs burst
sizes. The “local optima” induced by the latter can be observed as “notches” in the
curves. The example shows that the presence of different burst sizes alleviates the
tight connection between average burst size and optimal granularity.

To conclude this section, Fig. 2.4(b) shows results for varying buffer depthsN .
The overall shape of the curves does not change drastically with N , but the global
optimum granularity can. ForN = 5 andN = 10, the optimum is atD = 45µs,
while for N = 20, it is atD = 22.5µs. Especially in the latter case, the optimum
is rather broad, in that a nearly constant LP is observed for all values ofD between
22.5µs and 45µs.

2.3 Model for Synchronization

While the results in the previous section provide a transform-based modeling for
both CT and DT, they do not provide a straight-forward answerto the influence
of synchronization on the performance of optical buffers. More particularly, the
assumption of a Bernoulli arrival process in DT does not allow to model synchro-
nization, that typically results in multiple arrivals per slot, also known as batch
arrivals. As such, the model presented in this section provides an extension of the
DT model of the previous section to allow for a batch arrival process. This is then
utilized to study the impact of internal synchronization, aprocess at node level that
can be implemented by retiming incoming traffic at the input.In optical network
design, synchronization within the network nodes offers several advantages. Al-
though the retiming itself is considered hard to implement (see, for example, [42]),
it can reduce the complexity of the node’s control logic, andmake technologically
demanding tasks such as header extraction more feasible. Further, it can better loss
performance, in a way that is researched in the current section. Results presented
below show that synchronization can improve the loss performance of an optical
buffer spectacularly, especially in the case of fixed-sizedbursts.

2.3.1 Buffer Setting

The buffer setting is identical to the one treated in the previous section, and is
described at the start of this chapter, Sect. 2.1.2.

2.3.2 Evolution of the Scheduling Horizon

Given that the current model allows for the arrival of batches, it is clear that the
system equation for single arrivals, (2.1), is to be adaptedto this purpose. We
again start out with the system of infinite buffer size. We consider arriving batches,



58 CHAPTER2

decreases 1 unit per slot

time

D é ù+Hk 1/D B D /D D /Dk 1é ù+ éB ù+H B2Hk

Hk+1

Tk

 D  D  D  D

Figure 2.5: The evolution of the scheduling horizon in case of batch arrivals.

which we number in the order of their arrival. We define the scheduling horizon as
the time at which all bursts will have left the buffer, and thesystem will become
empty again. Recall that, due to the occurrence of voids, thescheduling horizon
is in general larger than the unfinished work, and thus incorporates the effects of
granularity. The variableHk is derived thereof, and is defined as the scheduling
horizon as seen by thekth arriving batch, just before its arrival. The arriving batch
contains a number of burstsXk (Xk ≥ 1), each of which has an associated burst
lengthBk,i, i = 1 . . .Xk, which equals the time needed for its transmission. The
time between thekth batch arrival and the next is captured by the batch inter-arrival
time, denoted byTk. The evolution of these variables is described by

Hk+1 =

[

D

⌈

Hk

D

⌉

+

Xk−1
∑

i=1

D

⌈

Bk,i

D

⌉

+ Bk,Xk
− Tk

]+

, (2.38)

and is illustrated in Fig. 2.5. When thekth batch sees a non-zero scheduling hori-
zonHk upon arrival, the first burst of the batch will have to be delayed for at least
that amount to avoid contention. As the optical buffer can only realize delays that
are a multiple ofD, we obtain that the first burst has to be delayed for an amount
D⌈Hk/D⌉. The second burst of the batch (in case there is one, that is,Xk > 1)
has to be delayed too, in order for it not to overlap with the first. Again, only
multiples ofD are realizable, so that the second burst needs an additionalamount
of delayD⌈Bk,1/D⌉. Applying the same reasoning to possible other bursts in
the batch, we obtain that delaying and transmitting batchk pushes the scheduling
horizon (just after arrival) toD ⌈Hk/D⌉+

∑Xk−1
i=1 D ⌈Bk,i/D⌉+ Bk,Xk

. Taking
into account the batch inter-arrival timesTk, and the possibility that the system
becomes empty in between arrivals, one arrives at (2.38). This is illustrated in
Fig. 2.5, where thekth batch carries two bursts. For the given setting, withD = 2,
Hk = 3, Bk,1 = 3, Bk,2 = 2 andTk = 3, one can verify that indeedHk+1 = 7,
namelyHk+1 = [2⌈3/2⌉+ 2⌈3/2⌉+ 2 − 3]+ = [4 + 4 + 2 − 3]+ = 7.
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2.3.3 Traffic Setting

To analyze (2.38), we need to impose restrictions on the involved variablesTk, Xk

andBk,i, that are similar to the assumptions of the DT model in Sect. 2.2. The
Tk have a geometric distribution just as in Sect. 2.2. The batchsizesXk and burst
sizesBk,i also form a sequence of iid rv’s, and can have a general distribution, thus
being independent of the indexk and, in the case of the burst size, alsoi. Again,
we work with the pgf’s of the involved rv’s, denoted asT (z), X(z) andB(z).

2.3.4 Analysis

We start out with an analysis of the infinite system whereby the system is assumed
to be stable. On this condition, to be discussed later on, thedistributions ofHk

converge, fork → ∞, to a unique stochastic equilibrium distribution, independent
of the initial system conditions. LetH denote a generic rv following this equilib-
rium distribution. Likewise, we will drop the indexk for other variables involved.
As such, due to (2.38),

H =

[

D

⌈

H

D

⌉

+

X−1
∑

i=1

D

⌈

Bi

D

⌉

+ BX − T

]+

. (2.39)

Furthermore, we denote

F = D ⌈H/D⌉ ; Ei = D ⌈Bi/D⌉ . (2.40)

Note thatF corresponds to the waiting time of the first burst in a batch; since this
however differs from the waiting time of an arbitrary burst,commonly denoted by
W throughout this work, we avoid confusion by introducingF as notation, and
refer to it aswaiting time of batches. The other measure, denoted by the rvE, we
refer to asaugmented burst size.

To solve (2.39), we follow the same approach as in the DT modelin Sect. 2.2,
by solving the two non-linear effects sequentially: the queueing effect, related to
the non-negativeness of the buffer content; the granularity effect, related to the
finite granularity of the FDLs.

The queueing effect can again be formulated as

H = [G − T ]+ ,

where

G = F +

X−1
∑

i=1

Ei + BX . (2.41)

The variableT is the inter-arrival time of batches (and not of distinct bursts, as is
the case in the rest of this work). AsT is geometrically distributed, and indepen-
dent ofG, the solution in terms of pgf’s is exactly the one mentioned in Sect. 2.2,



60 CHAPTER2

(2.18):

H(z) =
p

z − p̄
G(z) + K

z − 1

z − p̄
, (2.42)

with now

G(z) = F (z)
X(E(z))

E(z)
B(z) , (2.43)

andK a constant that will be determined later on. Note that (2.43)follows directly
from (2.41), because the rv’s involved are independent.

Also for the granularity effect, we rely on a previously obtained expression
(2.21) to obtain

F (z) =

D−1
∑

k=0

1

D

zD − 1

zεk − 1
H(zεk) ,

E(z) =

D−1
∑

k=0

1

D

zD − 1

zεk − 1
B(zεk) , (2.44)

whereεk = exp(j2πk/D) as before, fork = 0 . . .D−1 (theD different complex
Dth roots of unity).

Combining (2.42) and (2.44), we find after some simplification in the numera-
tor,

F (z) =

K ·

[

p̄D−1(zD − 1)

zD − p̄D

]

1 −

[

D−1
∑

k=0

1

D

zD − 1

zεk − 1

pB(zεk)

zεk − p̄

]

·
X(E(z))

E(z)

. (2.45)

This expression is the pgf ofF , the waiting time of the first burst of an arriving
batch. We further remark that this expression is similar to (2.23). The difference
is captured by the factorX(E(z))/E(z) , which is the pgf of

∑X−1
i=1 E. This sum

is associated with the total amount of work brought about by all bursts that do not
arrive last. In the case of single burst arrivals,X(z) = z, and this factor simplifies
to 1, and we obtain exactly (2.23).

The next task is to determine the constantK occurring in the formula forF (z).
This can be done by demandingF (1) to be one, as prescribed by the normalization
condition. By applying the rules of de l’Hôpital, we find

K =
1 − p̄D

Dp̄D−1
·

(

1

p
+

D−1
∑

k=1

B(εk)

εk − p̄
− E[X ] ·

[

E[B ] +
D − 1

2
+

D−1
∑

k=1

B(εk)

εk − 1

])

.

(2.46)
Now, the expressions forH(z) andF (z) can be obtained as a combination of

(2.42), (2.45) and (2.46).
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2.3.5 Maximum and Equivalent Load

The probability of finding the system empty upon arrival of a batch, relates to the
constantK, as

H(0) = lim
k→∞

Pr[Hk = 0] =
K

p̄
.

Demanding the infinite system to be stable, is equivalent to demanding this proba-
bility not to be zero. The conditionH(0) > 0 defines a maximum tolerable arrival
intensitypmax, which is the solution of

1

p
= E[X ] ·

[

E[B ] +
D − 1

2
+

D−1
∑

k=1

B(εk)

εk − 1

]

−
D−1
∑

k=1

B(εk)

εk − p̄
. (2.47)

We note that this only involves the mean of the batch size distribution E[X ], and
any type of batch size distribution with the same mean thus produces the same
pmax.

Presently we can also define an equivalent load,

ρeq = p ·

{

E[X ] ·

[

E[B ] +
D − 1

2
+

D−1
∑

k=1

B(εk)

εk − 1

]

−
D−1
∑

k=1

B(εk)

εk − p̄

}

, (2.48)

that incorporates the effect of voids, and is100% whenp = pmax.

2.3.6 Maximum and Equivalent Load, Revisited

To allow for more insight in the formulation ofρeq, it proves useful to also for-
mulate the alternate description of the system evolution here, now in terms of the
waiting times of batches. Taking into account (2.38) and (2.40), and denoting
Fk = D⌈Hk/D⌉ andEk,i = D⌈Bk,i/D⌉, one can show that theFk evolve as

Fk+1
∗
=

[

Fk +

Xk−1
∑

i=1

Ek,i + D

⌈

Bk,Xk
− Tk

D

⌉

]+

,

and, assuming equilibrium fork → +∞,

F
∗
=

[

F +

X−1
∑

i=1

Ei + D

⌈

B − T

D

⌉

]+

.

Note that these expressions are independent of time setting, and also are valid
for general iid distributions of the inter-arrival times, burst sizes and batch sizes,
They allow to follow the same reasoning as in Sect. 2.1.5. Clearly, the term
∑X−1

i=1 Ei + D
⌈

B−T
D

⌉

generates the process of the waiting times of batches, and
stability requires thus that

(E[X ] − 1) · E

[

D

⌈

B

D

⌉]

+ E

[

D

⌈

B − T

D

⌉]

∗
< 0 ,
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which, in the case of geometric inter-arrival times, results in (2.47). In the same
manner, one can define a general equivalent load as

ρeq
∗
= 1 +

(E[X ] − 1) · E
[

D
⌈

B
D

⌉]

+ E
[

D
⌈

B−T
D

⌉]

E[T ]
,

which is indeed consistent with (2.48).

2.3.7 Heuristics for the Loss Probability

Since the results of the previous section are only valid for infinite buffer size,
we rely on the heuristics of Sect. 2.1.6 to obtain the LP for the finite system.
Note that the term “LP” still denotes the probability of the loss of an arbitrary
burst, but that, when compared to Sect. 2.1.6, an additionalapproximation is made.
More precisely, the LP is approximated by the probability that an arbitrary batch
(instead of burst) is lost. Since bothH and F are associated with an arriving
batch, we thus follow the easiest way to obtain results, that, as we will show, are
sufficiently accurate. The possible extension that considers the scheduling horizon
of (individual) bursts is discussed at the end of this section.

With the above expression forρeq given, we only need to establish expressions
for the Pr[H∞ > ND] to be able to apply heuristic A (2.14) and B (2.15). These
tail probabilities we derive in the same manner as suggestedin Sect. 2.1.6, with
(2.11),

Pr[H > n] ≈ −
∑

k

Res

[

1

zn+1
·
H(z) − 1

z − 1

]

z=zk

,

where the summation indexk only runs over the poleszk of H(z) with smallest
modulus. Aiming for a dominant pole approximation in the sense of (2.12) in DT,
we are to determine the dominant poles of(H(z) − 1)/(z − 1), that are also the
dominant poles ofH(z) and, given (2.42), ofG(z). The latter being a product of
F (z), B(z) andX(E(z))/E(z) (see (2.43)), the assumption made onH(z) has
implications forB(z) andX(z). A sufficient condition is to assume thatB(z) and
X(z) have no singularities (if any) other than poles. This assumption includes the
broad class of rational pgf’s, and also frequently used others, such as the pgf of
the Poisson distribution. Excluded is the class of heavy-tailed distributions. As
mentioned earlier in Sect. 2.1.6, this assumption allows usto apply the dominant
pole approximation but, even for heavy-tailed distributions, all other derivations
from the previous sections remain valid.

With these additional assumptions, we are in the position touse (2.11), retain-
ing the dominant poles ofF (z). Note that the poles ofX(E((z))/E(z)) andB(z)

do not interfere, since those ofF (z) have smaller absolute value. Their number is
D, each has multiplicity one, and is of the formzk = z0εk (k = 0 . . .D− 1), with
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z0 the positive real one. Applying this allows to write the approximate relation as

Pr[H > n]

≈ −
limz→z0 [F (z)(z − z0)]

zn+1
0

·
D−1
∑

k=0

1

εn
k

B(z0εk)

z0εk − 1

p

z0εk − p̄

X(E(z0))

E(z0)
,

=
C(n)

zn
0

, (2.49)

where we introduced the notationC(n) to lay emphasis on the quasi-geometrical
tail decay, with decay ratez0. The functionC(n) is periodical, that is,C(n +

mD) = C(n) (m = 0, 1, 2 . . .). The values that will be of interest here are

C(ND) = −
1

z0
lim

z→z0

[F (z)(z − z0)]
D

zD
0 − 1

,

which can be found from (2.49), using the fact thatz0 is a pole ofF (see (2.45)),
that is,

1 −

[

D−1
∑

k=0

1

D

zD
0 − 1

z0εk − 1

pB(z0εk)

z0εk − p̄

]

·
X(E(z0))

E(z0)
= 0 .

The latter yields a value forz0 in the interval(1, +∞) if ρeq < 1. The same
heuristics can also be used to evaluate the LP in overloaded systems (ρeq > 1), by
(formally) computing the quantities Pr[H∞ > ND], with the same expression for
C(ND), for az0 that is to be found in(0, 1).

Finally, translating these results to the LP of a random burst is possible by
means of pgf’s, by quantifying the number of bursts within the same batch that
precede the random burst. The associated pgf is obtained forexample in [93]
(p.20) and can be used as a refinement. Nevertheless, the numerical comparison
presented in the next section illustrates that, even with the simpler approach that
we applied, the approximation already attains good accuracy.

2.3.8 Numerical Comparison

For ease of notation, we introduce an additional rvA, defined as the number of
arrivals in a random slot, which is perhaps a more natural wayof describing the
arrival process in DT. Of course,A, T andX are related. One can easily show that
Pr[A = 0] = p̄, and

Pr[A = n |A > 0] = Pr[X = n] , n ∈ N0 ,

and
A(z) = p̄ + p · X(z) , z ∈ C ,

so thatA(z) determinesT (z) andX(z).
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(a) Poisson batch size distribution.
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(b) Deterministic batch size distribution (X = 2).

Figure 2.6: Both for classic and more exotic batch size distribution, the heuristics provide
an accurate match of the simulation results. These figures were obtained for varying
D (in µs), slot size 1µs, deterministic burst size distribution withE[B] = B = 50
µs, andρ = 60%.

We now apply the obtained results to special cases of the burst and batch size
distribution. On Fig. 2.6(a), the LP as a function of granularity is considered, for
a deterministic burst size distribution, with value E[B ] = B = 50µs, with slot
size fixed to1µs. The batch size distribution is chosen Poisson. In that case,A is
distributed as

Pr[A = k] = e−λ λk

k!
, k ∈ N . (2.50)

where the parameterλ denotes the average number of arrivals per slot. Further,
the load was fixed toρ = 60%. For buffer sizesN = 5 andN = 20, results
from simulation, heuristic A and heuristic B are compared. As was remarked in
Sect. 2.1.6.2 and 2.2.8, heuristic B performs better than A around the optima (small
LP), and attains very high accuracy for large buffer sizes. Heuristic A performs
better than B only for high values of the granularity. The curves differ only little
from the case of Bernoulli arrivals, as the probability of observing more than a
single arrival, Pr[A > 1], is rather small. Results for other values of the load,
not included here, reveal similar plots. The accuracy of heuristic B remains high,
especially when the LP drops below10−2.
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To further assess the accuracy of our heuristics, we also take a look at a more
exotic case of a deterministic batch size distribution, with E[X ] = X = 2. Fig-
ure 2.6(b) shows curves of the LP as a function of granularity, again for a fixed load
of ρ = 60%, with buffer sizesN = 5 andN = 20. The match between heuristic
B and simulations is again very good. As in the case of the single arrivals, local
optima occur, but, here, performance is even more sensitiveto the value ofD.

Having sufficient confidence in the accuracy of the heuristics, we now move
on to the study of synchronization.

2.3.9 Synchronization Study

2.3.9.1 Imposing a Slotted Structure

By synchronization we refer to the transformation from an asynchronous (or, un-
slotted) setting to a setting with a slot length∆, at node level. This means that,
within a network, this synchronization uses a local clock, and only has impact on
traffic within the node.

time

padding

time

Figure 2.7: Synchronization results in two effects: batch arrivals (multiple arrivals at a slot
edge) and padded burst sizes (indicated in grey).

The process is illustrated in Fig. 2.7. In the initial setting, depicted on the upper
time axis, arrivals can occur at the input at any instant, andare assumed to happen
one at a time. In the synchronized environment, depicted on the lower time axis,
bursts are forced to arrive at slot boundaries by imposing a small delay, that can
take on values between0 and∆. Due to this retiming effect, several bursts can
now arrive at the same slot boundary, that is, they can arrivein batches.

For the burst sizes, a different effect comes about. Once synchronized, traffic
patterns are captured using discrete variables, that express an integer number of
time slots involved. Burst sizes are thus virtually increased to an integer multiple
of slots. This effect, that adds to the burst size an amount ranging from0 to ∆, is
denoted padding, as indicated in grey in Fig. 2.7. Remark that the padding results
from the interplay between burst size and slot length only, and that the exact arrival
instant has no impact on this. Also, note that, if the burst size is already an integer
multiple of the slot length, no padding occurs. In other situations, padding can
account for serious loss, as it increases the mean value of the burst size, and thus
the load. Instances of both situations will be given next.
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2.3.9.2 Poisson Batch Sizes and Padded Burst Sizes

With this definition of synchronization, we can now look at the impact on the
number of arrivals per slotA, and the batch sizeB. The number of arrivalsA per
slot in a synchronized setting is derived from the number of arrivalsA that can be
expected to arrive in the asynchronous setting, in a time period of length∆. In gen-
eral, this derivation is a non-trivial one, and it is only in some special cases, such
as a Poisson arrival process, that synchronization resultsin a number of arrivals
that is distributed iid from slot to slot. In that case,A has a Poisson distribution,
with parameterλ, and pmf as in (2.50). We find thatA remains Poisson distributed
regardless of the slot length, with parameterλ = ∆ · ρ/E[B ] scaling linearly with
this slot length. This allows us to study the impact of synchronization within the
single framework of Poisson batch arrivals. We note that this is not possible ifA
would have a Bernoulli distribution, as a Bernoulli arrivalprocess is not the result
of a synchronization process. For that reason, the comparison made in Sect. 2.2.8
(Fig. 2.3) for geometric and deterministic burst size distribution became less and
less accurate with increasing∆. Also, there, the effect of padding was not taken
into account.

2.3.9.3 Numerical Examples

In this section, we take a look at two synchronization settings. Both assume a
Poisson arrival process in the asynchronous setting, with single arrivals, that is
then synchronized according to a slot length∆, with the arrival of a batch per slot.
As mentioned above, the modeling thereof implies using Poisson batch sizes and
padded burst sizes. The load was fixed toρ = 60%, with a buffer sizeN = 20.
Recall that this load applies before any synchronization isdone. Since heuristic
B yields more accurate results than heuristic A, we will onlyshow heuristic B.
Simulation results not included here, confirmed that this heuristic was accurate.

On Fig. 2.8(a), we present the LP for the case of geometric burst sizes, as a
function of the granularity. The mean burst size before synchronization is E[B ] =

50 µs, which corresponds to approximately 60 kB at 10 Gbit/s. (A rather high
value like this one is possible in OBS, where bursts are typically large, as they
consist of an aggregation of packets gathered at the edge nodes.) Different slot
lengths, ranging from 1µs to 50µs, are applied, and the mean burst size increases
due to padding. Clearly, synchronization does not have a large impact on LP, and
the curves overlap almost completely. Only for large slot lengths (∆ = 25 µs and
∆ = 50 µs), the LP alters a little bit. When considering the effects of retiming and
padding separately, we found that, while retiming actuallybetters performance,
padding annihilates this benefit.

On Fig. 2.8(b), a similar setting is assumed, now with a deterministic burst size
of B = E[B ] = 50 µs. Clearly, synchronization now has a huge impact on perfor-
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(a) Geometric burst size distribution.
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(b) Deterministic burst size distribution (B =
50µs).

Figure 2.8: How synchronization impacts loss performance depends largely on the burst
size distribution. If burst sizes vary, like in case of a geometric burst size distri-
bution, the benefits of synchronization are countered by theeffects of padding. If
burst sizes are fixed, the LP lowers spectacularly, especially if the threesome of slot
length∆, burst size and granularityD (all three inµs) match. These figures were
obtained forE[B] = 50µs,ρ = 60%, andN = 20. The batch sizes are distributed
according to a Poisson distribution, with parameterλ = ∆ρ/E[B].

mance, especially for large slot lengths. If we consider theloss forD = B = 50

µs, we find that LP is reduced more than106 times. Looking for the cause of this
drastic reduction, we find that, due to the good choice of slotlengths, burst sizes
could always be expressed as a multiple of slots. Therefore,no padding comes
about, andB is 50µs in both the asynchronous and synchronized setting. On the
other hand, the benefits of retiming are bigger than in the case of a geometric burst
size distribution, and, for a slot length∆ = D = B = 50 µs, voids are even can-
celed out completely. Especially for∆ = D = B, it can be understood intuitively
that the performance of the FDL buffer must benefit from synchronization. In-
deed, except for the extra delay due to synchronization, theoptical buffer realizes
exactly the same buffering behavior as a classic RAM buffer if ∆ = D = B.

Taking into account both examples, we conclude that synchronization can
lower LP significantly if the burst size is fixed. In that case,we consider retiming
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a viable and effective way to mitigate LP drastically, and cost and effectiveness
should be weighed to decide wether or not to implement this type of retiming.
Further, synchronization is found to be of little merit (with respect to buffer per-
formance) if burst sizes are distributed exponentially. Although not investigated
explicitly, the intermediary case where only a limited number of burst sizes plays
a role is expected to also allow for a bettering in loss performance. This benefit is
expected to be not as drastic as in the case of fixed-sized bursts, yet still significant,
if the synchronization slot length is chosen well.

2.4 Model for General Arrivals

While results up to now were obtained under the restrictive assumptions of a mem-
oryless arrival process, the aim of the current section is toalleviate the restrictive
assumptions of the M/G/1 buffer model of Sect. 2.2.3, and perform the analysis for
general independent arrivals. The latter we intend in the sense of the (extended)
Kendall notation: a GI/G/1 model for degenerate infinite-sized optical buffers in
DT, with general independent (GI) distribution of the inter-arrival times, with as
sole restriction on the inter-arrival times the requirement to have a rational pgf.
Such GI arrival process indeed allows to generate a correlated stream of arrivals
(with generalinter-arrival times), as will be treated in this section. Since inter-
arrival times still constitute a series of iid rv’s, this form of correlation is only a
mild variant of correlation, that does not result in the severe performance degrada-
tion typical for heavily-correlated input processes, but nevertheless serves the pur-
pose of qualifying the impact of correlation with the lightest-possible model. Since
arrival processes in (optical) communication networks areknown to be bursty [97],
such study of the impact of correlation in the arrival process on performance is cru-
cial. Further, while a generalization of the arrival process naturally gives rise to a
study of the impact of correlation, note that the next section will employ the same
model for different means, namely to study a buffer with wavelength conversion.
Finally, note that the results of this section were disseminated first in [6]. Since
the analytic results are obtained from an extension of the DTM/G/1 model of
Sect. 2.2, we will rely on previous results in an incrementalway, and mainly focus
on the way to extend the results of that section.

2.4.1 Buffer Setting and System Equation

As said, the current section treats the extension of previous results in an incre-
mental way, and the buffer setting and system equation are even identical to the
one assumed in Sect. 2.1.2 for DT. However, despite the fact that those aspects re-
mains unaltered, the problem now harbors more complexity, since both theTk and
Bk constitute iid rv’s with general distribution. This will complicate the analysis in
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a non-trivial way, especially in solving the queueing effect, and in the combination
of granularity effect and queueing effect.

2.4.2 Traffic Setting

As for the burst sizesBk and inter-arrival timesTk mentioned in (2.1), we assume
both to form a sequence of iid rv’s. In our analysis, we will again use their asso-
ciated pgf, and will consider also the pgf of the other variablesHk, Gk andWk.
Note that, in order to allow for exact analysis, the additional assumption of a ratio-
nal pgf for the inter-arrival times will be made in the next section. Also, we make
the usual assumption that E[Tk ], E[Bk ] < ∞.

2.4.3 Analysis

The analysis assumes a system of infinite size, and assumes stable regime. The
approach consists in solving the queueing and the granularity effect separately.
A crucial third step is then to combine both correctly, whichrequires the use of
Rouché’s theorem.

2.4.3.1 Conditions

From this point on, we assume that the system is stable. The condition for sta-
bility is in accordance with Sect. 2.1.5, and is investigated below in Sect. 2.4.4.
Moreover, different from the case of memoryless arrivals, the combination of gen-
eral inter-arrival times and general burst sizes might in some “pathological” cases
result in a reducible Markov chain for the scheduling horizon. Since these situ-
ations are of limited practical relevance, we exclude them in the following, and
refer to Sect. 5.1.4.3 for further remarks on this assumption. At any rate, assuming
the load is below the tolerable load, and assuming an irreducible and aperiodic
Markov chain for the scheduling horizon, the distributionsof Hk (and likewise,
for the other variablesGk andWk) converge, fork → ∞, to a unique stochastic
equilibrium distribution, that no longer relates to the initial condition of the sys-
tem. Associated with this distribution is a common rvH , and a pgfH(z), of which
we will derive the explicit form below. For the inter-arrival time distribution, we
assume that its pgfT (z) is rational. Both the numerator and denominator are thus
polynomials of finite degree. This assumption is not very restrictive from a mod-
eling point of view, and includes the distributions treatedfurther in Sect. 2.4.6.
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2.4.3.2 The Queueing Effect

Since we assume the system is stable, we analyze the queueingeffect as it occurs
for the stochastic equilibrium distributions, and (2.3) becomes

H =st [G − T ]
+

, (2.51)

where “=st” denotes stochastic equivalence. We emphasize thatG andT (and,
Gk andTk) are statistically independent, which is essential to our current analy-
sis. Now, the complexity of a transform-based solution to this problem depends
critically on the exact form of the distribution, or equivalently, the pgf ofT , as
discussed in for example [93].

To solve (2.51), we write the rational pgf ofT as

T (z) =
N(z)

P (z)
=

∑N
i=0 niz

i

∑P
i=0 pizi

. (2.52)

In other words, we label the numerator as a polynomialN(z) of degreeN , and
the denominator as a polynomialP (z) of degreeP . Under these assumptions,
Eq. (2.52) lends itself to an exact analysis, involving an auxiliary function T̃ (z).
In the first step, we rewrite the pgf ofT , so as to facilitate the analysis of the second
step, that brings about̃T (z).

Rewriting the pgf of T The pgf ofT (z) mentioned in (2.52) can be rewritten as
follows,

T (z) =

R
∑

i=0

riz
i+

∑Q
i=0 qiz

i

∏C
j=1(z − γj)mj

=

R
∑

i=0

riz
i+

C
∑

j=1

mj−1
∑

i=0

bij

(γj − z)i+1
, (2.53)

where we introducedR, ri, Q, qi andbij for notational convenience. More pre-
cisely, we subsequently isolated the polynomial part of thefraction, to then apply
a partial fraction expansion to the second term. Theγj (j = 1 . . . C) are theC dif-
ferent poles ofT (z), each with associated multiplicitymj (j = 1 . . . C). Utilizing
the probability generating property of a pgf, one can express the probabilitiestk
(k ∈ N0), corresponding withT (z), as

tk =
1

k!

∂k

∂zk
T (z)|z=0 =

R
∑

i=0

riδi,k +

C
∑

j=1

mj−1
∑

i=0

(

i + k

i

)

bij

γi+k+1
j

,

whereδi,k still denotes the Kronecker delta. Reordering the binomialcoefficients
(

i+k
i

)

, and introducing coefficientscij , we arrive at

tk =

R
∑

i=0

riδi,k +

C
∑

j=1

mj−1
∑

i=0

ki

γk
j

cij . (2.54)
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Obtaining the pgf of H With the definition of a pgf as a starting point, we apply
(2.52) to obtain

H(z) =

∞
∑

m=0

hmzm

=

∞
∑

n=0

∞
∑

k=0

gntkz[n−k]+

=
∞
∑

n=0

∞
∑

k=0

gntkzn−k +
∞
∑

n=0

∞
∑

k=n

gntk(z0 − zn−k)

= G(z)T (z−1) +

∞
∑

k=0

(1 − z−k)

∞
∑

n=0

gntk+n , (2.55)

wheregn andtk are the probabilities corresponding withG(z) andT (z) respec-
tively, and [x]+ is shorthand formax{x, 0}. We introduce the coefficients̃tk
(k ∈ N),

t̃k =

∞
∑

n=0

gntk+n =

∞
∑

n=0

gn





R
∑

i=0

riδk+n,i +

C
∑

j=1

mj−1
∑

m=0

(k + n)m

γk+n
j

cmj



 , (2.56)

where we used (2.54) in the last transition. The first term in this expression we can
rewrite as

∞
∑

n=0

gn

R
∑

i=0

riδk+n,i =

min(k,R)
∑

i=0

rigi−k = r̃k =

R
∑

i=0

r̃iδk,i ,

where we introduced the coefficientsr̃k for notational convenience. The second
term of (2.56) can be reformulated as

∞
∑

n=0

gn

C
∑

j=1

mj−1
∑

m=0

(k + n)m

γk+n
j

cmj =

C
∑

j=1

mj−1
∑

m=0

∞
∑

n=0

gn

m
∑

i=0

(

m
i

)

kinm−i

γk+n
j

cmj

=

C
∑

j=1

mj−1
∑

i=0

ki

γk
j

(

∞
∑

n=0

gn

mj−1
∑

m=i

(

m
i

)

nm−i

γn
j

cmj

)

=
C
∑

j=1

mj−1
∑

i=0

ki

γk
j

c̃ij .

In the second step, we interchanged the sums overm and i, respectively, while
in the third step, we introduced other coefficientsc̃ij for notational convenience.
Now, the form of thẽtk is captured by

t̃k =
R
∑

i=0

r̃iδk,i +
C
∑

j=1

mj−1
∑

m=0

km

γk
j

c̃mj , (2.57)
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which obviously resembles the form of thetk (2.54). If we now introduce the
auxiliary functionT̃ (z),

T̃ (z) =

∞
∑

k=0

t̃kzk ,

the resemblance between (2.54) and (2.57) leads to the conclusion thatT (z) and
T̃ (z) have a common denominatorP (z). Also, we see that the numerator ofT̃ (z)

has degreeN or less. The result of the queueing effect then follows from (2.55),
leading to

H(z) = G(z)T (z−1) + T̃ (1) − T̃ (z−1) , (2.58)

that can be seen as an extension of (2.18), obtained in case ofa Bernoulli arrival
process. As forT̃ (z), we note that this auxiliary function is rational, just like
T (z), but not a pgf, as̃T (z) 6= 1. It shares the denominator ofT (z), P (z), but
differs in its numerator̃N(z) 6= N(z), that is a polynomial of degreeN or less. In
accordance with (2.52), we can thus write

T̃ (z) =
Ñ(z)

P (z)
=

∑N
i=0 ñiz

i

∑P
i=0 pizi

. (2.59)

We note that the coefficients̃ni are unknown. However, applying Rouché’s theo-
rem in the following will enable us to proceed without havingto determine them
explicitly. We focus now on the second non-linearity.

