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Aims 

 

 

Accounting for almost one fifth of the primary production on Earth, diatoms play a 

key ecological and biogeochemical role in our contemporary oceans (Van den Hoek, 1995; 

Smetacek, 1999; Falkowski et al., 2004). Furthermore, as producers of various lipids and 

pigments, and characterized by their finely ornamented silica cell wall, diatoms gained an 

emerging interest of different industrial fields, including biofuel production, nanotechnology 

and pharmaceutics (Lebeau and Robert, 2003; Kröger, 2007). However, despite their major 

ecological importance and their high commercial value, little is known about the mechanisms 

that control their life cycle. Their ability to live and dominate in highly unstable and 

sometimes harsh environments, suggests that diatoms have evolved specific strategies to 

adapt to and survive in such conditions. Unraveling the regulatory mechanisms that underlie 

their unique life cycle strategies will therefore be of crucial importance to understand diatom 

ecology and evolution and to further exploit their industrial potential.    

 

The major aim of this thesis is to gain insights in the genetic mechanisms and 

environmental factors that control the diatom cell cycle. Because at the onset of this work, 

little was known about cell cycle regulation in diatoms, except for the elegant observatory 

microscopic studies in some large diatom species and some physiological work describing the 

effects of various environmental conditions on diatom cell cycle progression (Reviewed in 

Chapter 1), we started this study examining the newly sequenced genome of Phaeodactylum 

tricornutum (Bowler et al., 2008) for conserved and novel cell cycle regulators. 

Chapter 2 describes the genome-wide identification and annotation of the diatom cell 

cycle genes in P. tricornutum, including the most important eukaryotic cell cycle regulators, 

the cyclin-dependent kinases (CDKs) and the cyclins (Morgan, 1997; Inzé and De Veylder, 

2006; Doonan and Kitsios, 2009). To gain insight in their biological function we developed a 

cell cycle synchronization method that allowed us to monitor their transcript expression 
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during synchronized growth. Building on these results, a set of genes was defined that can be 

used as markers for specific cell cycle phases in diatoms.  

From the first comparative genome analyses, it became clear that the cyclin family in 

diatoms represents an expanded gene family (Bowler et al., 2008). In Chapter 2, we 

examined if this expansion is specific to diatoms by comparing the cyclin family size of 

diatoms with those of closely related groups. Furthermore, the putative role of a novel type of 

cyclins, the diatom-specific cyclins, as integrators of environmental signals was assessed by 

nutrient starvation-repletion experiments. 

When nutrients are not limiting, one of the limiting factors of diatom growth is light. 

Chapter 3 describes the strict light-dependent regulation and functional characterization of 

diatom-specific cyclin 2 (dsCYC2). Its putative role as a crucial regulator of the cell cycle 

upon changing light conditions was examined by studying the effects of dsCYC2 

overexpression and silencing on cell cycle progression.  

In addition to the identification of the more general cell cycle regulatory mechanisms 

described in Chapter 2, Chapter 4 elaborates specifically on the G1/S transition. Genome-

wide analysis identified all members of the Retinoblastoma (Rb)-pathway, a conserved 

pathway controlling G1/S transition in plants and animals (Weinberg, 1995; de Jager and 

Murray, 1999). The functionality of a diatom-specific E2F motif, detected through de novo 

motif detection, was investigated by transactivation assays.  

Chapter 5 deals with the ambiguous nature of CDKA2. This CDK was originally 

assigned to the A-type CDKs (Chapter 2), although its mitotic transcription is characteristic of 

the plant-specific B-type CDKs. To uncover its real identity and function, we determined the 

subcellular localization of CDKA2, identified its interaction partners and analyzed the effect 

of its overexpression on cell cycle progression.  

 

The main conclusions and future perspectives of this thesis are summarized and 

discussed in Chapter 6 and a summary is provided in Chapter 7. 
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1 
Introduction 

 

 

Diatoms: ecology and economy 

 

 Life on Earth relies mainly on primary production, the production of organic compounds 

and oxygen from carbon dioxide and water, through the process of photosynthesis driven by the 

radiant energy of the sun. Although marine phytoplankton represents only 1% of the total 

photosynthetic biomass, they account for about 45% of the global primary production (Field et 

al., 1998; Falkowski et al., 2004). Diatoms are one of the most species-rich phytoplankton 

classes, responsible for approximately 20% of the total carbon fixation on Earth (Nelson et al., 

1995; Van den Hoek, 1995). These single-celled eukaryotes belong to the heterokont algae 

(Chromalveolates), a group originated through secondary endosymbiosis when a photosynthetic 

red algae was engulfed by a heterotrophic host that presumably already contained a green 

genomic “footprint” from an earlier secondary symbiosis event (Li et al., 2006; Moustafa et al., 

2009). Based on their morphology, diatoms can be divided into three major groups: the radial 

centrics (Coscinodiscophyceae) which represent the earliest fossil diatom records, followed by 

the bi- and multipolar centrics (Mediophyceae), and the youngest group of pennates 

(Bacillariophyceae) which diverged about 90 million years ago (Mya) (Medlin and 

Kaczmarska, 2004; Sims et al., 2006; Kooistra et al., 2007; Sorhannus, 2007). Genome analysis 

of a representative of two groups, Thalassiosira pseudonana (a multipolar centric) and 

Phaedactylum tricornutum (a pennate) (Figure 1.1), revealed the presence of a substantial set of 

genes of bacterial origin acquired through horizontal gene transfer that provide diatoms with 

novel metabolic capacities and signaling mechanisms (Armbrust et al., 2004; Bowler et al., 

2008). Their complex evolutionary history, with multiple endosymbiotic events and an 

unprecedented level of horizontal gene transfer, is believed to have supplied the diatoms with 

the genetic potential to become one of the most ecologically successful and dominant primary 

producers in our contemporary oceans on a relative short period of time (Bowler et al., 2008; 

Moustafa et al., 2009). Although the oldest diatom fossil records come from the Early Jurassic, 

about 190 million years ago (Mya), molecular dating estimates indicated that diatoms probably 
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arose about 250 Mya during the Triassic period (Sims et al., 2006; Sorhannus, 2007). Diatoms 

began to colonize and dominate the open ocean after the Cretaceous-Tertiary mass extinction 

(65 Mya) and diatom species diversity peaked during the Eocene-Oligocene boundery, followed 

by a decline in diversity during the Oligocene (34 Mya) which has only partially been recovered 

since (Falkowski et al., 2004; Rabosky and Sorhannus, 2009). 

Diatoms play a major role in the biogeochemical cycling of carbon and silica. They 

thrive in the photic zone of nutrient-rich upwelling regions, but once dissolved silicate is 

exhausted they sink out of the photic zone. In this way, they export carbon dioxide from the 

atmosphere (i.e. export production) and sequester it effectively to the ocean interior where it 

remains for centuries to millennia (Dugdale and Wilkerson, 1998; Falkowski et al., 1998; Allen 

et al., 2005). Generally, annual export production in the oceans is in the order of a third (16 

Gt/yr) of the of the total ocean production (45-50 Gt per year) and diatoms would account for 

about 50% of the organic carbon export to the ocean interior (Dugdale and Wilkerson, 1998; 

Falkowski et al., 1998; Smetacek, 1999). Over the past 200 years, atmospheric CO2 

concentrations have increased about 100 ppm (from the relatively constant concentration of 280 

ppm during the last 10000 year to the present concentration of 380 ppm) due to human activities 

such as burning of fossil fuels, deforestation and cement production (Lorius et al., 1990; 

Falkowski et al., 2000; Feely et al., 2008). About one-third of the anthropogenic CO2 emissions 

has been absorbed by the oceans since the beginning of the industrial revolution (Sabine et al., 

2004; Feely et al., 2008). Although this CO2 uptake process reduces atmospheric greenhouse 

gas concentrations, thereby mitigating the climate effects of global warming, it has a serious 

impact on the ocean chemistry and biology due to acidification of the oceans. The expected 

continuous rise of CO2 levels at an increasing rate has been predicted to result in a decrease of 

surface ocean pH of about 0.4 units by the end of this century, a change that is likely to affect 

marine biota (Caldeira and Wickett, 2003; Feely et al., 2008). Besides ocean acidification, 

rising atmospheric CO2 levels are expected to stimulate global warming resulting in melting 

ice caps, global sea level rise and increased vertical stratification of the ocean (Sarmiento et 

al., 2004). The latter could lead to a decrease in export production due to the isolation of the 

phytoplankton in the photic upper zone from the nutrients needed for photosynthesis and 

growth available in the deeper layers (Bopp et al., 2001). Because of the importance of 

diatoms in marine ecosystems and biogeochemical cycles, it will be of primary interest to 

understand the effects of lower pH, higher temperature and increased stratification on the 

physiology and productivity of diatoms. Therefore, understanding the mechanisms that 
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regulate the diatom cell and life cycle, characterized by obligate cell size reduction-restitution 

cycles (see below), will be of major importance to understand diatom population dynamics in 

changing conditions and to predict the biogeochemical impact of diatoms on the global carbon 

flow. Furthermore, by the generation of genetic diversity, diatom life histories also influence 

diatom species diversity, and in turn have an impact on their ecological role. For example, the 

genus Pseudo-Nitzschia comprises closely related species which either do or do not produce 

domoic acid, a neurotoxin causing Amnesic Shellfish Poisoning (Bates, 2000; Erdner et al., 

2008).   

 

 Besides their enormous ecological importance, diatoms are also interesting from a 

biotechnological perspective (Reviewed in Lebeau and Robert, 2003a; Bozarth et al., 2009). 

Diatoms are used in aquaculture as food for mollusk larvae and shrimps, but also as 

bioremediators to treat effluent water from fish farms enriched in phosphate and nitrogen or 

water contaminated by heavy metals. As producers of a variety of metabolites, including oils, 

polyunsaturated fatty acids (e.g. the omega-3 fatty acid eicosapentaenoic acid), pigments, 

amino acids and antibiotics, diatoms can have applications in biodiesel production and in 

pharmaceutical and cosmetic industries as well (Lebeau and Robert, 2003a; Ramachandra et al., 

2009). Moreover, their highly structured mesoporous cell wall (called frustule), made of 

amorphous silica, has drawn the attention of nanotechnology and material scientists (Kröger, 

2007; Gordon et al., 2009). Diatoms are capable of creating a diversity of unique patterns and 

structures with micro- to nanoscale dimensions, which allows researchers to either select from 

the available species or attempt to modify their morphogenesis to apply in the nanofabrication 

of new materials based on diatom silica. Because of their structural, mechanical and optical 

properties, diatom frustules and silica-based structures have found widespread applications 

including biomineralization, biophotonics, photoluminescence, microfluidics, filtration, 

detection of trace gases, controlled drug delivery and computer design. (Gordon et al., 2009). 

Furthermore, the recent identification of proteins involved in the silica biomineralization 

process, including silaffins and long chain polyamines, lead to the development of synthetic 

biopolymers for the in vitro formation of silica and other inorganic materials from precursor 

solutions (Sun et al., 2004; Kröger, 2007; Kröger and Sandhage, 2010).  

A major bottleneck for exploiting the industrial potential of diatoms lies in the cost-

effectiveness of cultivation strategies. In general, large-scale production of microalgae for 

industrial applications occurs outdoors, either in open raceway ponds or closed tubular  
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Figure 1.1: Microscopic images of the five diatom species for which the whole genome sequence is already 

available or is expected to be available soon: a. The pennate Phaeodactylum tricornutum, b. The centric 

Thalassiosira pseudonana, c. The pennate Seminavis robusta, d. The pennate  Fragilariopsis cylindrus, and e. 

The pennate Pseudo-nitzschia multiseries. f. Electron micrograph of Thalassiosira pseudonana showing how the 

two valves (indicated by the arrows) are held together by siliceous girdle bands (brackets). (Picture courtesy of 

SBAE (sustainable bio-engineering for the aquatic environment) industries, Belgium (a, b); PAE (Protistology 

and Aquatic Ecology) laboratory, Ghent University, Belgium (c); H. Lange and G. Dieckmann, Alfred-Wegener 

Institute for Polar and Marine Research, Germany (d); K. Holtermann (e); and N. Kroger, Georgia Institute of 

Technology, Atlanta (f)).  

 

photobioreactors, or a combination of both (Pulz, 2001; Chisti, 2007; Williams and Laurens, 

2010). For both systems, the costs associated with energy supply, environmental control of 

light, nutrients, temperature, pH and gas, mixing, system set-up and harvesting are still high as 

compared to the profit that can be made from the final product (Lebeau and Robert, 2003b). 

However, the biomass productivity per volume is higher in photobioreactors compared to 

raceway systems resulting in considerably lower recovery costs (Chisti, 2007). While many 

efforts are ongoing to further optimize bioreactor design, improving the economics of diatom 

cultivation may greatly benefit from the generation and use of genetically or metabolically 

engineered diatom strains that have e.g. enhanced growth rate, or less growth-limiting 

properties associated with light (Lebeau and Robert, 2003b; Chisti, 2007). An understanding of 

the molecular mechanisms that control the diatom life cycle and the signaling pathways that 

link the environment with the growth process will therefore be necessary to optimize diatom 

cultivation. Because of their life in highly fluctuating environments (e.g. light and nutrient 

supply), diatoms most probably have evolved specific mechanisms to control their life cycle 

strategies. 
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 The recent availability of the fully sequenced genomes of T. pseudonana (Armbrust et 

al., 2004) and P. tricornutum (Bowler et al., 2008) and the ongoing sequencing of three other 

pennate diatom species, the cold-loving Fragilariopsis cylindrus, the toxigenic Pseudo-

nitzschia multiseries (http://www.jgi.doe.gov/genome-projects/), and the life cycle-model 

Seminavis robusta (personal communication A. Bones) (Figure 1.1), will provide the basis for 

exploring the conservation and the identification of unique molecular components controlling 

the diatom cell division process and will help us to decipher the mechanisms underlying the 

ecological success of diatoms. 

 

 

The diatom life cycle 

 

 The diatom life cycle typically comprises two principal phases: a prolonged vegetative 

stage, lasting months to years, during which diploid cells divide mitotically, and a relatively 

short phase of sexual reproduction involving haploid gametes (Chepurnov et al., 2004). 

Vegetative reproduction in diatoms is inevitably connected to their main characteristic feature, 

the diatom cell wall. This silicified frustule is composed of two unequal halves: a larger 

epivalve and a smaller hypovalve, which fit into each other like the two halves of a Petri dish, 

and are held together by siliceous structures, called girdle bands (Round et al., 1990) (Figure 

1.1f). Because diatom cells always divide in the valvar plane and mitotic division is 

accompanied by the formation of a new hypovalve within the confines of the parental cell wall, 

one of the two daughter cells will attain the same size of the mother cell, while the other will 

always be slightly smaller. As a result, the mean cell size in a proliferating diatom population 

decreases while the standard deviation increases, a phenomenon known as the McDonald-

Pfeitzer rule (Chepurnov et al., 2004). This cell size reduction mechanism implies that cells will 

keep on dividing mitotically until they lose their viability due to extreme size diminuation. 

However, in general, when cells become small enough they can enter the sexual phase of the 

life cycle and, as such, escape their fatal fate. The maximum size of cells that can be sexually 

induced is referred to as the sexual size threshold and this is a species-specific property. In 

addition, the secondary cues to switch from vegetative to meiotic division and the specific 

modes of sexual reproduction itself are fundamentally different between centrics and pennates. 