2.4.3.3 The Granularity Effect

The granularity effect reflects the degeneration of the buffer, that is only capable
to realize delays that are a multiple of the granularityD. It is captured by

W = D ·

⌈

H

D

⌉

. (2.60)

The solution in terms of pgf’s is provided by (2.20),

W (z) =
D−1
∑

k=0

1

D

zD − 1

zεk − 1
H(zεk) , (2.61)

with the symbolsεk denoting theD different complexDth roots of unity, that
is, εk = ej2πk/D. A property of this solution is that it displays symmetry in the
complex plane. More precisely,W (z) is invariant to rotations over multiples of
2π/D radians, which is a direct consequence of the fact thatW (z) is a function of
zD only, and implies thatW (zεk) = W (z), k = 0 . . .D − 1.
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2.4.3.4 Combining Results

We now start from (2.58), and apply again the property that

G(z) = B(z)W (z) . (2.62)

This is so, because of (2.3), and the fact that the pgf of the sum of two independent
rv’s is the product of their separate pgf’s. We find that

H(z) = B(z)W (z)T (z−1) + T̃ (1) − T̃ (z−1) . (2.63)

Further, substituting this expression forH(z) into (2.61), we find a functional
equation forW (z),

W (z) =

D−1
∑

k=0

1

D

zD − 1

zεk − 1

{

B(zεk)W (zεk)T ((zεk)−1) + T̃ (1) − T̃ ((zεk)−1)
}

.

UsingW (z) = W (zεk) this results in

W (z) =

D−1
∑

k=0

1

D

zD − 1

zεk − 1

{

T̃ (1) − T̃ ((zεk)−1)
}

1 −
D−1
∑

k=0

1

D

zD − 1

zεk − 1
B(zεk)T ((zεk)−1)

. (2.64)

This does not represent a complete solution forW (z) yet, as we do not have an
exact expression for̃T (z). However, making use of Rouché’s theorem, we can
overcome this last obstacle.

2.4.3.5 Applying Rouch́e’s theorem

In order to apply Rouché’s theorem, we need to reformulate the denominator of
W (z). More precisely, we rewrite the denominator as the sum of twoanalytic
functions ofz in the domain|z| < 1. Since the factorT ((zεk)−1) has poles in
this domain, we make further assumptions on the form ofT (z) = N(z)/P (z) to
remove these poles. As for the degree ofN(z) andP (z), two possibilities occur:
eitherN ≤ P , or N > P . Derivations for both cases follow a similar line, we
confine ourselves here to the caseN ≤ P . Further, we writeP (z), the common
denominator ofT (z) andT̃ (z), as

P (z) =
C
∏

j=1

(z − γj)
mj .

(This notation is also adopted in (2.53).) Theγj (j = 1 . . . C) are theC different
zeroes ofP (z), all outside of the domain|z| ≤ 1, each with associated multiplicity
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mj (j = 1 . . . C), and thusP =
∑C

j=1 mj . Now, we are in the position to remove
the poles ofT ((zεk)−1), by multiplying both numerator and denominator ofW (z)

in (2.64) with
D−1
∏

k=0

(zεk)P P ((zεk)−1) ,

which gives us, considering (2.52) and (2.59), forW (z),

W (z) = (2.65)
D−1
∑

k=0

1

D

zD − 1

zεk − 1

{

D−1
∏

k=0

(zεk)P P ((zεk)−1)T̃ (1) −
D−1
∏

k=0

(zεk)P T̃ ((zεk)−1)

}

D−1
∏

k=0

(zεk)P P ((zεk)−1) −
D−1
∑

k=0

1

D

zD − 1

zεk − 1
B(zεk)

D−1
∏

k=0

(zεk)P N((zεk)−1)

.

This can be somewhat simplified (not shown here, but applied below), by remark-
ing that

D−1
∏

k=0

(zεk)P P ((zεk)−1) =

D−1
∏

k=0

C
∏

j=1

(1− zεkγj)
mj =

C
∏

j=1

(1− zDγD
j )mj , (2.66)

which is an application of the identityxD − aD =
∏D−1

k=0 (x − εka) atx = 1 and
a = zγj. A second step to take is to split the denominator of (2.65), denotedR(z),
into two functionsR1(z) andR2(z), as follows,

R(z) = R1(z) + R2(z) ,

R1(z) =

C
∏

j=1

(1 − zDγD
j )mj ,

R2(z) = −
D−1
∑

k=0

1

D

zD − 1

zεk − 1
B(zεk)

D−1
∏

k=0

(zεk)P N((zεk)−1) ,

where we applied the simplification of (2.66) to obtainR1(z). Now, one can verify
thatR1(z) andR2(z) are both analytic in the domain|z| < 1: the denominator
factor(zεk−1) does not yield an actual pole due to the numerator factor(zD−1),
B(z) is analytic in this domain, and also

∏D−1
k=0 (zεk)P N((zεk)−1) is analytic,

sinceN ≤ P .
In a third and last step, we remark that

R(zεk) = R(z) ; R1(zεk) = R1(z) ; R2(zεk) = R2(z) (k = 0 . . .D−1) .

(For R1(z), this is obvious; forR2(z), this can be understood if one compares
with the form ofW (z) (2.61), which also has this property.) Denotingy = zD,
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we introduce equivalent functionŝR(y), R̂1(y) andR̂2(y) for which

R̂(zD) = R(z) ; R̂1(z
D) = R1(z) ; R̂2(z

D) = R2(z) .

Now, we take up the approach of [98], and apply Rouché’s theorem onR̂(y).
To do this, it is necessary thatR̂1(y) andR̂2(y) (i) are analytic functions in|y| < 1,
(ii) are continuous at the boundary|y| = 1, (iii) have derivatives aty = 1, (iv)
comply with the relation|R̂1(y)| > |R̂2(y)| at (|y| = 1,y 6= 1), (v) comply with
the relationR̂1(1) = −R̂2(1) 6= 0, (vi) comply with the relation

R̂′
1(1) + R̂′

2(1)

R̂1(1)
> 0 , (2.67)

where primes denote derivates.
If we assume the involved pgf’s to be properly defined, and require the system

to be stable, it can be easily checked that these six conditions are fulfilled. (What
happens for an unstable system is explained in Sect. 2.4.4.)Invoking the theorem
in [98], we conclude that the number of zeroesNR̂ of R̂(y) in the domain|y| < 1

relates to the number of zeroesNR̂1
of R̂1(y) in the same domain (which is known

to beP ) according to the relation

NR̂ = NR̂1
− 1 = P − 1 .

Including now the zero aty = 1, the total number of zeroes for̂R(y) in the domain
|y| ≤ 1 sums up toP . Introducing the notation̂W (zD) = W (z), we can invoke
that W (zD) (like W (z)) is a proper pgf, with no singularities in the mentioned
domain. As such, allP zeroesy = βi (i = 0 . . . P − 1) of the denominator̂R(y)

in the domain|y| ≤ 1 have to be compensated by the same zeroesy = βi in the
numerator. Aware of these zeroes in the numerator, and usingthe knowledge that
the numerator of̂W (zD) is of degreeP (which can be understood if one combines
(2.65) and (2.66)), we cast̂W (zD) in a form

W (z) =
K(zD − 1)

R̂(zD)

P−1
∏

i=1

zD − βi

1 − βi
. (2.68)

Again, this expression reflects thatW (z) is a function ofzD. The constantβ0

is the zero ofR̂(y) equal to one, while the otherβi, i = 1 . . . P − 1 are zeroes
of R̂(y) in the domain|y| ≤ 1. SinceR̂(y) has zeroesβi, R(z) hasDP zeroes
αj , j = 0 . . .DP − 1, that correspond to theD-th complex roots ofβi (eachβi,
i = 1 . . . P , accounting forD differentαj).

Note that, at this point, we indeed ruled outT̃ (z). The constantK can be
determined by demanding thatW (1) = 1 (normalization condition), and results in

K =
C
∏

j=1

(

1 − γD
j

)mj
·







E[T ] − E[B ] − D−1
2 −

∑D−1
k=1

B(εk)T (ε−1
k

)

εk−1

D







. (2.69)
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Now, the pgf of the waiting timeW (z) is fully known. It then suffices to substitute
W (z) in (2.63), to obtain an explicit formula forH(z), which was our aim.

2.4.4 Maximum and Equivalent Load

As for the condition to stability, we can again take

lim
k→∞

Pr[Hk = 0] = 0 ,

as a characterization of instability. Considering (2.63) and (2.68), this occurs when
K (given by (2.69)) becomes zero. From this, one can define a maximum tolerable
arrival intensityp̂max, that puts an upper limit to the arrival intensityp̂, defined as
1/E[T ]. (Note that we usêp instead ofp to avoid confusion with the parameter of
the (less general) case of the geometric distribution with parameterp of (2.17).) It
follows thatp̂max is the solution to the implicit equation (implicit, aŝp also occurs
in the expression forT (z))

1

p̂
= E[B ] +

D − 1

2
+

D−1
∑

k=1

B(εk)T (ε−1
k )

εk − 1
. (2.70)

The symbolsεk still represent theD different complexDth roots of unity, as in
(2.61). The solution is thus function of the FDL granularityD, the (complete)
pgf’s of both inter-arrival and burst size distribution, again to be found from (2.70)
with a simple bisection algorithm. Related, we define the equivalent load as

ρeq = p̂ ·

(

E[B ] +
D − 1

2
+

D−1
∑

k=1

B(εk)T (ε−1
k )

εk − 1

)

. (2.71)

Note that the expressions (2.70) and (2.71) are indeed consistent with the general
approach presented in Sect. 2.1.5.

Finally, there is also a third method to obtainp̂max. One easily verifies that the
conditions to apply Rouché’s theorem in Sect. 2.4.3.5 are violated when̂p = p̂max.
More precisely, the assumption that the system is stable then no longer holds, and
the numerator of (2.67) turns zero, reflecting the system’s instability.

2.4.5 Heuristics for the Loss Probability

To derive the loss probability for a buffer of finite sizeN , we again invoke the
heuristics of Sect. 2.1.6.2, and consider here only the mostaccurate one, heuristic
B. Further, we impose the same assumptions as there: the burst size distribution
is not heavy-tailed, and has a single dominant pole. A sufficient condition is that
B has a rational pgf likeT . We will adopt this convention from here on, and note
that it poses no problem for the application of Sect. 2.4.6. Further, the equivalent



PERFORMANCEEVALUATION WITH TRANSFORMFUNCTIONS 77

load is stated above; the overflow probabilities Pr[H∞ > ND] we obtain with the
dominant pole approximation of Sect. 2.1.6.1. The tail probabilities have a quasi-
geometrical tail decay, with decay ratez0 as in (2.12). TheC(ND) follow from
the application of residue theory and are, in their final form, given by

C(ND) = −
1

z0
lim

z→z0

(W (z) · (z − z0))
D

zD
0 − 1

.

The limit in the above can easily be calculated explicitly. As for the polez0,
the functionW (z) relates toH(z) according to (2.63) and both have the same
dominant poles. Since for the latter, we had thatW (z) = W (zεk), it is easy to
see that there areD dominant poles, of the formzk = z0εk (k = 0 . . .D − 1),
with z0 being (by definition) the positive real one. That the latter does indeed exist
(under the assumptions discussed in Sect. 2.4.2), follows readily by inspecting
the denominator ofW (z) (see (2.65)) along the positive real axis. Although all
formulas were found under the assumption of a stable system,it will be shown
that the heuristic again also performs well for overloaded systems, that is, with
ρeq > 1.

2.4.6 Numerical Comparison

In this section, we perform a numerical comparison of simulation results against
results from the heuristic of Sect. 2.4.5. Our scope is twofold. On the one hand, we
want to assess the accuracy of the heuristic. On the other hand, we are particularly
interested in the impact of correlation in the arrival process on the performance of
an optical buffer, since arrival processes in (optical) communication networks are
bursty, as noted before.

The buffer we consider has a fixed sizeN = 20 and feeds into a single channel,
for a slot length of 1µs. Arriving bursts have a fixed burst sizeB of 20 µs. The
loadρ = E[B ]/E[T ] remains fixed at 60 percent, and thus also E[T ] is fixed. Now,
we consider a correlation model for the inter-arrival timesthat uses a probabilistic
mix of geometrically distributed rv’sTS (parameterp1) andTL (parameterp2).
More precisely, the pgf of the inter-arrival time distribution is given by

T (z) = αTS(z) + (1 − α)TL(z) ,

whereα, 0 ≤ α ≤ 1, is a weighing factor, andTS(z) andTL(z) are the pgf’s of
TS andTL respectively. This model is able to capture an arrival process that we
describe with “trains” and “wagons”. That is, bursts or “wagons” do not arrive
independently (as in the case of a Bernoulli arrival processor a Poisson arrival
process), but rather, they arrive in smaller or larger groups or “trains”. The time in-
between bursts of the same group, or “wagon spacing”, generally denoted byTS ,
is on average much smaller than the time between two trains or“train spacing”,
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Figure 2.9: Simulation traces of the 5 runs, ordered (1 to 5) from top to bottom.

run 1 2 3 4 5

G 1 2 4 4 4
S 20 20 20 10 5

Table 2.1: Parameter setting used for the five runs.

generally denoted byTL. The average group size is captured byG = 1/(1 − α),
expressing the average number of bursts per group or “wagonsper train”. The
average wagon spacing is captured byS = 1/p1, the average train spacing by
1/p2 (both expressed in slots).

In Fig. 2.9, a sample trace of five different simulation runs is displayed, each
with sample length 500 time slots. With each new run (increasing run number)
parameter values were altered, so as to go from no correlation between arrivals
(run 1) to an increasing amount of correlation (run 2 to 5). The parameter setting
for each run is displayed in Table 2.1. As can also be understood from the figure,
first we augmented the average group sizeG (run 1 to 3), then we diminished the
wagon spacingS (run 3 to 5). Note that, for all five runs, the load, and thus the
overall average inter-arrival time remained fixed.

Figure 2.10 displays the loss probability for varying granularity D (in µs, with
each time slot corresponding to 1µs), for each of the five runs. The results from
the analysis are displayed as continuous curves, the simulations as discrete points
connected with dotted lines.

As for the performance of the heuristic, it is clear that it attains high accuracy.
Indeed, the analytic curve for run 1 matches the simulationsvery well, while for
run 5, the match is less striking. Nevertheless, it is clear that the discrepancy
between simulation and analysis is very small around the optimum, where the loss
probability is minimal.

Regarding the impact of correlation in the arrival process on the loss perfor-
mance of a finite-sized degenerate buffer, the observation of increased loss comes
rather as expected. Less evident is what happens to the optima. For fixed burst
sizes, the results of Sect. 2.2.8.2 (there for CT) showed that the well-pronounced
optima aroundD1 = B − 1 andD2 = (B − 1)/2 (in Sect. 2.2.8.2,D = B

andD = B/2 due to the different time setting) remain optimal for a broadrange
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(a) Run 1–3. (b) Run 3–5.

Figure 2.10: Although run 1–5 clearly are obtained for a completely different arrival pro-
cess (with the parameter setting of Table 2.1), the heuristic’s output provides good
overall accuracy. Remark how the optimal granularityD = B−1 stands out for all
five runs. These figures were obtained for varyingD (in µs), slot length∆ = 1 µs,
fixed burst sizes withE[B] = 20 µs,N = 20, andρ = 60%.

of the loadρ if arrivals occur independently. More precisely, it is known that
D1 is optimal for low values of the load (for example 10 percent)and the loss
for D2 is then much higher, while above a threshold load of 0.652,ρ ≥ 0.652

(for the assumed time setting and burst size),D2 becomes optimal. Interestingly,
Fig. 2.10(a) (together with results not shown here) shows that this balance between
D1 andD2 is hardly influenced when we increase the average group size in run 1
to 3: although the overall loss increases, the relative position of D1 andD2 is
hardly influenced. This does not apply in the comparison of run 3, 4 and 5, as
inspection of Fig. 2.10(b) illustrates. Apparently, decreasing the wagon spacing
has a devastating effect on the optimum atD2, while the optimumD1 is much
less influenced. As such, the granularity valueD1 that is known to be optimal
for memoryless arrivals and low load (smaller than the mentioned threshold load
of 0.652, see Sect. 3.3.2 for more detail), also proofs optimal here, for the arrival
process of run 5 and a load of 60%.

Although not self-evident, this can be intuitively understood when we think
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of a specific situation withD = D1 = B − 1 = 19 µs, with B the fixed burst
size of 20µs. If an arriving burst is queued in delay linejD, and the next burst
arrives just 1 slot later, then this next burst is sent to delay line (j + 1)D and there
will be no time in-between the transmission of both bursts, implying that no void
occurs. This situation is indeed likely in run 4 and 5 (Pr[T = 1] is 0.077 and
0.152 respectively), while it is rather rare in run 1-3 (Pr[T = 1] is 0.030, 0.036
and 0.041 respectively). If the arrival would occur not 1, but 2 slots later, then the
void size is still just 1 slot. Generalizing, the granularity valueD1 leads to small
voids, especially when the case of a very small inter-arrival time is a likely one.
And, since minimizing the void size results in better loss performance, one can see
how D1 outperformsD2 on Fig. 2.10(b), as Pr[T = 1] increases. As a result, the
optimumD1 is more stable than it was under uncorrelated arrivals, and remains
optimal also for higher loads. This reveals how special features of the inter-arrival
time distribution, such as Pr[T = 1], play an important role in the performance of
degenerate buffers.

2.5 Model for Multiple Wavelengths

The current section presents an FDL buffer model that incorporates wavelength
conversion, thus considering two types of contention resolution at once. As al-
ready mentioned in Sect. 1.5, the combination of FDL buffering and wavelength
conversion provides both the most typical and most effective contention resolution
scheme, and is therefore of particular practical interest.

As mentioned in the previous section, the optical buffer model presented there
can also be applied for different means. Just like in Sect. 2.4, the aim of this
section is to provide a generalization of the M/G/1 model in DT of Sect. 2.2.3.
However, rather than alleviating the restriction on the arrival process (GI/G/1 in
Sect. 2.4), we consider the case of an M/G/c buffer model in DTwith wavelength
conversion, having access to multiple output wavelengths.The complementarity
is complete, in that 2.4 and the current section can be analyzed in an identical way,
and both constitute an exact modeling in the case of infinite buffer size. Specific to
the current section is however the entirely different buffer setting, and the need for
additional assumptions on the wavelength assignment algorithm within the optical
network node. As for the latter, we are only able to capture one algorithm in an
exact manner, namely round-robin, while others, like join-the-shortest-queue, can
(with the method presented) only be captured in an approximate manner, even in
the case of infinite buffer size.
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2.5.1 Buffer Setting

The current FDL buffer setting differs from the one of Sect. 2.1.2, that is gener-
ally considered throughout this chapter, in that it has multiple wavelengths at its
disposition. Other assumptions remain identical however:the FDL buffer under
consideration can only realize delays that are a multiple ofD; a line with indexj
corresponds to delayjD; the sizeN of the buffer is the index of the largest delay
line. Also in this case voids occur whenever any of the outgoing wavelenghts re-
mains unused, while bursts are present in the buffer, but notyet available. Further,
we assume full wavelength conversion capability (see Sect.1.7.1).

2.5.2 Wavelength Assignment Algorithm

With multiple wavelengths available for contention resolution, both the delay-line
and the wavelength assignment algorithm play their part. For each wavelength,
the delay-line assignment algorithm is assumed FIFO, just as elsewhere in this
work. As for the wavelength assignment algorithm, we will highlight all three
possibilities introduced in Sect. 1.7.3: Random (RND), Round-Robin (RR), and
Join-the-Shortest-Queue (JSQ). Our analysis will yield analytical results for RR
and RND. The crux for the RR model (and also for the RND model) will be to
transform the multi-wavelength situation to a single-wavelength one, by studying
what happens in a single of thec queues. To make this possible, we will have to
transform the arrival process as well (see next subsection). This approach is not
feasible for JSQ, that is known to be very hard to analyze in anexact manner, even
in the case of classic buffers. Therefore, JSQ performance will be simulated.

2.5.3 Traffic Setting

The burst sizesBk follow a general distribution, whereas the inter-arrival timesTk

follow the distribution that relates directly to the assumed wavelength assignment
algorithm. We assume both to form a sequence of iid rv’s, thusbeing independent
of the indexk. In the analysis, just like in Sect. 2.4, the associated pgf of the rv’s
is considered.

We assume that bursts arrive in the system according to a Bernoulli arrival
process, just like in Sect. 2.2.3. Bursts arrive in the system one by one, with inter-
arrival times that are distributed geometrically. Now, thedistribution of the inter-
arrival timeT in a given queue is directly related to the wavelength assignment
algorithm.

For RND, the arrivals in the queue are selected from a Bernoulli arrival process
in a random manner. Therefore, the same type of arrival process occurs at the
level of the queue, andT is also distributed geometrically, with pmf and pgf as
introduced in Sect. 2.2.1, with now E[T ] = c/p.
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For RR, everycth arrival in the system goes to the same queue. As such, the rv
T is the sum ofc different geometrically distributed rv’s. This leads to the so-called
negative-binomial distribution (sometimes called Pascaldistribution), which is the
DT counterpart of the Erlang distribution in CT. The rvT is the sum ofc rv’s with
geometric distribution, each with parameterp. The mean is E[Tk ] = c/p, the pmf
is

Pr[Tk = n] =

(

n − 1

c − 1

)

· pc · p̄n−c n ≥ c ,

and the resulting pgf reads

T (z) =

(

pz

1 − p̄z

)c

, z ∈ C .

Note that this approach can in principle be extended also forgeneral (non-geomet-
ric) inter-arrival time distribution. Then, the distribution of T would be given by
thec-fold convolution of that general distribution. This extension is however not
included in this work.

In the following, we will thus no longer consider the arrivalprocess at the
entire output port. Instead, we have transformed the system’s arrival process to
an arrival process at the level of a single queue, with inter-arrival time distribution
T . As such, we are able to model RND and RR with a queueing model for a
single wavelength. For RR, the price to pay is that the arrival process for the single
queue is no longer memoryless. Since we need to utilize the results of Sect. 2.4,
notice that both the geometric and the negative-exponential distribution for the
inter-arrival times indeed have a rational pgf, as required.

2.5.4 Evolution of the Scheduling Horizon

Having mentioned when bursts enter the buffer, and at what wavelength, we now
discuss in what way they join the chosen queue. We now consider a single wave-
length i (or, queuei), i = 1 . . . c. (As all queues behave in a similar manner,
we will not include the indexi in the notation.) Bursts arrive at the given queue,
and are numbered in the order in which they arrive at that specific queue by an
indexk. An arriving burstk has to be buffered for at leastHk, the time needed
for all previous bursts in that queue to be transmitted. Instead, it is scheduled to
wait for a time periodWk, that is a multiple ofD, and is sufficiently long, that is,
Wk ≥ Hk. Depending on the sizeN , the burst is either queued (Wk ≤ ND) or
dropped (Wk > ND). The measureHk is the so-called scheduling horizon of the
given queue, as seen by thekth burst;Wk is the waiting time in the given queue, of
thekth burst. For completeness’ sake, note that this is different from the approach
in Sect. 5.2, where all queues have to be involved in the system processes, in order
to be able to analyze the more complex algorithm JSQ.
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(a) Buffer sizeN = 10.
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(b) Buffer sizeN = 20.

Figure 2.11: For geometrically-distributed burst sizes, the three wavelength assignment
algorithms lead to much difference in terms of performance:JSQ outperforms RR,
that in its turn outperforms RND. These figures were obtainedfor E[B] = 100
slots,ρ = 60%, andc = 4.

At any rate, here we obtain exactly the same system description as in Sect.
2.1.3, and thus, also the one of Sect. 2.4. Hence, we rely entirely on Sect. 2.4 for
the analysis.

2.5.5 Numerical Comparison

At this point, we evaluate the performance of different multi-wavelength buffer
settings. Our scope here is twofold. On the one hand, we want to assess the
accuracy of our analytic results for RR and RND. On the other hand, we study
the relation between RR and JSQ, that will be shown to be intimate for fixed-
sized bursts. To do this, we consider all three wavelength assignment algorithms,
varying and fixed burst sizes, and two buffer sizes.

2.5.5.1 Geometrically-Distributed Burst Sizes

We first consider varying burst sizes, with a mean length of 100 slots, in Fig. 2.11(a)
(for buffer sizeN = 10) and Fig. 2.11(b) (N = 20). Assuming a slot size of
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100 ns, 100 kbit burst, and a 10 Gbit/s link per wavelength, this corresponds to a
mean burst size E[B ] = 10 µs, and granularity values ranging from 0 to 150 slots
(0 to about 3 km of fiber). The load is fixed to60%. Simulation results (sim) are
calculated for multiples of 10 slots, and analytic results (ana) for the whole range
of D. The number of wavelengths is four (c = 4).

Obviously, the main difference between the figures is in the range of the LP,
and they further display a similar behavior. In both figures,the analytic results for
RND and RR both match simulation results very well. This asserts the functioning
of our heuristic for varying burst sizes.

From the figure, it is obvious that RND is an algorithm that is to be avoided, as
both RR and JSQ perform significantly better. Comparing JSQ and RR, the sim-
ulation shows that JSQ outperforms RR by far, if burst sizes vary. Therefore, it is
understandable that JSQ often is the wavelength assignmentalgorithm of practical
interest. This can be understood intuitively, if one realizes that the next queue (as
selected in RR) seldom is the shortest queue (as selected in JSQ) if burst sizes vary.
This is different for fixed burst sizes.

2.5.5.2 Deterministic Burst Sizes

For burst sizes fixed to10 µs (or, 100 slots), we obtain Fig. 2.12(a) (N = 10)
and Fig. 2.12(b) (N = 20). Again, granularity ranges from 0 to 150 slots, load
is 60%, the number of wavelengths is four, simulation results (sim) are calculated
for multiples of 10 slots, and analytic results (ana) for thewhole range ofD.

Similar to the case of varying burst sizes, the impact of the buffer size is mainly
in the range of the LP. As for the optimal granularity, the well-pronounced opti-
mum for RND around the burst size (and also, at half the burst size) vanishes for
RR and JSQ. Further, simulation results for RND and RR assertthe functioning of
our heuristic again, now for fixed-sized bursts.

The RND wavelength assignment algorithm is again the one to avoid. The
main difference with varying bursts, is that the gap in performance between JSQ
and RR is really small, and this for the whole range ofD. Because this is so for
classic buffers, it comes not as a complete surprise. However, since optical buffers
differ from classic buffers in a non-trivial way (one can think of the voids, non-
existent for classic buffers), these results show that thisis also valid for optical
buffers. Thus, the intuition applies that to select the nextqueue (RR) often comes
down to selecting the shortest one (JSQ), if burst sizes are fixed.

Now, the observation that JSQ resembles RR for fixed-sized bursts implies
two things. On the one hand, considering also that RR has lower implementation
complexity than JSQ, a hardware designer would prefer RR over JSQ. On the other
hand, disregarding the choice between RR and JSQ, the analytical model obtained
for RR offers a good approximation for both RR and JSQ.
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Figure 2.12: For deterministic burst sizes, JSQ and RR yieldmuch better performance than
RND. However, the difference between JSQ and RR is much less pronounced than
in the case of geometrically-distributed burst sizes (Fig.2.11). These figures were
obtained forE[B] = 100 slots,ρ = 60%, andc = 4.

2.5.5.3 Multiplexing Gain

In Fig. 2.13(a) (varying burst sizes) and Fig. 2.13(b) (fixedburst sizes), we fo-
cus on the impact of wavelength conversion on loss performance. Therefore, we
consider one, two and four wavelengths (c =1, 2 or 4). For a single wavelength,
no wavelength assignment algorithm is specified (as there isonly one channel to
queue for), while for two and four wavelengths, we consider both RR and JSQ.
For RND, the results are also shown (albeit implicitly), as they are identical to the
results forc = 1, independent of the number of available wavelengths. As such,
RND does not benefit from multiplexing gain in any way.

We assume a buffer sizeN = 10, a mean burst size E[B ] = 100 slots (or,
10 µs at 10 Gbit/s), and a load of60%. As we have assessed the accuracy of our
heuristic in the above, we only show the analytic results forRND and RR (ana),
for the whole range ofD. (Simulation results forc = 2 not included here, display
a good match.) Simulation results for JSQ (sim) are calculated for multiples of 10
slots.

As a reference, we also mention the loss in case wavelength conversion is
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Figure 2.13: For both geometrically-distributed and deterministic burst sizes, the bene-
fit from multiplexing gain is largest in case of JSQ. However,for geometrically-
distributed burst sizes, RR performs much less than JSQ, while for deterministic
burst sizes, the performance of RR almost parallels that of JSQ. These figures were
obtained forE[B] = 100 slots,ρ = 60%, andN = 10.

applied without FDL buffering (withN = 0, corresponding to a single line of
length zero). For both varying and fixed burst sizes, the LP isthen approximately
0.38 for one wavelength,0.25 for two, and 0.14 for four wavelengths. These results
we obtain from the well-known Erlang-B formula, with 1, 2 and4 wavelengths
respectively. Although this formula by definition only applies in a continuous-
time setting, it serves as a good reference.

Figure 2.13(a) shows loss performance for varying burst sizes. For both RR
and JSQ, performance does benefit from multiplexing gain, and the curves lower
for increasingc. Results not included here, demonstrate a further decreasein loss
probability, when one adds even more wavelengths. In this respect, an FDL buffer
behaves similarly to a classic multiplexer.

Clearly, the gain is a lot more pronounced for JSQ than for RR:loss for JSQ
lowers significantly for two wavelengths, while RR needs four wavelengths to ob-
tain a comparable lowering. For RR and JSQ, we note how the optimum for the
granularity (for which the LP is minimal) decreases a little, but not much, as the
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number of wavelengths increases. Results not shown here, illustrate that this op-
timum is more sensitive to the load, than to the number of wavelengths. More
precisely, the optimal granularity shifts to lower values as load increases, similar
as in the case of a single wavelength.

Figure 2.13(b) displays the loss probability for fixed burstsizes. Again, RND
does not benefit at all from multiplexing gain. Loss performance for JSQ and RR
is again very similar, and both clearly capitalize on multiplexing gain. Here, the
optimal granularity for JSQ and RR drops markedly as the number of wavelengths
increases.

2.6 Concluding Remarks

In this chapter, various models for the performance evaluation of optical buffers
were presented. Assuming infinite buffer size, their analysis is based on an ap-
proach with transform functions, that allows to obtain elegant and exact results in
that case. For finite buffer-size results (such as the loss probability), we repeatedly
relied on heuristics that yield accurate results.

The first performance model presented was a single-wavelength model for
memoryless arrivals in DT. This was extended to CT by taking the limit of the
latter for decreasing slot lengths. An analysis directly inCT appeared feasible too,
but turned out to be slightly more complex than the limit procedure (at least in
the author’s opinion). Three special cases of burst size distributions were used to
illustrate results, and to establish the accuracy of the heuristics. For these special
cases, the resulting formulas turned out to be relatively simple, that is, not involv-
ing infinite sums, allowing for easy numerical evaluation. Also, it was shown that
the granularity heavily impacts the loss performance, as was noted also for DT.

The second performance model considered batch arrivals, allowing to study
the impact of synchronization on performance. It was shown that synchronization
benefits loss performance drastically when burst sizes are fixed. Together with
other advantages (for example, a simplification of the control logic), this might
justify the additional cost of implementing retiming within an optical node, when
burst size is fixed. For variable burst size, this benefit is ingeneral much less-
pronounced, as is illustrated in the case of memoryless burst size distribution,
where synchronization offers no performance benefits at all.

As a third performance model, we relaxed the assumptions on the arrival pro-
cess, to obtain a single-wavelength model for general inter-arrival times and burst
sizes. This model then allowed for a deeper insight in the impact of correlation in
the arrival process on loss performance, and the importanceof special features of
the inter-arrival time distribution in that context.

Employing the latter model in an alternative way provided uswith an ana-
lytic model for a multi-wavelength optical buffer. We have considered three dif-
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ferent wavelength assignment algorithms: Random (RND), Round-Robin (RR),
and Join-the-Shortest-Queue (JSQ). These handle either varying- or fixed-sized
bursts. For RND and RR, we developed an analytic model, whilefor JSQ, we re-
lied on simulation. In the case of varying burst sizes, we found that performance
is matched accurately in the case of RND and RR. Further, we found that the per-
formance of JSQ can in no case be approximated by that of RR, asthey differ too
much. We also found that the optimal granularity is not much influenced by the
number of wavelengths. For fixed-sized bursts, we found thatour model can esti-
mate performance very well for RND and RR. As we found that JSQperformance
is close to that of RR, our model is also a good heuristic approximation for JSQ.
Finally, we also observed that the optimal granularity drops markedly, for RR and
JSQ, as the number of wavelengths increases.

Concluding, this chapter provides a consistent overview ofthe performance
modeling of optical buffers by means of transform functions. Clearly, the single
system equation (2.1) posed a challenging problem, that wastackled for either
simplified or more general assumptions on the traffic setting. When compared to
the Markov chain approach of the next chapter, in the author’s opinion, the current
method is somewhat more elegant, in that all performance results are captured in
very condense mathematical form. Also, the approach with transform functions
allows to split up the problem in subproblems. Indeed, the separate treating of
granularity effect and queueing effect makes the solution method somewhat more
generic, when compared to that of the next chapter. On the other hand, the buffer
setting was always chosen degenerate, since the modeling ofnon-degenerate op-
tical buffers is typically better done with the methods presented in the following
chapter. Also, while the current approach yields exact results for infinite system
size (with the associated benefit of light-weight formulas), the Markov chain ap-
proach of the next chapter is especially well-adapted to finite buffer sizes, and will
allow to obtain exact results for some particular and instructive buffer settings.



3
Performance Evaluation with Markov

Chains

¶ The current chapter treats the modeling of single-wavelength optical buffers
by means of the imbedded Markov chain technique. The system setting is mostly
the same as the previous chapter, except that here, the FDL lengths are not limi-
ted to multiples of the granularity, but can take on any value. More essential is
however the difference in the approach of the analysis, thatleads to different but
compatible formulations of the performance results. Whilethe previous chapter
relied on probability generating functions, the current relies on the probabilities of
the involved Markov chain. While the analysis in the previous section was done in
the z-domain, the current section shows how to obtain results straight away in the
probability domain. Assuming infinite buffer size and degenerate buffer setting in
the previous section for the analysis, the current chapter assumes a non-degenerate
and finite-sized buffer. While results of the previous chapter took the evolution
of the scheduling horizon as a starting point, the current chapter focuses on the
evolution of the waiting times.

Apart from the dissimilarities in the assumptions, the results in this chapter are
also of a different nature. In the previous chapter, the analysis yielded exact results
for infinite-sized buffers in closed-form, but only approximate results for finite-
sized buffers. In the current chapter, general results are obtainable only through
numerical means, but with the prime advantage of being exact. Also, in some
special cases, the Markov chain approach allows to derive anexact closed-form
solution for the main performance measures, which clearly constitutes a significant
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credential.

Given that the system setting is nearly identical to that of Chapter 2, the ref-
erences mentioned there remain of interest also to the current chapter, and are not
repeated for conciseness’ sake, save the most relevant ones, that share either the
assumption of non-degenerate buffering, or the solution method.

Firstly, a Markov chain approach is also applied by Lakatos for the cyclic-
waiting problem, mentioned earlier in Sect. 1.7.2. His firstpaper on the topic [20]
assumed the most basic system setting in CT: infinite queue size, exponentially-
distributed inter-arrival times and burst sizes, with waiting times equal to multiples
of the cycle time, or, with the notation of Sect. 1.8.2, a degenerate infinite-sized
M/M/1 in CT. While this is exactly the setting of (the first part of) [24], the ap-
proach is based on a Markov chain, just like in the current chapter. Main difference
however is that Lakatos considered the (Markov chain) evolution of the number of
customers in queue, while we consider the evolution of assigned waiting times.
Derivation of the number of customers results in an analysisin its own right, with
much different expressions, that are somewhat more complicated than the ones we
obtain, but prove consistent. As such, [20] is the first to provide the stability con-
dition for this system. This approach is later applied to theDT case in [21], where
the stability condition is obtained for the degenerate infinite-sized M/M/1 in DT.
The question of stability starting from the waiting time wasraised first by [23], and
was elaborated in [22], providing a Markov chain approach based on the waiting
times, showing that both the CT case and DT case can be solved equally in this
manner, and this with somewhat easier calculations and expressions. This is of
special interest for the current work, since the approach of[22] is also the one of
the current chapter, with the difference that [22] considers the infinite-sized sys-
tem, whereas we look at the finite-sized, somewhat more complicated variant. The
parallel between our work and that of Lakatos is discussed more in detail in [5],
and in the introduction of [6].

Most similar to the current approach are the results that Almeida and his co-
authors came up with. In [28], they provided a solution method based on the
Markov chain of the waiting times, for a non-degenerate finite-sized M/M/1 buffer
in CT. Still in CT and for non-degenerate finite-sized buffersetting, they extended
this approach to the setting with general burst size distribution (M/GI/1) in [29], to
general inter-arrival times (GI/M/1) in [30], and to a GI/GI/1 setting in CT in [31].
Depending on the traffic assumptions, their numerical solution method is either
exact or approximate.

Further, especially relevant for the current chapter is [17, 19], where non-
degenerate optical buffer settings are considered. This setting, with FDL lengths
not necessarily a multiple of the granularity, they refer toasnon-equidistant. Apart
from the naming, the setting is however identical to the one we assume in the cur-
rent chapter.
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In [17], the analysis focuses on the evolution of the scheduling horizon, and
follows a Markov chain approach, stated in terms of the involved transition matrix.
The arrival process is a general Markovian arrival process,thus yielding a two-
dimensional state space. The method is valid for a general set of FDLs, and allows
to study both FDL line length optimization and preventive drop mechanisms.

1. FDL line length optimization assumes a non-degenerate buffer; since the
line lengths in such structure are not necessarily multiples of D, one can
optimize all the line lengths individually, rather than only D. As such,N
different parameters are to be optimized for minimal loss (with N equal to
the number of fibers of non-zero length). Since exhaustive search of such
N -dimensional optimization is unfeasible, three optimization algorithms are
introduced: Least Used Elimination (LUE), Smallest Increment Elimination
(SIE), and Largest Reduction Addition (LRA). The latter stands out as most
practicable; application thereof shows that for fixed burstlength and rather
high traffic load (ρ larger than about0.6), non-degenerate buffer structures
outperform degenerate ones. (To be precise, the LRA algorithm shortens
the length of the longest delay lines to obtain somewhat better loss perfor-
mance.)

2. Secondly, for degenerate FDL buffers, a preventive drop mechanism based
on a Markov decision process points out that preventive dropping of bursts
in case of high traffic load can significantly better performance.

Overall, non-degenerate structures obtained with the LRA algorithm yield more
performance bettering than preventive dropping. However,preventive dropping
has the benefit that it can function optimally on a given set ofFDLs regardless
of the traffic load, by applying dropping only during periodsof high activity, and
not applying it during periods of low activity. Non-degenerate structures do not
provide this benefit, since reduced length for the longest lines results in optimal
performance for a particular (rather high) value of the load, but only in suboptimal
performance for low traffic load.

In [19], a joint work in which also the author participated, the LRA algorithm
of [17] is investigated further, and a new method is providedfor the calculation.
More precisely, the method of [7] is adopted as framework, yielding already con-
siderable simplification when compared with [17]. However,the transition matrix
involved is stochastically dense, implying that the determination of steady state
probabilities is the bottleneck when the LRA algorithm is executed. Therefore,
the method is refined further by considering an upper-Hessenberg formulation of
the transition matrix. This formulation not only eases the calculation of the steady
state probabilities of the Markov chain, but also allows foroptimal execution of
the LRA algorithm. More precisely, the Hessenberg formulation exploits the sim-
ilarity of subsequent iterations of the algorithm, by largely reusing the transition
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matrix of a given iteration in the next iteration. Comparingexecution times of
the LRA algorithm of the Hessenberg formulation with those of the stochastically
dense description, the approach allows another speed-up ofover a 100 times, mak-
ing the LRA algorithm extremely fast, with computation times of the order of
10 − 100 ms.

As for the author’s contribution, our main assumption was tofocus exclusively
on the evolution of the waiting times, first applied to the non-degenerate finite-
sized M/G/1 buffer in DT in [7]. As such, this method shares elements with the
results of Almeida et al. [28–31], but differs in the time setting. A more fun-
damental difference lies in the state space of the involved Markov chain: in the
approach of [7] (and further, also [8,9]), the size of the state space remains limited
to the number of FDLs (N + 1), and this independent of the complexity of the
inter-arrival or burst size distribution. The latter provides a significant advantage
over the approach of Almeida, where the state space size is given by the sum of
the number of FDLs (N + 1) and the number of blocking states. This number
does not pose any problem for the M/M/1- and GI/M/1-setting,for which it equals
one [28, 30], but grows with complexity, as it amounts toN + 1 for M/GI/1 [29],
and to a (possibly infinite) multiple ofN + 1 blocking states for GI/GI/1 [31].
Opposed to this, we are able to construct a most concise model, that circumvents
the need for blocking states, and thus provides a more generic and simpler model,
that is much less demanding in terms of computational effort, especially when a
more complex inter-arrival or service time distribution isconsidered.

While [7] considered a Bernoulli arrival process, [8] provides the DT gener-
alization for general independent inter-arrival times, possible without introducing
blocking states. Moreover, it proved possible to extend theresults of [7] to CT, and
so establish a unified model for optical buffers in both DT andCT, in [9]. Also,
by considering a specific and rather realistic instance of the latter model, we found
that expressions for the loss and waiting time probabilities can be obtained exactly
with simple closed-form expressions. Given that even a classic finite-sized M/D/1
buffer system in CT has a more complicated solution [99], thesimplicity of the
obtained expressions comes as a pleasant surprise.

Finally, an exact closed-form solution is also determined for the non-degenerate
finite-sized M/M/1 system in CT, so providing a definite answer to the performance
problem first studied in [24].

The current chapter presents the results of [7–9]. Sect. 3.1treats the exact
numerical model for an M/G/1 optical buffer of finite size, for both DT and CT.
These results are largely based on [7], for DT, and on [9], forthe extension toward
CT. Further, Sect. 3.2 provides a generalization to generalindependent arrivals in
DT, as first presented in [8]. Then, we focus on some particular cases of optical
buffers, for which a closed-form solution is possible: fixedburst size in Sect. 3.3,
and memoryless burst size in Sect. 3.4. The case of fixed burstsize was treated
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before in CT and DT in [9], whereas memoryless burst sizes were treated first in
CT in a contribution currently under review (Sect. 1.8.4, “Work in Progress”, No.
1) for CT, and for the first time here, in the DT case.

3.1 Model for Memoryless Arrivals

In this section, we set out the general performance model of anon-degenerate
finite-sized M/G/1 FDL buffer. This is in the spirit of the approach in [7], but with
the difference that the latter was only valid for DT, while here we treat CT and DT
with one model, as is also done in [9].

3.1.1 Time Setting

To those familiar with queueing theory, it is well-known that different time settings
(CT or DT) can give rise to quite different solutions, even when the studied model
has a lot in common (see for example [100] for CT, [93] for DT).For the specific
case of an M/G/1 FDL buffer, however, it comes out that the results for DT can
be converted into results for CT mostly in a plug-and-play fashion. Rather than
developing the analysis for both time settings at once, we will present the results
subsequently, and this to avoid ambiguity. As such, the DT setting will be adopted
as given time setting throughout this chapter, whereas the CT setting will be given
only afterward as an extension. Since the notation is especially chosen to fit this
purpose, the CT case will be obtainable by mere substitutionof certain variables.
Note that treating the DT case first is an arbitrary choice, and that it is equally
possible the other way around, treating the CT model first, with the DT case as an
altered version thereof.

In the DT setting, events take place synchronously, at the beginning of time
slots. Therefore, all time-related variables and performance measures are ex-
pressed as multiples of the slot length, and for example inter-arrival times and
burst sizes take on only strictly positive integer values, contained inN0. The slot
length may be arbitrary, and is therefore not mentioned explicitly in this chapter. In
the CT setting, all events take place in an asynchronous fashion, and time-related
variables like inter-arrival times and burst sizes can takeon any positive real value.

3.1.2 Buffer Setting

The FDL buffer setting of the current section (and chapter) is more general than
that of the previous chapter, in that also non-degenerate optical buffers can be stud-
ied. In other words, the FDL lengths are in general not multiples ofD (degenerate
optical buffer), but can be chosen degenerate if desired.

The following assumptions are shared with the previous chapter. Within an
optical network, the buffer is located at the output of a backbone switch, and is
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dedicated to a single outgoing wavelength. We consider bursts arriving at the
buffer randomly, and possibly overlapping in time. Since there is only one wave-
length to queue for, overlap during transmission should be prevented. By means
of a switching matrix that allows to send any burst to any of the delay lines, buffer
control exercises a FIFO (First-In-First-Out) schedulingdiscipline. Of all lines,
it chooses the shortest line with sufficient length, so as to avoid overlap with the
one-but-last burst. If the requested delay exceeds the delay provided by the longest
line, the burst is dropped.

Different from the previous chapter is that the FDL buffer ofsizeN is now
represented by a general finite set,A = {a0, a1, a2, . . . , aN} of available delays
ai ∈ N , i ∈ {0, 1, . . . , N}, with a0 = 0 by definition. As the set of lines is
intended to resolve contention for a single outgoing channel, it is necessary that
contending bursts undergo different delays, and therefore, a useful FDL set never
contains the same length twice,ai 6= aj for i 6= j. Also, we sort the line lengths
ascendingly,a0 < a1 < . . . < aN . The length of the longest line,aN , is the
maximum delay the buffer can provide and is referred to as buffer capacity, while
N indicates the buffer size.

The main characteristic of an optical buffer is that it cannot assign the exact
delay value needed. When a non-zero delayx ∈ N0 is requested (x > 0) and is
achievable (x ≤ aN ), a delayai is granted from the FDL setA such thatai−1 <

x ≤ ai, i = 1 . . .N . This assignment procedure can be cast in operator form as

ai = ⌈x⌉A = min{y ∈ A, y ≥ x} , x ≤ aN , (3.1)

and will prove useful in the following. Note that negative values forx are also
allowed. As a reference we mention that when a degenerate buffer settingA =

{0, D, 2D, . . . , ND} is considered, this operator takes the following form,

iD = ⌈x⌉A =
[

D ·
⌈ x

D

⌉]+

, x ≤ ND ,

where⌈x⌉ again denotes the smallest integer larger thanx, [x]+ = max{0, x}, and
i denotes the natural number that adheres to(i − 1)D < x ≤ iD (so emphasizing
that the output of⌈x⌉A is necessarily a multiple ofD in this case).

3.1.3 Traffic Setting

Bursts are assumed to arrive one by one, with at most one arrival per slot; upon
arrival, a burst is either accepted or dropped. We now numberthe bursts in the or-
der at which they arrive, but only assign an index to those bursts that are accepted.
Notice that this is opposed to the assumption in Chapter 2, that had all arriving
bursts numbered.

The distributions of inter-arrival time and burst size distribution are identical to
the ones presented in Sect. 2.2.1, therefore we only repeat the main assumptions.
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With each accepted burstk, we associate an inter-arrival timeTk ∈ N0, that
captures the time between thekth arrival and the next, being the arrival of (i) burst
k + 1, if this next burst is accepted or (ii) a burst without number, if this next burst
is dropped. In the following, we assume memoryless inter-arrival timesTk, that
have (in DT) a geometric distribution, and constitute a Bernoulli arrival process.
The inter-arrival times form a sequence of identical and independently distributed
(iid) random variables (rv’s) with common cumulative distribution function (cdf)
FT (n)

FT (n) = Pr[Tk ≤ n] = 1 − p̄n , n ∈ N , (3.2)

where p̄ denotes1 − p, with p ∈ [0, 1], just like in the previous chapter. The
latter probability is also the parameter of the geometric distribution, and gives the
probability of having an arrival in an arbitrary slot, and isin tight relation with
the mean value, as E[Tk ] = 1/p. The inter-arrival times associated with dropped
bursts also follow this distribution.

With each accepted burst, we also associate a burst sizeBk. The burst sizes
also form a sequence of iid rv’s with common probability massfunction (pmf)
b(n) = Pr[Bk = n] and common cumulative distribution function (cdf)FB(n) =

Pr[Bk ≤ n], n ∈ N. The latter relates to the pmf asFB(n) =
∑n

i=1 b(i), with the
same conditions as in the previous chapter, so as to be well-defined.

For notational convenience, we introduce an additional series of rv’s Uk =

Bk − Tk, that enables to express the system’s evolution in a more compact way.
Their common cdf is denoted by

FU (n) = Pr[Uk ≤ n] = Pr[Bk − Tk ≤ n] , n ∈ Z .

Taking into account the cdf of the inter-arrival times (3.2), we obtain that

FU (n) =

{

p̄−n−1
∑+∞

i=1 b(i) · p̄i , n ∈ Z− ,

p̄−n−1
∑+∞

i=n+1 b(i) · p̄i + FB(n) , n ∈ Z
+ .

(3.3)

As the analysis will point out, the input needed for analysisis limited to knowledge
of the FDL setA, FT (n), FB(n) andFU (n) (using (3.2) and (3.3), respectively).

3.1.4 Setting for CT

To translate the DT model to a CT setting, only minor changes are involved.
As for the FDL buffer setting (Sect. 3.1.2), it is clear that CT assumes that

ai ∈ R+, instead of adopting natural numbers. Similarly, the definition (3.1) for
⌈x⌉A remains unaltered except that the domain is to be expanded tox ∈ R. Further
FDL buffer assumptions remain unchanged.

As for the traffic assumptions (Sect. 3.1.3), we adopt the same indexing con-
vention as for DT, and assume that just one arrival per arrival instant occurs. The
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inter-arrival times have a memoryless distribution in CT, which constitutes a Pois-
son arrival process. The inter-arrival times, a sequence ofiid rv’s, have a common
negative-exponential distribution with cdf

FT (x) = Pr[Tk ≤ x] = 1 − e−λx , x ∈ R
+ , (3.4)

whereλ denotes the arrival intensity, with E[Tk ] = 1/λ. The burst sizes again
form a sequence of iid rv’s, with common cdfFB(x) = Pr[Bk ≤ x], x ∈ R+.
The exact form of the cdf is completely general, except for the conditions that any
useful cdf has to comply with:0 ≤ FB(x) ≤ 1, FB(0) = 1, limx→∞ FB(x) = 1,
andFB(x) is non-decreasing. The seriesFU (x) in CT has common cdf

FU (x) = Pr[Uk ≤ x] = Pr[Bk − Tk ≤ x] , x ∈ R
+ .

Using (3.4), we obtain

FU (x) =

{

eλx
∫ +∞

0 e−λudFB(u) , x ∈ R
− ,

eλx
∫ +∞

x
e−λudFB(u) + FB(x) , x ∈ R+ .

(3.5)

Note that the integral part of this equation does not pose difficulties for typical
burst size distributions. For example, if the burst sizes have a common negative-
exponential distribution with parameterµ, we have thatU(x) = eλx · µ/(λ + µ)

for x ∈ R−, andU(x) = 1 − e−µx · λ/(λ + µ) for x ∈ R+. Just like in DT,
knowledge of the FDL setA, FT (x), FB(x) andFU (x) (using (3.4) and (3.5),
respectively) suffices as starting point for the analysis inCT. The latter will be
provided in Sect. 3.1.6, first we focus on the analysis of the equivalent case in DT.

3.1.5 Analysis

Given the key rv’s (FU (x), FT (x)), together with the parameter set of the FDL
lengths{a0,a1, . . . , aN}, we are in the position to tackle the analysis. While a
system description in terms of the scheduling horizon proved especially useful in
the previous chapter, the current chapter is solely concerned with the waiting time
evolution. Capturing the system equations (Sect. 3.1.5.1)in a Markov chain of
waiting times (Sect. 3.1.5.2) will provide an exact numerical method to obtain the
steady-state waiting time probabilities and loss probability of an FDL buffer in DT,
under the given assumptions of general burst sizes and a Bernoulli arrival process.
The complementary expressions for CT we consider in Sect. 3.1.6.

3.1.5.1 Evolution of the Waiting Time

The main idea of the analysis is that the system’s evolution can be captured most
condensedly in terms of the waiting time of a burst, as discussed in [7]. However,
we still mention the scheduling horizon sporadically in thefollowing, so as to
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(a) Lossless transition.

(b) Transition with loss.

Figure 3.1: The waiting time of accepted bursts evolves according to one of two possible
scenario’s. A lossless transition is governed by the auxiliary functionUk; a transi-
tion with loss involves the reactivation timeRk.

make certain system properties more clear. Also, we make useof the term “virtual
scheduling horizon”, which denotes the scheduling horizonas it would be seen by a
hypothetical (and not necessarily actual) arrival. This isopposed to the scheduling
horizon itself, that is defined only for actual arrivals.

Still using the same numbering, we associate the waiting timeWk with thekth
burst, and define it as the time between the acceptance of burst k, and the start of
its transmission. Focusing on the evolution of the waiting time from acceptance to
acceptance, we observe two types of transitions, either without or with loss.

Lossless transition. In case of a lossless transition, the burst that arrives just
after thekth burst can be provided with a sufficiently large delay, andWk + Uk ≤

aN . Note that, even if burstk pushes the virtual scheduling horizon beyond the
maximum delay, that is,Wk +Bk > aN , the transition remains lossless as long as
burstk + 1 arrives “sufficiently late”, that is,Wk + Uk ≤ aN . Thus, the arriving
burst is accepted and is assigned indexk + 1. While the scheduling horizon as
seen by burstk + 1 is Wk + Uk, the FDL buffer can only provide delays that are
in A = {a0, a1, . . . , aN}, as reflected in operator (3.1). Inferring the waiting time
of burstk + 1 from this, we obtain

Wk+1 = ⌈Wk + Uk⌉A . (3.6)
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Transition with loss. In case of a transition with loss, the burst that arrives
just after thekth burst cannot be provided with a sufficiently large delay, and
Wk+Uk > aN . More precisely, the queueing of burstk pushes the virtual schedul-
ing horizon beyond the maximum delayaN (Wk+Bk > aN ), and the burst that ar-
rives just after burstk arrives “too early” to be accepted, that is,Wk+Uk > aN . As
a result, the burst following burstk is dropped, and the virtual scheduling horizon
decreases further in time, until some later-arriving burstfinds the (actual) schedul-
ing horizon below the maximum achievable delay upon arrival. In this regard, we
can call a system with virtual scheduling horizon larger than aN unavailable, and
call it available in the opposite case. Then, notice that a finite timeRk stretches be-
tween the moment the system turns available (for virtual scheduling horizon equal
to aN ) and the moment that the next arrival occurs (for virtual scheduling horizon
equal toaN −Rk. This time period we call the reactivation time, and is associated
with burstk. It follows that burstk+1 seesaN −Rk as scheduling horizon. Again,
the FDL buffer only provides delays inA, which implies that the waiting time of
burstk + 1 can be captured as

Wk+1 = ⌈aN − Rk⌉A . (3.7)

Further, in the special case of a memoryless arrival process, as assumed in this
section, the cdf of the the inter-arrival time (3.2) is clearly reflected in the cdf of
the reactivation time,

FR(n) = Pr[Rk ≤ n] = 1 − p̄n+1 , n ∈ N . (3.8)

That Rk andTk have nearly identical distribution, is a direct implication of the
memorylessness of the arrival process. The only differenceis an offset of 1, that
occurs due to the fact that the minimum of the support of theTk equals 1. Note
that this offset will not come about for the CT setting, as we will see below.

System equations (3.6) and (3.7) describe the waiting time process in a com-
plementary and exhaustive way, and give rise to a uniquely defined Markov chain.
Both are illustrated in Fig. 3.1.

3.1.5.2 Markov Chain of Waiting Times

The Markov chain consists ofN + 1 states, that correspond toN + 1 possible
waiting timesai, i = 0 . . .N . It is characterized by a transition matrixM with
probabilitiesmij ,

mij = Pr[Wk+1 = aj |Wk = ai] , 0 ≤ i, j ≤ N . (3.9)
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For ease of notation, we introducea−1 = −∞. We split mij in two separate
contributions, that correspond to the transitions discussed in Sect. 3.1.5.1.

mij = Pr[aj−1 − ai < Uk ≤ aj − ai]

+ Pr[Uk > aN − ai]Pr[aN − aj−1 > Rk ≥ aN − aj ] .

With the expression forFT (x) (3.4), FU (x) (3.5) andFR(x) (3.8), this can be
restated as

mij = FU (aj − ai) − FU (aj−1 − ai)

+ p̄aN [1 − FU (aN − ai)][p̄
−aj − p̄−aj−1 ] . (3.10)

Due to the memoryless arrival process, the Markov chain of the waiting times
is aperiodic, irreducible and has positive-recurrent states. (This is not necessarily
so in case of general inter-arrival times, see Sect. 3.2.3.2.) As a result, we obtain
a unique equilibrium distribution fork → ∞, and all involved rv’s can be associ-
ated with a steady-state distribution independent of thek, with {W, B, T } denoting
generic rv’s following the steady-state distributions of{Wk, Bk, Tk}, respectively.
Note that this is very similar to the steady-state assumption in Chapter 2, but with
one main difference. To obtain a unique equilibrium distribution in Chapter 2, we
were to assume a bound on the traffic load (ρ < ρmax), so as to guarantee stabil-
ity. Here, the nature of the problem implies the existence ofa unique stochastic
equilibrium distribution, and stability is inherent to thefinite buffer setting.

With now the transition probabilitiesmij at hand, a simple numerical proce-
dure yields the waiting time probabilities associated withthis steady-state. More
precisely, the normalized Perron-Frobenius eigenvector of the matrixM contains
theN + 1 different steady-state waiting time probabilities

lim
k→∞

Pr[Wk = an] = Pr[W = an] = w(n), 0 ≤ n ≤ N , (3.11)

and can easily be obtained numerically, posing no problem for the smallN we
are interested in. From this, we can also define the mean waiting time E[W ] =
∑N

n=1 w(n) · an.

3.1.5.3 Loss Probability

Finally, the loss probability (LP) of an arbitrary burst is also obtainable in a straight-
forward manner. To find an expression for the LP, we study the unavailable period,
associated with an accepted burstk, again distinguishing between the two transi-
tions of Sect. 3.1.5.1. In case of a lossless transition, thearrival of burstk does not
push the system into unavailability, and the unavailable period following burstk
equals zero. In case of a transition with loss, it takes the system a period of length
Wk + Bk − aN − 1 to become available again. (Note that here, the term “−1”
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is again a result of the offset on theTk, as the minimum of its support equals 1.)
Combination of both cases yields that the unavailable period, following burstk, is
given by(Wk + Bk − aN − 1)+. Invoking the memoryless nature of the arrival
process, the average number E[Zk ] of bursts lost during the unavailable period
following burstk equalsλ · E[(Wk + Bk − aN − 1)+].

Now, we assume steady state and continue the analysis with the generic rv’s
associated with it, withZ instead ofZk. This also enables us to use thew(n)

associated withW . Some calculation leads to

E[Z ] = p ·

(

E[B ] + E[W ] − aN − 1 +

N
∑

n=0

w(n)

aN−an
∑

i=1

FB(i)

)

. (3.12)

Now, it suffices to note that, with every accepted burst, a number of E[Z ] bursts
on average is dropped, resulting in a LP

LP =
E[Z ]

1 + E[Z ]
. (3.13)

3.1.6 Analysis for CT

For CT, the system equations are identical to those of Sect. 3.1.5.1:

Wk+1 = ⌈Wk + Uk⌉A ,

in the case of a lossless transition (Wk + Uk ≤ aN ), and

Wk+1 = ⌈aN − Rk⌉A ,

in case of a transition with loss (Wk + Uk > aN ). The difference is that the cdf of
the reactivation time in CT is given by

FR(x) = Pr[Rk ≤ x] = 1 − e−λx , x ∈ R
+ ,

and thus coincides with that of theTk (3.4). When compared to the DT case
(3.8), the offset of 1 thus disappears, since in CT, the minimum of the support
of Tk is zero. Further, the coefficients of the Markov chain (Sect.3.1.5.2), also
coincide, and the expression for themij in DT (3.10) (with theFU (x) of (3.5)) is
equally valid for CT (with theFU (n) of (3.3)), if one makes the simple substitution
p̄ = e−λ. The resulting expression for CT reads

mij = FU (aj − ai) − FU (aj−1 − ai)

+ e−λaN [1 − U(aN − ai)][e
λaj − eλaj−1 ] .

As such, the waiting time probabilitiesw(n) for steady state can be obtained in
exactly the same manner. As for the LP in DT, it suffices to replacep with λ
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(a) Geometric burst size distribution. (b) Deterministic burst size distribution.

Figure 3.2: For low buffer size and geometric burst size distribution (a), the LP curves
for varying granularity are not much different from those for large buffer size. The
opposite is true for deterministic burst size distribution(b), for which the number of
“notches” in the curves matches the buffer sizeN . These figures were obtained for
E[B] = 50 slots, loadρ = 20%.

in expression (3.12), substitute the summation by an integration, and take into
account the relative offset of 1, to obtain the correct formula for CT,

E[Z ] = λ ·

(

E[B ] + E[W ] − aN +

N
∑

n=0

w(n)

∫ aN−an

0

FB(u)du

)

,

that leads to the LP through (3.13), LP= E[Z ]/(1 + E[Z ]).

3.1.7 Numerical Examples

With the above results at hand, one can easily study the impact of the various de-
sign parameters on loss performance. More specifically, onewants to determine
optima for the granularity, which are values that yield a minimal burst loss proba-
bility. While similar curves already occur in the previous chapter forN = 20, the
approximation applied there lost accuracy for smallN . Also, as mentioned, the
previous chapter only allowed for a degenerate buffer setting, whereas the current
approach makes no special assumptions on the line lengths. As such, the examples
given here yield new information, for the case of smaller (more realistic) buffer
sizes. We look at four examples for DT, and note that the CT yields similar results.

In both panes of Fig. 3.2, we assess the impact of a small buffer size on loss
performance. They show the LP as a function of the granularity D, for a degenerate
delay line setting, E[B ] = 50, and a load ofρ = 0.2. The left pane displays
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the situation for geometric burst size distribution, with the expected rise of the
loss probability, when the buffer sizeN decreases. Also, it can be seen that the
LP lowers for increasing granularity, and only starts to rise again forD larger
than about 150 slots. Considering the five curves together, the figure suggests
that the optimal granularity, for a given load, only slightly increases when the
buffer size approaches its minimum ofN = 1. Verification for higher load values
confirm that the influence of diminishing buffer size on optimal granularity is but
weak, especially if compared to the impact of variations in the load. The latter is
illustrated in Fig. 2.2(a) (there forN = 20, in CT), and is much stronger than the
influence observed here.

On the right pane of Fig. 3.2, we have the same setting, for fixed burst sizes,
E[B ] = B = 50. Again, a smaller buffer suffers more loss, but now the optima
alter in a more surprising way. More precisely, the “notches” at D = (B − 1)/n,
n = 1, 2, . . . , known from previous work, are not uncountable (as was the case
in the previous chapter for an infinite-sized buffer, see Fig. 2.2(b) forN = 20 in
CT), but are limited in number toN . ExactlyN notches occur for each curve, at
D = (B−1)/n, n = 1, 2 . . .N . As such, this relation is only revealed by explicitly
assuming finiteness from the start of the analysis, as done inthe current chapter.
Also, since it is known from the previous chapter that these values correspond to
optima (withD = B−1 being the optimum for low load, andD = (B−1)/2, then
(B − 1)/3,... for increasing load), we verified and found that the set of potential
optima, for a load0 ≤ ρ ≤ 1, is indeed limited to (at the maximum) the number
of fibers. Further, it was found that the same optimum shift asknown from the
previous chapter takes place, but now only over the available values: firstD =

B − 1 for low load, thenD = (B − 1)/2 for increasing load ifN ≥ 2, and so on
if N ≥ 3...

To verify if the optima for deterministic burst sizes also apply to varying burst
sizes, we consider a uniform burst size distribution with radiusQ, that has a mean
burst size E[B ] = 50, and is uniform within the range[50 − Q, 50 + Q]. For
small Q, this distribution resembles the deterministic distribution. As such, this
setting allows to verify what influence variances on the burst size have on loss
performance. In Fig. 3.3, the left pane compares the performance of an optical
buffer of sizeN = 3 for three uniform distributions, having a narrow range (Q =

5, range[45, 55]), an intermediate range (Q = 25, range[25, 75]) and a broad
range (Q = 49, range[1, 99]), and this for loadρ = 0.2, ρ = 0.4, respectively. For
the narrow-ranged one, the curves look very similar to thoseof the deterministic
distribution, and the same optimum aroundD = B − 1 shows. The curves for
the intermediate-ranged and broad-ranged case show that increasingQ makes the
granularity optimum shift toward higher values, at least for load ρ = 0.2 and
ρ = 0.4. Curves not included here, for higher load, show that the optima for
a narrow range (smallQ) concentrate around the limited setD = (B − 1)/n,
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(a) Various uniform burst size distributions,
degenerate buffer setting, forN = 3.