Auxosporulation in centric diatoms is influenced by external species-specific factors such as 



Chapter 1 
   

  

10 

light irradiance, day length and temperature. Centrics form within one clonal culture large egg 

cells and motile, flagellated sperm cells (oogamy). Although auxosporulation in pennate 

diatoms is also dependent on environmental factors, the primary determinant of gametogenesis 

onset in pennates seems to be cell-cell interaction between vegetative cells from different 

sexually compatible clones (mating types). The gametes produced by most pennates are, in 

contrast to those produced by centric diatoms, non-flagellated and morphologically identical 

(isogamy) (Chepurnov et al., 2004). Some diatoms have evolved other strategies besides 

auxosporulation to restore their original cell size, e.g. through vegetative enlargement (Van den 

Hoek, 1995; Chepurnov et al., 2004). In this thesis we will focus on the regulation of vegetative 

cell division in diatoms. Essentially, vegetative reproduction in diatoms occurs through mitotic 

divisions, regulated by a process known as the cell cycle. 

 

 

Molecular control of the eukaryotic cell cycle 

 

The eukaryotic cell cycle comprises the coordinated succession of a phase of DNA 

replication (the DNA synthesis phase or S-phase), and a phase of physical separation of both 

copies of the genomes (mitosis or M-phase) and cell division itself (cytokinesis). Both S- and 

M-phase are separated from each other in time by two gap phases, one preceding S-phase (G1-

phase) and the other preceding M-phase (G2-phase) (Figure 1.2). A tight coordination of the 

cell cycle process is essential to the reproduction and development of every living organism. 

Different cell cycle checkpoints (e.g. at the G1-S and G2-M transition) ensure that the genetic 

information is inherited correctly by inhibiting the replication and distribution of incomplete 

or damaged chromosomes to the daughter cells. The major cell cycle control points represent 

the onset of DNA replication (the G1-S transition) and mitosis itself (the G2-M transition) 

(Buchanan et al., 2000). In addition, most organisms show during the mid-to-late G1 phase a 

commitment point (known as START in yeast, restriction point in animals or commitment 

point in Chlamydomonas), before which a number of decisions, depending on intra- and 

extracellular information, must be integrated (Oakenfull et al., 2002).  

Generally, in eukaryotes, cell cycle regulation is controlled at multiple points by an 

evolutionarily conserved set of proteins, the cyclin-dependent kinases (CDKs) and cyclins, that 

can form functional kinase complexes (Reviewed in Morgan, 1997; Inzé and De Veylder, 

2006). In these complexes, the CDKs and cyclins act as catalytic and regulatory subunits, 
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Figure 1.2: Overview of the eukaryotic cell cycle regulation (redrafted from Buchanan et al., 2000). The cell cycle 

consist of four consecutive phases: G1 phase, S phase (DNA synthesis), G2 phase and M (mitosis) phase. The main 

checkpoints are situated at the G1-S and G2-M transition (green arrows).  The activity of the central regulators, the 

cyclin dependent kinase (CDK)/cyclin complexes, is controlled through phosphorylation and dephosporylation 

of the CDK subunit and interaction with CDK inhibitors (CKI). At the G1-S transition G1 cyclins and CKIs are 

targeted for degradation by the SCF (Skp1/Cdc53/F-box) protein complex. Exit from mitosis is induced by the 

degradation of mitotic cyclins and chesion proteins by the APC (Anaphase Promoting Complex) complex. 

 

respectively. CDKs were first discovered in Xenopus eggs as the active component of 

maturation-promoting factor (MPF), a complex that expresses kinase activity and enables entry 

in mitosis (Gautier et al., 1988). Since then, multiple CDKs have been identified in different 

eukaryotic organisms and based on the cyclin-binding motif present the CDK family can be 

subdivided in different groups (Doonan and Kitsios, 2009). The most conserved type of CDK 

holds a PSTAIRE cyclin-binding motif (cdc2/cdc28 in yeast, CDK1/2 in animals and CDKA in 

plants and algae), while the plant-specific B-type CDKs displays a PPTALRE/PPTTLRE motif. 

Other CDK subfamilies (CDK9/CDKC, CDK7/CDKD, CDK8/CDKE in animals/plants 
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respectively) are related to the PSTAIRE CDK, but some have been shown to be involved in 

transcriptional control or splicing rather then cell cycle regulation (Coqueret, 2002; Kitsios et 

al., 2008). Specific functions of the different CDK groups during the cell cycle are discussed 

more in detail in Chapter 2.   

 The regulatory partners of the CDKs, the cyclins, were initially identified in fertilized sea 

urchin eggs as proteins with particular oscillatory patterns of gene expression and protein 

destruction during the cell cycle (Evans et al., 1983). Because cyclins are involved in 

determining the substrate specificity of the CDK complex, the fluctuation of cyclin abundance 

creates different kinase specificities and activities of the CDK/cyclin complex at different stages 

of the cell cycle. In general, eukaryotes express two main groups of cyclins: the G1 cyclins that 

regulate G1-S transition (called Cln in yeast and D-type cyclins in animals and plants) and the 

mitotic cyclins that control G2-M transition (called Clb or cdc13 in yeast and A- or B-type 

cyclins in animals and plants) (Oakenfull et al., 2002). CDK/cyclin complex activity is not only 

controlled by cyclin association, but also by phosphoregulation of the CDK subunits by 

regulatory proteins (see further) and interaction with CDK inhibitors (CKIs) or scaffolding 

proteins like CKS1/Suc1 (CDK subunit) (Pines, 1996; Harper, 2001; De Clercq and Inzé, 2006) 

(Figure 1.2).  

 All eukaryotes except yeasts share the retinoblastoma (Rb)-mediated pathway for G1-S 

regulation, involving the Rb protein and E2F/DP transcription factors (Figure 1.3) (Weinberg, 

1995; Claudio et al., 2002). Upon mitogenic stimulation (by external and/or internal factors) G1 

cyclins are  produced  that  associate with a  CDK partner  (Figure 1.2)  (Oakenfull et al., 2002). 
 

 

Figure 1.3: Regulation of the G1-S 

phase transition by the Rb-mediated 

pathway. Mitogenic signals trigger the 

transcription of G1 cyclins that form 

functional complexes with CDKs and 

promote cell cycle progression by 

inactivating the Rb protein through 

phosphorylation, resulting in the 

activation of the E2F/DP transcription 

factor complex and S-phase gene 

expression. Arrows indicate activation 

and T-shaped lines indicate inhibition. 
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In turn, the CDK/cyclin complex is activated upon dissociation and degradation of CDK 

inhibitors (CKIs) mediated by the SCF (Skp1/Cdc53/F-box protein) ubiquitination complex 

(Figure 1.2 and 1.3) (Deshaies and Ferrell, 2001). The activated CDK/cyclin complex then 

phosphorylates the Rb protein. In hypophosphorylated form the Rb protein binds to the E2F and 

DP transcription factors, rendering them inactive. Phosphorylation and hence dissociation of the 

Rb protein results in the activation of the E2F/DP complex and the transcriptional activation of 

genes involved in DNA replication and S-phase onset (Figure 1.3) (Weinberg, 1995; de Jager 

and Murray, 1999; Claudio et al., 2002). 

 Activation of the CDK/cyclin complex responsible for G2-M transition depends on 

phosphorylation and dephosphorylation of specific amino acid residues of the CDK subunit 

(Figure 1.4) (Doonan and Kitsios, 2009). A dual-specific Thr/Tyr phosphatase (CDC25 in yeast 

and animals) dephosphorylates the inhibitory phosphorylation sites Tyr15 
en Thr14, while a 

CDK-activating kinase (CAK) phosphorylates the conserved Thr160 residue on the CDK 

subunit. In contrast, inactivation of the CDK/cyclin complex is accomplished by 

phosphorylation of the Tyr15 
en Thr14 residues by a family of inhibitory kinases 

(WEE1/MIK1/MYT1 family) (Figure 1.3) (Perry and Kornbluth, 2007). The activation of the 

CDK/cyclin complex eventually results in the induction of events that precede cytokinesis, 

such as spindle synthesis, chromatin condensation and  nuclear envelope breakdown. Exit 

from mitosis is enhanced by ubiquitin-mediated degradation of anaphase inhibitors and 

mitotic cyclins by the anaphase-promoting complex (APC) (Figure 1.2) (Stals and Inzé, 2001; 

Capron et al., 2003). 
 

 
Figure 1.4: General control mechanism of the G2-M transition in eukaryotes. Before mitosis onset CDKs are 

kept at an inactive state by phosphorylation. Inhibitory phosphorylation at Thr14 and Tyr15 is removed by a dual-

specific phosphatase, resulting in activation of mitotic CDKs and mitosis entry. Arrows indicate activation. 
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 The regulatory mechanisms of G1-S and G2-M transition described above have been 

shown to apply for all higher eukaryotes for which cell cycle regulation has been studied so far 

(Reviewed in Morgan, 1997; Inzé and De Veylder, 2006) and genome-wide analyses of 

different alga species (Ostreococcus tauri, Chlamydomonas reinhardtii and Ectocarpus 

siliculosus) have revealed the general conservation of the main cell cycle regulatory 

components and mechanisms in these organisms as well (Bisova et al., 2005; Robbens et al., 

2005; Bothwell et al., 2010). In addition, passage through G1-S in yeast is regulated by a 

mechanism similar to the Rb-mediated pathway in animals and plants but it involves distinct 

regulatory components, including WHI5, an inhibitor of the G1-S transcription factor 

SBF/MBF (Mendenhall and Hodge, 1998).    

 

 

The diatom cell cycle 

 

Organellar and structural organization during diatom mitosis 

 Although the first light microscopy studies of diatom mitosis at the end of the 19th 

century by Robert Lauterborn already revealed that cell division in diatoms displays major 

differences compared to the classical paradigms of animal and plant cells (Lauterborn, 1896; 

translated and summarized in Pickett-Heaps et al., 1984), many mysteries have remained. 

Because of the rigid nature of the frustule, only a few studies of the internal structures of diatom 

cells have been made by transmission electron microscopy, further impeding studies of their 

basic biology. However, these studies have shown that diatoms contain unique ultrastructural 

characteristics pointing to the likely existence of diatom-specific features important for cell 

division (reviewed in De Martino et al., 2009).  

 Chloroplast division and development are tightly linked with cell cycle progression in a 

number of diatom species (Chepurnov et al., 2002) and this likely contributes to an equal 

distribution of the daughter chloroplasts on each side of the future division plane. In fact, by 

cytological observations and transcriptional analysis of synchronized cultures, chloroplast 

division has been shown to precede karyokinesis (i.e. nuclear division) and cytokinesis (i.e. 

cellular division) in the pennate diatoms Seminavis robusta (Gillard et al., 2008) and P. 

tricornutum (De Martino et al., Manuscript in preparation) (Figure 1.5). However, the molecular 

mechanisms of chloroplast movement and division in diatoms remain unclear. In diatoms 

containing more than two chloroplasts, in the red alga Cyanidioschyzon merolae and in plants  



  Introduction 
   

 

15 

Figure 1.5: Overview of the diatom cell cycle (redrafted from Bowler et al. 2010). Diatoms divide principally 

asexually, through mitosis (a–g). Diatom cells are confined within a rigid cell wall consisting of two silicified 

valves organized with the smaller (hypovalve (hyp)) fitting into the larger (epivalve (ep)). Because mitotic division 

is accompanied by the formation of a new hypovalve within the confines of the parental cell wall, one of the two 

daughter cells will attain the same size of the mother cell, while the other will always be slightly smaller (g–a). 

When a critical species-specific size is reached, the sexual cycle can be induced to restore the maximal initial cell 

size (h). Chloroplast division (b) precedes karyokinesis (e) and cytokinesis (f). One chloroplast segregates in two, 

positioned on each side of the future plane of division. Mitosis is open, with partial nuclear envelope breakdown, 

and involves a unique MTOC consisting of the MC in interphase cells and the PCs in pre-mitotic and mitotic cells 

(a, c, d, f, g). At cytokinesis, cells divide by centripetal invagination of the plasma membrane, which also involves 

the MC (f). A new hypovalve is created within the SDV (f) which extends centrifugally before being exocytosed. 

Flow cytometric analyses performed on different diatom species have indicated the presence of two checkpoints, in 

G1 and G2, dependent on light and nutrient availability (see text). Progression through G2 depends on silicate 

availability for those species requiring it. The electron micrographs represent transverse sections of P. tricornutum 

cells at different stages of cell division. (a) Interphase cell with one nucleus (n), one chloroplast (ch) with one 

pyrenoid (py), mitochondria (m), epivalve (ep), and hypovalve (hyp); (b) Cell with two daughter chloroplasts; (e) 

Cells after karyokinesis; (g) Daughter cells. Fluorescent images represent confocal images of P. tricornutum cells in 
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interphase (a), after chloroplast division (b), and with two daughter nuclei (e). Red: chlorophyll autofluorescence; 

Green: histone H4-GFP fluorescence in nuclei. Scale bars are 1 μm in electron micrographs and 2 μm in the 

fluorescent images. (Bowler et al., 2010). 

 

chloroplast movements have been shown to be actin-dependent (de Francisco and Roth, 1977; 

Nishida et al., 2005; Krzeszowiec et al., 2007). However, the transcriptional induction of beta- 

tubulin in S. robusta and the tight microtubule (MT) network surrounding the constriction sites 

on the mother chloroplast in P. tricornutum suggest the involvement of MTs during chloroplast 

segregation and rearrangement, but does not exclude the possibility that actin may also be 

involved (Gillard et al., 2008; De Martino et al., Manuscript in preparation). 

 Diatom cells typically possess one microtubule center (MC), a dense spherical body 

positioned next to the interphase nucleus, from which MTs radiate (Figure 1.5a). The diatom 

MC resembles the microtubule organizing center (MTOC) of animal cells, the centrosome 

(Lloyd and Chan, 2006), but without centrioles (reviewed in Pickett-Heaps and Tippit, 1978 and 

De Martino et al., 2009). Besides its structural differences, the diatom MC also behaves 

differently during the cell cycle. Whereas animal centrosomes, present as single entities in the 

cell, duplicate before mitosis and give rise to the spindle poles (Azimzadeh and Bornens, 2007), 

the diatom MC is involved in initial spindle creation, after which it disintegrates (Figure 1.6a-b). 

During mitosis, new functional MTOCs appear that cap the poles of the diatom spindle, 

designated the polar complexes (PCs) (Figure 1.5c and 1.6a-b). At cytokinesis, the PCs 

dissappear while a new MC arises (Pickett-Heaps and Tippit, 1978) (Pickett-Heaps, 1991) 

(Figure 1.5d-g). These observations differ from what is known in animals and plants and 

therefore diatoms appear to undergo cell division in a rather unique way (De Martino et al., 

2009). More particularly, diatom mitosis involves the action of an unusual, highly organized 

"central spindle" that is initially formed outside the nucleus (Figure 1.2c and 1.6a) and consists 

of parallel MTs arranged as two interdigitated half-spindles creating a central overlap region of 

MTs (Figure 1.6a, c and d) (Tippit and Pickett-Heaps, 1977; Pickett-Heaps and Tippit, 1978; 

Wordeman et al., 1986). The diatom spindle is encircled by a dense matrix, the "collar" (Figure 

1.6c), which is supposed to help attach the spindle to an atypical type of "presumptive 

kinetochores", the sites of chromosome attachment (Figure 1.6d) (Tippit and Pickett-Heaps, 

1977; Tippit et al., 1980). Reconstruction of the kinetochore fiber in diatoms has shown that 

unlike in convential kinetochores, most of the MTs do not nucleate at this site, but extend past 

the kinetochore, suggesting that the diatom kinetochores function by associating to MTs 
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originating from the poles, rather than by nucleating MTs (Tippit et al., 1980).  