(b) Degenerate (continuous) or non-degenerate
(dashed), forN = 3, andρ = 50%

Figure 3.3: For a uniform burst size distribution, the rangeQ has a paramount impact
on LP curves for varying granularity (a). Comparing the performance of a non-
degenerate buffer over a degenerate one for deterministic (det), uniform (Q = 49)
and geometric (geo) burst size distribution, one finds that aslight performance gain
that can be realized by choosing a non-degenerate setting (b). These figures were
obtained forE[B] = 50 slots.

n = 1, 2 . . .N , known from the deterministic distribution, while for largerQ, the
optimum only gradually decreases.

Choosing non-degenerate lengths for the delay lines can in some cases pro-
vide better performance. As is shown in [17] for deterministic burst sizes, a non-
degenerate set of FDLs can outperform a degenerate set of thesame size. However,
it turns out that this happens only when the load rises above acertain value (for
example60.17%, for N = 10, B = 20, D = 19). Further, even when the non-
degenerate one outperforms the degenerate one, the performance gain is rather
small. This said, non-degenerate settings remain interesting, since for more gen-
eral assumptions (correlated arrivals, multi-wavelengthoutput), the performance
gain might be larger. For the right pane of Fig. 3.3, we chose non-degenerate
FDL lengths in a way similar to [17], with shortened lengths for the largest lines.
A degenerate set (continuous curves) and non-degenerate set (dashed curves) are
considered, for a buffer sizeN = 5, loadρ = 0.5, and the burst size distribu-
tions geometric, deterministic and uniform (Q = 49). The non-degenerate set has
FDL lengthsD, 2D − 2, 3D − 3, 4D − 4, 5D − 8. The curves show how the
non-degenerate set just outperforms the degenerate one, for geometric and uni-
form burst size distribution, while the opposite is true fora deterministic burst size
distribution. Although not included here, figures for the same setting, for a load of
ρ = 0.3, ρ = 0.6 andρ = 0.8 resp., show the same qualitative result, while the
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performance difference itself always remains small.

3.2 Model for General Arrivals

In this section, we extend the results of the previous section to account for general
inter-arrival times. Just like in the previous chapter, this will allow us to quantify
the impact of (a mild form of) correlation, but now in an exactmanner. With the
pgf approach, such analysis was possible, but only when one assumed a rational
pgf for the inter-arrival times. Now, the analysis is possible in an exact manner for
finite-sized buffers, but the “price to pay” is that we have toassume that the burst
size distribution is upper-bounded by some valueBmax (defined below in 3.14).
The latter is however not a very limiting assumption, since this is in general also
assumed in the application.

3.2.1 Time Setting and Buffer Setting

The setting under consideration is very similar to that of the previous one, except
that only the DT case is considered. Treating CT is in principle also possible,
but is not possible in such plug-and-play fashion as was the case for memoryless
arrivals, and is left out of consideration here. The opticalbuffer structure is simply
identical to the one considered in the previous section, in Sect. 3.1.2.

3.2.2 Traffic Setting

The traffic setting is largely the same as in Sect. 3.1.3, but now with a general
distribution for the inter-arrival times, and an extra assumption on the distribution
of the burst sizes. Also, while we only used the cdf of the involved rv’s in Sect. 3.1,
we now use both the cdf and probability mass function (pmf). For clarity’s sake,
we prefer to list all main assumptions here.

We assume a DT setting, with bursts arriving one by one, so either one or no
arrival occurs in each slot. Upon arrival, a burst is either accepted or dropped. We
number the bursts in the order at which they arrive, but only assign an index to
those bursts that are accepted.

With each accepted burstk, we associate an inter-arrival timeTk, that captures
the time between thekth arrival and the next, being the arrival of (i) burstk + 1,
if this next burst is accepted or (ii) a burst without number,if this next burst is
dropped.

In the following, we assume general (non-zero) inter-arrival timesTk. They
form a sequence of iid rv’s with some common distribution

Pr[Tk = n] = t(n) , n ∈ N0 .



PERFORMANCEEVALUATION WITH MARKOV CHAINS 105

The exact form of this distribution is completely general, except for the conditions
that any useful probability mass function has to comply with: 0 ≤ t(n) ≤ 1,
∑

n t(n) = 1. The cdf of the inter-arrival times isFT (n) = Pr[Tk ≤ n] =
∑n

i=1 t(n), for n ∈ N0. The inter-arrival times associated with dropped bursts
also follow this distribution. Since there is also no upper limit on the inter-arrival
times, all common distributions (geometric, negative binomial, mix of geometric)
can be assumed. One notes that, although the inter-arrival times are uncorrelated,
it is nevertheless possible to model correlation in the arrival process, as we will
discuss in Sect. 3.2.5.

With each accepted burst, we also associate a burst sizeBk. The burst sizes
also form a sequence of iid rv’s with a common distribution, but with the additional
restriction of an essential upper bound on the burst size distribution,Bmax, defined
as

Bmax = esssup{Bk} ≡ sup(x : Pr[Bk > x] > 0) , x ∈ R
+ , (3.14)

so that the distribution itself adheres to

Pr[Bk = n] = b(n) ,

with 1 ≤ n ≤ Bmax if Bmax is finite and1 ≤ n < +∞ if Bmax is infinite, and
0 ≤ b(n) ≤ 1,

∑

n b(n) = 1.
As in Sect. 3.1, results can be formulated most condensedly in terms of the

series of rv’sUk = Bk − Tk, with

Pr[Uk = n] = Pr[Bk − Tk = n] = u(n) , n ∈ Z .

Taking into account the upper limit toBk, Bmax, it follows that

u(n) =











∑Bmax

i=1 b(i)t(i + |n|) , n ∈ Z− ,
∑Bmax−n

i=1 b(i + n)t(i) , n ∈ {1, 2, . . . , Bmax − 1} ,

0 , n ∈ {Bmax, Bmax + 1, . . .} .

(3.15)

We will also employ the cdf ofUk in the following, FU (n) =
∑n

i=−∞ u(n),
n ∈ Z. Note that the lower limit fori → −∞ never poses any numerical issue,
since one can always rewrite the expression forFU (n) as a function ofFT (n) and
finite sums.

3.2.3 Analysis

3.2.3.1 Evolution of the Waiting Time

In Sect. 3.1.5.1, it was shown that for a memoryless arrival process, the system
evolution can be captured in terms of two possible transitions, that correspond to
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(a) Lossless transition.

(b) Transition with loss.

Figure 3.4: The waiting time of accepted bursts evolves according to one of two possible
scenario’s. A lossless transition is governed by the auxiliary functionUk; a transi-
tion with loss involves the reactivation timeRk, that is a function of the unavailable
period Yk. Notice the slight difference with the case of memoryless arrivals de-
picted in Fig. 3.1, whereYk could be disregarded, whereas here,Rk is a function of
Yk.

two mutually exclusive events. It turns out that, also for general inter-arrival times,
it is possible to maintain this kind of description, even without making any change
to the form of the related system equations, (3.6) and (3.7).We repeat them here
for clarity’s sake, and refer to Sect. 3.1.5.1 for the reasoning behind it.

Lossless transition. The condition for this to happen, in terms of waiting times
and FDL lengths, is that the burst that arrives just after thekth burst can be pro-
vided with a sufficiently long delay, that is,

Wk + Uk ≤ aN ,

and results in
Wk+1 = ⌈Wk + Uk⌉A . (3.16)

Transition with loss. Now, the acceptance of burstk pushes the system into
unavailability, and the burst that arrives just after thekth burst arrives “too early”,
and thus can not be provided with a sufficiently long delay:

Wk + Uk > aN .
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The burst following burstk (first drop) is not assigned an index, and possibly,
even more bursts are dropped (second drop, third drop,. . . ) before the system
turns available again, and,Rk time slots later, a burst arrives and is accepted, with
waiting timeWk+1.

Wk+1 = ⌈aN − Rk⌉A . (3.17)

As such, the main difference with the previous section lies not in the system
equations, but in the analysis thereof. More particularly,the reactivation timeRk

in (3.7) now has to be determined for a general arrival process. In such case, the
reactivation time is no longer independent of the system state (as was the case in
the previous section) but actually depends onWk explicitly. This dependence can
be characterized by means of an additional rvYk, that captures the unavailable
period following the acceptance of burstk.

The unavailable period expresses the number of slots between the arrival of
the first-dropped burst and the instant that the buffer becomes available again. It is
defined as

Yk = Wk + Uk − aN .

Conditioning on a given waiting time,Wk = ai, 0 ≤ i ≤ N , we can easily express
the probabilities forYk using (3.15),

Pr[Yk = n |Wk = ai] = u(n − ai + aN ) . (3.18)

Now, the moment that the buffer comes available again is fully characterized, since
this occurs exactlyTk + Yk slots after the arrival of burstk. Recall that a burst
does not arrive immediately, and in general, it takes burstk + 1 anotherRk slots
to arrive, which brings the arrival instant of burstk +1 to Tk +Yk +Rk slots after
the arrival of burstk.

The reactivation timeRk depends onWk only through the unavailable period
Yk: any combination ofWk andUk with equalYk yields the sameRk. More
precisely, their relation can be expressed as

Pr[Rk = m |Yk = n] =

n−1
∑

l=0

h(l) · t(m + n − l) . (3.19)

Here, thet(n) are the probabilities of Sect. 3.2.2, while theh(l) are given by the
recursive definition

h(l) =

l−1
∑

k=0

h(k) · t(l − k) + δl , l ≥ 0 , (3.20)

whereδl denotes the Kronecker delta, that is one forl = 0 and zero elsewhere.
Given an arbitrary arrival instanttarr (expressed in slots),h(l), l ≥ 0, is the
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probability thattarr + l (in slots) is an arrival instant too, a probability that often
arises in renewal theory. The probabilities can be obtainedfrom (3.20).

Concluding, the characterization of the system behavior falls apart in two types
of transitions, (3.16) and (3.17), both illustrated in Fig.3.4. In the case of a loss-
less transition (3.16), the analysis coincides with that ofthe previous section. In
case of a transition with loss (3.17), the new waiting timeWk+1 depends on the
reactivation timeRk, that in its turn depends on the unavailable periodYk, that,
finally, depends on the previous waiting time,Wk.

3.2.3.2 Markov Chain of Waiting Times

With the two system equations (3.16) and (3.17) as a startingpoint, and the expres-
sions for the (conditional) probabilities of the unavailable period (3.18) and the
reactivation time (3.19) obtained, we are in the position toconsider the Markov
chain, associated with the evolution of the waiting times. Similar to (3.9), it
consists ofN + 1 states, that correspond toN + 1 possible waiting timesai,
i = 0 . . .N , and is characterized by a transition matrixM with probabilitiesmij ,

mij = Pr[Wk+1 = aj |Wk = ai] , 0 ≤ i, j ≤ N . (3.21)

As in the previous section, we denotea−1 = −∞. We splitmij in two separate
contributions, that correspond to the events discussed in Sect. 3.2.3.1.

mij = Pr
[

ai + Uk ≤ aN , aj = ⌈ai + Uk⌉A
]

+ Pr
[

ai + Uk > aN , aj = ⌈aN − Rk⌉A
]

= Pr
[

aj−1 − ai < Uk ≤ aj − ai

]

+ Pr
[

Yk > 0 , aN − aj−1 > Rk ≥ aN − aj

]

. (3.22)

With the cdf ofUk, we can rewrite the first term of (3.22) as

Pr[aj−1 − ai < Uk ≤ aj − ai] = FU (aj − ai) − FU (aj−1 − ai) .

Taking into account the upper limit forBk, Bmax, the second term of (3.22) can
be expressed as

Pr[Yk > 0 , aN − aj−1 > Rk ≥ aN − aj ]

=

Bmax+ai−aN
∑

n=1

Pr[Yk = n |Wk = ai] · Pr[Wk+1 = aj |Yk = n] .

The conditional probabilities Pr[Yk = n |Wk = ai] are given by (3.18), while

Pr[Wk+1 = aj |Yk = n] =

aN−aj−1−1
∑

m=aN−aj

Pr[Rk = m |Yk = n] . (3.23)
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Using (3.19), the latter is, in its final form,

Pr[Wk+1 = aj |Yk = n]

=

n−1
∑

l=0

h(l) · {FT (n − l + aN − aj−1 − 1) − FT (n − l + aN − aj − 1)} ,

whereFT (n) denotes the cdf of the inter-arrival times.
Filling in the last four expressions in (3.22) yields an explicit expression for

the coefficientsmij , in terms of the (given)ai, t(n) andb(n).
With all mij determined, next step is to move to the steady-state distribution

of the waiting times, like in Sect. 3.1.5.2. There, the steady-state distribution of
the waiting times was unique, since the involved Markov chain was aperiodic, ir-
reducible, and composed of positive-recurrent states. This is no longer so in the
present case, due to the fact that both inter-arrival times and burst sizes are general.
More precisely, in some “pathological cases”, it is possible that the Markov states
fall apart in multiple irreducible classes. In that case, ifwe assume zero initial
conditions (that is, an empty buffer upon arrival of the firstburst), only the states
belonging to the same class as the zero waiting time state canbe reached, and
the steady-state distribution as such depends on the initial state. Further, note that
also periodicity can arise. Since these pathological casesare however of minor
practical relevance, we exclude them in the following for simplicity’s sake. For
a mathematically sound approach to this problem, we refer the interested reader
to Sect. 5.1.4.3. For now, assuming an irreducible and aperiodic Markov chain
with positive-recurrent states allows to obtain a unique equilibrium distribution
for k → ∞, with all involved rv’s associated with a steady-state distribution,
and{W, B, T, Y } denoting generic rv’s following the steady-state distributions
of {Wk, Bk, Tk, Yk}, respectively. Now, the normalized Perron-Frobenius eigen-
vector of the matrixM contains theN + 1 different steady-state waiting time
probabilities

lim
k→∞

Pr[Wk = an] = Pr[W = an] = w(n) , 0 ≤ n ≤ N , (3.24)

and can easily be obtained with standard (numerical) methods, posing no problem
for the smallN we are interested in. From this, we can also define a mean waiting
time E[W ] =

∑N
i=1 w(i)ai.

3.2.3.3 Loss Probability

Up to now, dropped bursts remained unnumbered, and the assigned waiting times
are those of the accepted burst. We now focus on the LP, definedas the probability
that an arbitrary arriving burst is lost. To this end, we study the number of dropped



110 CHAPTER3

bursts between arrivalk and k + 1, denotedZk, and its mean, E[Zk ]. Again,
we consider the two transitions of Sect. 3.2.3.1. In case of alossless transition,
E[Zk ] trivially equals zero. In case of a transition with loss, at least one burst (the
first-dropped one) is lost, soZk ≥ 1. Moreover, during the unavailable periodYk,
additional loss occurs. Although not self-evident, it turns out that the mean number
of losses (including the first-dropped one), given an unavailable periodYk = n,
can be expressed as

E[Zk |Yk = n] =

n−1
∑

l=0

h(l) ,

with the h(l) still given by (3.20). Employing (3.24) and (3.18), and assuming
steady state (with thusZ instead ofZk), we obtain that

E[Z ] =
∑

i,n

{Pr[W = ai] · Pr[Y = n |W = ai] · E[Z |Y = n] }

=

N
∑

i=0

w(i)

Bmax+ai−aN
∑

n=1

u(n − ai + aN)

n−1
∑

l=0

h(l)

=

N
∑

i=0

w(i)

Bmax+ai−aN
∑

l=0

h(l){1 − FU (l − ai + aN )} .

Since with every accepted burst, a number of E[Z ] bursts on average is dropped,
we obtain as LP, through (3.13), that LP= E[Z ]/(1 + E[Z ]).

3.2.4 Light-Weight

The algorithm proposed in Sect. 3.2.3.2 and 3.2.3.3 is light-weight in that it poses
minimal computational burden, also in comparison with [31]. This is the result of
two distinct effects: state space reduction, and the use of proper auxiliary variables,
hereFU andh.

The first effect is the main difference with [31], from which all other differ-
ences stem. Since the assigned waiting timesWk (as they appear in system equa-
tions (3.16) and (3.17)) are bound to be in the FDL setA, the number of delay
lines comes about as the minimal number of states, necessaryto be able to de-
scribe the system in an exact way. Fixing the number of statesto N + 1 thus not
only makes the problem more generic (yielding considerablenumerical benefits),
but also minimizes the state space, reducing the necessary numerical inversion of
the transition matrix to a simple problem.

The first effect imposing an aim rather than being a solution itself, the main
task in this work was to express the transition probabilities mij of (3.21) in such
way that they can actually be calculated, in finite time. To this end, it proved useful
to impose an upper limit on the burst size, and introduce the auxiliary rv h in (3.20)
(where the variableFU was already introduced, first in [20], to the same end).
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(a) Correlation level 0 and 1 (cor0, cor1). (b) Correlation level 1 and 2 (cor1, cor2).

Figure 3.5: Maintaining a fixed traffic load ofρ = 0.5, different combinations of uniform
burst size distributions (Q ∈ {5, 20, 49}) and inter-arrival time distributions (cor0,
cor1, cor2) yield nine different LP curves in total (with three of them repeated across
figures as a reference). These figures were obtained for a degenerate FDL set,
E[B] = 50 slots, andN = 20.

Note that the algorithm as presented here also displays a clear distinction be-
tween traffic pattern and buffer setting: given a certain distribution for B andT ,
one can first calculate all needed valuesFU andh at once. As such, it is only in a
second step that the specific values of the FDL setA are taken into account. The
second step uses the output of the first step (FU andh) to obtain themij of (3.21),
which are essentially just linear combinations of values ofFU , h andFT . Also,
note that the influence of a load variation is strictly limited to the first step. This
two-step calculation process is especially fit for optimizations of the FDL set for a
given load, since one can cut down the optimization process to only a repetition of
the second step. For the case of an M/G/1 in DT, this optimization is the subject
of [19], in which the author is involved.

3.2.5 Numerical Examples

With the formulas at hand, a simple numerical program suffices to study the com-
plex interplay between all involved variables, yielding results fast for any com-
bination. Since the model allows to obtain exact results instantaneously for any
combination of inter-arrival time and burst size distribution (and thus any load),
any set of FDLs (not necessarily degenerate) and any buffer size, it can provide the
framework for an extensive optimization study. Here, we confine ourselves to an
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Q = 5 Q = 25 Q = 49
range [45, 55] [25, 75] [1, 99]

cor0 cor1 cor2
G 1 4 4
S 50 50 50/4

Table 3.1: Parameter settings of three uniform burst size distributions with different range
(left), for three levels of correlation in the arrival process (right).

instructive example, that focuses on the loss optimizationof the granularity value
given that burst sizes are uniform, with variable range, andcorrelation occurring
on three different levels. Note that this is also the exampleconsidered in the previ-
ous chapter, where it was treated only approximatively, whereas now, exact results
are obtained.

In both panes of Fig. 3.5, we quantify the loss performance ofan FDL buffer
with sizeN = 20 and degenerate fiber lengthsai = iD, i = 0 . . . 20. The burst
loss probability is displayed as a function of the granularity D, that varies from
1 slot (line lengths1, 2 . . .20) to 120 slots (line lengths120, 240 . . .2400). We
consider three different burst size distributions, all uniform with E[B ] = 50 but
with different radiusQ and associated range [50 − Q,50 + Q]: a narrow range
(Q = 5, range[45, 55]), an intermediate range (Q = 25, range[25, 75]) and a
broad range (Q = 49, range[1, 99]). This is also set out in Table 3.1. The loadρ,
with common definition E[B ]/E[T ], is fixed toρ = 0.5, and thus also the mean
inter-arrival time E[T ], to 100 slots.

For these three burst size distributions, we study the impact of correlation
on three different levels, by considering three different parameter settings for the
inter-arrival time distribution, a mix of geometric distributions,

t(n) = αpS(1 − pS)n−1 + (1 − α)pL(1 − pL)n−1 , n ≥ 1 ,

with 0 ≤ α ≤ 1, and0 < pL < pS < 1. This distribution is indeed able to
capture correlation, through the arrival of groups, and wasused earlier for that
scope in Sect. 2.4.6, for Fig. 2.10. The time between arrivals of members of the
same group is distributed geometrically with parameterpS and short mean value
S = 1/pS. This occurs with probabilityα. The time between arrivals of two
groups, that terminates the previous group and initiates a new one, is distributed
geometrically with parameterpL and long mean value1/pL. This occurs with
probability1 − α. Resulting, one obtains that the mean number of arrivals within
one group isG = 1/(1 − α). In Fig. 3.5, pane (a) considers correlation level 0
and 1 (cor0, cor1), while pane (b) repeats correlation level1, in order to compare
it with level 2 (cor1, cor2). All three levels have E[T ] = 100 slots, but different
G andS. Correlation level 0 hasG = 1 andS = 50 slots, which corresponds to
a memoryless geometric distribution, with no correlation.At level 1, correlation
is augmented by increasing the group size,G = 4, while S remains 50 slots. At
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level 2, correlation rises further asS diminishes to50/4 slots, whileG remains 4.
The parameter settings for the three correlation levels aretabulated in Table 3.1.
Notice that exactly the same setting was considered in Sect.2.4.6, with cor0, cor1,
cor2 there called run 1, run 3 and run 5, respectively. Further, note that the results
in Sect. 2.10 were approximate, whereas we obtain exact results here.

A first interpretation of the results comes as expected: increased correlation
leads to increased loss, for all three radiiQ = 5, 20, 49. Further verification
showed that this is so for any load0 < ρ ≤ 1 and any radius0 < Q < 50.
Also, the optimal granularity is always between 0 andBmax. This optimum is a
result of the trade-off between the granularityD (that is best kept small) and the
maximum achievable delayND (that is best kept large). However, the evolution
of this optimum under a correlation increase is far from self-evident and calls for
a separate discussion.

For a small radius (Q = 5), we observe a pronounced optimum forD around
E[B + Q], that was already reported for the uncorrelated case in [7],and is very
similar to the case of deterministic burst sizes, first discussed in [10]. As Fig. 3.5
suggests, this value remains optimal also under a correlation increase. Results
for other loads point out that the optimum is even more stablein case of higher
correlation. Specifically,D . E[B + Q] is optimal forρ < 0.58 (cor0), ρ <

0.59 (cor1) andρ < 0.96 (cor2). For an intermediate (Q = 20) and large radius
(Q = 49), Fig. 3.5 displays how the optimum forD, associated with cor0, still
remains stable under a first correlation increase, cor1. However, going from cor1
to cor2, the optimum forQ = 20 shifts to the higher valueD . E[B + Q], while
the optimum forQ = 49 also increases, but to a lesser extent. Verification for
0 < ρ ≤ 1 confirmed this for anyQ: under a highly correlated arrival process
(cor2) the optimum either remains the same, or shifts towards a higher value.

3.3 Solution for Upper-Bounded Burst Size Distrib-
ution

In the current and the next section, we focus on two special instances of the general
model discussed in Sect. 3.1. More precisely, we narrow downthe assumptions to
consider only a degenerate buffer setting with granularityD, but however maintain
generality for the time setting. As in the rest of this chapter, we maintain the
(arbitrary) convention to first study the system in DT, and then in CT. For upper-
bounded burst size distribution (this section), direct application of the model in
Sect. 3.1 enables a closed-form solution when the granularity is larger than or equal
to the mentioned upper bound. For memoryless burst size distribution (Sect. 3.4),
a modified model based on that of Sect. 3.1 allows for a closed-form solution of
the problem for any value of the granularity.
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We note that the main motivation for a closed-form solution is not the reduction
in computation time, since the method of Sect. 3.1 can be easily implemented in
software, yielding results instantly (order ofµs) for any parameter setting. Rather,
we feel that closed-form expressions are extremely easy to use, especially when
their form is as simple as that of the formulas we obtain here.Also, their simple
form allows for more insight in the functioning of an FDL buffer in general.

3.3.1 Implications of an Upper Bound

When burst sizes are upper-bounded, and a single-wavelength buffer with FIFO
scheduling is considered, an important notion is that the optimal granularityD,
sayD0, will never be larger thanBmax − Tmin, with Bmax defined in Eq. (3.14),
andTmin defined as the essential lower bound of the inter-arrival time distribution,

Tmin = essinf{Tk} ≡ inf(x : Pr[Tk < x] > 0) , x ∈ R
+ . (3.25)

This result is generally valid, and is independent of the time setting, the inter-
arrival-time distribution, and the specifics of the burst size distribution. The result
even holds if batch arrivals are considered (as in Sect. 2.3), with the understanding
that then,Tmin = 0. The only assumption is thus the upper-boundedness of the
burst size distribution, for a single-wavelength buffer with FIFO scheduling.

Note thatD0 ≤ Bmax − Tmin is even valid for non-iid burst sizes or service
times. It can easily be shown that it is also valid for an infinite-sized buffer setting.
It can be stated somewhat more general asD0 ≤ Umax, whereUmax denotes the
maximum of the support of the rvUk that is the difference ofBk andTk, that may
be correlated to each other.

Returning now toD0 ≤ Bmax − Tmin, this can be understood through intu-
itive reasoning, by making use of the scheduling horizon, a key rv in the previous
chapter, that is only sporadically mentioned in the currentchapter. We consider
two mutually exclusive cases.

1. Imagine that an arbitrary burstk was assigned waiting timeWk = iD, with
i ≤ N − 1. This corresponds to the situation where burstk used any but
the longest delay line, and there is always a delay line left that is longer
thaniD, and available for contention resolution. Burstk +1 arrivesTk time
units later (secondsfor CT, time slotsfor DT), and has to wait for at least
Hk+1 = [iD + Bk − Tk]+ time units to avoid contention, withHk+1 is
the scheduling horizon of burstk + 1, just like in the previous chapter. In
a worst case scenario, this amount of time is maximized, whenBk equals
Bmax, andTk equalsTmin. In this regard, even in a worst case scenario
(with clearlyHk+1 > 0), burstk + 1 only needs to be delayed forHk+1 =

iD + Bmax − Tmin. As such, the delay line with indexi + 1 can always
provide burstk + 1 with sufficient delay, as long asBmax − Tmin ≤ D,
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since then,Hk+1 ≤ (i + 1)D, showing that(i + 1)D is sufficiently long.
The latter being the maximally required line length for linei + 1, there is
no reason to make the line any longer thanBmax − Tmin, since this would
only result in extra delay for burstk + 1, increase the average waiting time,
and so even increase the average loss probability.

2. Imagine that an arbitrary burstk was assigned waiting timeWk = ND.
Now, burstk is delayed with the longest delay line. Whether or not burst
k+1 can be accepted depends entirely onBk andTk: if Bk −Tk ≤ 0, burst
k + 1 is accepted; ifBk − Tk > 0, burstk + 1 is lost. As such, in this case,
D is not to be optimized, since it plays no part in the acceptance of burst
k + 1.

Concluding, we see how upper-bounded burst sizes imply thatD0 ≤ Bmax −

Tmin. In other words, increasing the granularity beyondBmax −Tmin is useless1,
since it does not yield better contention resolution, and results in performance
degradation. The boundBmax − Tmin is reflected in for example the optima for
low load and deterministic burst size distribution:Bmax − 1 for DT, Bmax for CT
(as mentioned frequently in the previous chapter, and also in the current, see for
example Sect. 3.1.7).

3.3.2 Rather General Assumptions

In the following, we will add three assumptions to the ones made in Sect. 3.1. We
first treat the DT case, for which we adopt the following: (i) we assume that the
burst sizesBk are upper-bounded by someBmax, that is,Bk ≤ Bmax ; (ii) the
buffer is degenerate, with FDL setA = {0, D, 2D, . . . , ND}, with granularity
D; (iii) we assume that the granularity (nearly) matches the maximum burst size
Bmax, that is,D = Bmax − 1. As known from Sect. 3.3.1, the valueBmax − 1

also constitutes the largest granularity value that still can be called useful. The CT
case also assumes (i) and (ii) but not (iii) since for CT, the offset of one vanishes,
andD is chosen equal toBmax. This is explained further in Sect. 3.3.3.3. An
explicit formula for a more general class of FDL buffers is presented in [9], where
we prove that the minimum loss rate within this class is realized using the (three)
above-mentioned assumptions.

While these assumptions are helpful from a mathematical point of view, the
main motivation to adopt these three assumptions comes fromthe application. Es-
pecially in the case of fixed burst sizes (often considered inOBS and OPS), this

1Strictly speaking,Bmax − Tmin can only be called “the largest useful granularity value” ina
performance modeling context. In an actual implementation, the value still plays a similar role, but
the granularity value can be chosen somewhat larger for other reasons, for example to compensate for
finite switching and processing times.
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Figure 3.6: Characterization of the threshold load of a CT degenerate M/D/1 buffer for
increasing sizeN (a), and of a CT degenerate M/U/1 buffer for increasing burst
size rangeQ (b). Below the threshold load, the degenerate buffer setting, with
D = Bmax, is optimal. Note that results are independent of the numerical value of
Bmax (expressed inµs).

setting is a very plausible one. The first assumption trivially arises from the ap-
plication. As for the second and third, it is widely acceptedthat, in the case of
fixed-sized bursts, it is natural to chooseD equal to the size of the bursts , as re-
ported for CT in for example [24]. In the DT case, more recent work confirms
this [10], showing thatD is best chosen equal toBmax − 1 (offset of one when
compared with the CT case), given that this is optimal in terms of loss as long as
the load is smaller than some threshold load of about60%. (When the load exceeds
this threshold, the optimum for the granularity jumps to lower granularity values.)
Also in DT, this is further confirmed for a more general arrival process [6]. In
the case of non-degenerate buffers, [17] illustrates that even when non-degenerate
buffers are considered, the degenerate case comes out as theoptimal one for low
loads, again for loads up to a threshold of about60%. To validate this qualitative
result for a CT setting, we traced this threshold load in an exact manner, by means
of the method of Sect. 3.1.5, for degenerate fiber lengths. Note that we prefer
to consider the CT setting rather than the DT setting, since the CT is somewhat
simpler (no influence of the slot length comes about), but is equally instructive.
Further numerical experimenting for the DT case showed thatincreasing the slot
lengths results in a minor increase of the threshold load.

The left pane of Fig. 3.6, valid for any value ofBmax, shows that this threshold
load depends substantially on the buffer size if this buffersize is small, but flattens
out for larger buffer size. This shows that, even for large buffer sizes, the current
setting is the optimal one for a load smaller than about58%. While this is valid
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for CT, numerical verification confirmed that this also goes for DT. As such, it is a
prime candidate for implementation in an actual OBS/OPS switch.

The current setting withD = Bmax can also be the optimal one in case of
variable burst sizes, albeit only for low traffic load. Whilethe exact value of such
threshold load depends considerably on the specific burst size distribution, it is
instructive to verify the basic case of a uniform burst size distribution. Without loss
of generality (at least for CT), we normalize the mean burst size to E[B ] = 1, and
obtain a tuneable range[1−Q, 1 + Q] by varying the range parameterQ between
0 and 1. This is applied on the right pane of Fig. 3.6 to study the threshold load,
for varyingQ, and three different buffer sizes,N ∈ {1, 2, 5}. Firstly, the figure
shows that the impact of the buffer size is only minor, since the three lines nearly
coincide. Secondly, the value of the threshold load is already low for only small
variations of the burst size: the threshold load is about21% for range[0.9, 1.1]

(Q = 0.1), which is much lower than the60% mentioned for fixed burst size.
Thirdly, note that, even for the widest possible range,[0, 2] (Q = 1), the threshold
load remains larger than zero.

Summarizing, the current setting is the optimal one for any range of a uniform
burst size distribution, but only for (really) low loads. Note that the performance
model of Sect. 3.1.5 allows to determine the optimal buffer setting for any given
burst size distribution. However, numerical trials for load values above the thresh-
old load pointed out that the optimum is exceedingly dependent on the traffic load
and burst size distribution range, making it impossible to identify a “best design
choice” for the granularity for general traffic load. As such, the setting assumed
here is also an interesting point of reference in case burst lengths vary.

3.3.3 Analysis

3.3.3.1 Markov Chain of Waiting Times

For the traffic setting, the assumption thatD = Bmax − 1 allows to specify the
FU (n) further, as

FU (n) =











p̄−n ·
∑Bmax

i=1 b(i) · p̄i−1 , n ∈ Z− ,

p̄−n
∑Bmax

i=n+1 b(i) · p̄i−n−1 + FB(n) , n ∈ {1, 2, . . . , Bmax − 2} ,

1 n ∈ {Bmax − 1, Bmax, . . .} .

For conciseness’ sake, we introduce additional notation, that directly relates to the
parameters introduced in Sect. 3.1:

P̄ = p̄D , P = 1 − P̄ ; ḡ = FU (0) =

Bmax
∑

n=1

b(n)p̄n−1 , g = 1 − ḡ . (3.26)

All four parameters have range in[0, 1] and account for probabilities. Note that
FU (0) can be obtained as a function of the pgf of the burst size distribution,B(z),
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evaluated inz = p̄ : FU (0) = B(p̄)/p̄. With w(n) the steady-state probability that
an accepted burst is delayed withan (like above), it is required that

∑N
i=0 w(i) ·

min = w(n), for n ∈ {0, 1, . . . , N}. Since the evolution of the waiting time is
exactly as in Sect. 3.1.5, we utilize (3.10), to obtain aftersimplification that

M =

























ḡ g 0 . . . 0
ḡP̄ ḡP g

ḡP̄ 2 ḡP P̄ gP
...

...
...

. . . 0 0
g 0

ḡP̄N−1 ḡP P̄N−2 · · · ḡP g
P̄N PP̄N−1 · · · PP̄ P

























, (3.27)

wheremij = 0 if j ≥ i + 2, for 0 ≤ i ≤ N − 2. Already of very simple form, we
remark thatM further simplifies if burst sizes are fixed toB = Bmax, since then
ḡ = P̄ , g = P , and the last two rows coincide.

3.3.3.2 Closed-Form Solution

The symmetry ofM (3.27) confirms that the Markov chain formulation indeed is
fit for the specific problem, since it allows us to obtain a closed-form solution for
the steady-state waiting time probabilities and the LP.

Like in Sect. 3.1.5.2, the Markov chain of waiting times, nowdefined byM
(3.27), is aperiodic, irreducible and has positive-recurrent states, and thus allows
to obtain a unique equilibrium distribution fork → ∞, with all involved rv’s
associated with the steady-state distribution, and{W, B, T } denoting generic rv’s
following the steady-state distributions of{Wk, Bk, Tk, Yk}, respectively.

For this steady state, we evaluate
∑N

i=0 w(i) ·min = w(n), which provides us
with N + 1 conditions for thew(n) (1 ≤ n ≤ N − 1):

gw(n−1)+ ḡP

N−1−n
∑

i=0

P̄ iw(n+ i)+PP̄N−nw(N) = w(n) , 1 ≤ n ≤ N −1 .

Adding the evaluation of the matrix expression forw(N), w(N) = w(N−1)·g/Q,
and the normalization condition,

∑N
n=0 w(n) = 1, provides us withN + 1 con-

ditions for thew(n), sufficient for a unique solution. Some calculation shows that
the waiting time probabilitiesw(n) for accepted bursts have a truncated (shifted)
geometric distribution,

w(n) = ζn ·
1 − ζ

1 − ζN+1
, 0 ≤ n ≤ N , (3.28)
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with ζ = g/P̄ . The mean waiting time E[Wk ] of an arbitrary accepted burstk is
directly derived from this, as

E[Wk ] = D ·

(

ζ

1 − ζ
−

(N + 1)ζN+1

1 − ζN+1

)

. (3.29)

This formula is valid forζ 6= 1; in the case thatζ = 1, thew(n) are distributed
uniformly, w(n) = 1/(N + 1), 0 ≤ n ≤ N , with mean waiting time E[Wk ] =

ND/2.
To obtain the LP, like in Sect. 3.1.5.3, we consider again E[Zk ], the average

number of lost bursts during the unavailable period following burstk, that is cap-
tured by the expression E[Zk ] = p(E[Bk ] − 1)w(N). The same reasoning as in
Sect. 3.1.5.3, now assuming steady state, leads to

LP =
p(E[B ] − 1)ζN (1 − ζ)

p(E[B ] − 1)ζN (1 − ζ) + 1 − ζN+1
. (3.30)

As such, the closed-form solution comprises (3.28) and (3.30), and is of par-
ticularly simple form. For deterministic burst size distribution, E[B ] = Bmax,
E[B ] − 1 = Bmax − 1 = D, andζ = P/P̄ .

3.3.3.3 Closed-Form Solution for CT

To account for CT, a slight change in the third assumption of Sect. 3.3.2 comes
about: it suffices to assume that the granularity equalsBmax, that is,D = Bmax,
and this (as in Sect. 3.1.6) due to the omission of the relative offset in the minimum
of the support ofTk in CT (Tmin = 0) when compared to DT (Tmin = 1). We
adopt the notation of Sect. 3.1.4, and add the following fourparameters (comple-
mentary to (3.26)),

P̄ = e−λD , P = 1 − P̄ ; ḡ = FU (0) =

∫ Bmax

0

e−λudFB(u) , g = 1 − ḡ .

(3.31)
Substituting these parameters, the matrixM for CT is equally valid for DT, and

yields the same formulas for the steady-state waiting timesprobabilitiesw(n) and
the mean waiting time, (3.11) and (3.29), respectively. In the case thatζ < 1, one
can compare (3.29) to the expression of the mean waiting timefor infinite buffer
size. As was derived in the previous chapter (Sect. 2.2.8.2,Eq. (2.37)), then, the
waiting times have a (shifted) geometric distribution withparameter̄ζ, from which
it follows that E[W ] = D ·ζ/ζ̄ for N → ∞. For the finite system considered here,
expression (3.29) for the mean waiting time remains valid also for ζ > 1, while
for ζ = 1, thew(n) are distributed uniformly,w(n) = 1/(N + 1), 0 ≤ n ≤ N ,
with mean waiting time E[W ] = ND/2.
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As for the LP, the CT formula somewhat differs from (3.30), again due to the
aforementioned relative offset. Assuming steady state, the mean number of lost
bursts during the unavailable period following an arbitrary burst is now E[Z ] =

λE[B ]w(N), which results in the following expression for the LP,

LP =
ρζN (1 − ζ)

ρζN (1 − ζ) + 1 − ζN+1
, (3.32)

with ρ = λE[B ] the traffic load.

3.3.3.4 Comparison to Classic System

If burst sizes are fixed toBmax, (3.32) can be written solely in terms of only the
traffic loadρ, since thenζ = P/P̄ = eρ − 1. When considering the formula it
comes out that this is even somewhat simpler than the solution for a classic M/D/1
buffer of sizeN + 1 in CT [99], for which the loss probability LPc (c for classic)
is expressed by

LPc =
1 + (ρ − 1)FN

2 + (2ρ − 1)FN
, (3.33)

with Fi =
∑i

k=0
(−1)k

k! (i − k)ke(i−k)ρρk. The same goes for the expressions for
the mean waiting time, since the mean waiting E[W c] for a classic M/D/1 buffer
of sizeN + 1 [99], with burst sizes fixed toD, is given by

E[W c] = D ·

(

N −

∑N
i=0 Fi − N − 1

ρFN

)

, (3.34)

with the sameFi as above, which is clearly somewhat more involving than (3.29).
A comparison of the performance of both systems is given in Sect. 3.3.4.

3.3.4 Numerical Examples

While the obtained results allow to trace both the DT and CT setting for a wide
variety of settings, we will focus here on just two examples of the CT setting, and
also provide an instructive comparison of an optical and a classic buffer system.

Uniform Burst Size Distribution In a first example, displayed in Fig. 3.7, we
consider burst sizes with a uniform distribution. The traffic load is fixed to40%;
the burst size distribution has the same (normalized) characteristics as the one
considered in Sect. 3.3.2: E[B ] = 1 µs, with a range[1 − Q, 1 + Q] that can
be tuned by varying the range parameterQ in [0, 1]. The left pane of Fig. 3.7
shows the average waiting time of accepted bursts, for five different buffer sizes,
N ∈ {1, 3, 5, 10, 20}, (N also being the number of lines with non-zero length) as
a function of the range parameterQ; the values are obtained from (3.29). Firstly, it
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Figure 3.7: Impact of an increase of the range of the uniform burst size distribution on the
mean waiting time and LP of a degenerate M/D/1 buffer in CT. The (normalized)
range[1 − Q, 1 + Q] (in µs) of the burst size distribution increases along withQ.
These figures were obtained forρ = 40%.

comes as no surprise that the average waiting time increaseswhen the buffer size
augments. This can be immediately learned from (3.29), and it is also the case for
classic buffers. Note that the average waiting time for an infinite-sized buffer sys-
tem is also on display, since for the parameter settings considered, the difference
with the curve forN = 20 is negligible. Most relevant now is the observation that
performance degrades as the burst size range increases, a performance loss that is
inherent to the FDL buffer system.

The right pane of Fig. 3.7 displays the LP for the same setting, and is obtained
from (3.30). Although increasing the buffer size indeed lowers the loss for any
burst size range, it is clear that loss is mitigated much moreeffectively when the
burst size range is limited. This again confirms that performance worsens as the
burst size range increases. Relying also on further numerical trials, we conclude
that an FDL buffer in general yields better performance whenburst sizes are fixed
than in the case where the latter vary.

Deterministic Burst Size Distribution In a second numerical example, we fo-
cus on a case with better performance, with burst sizes fixed.More particularly,
we compare its performance with that of a classic M/D/1 buffer of sizeN + 1 (N
places available for waiting, 1 for serving), with burst sizes fixed toBmax = D.

Note that this is indeed a fair comparison, which is not necessarily so in the
case of general burst sizes. More precisely, the FDL buffer suffers loss from so-
called balking: bursts are lost, whenever the requested waiting time exceeds the
buffer capacityND. In a classic buffer of sizeN + 1, loss occurs when allN + 1
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Figure 3.8: Mean waiting time of the classic and the degenerate M/D/1 buffer of finite size
in CT, set out for increasing traffic load and various buffer sizes. These figures were
obtained forE[B] = 1 µs.

places (N for waiting, 1 for serving) are occupied. As such, the loss process is
determined by either the waiting time characteristics, or the number of bursts in
the queue, respectively. However, due to the fact that burstsize is fixed, limiting
the waiting time toND yields the same loss condition as limiting the number of
places available for waiting toN (classic buffer case).

The left pane of Fig. 3.8 displays the mean waiting time, for three different
buffer sizes,N ∈ {1, 2, 5}, with E[B ] = Bmax = 1, and varying traffic load
ρ = λBmax. The continuous curves are valid for an FDL buffer, and are obtained
from (3.29) (withζ = eρ−1); the dotted curves account for the classic buffer case,
and are calculated using (3.34). As can be seen, the performance gap between
the classic and the FDL case is considerable, with the discrepancy growing for
increasing traffic load. On the other hand, for low load, the curves for the classic
buffer converge to one waiting time value. The same can be said about the curves
for the FDL buffer, that also converge to one waiting time value when the load
approaches zero, as should. Note, however, that even for small loads, the curves of
the FDL buffer always display higher waiting time values than those of the classic
buffer.

Inspecting this, the right pane of Fig. 3.8 shows the mean waiting time ratio
of the FDL case and the classic case, E[W ]/E[W c ], for five different buffer sizes,
N ∈ {1, 2, 3, 4, 5}. Most interestingly, it comes out that, in the limit of the load
approaching zero, this ratio is exactly 2, and this independent of the buffer size.
Although not self-evident, this observation comes with an intuitive explanation.
More precisely, the case of very low load implies that the buffer is almost always
empty. If a burst has to wait (and thus is buffered), it will nearly always be because
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exactly one burst (and not more) is receiving service. On theone hand, in a classic
system with a Poisson arrival process, the waiting time of such burst (also, the
residual service time of the previous burst) is half of the burst size on average,
D/2. On the other hand, in an FDL buffer system with a Poisson arrival process,
the residual service time of the previous burst is alsoD/2 if the load is near to
zero. However, given the FDL buffer’s functioning, its waiting time has to be a
multiple of D, and such burst always gets assignedD in the FDL buffer system.
Concluding, FDL M/D/1 buffers see waiting times doubled when compared to
their classic counterpart, at least for low load.

For larger loads, the right pane of Fig. 3.8 shows that the performance gap
is largest for a traffic load between40% and80%. This gap then decreases for
augmenting load, and becomes minimal when the system is in overload (> 100%).
The latter being a less interesting regime in practice, we conclude that, for loads
< 80%, the waiting times in M/D/1 FDL buffers are usually more thandoubled
(except forN = 1), when compared to those of the classic M/D/1 buffer.

3.4 Solution for Memoryless Burst Size Distribution

With the previous section devoted to the case of deterministic burst size distribu-
tion, the current one assumes a memoryless burst size distribution, but maintains
the assumption of memoryless arrivals, and all the other system assumptions of
the general model discussed in Sect. 3.1. The aim is again to derive a closed-form
solution for the waiting time distribution and loss probability, in the case of a de-
generate buffer setting with granularityD. The main difference with the approach
of the previous section is that we do not base the analysis directly on the method of
Sect. 3.1.5, but consider a Markov chain with an additional state to account for loss.
Since the latter allows to exploit the memorylessness of theburst size distribution,
we obtain a simpler transition matrix, which eases the extraction of closed-form
expressions from there. Note that the “all-round” approachof Sect. 3.1.5 also leads
to the correct expressions in principle, but poses more mathematical difficulty than
the light-weight approach presented here, yielding closed-form expressions for any
value of the granularity. As in the previous section, we firstconsider the DT case,
then the CT case.

3.4.1 Traffic Setting

In this section, we follow an approach that is different fromthat of Sect. 3.1, by
introducing an additional Markov state to account for loss (see further). This also
corresponds to a different numbering for the arriving bursts: rather than numbering
only accepted bursts (like in Sect. 3.1), we number the bursts in the order of their
arrival, regardless of their acceptance, like in the previous chapter. As such, index



124 CHAPTER3

k indicates that an arbitrary burstk either experiences a waiting timeWk in the
buffer, Wk ∈ {0, D, 2D, . . . , ND}, or is discarded, without assigning a waiting
time, if the requested delay exceeds the maximum delay. The latter we denote with
DM in the following, instead of usingaN , to stress thatDM is indeed a multiple
of D.

As for the burst sizes and inter-arrival times, both constitute a series of iid rv’s
with memoryless distribution, which is a geometric distribution in the current case
of DT. With burstk, we associate a burst sizeBk with mean value1/f , whereas
the time between thekth burst and the(k + 1)th is captured by the inter-arrival
timeTk, with mean1/p, corresponding to the cdf’s

FT (n) = Pr[Tk ≤ n] = 1 − p̄n , FB(n) = 1 − f̄n , n ∈ N ,

with f̄ = 1 − f , p̄ = 1 − p. Again consideringUk = Bk − Tk, this traffic setting
results in the following expression for the cdf ofUk,

FU (n) =

{

ḡ · p̄−n , n ∈ Z− ,

ḡ + g · (1 − f̄n) , n ∈ Z
+
0 ,

with

ḡ = FU (0) =
f

1 − f̄ · p̄
,

whereḡ = 1 − g.

3.4.2 Analysis

3.4.2.1 Evolution of the Waiting Time

Numbering each arriving burst, the system’s evolution can be captured completely
in terms of the rv’sUk andTk in a way that is similar but not identical to Sect.
3.1.5.1, due to the different numbering convention. By considering the acceptance
or loss of burstk + 1, conditioned on the acceptance or loss of burstk, we obtain
four mutually exclusive events, with the corresponding waiting time transition.

1. Burstk + 1 accepted, given that burstk was accepted. The buffer is never
full, and both burstk andk + 1 can be accepted. This occurs if

Wk + D ·

⌈

Uk

D

⌉

≤ DM ,

and leads to

Wk+1 =

[

Wk + D ·

⌈

Uk

D

⌉]+

.
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2. Burstk + 1 lost, given that burstk was accepted. Accepting burstk filled
up the buffer, so that burstk + 1 is blocked upon arrival. This occurs if

Wk + D ·

⌈

Uk

D

⌉

> DM ,

and, given that burstk +1 is lost, no waiting time is to be associated with it.

3. Burstk+1 lost, given that burstk was lost. Both burstk andk+1 cannot be
provided with sufficient delay, and are blocked for this reason. Thanks to the
memoryless nature of the burst size distribution, it is of noimportance when
the blocking started, and the residual time needed for the latest-accepted
burst to enter the buffer,B, has the same distribution asBk. Loss occurs
whenever the inter-arrival time is smaller thanB:

Tk < B ,

and again, since burstk + 1 is lost, no waiting time is assigned to it.

4. Burstk + 1 accepted, given that burstk was lost. Now, the system blocked
burstk due to fullness, but the time until arrival of burstk + 1 is sufficiently
large when compared toB, that is,

Tk ≥ B .

To obtain the new waiting time, that is necessarily smaller or equal than
DM , we utilize the reactivation timeRk, that plays exactly the same role as
in Sect. 3.1.5.1, Eq. (3.7) and Sect. 3.2.3.1, Eq. (3.17), toobtain obtain

Wk+1 =

[

D ·

⌈

DM − Rk

D

⌉]+

. (3.35)

Just like in Sect. 3.1.5.1, theRk andTk have nearly identical distribution due to
the memoryless nature of the arrival process, and the cdf ofRk reads

FR(n) = Pr[Rk ≤ n] = 1 − p̄n+1 , n ∈ N ,

which coincides with (3.8). The only difference betweenFT (n) andFR(n) is
again the offset of 1, that reflects the minimum of the supportof theTk, namely 1.

3.4.2.2 Markov Chain of Waiting Times

Now we associate a Markov statei to the case thatWk = i × D, i = 0, 1 . . .N ,
and associate the case of loss of burstk with statei = N + 1 for notational
convenience. Then, upon each arrival, the Markov statei is updated to a new state
j, according to one of the four events mentioned above. Denoting the probability
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of such transition bymij , 0 ≤ i, j ≤ N + 1, calculations show that the transition
matrixM is as follows:

M =























ḡ gF gFG . . . gFGN−1 gGN

ḡQ ḡP gF . . . gFGN−2 gGN−1

ḡQ2 ḡPQ ḡP . . . gFGN−3 gGN−2

...
...

. . .
. . .

...
...

ḡQN−1 ḡPQN−2 . . . gF gG
ḡQN ḡPQN−1 . . . ḡP g
ḡQN ḡPQN−1 . . . ḡP g























(3.36)

with

P̄ = Pr[Tk > D] = p̄D , P = 1 − P̄ ,

F̄ = Pr[Bk > D] = f̄D , F = 1 − F̄ .

3.4.2.3 Closed-Form Solution

Just like in the previous sections, we assume steady state, possible since the Markov
chain defined by (3.36) is aperiodic, irreducible and has positive-recurrent states.
While it is possible to obtain the steady-state probabilities by numerical means
like above, in this special case, we are able to tackle the problem analytically. The
steady-state probabilitiesπ(i) of the Markov statesi are to fulfill the relation

π(i) =

N+1
∑

j=0

π(j) · mji ; 0 ≤ i ≤ N + 1 . (3.37)

Now, exploiting the symmetry in (3.37) when evaluated fori = 1, 2 . . .N , some
calculation allows to establish a geometric relation between all but the first (π(0))
and last (π(N + 1)) entry ofπ:

π(i) = π(1) · ζi−1 ; 1 ≤ i ≤ N , (3.38)

with
ζ = ḡF̄ + g/P̄ = (f · f̄D + f̄ · p · p̄−D)/(1 − f̄ · p̄) . (3.39)

Given (3.38), we haveN −1 linear equations (excluding the trivial instancei = 1)
at disposition to determine theN + 2 entries ofπ. As such, we need only three
additional conditions to determine allπ(i), which we obtain by evaluating (3.37) in
i = 0 andi = N + 1, and invoking the normalization condition,

∑N+1
i=0 π(i) = 1.

This allows to write down the final expressions for theπ(i),

π(0) = K · P̄ ·
(

ḡ/g · χP + (F̄ P̄ )N−1 · χF

)

,

π(N + 1) = K · F̄N−1 ·
(

F̄ · P̄ · χP + g/ḡ · χF

)

, (3.40)

π(1) = K ·
(

1 − (F̄ P̄ )N
)

,
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where we introduced

χ1 = (1 − ζN )/(1 − ζ) ,

χP = (1 − (ζP̄ )
N

)/(1 − ζP̄ ) ,

χF = (1 − (ζ/F̄ )
N

)/(1 − ζ/F̄ ) ,

K−1 = (1 − (F̄ P̄ )N ) · χ1 + P̄ (F̄N + ḡ/g) · χP

+F̄N−1(P̄N + g/ḡ) · χF .

Note that otherπ(i), 2 ≤ i ≤ N , are readily obtained from (3.38). Now, the
probability that an arriving burst is lost simply equalsπ(N + 1). The steady-state
probabilities of the waiting time of accepted bursts,w(i), i = 0 . . .N , can be
obtained as

w(i) = Pr[Wk = iD | burst k accepted] =
π(i)

1 − π(N + 1)
, i ∈ {0, 1, . . . , N} .

Together with (3.38), this yields that

w(i) = w(1) · ζi−1 , i ∈ {1, 2, . . . , N} , (3.41)

and the coefficientζ plays a similar role as in Sect. 3.3.3.2, but with the minor
difference that the waiting times do not follow a simple truncated geometric distri-
bution like in Sect. 3.3.3.2, sincew(0) does not obey the geometric relation (3.41).
The mean waiting time of accepted bursts however easily follows, as

E[W ] = D

∑N
i=1 iπ(i)

1 − π(N + 1)
= Dπ(1)

NζN+1 − (N + 1)ζN + 1

(1 − π(N + 1))(1 − ζ)2
. (3.42)

It is interesting to place this result in juxtaposition withthe expressions for infinite-
sized buffers. While the current work only treats the CT casefor that (in Sect.
2.2.8.1), [13] accounts for the DT case, reporting amongst others the pgf of the
waiting times. Inversion of the latter yields that, for the infinite-sized case, the
waiting time probabilities adhere to

w(0) = ζ̄/F ,

w(i) = (1 − w(0)) · ζ̄ · ζi−1 , i ∈ N0 , (3.43)

and thus prove similar to the current result, in that the decay rate for increasingi is
ζ in both cases. The mean waiting time for the DT case and infinite buffer size is
also mentioned in [13] (with notationγD for ζ, µ̄D for F̄ ), and can be simplified
to

E[W ] = D · {
1

ζ̄
−

1

F
} , (3.44)

that is in general larger than the mean waiting time for finitebuffer size (3.42), and
provides an upper bound, that yields very good approximations for largeN .
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Finally, since the first purpose of the performance model is to determine the
optimal granularityD0, one might attempt to derive an analytic expression for
the latter. Such approach is possible in principle, as the expression for the LP,
π(N +1), can be written as an explicit function ofD, π(N +1) = F(D). Further,
as discussed earlier in Sect. 2.1.6.2,F(D) takes on the loss value of a bufferless
system, both forD → 0 andD → ∞. As such, (2.16) (obtained for a memoryless
arrival process) applies also here,

lim
D→0

F(D) = lim
D→∞

F(D) = ρ/(1 + ρ) .

Between these extremes, the curve displays only one extremum, namely the op-
timum D0, that can be found by solving the integer optimization problem by nu-
merical means.

3.4.2.4 Closed-Form Solution for CT

Just like in the previous sections, the analysis for CT follows almost directly from
the analysis in DT, and requires but little modification. Now, the iid inter-arrival
times and burst sizes both have negative-exponential distribution, with cdf

FT (x) = Pr[Tk ≤ x] = 1 − e−λx , FB(x) = 1 − e−µx , x ∈ R
+ ,

with E[Tk ] = 1/λ, and E[Bk ] = 1/µ. This corresponds to the following expres-
sion for the cdf ofUk ,

FU (x) =

{

ḡ · eλx , x ∈ R− ,

ḡ + g · (1 − e−µx) , x ∈ R
+
0 ,

with
ḡ = FU (0) =

µ

λ + µ
.

Other aspects (degenerate buffer with waiting times in{0, D, 2D, . . . , ND}, with
DM = ND) remain the same, except that the granularity now takes on any posi-
tive real value,D ∈ R

+
0 .

As for the waiting time transitions, the four events mentioned go unaltered, but
now with

FR(x) = Pr[Rk ≤ x] = 1 − e−λx , x ∈ R
+ ,

that coincides withFT (x). The matrixM (3.36) for DT is valid equally for CT if
one assumes

P̄ = e−λD , P = 1 − P̄ ; F̄ = e−µD , F = 1 − F̄ . (3.45)

(Due to the identical arrival process, this substitution issimilar to the one for
upper-bounded burst sizes, see (3.31).) Since the transition matrix is formally
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Figure 3.9: Loss probability as a function of the granularity D, for different values of the
buffer sizeN , for fixed traffic loadρ = 0.25, andE[B] = 1/µ = 1 µs (although
results are independent of time scale). Results from Callegati’s model are compared
to the exact results presented in this section. In both cases, the resulting optimal
granularity valueD0 is indicated with “o”.

identical, the expressions for steady state go unaltered, and the loss probability
π(N + 1) (3.40), waiting time probabilitiesw(i) (3.41) and E[Wk ] (3.42) main-
tain their form, andζ (3.39) now equals

ζ = ḡF̄ + g/P̄ = (µe−µD + λeλD)/(λ + µ) . (3.46)

Again, it is elucidating to contrast these results with those for infinite-sized buffers.
Indeed, the expressions for thew(i) (3.43) and the mean waiting time (3.44) for DT
are equally valid for CT if one substitutes{ζ, F} according to (3.45) and (3.46).
Further, this very expression forζ was encountered earlier in the case of infinite-
sized buffers, see Sect. 2.2.8.1, Eq. (2.33). Also, Eq. (2.34) forw(i) and Eq. (2.35)
for E[W ] indeed provide identical results, as should.

For the determination ofD0, numerical minimization ofπ(N + 1) for varying
D again provides the easiest method. Although∂F(D)/∂D = 0, with π(N+1) =

F(D), yields a condition forD0, it does not allow for a solution in closed form.

3.4.3 Numerical Examples

The current case of a memoryless burst size distribution wasconsidered earlier
by Callegati in [24, 26], in CT. As mentioned in the introduction of Chapter 2,
[24] presents the first stochastic model for optical buffers, and is probably the
best-known stochastic model for optical buffers to date. Therefore, it provides an
interesting point of reference to readers acquainted with optical buffers. Since the
model of Callegati was approximate, we find it appropriate tocompare its output
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to that of our exact model. Also, we focus on the optimal granularity for a given
load and buffer size, also in CT. (The choice for CT is opportune, in that it is
simpler than the DT case, where also the influence of the slot size is to be taken
into account. Numerical verification for DT showed that thisinfluence is minor as
long as∆ is small when compared to E[B ].)

As reflected in [24,26], Callegati’s approach showed that ityields very accurate
results for the cases considered there:ρ = 0.7 andρ = 0.8, for N = 254 and
N = 510. As such, the somewhat more complicated solution presentedhere
would be of lesser significance, if its only merit were that results are obtained
in closed form. Therefore, we extensively explored the output of the numerical
model in [26] (that is more accurate than [24]), to find that itis very accurate for
0.4 < ρ < 0.7. However, forρ > 0.8 , accuracy drops especially for smallN ,
whereas forρ < 0.4, accuracy decreases for anyN . The latter is illustrated in
Fig. 3.9, where it is shown that forρ = 0.25 and E[B ] = 1/µ = 1 µs both the
loss probability, and the related optimumD0, are inexact when determined with
the approximate approach of Callegati, for different buffer sizes2 N ∈ {4, 19, 49}.
In this respect, the current approach relieves the network engineer of questions of
applicability, since it is exact for any load or buffer size,and also yields the correct
loss limit for large granularity, namelylimD→+∞ π(N +1) = ρ/(1+ρ) = g, that
also goes for any bufferless system, as should. We note that the accurateness for
smallN is a considerable merit, as debate in recent years proposes small backbone
buffers for optical networks, see Sect. 1.7.4 and [89].

At this point, we focus on the dimensioning problem itself: given a certain
buffer sizeN and loadρ, what is the optimal granularityD0? The answer follows
from (3.40), by evaluating for different values ofD. While Fig. 3.9 provides the
situation for just one load value, an evaluation for any loadρ ∈ [0, 1] and for five
different buffer sizesN ∈ {1, 2, 4, 19, 49} is displayed in Fig. 3.10. Clearly, the
optimal value for low load (< 0.25) is extremely large, which seemingly com-
promises the feasibility of implementation in that case. However, as discussed in
Sect. 3.3.1, it suffices to assume that the burst size is limited (which is in practice
always so), to show that the optimal granularityD0 is never larger than the max-
imum burst size. More important is the observation that alsofor higher loads, the
optimal granularity is considerably impacted by the value of the load, whereas the
number of FDLs (buffer size) plays only a secondary role. This constitutes a funda-
mental issue in optical buffer design, implying that a granularity value chosen for
implementation is only optimal for one value of the load, while the actual network
evidently has a fluctuating load. Note, however, that other important requirements
will probably result in a granularity smaller than the mean burst size, since shorter

2The reason to considerN ∈ {4, 19, 49} instead of more obvious values (like multiples of 5) is
to ease the comparison with the work of Callegati, that had buffer size captured not byN , but by a
parameter that is equal toN + 1 (yielding {5, 10, 50}).
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Figure 3.10: Optimal granularityD0 as a function of the traffic loadρ, for different values
of the buffer sizeN .

FDLs result in a smaller footprint for the switch and reducedcost, and also in a
reduced mean waiting time. This contrasts with the case of fixed-length bursts,
where matching the granularity with the burst size often yields optimal results, as
discussed in Sect. 3.3.2.

3.5 Concluding Remarks

In this chapter, we provided (i) an exact numerical method based on a Markov
chain approach, that allows to obtain exact performance results by means of nu-
merical calculation; and (ii) closed-form expressions forsome special cases, that
can be obtained directly or indirectly from the results of (i).

The exact numerical method was done first for memoryless arrivals, both in
CT and DT. By focusing on the evolution of assigned waiting times only, we ob-
tained a very concise system description, withN + 1 possible waiting times cor-
responding to an equal number of system states. Transition probabilities between
two states proved expressible by considering either the case of acceptance or loss.
The steady-state waiting time probabilities could then easily be extracted from the
transition matrix, allowing exact results also for the lossprobability, and this with
minimal computational burden. This was applied to some numerical examples,
that focused on the performance of (very) small buffers, as especially the latter
could not be traced in an accurate manner with the pgf approach of the previous
chapter.

Further, the exact numerical method was extended to a general arrival process,
in DT. Under the single restriction of an upper bound on the burst size, this ap-
proach is applicable for any inter-arrival and burst size distribution. By tracing the
loss process in a more exact manner, we were able to maintain the same simple
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system description ofN + 1 states, and so retain the same advantages of minimal
complexity and computational burden.

In a second part, we focused on the closed-form solution of two particular sys-
tem settings with memoryless arrivals. Valid for both DT andCT, the first solution
was obtained for upper-bounded burst size, and is valid for aparticular parameter
setting, where the granularity matches the maximum burst size. The derivation
proved straightforward, and took the general numerical model as a starting point.
The output of the latter was illustrated with some numericalexamples, confirming
the severe impact of burst size variation on buffer performance. Also, numerical
comparison reveals that waiting times in the FDL M/D/1 buffer system are (more
than) doubled, when compared to those of the classic M/D/1 buffer.

The second closed-form solution is a general solution for the case of a mem-
oryless burst size distribution. Again valid for both DT andCT, we constructed a
somewhat different system description withN + 2 states, which enabled an exact
solution. Numerical examples showed that the granularity can be tuned so as to
yield minimal loss, but only for a given value of the traffic load.

When compared with the previous chapter, apart from providing exact results,
the material of this chapter also provides additional insight in the functioning of
optical buffers. In particular, we quantified the influence of the small buffer size,
and showed that especially for fixed burst size, the optimal granularity is indeed
impacted by this. Also, for varying burst sizes (memorylessburst size distribu-
tion), it was shown how engineering an optical buffer is indeed a delicate task:
setting a large value for the granularity will make the buffer well-adapted to low
traffic load, whereas a small granularity value makes the buffer better adapted to
high traffic load. Taking into account the smaller resultingfootprint of the switch,
and the reduced average waiting time resulting from a smaller granularity, it seems
credible to the author that optical buffers for variable length bursts will typically
have short line lengths, with the granularity significantlysmaller than the mean
burst size. The difference with the case of fixed-sized bursts is striking, in that
then, for any buffer size, matching the granularity with theburst size provides an
optimal design, yielding minimal loss up to a certain threshold load. For the case
in-between, we considered a burst size distribution with tuneable range, showing
that the optimization problem is highly impacted by the burst size range, and has
the optimal granularity lowering as the burst size range increases. However, in-
dependent of the range, an intuitive reasoning yielded thatthe optimal granularity
is never to be sought beyond the maximum burst size, but approximates the latter
when the load is low.

Concluding, the Markov chain approach of the current chapter yields exact
results for a wide range of traffic settings, and provides a general-purpose tool on
the one hand, while yielding deeper insight on the other hand, through the closed-
form solutions that were obtained.