 Cytokinesis of diatoms also differs from that of animals and plants: whereas plant cells 

build their new cell membrane and cell wall centrifugally (inside-out), diatom cells, as animal 

cells, first divide centripetally (outside-in) by invagination of their plasma membrane and then 

create the new hypovalve centrifugally inside an intracellular acidic tubular compartment, the 

silica deposition vesicle (SDV), a cellular structure unique to diatoms (Pickett-Heaps and 

Tippit, 1978; Pickett-Heaps, 1991; De Martino et al., 2009) (Figure 1.5f-g). During this process, 

the new MC is positioned adjacent to the SDV, suggesting a role during valve synthesis (Figure 

1.5f) (Boyle et al., 1984; Edgar and Pickett-Heaps, 1984). When the new hypovalve is fully 

synthesized in the SDV it is secreted from the cell by exocytosis, after which the daughter cells 

can separate (Figure 1.2g). 

 

 
Figure 1.6: Transmission electron micrographs illustrating the unique mitotic structures in diatoms. a. and b. Two 

sections through the same late prophase spindle in the diatom Surirella ovalis. Each polar complex (PC) shows a 

thickening at one end (small arrows). The MTs of the central spindle appear to run from pole to pole, while other 

MTs invaginate the nuclear envelope. The MC (large arrow) starts to disintegrate at this stage, and is not 

observed at metaphase and anaphase. Bar, 0.5 µm. Image taken from Tippit and Pickett-Heaps, 1977. c. High 

voltage micrograph of a thick section of late metaphase S. ovalis cell showing "the collar" (arrows) surrounding 

the central spindle between the chromatin and the poles. Bar, 0.5 µm. Image taken from Tippit and Pickett-

Heaps, 1977. d. Attachment of chromosomes to the central spindle via ”presumptive kinetochores” (black arrow) 

during mid-prometaphase in Hantzschia. Some chromosomes still have no MTs associated with their 

kinetochores (white arrow). x 11000. Image taken from Tippit et al., 1980.    
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Diatom cell cycle regulation: clues from the genome 

 The molecular mechanisms underlying the complex and tightly coordinated production 

and orientation of the unique mitotic and cytokinetic structures in diatoms, as well as the 

decision of the start of the division cycle still need to be uncovered. Homology searches in the 

genomes of both sequenced diatoms for mitotic checkpoint and spindle-associated regulatory 

molecules resulted in the identification of genes important for chromosome segregation 

(including a kinetochore protein ZW10, several chromokinesins and extra-spindle pole-like 

proteins) and genes involved in spindle assembly and elongation (diatom spindle kinesin 1 

and several dyneins) (De Martino et al., 2009). Furthermore a centromere-specific histone H3 

variant was detected in P. tricornutum, but not in T. pseudonana, suggesting a low level of 

similarity of centromeric proteins among diatoms (De Martino et al., 2009). Interestingly, 

comparative genomics revealed that the cyclin gene family represents one of the expanded 

gene families in diatoms, next to histidine kinases and heat-shock transcription factors 

(Bowler et al., 2008). In addition to members of each of the canonical families of cyclins, 10 

and 42 diatom-specific cyclin genes were found in P. tricornutum and T. pseudonana, 

respectively (Bowler et al., 2008; see also Chapter 2). The dramatic expansion of this gene 

family may reflect the unusual characteristics of diatom life cycles due to the rigid nature of 

their cell walls, such as the control of cell size reduction, the activation of sexual reproduction 

at a critical size threshold, and life in rapidly changing and unpredictable environments 

(Kooistra et al., 2007). In addition, it may be significant that genes encoding RCC1 proteins 

(RCC, regulator of chromosome condensation), which are also involved in cell cycle control, 

have been expanded in both diatom genomes (Ohtsubo et al., 1989; Bowler et al., 2008). 
 

 

Physiological and molecular responses to life in unstable environments  

  

 The dominance of diatoms in phytoplankton assemblages of marine and freshwater 

ecosystems when conditions are favorable suggests that they possess efficient sensing and 

signaling mechanisms that allow them to respond or adapt adequately to environmental 

fluctuations such as light and nutrient supply (Falciatore et al., 2000). The use of the recently 

advanced molecular techniques that can be applied to diatoms, including genetic 

transformation and genome-wide transcript analyses (Falciatore et al., 1999; Siaut et al., 2007; 

Gillard et al., 2008; De Riso et al., 2009), can now complement physiological studies in order 
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to study the link between the environment and control of diatom life strategies.  

 

Heat shock factors 

 Regulation of gene expression is an important mechanism in every organism to control 

growth, development, cell cycle progression and adaptation to variable environmental 

conditions. Transcription factors (TFs) play a key role in this regulation, by binding specific 

DNA sequences, cis-acting elements, in the promoter region of their target gene and thereby 

promote (activator) or block (repressor) the recruitment of the transcriptional machinery to 

bind and transcribe the gene. Alternatively, TFs may also interact directly with the 

transcriptional machinery or they may introduce chromatin modifications to regulate 

transcriptional activity. Comparative genome analyses of the genomes of P. tricornutum and 

T. pseudonana revealed that the heat shock factor (HSF) family is expanded and represents 

the most abundant class of TFs (Bowler et al., 2008) with 69 copies in P. tricornutum and 89 

copies in T. pseudonana (Montsant et al., 2007), respectively. Together, these HSFs represent 

almost half of all TFs identified in both sequenced diatoms. The significance of this expansion 

is unclear, but expressed sequence tag (EST) data indicates that the majority is expressed and 

that some members are induced specifically in response to certain growth conditions (Bowler 

et al., 2008; Maheswari et al., 2009). 

 

Light 

 For any photosynthetic organism, including diatoms, light is an extremely important 

factor that influences growth. Because diatoms can grow over a wide range of light intensities 

and wavelengths, they are believed to have developed specific photo-acclimation and photo-

adaptation mechanisms (Huisman et al., 2004; Lavaud et al., 2004; Lavaud et al., 2007). As in 

most other phytoplankton species, timing of diatom cell division can be entrained by 

alternating periods of light and dark, implying that the cell cycle consists of light-dependent 

and light-independent segments (Vaulot et al., 1986). Accordingly, both by light limitation 

and deprivation experiments, light-controlled restriction points have been identified in several 

diatom species, either only during the G1 phase, or both during the G1 and G2-M phases of 

the cell division cycle (Olson et al., 1986; Vaulot et al., 1986; Brzezinski et al., 1990; Gillard 

et al., 2008) (Figure 1.5).  

 Detailed investigation of the main TF families in diatoms led to the identification of 

putative orthologs of TFs involved in light signaling (Rayko et al., 2010). These include a 
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group of Myb proteins containing a single Myb domain (Myb1R) that belong to the 

SHAQKYF-like family described in plants and green algae that include the clock genes CCA1 

(circadian clock associated 1) and LHY (late elongated hypocothyl) (Wang et al., 1997). 

Furthermore, aureochrome-like sequences and bZIP-PAS proteins were found, which might 

both represent classes of photoreceptors that contain putative light-sensitive and DNA-

binding domains. Of particular interest, aureochromes contain a bZIP (basic Leucine Zipper) 

domain and a LOV (light, oxygen or voltage) domain, also found in the phototropin family of 

blue-light photoreceptors (Takahashi et al., 2007; Ishikawa et al., 2009).  

 Blue light (350-500nm) is the most prevailing band below the surface of oceanic waters 

(MacIntyre et al., 2000), so efficient blue light sensing and signaling mechanisms are 

expected to play a crucial role in control of diatom growth. Related to this, a blue-light sensor 

(CPF1) has recently been identified and characterized in P. tricornutum. Overexpression of 

this cryptochrome/photolyase family member affected blue-light induced expression of genes 

involved in cell cycle regulation and DNA repair, suggesting a role for CPF1 in perception 

and signaling of environmental light conditions and linking these to cell cycle progression 

(Coesel et al., 2009). In addition to the small-scale analyses of light-regulated gene expression 

in diatoms (Leblanc et al., 1999; Coesel et al., 2008; Zhu and Green, 2010), Nymark and 

colleagues demonstrated by global transcriptional profiling that diatoms are efficiently 

capable of coping with the damaging effects of excess light by induction of photoprotective 

mechanisms. Upon high-light exposure of P. tricornutum, they found an initial response of 

rapid induction of genes involved in photosynthesis, pigment metabolism and reactive oxygen 

species (ROS) scavenging systems (Nymark et al., 2009). 

 

Nutrients 

 In addition to light, nutrient availability can also strongly affect diatom population 

dynamics. Nitrogen, together with the micronutrient iron, is generally considered to be a major 

limiting factor of primary production in the oceans (Falkowski et al., 1998). The effects of 

nitrogen limitation and starvation on diatom cell cycle progression have been demonstrated by 

flow cytometry to induce an expansion of the G1 phase or an arrest at multiple G1 checkpoints, 

respectively (Olson et al., 1986; Vaulot et al., 1987). Moreover, in T. weissflogii administration 

of periodic nitrogen pulses can override the photoperiod-determined cell division phasing, 

suggesting that nutrient control of the cell cycle precedes the light control in this diatom 

(Olson and Chisholm, 1983).  



  Introduction 
   

 

21 

 Recent studies illustrate how diatoms have developed different strategies to survive 

upon and acclimate rapidly to iron limitation through transcriptional and biochemical 

reconfiguration of iron requirement and acquisition pathways and by the use of ferritin to 

maintain internal iron storage (Allen et al., 2008; Marchetti et al., 2009). Diatoms can also 

respond efficiently to phosphate limitation, which is considered to be less common in the 

marine environment as compared to nitrogen and iron limitation. Nevertheless, phosphate 

limitation has been reported in certain oceanic areas (Wu et al., 2000) and has been 

hypothesized to have been more wide-spread during the glacial periods (Pichevin et al., 2009). 

Van Mooy and colleagues showed that diatoms reduce their phosphorus demand upon 

phosphorus limitation, and maintain their growth by substituting phospholipids with non-

phosphorus membrane lipids (Van Mooy et al., 2009). Furthermore, differential transcription of 

some diatom-specific cyclin genes during nutrient starvation-repletion experiments in P. 

tricornutum showed the importance of phosphate as a cell cycle rate-limiting nutrient (see 

Chapter 2).  

 

Silicon 

 As mentioned before, dissolved silicon can be a major limiting factor for diatom 

reproduction. Silicon limitation in diatom cultures induces cell cycle arrest at the G1-S 

boundary and during the G2-M phases (Vaulot et al., 1987; Brzezinski et al., 1990) and these 

arrest points have been linked to the requirement for silica during DNA replication and  

frustules formation, respectively (Coombs et al., 1967; Darley and Volcani, 1969; Okita and 

Volcani, 1980; Vaulot et al., 1987). Furthermore, in some species that deposit siliceous setae, 

like Chaetoceros species, silicon limitation experiments revealed an additional checkpoint early 

at the G1-phase, related to setae formation (Brzezinski et al., 1990). Whole genome expression 

profiling of the diatom P. tricornutum in response to different silica conditions led to the 

identification of novel compounds putatively involved in silicic acid storage and transport 

(Sapriel et al., 2009). 

 

 

Phaeodactylum tricornutum: a suitable model organism for studying the diatom cell cycle 

  

When studying a particular biological process, the choice of model organism needs to 

be considered well. In this study, we have chosen to work with the model organism P. 
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tricornutum for various reasons. First, the laboratory convenience of this species, including a 

short generation time of about one division per day, ease of cultivation due to the absence of a 

sexual phase during its life cycle, the availability of its full genome sequence and the presence 

of a wide range of molecular tools for genetic transformation, including overexpression and 

knock-down (Brzezinski et al., 1990; Falciatore et al., 1999; Siaut et al., 2007; Bowler et al., 

2008; De Riso et al., 2009). In addition, for decades this species has been the subject of 

several cytological, physiological and biochemical experiments. A considerable advantage 

arises from the absence of a sexual phase in P. tricornutum. Although this complicates the 

generation of knock-out lines in a diploid organism like P. tricornutum by classical crossing 

techniques, it constrains reproduction to the vegetative phase, without the typical cell size 

reduction. This allows us to study the diatom cell division process independent from any other 

processes that in other diatoms are inevitably linked to life cycle regulation, e.g. cell size 

sensing and induction of sexual reproduction.  

Although not considered to be of major ecological significance, P. tricornutum has 

been found all over the world, especially in dynamic coastal and estuarine waters (De Martino 

et al., 2007; Lavaud et al., 2007). P. tricornutum is a pleiomorphic species that can appear in 

three main morphotypes (oval, fusiform and triradiate) (Figure 1.7) (Lewin et al., 1958). The 

plasticity of its shape relates to the rather atypical nature of its cell wall, which is mainly 

organic and only poorly silicified (Borowitzka and Volcani, 1978). As a consequence, P. 

tricornutum does not have an obligate requirement for silica during growth (Brzezinski et al., 

1990). Morphological changes of P. tricornutum within clonal cultures can occur and these 

can be influenced by specific culture conditions, such as nutrient depletion, transfer to solid 

medium and low temperature, while morphological stability might be dependent on the 

genotype (Borowitzka and Volcani, 1978; Tesson et al., 2009). These interchangeable  

 

 
 

Figure 1.7: The three different morphotypes of P. tricornutum: a. A fusiform cell consisting of a central body 

with two thinner arms at both ends. b. Two oval cells. c. A triradiate cell consisting of a central body and three 

arms. pl: chloroplast. Scale bars: 3 µm. Image adapted from De Martino et al., 2007. 



  Introduction 
   

 

23 

morphotypes and its facultative silicon biogenesis of silicified frustules provide opportunities 

to explore the molecular mechanisms of cell shape control and silica-based pattern and 

structure formation in diatoms. 

Different P. tricornutum accessions isolated from several locations worldwide have 

been characterized and described, allowing the examination of natural variation of cellular 

responses or gene expression (De Martino et al., 2007). The strain used during this project is a 

fusiform strain called Pt1 clone 8.6 and represents the accession that was used for genome 

sequencing (De Martino et al., 2007). The P. tricornutum genome is approximately 27,4 

megabases (Mb) in size, which is slightly smaller than T. pseudonana (32.4 Mb), and the 

number of predicted P. tricornutum genes is about 10000 (as opposed to about 12000 genes in 

T. pseudonana (Armbrust et al., 2004; Bowler et al., 2008). In addition, gene identification 

and functional analysis in P. tricornutum is being facilitated by the availability of more than 

130000 expressed sequence tags (ESTs) generated from cells grown under 16 different 

conditions (Bowler et al., 2008; Maheswari et al., 2009; Maheswari et al., 2010). 
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ABSTRACT 
 

Background - Despite the enormous importance of diatoms in aquatic ecosystems and their 

broad industrial potential, little is known about their life cycle control. Diatoms typically 

inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in 

diatoms must have evolved to adequately integrate various environmental signals. The recent 

genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us 

to explore the molecular conservation of cell cycle regulation in diatoms. 

Results - By profile-based annotation of cell cycle genes, counterparts of conserved as well as 

new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin 

gene family was found to be expanded extensively compared to that of other eukaryotes and a 

novel type of cyclins was discovered, the diatom-specific cyclins. We established a 

synchronization method for P. tricornutum that enabled assignment of the different annotated 

genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly 

expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a 

role in connecting cell division to environmental stimuli. 

Conclusion - The discovery of highly conserved and new cell cycle regulators suggests the 

evolution of unique control mechanisms for diatom cell division, probably contributing to 

their ability to adapt and survive under highly fluctuating environmental conditions. 
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INTRODUCTION 
 

 Diatoms (Bacillariophyceae) are unicellular photosynthetic eukaryotes responsible for 

approximately 20% of the global carbon fixation (Van den Hoek et al., 1995; Field et al., 1998). 

They belong to the Stramenopile algae (chromists) that most probably arose from a secondary 

endosymbiotic process in which a red eukaryotic alga was engulfed by a heterotrophic 

eukaryotic host approximately 1.3 billion years ago (Kooistra et al., 2003; Li et al., 2006). 

This event led to an unusual combination of conserved features with novel metabolism and 

regulatory elements, as recently confirmed by whole-genome analysis of Thalassiosira 

pseudonana and Phaeodactylum tricornutum (Armbrust et al., 2004; Montsant et al., 2005; 

Bowler et al., 2008), which are representatives of the two major architectural diatom types, 

the centrics and the pennates, respectively. 

 Besides their huge ecological importance, diatoms are interesting from a biotechnological 

perspective as producers of relatively high amounts of a variety of metabolites (including oils, 

poly-unsaturated fatty acids (such as eicosapentaenoic acid), and pigments (such as 

xanthophylls and marennine) (Lebeau and Robert, 2003b; Bozarth et al., 2009), and because of 

their highly structured mesoporous cell wall, made of amorphous silica (Kröger, 2007). Thus, 

understanding the basic mechanisms controlling the diatom life cycle will be important to 

comprehend their ecological success in aquatic ecosystems and to control and optimize 

diatom growth for commercial applications. 

 As predominant organisms in marine and freshwater ecosystems, diatoms often 

encounter rapid and intense environmental fluctuations (for example, light and nutrient 

supply) (Round et al., 1990) that might have dramatic effects on cell physiology and viability. 

Therefore, cell cycle regulation in diatoms most probably involves efficient signalling of 

different environmental cues (Falciatore et al., 2000). Recent studies illustrate how diatoms 

can acclimate rapidly to iron limitation (Allen et al., 2008; Marchetti et al., 2009) and 

phosphorus scarcity (Van Mooy et al., 2009) through biochemical reconfiguration or 

maintenance of internal reservoirs and how their cell fate can be determined by perception of 

diatom-derived reactive aldehydes (Vardi et al., 2006; Vardi et al., 2008). Furthermore, in P. 

tricornutum, a new blue light sensor (cryptochrome/photolyase family member 1) has been 

discovered with dual activity as a 6-4 photolyase and a blue-light-dependent transcription 

regulator (Coesel et al., 2009). Thus, diatoms are expected to possess complex fine-tuned 

signalling networks that integrate diverse stimuli with the cell cycle. The recent availability of 
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genome data of T. pseudonana (Armbrust et al., 2004) and P. tricornutum (Bowler et al., 

2008) now provides the basis to explore how the cell cycle machinery has evolved in diatoms. 

 Efficient molecular regulation of the cell cycle is crucial to ensure that structural 

rearrangements during cell division are coordinated and that the genetic material is replicated 

and distributed correctly. In eukaryotes, the mitotic cell cycle comprises successive rounds of 

DNA synthesis (S phase) and cell division (mitosis or M phase) separated from each other by 

two gap (G1 and G2) phases (Inzé and De Veylder, 2006). Passage through the different cell 

cycle phases is controlled at multiple checkpoints by an evolutionarily conserved set of proteins, 

the cyclin-dependent kinases (CDKs) and cyclins (Reviewed in Morgan, 1997; Inzé and De 

Veylder, 2006). Together, these proteins can form functional complexes, in which the CDKs 

and cyclins act as catalytic and regulatory subunits, respectively. Various types of CDKs and 

cyclins exist and they generally regulate the cell cycle, but some can be involved in other 

processes, such as transcriptional control or splicing (Coqueret, 2002; Kitsios et al., 2008). 

 In eukaryotes, activity of CDK-cyclin complexes is mainly controlled by 

(de)phosphorylation of the CDK subunits and interaction with inhibitors or scaffolding proteins 

(De Clercq and Inzé, 2006). Regulators include CDK-activating kinases (CAKs) (Kaldis, 1999; 

Umeda et al., 2005), members of the WEE1/MYT1/MIK1 kinase family and CDC25 

phosphatases that carry out inhibitory phosphorylation and dephosphorylation (Perry and 

Kornbluth, 2007), as well as CDK inhibitors (CKIs) (De Clercq and Inzé, 2006) and the 

scaffolding protein CKS1/Suc1 (Pines, 1996; Harper, 2001). 

 The aim of this work was to reveal the molecular network of cell cycle regulators in P. 

tricornutum, a species used for decades as a model diatom for physiological studies. P. 

tricornutum is a coastal diatom, typically found in highly unstable environments, and its cells 

can easily acclimate to environmental changes (De Martino et al., 2007; Allen et al., 2008). Key 

cell cycle regulators (CDKs, CDK interactors, and cyclins) were annotated and their transcript 

expression profiled during synchronized growth in P. tricornutum. The results indicate that 

diatom cell division is controlled by a combination of conserved molecules found in yeast, 

animals and/or plants, and novel components, including diatom-specific cyclins that probably 

transduce the environmental status of the cells to the cell cycle machinery. 
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RESULTS AND DISCUSSION 

 

Annotation of the cell cycle genes in diatoms 

 

 The following cell cycle gene families were selected for comprehensive analysis: CDKs, 

cyclins, CKS1/suc1, WEE1/MYT1/MIK1, CDC25, and CKIs. These gene families were 

annotated functionally on the basis of their homology with known cell cycle genes in other 

organisms (see Materials and methods). The results of this family-wise annotation are discussed 

below and summarized in Table 2.1 and Additional Table 2.1. The nomenclature of all 

identified proteins is according to that used in other protists for which cell cycle gene annotation 

was available (Bisova et al., 2005; Robbens et al., 2005). 

 

 
Table 2.1: Overview and evolutionary conservation of the different core cell cycle gene families. 

 
Cell cycle gene Number of copies 

Phatra Aratha,b Osttaa, c Saccea, c Homsaa, c 

CDKA 2d 1 1 1 3 
CDKB - 4 1 - - 
CDKC 2 2 1 1 1 
CDKD 1 3 1 - 1 
CDKF - 1 - 1 1 
CYCA 1? 10 1 NA NA 
CYCB 2? 9 1 NA NA 
CYCD 1? 10 1 NA NA 
CYCH 1? 1 1 NA NA 
CDC25 - - 1? 1 3 
WEE1/MYT1/MIK1 1 1 2 2 2 
CKS 1 2 1 1 2 
CKI - 7 1 1 8 
aAbbreviations: Phatr, Phaeodactylum tricornutum; Arath, Arabidopsis thaliana; Ostta, Ostreococcus  
tauri Sacce, Saccharomyces cerevisiae; Homsa, Homo sapiens. 
bData taken from (Vandepoele et al., 2002) 
cData taken from (Robbens et al., 2005) 

 

dOne of these genes shows some CDKB characteristics. 

 

?Classification uncertain because of weak phylogeny. 

NA, not available due to other classification nomenclature. 
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Cell cycle synchronization and expression analysis 

 

 To validate the predicted functions of the annotated genes, we examined their transcript 

expression during the cell cycle. To synchronize cell division in P. tricornutum, we subjected 

exponentially growing cells to a prolonged dark period, which arrests the cells in the G1 phase 

(Brzezinski et al., 1990) (Figure 2.1; Additional figure 2.1), and released the cells 

synchronously from this arrest point by illumination. A comparable method had been applied 

successfully to synchronize growth in a closely related diatom, Seminavis robusta (Gillard et al., 

2008). Microscopic observations of the dark-arrested P. tricornutum cultures showed that all 

cells contained a single undivided chloroplast (Figure 2.1a, upper panel). Accordingly, in flow 

cytometric histograms, the dark-arrested cells showed only a 2C peak (Figure 2.1b and 

Additional figure 2.1, t = 0), confirming the G1 phase identity of cells containing a single 

chloroplast. When cells were released from the dark arrest, the population of bi-chloroplastidic 

cells steadily increased and cells entered the S phase, as observed by flow cytometry 

(Additional figure 2.1, upper panel). However, the level of synchrony decreased at later time 

points (from 10 h after the dark release onward), probably because cells entered the next cell 

division cycle at the moment other cells still had to pass through M phase (Additional figure 

2.1). To circumvent this problem and to obtain an enrichment of cells in M phase during the 

later time points (Additional figure 2.1), the metaphase blocker nocodazole was added at the 

time of re-illumination (Ng et al., 1998), but without major effect on cell cycle progression 

(Additional figure 2.1). 

 To monitor gene expression during the different cell cycle phases, exponentially growing 

cells were synchronized in the presence of nocodazole (Figure 2.1b-c). Automated analysis of 

the flow histograms indicated that G1-phase cells were dominant during the first 4 h of re-

illumination; from 4 to 7 h, cells went through S phase, as seen by the broadening and lowering 

of the 2C peak, while cells went mainly through the G2 and M phases at 8 to 12 h (Figure 2.1b-

c). In S. robusta, chloroplast division had been found to take place only after S-phase onset 

(Gillard et al., 2008). Chloroplast division in P. tricornutum was observed starting from 5 h 

after illumination, confirming the S-phase timing determined by flow cytometry (Figure 2.1a  

lower panel, and 2.1c). The duration of the cell cycle after the synchronization procedure was 

comparable with that of cultures grown under standard conditions (approximately one division 

per day; Additional figure 2.2). For downstream analysis, at hourly intervals after illumination, 

samples were taken for expression analysis by real-time quantitative polymerase chain reaction 
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(qPCR). 

 
Figure 2.1: Synchronization of the cell cycle in P. tricornutum. a. Confocal images of a dark-arrested cell (upper 

panel) showing a single parietal chloroplast and a cell after 12 h illumination (lower panel) showing divided and 

translocated daughter chloroplasts. Red, autofluorescence of the chloroplast. Scale bar: 5 μm. b. Validation of 

synchronization of the cell cycle of P. tricornutum by flow cytometry. DNA content (abscissa) is plotted against 

cell number (ordinate). After a 20-h dark period, most of the cells are blocked in G1 phase (t = 0 to 4 h), indicated 

by the single 2C peak. After reillumination, cells proceed synchronously with their cell cycle, going through S-

phase (between t = 4 and 7 h), visible as the broadening and lowering of the 2C peak, and G2-M phase (t = 8 to 12 

h), indicated by the accumulation of 4C cells. c. Histogram indicating the proportion of cells in a certain cell cycle 

phase and chloroplast conformation during the cell cycle. Divided chloroplasts were observed starting from 5 h 

after illumination, after S-phase onset. 
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CDKs and CDK interactors  

 

CDKs  

 CDKs are serine/threonine kinases that play a central role in cell cycle regulation and 

other processes, such as transcriptional control. Yeast uses only one single PSTAIRE-

containing CDK for cell cycle progression (Mendenhall and Hodge, 1998; Moser and Russell, 

2000), while higher organisms encode different CDKs implicated in cell division. The most 

conserved CDKs contain a PSTAIRE motif in their cyclin-binding domain (Morgan, 1997; Inzé 

and De Veylder, 2006). In plants, the PSTAIRE-containing CDK had been designated CDKA 

and is active during both G1-to-S and G2-to-M transitions (Inzé and De Veylder, 2006). The 

plant-specific B-type CDKs contain a P[P/S]T[A/T]LRE motif and are active during the G2 and 

M phases (Inzé and De Veylder, 2006). In animals, three PSTAIRE (Cdk1, Cdk2, and Cdk3) 

and two P(I/L)ST(V/I)RE (Cdk4 and Cdk6) CDKs are involved in cell cycle control, although 

evidence has been found recently that only Cdk1 is really required to drive cell division 

(Morgan, 1997; Santamaria et al., 2007). 

 Five CDKs could be identified in P. tricornutum (Table 2.1), of which two clustered 

together with the CDKA (plant)/CDK1-2 (animal) family in the phylogenetic tree (Figure 2.2). 

CDKA1 contains the typical PSTAIRE cyclin-binding motif (Figure 2.3) and its mRNA levels 

were high during late G1 and S phase (Figure 2.4a), suggesting a role at the G1-to-S transition. 

CDKA2 shows a PSTALRE motif (Figure 2.3), which is a midway motif between the CDKA 

hallmark PSTAIRE and the plant-specific CDKB hallmark P[P/S]T[A/T]LRE. The mRNA 

levels of CDKA2 were elevated in G2/M cells (Figure 2.4a). No homologs of the metazoan 

CDK4/6 family were found in P. tricornutum. 

 CDKC, CDKD and CDKE (designated Cdk9, Cdk7 and Cdk8 in animals, respectively) 

are kinases related to CDKA (Joubes et al., 2000). C-type CDKs (CDKC and Cdk9) and Cdk8 

have been shown to associate with transcription initiation complexes and, thus, to play a role in 

transcriptional control (Oelgeschlager, 2002; Barroco et al., 2003). Additionally, CDKC2 is 

active in spliceosomal dynamics in plants (Kitsios et al., 2008) and CDKE controls floral cell 

differentiation (Wang and Chen, 2004). We identified two C-type CDKs (Table 2.1), CDKC1 

and CDKC2 (Figure 2.2a) with PITALRE and PLQFIRE cyclin-binding motifs, respectively 

(Figure 2.3). No CDKE homolog was found in P. tricornutum. Both CDKC genes had relatively 

low mRNA levels throughout the cell cycle without any discernible cell cycle phase pattern 

(data not shown). Thus, like in other eukaryotes, CDKC expression probably does not depend 
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on the cell cycle phase in P. tricornutum, but it might be involved in other processes, such as 

transcription or splicing. One CDKD was identified (CDKD1) in P. tricornutum (Table 2.1 and 

Figure 2.2a). D-type CDKs are known to interact with H-type cyclins to form a CAK complex 

(Umeda et al., 2005). We found that CDKD1 mRNA levels were high at the G1-to-S phase 

transition (Figure 2.4a). Another CDK variant, CDKF, has only been found in plants, where it 

functions as a CAK-activating kinase (CAKAK) (Umeda et al., 2005). No members of the 

CDKF family were identified in P. tricornutum, confirming that the CAKAK pathway is 

specific to plants and should have evolved within the green lineage (Table 2.1). 

 In addition, we identified seven hypothetical CDKs (hCDKs; Additional Table 2.1) with 

divergent cyclin-binding domains (Figure 2.3) that could not be integrated into the phylogenetic 

tree due to high sequence divergence. The expression levels of several of these hCDKs were 

modulated during the cell cycle (Figure 2.4a). The hCDK1 mRNA levels were the highest 

during G2-M, whereas those of hCDK6 were up-regulated during G1 phase and hCDK2, 

hCDK3, hCDK4, and hCDK5 were predominantly expressed at G1 and/or S phase. For hCDK7, 

no reproducible expression pattern was found (data not shown). 

 

CDK subunit 

 CDK subunit (CKS) proteins act as docking factors that mediate the interaction of CDKs 

with putative substrates and regulatory proteins (Pines, 1996). In P. tricornutum, one CKS gene 

was found (CKS1; Table 2.1) of which the mRNA levels were mainly high in G2/M cells 

(Figure 2.4b). 

 

WEE1/MYT1/MIK1 kinases  

 WEE1/MYT1/MIK1 kinases inhibit cell cycle progression through phosphorylation of 

CDKs (Perry and Kornbluth, 2007). In yeast and animals, MYT1 is a membrane-associated 

kinase that phosphorylates Thr14 of Cdc2 proteins, as well as Tyr15, which is also a target of 

WEE1, a nucleus-localized kinase (Mueller et al., 1995; Liu et al., 1997). A single CDK 

inhibitory kinase could be identified in P. tricornutum, belonging to the MYT1 family (Table 

2.1; Additional figure 2.3) (Mueller et al., 1995). In Arabidopsis thaliana, the inhibitory kinase 

corresponds to WEE1 (De Schutter et al., 2007), while the green alga Ostreococcus tauri 

expresses both WEE1 (Robbens et al., 2005) and MYT1 (unpublished data), like animals do 

(Mueller et al., 1995) (Table 2.1). Expression of the P. tricornutum MYT1 kinase was not 

associated with a specific cell cycle phase (data not shown). Because MYT1 is probably 
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implicated in stress responses during the cell cycle (Zhou and Elledge, 2000), it is possible that 

the imposed dark arrest or addition of nocodazole influenced the mRNA levels of MYT1, with 

too much variability in its expression profile as a consequence. 