4
Performance Evaluation with

Impatience

¶ In this chapter, we briefly consider a simple alternative approach to study the
loss probability (LP) of an optical buffer. The model is based on an exact descrip-
tion of a system with impatience, that however does not include any granularity
effect. It only yields approximate results, that could already be obtained with
somewhat more accurateness with the pgf approach of Chapter2, and even in an
exact manner with the Markov chain approach of Chapter 3. However, since the
method is simple, instructive, and might prove useful in cases that are not inves-
tigated to date, we consider it too useful not to mention. Also, since the method
bases itself merely on the results of a paper by Barrer [82], and does not follow
the approach of either Chapter 2 nor 3, it seems most appropriate to present it in a
separate chapter.

4.1 Optical Buffers: Voids and Impatience

As mentioned in Sect. 1.7.2, the fact that an FDL buffer can only realize delays be-
longing to a limited set implies both the occurrence of voids, and impatience. The
loss process associated with impatience is different from that of a classic buffer
model, in that impatience assumes an upper bound on assignable waiting times,
whereas finite waiting room puts an upper bound on the maximumnumber of
bursts in the queue. This difference in loss process resultsin fundamentally differ-
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ent queueing behavior. Even if two systems differ only in thetype of loss process,
the results can be completely different, with the solution typically somewhat more
involving in the case of impatience. Only in some special cases, for example when
service times have a deterministic distribution, both types of loss coincide.

In the previous chapters, the combination of the effects of voids and impatience
was treated in two different ways. In Chapter 2, the effect ofvoids was traced in
an exact manner, but only for a degenerate buffer setting. Impatience was modeled
only in an approximate manner, by means of a heuristic. The latter took into ac-
count the tail probabilities of the waiting time distribution, which indeed reflects
impatience, but nevertheless yields only approximate results. In Chapter 3, the
combined effect of voids and impatience was modeled in an exact manner. How-
ever, both features were implied by the system description in an entwined manner,
not allowing for specific insight in the influence of both characteristics separately.

In the following, the approach will be complementary to the one of Chapter 2:
rather than focusing on the effect of voids, we first trace theeffect of impatience in
an exact manner, and only introduce the effect of voids in a second step, through an
approximation that makes use of the equivalent load. We willfocus only on the CT
M/M/1 optical buffer system, with the focus rather on insight than on performance
modeling, since we already obtained exact results for this system in Sect. 3.4.

4.2 Impatience in Literature

Impatience goes by many names in queueing literature, and further specification
of the type of impatience is necessary so as to avoid confusion. The type of im-
patience we are interested in hasassignedwaiting times bounded by a fixed value
DM , but puts no bound on the scheduling horizon, that evolves unboundedly. Loss
occurs whenever the scheduling horizon is larger thanDM .

To the best of the author’s knowledge, this type of impatience occurs first in
literature in two papers of Barrer: [81] (for random order ofservice) and [82]
(first-come-first-serve). The latter case is especially relevant for us, as it assumes
arriving customers (or bursts) to be served in the order in which they arrive, just
like we assume in the current work. The model is in CT, and considers negative-
exponential inter-arrival and service times, and an arbitrary number of serversc:
an M/M/c model.

As for the impatience of the customers, Barrer considers twotypes of customer
behavior in [82]. Quoting the latter paper (except for the notationDM ), the fol-
lowing two cases occur: (1) if a customer is accepted for service before he has
waited a timeDM , he remains in the queue until served irrespective of whether
or not his total waiting time exceedsDM . Only those customers who wait for a
time DM without being accepted for service become “lost” customers; and, (2) a
customer whose total waiting time isDM becomes a lost customer irrespective of
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whether he is accepted for service or not.
As for the application of optical buffers, clearly, the firsttype of customer be-

havior is almost the one that we are interested in, since optical buffers can only
provide a maximum delayDM equal to the delay time of the longest FDL. One
difference lies in the fact that in this system setting, customers (or bursts) that even-
tually renege wait in line for a timeDM , whereas in the optical buffer model, such
customers do not enter the queue at all. Apart from the queue content, this does
however not influence the mean waiting time of accepted customers, nor the loss
ratio. This is also mentioned in [101], where the same type ofimpatience is stud-
ied for a GI/G/1 model with generalized impatience: rather than a deterministic
parameterDM , [101] considers a rv for impatience. In [102], first resultswere ob-
tained for the same system and the same generalized notion ofimpatience, but with
impatience there described asreneging phenomena. More general system settings
that all comply with our notion of impatience are consideredin [103–105]. Fi-
nally, results in [106,107] are derived for a DT setting, forboth the case of limited
sojourn time and limited waiting time, with deterministic patience distribution and
general patience distribution. The case of general patience distribution, combined
with Markovian arrival process, is considered in [108].

Inspired by [104], the type of impatience we consider can be unambiguously
described asdeterministic customer impatience, with impatience untilthe begin-
ning of service.We note however that, apart from the type of impatience men-
tioned, many others occur in literature, and, as mentioned by Stanford in [109],
one is to beware of confusion due to different terminology. For example, the term
“reneging” is often used interchangeably with “impatience” in literature, but one
is to check the entire system description to be sure that it isso. Another often-
recurring term for impatience is “balking”, that is mentioned notably in [24], in
the context of optical buffers. Further, in [110], a complete section is devoted to
the non-related case ofuniformly bounded actual waiting time, that assumes ser-
vice times to evolve dynamically, so as to ensure that customers awaiting service
endure waiting times never larger than some maximum waitingtime. Gavish con-
sidersbounded waiting timein [111], but actually studies a limit on sojourn times
(waiting time plus service time).

4.3 Barrer’s Result and Granularity

In this section, we will show that the model that Barrer investigated upon shares
characteristics of the optical buffer model. More precisely, it turns out that Bar-
rer’s model coincides with a CT M/M/1 optical buffer model offinite size, if the
granularityD of the latter is considered infinitely small. As such, we cometo
study an optical buffer that still is degenerate (FDLs have lengthsiD), that still
has a finite maximum waiting time (DM = ND), but that has infinitely small



136 CHAPTER4

granularity valueD 0 0.2 0.5 1 2

N for DM = 4 N → ∞ 20 8 4 2
N for DM = 20 N → ∞ 100 40 20 10

Table 4.1: Parameter setting used for the comparison presented in Fig. 4.1.

granularity,D → 0, and an infinitely large number of FDLs,N → ∞. Clearly,
this system cannot actually be implemented, but serves as aninstructive point of
reference, that can be analyzed with the simple formula presented in [82].

We note that the simplification ofN → ∞ is indeed shared with the pgf ap-
proach of Sect. 2, but with the difference that here, we maintain an exact descrip-
tion of the maximum delayDM (still a “finite-sized” buffer), whereasDM was
assumed infinite in the model of Sect. 2, to obtain an infinite-sized buffer. By as-
suming the correct value forDM right from the start, the model allows for a better
tracing of the loss process in case of high load.

The purpose now is to use the exact result of Barrer, formulated for classic
(non-optical) buffers, to evaluate the performance of optical buffers. The results of
Sect. 3.4 serve the purpose of reference, and allow to easilyevaluate the accuracy
of the approximation.

Barrer obtains a closed-form expression for the LP of an M/M/1 system with
impatience, namely

LP =











(1 − ρ)ρ

eµDM (1−ρ) − ρ2
ρ 6= 1 ,

1

µDM + 2
ρ = 1 ,

(4.1)

where we adopted the notationsµ−1 for the mean service time,ρ = λ/µ for the
traffic load, andλ−1 for the mean inter-arrival time, as in Sect. 3.4. This formula
is extremely simple, and tightly relates to an optical buffer’s performance with the
same impatience (or maximum delay), especially whenD is small (orN large).

The application being a degenerate optical buffer system, in Fig. 4.1, we com-
pare the LP obtained from (4.1), forD = 0, to the results of Sect. 3.4, with various
values for the granularity. The optical burst sizes have mean burst sizeµ−1 = 1 µs,
and a Poisson arrival process with varying intensityλ, equal to the traffic loadρ
(sinceµ−1 = 1). Fixing the maximum achievable amount of delayDM = ND to
4 µs (left pane) and to20 µs (right pane), the granularity values considered lead
either to a finite amount of FDLs, or to the limit of an infinite number of FDLs, as
displayed in Table 4.1. As a reference, all curves carry a diamond (⋄) to indicate
the load level at which the equivalent load,ρeq, reaches one. In the current case of
an optical M/M/1 system in CT, the expression for the latter is obtained earlier in
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Figure 4.1: Comparison of the LP of CT M/M/1 optical buffer systems with different granu-
larity D, but with the same maximum delayDM . For D = 0, the curve corresponds
to a classic (non-optical) M/M/1 system with deterministicpatience fixed toDM .
The diamond (⋄) on each curve indicates the point whereρeq = 1. These figures
were obtained withE[B] normalized to 1µs.

Sect. 2.2.8.1, Eq. (2.36), and reads

ρeq = 1 +
λD

µ + λ

(

λ

1 − e−µD
+

µ

1 − e+λD

)

. (4.2)

As mentioned before, the latter defines the load in the infinite system (that is,
the system with fixed granularityD but bothN → ∞ and DM → ∞), and
turns one when overload in the infinite system is reached. As such, it provides a
characterization of the load without being dependent on thebuffer size.

On the left pane of Fig. 4.1, withDM = 4 µs, it comes as no surprise that
decreasing granularity (more FDLs) leads to significant performance bettering.
Further, it shows that, even withDM fixed, the granularity has a paramount impact
on performance, that remains visible even for granularity values as small as0.2.
Also, the point whereρeq turns one (⋄) comes about as a reference point: for
0 < ρ < ρeq, the LP grows fast with the traffic load (as reflected in quasi-linear
curves on the log-lin scale applied), while forρ > ρeq, loss grows slowly, with an
asymptote at(ρ−1)/ρ for ρ → ∞, with the effect of granularity gradually fading.
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This role of reference point comes about even more distinctly when we consider
the curves for a larger achievable delay,DM = 20 µs, on the right pane of Fig. 4.1.
The latter curves further confirm the major role of the granularity in performance
evaluation, since even the case ofD = 0.2 significantly differs from the limiting
case withD = 0. However, forD even smaller, (D ≪ µ−1, here,D < 0.1), the
curves nearly overlap, as should.

4.4 Approximate Model

In the previous section, we showed how the expression of Barrer (4.1) is consistent
with the results of Sect. 3.4, and even provides a good approximation for the latter,
but only if D ≪ µ−1. Further, the curves in Fig. 4.1 showed how the equivalent
load can serve as a reference, especially forρeq = 1. Now, question is whether the
role of the equivalent load can be expanded, so as to allow a simple approximation
of an optical buffer’s performance with Barrer’s model.

Given that the equivalent load is immediately derived from the drift of the wait-
ing time process of the infinite system (see Sect. 2.1.5), theload indeed incorpo-
rates the impact of the granularity on the waiting time process, without considering
the buffer size. As such, it is the counterpart of Barrer’s model, that traces the per-
formance impact of finiteness (finite patience), with a correct modeling of the loss
process, without considering any FDL effect in the waiting times. This feeds the
intuition that the combination of both might yield a good approximation to trace
an M/M/1 optical buffer’s performance, by simply substituting ρ in (4.1) byρeq

(4.2).
In Fig. 4.2, the latter approximation is put to test, by comparing its output to

results from the exact analysis presented in Sect. 3.4, all for buffer sizeN = 20,
and mean burst sizeµ−1 = 1 µs. On the left pane, the LP is plotted as function
of the granularity, for four cases of the traffic load. We recognize the typical U-
shape of the granularity optimization curves, as studied earlier, notably in Fig. 2.2,
where the curves forρ = 0.6 andρ = 0.8 are also on display (up to a scaling factor,
sinceµ−1 = 50 µs there). The approximation displays good accuracy, especially
for high traffic load, and not too large a value of the granularity. However, to
assess the impact of traffic load and granularity, we consider the plots of the right
pane, where the LP is displayed as function of the load, for three different values
of the granularity. This further confirms that the approximation works best for
small granularity, since the curves forD = 0.5 µs nearly coincide with the exact
ones. For large granularity, the approximation is accurateonly for high traffic load.
Further, results not shown here confirm these results also for other buffer sizesN ,
showing that accuracy is not influenced much by the latter.

As an approximation, we note that the mentioned approach shares some of the
properties of Callegati’s approximation, that also performed best for not too large a
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Figure 4.2: Comparison of exact results for an M/M/1 opticalbuffer in CT with the results
of the approximation with Barrer’s model. The approximation allows for accurate
results, especially for high traffic load, and not too large values for the granularity
(D ≤ µ−1). These figures were obtained forN = 20, and withE[B] normalized
to 1µs.

granularity (see Sect. 3.4), and has comparable accuracy. However, there, an itera-
tive procedure was needed to obtain results. Opposed to this, the current approach
only involves Barrer’s simple formula, and the notion of equivalent load, that can
be derived (also in cases much more general than M/M/1) without analyzing the
entire system, thanks to its simple definition (Sect. 2.1.5).

4.5 Approximate Model for DT

While results up to now only cover the CT case, we now move to the DT case, that
is especially interesting in the current context. More precisely, the relation between
queues with impatience and optical buffer modeling is tighter than in the CT case.
While in CT a queue with impatience was obtainable from the optical buffer by
letting D → 0, it suffices to setD = 1 in an optical buffer model to obtain a
DT model for queues with impatience. In the present context,it suffices to set
D = 1 in all DT results of Chapter 3, to obtain exact results for a general GI/G/1
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system with deterministic impatience in DT. Contrasting this with results for CT,
it is remarkable that even the less general M/G/1 system in DTof [105] requires
numerical approximations in order to obtain results. Apparently, assuming a DT
setting somewhat simplifies the queueing problem with impatience.

Further, DT is also the time setting studied in [107], and as such, some of the
results of Chapter 3 are also covered there, allowing to verify consistency. In [107],
a general impatience distribution with upper boundr is assumed, and thus allows
to handle a deterministic patience distribution, by setting r = DM + 1. (The term
+1 is to be introduced to be compatible with the definition ofr in [107]).

An instructive comparison is the special case of M/M/1 in DT,treated in both
Sect. 3.4 and [107]. SettingD = 1, the results of Sect. 3.4.2.3 can be simplified,
with DM = N , to obtain that the LP equals

LP =















(1 − ρ) · ρ

(p̄/f̄)N+1 − ρ2
ρ 6= 1 ,

1

(N + 1)q/f̄ + 2
ρ = 1 ,

(4.3)

with E[Tk ] = 1/p, p̄ = 1 − p, E[Bk ] = 1/f , f̄ = 1 − f andρ = p/f . Assuming
this notation and applying the result of Sect. 3 of [107] yields that the probability
that the age of the customer in service is zero (there denotedπ̂0) equals

π̂0 =
p̄rf(p − f)

p2f̄ r − p̄rf2
.

With now LP= 1 − (1 − π̂0)/ρ andr = N + 1, one easily obtains (4.3), proving
consistency.

Finally, we note that the expression for the LP in DT (4.3) is tightly related to
the one of CT (4.1). To see this, we rewrite the CT expression for ρ 6= 1 as

LP =
(1 − ρ)ρ

eµDM e−λDM − ρ2
, ρ 6= 1 .

Now, a substitution similar to the one of Sect. 3.4 (Eq. (3.45)) is needed to yield
correspondence,

p̄ = e−λ , p = 1 − p̄ ; f̄ = e−µ , f = 1 − f̄ ,

completed withDM = N + 1, to indeed obtain (4.3). The expression forρ =

p/f = 1 follows by taking the limit forp → f . The link between DT and CT
is less intuitive at one point, sinceDM is “virtually expanded” toN + 1 in DT,
rather thanN . The latter however forms no stumbling block: just like before (for
example in Sect. 3.1.6 and Sect. 3.3.3.3) it can again be understood as (an indirect)
result of the difference in the offset in the inter-arrival times in DT (Tmin = 1 in
DT, Tmin = 0 in CT).
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Together with the appropriate expression forρeq in DT, (4.3) can be used for
an approximate modeling of optical buffers. This is not treated further here, since
results are similar to the CT case.

4.6 Concluding Remarks

In this chapter, we highlighted the link between optical buffer modeling and queues
with impatience. While the most characteristic feature of optical buffers is the li-
mited set of possible waiting times, a second feature is the finiteness of the achiev-
able delay. The latter property corresponds to an often-studied type of impatience,
and allows for a comparison between optical buffers and queues with impatience.
Given that the loss process is shared, this also allowed for an approximate model-
ing of optical buffers, where the effects of denumerabilityof waiting times is incor-
porated in the equivalent load. For M/M/1 optical buffers inCT, the approximation
was compared to exact results, showing that it attains high accuracy especially for
not too large granularities and high traffic load. Also, the complementary case for
DT is mentioned, and allows a similar approximation.

While the focus of the current section was solely on the M/M/1optical buffer
system of finite size (both for CT and DT), other cases would certainly deserve
further exploration. More precisely, there is no reason whyan exact model for im-
patience, combined with the appropriate expression for theequivalent load, would
not yield accurate results in more general cases. For example, results not included
showed that good accuracy is also obtained for the M/D/1 system, by introduc-
ing the equivalent load in the result of Brun and Garcia [99] (also, Eq. (3.33)).
Other cases remain unexplored to date, and might prove particularly useful when
the exact problem becomes intractable, for example when multiple wavelengths
are available for service.
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5
Stability Analysis with Regenerations

¶ In the previous chapters, the performance analysis of optical buffers was
sometimes based on the analysis of an infinite buffer system.More precisely, in
Chapter 2, (exact) results were obtained for an infinite system, and only applied
in a second step for finite optical buffer systems. As usual when working with
infinite-sized queueing systems, stability is to be taken into account explicitly. In
Chapter 2 it was obtained that optical buffers display instability even when the av-
erage burst size (or service time) does not exceed the average inter-arrival time. To
be precise, an equivalent loadρeq was introduced and provides a characterization
of stability (ρeq < 1, see (2.9)), but only for the case of degenerate optical buffers,
with a single outgoing wavelength. However, note that this equivalent load was
introduced as a modeling assumption, necessary for the model to be applicable,
rather than as an actual stability guarantee. Further, neither the case of multiple
wavelengths nor the case of a non-degenerate FDL set was studied before in terms
of stability.

In this chapter, both cases are studied, and a proof of sufficient stability condi-
tions is presented for general non-degenerate FDL buffers of infinite size, general
arrival process and general burst sizes, and either one, or multiple wavelengths.
While the emphasis of previous chapters was on performance modeling, this chap-
ter foregrounds the stochastic model itself. Therefore, the stochastic processes
that produced the performance results of previous chaptersare characterized here
in much more detail, which allows for additional insight into the functioning of
FDL buffers.

The stability conditions we present below are valid for a setting as general as
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a non-degenerate GI/G/c system. This is considerably more general than previous
results in the field of optical networking: [11,16] are the sole contributions treating
stability explicitly, stating an exact value for the sustainable load of a degenerate
M/G/1 buffer in DT [11], and of a degenerate setting with Markovian arrivals and
possibly correlation between successive burst sizes, in DT[16]. In a different
context, Lakatos already obtained the first stability result in [20,21] for an M/M/1
setting, and casted the DT and CT case recently in one model in[22], as mentioned
in Chapter 2.

Further, the stability analysis presented in this chapter accounts for the first
application of the regenerative approach (in the spirit of [112–114]) to the FDL
buffer problem. This is complementary to all previous work,that could rely on
more common notions of stability (for example, by considering the exact tran-
sition probabilities of the Markov chain [20–22]) because the assumptions there
were less general. The conditions we obtain are simple and general, and therefore
easily applicable to any asynchronous optical buffer setting with iid inter-arrival
times and burst sizes. Moreover, these conditions only refer to the line lengths and
involve only the first moments of inter-arrival time and burst size distribution. The
other side of the coin is that the conditions are sufficient, but (save some “patho-
logic cases”) not necessary. As such, it is possible that an FDL buffer setting does
not adhere to the conditions given in this chapter, but nevertheless is stable. This
difference between “sufficient” and “necessary” is discussed in Sect. 5.1.5.

As for the analysis itself, the regenerative property of thewaiting-time process
plays a key role. Given that the system is described by a modified form of the
Lindley equation, the analysis shares elements with the stability analysis of a clas-
sic GI/G/1 queue, respectively GI/G/c queue, especially atthe start. However, the
analysis follows completely different lines when the discrete nature of the wait-
ing times is taken into account, necessary to establish positive recurrence of the
corresponding regenerative process. The case of a single wavelength and that of
multiple wavelengths are treated subsequently, in Sect. 5.1 and 5.2 respectively.

Further, the time setting is CT throughout the entire chapter, and the stability
analysis in case of DT is not discussed further. However, such analysis should
follow from the analysis given here in a straight-forward manner, since the time
setting plays only an implicit role in the analysis, and no specific assumptions are
made for the distribution of inter-arrival times and burst sizes.

5.1 Single-Wavelength System

In this section, the single-wavelength GI/G/1 optical buffer system is treated, for
non-degenerate line lengths. First, the specifics of the stochastic model are pre-
sented together with an instructive example, that points out the difference between
a classic waiting-time process and an optical one. In Sect. 5.1.4, the proof of the
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main stability result using regenerative stability analysis is presented. Further, in
Sect. 5.1.5, a comparison is made between the stability conditions obtained here
and the ones of Chapter 2, for the case of degenerate buffering.

5.1.1 Buffer Setting

In the current case of a single wavelength, the buffer is dedicated to a single wave-
length of a fiber channel and hence, no more than one burst can be transmitted
at a time. As in the rest of this work, we assume a FIFO delay-line assignment
algorithm. The buffer setting is non-degenerate like in Chapter 3, but with the dif-
ference that the buffer size is assumed infinite here, instead of finite. We mainly
follow the notation as coined in Chapter 3: an FDL setA = {a0, a1, a2, . . .}

of available delaysai ∈ R+, i ∈ N, with a0 = 0 by definition, ai 6= aj

for i 6= j, a0 < a1 < . . . Further, we assume that no impatience is involved:
limi→∞ ai = ∞, so assuring that a suitable delay line can always be found.

The effect of voids is also captured by means of the operator introduced in
Chapter 3: when a delayx is requested, the actual delayai is chosen from the FDL
setA such thatai−1 < x ≤ ai. The resulting delay-line assignment procedure
(selectai givenx) is captured in operator form as

⌈x⌉A = inf{ai ∈ A : ai ≥ x}, x ∈ R
+ .

5.1.2 Traffic Setting

The traffic setting is shared with the rest of this work: bursts arrive in the optical
buffer system one by one. Upon arrival, a burst is always accepted since the buffer
has an infinite size. Numbering the bursts in the order in which they arrive, let
tk be the arrival instant of burstk, k ≥ 1. Also denoteTk = tk+1 − tk, the
inter-arrival time between thekth and(k + 1)th arrival, and assume thatTk are
iid random variables (rv’s) and follow a general distribution (renewal input). With
burstk we associate a burst sizeBk, with {Bk} also constituting an iid sequence
with general distribution. For notational convenience, wealso introduce the iid rv
Uk = Bk − Tk, k ≥ 1.

Further, we will assume a CT time setting. This implies that the rv’s can take
on arbitrary values inR+ (tk, Tk, Bk) or in R (Uk).

5.1.3 Evolution of the Waiting Time

As mentioned earlier in this work (Sect. 2.1), for the analysis of a single-wavelength
FDL buffer, one can either focus on the evolution of the scheduling horizon (as is
done in Chapter 2), or on the evolution of the waiting times (as is done in Chap-
ter 3). While the waiting time evolution allows for the most concise description
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of a single-wavelength buffer, the scheduling horizon evolution is somewhat more
informative, since it shows explicitly how bursts join the buffer queue. With the
emphasis in this chapter on the description of all stochastic processes involved,
we will treat both the waiting-time and the scheduling-horizon process, and also
make the comparison with the waiting-time process in a classic buffer system.
Further, even though the role of the scheduling horizon is minimal in the analysis
for a single wavelength, it will prove indispensable for theanalysis of the case
with multiple wavelengths. Therefore, both processes merit discussion also at this
point. Also, we will treat the involved processes not only upon arrival instants, as
was done in the rest of this work, but also on arbitrary instants. Note that knowl-
edge of the latter is not a strict necessity for the stabilityanalysis, and that it is
included here only to provide the reader with additional insight in the difference
between classic and optical buffers.

First of all we introduce a left-continuousvirtual waiting-time procesŝW =

{W (t) , t ≥ 0 } (with bothŴ andW (t) thus indicating the same process.) For
each instantt, W (t) equals the waiting time a burst gets, if it would arrive at
instantt. By the left-continuity, theactual waiting time of burstk is defined as
Wk = W (tk) , k ≥ 1. In accordance with the FIFO delay-line assignment, the
consecutive waiting timesWk ∈ A satisfy the following recursion,

Wk+1 = ⌈Wk + Uk⌉A, k ≥ 1 . (5.1)

To gain more insight in the waiting-time process, we introduce the underlying
(left-continuous) procesŝH = {H(t), t ≥ 0} that describes the (virtual) schedul-
ing horizon at every time instant. Let nowHk = H(tk), k ≥ 1. Thescheduling-
horizon processH = {Hk , k ≥ 1} is associated with the optical system and
describes the delay that an arriving burstrequires, with Hk ∈ R+. The evolution
is described by the following recursion:

Hk+1 = [⌈Hk⌉A + Uk]+, k ≥ 1 . (5.2)

The equations (5.1) and (5.2) relate through

Wk = ⌈Hk⌉A, k ≥ 1 ,

and thus in generalHk ≤ Wk for eachk.
The third process is theclassic virtual waiting-time procesŝWc = {Wc(t), t ≥

0}, that traces the virtual waiting time in a classic single-server system with infinite
buffer, the same input and burst sizes allowing any possibledelay (continuous
waiting room). From this, one can derive theclassic waiting-time processWc =

{W k
c , k ≥ 1}, throughW k

c = Wc(tk), k ≥ 1. The waiting-time process in a
classic system evolves according to the well-known Lindleyequation

W k+1
c = [W k

c + Uk]+, k ≥ 1 .
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Figure 5.1: The virtual processesW (t) andH(t) associated with the FDL buffer clearly
illustrate the impact of voids, since they attain higher levels in general than the
classic virtual waiting-time processWc(t). The crosses on the (horizontal) time-
axis represent arrivalsk = 1 . . . 5. Both the classic and optical process have the
same burst sizesBk and arrival instantstk, k ≥ 1, respectively. These values are
summed up in Table 5.1 together with the values of other relevant rv’s, whereas the
FDL lengthsai are lined up in Eq. (5.3).

k 1 2 3 4 5

Bk 8.8 2.8 3.4 6.6 7.4
tk 0.0 7.0 13.4 16.0 24.4

Table 5.1: Values of the variables corresponding to Fig. 5.1.

Given that the evolution of waiting times in the system described by (5.1) is similar
but not identical to this form, we can refer to (5.1) asmodified Lindley equation.
Note that, for the classic system, each arriving burstk alwaysgets the delay it
requires. As opposed to the optical buffer, the classic system never wastes time by
additionally delaying bursts and therefore, the classic virtual waiting-time process
Ŵc also denotes the virtual workload of the classic system.

As an instructive example, a typical evolution of the three processes is consid-
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ered in Fig.5.1; specifics of the used trace are given in Table5.1, where

A = {a0, a1, a2, a3, a4, . . .} = {0, 8, 14, 16, 22, . . .} , (5.3)

with ai, i ≥ 5, not further mentioned since those values do not impact the figure.
In both the optical and classic system, bursts are served oneby one over time.

Moreover,H(t) andWc(t) diminish at rate one in-between arrivals, whereas the
evolution of the processW (t) is described by a step function reflecting the non-
work-conserving discipline in the optical system.

The difference between both comes from the behavior upon arrivals. Arriving
burstk brings an amount of workBk. In a classic system, governed by the process
Ŵc, this amount sums up with the work that was already in queue, and yields a
virtual waiting timeW k

c + Bk. In the optical system, the scheduling horizonĤ is
first augmented with an extra delay (indicated by the curbed lines in Fig. 5.1) upon
arrival of burstk, because this burst can only commence service after spending
some timeWk = ⌈Hk⌉A. This gives the virtual waiting time⌈Wk + Bk⌉A upon
arrival, and results in a fundamental difference betweenŴc andŴ as shown in
Fig. 5.1.

With now a broader look on the involved processes, we narrow down the analy-
sis to only the discrete-time processWk = W (tk), k ≥ 1, that suffices as input to
the single-wavelength stability analysis. Notice that this is complementary to the
case of multiple wavelengths (Sect. 5.2), where the scheduling horizon will be the
prime variable of interest.

5.1.4 Regenerative Stability Analysis

With the system equation (5.1) at hand, we now move to the actual stability analy-
sis of the single-wavelength system. As mentioned, our method will exploit the
regenerative technique in the sense of [113]. There, and in the stability analysis
of Markov chains in general [115], concepts of both renewal theory and Markov
chain theory are put to use. This gives rise to a specific parlance that was not
highlighted earlier in this work, and therefore deserves some explanation here.

In terms of Markov chain theory, it is clear that the the waiting time process
is a Markov chain, and thus, with each possible waiting timeai, we can associate
a Markov state. Each arrival then corresponds to a transition in the infinite-sized
Markov chain. Of these states, the state with zero waiting time plays a special role,
since it can be used to characterize a renewal process, with each transition to the
renewal state referred to as a regeneration. Further, this state, like any state in the
Markov chain, is either transient or recurrent. In the case of a transient state, the
probability that the hitting time (defined below by (5.6)) isinfinite is larger than
zero, whereas this probability is zero for a recurrent state. For recurrent states,
a further distinction is made between the case of finite expectancy for the hitting
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time, referred to as positive recurrence, and the case of infinite expectancy for the
hitting time, which is referred to as null-recurrence.

In terms of renewal theory, the busy period of the waiting time process is taken
as renewal interval, and each arrival instant that finds the buffer empty accounts for
a renewal instant or regeneration. The time between renewalinstants, in general
referred to as the renewal interval, is called the regeneration time in this context,
and corresponds to the hitting time of the zero waiting time state. Further, the
renewal process constitutes a regenerative process, on thecondition that the ex-
pected value of the regeneration time is finite. As such, relating now Markov
chain theory and renewal theory, the renewal process of the waiting times is called
regenerative if and only if the Markov state associated withzero waiting time is
positive-recurrent. This is especially relevant for stability analysis, because this
provides us with a way to prove stability under zero initial conditions: it suffices
to prove that the zero waiting time state is positive-recurrent, to show that, still un-
der zero initial conditions, the system is stable. This is the main part of the proof,
and is presented in Sect. 5.1.4.2. The second part consists in relaxing the assump-
tion of a zero initial state, to show that the system is stableregardless of the initial
state, if a minor additional assumption is made. This is presented in Sect. 5.1.4.3.
Further, still in Sect. 5.1.4.3, we show that that same set ofstability conditions not
only guarantees stability, but also provides a sufficient condition for the existence
of a stationary regime for the waiting time process. Finally, the difference between
sufficient and necessary conditions for the single-wavelength case is highlighted
in Sect. 5.1.5.

5.1.4.1 Notations and Characterization

Before moving to the main stability result, we introduce thenotation that is needed
for the proof. For the waiting-time processW = {Wk, k ≥ 1}, we denote the
differences as

∆W (k) = Wk+1 − Wk, k ≥ 1 ,

whereas, for the buffer setting, we introduce

gn ≡ an+1 − an , n ≥ 0 ; δ∗ ≡ inf
n≥0

gn ;

∆∗ ≡ sup
n≥0

gn ; ∆0 ≡ lim sup
n→∞

gn , (5.4)

where “≡” denotes that the relation concerns a definition. Hereby, wenote that∆∗

and∆0 are identical in many common cases. One example is a degenerate buffer
setting, wheregn = D, ∀n ≥ 0, and both∆∗ and∆0 are equal to the granularity
D. Another example is the case where the FDL set of a non-degenerate buffer is
periodical in thegn, that is,gn+jP = gn for some periodP , ∀j ∈ N. In that case,
∆∗ and∆0 are equal tosupn∈{0,1,...,P−1} gn. On the other hand, note that the
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difference between∆∗ and∆0 is fundamental in the context of stability analysis,
and that the case with∆∗ > ∆0 > 0 also corresponds to a possible system setting,
for example in the situation where only a finite number of thegn is larger than some
D̂, andgn = D̂ for all n larger than some system parameternD̂. Summarizing,
all the system settings mentioned here are included in the current description, by
considering both∆∗ and∆0.