 

 
Figure 2.2: Phylogenetic analysis of the cyclin-dependent kinases of P. tricornutum. Neighbor-joining tree 

(TREECON, Poisson correction, 1000 replicates) of the CDK family. The P. tricornutum sequences are shown in 

bold. Abbreviations: Arath, Arabidopsis thaliana; Drome, Drosophila melanogaster; Homsa, Homo sapiens; Lyces, 

Lycopersicon esculentum; Medsa, Medicago sativa; Musmu, Mus musculus; Nicta, Nicotiana tabacum; Oryja, 

Oryza japonica; Orysa, Oryza sativa; Ostta, Ostreococcus tauri; Phatr, Phaeodactylum tricornutum; Sacce, 

Saccharomyces cerevisiae; Schpo, Schizosaccharomyces pombe; Thaps, Thalassiosira pseudonana; and Xenla, 

Xenopus laevis. The outgroup is represented by human CDK10. 
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Figure 2.3: Cyclin-dependent kinase cyclin-binding motifs. Alignment of the cyclin-binding motifs of all annotated 

CDKs in P. tricornutum. The motifs are indicated in the green box. Conserved residues are marked by an asterix in 

the bottom line. 

 

 

 
 

Figure 2.4: Hierarchical average linkage clustering of the expression profiles of the differentially expressed cyclin-

dependent kinases and the scaffolding protein CKS in P. tricornutum. a. Members of the CDK family. b. CKS1. h, 

hypothetical. Yellow: Relative upregulation. Blue: Relative downregulation. Approximate timing of the different 

cell cycle phases is indicated at the bottom. Values are the mean of three independent experiments normalized 

against the values of the consitutively expressed histone H4 gene. No reproducible expression patterns could be 

found for  CDKC1, CDKC2, hCDK7 and MYT1 (data not shown). 
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CDC25 phosphatase  

 As antagonists of the WEE1/MYT1/MIK1 kinases, CDC25 phosphatases activate CDKs 

(Perry and Kornbluth, 2007). In contrast to the presence of a counteracting kinase, no CDC25 

phosphatase could be identified in P. tricornutum (Table 2.1) or in T. pseudonana. Both 

Arabidopsis and Oryza sativa also lack a functional CDC25 (Bleeker et al., 2006; Duan et al., 

2007) and, in plants, CDC25-mediated regulatory mechanisms have been proposed to be 

replaced by a mechanism governed by the plant-specific B-type CDKs (Boudolf et al., 2006). In 

P. tricornutum, no true B-type CDK homolog could be found, but CDKA2, classified by weak 

homology as A-type CDK class, possessed a PSTALRE cyclin-binding motif (Figure 2.3), 

which is halfway between the CDKA and CDKB hallmarks. This motif also occurred in the 

Dictyostelium discoideum CDC2 homolog (Michaelis and Weeks, 1992) and in the O. tauri 

CDKB protein (Robbens et al., 2005). The PSTALRE motif is present as well in the CDKA2 

homolog of T. pseudonana (Thaps3_35387; Figure 2.2a), confirming that this subtype could 

generally be found in diatoms. Moreover, CDKA2 was expressed during G2-M (Figure 2.4a), 

the expected time of action of a B-type CDK. Although further in-depth biochemical research 

will be required to determine its true physiological function, the presence of this A/B-type CDK 

might explain the absence of a CDC25 phosphatase in diatoms. Alternatively, if the sequence of 

the CDC25 phosphatase had diverged to such an extent in diatoms, it might be not detectable by 

sequence homology, as already suggested for higher plants as well (Khadaroo et al., 2004). 

 

CDK inhibitors  

CDK-cyclin complexes can be inactivated by CKIs, including the members of the 

INK4 family and the Cip/Kip family in animals (Sherr and Roberts, 1999), or Kip-related 

proteins and SIAMESE proteins in plants (Verkest et al., 2005; Churchman et al., 2006). CKIs 

are mainly low-molecular-weight proteins that inhibit CDK activity by tight association in 

response to developmental or environmental stimuli (Sherr and Roberts, 1995, 1999; De 

Clercq and Inzé, 2006). Despite extensive sequence similarity searches for CKIs, no homologs 

could be identified in P. tricornutum, which is not so surprising given the high sequence 

diversity of this cell cycle family (Verkest et al., 2005). These inhibitory proteins are most 

probably present in P. tricornutum, but their identification will require more advanced 

molecular techniques. 
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Cyclins 

 

The cyclin gene family is expanded in diatoms 

 We found a large number of highly diverged cyclin genes in diatoms, of which 24 

proteins in P. tricornutum (Additional Table 2.1). Due to their high divergence, indicated by the 

low bootstrap values in the phylogenetic tree, the classification into different subclasses was not 

clear (Figure 2.5), as it was for the 52 putative cyclins identified in T. pseudonana (Montsant et 

al., 2007). Moreover, many represent a novel class of cyclins, which we designated diatom-

specific cyclins (dsCYCs). 

 To investigate whether the expansion of the cyclin gene family is specific to diatoms, we 

compared cyclin abundance among a representative set of Chromalveolates (Stramenopiles, 

Apicomplexa, and Ciliates; Table 2.2) for which genome data are available (Carlton et al., 2002; 

Gardner et al., 2002; Abrahamsen et al., 2004; Xu et al., 2004; Gardner et al., 2005; Pain et al., 

2005; Aury et al., 2006; Eisen et al., 2006; Tyler et al., 2006) and have been pre-processed in a 

previous study (Martens et al., 2008). Because of the lack of cell cycle gene annotation in all 

investigated species, we first screened for cyclin genes, which allowed us to create a reference 

dataset for analyzing cyclin evolution. We searched the different genomes for proteins that 

showed similarity to our cyclin HMMER profile and determined the number of proteins that 

contained an InterPro cyclin domain (Table 2.2). Generally, both detection methods yielded 

comparable results within all species (Table 2.2). An indication of the putative subclasses and 

function of the detected proteins is given by specific cyclin InterPro domains (Table 2.2). The 

proportion of the detected cyclin proteins relative to the predicted total gene number of each 

species revealed that, in the diatom genomes, cyclins are overrepresented compared to all 

investigated species, except for both Cryptosporidium species (Abrahamsen et al., 2004; Xu et 

al., 2004) and Paramecium tetraurelia (Aury et al., 2006) (Table 2.2). However, the total 

number of cyclins found in Cryptosporidium (12) is low compared to that in diatoms (28 in P. 

tricornutum and 57 in T. pseudonana). Cryptosporidium species are protozoan pathogens that 

depend on their hosts for nutrients. Moreover, Gene Ontology distribution for Cryptosporidium 

and Plasmodium is similar, indicating that no functional specialization of conserved gene 

families has occurred (Xu et al., 2004). In Paramecium tetrauleria, the cyclin family is 

expanded as well. However, this species has a complex genome structure, possessing silent 

diploid micronuclei and polyploid macronuclei. Furthermore, P. tetraurelia underwent at least 
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three whole-genome duplications, resulting in an apparent expansion of almost every gene 

family (Aury et al., 2006). 

 In conclusion, the large number of cyclin genes in both diatoms does not seem to be 

shared with its closest related species, indicating that diatom cyclins could have evolved 

separately to acquire new specific functions. Although the cyclin family has been found to be 

expanded in both diatoms, the size of the cyclin gene family in T. pseudonana is larger than that 

in P. tricornutum, which seems to result mainly from the presence of a larger number of 

diatom-specific cyclins in T. pseudonana (Figure 2.5). The biological cause of the changes in 

the cyclin family size remains unknown, although natural selection due to differential habitats 

might have played a role, or alternatively, random gene loss or gain might have occurred over 

long time stretches, as both species diverged at least 90 million years ago (Bowler et al., 2008). 

Genome sequence data of other diatom species are currently being generated (for example, for 

Fragilariopsis cyclindrus and Pseudo-nitzschia multiseries) and will help to shed light on 

cyclin gene family evolution in diatoms. 

 

Conserved cyclins 

Cyclins can be functionally classified into two major groups: the cell cycle regulators 

and the transcription regulators. Generally, during the cell cycle, specific cyclins are 

associated with G1 phase (cyclin D), S phase (cyclins A and E), and mitosis (cyclins A and B) 

(Sanchez and Dynlacht, 2005). In P. tricornutum, we identified a single A/B-type cyclin gene 

(CYCA/B;1; Figure 2.5), which gradually accumulated its mRNA transcript during the G2 and 

M phases (Figure 2.6a). Both B-type cyclin genes (encoded by CYCB1 and CYCB2) (Figure 

2.5) were predominately expressed in G2/M cells, but mRNA levels of CYCB2 accumulated 

earlier than those of CYCB1 (Figure 2.6a). The single D-type cyclin (encoded by CYCD1; 

Figure 2.2b) was mainly expressed during S and G2/M phase progression (Figure 2.6a). As in 

plants, CYCE seems to be absent in diatoms (Vandepoele et al., 2002). 

Cyclins with a regulatory role during transcription include those belonging to the 

classes C, H, K, L, and T (Oelgeschlager, 2002). However, some cyclins involved in 

transcriptional control might also have a function in cell cycle regulation. For example, 

besides being a transcriptional regulator, the human C-type cyclin is also involved in the 

control of cell cycle transitions (Liu et al., 1998) and H-type cyclins can regulate the cell 

cycle through interaction with D-type CDKs, thereby forming a CAK complex (Fisher and 

Morgan, 1994; Yamaguchi et al., 2000; Umeda et al., 2005). The latter is probably also true 
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for the P. tricornutum CYCH1 (Figure 2.5) because it was coexpressed with CDKD1 during 

the cell cycle (Figure 2.6a). The single L-type cyclin (encoded by CYCL1; Figure 2.5) showed 

elevated mRNA levels at G1 and during S phase (Figure 2.6a). In animals, cyclin L (also called 

Ania-6) has previously been demonstrated to be an immediate early gene that could be involved 

in cell cycle re-entry (Iyer et al., 1999; Berke et al., 2001). 

 Six cyclins in P. tricornutum clustered together with P-type cyclins (PHO80-like 

proteins, also called U-type cyclins; Additional Table 2.1 and Figure 2.5) that are believed to 

play a role in phosphate signalling (Kaffman et al., 1994; Torres Acosta et al., 2004). The 

mRNA levels of all P-type cyclin genes (CYCP1, CYCP2, CYCP3, CYCP4, CYCP5, and 

CYCP6) were high early during the time series (Figure 2.6a). One cyclin gene did not cluster 

with any of the represented classes and was annotated as CYC-like (Figure 2.5). The mRNA 

levels of this gene peaked during the G1 and S phases (Figure 2.6a). 

 

Most diatom-specific cyclins are expressed early during the cell cycle 

 Eleven cyclin genes were identified that clustered only with cyclins of T. pseudonana 

(Figure 2.5). Therefore, we assigned these as dsCYC genes. dsCYC3 and dsCYC4 showed both 

high expression at the G2/M phases (Figure 2.6b). The mRNA levels of dsCYC10 were slightly 

up-regulated at the G1-to-S transition and reached a peak late during the cell cycle (Figure 

2.6b). As the other dsCYC genes displayed increased mRNA levels during the G1 and/or S 

phases (dsCYC1, dsCYC2, dsCYC5, dsCYC6, dsCYC7, dsCYC8, dsCYC9, and dsCYC11; Figure 

2.6b), some might function as immediate early genes controlled by light or mitogens.  

 Organisms living in aquatic environments, particularly in coastal regions, often have to 

cope with rapid and broad fluctuations in light intensity, temperature, nutrient availability, 

oxygen level, and salinity, all of which can have profound consequences on cell cycle 

progression. Comparative genome analyses of marine phytoplankton have revealed that coastal 

organisms contain genetic imprints indicative of adaptation to life under variable conditions 

(Palenik et al., 2006; Peers and Niyogi, 2008), including distinct proteins coding for 

photosynthesis and light harvesting, additional two-component regulatory systems, novel 

carbon-concentrating mechanisms, transcription of transporters and assimilation proteins for the 

uptake of alternative nitrogen sources, and numerous metal transporter families and metal 

enzymes (Palenik et al., 2006; Peers and Niyogi, 2008). Similar adaptation imprints were also 

found in the diatom genomes (Armbrust et al., 2004; Bowler et al., 2008). Nevertheless, 

because diatoms generally dominate the microplankton in temperate waters and coastal 
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upwelling regions under favorable conditions (Irigoien et al., 2002), we expect diatoms to 

possess additional sophisticated fine-tuning systems enabling them to adjust the pace of the cell 

division rate in tune with the prevailing conditions. 

 Although in plants numerous copies of D-type cyclins integrate both external and internal 

signals into the cell cycle (Inzé and De Veylder, 2006), in P. tricornutum only one D-type 

cyclin (CYCD1) was identified that was highly expressed late during the cell cycle (Figure 

2.6a). Therefore, in diatoms CYCD probably does not play its classical role of G1-phase signal 

integrator, but might have acquired an alternative function in the G2-to-M transition as 

previously proposed for some D-type cyclins in plants (Schnittger et al., 2002). On the other 

hand, the wide variety of dsCYC genes in diatoms expressed early during the cell cycle renders 

them plausible candidates to fulfil the task of signal integrators. Moreover, diatom-specific 

genes have been found to evolve faster than other genes in diatom genomes (Bowler et al., 

2008), indicating that these cyclin genes might have acquired novel and/or species-specific 

functions. Interestingly, other gene families expanded in diatoms include histidine kinases and 

heat shock factors, which are supposed to be involved in environmental sensing and expressed 

under certain growth conditions (Bowler et al., 2008). Thus, gene family expansion in diatoms 

could possibly be linked to the development of specific signal responses and adaptations to the 

environment. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 2.5 (Next page): Phylogenetic analysis of the cyclins of P. tricornutum. Neighbor-joining tree (TREECON, 

Poisson correction, 500 replicates) of the cyclin family. The P. tricornutum sequences are shown in bold. 

Abbreviations: Arath, Arabidopsis thaliana; Homsa, Homo sapiens; Ostta, Ostreococcus tauri; Phatr, 

Phaeodactylum tricornutum; and Thaps, Thalassiosira pseudonana. 
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Figure 2.6: Hierarchical average linkage clustering of the expression profiles of cyclin genes in P. tricornutum. a. 

Conserved cyclins. b. Diatom-specific cyclins (dsCYCs). ds, diatom specific. Yellow: Relative upregulation. Blue: 

Relative downregulation. Approximate timing of the different cell cycle phases is indicated at the bottom. Values 

are the mean of three independent experiments normalized against the values of the consitutively expressed histone 

H4 gene. 

 

   

dsCYCs respond to nutrient availability 

  

 To investigate the role of the dsCYC genes during the cell cycle, we analyzed them in 

more detail. More specifically, we examined whether their transcription is affected by nutrient 

deprivation. Analysis of recently published expressed sequence tag data (Maheswari et al., 

2009) illustrates the differential expression of dsCYC3, dsCYC7, and dsCYC10 across a range of 

environmental conditions (for example, nitrate-starved, nitrate-repleted, and iron-limited 
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cultures). Moreover, a microarray analysis revealed that dsCYC9 transcript levels were higher in 

cultures grown in the presence of silica than those without silica (Sapriel et al., 2009). 