Further, introduce the distributionFU (x) = Pr[U ≤ x], whereU = B − T ,
andB, T are generic variables forBk andTk, respectively. Also, for eachx ≥ 0

define the overshoot
⌈x⌉A − x = ∆(x) . (5.5)

Note that∆(x) ≥ 0 and∆(ak) = 0 for anyk ≥ 0.
Now, we define the regeneration times{βn, n ≥ 1} for the waiting-time pro-

cessW in the following (conventional) way: letβ0 = 0 and

βn+1 = inf(k > βn : Wk = 0), n ≥ 0 , (5.6)

where we putinf ∅ = ∞. As such, the regeneration times, also called regenera-
tions or hitting times, capture the indices of those arrivals that get assigned zero
as waiting time. As outlined above, our main purpose, treated in Sect. 5.1.4.2, is
to establish conditions which imply positive recurrence ofthe zero waiting time
state, or, equivalently, of the processβ. The latter means that

β1 < ∞ with probability 1 (w.p.1) and E[β2 − β1 ] ≡ α < ∞ . (5.7)

In what follows we assume a zero-delayed processβ whenβ1 ∼ β2 − β1,

where∼ stands for stochastic equivalence. In other words, the processW starts at
regeneration instant,W1 = 0 and E[β1 ] = α. Note that the zero-delayed process
β = {βn} is well-defined sincea0 = 0 ∈ A, allowing to assume zero initial
conditions. As mentioned, this assumption will be relaxed in Sect. 5.1.4.3, where
we also consider the case of non-zero initial conditions

Further, the recurrence property of the renewal processβ can be characterized
in several ways. In this chapter, we choose a formulation viathe limiting behavior
of the forward regeneration time at instantn, which is defined as

β(n) = inf
k

(βk − n : βk − n > 0), n ≥ 1 . (5.8)

In words, given an arbitrary arrival with indexn, β(n) is the index of the first
arrival following arrivaln that is assigned zero waiting time. Finally, as mentioned
above, positive recurrence of the zero waiting time state demands that its hitting
time (the regeneration time) has finite expectancy. As knownfrom [116], this
relates to the forward regeneration time through

α = ∞ if and only if β(n) → ∞ in probability asn → ∞ . (5.9)
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Since E[β1 ] = α by assumption,α < ∞ implies β1 < ∞ w.p.1, and positive
recurrence follows. Summarizing, showing that

β(n) 6→ ∞ asn → ∞ in probability,

implies positive recurrence of the zero waiting time state,which in its turn guar-
antees stability under zero initial conditions. This marksthe approach of the next
section.

5.1.4.2 Main Stability Result

Now we formulate the assumptions which are adopted throughout this chapter.
First we assume that E[B ] < ∞, E[T ] < ∞ and thus, E[U ] ∈ (−∞, +∞). Fur-
thermore, we sum up the three stability conditions, sufficient to guarantee stability
for any single-wavelength FDL buffer adhering to them.

The first condition is that the FDL buffer set is properly defined,

δ∗ > 0, ∆∗ < ∞ , (5.10)

or, in other words, that all delay lines have non-identical and finite length. Sec-
ondly, we assume as negative drift condition that

∆0 + E[U ] < 0 (5.11)

holds. This condition defines a bound on the maximum tolerable load. As such,
it is a generalized instance of the stability characterization for single-wavelength
FDL buffers with degenerate structure, as presented in Chapter 2 (Eq. (2.8)). Of the
three conditions, it is this one that results in sufficient stability conditions, rather
than necessary conditions, as discussed in Sect. 5.1.5.

Thirdly, we assume as regeneration condition that

Pr[T > ∆∗ + B ] = δ1 (5.12)

holds for someδ1 > 0. This condition is specific to the regenerative approach,
and guarantees that even the largest difference between line lengths,∆∗, forms no
obstacle to return to the zero waiting time state with non-zero probability. Rather
than an actual necessity for stability, this condition is auxiliary to our approach,
allowing us to characterize stability as positive recurrence of the regeneration-time
process.

At this point, we prove that these three conditions guarantee stability for zero
initial conditions. Hereby, recall that positive recurrence of the regeneration-time
processβ (5.7) implies positive recurrence of the zero waiting time state, which in
its turn implies stability under zero initial conditions.
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Theorem 5.1.1.Under assumptions (5.10)-(5.12), the zero-delayed renewal pro-
cessβ satisfying (5.6) is positive-recurrent, that is, (5.7) holds.

Proof. Because of the independence betweenUk andWk, we can write

E[∆W (k)] = E
[

⌈Wk + Uk⌉A − Wk

]

=
∑

y∈A

E
[

⌈Wk + Uk⌉A − Wk; Wk = y
]

=
∑

y∈A

E[⌈y + U⌉A − y]Pr[Wk = y] , k ≥ 1 .

Here we used the fact thatWk ∈ A. If U ≤ −y then E[⌈y + U⌉A − y] = −y.

Thus, we have

E[⌈y + U⌉A − y]

= −yPr[U ≤ −y] +

∫

z≥−y

(⌈y + z⌉A − y)dFU (z)

= −yPr[U ≤ −y] +

∫

z≥−y

(⌈y + z⌉A − (y + z) + z)dFU (z)

= −yPr[U ≤ −y] +

∫

z≥−y

∆(y + z)dFU (z)

+

∫

z≥−y

zdFU (z) . (5.13)

We now provide an upper bound for the former expression. We consider the
three terms in (5.13) separately. As for the first term, sinceE[U ] > −∞, we find

0 > −yPr[U ≤ −y] ≥

∫ −y

−∞

xdFU (x) ↑ 0 as y → ∞ , (5.14)

while for the third term we obtain
∫

z≥−y

zdFU (z) ↓ E[U ] as y → ∞ , (5.15)

(sincey ≥ 0). Rewriting the second term of the right-hand side of equation (5.13)
yields the following form:

∫ ∞

−y

∆(y + z)dFU (z) =

∫ −y/2

−y

∆(y + z)dFU (z)

+

∫ ∞

−y/2

∆(y + z)dFU (z) ≡ I1 + I2 ,

where we introducedI1 andI2 for notational convenience. Considering the latter
two terms subsequently, we find forI2 that

I2 ≤ sup
x≥y/2

∆(x)Pr[U > −y/2] ,
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while for I1, it is clear that

I1 ≤ sup
0≤x≤y/2

∆(x)Pr[−y < U ≤ −y/2] ≤ ∆∗Pr[U ≤ −y/2] .

Fix now an arbitraryε > 0 and choosey0 such that following three equations hold
for y ≥ y0,

Pr[U ≤ −y/2] ≤
ε

4∆∗
, (5.16)

∫

z≥−y

zdFU (z) ≤ E[U ] +
ε

4
, (5.17)

sup
x≥y/2

∆(x) ≤ ∆0 +
ε

4
. (5.18)

Such choice ofy0 is possible: for (5.16), due to (5.14); for (5.17), due to (5.15).
For (5.18), we apply (5.4) and (5.5). More precisely, one canfind a valuen0,
sufficiently large, such that

sup
n≥n0

gn ≤ ∆0 +
ε

4
.

Now we take into account that⌈x⌉A ≥ an0 for x ≥ an0 . Then

∆(x) ≤ sup
n≥n0

gn ≤ ∆0 +
ε

4
, x ≥ an0 , (5.19)

and (5.18) follows ify0/2 ≥ an0 . Considering equations (5.15) to (5.19) and
taking into account the negativity of (5.14), we find the following upper bound for
(5.13),

E[⌈y +U⌉A− y] ≤
ε

4
+∆0 +

ε

4
+ E[U ]+

ε

4
< ∆0 + E[U ]+ ε, y ≥ y0 . (5.20)

Exploiting the fact thatε > 0 was arbitrary up to now, we choose it to be

∆0 + E[U ] = −2ε .

Notice that the left-hand side of the former expression is indeed negative in view
of (5.11). It then follows from (5.20) that

E[∆W (k) |Wk = y] = E[⌈y + U⌉A − y] ≤ −ε , y ≥ y0 . (5.21)

In other words, we obtain a negative drift of the waiting-time processW outside
the compact set[0, y0]. Further, letC denote the following upper bound for the
overshoot,

E[⌈y + U⌉A − y] ≤ E[⌈y + B⌉A − y] = E[⌈y + B⌉A − y − B ] + E[B ]

≤ ∆∗ + E[B ] ≤ max(ε, ∆∗ + E[B ]) ≡ C < ∞ .
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Hereε is introduced in the definition ofC to ensureε/C ≤ 1 in (5.25). In view of
the former expressions, we also find

E[∆W (k) |Wk ≤ y0]

=
∑

y∈A: y≤y0

E[∆W (k) |Wk = y]Pr[Wk = y]

Pr[Wk ≤ y0 ]
≤ C . (5.22)

For anyk, write now

E[∆W (k)] = E[∆W (k) |Wk ≤ y0]Pr[Wk ≤ y0]

+
∑

y∈A: y>y0

E[∆W (k) |Wk = y]Pr[Wk = y] .

such that
E[∆W (k)] ≤ CPr[Wk ≤ y0] − εPr[Wk > y0] , (5.23)

in view of the inequalities (5.21) and (5.22).
Now we prove thatWk 6→ ∞ in probability ask → ∞. We use a proof by

contradiction. Hence, assume that we have,

Wk → ∞ in probability ask → ∞ . (5.24)

Therefore, one can find a valuek0 such that

Pr[Wk ≤ y0 ] ≤
ε

4C
, k ≥ k0 ,

which allows us to rewrite (5.23) as

E[∆W (k)] ≤
ε

4
− ε
(

1 −
ε

4C

)

≤ −
ε

2
, k ≥ k0 . (5.25)

Thus, the processW has negative drift under assumption (5.24).
Now we show that E[Wk0 ] < ∞. Clearly, we have⌈x⌉A ≤ ⌈y⌉A for x ≤ y.

Further, recall thatW1 = 0. Therefore, we find

E[W2 ] = E[⌈U1⌉A] ≤ E[⌈B1⌉A] =

∫ ∞

0

⌈z⌉AdFB(z)

=

∫ ∞

0

∆(z)dFB(z) +

∫ ∞

0

zdFB(z)

≤ ∆∗ + E[B ] ≡ C∗ , (5.26)

whereFB(x) = Pr[B ≤ x]. Expanding this expression iteratively, we obtain

E[W3 ] ≤ E[⌈W2 + B2⌉A]

=

∫

(x,y)∈[0,+∞)2
(⌈x + y⌉A − (x + y) + (x + y))dFW2 (x)dFB(y)

=

∫

(x,y)∈[0,+∞)2
∆(x + y)dFW2(x)dFB(y) + E[W2 ] + E[B ]

≤ ∆∗ + C∗ + E[B ] = 2C∗ ,



STABILITY ANALYSIS WITH REGENERATIONS 155

whereFW2 = Pr[W2 ≤ x], and[0, +∞)2 denotes the two-dimensional domain
[0, +∞) × [0, +∞). By induction on the indexk, we obtain

E[Wk ] ≤ (k − 1)C∗, k ≥ 1 ,

and thus,
E[Wk0 ] < k0C

∗ ≡ D0 < ∞ . (5.27)

We finally conclude from (5.25) that for anyk ≥ k0 we have,

E[Wk ] < D0 .

This then contradicts the assumption (5.24).
Since (5.24) leads to a contradiction, there must exist a non-random (sub)sequence

zk → ∞, aδ′ > 0 and a finite constantR such that

inf
k

Pr[Wzk
≤ R] ≥ δ′ . (5.28)

First assume that the r.v.T is unbounded. In this case we have, Pr[T > x] > 0

for any x ≥ 0. Further, in view of (5.12), the event{Wzk
≤ R, Tzk

> R +

Bzk
+ ∆∗} implies that burstzk + 1 meets an empty system. Forzk belonging to

the sequence{zk} which satisfies (5.28)), a regeneration occurs (for burstzk + 1)
with probability,

Pr[β(zk) = 1] ≥ Pr[Wzk
≤ R , Tzk

> R + ∆∗ + Bzk
]

≥ Pr[Wzk
≤ R]Pr[T > R + a + ∆∗, B ≤ a]

≥ δ′Pr[T > R + a + ∆∗ ]Pr[B ≤ a] > 0 .

Here, independence betweenWzk
, Bzk

andTzk
is used, and the constanta > 0 is

chosen such that Pr[B ≤ a] > 0.
Assume now thatT is bounded, then it is possible that Pr[T > R+a+∆∗] = 0.

For each fixedx ≥ 0, defineN(x) = min{k : ak ≥ x}. By (5.10), we find,

N(R) ≤

⌈

R + ∆∗

δ∗

⌉

< ∞ .

Moreover, on the eventE(zk) = {Wzk
≤ R}, the following inequality holds,

Wzk
≤ ⌈Wzk

⌉A ≤ ⌈R⌉A ≤ aN(R) .

Let us now introduce the following events:

D(zk+i) = {Tzk+i > ∆∗+Bzk+i} = {Bzk+i−Tzk+i < −∆∗}, i ≥ 0 . (5.29)

Then, on the eventE(zk) ∩ D(zk), we have that

Wzk+1 = ⌈Wzk
+ Bzk

− Tzk
⌉A ≤ ⌈aN(R) − ∆∗⌉A

≤ ⌈aN(R) − gN(R)⌉A = aN(R)−1 .
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and Pr[E(zk) ∩ D(zk)] ≥ δ′δ1 in view of (5.12), (5.28) and (5.29). Analogously,
on the eventE(zk) ∩ D(zk) ∩D(zk + 1), we obtain,

Wzk+2 ≤ a[N(R)−2]+ ,

and by the independence of the components we have Pr[E(zk) ∩D(zk) ∩D(zk +

1)] ≥ δ′δ2
1 . It is now easy to see that with a probability

Pr
[

E(zk) ∩

N(R)
⋂

i=0

D(zk + i)
]

≥ δ′δ
N(R)
1 > 0 ,

there is a burst that enters an empty system between (and including) burstszk and
zk +N(R); that is in the interval[zk, zk +N(R)]. As such, a regeneration occurs
within this interval with non-zero probability, since

Pr[β(zk) ≤ N(R)] ≥ δ′δ
N(R)
1 . (5.30)

Invoking that the arrivalzk is arbitrary, (5.30) holds for allzk satisfying (5.28). Be-
cause the sequence{zk} is non-random and the length of the interval is a constant
N(R), we find that

β(n) 6→ ∞ asn → ∞ in probability,

and it follows from (5.9) thatα < ∞, which was to be proved.

As outlined at the beginning of this section (Sect. 5.1.4), this proves that the
FDL buffer is stable under zero initial conditions, since itimplies that the zero
waiting time state is positive-recurrent. In the next section, we will extend the
initial conditions to show that conditions (5.10)-(5.12) guarantee stability for any
initial state, so allowing for a complete proof.

Finally, to contrast this result with those obtained in Chapter 2, we consider
the degenerate case, wheregn ≡ D for all n and for granularityD ∈ R

+. In that
case, we have∆∗ = ∆0 = D, which yields the following result.

Corollary 5.1.1. The waiting-time process of the initially empty degenerateopti-
cal buffer is positive-recurrent regenerative if the negative drift condition

E[U ] + D < 0 , (5.31)

holds.

Proof. Indeed, in this case0 < E[−U − D] = E[T − B − D] and hence the
regeneration condition Pr[T > D + B ] > 0 holds automatically. Also, note that
a degenerate buffer setting is indeed well-defined, implying that also condition
(5.10) is fulfilled.

Notice that condition (5.31) is not identical to the one obtained in Chapter 2
because it is a sufficient but not necessary condition. This is argued further below
in Sect. 5.1.5.
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5.1.4.3 Extension to Non-Zero Initial Conditions

In this section, we show that conditions (5.10)-(5.12) not only suffice to guarantee
stability under zero initial conditions (as proved in the previous section), but, if
extended with a minor condition, provide sufficient conditions regardless of the
initial state. At the end of this section, we further show that the same set of condi-
tions suffices for the existence of a stationary regime.

In terms of Markov chain theory, the proof we obtained for zero initial condi-
tions is valid immediately for any initial condition if we assume that the Markov
chain of the waiting times is irreducible. In that case, any stateWk = aj can
be reached from the stateW1 = a0 with finite probability, and all Markov states
belong to the single communicating classA. From a practical point of view, as-
suming irreducibility is not a very limiting assumption, and as such, it was not
much of a restriction when we assumed it earlier in this work in the case of a
non-degenerate finite-sized GI/G/1 buffer, in Sect. 3.2.3.2. However, we remark
that in principle, it is possible to establish stability also for Markov chains that
are reducible. In the following, we will however limit the analysis to aperiodic
irreducible Markov chains, and provide a sufficient (but notnecessary) condition
for irreducibility. Also, we will show that aperiodicity isalready implied by the
negative drift condition (5.31).

We now consider non-zero initial conditions, assuming thusthat the waiting
time (state) of the first burst is non-zero,W1 > 0. We show that any initial state
W1 = ak in the Markov chain can be used that can be reached from the zero
waiting time state stateW1 = 0 with a positive probability, in a finite number
of Markov chain transitions. In case of a reducible Markov chain, all Markov
states belonging to the same communicating class as the zerowaiting time state
can be reached; in case of an irreducible Markov chain, all states can be reached.
Let Pr0[·] denote the probability operator for the zero initial state.Notice that
the expectation operator E[·] and probability operator Pr[·] in Sect. 5.1.4.2 in fact
referred to the zero initial state too.

Under the assumptions (5.10)-(5.12) of Theorem 5.1.1, we have Pr0[β1 <

∞] = 1. Assume that a stateWn = ak, for somek, is reached (at instantn) with
a positive probabilityπk > 0. Now, as a proof by contradiction, assume that the
unfinished regeneration time since instantn is infinite with probabilityπ∞ > 0.
Then we obtain Pr0[β1 = ∞] ≥ πkπ∞ > 0 which contradicts the finiteness of
β1 w.p.1 for the zero initial state. Hence it is proved by contradiction that, if a
stateak can be reached from statea0 = 0 with a positive probability then, under
initial stateW1 = ak, the first regeneration periodβ1 is finite w.p.1. As such, the
stability conditions (5.10)-(5.12) of Theorem 5.1.1 are also sufficient for stability
if the stateak (that can be reached from the zero state with a positive probability)
is taken as initial state.

At this point, we propose sufficient assumptions to obtain anirreducible Markov
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chain. In that case, all statesak are reachable from statea0, so allowing to extend
the class of initial states to all Markov states at once. LetTmin denote the es-
sential lower bound of the inter-arrival time distribution, defined like in Chapter 3
(Eq. (3.25)). Since E[T ] < ∞, it follows that Tmin < ∞. For the negative-
exponential distribution, that is often assumed throughout this work,Tmin = 0.
By definition, for anyδ0 > 0 we have,

Pr[Tmin ≤ T < Tmin + δ0 ] ≡ ε0 > 0 .

Finally, assume that the pdf of the burst size distribution,b(x) ≡ F ′
B(x), exists in

a (right) neighborhood ofTmin and letFT (x) = Pr[T ≤ x] denote the cdf ofT ,
like in Sect. 3.1.4.

Theorem 5.1.2. If the assumptions of Theorem 5.1.1 hold and moreover, if the
condition

inf
x∈[Tmin, Tmin+∆∗+δ0)

b(x) ≡ b0 > 0 , (5.32)

is satisfied for someδ0 > 0, then the regenerative waiting-time processW is
positive-recurrent under any initial stateW1 = ak ∈ A.

Proof. As a starting point, we assume thatW1 = a0 = 0 like in the previous
section, and we recall that the notation Pr0[·] relates to this zero initial condition.
Also, we note that

FU (x) =

∫

y∈[0,∞)

Pr[B ≤ x + y]dFT (y), x ∈ R .

Considering now the Markov chain evolution over time, following inequality can
be established,

Pr0[W2 = a1] = Pr[0 < U1 ≤ a1 ] = FU (a1) − FU (0)

=

∫

y∈[0,∞)

Pr[y < B ≤ a1 + y]dFT (y)

≥

∫

y∈[Tmin, Tmin+δ0)

Pr[y < B ≤ a1 + y]dFT (y)

=

∫

y∈[Tmin, Tmin+δ0)

∫

z∈[y, y+a1)

b(z)dzdFT (y)

≥ inf
z∈[Tmin, Tmin+δ0+a1)

b(z) Pr[Tmin ≤ T < Tmin + δ0 ] · a1

≥ g0b0ε0 . (5.33)

In the last step, we used the fact thata1 = g0 ≤ ∆∗, and also the fact that

b0 = inf
z∈[Tmin, Tmin+∆∗+δ0)

b(z) ≤ inf
z∈[Tmin, Tmin+a1+δ0)

b(z) .
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Similarly,

Pr0[W3 = a2 ] ≥ Pr[W3 = a2 |W2 = a1 ]Pr0[W2 = a1 ]

= Pr[⌈a1 + U⌉A = a2 ]Pr0[W2 = a1]

≥ g0g1(b0ε0)
2 ≥ (δ∗b0ε0)

2 . (5.34)

Continuing in a similar way, we obtain

Pr0[Wn+1 = an ] ≥ Pr0 [Wn = an−1]Pr[Wn+1 = an |Wn = an−1]

≥ (δ∗b0ε0)
n > 0 , n ≥ 1 .

Thus, each statean can be reached from the zero initial stateW1 = 0 (in n

arrivals) with positive probability. As proved by contradiction in the above, this
implies that each statean can be assumed as initial state for stability. Hence, the
statement of Theorem 5.1.1 holds for any initial stateW1 = ak.

As such, the proposed assumption (5.32) is a sufficient condition to extend the
class of possible initial states toA. Note that the condition is not necessary, and
that it is equally possible to treat alternate cases. Rather, (5.32) provides a suf-
ficient condition for irreducibility of the Markov chain. Onthe other hand, the
Markov chain is aperiodic due to the regeneration assumption. More precisely, the
regeneration-time process is aperiodic in general, and this independent of condi-
tion (5.32), as

Pr[β2 − β1 = 1] = Pr[Wk+1 = 0 |Wk = 0] = Pr[U ≤ 0] = Pr[B ≤ T ] > 0 ,

(5.35)
and hence poses no additional restrictions, since it follows from the negative drift
condition (5.11) that E[U ] = E[B − T ] < 0 and thus Pr[B ≤ T ] > 0.

Therefore, given that the Markov chain of waiting times is irreducible, aperi-
odic and composed of positive-recurrent states, we can conclude that the process
Wk weakly converges toW∞, Wk → W∞, with associated stationary distribution
PrW∞

[·] = Pr[W∞ ∈ ·].

Theorem 5.1.3. Under assumptions (5.10)-(5.12) and (5.32), the regenerative
waiting-time processW is positive-recurrent with respect to the renewal process
of regenerations (5.6) and has a stationary distribution PrW∞

[·] under any initial
stateW1 = ak ∈ A.

Let Prk [·] = Pr[· |W1 = ak ]. Hence, under the assumptions of Theorem 5.1.3,
Prk [β1 < ∞] = 1, k ≥ 0.

5.1.5 Sufficient Condition

Juxtaposing (5.31) with the characterization of stabilityof GI/G/1 degenerate buf-
fers in Chapter 2, it is clear that (5.31), even though obtained for the same setting,
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is not as tight a bound as the one provided by (2.8), or, equivalently, byρeq < 1,
characterized by (2.9).

More precisely, if one assumes (5.31), one will find that stability is guaranteed
only forρ smaller than some valueρ1, while (2.9) guarantees stability forρ smaller
than someρ2, with in generalρ1 ≤ ρ2. In other words, the conditions established
here are sufficient but not necessary for stability. As such,the approach of this
chapter is not able to guarantee stability forρ ∈ [ρ1, ρ2), while the method of
Chapter 2 can, but has the drawback that it is only applicableto degenerate buffer
settings.

Seemingly a drawback to the current approach, it should however be under-
stood as a natural consequence of the fact that in this chapter, only the first mo-
ments of the inter-arrival time and burst size distributionwere taken into account.
Also for the FDL structure, we only capture the FDL lengths bymeans of∆0,
rather than involving all FDL lengths. This is opposed to thesituation for degener-
ate buffers, where condition (2.8) took into account not only the entire distribution
of the inter-arrival times and burst sizes, but also the lengths of all FDLs, possible
with only the granularityD. Taking into account all the FDL line lengths of an
arbitrary infinite-sized FDL set is infeasible, and as such,coming up withneces-
sarystability conditions for general non-degenerate line lengths is not practicable.
Instead, the approach given here captures the non-degenerate structure in one pa-
rameter,∆0, which results in very simplesufficientstability conditions, valid also
for non-degenerate buffer structures, that fall beyond thereach of the modeling
in Chapter 2. Further, note that, for some more “pathological cases” of the inter-
arrival time and burst size distributions, the bound provided by (5.31) is indeed
a necessary condition, like (2.9). The simplest instance ofsuch a “pathological
case” would be a degenerate system with deterministic inter-arrival times (length
Tp), and deterministic burst sizes (lengthBp) in CT. One can verify that, for such
system, stability is characterized by E[B−T ]+D < 0 (or,Tp > Bp +D), making
condition (5.31) an exact characterization of stability inthat case.

5.2 Multi-Wavelength System

The purpose of this section is to extend the results of Theorem 5.1.1 to a multi-
wavelength optical buffer system, for general line lengths. In Sect. 5.2.1, the sto-
chastic model is generalized to multiple wavelengths. A notation is introduced
that takes into account the assumed wavelength assignment algorithm, namely
Join-the-Shortest-Queue (JSQ), previously studied in Sect. 2.5. An example il-
lustrates the system’s evolution over time, and highlightsthe differences with the
single-wavelength case.
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Figure 5.2: The evolution over time of the virtual scheduling-horizon procesŝH in case

of two queues, queue 1 (Ĥ1) and queue 2 (̂H2). The crosses on the (horizontal)
time-axis represent arrivalsk = 1 . . . 9, and the FDL lengthsai are the ones in
(5.37). Upon arrival, burstk joins the shortest queue (JSQ) (lowest of both lines),
generating a void (curbed line) and addingBk to the virtual scheduling horizon.
All values are given in Table5.2.

5.2.1 Traffic Setting and Buffer Setting

Firstly, the traffic assumptions remain the same as in the previous section: iid burst
sizesBk, iid inter-arrival timesTk, and a general FDL setA. However, now, we
treat multiple wavelengths, amounting to a non-degenerateGI/G/c buffer model.
Further, as introduced in Sect. 2.5, the multi-wavelength system is governed by a
wavelength assignment algorithm, exercised by buffer control to determine which
wavelength is chosen for the transmission of burstk. More precisely, in this section
we consider a JSQ wavelength assignment algorithm, exactlyin the same sense as
it was introduced in Sect. 2.5.2. However, in Sect. 2.5, the mathematical descrip-
tion of the involved stochastic processes was stripped downto the bare minimum,
needed to allow for performance evaluation. For the purposeof stability analysis,
here, we will provide a complete mathematical description of the processes in-
volved in multi-wavelength optical buffering. While theseprocesses were defined
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Figure 5.3: The same system setting and traffic pattern as in Fig. 5.2, now with the virtual
waiting-time process on display.

k 1 2 3 4 5 6 7 8 9

Bk 8.8 7.0 5.0 4.5 12.5 2.4 4.4 7.6 4.8
tk 0.0 4.0 7.0 10.5 14.0 16.5 21.0 24.0 30.0

Table 5.2: Values of the variables displayed in Fig. 5.2 and 5.3.

only implicitly in the analysis of Sect. 2.5, note that theseare identical to the ones
discussed here.

5.2.2 Evolution of the Scheduling Horizon

Independent of the wavelength assignment algorithm (see below), in thec-wave-
length system, there arec different wavelengths to queue for. Like in the single-
wavelength case, we study the involved processes not only upon arrival instants,
but also on arbitrary instants. Again, knowledge of the latter is not strictly nec-
essary for the stability analysis, and that it is included here only to provide the
reader with additional insight on the difference between the waiting-time and the
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scheduling-horizon process.
As usual, we number the bursts in the order of arrival by meansof an index

k. Upon arrival of burstk, we can associate with each queuej, j = 1 . . . c, a
scheduling horizonHj,k as seen by arrivalk, that captures the earliest time at
which all previous bursts on wavelengthj have left the system. Similar as in
the single-wavelength system (see Sect. 5.1.3), each of thesec processes̄Hj =

{Hj,k, k ≥ 1} can be derived from a left-continuous processĤj = {Hj(t), t ≥

0}, that describes thevirtual scheduling-horizon processof each physical queue
independently, through the relationHj,k = Hj(tk), k ≥ 1. Further, for each
wavelengthj thewaiting time as seen upon arrivalof burstk is described byWj,k,
and as a process̄Wj = {Wj,k, k ≥ 1} can be derived from the left-continuous
processŴj = {Wj(t), t ≥ 0} that describes thevirtual waiting-time processfor
each queuei, j = 1 . . . c, through the relationWj,k = Wj(tk), k ≥ 1. The relation
between the scheduling horizon (the delay that is needed) and the waiting time (the
delay that is assignable) is given by

Wj,k = ⌈Hj,k⌉A , j = 1 . . . c .

Note that the discrete-time processesH̄j andW̄j are nowvirtual processes (just
like Ĥj andŴj), in the sense that they do not coincide with theactualschedul-
ing horizon and waiting time experienced by arrivalk, that is determined by the
wavelength assignment algorithm.

Up to this point, the stochastic processes are formulated independently of the
chosen wavelength assignment algorithm. However, since weperform the stability
analysis solely for JSQ, it is possible to exploit the symmetry of the problem in
that case, with a specific notation. Instead of identifying the c different queues
one by one independently, we sort the scheduling-horizon componentsHi,k in

increasing order, and denote them asH
(i)
k , i = 1 . . . c. As such, thec-dimensional

scheduling-horizon processHk = {H
(i)
k } consists ofc components

Hk = (H
(1)
k , . . . , H

(c)
k ), k ≥ 1 ,

with
H

(1)
k ≤ · · · ≤ H

(c)
k .

When thekth burst arrives, the wavelength assignment algorithm JSQ will assign
the burst to some queuej, that is not necessarily the queue withj = 1, but is
indeed the shortest, with thus alwaysi = 1, and withH

(1)
k as scheduling horizon.

The corresponding waiting time reads

W
(1)
k = ⌈H

(1)
k ⌉A ,

whereas the scheduling horizon of the other wavelengthsi = 2 . . . c (as long as
positive) will decrease by an amountTk. As such, the overshoot operator∆(x)
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of (5.5) applied toH(1)
k indeed corresponds to the voidVk created by the arrival

of burstk, as defined earlier in this work, in (5.5). Therefore, in the following we
denote

Vk = ∆(H
(1)
k ) , k ≥ 1 .

Note that the evolution of the other components ofH (H(i)
k , 2 ≤ i ≤ c) cannot be

captured with the overshoot operator, since their evolution does not relate to the
set of FDLs. As such, the waiting time alone does not suffice tocapture the system
state, and one has to rely on the scheduling-horizon process. This is opposed to
the single-wavelength case, where the system description could be done either with
the waiting time or the scheduling horizon.

As such, the evolution of the system is to be traced in terms ofthe scheduling
horizon, and is formed by a Kiefer-Wolfowitz-type recursion [117], namely

Hk+1 = R
(

[⌈H
(1)
k ⌉A + Uk]+, [H

(2)
k − Tk]+, . . . , [H

(c)
k − Tk]+

)

, (5.36)

where the operator R(·) ensures that the components are put in increasing order.
Notice how the operator⌈·⌉A occurs in exactly one component.

We give an example of the evolution of the scheduling-horizon process for an
initially empty two-wavelength system, that isH1 = (0, 0). Then

H2 = R(⌈0⌉A + [U1]
+ , 0) = (H

(1)
2 , H

(2)
2 ) ,

(note thatH(1)
2 = 0) and

H3 = R([⌈H
(1)
2 ⌉A + U2]

+, [H
(2)
2 − T2]

+) ,

and so on. In the following, given that{Bk}, {Tk} and{Uk} are sequences of iid
rv’s, we can omit the indexk unless it is relevant to the context.

Finally, as an instructive example, a typical evolution of the involved virtual
processes is considered in Fig.5.2 (scheduling horizon) and5.3 (waiting time),
where

A = {a0, a1, a2, a3, a4, . . .} = {0, 8, 14, 16, 22, . . .} , (5.37)

identical to the FDL set considered earlier in (5.3), with only the first five fiber
lengths relevant to the example. Specifics of the used trace,including the actually
assigned scheduling horizon and waiting time, are given in Table5.2.

While the above provides insight in the interaction betweenthe waiting-time
and the scheduling-horizon process, we now formulate the analysis entirely in
terms of the processHk, k ≥ 1, that is the only necessary input to the multi-
wavelength stability analysis.
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5.2.3 Regenerative Stability Analysis

Again adopting a regenerative approach, we will now focus onthe positive re-
currence of the zero scheduling horizon state. Notice that the Markov chain of
the scheduling horizon now has a continuous state space, as opposed to the dis-
crete state space of the waiting time evolution, as it was studied for the single-
wavelength case. This however forms no stumbling block to characterize stability.
As such, the renewal process of the scheduling horizon has regenerations whenever
a Markov chain transition to the state with zero scheduling horizon is made. Re-
generation times{βn} for this c-dimensional processH = {Hk} are constructed
as in the single-wavelength case (see (5.6)), namely, we putβ0 = 0 and

βn+1 = inf
(

k > βn : Hk = 0̄
)

, n ≥ 0 , (5.38)

with 0̄ corresponding toc components, or (0, . . . , 0). Also the unfinished re-
newal/regeneration timeβ(n) at instantn is defined as in (5.8).