 To examine whether dsCYC expression could be responsive to nutrient status during the 

cell cycle, we monitored mRNA levels in parallel with cell growth during nutrient starvation-

repletion experiments. Exponentially growing cultures were nutrient-starved for 24 h and re-

supplied with only nitrate, phosphate, iron, trace metals, the combination of all nutrients 

(positive control), or no nutrients (negative control). Three hours after nutrient supply, samples 

were collected for expression analysis. After nitrate repletion, cells reinitiated cell division at 

almost comparable levels to the positive control cultures, whereas repletion with phosphate, 

iron, or trace elements did not differ from the negative control (Figure 2.7a), indicating that 

nitrate is the most cell cycle rate-limiting nutrient in P. tricornutum. Nitrogen starvation in 

diatoms generally leads to a G1-phase arrest (Olson et al., 1986; Vaulot et al., 1987). Thus, 

increased mRNA levels of early cell cycle-regulated genes are to be expected at the time of cell 

cycle reinitiation after nitrate repletion. Accordingly, cell cycle genes that showed early (G1 

phase) transcription in the synchronized series (CYCP6, CYCH1, and hCDK5) (Figure 2.4 and 

2.6) were induced in the nitrate replete and positive control cultures (Figure 2.7b). To exclude 

cell cycle effects during sampling, the starvation experiment was repeated for nitrate repletion, 

but after imposing a 24-h dark arrest after starvation and re-supply of nitrate in complete 

darkness. In these cultures, the expression of the early cell cycle genes did not differ from that 

of the negative control after nitrate supply (Figure 2.7c), confirming that expression of CYCP6, 

CYCH1, and hCDK5 is linked to cell cycle re-entry rather than to the nitrate status of the cells. 

 In contrast to nitrate, cells resupplied with phosphate remained arrested (Figure 2.7a-b). 

Upon addition of phosphate, mRNA levels of dsCYC5, dsCYC7 and dsCYC10 were 

significantly higher than those of the negative control (Figure 2.7d), strongly suggesting that 

these genes might function as direct cell cycle signal integrators upon increase of phosphate 

levels. Upon replenishment with nitrate (in the dark), iron or trace elements, no effects on 

dsCYC gene expression were observed (Figure 2.7d and data not shown). 

 Nitrogen, together with the micronutrient iron, is generally considered to be a major 

limiting factor of primary production in the oceans (Falkowski et al., 1998). Phosphate 

limitation, on the other hand, is considered to be less common, although it has been reported in 

certain oceanic areas (Wu et al., 2000) and has been hypothized recently to have been more 

wide-spread during the glacial periods (Pichevin et al., 2009). As an important constituent of 

adenosine triphosphate, nucleic acids, and phospholipids, phosphorus is an important molecule 
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not only for growth, but for almost all metabolic activities. Recently, diatoms have been shown 

to reduce their phosphorus demand upon phosphorus limitation, and to maintain growth by 

substituting phospholipids with non-phosphorus membrane lipids, only when nitrogen is not 

limiting (Van Mooy et al., 2009). 

 

 
  

Figure 2.7: Nutrient response of diatom-specific cyclins. a. Growth rate of different subcultures after repletion 

based on average cell density measurements at the time of and 3 days after repletion. These data indicate the ability 

of the cells to recover from starvation. b. Expression profiles of early cell cycle genes CYCP6 (peak expression at t 

= 0 in the synchronization series (Figure 2.6)), CYCH1 and hCDK5 (both have their peak expression at t = 2 in 

the synchronization series (Figure 2.4 and 2.6)) at the time of sampling during the light experiment. c. Expression 

profiles of early cell cycle genes at the time of sampling during the dark experiment. d. dsCYCs responding to 

phosphate addition. Error bars represent standard errors of the mean of two biological replicates. 
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 In summary, these results reveal that some dsCYCs might be involved in environmental 

cell cycle control, functioning as nutrient signal integrators. All phosphate-responding dsCYC 

genes were expressed early during the synchronized time series (Figure 2.6b), fitting with a 

function in linking nutritional status and cell division start. 

 

Cell cycle biomarkers 

 

The identification of the complete set of major cell cycle regulators in P. tricornutum, 

along with the determination of their temporal expression patterns, generates a basis for 

studying different cell cycle-related processes in diatoms. Diatom cell cycle biomarkers could 

be used to observe cell cycle effects in laboratory experiments, but they could also be highly 

valuable to monitor diatom life cycle events in the natural habitat, like bloom or rest periods. 

To validate whether the expression data obtained through the synchronization 

experiment was applicable in cell cycle-associated studies, we selected diatom cell cycle 

genes with a defined expression pattern to test their value as cell cycle biomarkers. As a 

control experiment, we checked the expression of four early (CYCH1, hCDK5, CDKA1, and 

CDKD1) and two late (CDKA2 and CYCB1) cell cycle genes during a 12-h light/12-h dark 

photoperiod (LD 12:12). Flow cytometry data during this 24-h time course of the grown 

cultures indicate that the cells show a low degree of ‘natural’ synchronization of cell division: 

in the morning, most cells are in the G1 phase, while in the evening, division takes place 

(Figure 2.8a). Thus, it was to be expected that genes determined as early and as late cell cycle 

genes would be induced in the morning and in the evening, respectively. Indeed, expression 

according to the different cell cycle distributions was found for all selected genes (Figure 

2.8b-c), indicating that they would perform as good cell cycle markers in cell cycle-related 

studies and that the expression data obtained from the synchronization studies (Figures 2.4 

and 2.6) could serve as a reliable basis to select appropriate marker genes. 

In a real case study, we used these cell cycle biomarkers to investigate whether the cell 

cycle in P. tricornutum would be regulated by an endogenous clock or a so-called circadian 

oscillator. Circadian regulation of cell division is well known to occur in eukaryotes and is 

particularly well-described for unicellular algae (Goto and Johnson, 1995; Moulager et al., 

2007). Although circadian regulation of light-harvesting protein-encoding genes and pigment 

synthesis has been reported in diatoms (Oeltjen et al., 2004; Ragni and D'Alcala, 2007), we 
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Figure 2.8: Validation of cell cycle 

marker genes. a. DNA distributions (2C 

versus 4C) of exponentially growing cells 

entrained by a LD 12:12 photoperiod 

during the time series b. Expression 

profiles of early cell cycle genes (CYCH1 

and hCDK5; peak expression at t = 2 in 

the synchronization series (Figure 2.4 and 

2.6)); and CDKA1 and CDKD1 (peak 

expression at t = 3 in the synchronization 

series (Figure 2.4)). c. Expression profiles 

of late cell cycle genes CDKA2 and 

CYCB1 (peak expression at t = 12 in the 

synchronization series (Figure 2.4 and 

2.6)). Error bars represent standard errors 

of the mean of two biological replicates. 
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did not find any direct evidence that circadian regulation of the cell cycle exists in P. 

tricornutum. Comparison of cell cycle progression and cell cycle biomarker expression in 

cells under normal 12-h light/12-h dark (LD 12:12) or free-running 12-h light/12-h light (LL 

12:12, constant light) light conditions indicate that neither the cell cycle itself nor mRNA 

accumulation of the main core cell cycle genes depends on a circadian oscillator (Additional 

figures 2.4 and 2.5). These findings stress even more the importance of the development and 

use of efficient signaling networks that link environmental cues to cell growth in diatoms. 

 
 

CONCLUSIONS 
 

 From the annotation and expression analyses, we conclude that the diatom cell cycle 

machinery shares common features with cell cycle regulatory systems present in other 

eukaryotes, including a PSTAIRE-containing CDK, conserved cyclin classes of types A, B, 

and D, and a MYT1 kinase. In addition, members of the retinoblastoma pathway for G1-S 

regulation involving the retinoblastoma protein and E2F/DP transcription factors (Weinberg, 

1995; de Jager and Murray, 1999; Claudio et al., 2002) were also found in P. tricornutum 

(unpublished data, see Chapter 4). Components that were expected to be found in diatoms but 

could not be identified include a CDC25 phosphatase and CKIs. Possibly the function of the 

CDC25 phosphatase might be taken over by CDKA2, given its expression time and sequence 

similarity with B-type CDKs (Boudolf et al., 2006), whereas the lack of CKI identification by 

sequence similarity searches might be due to high sequence divergence (Verkest et al., 2005). 

 Most interestingly, we found a major expansion of the cyclin gene family in diatoms and 

discovered a new cyclin class, the diatom-specific cyclins. The latter are most probably 

involved in signal integration to the cell cycle because transcript levels of dsCYC5, dsCYC7, 

and dsCYC10 depended on phosphate (this study), and dsCYC9 was reported to be induced 

upon silica availability (Sapriel et al., 2009). Besides their role in nutrient sensing, we 

hypothesize that transcription of some dsCYC genes might also be light-modulated, as 

illustrated by the high dsCYC2 mRNA levels in dark-acclimated cells that drastically dropped 

after 1 h of light exposure (Figure 2.6b). In addition, this gene was recently found to be 

modulated upon blue light treatment (Coesel et al., 2009). The responsiveness of other dsCYC 

genes to different light conditions is currently under investigation. 
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 The complete set of major diatom key cell cycle regulators identified in this study could 

serve as a set of marker genes for monitoring diatom growth both in the laboratory and in the 

field. As cell cycle-regulated transcription cannot be assumed to depict a cell cycle-regulatory 

role for a gene, the predicted functions of the individual diatom cell cycle genes await further 

experimental confirmation by molecular and biochemical studies, although they already provide 

first insights into the manner in which diatoms control their cell division. Therefore, this dataset 

will form a starting point for future experiments aimed at exploring and manipulating the 

diatom cell cycle. 

 

 

MATERIALS AND METHODS 
 

Culture conditions 

 P. tricornutum (Pt1 8.6; accession numbers CCAP 1055/1 and CCMP2561) (De Martino 

et al., 2007) was grown in F/2 medium without silica (F/2-Si) (Guillard, 1975), made with 

filtered and autoclaved sea water collected from the North Sea (Belgium). Cultures were 

cultivated at 18 to 20°C in a 12-h light/12-h dark regime (50 to 100 μmol·photons·m-2·s-1) and 

shaken at 100 rpm. Under these conditions, the average generation time of P. tricornutum was 

calculated to be 0.93 ± 0.07 days (Additional figure 2.2). 

 

Family-wise annotation of the diatom cell cycle genes 

 In a first step, known plant and animal cell cycle genes were selected to construct a 

reference cell cycle dataset. The members of every cell cycle family were used to build family-

specific HMMER profiles (Eddy, 1998). With these profiles, the predicted P. tricornutum and 

T. pseudonana proteomes were screened for the presence of core cell cycle families. Missing 

gene families were also screened against the raw genome sequence (using tBLASTN) to 

account for annotation errors (that is, missing genes). For each family, the putative P. 

tricornutum homologs found were validated by comparing them with the reference family 

members in a multiple alignment. 
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Phylogenetic analysis 

 Multiple alignments generated with MUSCLE (Edgar, 2004) were manually improved 

with BioEdit (Hall, 1999). To define subclasses within the gene families, phylogenetic trees 

were built that included the reference cell cycle genes from plants and animals. Both 

TREECON (Van de Peer and De Wachter, 1994) and PHYLIP 

(http://evolution.genetics.washington.edu/phylip/) were used to construct the neighbor-joining 

trees based on Poisson-corrected distances. To test the significance of the nodes, bootstrap 

analysis was applied using 1,000 replicates for all trees, except for the cyclin tree (500 

replicates). 

 

Synchronization of the cell cycle in P. tricornutum 

 P. tricornutum cells were arrested in the G1 phase by prolonged darkness (20 h). After 

release of the cells from this G1 checkpoint by reillumination, samples for cell cycle analysis 

and real-time qPCR were collected during 12 h at hourly intervals, starting at reillumination (t = 

0). To prevent cells from entering a second cell cycle, nocodazole (2.5 mg/l; Sigma-Aldrich, St. 

Louis, Missouri, USA) was added to the cultures at t = 0. Synchronization was validated by 

flow cytometric analysis on a Partec CyFlow ML platform (with data acquisition software 

Flomax; Partec GmbH, Münster, Germany) on cells fixed with 70% ethanol, washed three times 

with 1× phosphate buffered saline and stained with 4',6-diamidino-2-phenylindole (final 

concentration of 1 ng/ml). For each sample, 10,000 cells were processed. Flow cytograms were 

analyzed with Multicycle AV for Windows (Phoenix Flow Systems, San Diego, California, 

USA) software to determine relative representations of the different cell cycle stages in the 

samples. 

 

Nutrient starvation/repletion experiment 

Exponentially growing cells (under constant light, 50 μmol photons m-2 s-1) were 

collected by centrifugation 3 days after medium replenishment, and washed twice with natural 

seawater (North Sea, Belgium) to starve the cells. After 24 h starvation, the culture was 

subdivided into six subcultures and supplied with only nitrate (8.82 × 10-4 M NaNO3; N), 

phosphate (3.62 × 10-5 M NaH2PO4 H2O; P), iron (1.17 × 10-5 M FeCl3 6H2O; Fe), trace metals 

(3.93 × 10-8 M CuSO4 5H2O, 2.60 × 10-8 M Na2MoO4 2H2O, 7.65 × 10-8 M ZnSO4 7H2O, 4.20 

× 10-8 CoCl2 6H2O and 9.10 × 10-7 M MnCl2 4H2O; trace), the combination of all nutrients 

(concentrations as mentioned above; F/2), or no nutrients (no repletion). Samples were taken for 
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real-time qPCR after 3 hours of incubation. Cell density and growth rate were monitored during 

3 days after repletion using a Bürker counting chamber to assess the degree of starvation in the 

different subcultures. For each sample, the average cell density was counted from nine large 

squares (0.1 mm3) and growth rate was calculated from semi-log linear regression of the cell 

numbers plotted against time. 

 To exclude cell cycle effects upon nitrate repletion, the experiment was repeated with 

cells grown in a LD 12:12 photoperiod. Three days after medium replenishment, the cells were 

washed twice with natural seawater (North Sea, Belgium) to starve the cells and illuminated for 

12 h. The cells were then incubated in the dark for 24 h and no nutrients and nitrate were 

supplied in the dark as mentioned above. Samples were taken for real-time qPCR after 3 hours 

of incubation in the dark. 

 

Real-time qPCR 

 For RNA extraction, 5 × 107 cells were collected at each time point, fast frozen in liquid 

nitrogen, and stored at -70°C. To lyse the cells and extract RNA, TriReagent (Molecular 

Research Center, Inc., Cincinnati, Ohio, USA) was used initially. After addition of chloroform, 

RNA was purified from the aqueous phase by RNeasy purification, according to the 

manufacturer's instructions (RNeasy MinElute Cleanup kit; Qiagen, Hilden, Germany). 

Contaminating genomic DNA was removed by DNaseI (GE Healthcare, Little Chalfont, United 

Kingdom) treatment. RNA concentration and purity were assessed by spectrophotometry 

(NanoDrop ND-1000, Wilmington, Delaware, USA). Total RNA was reverse transcribed with 

Superscript II reverse transcriptase (Invitrogen, Carlsbad, California, USA) in a total volume of 

40 μl with oligo(dT) primers. Finally, 1.25 ng (synchronization experiment and control 

experiment) or 10 ng (nutrient starvation/repletion experiment and circadian experiment) of 

cDNA was used as template for each qPCR reaction. 

 Samples in triplicate were amplified on the Lightcycler 480 platform with the Lightcycler 

480 SYBR Green I Master mix (Roche Diagnostics, Brussels, Belgium) in the presence of 0.5 

μM gene-specific primers (Additional Table 2.1). The cycling conditions were 10 minutes 

polymerase activation at 95°C and 45 cycles at 95°C for 10 s, 58°C for 15 s, and 72°C for 

15 s. Amplicon dissociation curves were recorded after cycle 45 by heating from 65°C to 

95°C. In qBase (Hellemans et al., 2007), data were analyzed using the ΔCt relative 

quantification method with the stably expressed histone H4 as a normalization gene (Additional 

figure 2.6) (Siaut et al., 2007). Expression profiles of the synchronized cell cycle series were 



Chapter 2 
   

 

60 

mean relative expression from three independent sample series. After normalization, the mean 

profiles were clustered using hierarchical average linkage clustering (analysis software TIGR 

MultiExperiment Viewer 3D (TMEV3D)). 

 

Image acquisition 

 Confocal images were obtained with a scanning confocal microscope 100 M (Zeiss, Jena, 

Germany) equipped with the software package LSM510 version 3.2 (Zeiss, Jena, Germany) and 

a C-Apochromat 63× (1.2 NA) water-corrected objective. Chlorophyll autofluorescence was 

excited with HeNe illumination (543 nm). 

 

 

Accession numbers 

 Sequence data from this article can be accessed through the Joint Genome Institute 

(JGI) portal (http://genome.jgi-psf.org/Phatr2/Phatr2.home.html) . Accession numbers of the 

cell cycle genes are listed in Additional Table 2.1. 
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ADDITIONAL DATA 
 
 
 

  

       
Gene Name Protein Name Protein ID 

(JGI - release 1) 
Protein ID 
(JGI - release 2) Forward gene specific primer Reverse gene specific primer Product 

length (bp) 

       Cyclin-dependent kinases 
Phatr;CDKA1 CDKA1 Phatr1_28779 Phatr2_20262 AGCGGTATCAAAGGATGGAAAAG CTTCATCTTCGGCTTCAAGGC 123 
Phatr;CDKA2 CDKA2 Phatr1_24534 Phatr2_51279 GTTGCCCTCAAGCGTATC AACACAGTCCTTCAAGTCG 123 
Phatr;CDKC1 CDKC1 Phatr1_12190 Phatr2_10704 CTGAAGAAACTCACGCATCCG CGAGAACGAGAAAGAGATTCCC 118 
Phatr;CDKC2 CDKC2 Phatr1_16981 Phatr2_26925 AACACGAAACAGGAGGAGAACG ACGCACCTTTGGATGTCACG 121 
Phatr;CDKD1 CDKD Phatr1_9317 Phatr2_10160 ATTACTTCTGCGGAGACCATTC GCGGTAAAGATTTCGTCAAAGG 183 
Phatr;hCDK1 hCDK1 Phatr1_25351 Phatr2_21410 GTATCTTTGCTGAGTTAATTCTTC TACTGGAGTCGTGCTTGG 173 
Phatr;hCDK2 hCDK2 Phatr1_33856 Phatr2_42539 AACTCGCCGATTTTGGTTTGTC ATTGCGTATATTGCCTGCTTCC 129 
Phatr;hCDK3 hCDK3 Phatr1_35608 Phatr2_34165 TCTCAAGCCTCATAACCTC TGCTCCAAACATCAATCG 188 
Phatr;hCDK4 hCDK4 Phatr1_55230 Phatr2_49025 TCCACTTGAAGAGATTGACG TCTACACCACGAGCCATC 165 
Phatr;hCDK5 hCDK5 Phatr1_30237 Phatr2_23198 GGACTGGCACGACGCTTTC GGCTGGACCGTAACAACTCTC 111 
Phatr;hCDK6 hCDK6 Phatr1_55668 Phatr2_5526 CCCACAAATGTCGCTGAAACG CGGTAGGTTCGCAGGATGG 116 
Phatr;hCDK7 hCDK7 Phatr1_55997 Phatr2_14453 TTTGGGCTGGCTAGAATAG CGAAGTATATGGCTGGATAAG 192 

       Cyclins 
Phatr;CYCA/B;1 CYCA/B;1 Phatr1_45836 Phatr2_17135 TACACCGCCACTCCAAGAC TCGGAGGACGGGATGGG 199 
Phatr;CYCB1 CYCB1 Phatr1_55247 Phatr2_46095 TCCTGGTCCGCTACTTGAAAG GCTGGCTGGGAAGATAACGC 117 
Phatr;CYCB2 CYCB2 Phatr1_61099 Phatr2_8598 ACACAAAGTTCCGGCTCAT AACCAGTTGTAGTCGCTTGC 104 
Phatr;CYCD1 CYCD Phatr1_14393 Phatr2_29283 CAGGAGCGTGGTCTTGTAG AATATCCGACTCCGAATAGCC 213 
Phatr;CYCH1 CYCH Phatr1_36311 Phatr2_36892 ATACACGACGAGCGGATAC AACAAGACGCCGTAAATCG 97 
Phatr;CYCL1 CYCL Phatr1_24121 Phatr2_5718 GCTGCCAAAACGGAGGAGTC CTTCGCCTTTCGGATCAATGC 154 
Phatr;CYCP1 CYCP1 Phatr1_38529 Phatr2_48210 GCTGCTGCTGCGACTGAC ATGGCGGAGGCGGCTTC 115 
Phatr;CYCP2 CYCP2 Phatr1_40691 Phatr2_49817 GGTGAAGGACGGCGATGC ACGGAAGAACAAGACCAAGAGC 128 
Phatr;CYCP3 CYCP3 Phatr1_45030 Phatr2_43226 GGCTACTCCACCTTCAACCC GCTTCCACCGACCGATTCC 136 
Phatr;CYCP4 CYCP4 Phatr1_49429 Phatr2_48202 AGTGGTTTGCTGGAAGACAG GAATCCAATTCCAGTCAACG 148 
Phatr;CYCP5 CYCP5 Phatr1_52534 Phatr2_43226  GGCCATGATTTTACAACAGC ACCATGGTGCACTTGTAGGT 159 
Phatr;CYCP6 CYCP6 Phatr1_59602 Phatr2_6231 AGGTGCTTGCTGCTGTTC ACGAGGCATACTTGTGAATCC 150 
Phatr;dsCYC1 dsCYC1 Phatr1_33465 Phatr2_31942 TCGCAGTAGAGAAAGTTCAGTC TTGGCTTCGTGTCGTTGTTG 121 
Phatr;dsCYC;2 dsCYC2 Phatr1_41834 Phatr2_34956 AAACAGCAACATTCCCAGCAAG CGCACGCTTCAACCACATAC 157 
Phatr;dsCYC3 dsCYC3 Phatr1_45204 Phatr2_43046 CTGCGTGCCAATGGAAATGAG AATAAGGAGGGCTGCGATGG 127 
Phatr;dsCYC4 dsCYC4 Phatr1_45216 Phatr2_43034 CATCCAATTCCGCTCACAACTC TGGTGGGCAAACGCAGTC 196 
Phatr;dsCYC5 dsCYC5 Phatr1_45284 Phatr2_32087 GACGGCGGAATTATCTCTCTGG GTCGGAGTGAGCAGTGGTC 117 
Phatr;dsCYC6 dsCYC6 Phatr1_50692 Phatr2_49373 CCGTCCCGTATCGTGAGTTC CAAAGTGTCCGTGGCTGAG 144 
Phatr;dsCYC7 dsCYC7 Phatr1_50931 Phatr2_49894 ATGAGTTACTTGGATCGCTACC TCTTGACGGCTGTGTATAGGC 109 
Phatr;dsCYC8 dsCYC8 Phatr1_50961 Phatr2_40753 ACACGCTTTTACTGCCTTTGC TGTCTGTAACGGTTTCGGATTG 121 
Phatr;dsCYC9 dsCYC9 Phatr1_51633 Phatr2_42423 CGGCTTCGTGGCACATTTTG AGCGGGAGCAAAGCAACG 198 
Phatr;dsCYC10 dsCYC10 Phatr1_51766 Phatr2_50251 TGGAGGTGGATCAACTGGTTC ACGATGTGGTCTTCTTGTTCC 127 
Phatr;dsCYC11 dsCYC11 Phatr1_51790 Phatr2_41189 CCTTTCCTCCTGGTCCTGTTC AAGTGGGTGTCGTTGGTGTG 94 
Phatr;CYC-like CYC-like Phatr1_44498 Phatr2_43757 CTCTGGGTCCGTCTTGGC AAAGATGATGTGCTTACTGTTGTC 105 

       CDK Interactors and Regulatory proteins 
Phatr;MYT1 MYT1 Phatr1_46213 Phatr2_44716 ACCGCCGATAGTGACGAAAC TCTAAAGTGGACGGATGGTAAGG 101 
Phatr;CKS1 CKS1 Phatr1_10930 / GCGGATGGCACCACTATG GTCCACCTCACCCGTTTG 95 

              

Additional Table 2.1. Overview of the annotated cell cycle genes in P. tricornutum. 
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Additional figure 2.1: Cell cycle progression in nocodazole-treated versus untreated cells. a. Flow histograms 

plotting DNA content against cell number (left) and histograms indicating the ploidy distribution (2C versus 4C) 

(right) during a 12-hour time course of synchronized cells in the absence of nocodazole. At the later time points 

(t=10-12) the level of synchrony decreased, indicated by the ploidy level equilibrium reached at these time points, 

probably resulting from cells entering the next cell cycle round, while other cells still have to pass through M phase. 

b. Flow histograms plotting DNA content against cell number (left) and histograms indicating the ploidy 

distribution (2C versus 4C) (right) during a 12-hour time course of synchronized cells in the presence of 

nocodazole. At the later time points, an increasing enrichment of 4C cells can be observed, because of a blockage of 

the cells at metaphase. Asterisk marks the apparently lower proportion of 2C cells after a 20-hour dark treatment in 

the control series than in the nocodazole series, resulting from an acquisition artefact during flow cytometry, 

indicated by the increased peak broadness in the respective flow histogram. 
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Additional figure 2.2: Growth curves of P. tricornutum. Growth curves of P. tricornutum cells under standard 

conditions (18°C, LD 12:12; 50-100 μmol photons m-2 s-1). Error bars represent standard deviations. 

 

Additional figure 2.3: Phylogenetic tree of WEE1/MYT1/MIK1 family. Neighbor-joining tree (PHYLIP, 1000 

replicates) of WEE1/MYT1/MIK1 family. The P. tricornutum sequence is shown in bold. Abbreviations: Arath, 

Arabidopsis thaliana; Drome, Drosophila melanogaster; Homsa, Homo sapiens; Musmu, Mus musculus; Orysa, 

Oryza sativa; Phatr, Phaeodactylum tricornutum; Schpo, Schizosaccharomyces pombe; Thaps, Thalassiosira 

pseudonana. 
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Additional figure 2.4: Cell cycle versus circadian control. Exponentially growing cultures entrained by a LD 

12:12 photoperiod were subdivided in two cultures at the end of the light period 3 days after medium 

replenishment. Left and right, cells experiencing a normal (darkness; grey bar) and subjective (light; white bar) 

night, respectively. a. Histograms plotting DNA distributions (2C vs. 4C) of the cells during the 24-h time series. 

b. Expression profiles of early cell cycle genes. c. Expression profiles of late cell cycle genes. Error bars 

represent standard errors of the mean of two biological replicates. 
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Additional figure 2.5:  Cell cycle versus circadian control: Flow histograms. Flow histograms (DNA content 

plotted against cell number) of the different sampling points depicted in Additional file 4. 
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Additional figure 2.6: Normalization gene evaluation. a. Real-time qPCR cycle threshold (Ct) values of candidate 

housekeeping genes during a 12-hour (sampling every hour) synchronization time series. b. Variation of Ct values 

of the candidate housekeeping genes during a 12-hour (sampling every hour) synchronization time series. Error 

bars represent standard deviations. 
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ABSTRACT 

 

  Light is a key environmental cue for growth in diatoms. However, little is known about the 

cellular signaling cascade connecting the light perception mechanisms and activation of the 

cell cycle process. Here, we show that within 15 minutes after light exposure, diatom-

specific cyclin 2 (dsCYC2) displays a transcriptional peak, which is followed instantly by its 

protein synthesis. Moreover, we show that after illumination a transcriptional repressor is 

produced through de novo protein synthesis that is responsible for rapid decrease in dsCYC2 

transcript levels via inhibition of promoter activity. Introduction of a hairpin construct 

targeting dsCYC2 induces a decrease in cell division rate, indicating that dsCYC2 is 

important for cell cycle progression after illumination. We show that this cell cycle delay is 

due to a prolongation of the G1-to-S-phase transition. To our knowledge, this is the first 

report of a light-regulated cyclin gene that is involved in cell cycle regulation.       
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INTRODUCTION 

 

Diatoms form an important group of unicellular algae in the contemporary oceans, 

being responsible for about twenty percent of the primary production on Earth (Van den 

Hoek, 1995; Field et al., 1998). Although they are widespread throughout the oceans and 

show extreme flexibility towards continuously varying environmental conditions, little is 

known about how they perceive and respond or adapt to these external variations, and in 

particular to changing light conditions. Light is an essential factor for every photosynthetic 

organism as a source of energy, but also as a trigger that induces several physiological and 

biochemical responses, and controls different cellular processes, including cell division (Chen 

et al., 2004). When nutrients are not limiting, diatom growth and distribution is strongly 

dependent on the prevailing light conditions (Smetacek, 1999). Because diatoms can grow 

and photosynthesize over a wide range of different light intensities and wavelengths, they are 

supposed to possess specific light sensing and acclimation strategies. This hypothesis has 

been supported by the recent discovery of specific photoprotective and acclimation responses 

of diatoms to high light conditions (Nymark et al., 2009; Zhu and Green, 2010). Absence of 

light, on the other hand, causes diatom cells to cease their reproduction. Interestingly, the two 

major diatom groups, the centrics and the pennates (Kooistra et al., 2003; Sims et al., 2006), 

appear to have developed different light-sensitive phases during their mitotic cell cycle, 

probably related to the different environments that they inhabit. Centric diatoms display a 

planktonic lifestyle and are well adapted to growth in deeply mixed water, while pennates 

commonly inhabit heterogeneous benthic environments. Flow cytometric analysis of dark-

adapted cells showed that centric species harbor two light-sensitive stages during their cell 

cycle, namely during the G1 and G2-M phases (Vaulot et al., 1986; Brzezinski et al., 1990). 

Pennate diatoms have been reported to show only a G1-arrest, as reported for Phaeodactylum 

tricornutum (Brzezinski et al., 1990; Huysman et al., 2010) and Seminavis robusta (Gillard et 

al., 2008), or both a G1-and a G2-M arrest, like reported for Cylindrotheca fusiformis 

(Brzezinski et al., 1990). It has been suggested that the light-dependent segment in G1 would 

result from the energy requirement to complete the cell cycle, whereas the light-dependent 

segment at the G2-M phases would relate to the energetic requirements for the synthesis of 

the silicon uptake mechanism, silica transport and deposition during valve formation at that 

stage (Vaulot et al., 1986). However, the latter cannot explain the absence of a dark-sensitive 



Chapter 3 
   

 

78 
 

G2-M segment in some pennate diatoms that require silicon, like S. robusta (Gillard et al., 

2008). Recently, Gillard et al. suggested that the G2-M phase fraction detected in previous 

flow cytometric analyses might actually represent post-cytokinetic doublet cells, and therefore 

only the process of cell separation, and not cytokinesis itself or its related silicon requirement, 

would be hampered by the absence of light (Gillard et al., 2008). Interestingly, diatom cells 

that are released from a dark arrest at G1 are able to resume cycling immediately at a normal 

rate, while G2-M arrested cells (or possibly post-cytokinetic cells) show a retardation of cell 

cycle progression (Vaulot et al., 1986). For those species with only a light-dependent segment 

at the G1-phase, the immediate release of dark-arrested cells has been proven a useful 

characteristic to synchronize and study the cell division process (Gillard et al., 2008; 

Huysman et al., 2010).  