Similar as in the single-wavelength case, the main stability result will be to
prove that, under zero initial conditions, a set of three stability conditions guaran-
tees stability. Of these three conditions, two are exactly the same as in the single-
wavelength case: the assumption that the FDL buffer is properly-defined (5.10),
and the regeneration assumption (5.12). The only conditionthat alters is the neg-
ative drift condition (5.11), that is adapted to the case of multiple wavelengths in
Sect. 5.2.3.1. A second step consists in establishing the tightness of the drift of the
different components of the scheduling-horizon process. This step of the proof has
no counterpart in the single-wavelength case, and constitutes an additional chal-
lenge, typical to the multi-wavelength case. It is treated in Sect. 5.2.3.2, and is
applied subsequently in Sect. 5.2.3.3, for the main stability result, showing that
the three conditions guarantee stability under zero initial conditions. Although the
extension for non-zero initial conditions is not included in this work, a remark is
also devoted to it at the end of Sect. 5.2.3.3.

5.2.3.1 Negative Drift

Before moving to the main stability result, we present a firstlemma to describe the
negative drift of the (total) scheduling-horizon processHk, and a second lemma
to characterize the tightness of individual components ofHk. Further, recall from
(5.4) that∆0 ≡ lim supn→∞ gn.

Lemma 5.2.1. Denote

∆H(k) =

c
∑

i=1

(H
(i)
k+1 − H

(i)
k ) ,
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and estimate the mean incrementE[∆H(k)] by assumingHk = y = (y1, . . . , yc).
The drift of the scheduling-horizon processHk adheres to

lim sup
y→∞

E[∆H(k) |Hk = y] ≤ ∆0 + E[B ] − cE[T ] , (5.39)

where the limity → ∞ is to be applied to all components, that is,yi → ∞.

Proof. As mentioned, the vector processHk is a Markov chain, and by using the
independence between the burst sizes of the arriving burstsand the inter-arrival
times, we obtain

E
[

∆H(k) |Hk = y
]

= E
[

[⌈y1⌉A +Uk]+ − y1 +

c
∑

i=2

([yi −Tk]+ − yi)
]

, (5.40)

where the operator R could be omitted, since we evaluate the sum of the compo-
nents.

As for the sum involved in (5.40), asyi → ∞,

E[[yi − Tk]+ − yi] ↓ −E[T ], i = 2 . . . c .

Consider now the rest of (5.40), that can be rewritten as

E
[

[⌈y1⌉A + Uk]+ − y1

]

=

∫

R

([∆(y1) + y1 + z]+ − y1)dFU (z)

= −y1Pr[U ≤ −y1 − ∆(y1)] + ∆(y1)Pr[U > −y1 − ∆(y1)]

+

∫

z≥−y1−∆(y1)

zdFU (z)

≡ I1 + I2 + I3 ,

where we introducedI1, I2 andI3 for notational convenience. We now consider
these three terms subsequently. As above (see (5.14)), because E[U ] > −∞, we
have,

−y1Pr[U ≤ −y1 − ∆∗ ] ≥ −y1Pr[U ≤ −y1 − ∆(y1)] ≥ −y1Pr[U ≤ −y1] ↑ 0 ,

asy1 → ∞, and hence,I1 ↑ 0. ForI2, by definition, like in (5.18),

lim sup
y1→∞

∆(y1)Pr[U > −y1 − ∆(y1)] ≤ ∆0 ,

while for I3, asy1 → ∞, we have
∫

z≥−y1−∆(y1)

zdFU (z) ↓ E[U ] .

Given the above limits, it follows that (5.39) holds. Note that convergencey → ∞

in (5.39) is component-wise.
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As a result, the negative drift condition in the multi-wavelength case takes on
the form

∆0 + E[U ] − (c − 1)E[T ] < 0 ,

or
∆0 + E[B ] < c E[T ] . (5.41)

This condition, together with the conditions known from thesingle-wavelength
case ((5.10) and (5.10)), will prove sufficient to guaranteestability. However, for
the proof of the main stability result, an auxiliary lemma concerning tightness is
needed, and is therefore presented beforehand.

5.2.3.2 Tightness

For the second lemma, a further characterization of the scheduling-horizon process
is required, that allows to relate the drift of the largest component ofHk to that of
the smallest. To this end, we introduce the differences

dk = H
(c)
k − H

(1)
k , k ≥ 1 . (5.42)

The tightness of the sequence{dk} plays a crucial role in the following stability
analysis.

Lemma 5.2.2.The sequence{dk} is tight, that is for anyε > 0 there exists a finite
constantN such that

inf
k≥1

Pr[dk ≤ N ] ≥ 1 − ε .

Proof. Denote the difference

ek ≡
c−1
∑

i−1

(

H
(c)
k − H

(i)
k

)

= (c − 1)H
(c)
k −

c−1
∑

i=1

H
(i)
k , (5.43)

which is larger than or equal to zero for allk. Further, obviously,dk ≤ ek for all
k. Hence, tightness of the sequence{ek} implies tightness of the sequence{dk}.
We rewrite the basic relation (5.36) as follows:

Hk+1 = R
(

[H
(1)
k +Vk +Bk −Tk]+, [H

(i)
k −Tk]+, i = 2 . . . c

)

, k ≥ 1 . (5.44)

In the proof, we mainly follow [117] and also provide a detailed analysis based on
an extended Kiefer-Wolfowitz recursion from [112, 118]. Upon the arrival of an
arbitrary burstk, the scheduling horizon of the shortest queue increases. Depend-
ing on the size of the burstBk and of the associated voidVk, the queue chosen by
burstk will either be the longest queue as seen by burstk + 1, or not. These two
complementary cases are treated subsequently.
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1. Firstly, assume that the queue chosen by burstk (the shortest queue) evolves
to become the longest queue as seen by burstk + 1, that is,

Bk + Vk ≥ dk = H
(c)
k − H

(1)
k , (5.45)

which implies, given (5.44), that

H
(c)
k+1 = [H

(1)
k + Vk + Bk − Tk]+ .

If assumption (5.45) holds then we obtain for the{ek} of (5.43) that

ek+1 = (c − 1)
[

H
(1)
k + Vk + Bk − Tk

]+

−
c
∑

i=2

[H
(i)
k − Tk]+ .

Now, excluding the trivial case whereH(i)
k+1 = 0 for all i = 1 . . . c (imply-

ing ek+1 = 0), we assume the opposite case, namely thatH
(1)
k +Vk +Bk ≥

Tk. In that case,ek+1 has the following upper bound,

ek+1 = (c − 1)
(

Vk + Bk

)

− (c − 1)Tk + (c − 1)H
(1)
k

−
c
∑

i=2

[H
(i)
k − Tk] −

c
∑

i=2

[H
(i)
k − Tk]−

≤ (c − 1)
(

Vk + Bk

)

+ (c − 1)H
(1)
k −

c
∑

i=2

H
(i)
k

≤ (c − 1)
(

Vk + Bk

)

≤ (c − 1)(∆∗ + Bk) .

(5.46)

To establish the first inequality, we used the identity[·]+ = [·] + [·]−, with
[·]− = −min(0, ·) ≥ 0, and omitted the negative term−

∑c
i=2[H

(i)
k −Tk]−.

For the second inequality, we invokedH
(1)
k ≤ H

(i)
k , for i = 2 . . . c. The last

inequality follows fromVk ≤ ∆∗.

2. Secondly, assume that the queue chosen by burstk is not the longest queue
as seen by burstk + 1, that is, complementary to (5.45) we assume,

Vk + Bk ≤ dk = H
(c)
k − H

(1)
k , (5.47)

which, given (5.44), results in

H
(c)
k+1 = [H

(c)
k − Tk]+ .
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This then implies that

ek+1 = (c−1)
[

H
(c)
k −Tk

]+

−
c−1
∑

i=2

[H
(i)
k −Tk]

+−
[

H
(1)
k +Vk +Bk−Tk

]+

,

where the sum disappears ifc = 2. Excluding again the trivial case where
H

(i)
k+1 = 0 for all i = 1 . . . c (implying ek+1 = 0), we obtain thatH(c)

k ≥

Tk. From this, it follows that

ek+1 = (c − 1)(H
(c)
k − Tk) −

c−1
∑

i=2

(H
(i)
k − Tk)

−
(

H
(1)
k + Vk + Bk − Tk

)

−
c−1
∑

i=2

[

H
(i)
k − Tk

]−

−
[

H
(1)
k + Vk + Bk − Tk

]−

.

Omitting two non-positive terms we obtain as upper bound

ek+1 ≤ ek − Vk − Bk ≤ ek − Bk . (5.48)

To summarize both cases, we introduce the notationDk = ∆∗ + Bk. Note
that E[Dk ] = C∗, see (5.26). Now, taking into account (5.45) and (5.47), it always
goes that

ek+1 ≤ max{ek − Bk, (c − 1)Dk} .

Developing this expression recursively, we obtain

ek+1 ≤ max
(

ek−1 − Bk−1 − Bk, (c − 1)Dk−1 − Bk, (c − 1)Dk

)

.

After k iterations we obtain (assuming for a moment thatk ≥ 3)

ek+1 ≤ max
(

e1 − B1 − · · · − Bk, (c − 1)D1 − B2 − · · · − Bk,

. . . , (c − 1)Dk−1 − Bk, (c − 1)Dk

)

, k ≥ 3 . (5.49)

Note that in our case,e1 = 0 but the proof holds also for any initial stateH1,
see [118]. Denote now

Yk ≡ max
(

e1 −
k
∑

i=1

Bi, (c − 1)Di −
k
∑

n=i+1

Bn, i = 1 . . . k
)

= max
(

(c − 1)Di −
k
∑

n=i+1

Bn, i = 1 . . . k
)

, (5.50)
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with
∑k

n=k+1(·) = 0, using the non-negativity ofYk in the last step. Taking into
account (5.49), we have that

ek+1 ≤ Yk, k ≥ 1 ,

and therefore, proving that the sequence of the{Yk} is tight, suffices to prove the
tightness of the{ek}, and, in its turn, of the{dk}. This will be the approach in
the remainder of this proof. Because theBn are iid we may interchange indexes
in (5.50) such that

Yk = max
(

(c − 1)Di −
i−1
∑

n=1

Bn, i = 0 . . . k − 1
)

,

keeping stochastic equivalence. By the strong law of large numbers (SLLN), w.p.1
asi → ∞,

∑i−1
n=1 Bn

i
→ E[B ] > 0,

Di

i
→ 0 .

Hence, for any fixedε ∈ (0, 1), there exists ani0 such that

Pr
[

(c − 1)Di −
i−1
∑

n=1

Bn < 0, i ≥ i0

]

≥ 1 − ε/2 .

Now we takex0 = x0(ε) such that, forx ≥ x0,

Pr
[

(c − 1)Di ≤ x, i = 1 . . . i0

]

≥ 1 − ε/2 .

Note that then

Pr
[

(c − 1)Di −
i−1
∑

n=1

Bn ≤ x, n ≥ i0

]

≡ Pr[Gx ] ≥ 1 − ε/2, x ≥ 0 ,

where we denoted withG the event that the argument of Pr[·] in the above is true.

Pr
[

(c − 1)D1 ≤ x, (c − 1)Di ≤ x + B1 + · · · + Bi−1, i = 2 . . . i0

]

≡ Pr[Bx] ≥ 1 − ε/2 , x ≥ x0 ,

where we introduced the eventBx. Since

Pr[Gx ∩ Bx] = Pr[Gx ] − Pr[Gx ∩ B̄x] ≥ Pr[Gx ] − Pr[B̄x] ,

we obtain the lower bound

Pr[Yk ≤ x] ≥ Pr[Gx ∩ Bx] ≥ 1 − ε/2 − ε/2 = 1 − ε .

Note that the eventGx contains an infinite sequence of (sub)events indexed byk,
while in the event{Yk ≤ x}, the range of the indexk is limited by i. Sinceε is
arbitrary small it follows that the sequence{Yk} (and hence{dk}) is tight.

We are now ready to establish the main stability result for the multi-wavelength
system.
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5.2.3.3 Main Stability Result

Theorem 5.2.1.Assume that conditions (5.10) (assuming a properly-definedFDL
buffer), (5.12) (regeneration assumption), and (5.41) (negative drift for multiple
wavelengths) hold. Also, assume that a JSQ wavelength assignment algorithm is
applied, as reflected in the Kiefer-Wolfowitz-type recursion (5.36). Then the zero-
delayed regenerative processH is positive-recurrent with respect to regenerations
(5.38).

Proof. It follows easily from (5.39) that again (as in the single-wavelength case)

sup
y≥0

E[∆H(k) |Hk = y] ≤ C∗ , (5.51)

where the mean increment E[∆H(k)] is estimated by assumingHk = y = (y1,

. . . , yc) like in (5.39), andC∗ denotes∆∗ + E[B ], as in (5.26). Take now any
(fixed)

ε ∈
(

0, min(C∗, c E[T ] − ∆0 − E[B ])
)

,

and denote withSc thec-dimensional domain[x0, ∞)× . . .× [x0, ∞), where we
takex0 ≥ 0 such that (see (5.41))

sup
y∈Sc

E[∆H(k) |Hk = y] ≤ −
ε

2
.

Thus, we can write (see (5.51))

E[∆H(k)] ≤ C∗Pr[Hk 6∈ Sc] −
ε

2
Pr[Hk ∈ Sc] .

By means of a proof by contradiction, we show thatH
(1)
k 6→ ∞ in probability

ask → ∞. Therefore, assume that ask → ∞,

H
(1)
k → ∞ in probability. (5.52)

Then, of course, allH(i)
k → ∞, i = 2 . . . c, or Hk → ∞. Therefore, we can find

k0 such that

Pr[Hk ∈ Sc] ≥ 1 −
ε

4C∗
, k ≥ k0 ,

and thus,

Pr[Hk 6∈ Sc] ≤
ε

4C∗
, k ≥ k0 .

Hence, fork ≥ k0,

E[∆H(k)] ≤
ε

4
−

ε

2

(

1 −
ε

4C∗

)

≤ −
ε

8
.
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Using the expressions in the proof of (5.41) one can show (exactly as in the single-
wavelength case, see (5.27)) that

E
[

c
∑

i=1

H
(i)
k0

]

< k0c C∗ ,

which contradicts assumption (5.52), as desired. It implies thatH(1)
k 6→ ∞, or

there existε0 > 0 a finite constantC and non-random (sub)sequencezk → ∞

such that
Pr[H(1)

zk
≤ C ] ≥ ε0 . (5.53)

Because of the tightness of increments{dk = H
(c)
k − H

(1)
k , k ≥ 1}, one can find

a constantR∗ (generally≥ C) such that

Pr
[

Hzk
∈ [0, R∗]c

]

≥
ε0

2
.

Recall thattk is the arrival instant of burstk, (t1 = 0), with Tk = tk+1−tk, k ≥ 1.
Fix anyzk (belonging to the sequence{zk} in (5.53)), and denote the event

Ek = {Hzk
∈ [0, R∗]c} .

With condition (5.12) assumed, it follows that also the condition

Pr
[

c T > B + ∆∗ + δ0

]

= Pr
[

T >
B + ∆∗ + δ0

c

]

= δ′ ,

holds for someδ0 > 0 andδ′ > 0. Assume that all wavelengths are busy (H
(i)
zk

> 0

for all i = 1 . . . c) within the interval[tzk
, tzk+1

), and that the event

G(zk) ≡
{

Tzk
>

Bzk
+ ∆∗ + δ0

m

}

,

is realized. Then

c
∑

i=1

H
(i)
zk+1 = H(1)

zk
+ ∆(H(1)

zk
) + Bzk

− Tzk
+

c
∑

i=2

(H(i)
zk

− Tzk
)

=

c
∑

i=1

H(i)
zk

+ ∆(H(1)
zk

) + Bzk
− c Tzk

≤
c
∑

i=1

H(i)
zk

− δ0 .

Thus, on the eventG(zk), if all wavelengths are occupied within the (continuous-
time) inter-arrival time[tzk

, tzk+1), the components of the scheduling horizon
decrease byδ0 (within this inter-arrival time). It is easy to see that thisholds
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for each inter-arrival time as long as all wavelengths are busy if we use at most
⌈R∗/δ0⌉ eventsG(zk + i), i ∈ {0, . . . , ⌈R∗/δ0⌉ − 1}. In other words, with a
probability

Pr
[

Ek ∩

⌈R∗/δ0⌉−1
⋂

i=0

G(zk + i)
]

≥
ε0

2
(δ′)⌈R

∗/δ0⌉ > 0 ,

a burstξ(n) say, arrives within (discrete-time) interval[zk, zk +⌈R∗/δ0⌉) and sees
at least one idle wavelength, that is

W
(1)
ξ(n) =

⌈

H
(1)
ξ(n)

⌉

A
= 0 .

Now, since instantξ(n) ∈ [zk, zk + ⌈R∗/δ0⌉), we realize at most⌈R∗/δ0⌉ (inde-
pendent) events

Dξ(n)+i ≡ {Tξ(n)+i > Bξ(n)+i + δ0} , i ∈ {0, . . . , ⌈R∗/δ0⌉ − 1} ,

to obtain a burst which finds the buffer completely empty. Indeed, for each burst
ξ(n) + i, i ∈ {1, . . . , ⌈R∗/δ0⌉ − 1}, we may use the same idle wavelength, al-
lowing to transmit these bursts immediately. As such, the scheduling horizon of
the otherc − 1 queues decreases continuously, and all wavelengths becomeidle
within the interval[ξ(n), ξ(n)+⌈R∗/δ0⌉). This is possible, since the regeneration
assumption (5.12) implies that for eachi,

Pr[Dξ(n)+i ] ≥ δ1 > 0 .

Finally, a regeneration occurs within interval[zk, zk +2 ⌈R∗/δ0⌉) with a constant
lengthD0 = 2 ⌈R∗/δ0⌉ < ∞ with a probability≥ ε0/2(δ′)2⌈R

∗/δ0⌉ > 0. In other
words, the unfinished regeneration timeβ(zk) at instantzk is limited byD0 with
a probability

Pr
[

β(zk) ≤ D0

]

≥
ε0

2
(δ′)2⌈R

∗/δ0⌉ > 0 , (5.54)

which is strictly positive, so implying positive recurrence.

Remark5.2.1. It follows from the proof of Theorem 5.2.1 that instead of there-
generation assumption (5.12), one can use a set of two assumptions:

Pr
[

T >
B + ∆∗

c

]

> 0 , (5.55)

and
Pr
[

T > B
]

> 0 , (5.56)

which both follow from (5.12). If Pr[B ≥ ∆∗ ] = 1 then the latter one implies the
former one, since, forc ≥ 2,

0 < Pr[T > B ] = Pr[c T > c B ] ≤ Pr[c T > B + ∆∗ ] .
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Corollary 5.2.1. Under the assumptions of Theorem 5.2.1, the processH has
stationary distribution PrH∞

[·], that is,Pr[Hk ∈ ·] → PrH∞
[·] ask → ∞.

Proof. Similar to the single-wavelength case (see (5.35)), the regeneration as-
sumption (5.12) guarantees aperiodicity of the renewal processβ of regenerations
since

Pr[Hk+1 = 0 |Hk = 0] = Pr[Tk ≥ Bk ] ≥ Pr[T > B + ∆∗ ] > 0 ,

showing that the stationary regime exists.

The proof of the following result is obvious.

Corollary 5.2.2. For the degenerate casegn ≡ D, the zero-delayed processH is
positive-recurrent if conditions (5.41) andPr[T > D + B ] > 0 hold.

Remark5.2.2. The results above assume zero initial conditions. While we do not
address the extension to non-zero initial conditions explicitly in this work, it should
be possible in principle to follow an approach similar to that of the recent contri-
bution [119]. However, the main problem is that the system under consideration
evolves in a state-dependent way: the exact increment or decrement from arrival
to arrival depends on the (state-dependent) size of the void. Therefore, we cannot
use the known monotonicity properties which typically are used in the classic ap-
proach to stability. As such, a complete proof requires a more detailed and refined
analysis.

5.3 Concluding Remarks

In this chapter, sufficient conditions were given for the stability of both single-
wavelength and multiple-wavelength optical buffers. The key element of analysis
is the exploitation of the regenerative property of the mainsystem process and a
characterization of the limiting forward renewal time process.

In case of one wavelength, the main system process is that of the waiting times.
We first established stability under zero initial conditions, that we then extended
to non-zero initial conditions.

For the multi-wavelength system, the main system process isthat of the schedul-
ing horizon. In this case, we were able to obtain a stability guarantee that assumes
zero initial conditions, under a JSQ wavelength assignmentalgorithm.

The obtained stability guarantee is valid for the wide classof GI/G/c optical
buffers, and poses no restriction on the FDL lengths. For now, the stability condi-
tions for the multi-wavelength system still assume zero initial conditions; extend-
ing results also for non-zero initial conditions is a challenging problem that is still
unsolved at the time of writing.



6
Concluding Remarks and Outlook

¶ Nearing the end of this doctoral dissertation, we return to the central question
in this work (1.1):

If a buffer can only realize delays belonging to a limited set,

how does this restriction impact buffer performance?

We now summarize the answers provided in this doctoral dissertation. Also, we
draw up possible new challenges in the stochastic modeling of optical buffers, and
close with a general remark.

6.1 Main Results for Designers

At this point, we gather the conclusions of this work in one listing, with each item
providing part of the answer to the central question of this work.

• As first discussed in Sect. 1.7.2, an FDL buffers differs fundamentally from
a classic RAM buffer due to the occurrence of voids, and the effects of im-
patience. Both effects are directly implied by the limited number of possible
delays.

• When compared to a classic RAM buffer, the effect of voids is strictly a per-
formance degradation. The voids are implied by the FDL buffer structure,
and can be mitigated, but not annihilated.
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• When compared to a classic RAM buffer, the effect of impatience is not
necessarily a performance degradation. Rather, it provides a characterization
of buffer finiteness that is complementary to the typical limit on buffer size,
namely an upper bound on the number of waiting places.

• The main way to optimize the performance of FDL buffers is by fine-tuning
the fiber lengths. In case of degenerate buffering, this comes down to fine-
tuning the granularity.

• In the fine-tuning of the fiber lengths, the most important factor to take into
account is probably the burst size distribution. More particularly, in case
of a burst size distribution with bounded support (with related supremum
Bmax), the optimal granularity for the degenerate buffer setting is necessar-
ily smaller thanBmax.

Other major factors include the inter-arrival time distribution, and the num-
ber of wavelengths. If multiple wavelengths are considered, the wavelength
assignment algorithm also plays a major role.

Although a major factor in the LP, the buffer size is only a minor factor
when it comes to fine-tuning the fiber lengths, and only impacts this process
if very few lines (less than about 5) are considered.

• In the case that burst sizes are fixed, for low load values (ρ < 0.6) and
memoryless arrivals, one obtains best results with a degenerate buffer setting
and with a granularity equal to the burst size. For high load values (ρ > 0.6),
the optimal granularity shifts to lower values. Also, in Sect. 3.3.4, for a
degenerate M/D/1 setting and for low load values, it was pointed out that
the average waiting time in an FDL buffer is (more than) doubled, when
compared to a RAM buffer with identical maximum waiting time.

• In the case that burst sizes are varying, it equally goes thatan increase in
load results in a lower value for the optimal granularity. However, the latter
value is much more sensitive to the load value than in case of fixed-sized
bursts, as was illustrated for the case of memoryless burst sizes.

• All the numerical examples throughout this work considering the question of
optimal granularity share a common trend: the optimal granularity is strictly
non-increasing for increasing load. More precisely, numerous figures illus-
trated that, for increasing load, the optimal granularity either remains unal-
tered, or that it decreases.

– In a degenerate M/G/1 system with upper-bounded burst size distri-
bution, the optimal granularity remains invariant if the load remains
below a certain value called the threshold load. Curves of the thresh-
old load are displayed on Figure 3.6, for the case of M/D/1 andM/U/1.
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– Above the threshold load, as the load increases, the optimalgranu-
larity in a degenerate M/G/1 system shifts to lower values ineither
a continuous manner (as is the case for a degenerate M/M/1) orin a
non-continuous manner (as is the case for a degenerate M/D/1).

Note that there is no theoretical framework to substantiatethis claim, but
that it seems plausible to the author that it can be proven fora degenerate
M/G/1 buffer setting. In the more general case of GI/G/1, however, several
pathological cases exist for which this rule simply does nothold.

6.2 Main Results for Queueing Theorists

Within the broader context of optical buffer research, our angle of incidence in this
monograph is stochastic modeling. Following conclusions can be drawn.

• The modeling of infinite-sized FDL buffers pointed out that these buffers
are instable for lower load values than those that apply for classic buffers.
For the single-wavelength degenerate case, the maximum tolerable load is
strictly smaller than one, and typically (but not always) decreases with in-
creasing granularity. In Chapter 2, we provided exact stability bounds for a
GI/G/1 degenerate buffer setting. In Chapter 5, we constructed sufficient
conditions to guarantee stability for the wider class of a non-degenerate
GI/G/1 buffer setting. Also in Chapter 5, assuming zero initial conditions,
we obtained stability guarantees for a non-degenerate GI/G/c buffer setting
with JSQ wavelength assignment algorithm.

• Throughout this work, the modeling of single-wavelength FDL buffers was
done in terms of both the waiting time and the scheduling horizon. Both in
the non-degenerate and degenerate case, the description based on the wait-
ing times is probably the most suitable of the two. However, in the multi-
wavelength case, one necessarily has to include the scheduling horizon in
the analysis.

• From a modeling point of view, probably the simplest FDL buffer system
is given by the degenerate M/D/1 setting. In case of infinite buffer size, the
analysis is already quite basic, and in case of finite buffer size and granu-
larity equal (CT) or nearly equal (DT) to the burst size, the analysis is even
simpler than that of a classic M/D/1 buffer. Further, exact analysis was also
feasible for the degenerate M/M/1 setting, for both infiniteand finite buffer
setting. In this work, all the cases mentioned are provided with a closed-
form solution, and this regardless of the time setting.
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• When compared to classic buffer models, the occurrence of voids leads to
additional complexity in the buffer model. Nevertheless, the results of Chap-
ter 2 point out that exact analysis of the single-wavelengthcase is feasible
for a class as wide as GI/G/1. On the other hand, for the multi-wavelength
case, exact analysis is only possible for some special cases. As demonstrated
in Chapter 2, assuming a simple wavelength assignment algorithm such as
RR allows for exact analysis. Such model can provide a usefulapproxima-
tion also in case of JSQ, but only if one assumes in addition that burst sizes
are fixed.

• For finite single-wavelength optical buffers, a powerful technique is pro-
vided in Chapter 3. More precisely, loss and waiting time probabilities for
a class as broad as GI/G/1 can be computed exactly, with minimal numeri-
cal effort. This approach exploited the limited number of possible waiting
times, by associating each possible waiting time with exactly one Markov
state. Although not treated in Chapter 3, it can be expected that such numer-
ically efficient approach cannot be translated to the multi-wavelength case.
The main problem lies therein, that one can still trace the first wavelength
by means of the waiting time, but that one is to trace the scheduling horizon
of each additional wavelength. Since the scheduling horizon can take on a
wider (and possibly infinite) range of values, this quickly leads to a state
space explosion. More precisely, in DT, the scheduling horizon can take on
any value in{0, 1, . . . aN}, with aN the length of the longest line. As such,
while the single-wavelength case could be modeled withN +1 states, thec-
wavelength case requires a state space of dimension(N +1)×(aN +1)c−1,
which is much larger than(N + 1)c.

• As for the aspect of impatience involved in FDL buffering, application of
impatience modeling to the degenerate M/M/1 buffer model pointed out that
this is a promising candidate for an approximate modeling ofmore com-
plicated FDL buffer systems. A possible extension is treated in the next
section.

6.3 Outlook and Possible Future Work

With Transform Functions or With Markov Chains While Chapter 2 and 3
provide solutions to a rather broad class of FDL buffering problems, many prob-
lems remain open. Most relevant is beyond doubt the multi-wavelength case,
where many possible wavelength assignment algorithms remain unstudied. Also
interesting is the single-wavelength case with void filling, that was not considered
in this work but nevertheless is promising as alternative.
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Whether these problems are best tackled by means of transform functions or
Markov chains, depends mainly on the researcher’s willingness to explore approx-
imations. Given the irregularity of the stochastic processes produced by advanced
delay-line or wavelength assignment algorithms, it can be expected that an ap-
proach with transform functions will not enable an exact tracing of this prob-
lem. On the other hand, a Markov chain approach may (or may not) allow an
exact tracing. However, in the case that an exact tracing is possible, it is not said
that such tracing with Markov chains allows for a feasible numerical computa-
tion. More particularly, tracing the scheduling horizon ofmultiple queues in the
multi-wavelength case is bound to quickly result in a state space explosion. Never-
theless, appropriate techniques, such as the formulation of state transitions in terms
of Hessenberg matrices (as done in for example [19]) might provide a remedy to
such problems.

If one opts for an approach with transform functions, it is probably best to
first introduce a variety of simplifications of the system. After verification of the
accuracy of each approximation through simulation, one could then turn to a so-
lution in terms of transform functions of the most accurate simplified system. A
possible simplified system, that probably allows for solution in terms of transform
functions, was discussed in Chapter 4.

Impatience As for the approach with impatience of Chapter 4, it is clear that
we have merely lifted the tip of the veil. It follows logically from the results of
Chapter 4 how one could apply the method with impatience to degenerate finite-
sized GI/G/1 buffers. The necessary ingredients to follow such approach are the
equivalent load in that case (that is, Eq. (2.71)), combinedwith the appropriate
model for impatience (with the analysis for D-MAP/PH/1 of [106] as a possible
starting point).

As for the approach with impatience applied to the multi-wavelength system,
the situation is less self-evident. Firstly, one is to propose an appropriate equivalent
load, since no general expression is available for that case. Also, note that such
expression will most likely be valid only for one particularwavelength assignment
algorithm, since variation of the latter greatly impacts the buffer’s loss performance
(see Sect. 2.5).

Finally, given what we know at this point about FDL buffer behavior, it is very
likely that a further exploration of the impatience model will provide even more
accurate approximations than the simple approach of Chapter 4. One possible
extension would be to model the impact of voids by means of a model with excep-
tional first service. In such models, arrivals that find an empty system upon arrival
get a different service (or, a different burst size) than arrivals that find a non-empty
system upon arrival. In case of FDL buffers, an approximative performance model
with exceptional first service could assign a normal burst sizeB (with B a rv) to
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arrivals that find an empty system, and an augmented burst size B + V (with B

andV two rv’s) to arrivals that find a non-empty system. The additional work,
represented by the rvV , could then account for the effect of voids in the actual
FDL buffer system.

With Regenerations As for the stability results obtained in Chapter 5, a chal-
lenging open problem remains the extension of stability guarantees to non-zero
initial conditions for the multi-wavelength case with JSQ wavelength assignment.
Further, note that no stability guarantees have been obtained for other wavelength
assignment algorithms. Also of interest is the question whether a necessary sta-
bility bound, in terms of a maximum tolerable load, can also be formulated for a
non-degenerate GI/G/1 buffer, as it was presented in Chapter 2 for a degenerate
GI/G/1 buffer.

6.4 Let There Be Light...

If one is to name a single reason for the interest of the research community in
FDL buffers, it is beyond doubt their key role in the next-generation optical net-
work. That FDL buffers have been a hot topic over the last decennium is an effect
of their inclusion in numerous OPS/OBS testbeds across the world. On the other
hand, when and how the final step to commercialization of optical switching will
be made is hard to tell. At any rate, as El-Bawab states it [39], the Internet does
grow, and the yearly incremental rise in traffic volume may even be increasing.
Obviously, this urges for additional bandwidth not only in the access network, but
also in the backbone. The exact moment at which the shift fromelectrical switch-
ing to optical switching will take place might not be predictable, but the technical
and operational drivers for the vision of the optical layer are genuine: the network
architecture needs simplification, flexibility, intelligence, and scalability. Optical
networking comes up to these needs, and optical buffering, although but a small
piece of this optically-switched network, surely providesa vital piece. Given the
vital role of performance evaluation in the propagation of new technologies, the
author expresses his hope that this dissertation both directly and indirectly stimu-
lates the deployment of optical buffers in actual networks,and the deployment of
optical networking in general.
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