Despite the key role of light for growth in diatoms and other photoautotrophic 

organisms, little is known about the cellular signaling mechanisms that connect the perception 

of the light signal through photoreceptors at the surface of the cell membrane with the 

activation of the main eukaryotic cell cycle machinery in the nucleus, including regulators 

such as cyclin-dependent kinases (CDKs) and their interaction partners, the cyclins (Morgan, 

1997; Inzé and De Veylder, 2006). In a recent study, we revealed a major expansion of the 

cyclin gene family in the pennate diatom P. tricornutum and discovered a new class of 

diatom-specific cyclins (dsCYCs) involved in environmental signaling (Huysman et al., 

2010). One of the strongest and earliest expressed genes during the switch from dark to light 

in synchronized cultures was dsCYC2, hinting at a role for this cyclin in cell cycle activation 

after dark arrest. To address the latter hypothesis we attempted here to uncover the light-

dependent regulation of dsCYC2 transcription and translation and the possible role of dsCYC2 

at  the light-dependent checkpoint of the G1-phase.  

The first goal of this study was to document the kinetics of dsCYC2 transcript and 

protein abundance upon illumination of dark-arrested P. tricornutum cells. We approached 

this goal by performing gene and protein expression profiling during both a long-term and a 

finely-resolved short-term time series. Our second goal was to understand the mechanisms 

that cause the observed changes in transcript levels upon illumination. To address this, we 

followed the activity of the dsCYC2 promoter using a reporter line and analyzed the effects of 

inhibitors interfering with protein translation and redox signaling on dsCYC2 transcription. 

Finally, we tried to unravel the precise function of dsCYC2 during the cell cycle by the 

identification of interaction partners and by studying the effect of both overexpression and 
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silencing of dsCYC2 on cell cycle progression. The results provide a detailed insight into the 

light-dependent regulation of dsCYC2 transcription and translation and provide evidence that 

dsCYC2 functions as a positive regulator of the light-dependent checkpoint at the G1-phase. 

 

 

RESULTS 
 

Light-dependent transcriptional and translational control of dsCYC2  

To be able to monitor simultaneously transcript and protein levels of dsCYC2, we 

generated a transgenic marker line that expressed the full length dsCYC2 sequence C-

terminally fused to a hemagglutinin (HA) tag under control of the dsCYC2 promoter (Figure 

3.1a), which we will refer to as the HA marker line. The HA tag is a short epitope tag that 

does not appear to interfere with the activity and distribution of the protein fused to it and it 

facilitates the detection, isolation and purification of the protein.  

Initially we sampled during a total of 12 hours to follow the kinetics of dsCYC2 

transcript and protein levels upon light exposure. Therefore, cells were grown exponentially 

in a 12h light/12h dark (12L/12D) light regime and then transferred to a prolonged dark 

period of 24 hours which, due to a light-dependent segment at the G1 phase (Brzezinski et al., 

1990; Huysman et al., 2010), enriches the cultures for G1-phase cells. When returned to light, 

cells progress synchronously through the cell cycle (Huysman et al., 2010). After 

illumination, samples were taken at 0, 0.5, 1, 3, 6 and 12 hours for real-time quantitative PCR 

(qPCR) and western blot analysis. Starting at relatively high levels, dsCYC2 transcript 

increased during the first 30 minutes, to decrease to low basal levels during the later 

timepoints in both wild-type (WT) and  HA marker cells (Figure 3.1b and 3.1c). The latter 

indicates that the dsCYC2-HA fusion reports properly the transcriptional kinetics of the 

endogenous dsCYC2 gene (compare Figure 3.1b and 3.1c). Protein levels of HA-tagged 

dsCYC2 were undetectable at the time of illumination, but reached high levels at 30 to 60 

minutes, where after they decreased gradually to become undetectable at 12 hours after light 

exposure (Figure 3.1e).  

To determine how fast dsCYC2 transcript levels are elevated after light addition, we 

performed a real-time qPCR analysis on samples during a finely resolved short time course  

(0,  5,  10,  15,  30,  45  and  60  minutes  after light  exposure of  24-hour dark-adapted cells).
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Figure 3.1: Light-dependent transcription and translation of dsCYC2. a. Schematic representation of the HA 

marker construct. b. Transcript levels during a 12-hour time course after illumination of 24-hour dark-adapted 

WT cells. c. Transcript levels during a 12-hour time course after illumination of 24-hour dark-adapted HA 

marker cells. In b and c, values were normalized against the gene expression levels at 6hr after illumination 

(A.I.). Error bars represent standard errors. d. Transcript levels over a short time course (1hour) after 

illumination of 24-hour dark-adapted HA marker cells. Values were normalized against the gene expression 

levels at 0 min A.I. Error bars represent standard errors. Note that transcript levels at 0 hr A.I. in (c) seem 

relatively higher compared to those at 0 hr A.I. in (d), but the former is in fact an overestimate resulting from the 

slower sampling method used during the long-term experiment (see Materials and Methods section) e. dsCYC2-

HA protein levels during the 12-hour time course. f. dsCYC2-HA protein levels during the short time course. -, 

Negative control (WT 4h light); +, Positive control (HA 4h light). LC: Loading control by Coomassie blue 

staining.  
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Interestingly, an initial increase in transcript levels could be observed after only five minutes 

of illumination, reaching a peak at 15 minutes, after which dsCYC2 mRNA levels decreased 

rapidly (Figure 3.1d). Protein levels could be detected starting from 10 minutes after 

illumination and kept increasing until 60 minutes (Figure 3.1f), although transcript levels 

were markedly lowered at that timepoint. To summarize, these data show that upon 

illumination, dsCYC2 reaches a transcriptional peak within 15 minutes, followed by a 

translational peak around 30 to 60 minutes. 

 

Promoter responsiveness to light 

The fact that the dsCYC2 transcript levels are markedly affected by light might be due 

to either a direct effect of light on dsCYC2 transcript stability or a yet undefined light-

dependent signaling pathway targeting the dsCYC2 promoter sequence. In order to distinguish 

between both possibilities, we analyzed the long- and short-time response of a reporter gene 

placed under control of the dsCYC2 promoter during the light period after dark incubation. To 

construct this reporter fusion, we combined the 1018 bp region upstream of the translational 

start of dsCYC2 and the coding region of enhanced yellow fluorescent protein (eYFP) (Figure 

3.2a). In general, the eYFP transcript was detectable both in the dark and light samples, 

although shortly after light exposure, higher transcript levels were observed, that dropped 

again to basal levels after three hours of light exposure (Figure 3.2b). The kinetics of the 

eYFP transcript downregulation showed a slight delay compared to the kinetics of the 

endogenous dsCYC2 transcript, most apparent during the short-term experiment (Figure 3.2c). 

This is probably because of higher stability of eYFP versus dsCYC2 transcripts. Nevertheless, 

the overall parallel response of the dsCYC2 transcript and eYFP reporter over time suggest 

that changes in dsCYC2 mRNA are primarily the consequence of changes in promoter activity 

rather than mRNA stability. Protein levels were constitutively high during both the light and 

dark period (Figure 3.2d and 3.2e) and eYFP signals could be detected in cells that were 

incubated in darkness for at least one week (data not shown). The latter is probably due to 

high eYFP protein stability in the cells. 

 

Transcript regulation of dsCYC2 is dependent of protein synthesis upon light exposure 

To determine if dsCYC2 transcript regulation during the light period is dependent on 

protein translation, we treated WT cells just before light exposure with cycloheximide (CHX), 

an inhibitor of eukaryotic translation. In contrast to the non-treated control cultures that  
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Figure 3.2: Promoter responsiveness to light. a. Schematic representation of the prom-YFP reporter construct. b. 

Transcript levels during a 12-hour time course after illumination of 24-hour dark-adapted cells. Values were 

normalized against the gene expression levels at 6hr after illumination (A.I.). Error bars represent standard 

errors. c. Transcript levels over a short time course (1hour) after illumination of 24-hour dark-adapted cells. 

Values were normalized against the gene expression levels at 0 min A.I. Error bars represent standard errors of 

the mean of two independent experiments. Note that transcript levels at 0 hr A.I. in (b) seem relatively higher 

compared to those at 0 hr A.I. in (c), but the former is in fact an overestimate resulting from the slower sampling 

method used during the long-term experiment (see Materials and Methods section) d. Protein levels during the 

12-hour time course. e. Protein levels during the short time course. -, Negative control (WT 1h light); LC, 

Loading control by Coomassie blue staining.  

 

showed, after an initial transcriptional peak, a decrease of transcript levels during the first 

hours after illumination, dsCYC2 transcript accumulated to high levels in the CHX-treated 

cultures upon light exposure (Figure 3.3a). These results suggest that upon illumination a 

repressor is produced to ensure that dsCYC2 is expressed during a narrow time window. Such 

a repressor could act through recognition and binding of a motif in the promoter region of 

dsCYC2 or, alternatively, by acting on the stability of the transcript itself. To distinguish 



Regulation of the light-dependent G1-checkpoint by dsCYC2 
   

 

83 
 

between both possibilities we performed the CHX experiment using the prom-YFP reporter 

line and found that both the dsCYC2 and eYFP transcript levels were higher in the CHX-

treated cells compared to the control cells (Figure 3.3b and 3.3c, respectively), as in the 

previous experiments with WT cells (Figure 3.3a). These data indicate that the promoter 

activity of dsCYC2 is affected when protein synthesis is blocked upon light exposure. In other 

words, upon illumination a repressor is produced that specifically targets the promoter activity 

of dsCYC2.  

 

 
 

Figure 3.3: Protein synthesis is required for dsCYC2 transcript downregulation during the light. Cultures were 

synchronized by 24 hour dark treatment (BI, before illumination)) and then exposed for 0.5 (30minL), 1 (1hL) 

and 3 hours (3hL) to light in the absence (blue) or the presence (red) of 2µg/ml cycloheximide (CHX). a. 

Relative expression levels of dsCYC2 in WT cells. b. Relative expression levels of dsCYC2 in prom-YFP cells. 

c. Relative expression levels of eYFP in prom-YFP cells. Values were normalized against the gene expression 

levels BI. Error bars represent standard errors of the mean of two independent experiments. 

 

To determine whether this repressor remains active during the transfer from light to 

dark, dsCYC2 transcript levels were monitored during normal (12L/12D) and constant light 

(12L/12L) conditions. To this end, WT cultures were grown exponentially in a 12L/12D 
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photoperiod and on the third day after medium refreshment, cultures were equally divided at 

the beginning of the normal dark period. One subculture was placed in darkness, while the 

other remained illuminated. When the dark period was replaced by a light period, cells show 

continuous low levels of dsCYC2 transcript, in contrast to the cultures that were put in 

darkness, which showed slightly increasing levels of dsCYC2 transcript (Figure 3.4). The 

latter is most likely due to an increased activity of the dsCYC2 promoter during darkness, 

probably because of the absence of the repressor. By absence of the repressor in the dark, 

cells could be rendered sensitive for a new light signal by allowing the massive transcription 

and subsequent translation of dsCYC2 shortly after light exposure. 
 

 
Figure 3.4: dsCYC2 transcript levels are higher during darkness. Exponentially growing cultures entrained by a 

12L/12D (lights on at 6:00/ lights off at 18:00) photoperiod were subdivided in two cultures at the end of the 

light period (at 18:00) three days after medium replenishment. Blue: Cells experiencing a normal dark period 

(lights off at 18:00). Red: Dark period replaced by light period (lights stay on at 18:00). Values were normalized 

against the gene expression levels at 8:00. Error bars represent standard errors of the mean of two biological 

replicates. 

 

Changes in redox conditions affect dsCYC2 transcript and protein levels 

As illustrated, dsCYC2 transcript levels remain low during prolonged light periods, but 

slightly increase when cells are transferred to darkness. To investigate whether light-driven 

electron transport plays a role in the light-dependent regulation of dsCYC2, we tested the 

effect of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), during the light period (Figure 

3.5). DCMU is a specific inhibitor of non-cyclic photosynthetic electron transport that blocks 

the plastoquinone (PQ) site of photosystem II and, as such, mimics dark conditions. In the 
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presence of DCMU, less reduction of dsCYC2 transcipt levels was observed during the light 

period compared to the control cultures (Figure 3.5a). dsCYC2 transcipt levels seem to be 

higher in DCMU-treated WT cells compared to HA marker cells, but this is probably due to 

experimental variation as both experiments were performed independently at a different time. 

Despite higher transcript levels, less dsCYC2 protein was produced in the DCMU-treated 

cells, especially apparent at 1 and 6 hour after illumination (Figure 3.5b).  

Furthermore, preliminary results showed that cells treated during darkness with 1,4-

dithiothreitol (DTT), a reducing agent, show a delayed accumulation of the transcript 

compared to non-treated cells (data not shown). Together, these data indicate that the redox 

state of the chloroplast can control the expression of the nuclear-encoded dsCYC2 gene, 

probably through the regulation of the dsCYC2 repressor protein. 
 

 
 

Figure 3.5. Effect of DCMU on dsCYC2 transcript and protein levels. a. Transcript analysis of dsCYC2 in WT 

and HA markerlines at 1h, 6h and 12h after illumination. Error bars represent standard errors. b. Western blot 

analysis of HA marker cells at 1h, 6h and 12h after illumination. B, Blanc control; EtOH, Solvent (ethanol) 

control; DCMU, Treatment with 20µM DCMU; LC, Loading control by Coomassie blue staining.  
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Interaction partners of dsCYC2 

To identify candidate interactors of dsCYC2, we conducted a yeast-two-hybrid (Y2H) 

library screen. Y2H screening is a commonly used molecular technique to discover protein-

protein interactions based on the reconstitution of the DNA binding and the activation domain 

of a transcription factor and hence the activation of a reporter gene when two proteins 

physically interact in the yeast system. (For more information see Fields and Song, 1989; 

Gietz et al., 1997 and http://en.wikipedia.org/wiki/Two-hybrid_screening).  

A P. tricornutum Y2H prey library was constructed based on cDNA originating from 

mRNA pooled from different conditions. A screen using the full-length dsCYC2 sequence as 

bait yielded no candidate interactors, probably because of low protein stability in the yeast. 

Therefore, a Y2H library screen using only the cyclin domain of dsCYC2 as bait was 

performed. This screen yielded 20 candidate interactors, for which binding to dsCYC2 was 

confirmed through pairwise Y2H interaction assays. Nine proteins were identified to be strong 

(growth in the presence of ≥3mM 3AT) interactors in the yeast system, including transcription 

factors (two heat shock factors (HSFs), a MYB-related protein and a bZIP transcription 

factor), a phox-like protein, a helicase, a heavy metal binding/metal ion transport protein, an 

ariadne-like protein, and one unknown protein (Table 3.1).  

Unlike expected, no CDK partner was found using the Y2H library screen. However, 

it is possible that such an interaction would be missed during the Y2H screen, because the 

CDK partner might be underrepresented in the cDNA library if it would be lower expressed 

compared to the candidate interactors identified during the screen. On the other hand, 

dsCYC2 might be working independently of CDK binding. To test if dsCYC2 can bind to the 

most classical and conserved type of CDKs, we performed a Y2H interaction assay in which 

P. tricornutum CDKA1, containing the PSTAIRE motif (Huysman et al., 2010), was used as 

bait and dsCYC2 as prey. Growth on His-lacking medium and a positive β-galactosidase test 

could be found for the combination of dsCYC2 with CDKA1, but not for any of the controls 

(Figure 3.6), indicating that both proteins might form a functional complex. This interaction 

of dsCYC2 with CDKA1 could be functionally relevant as CDKA1 has previously been 

shown to be transcribed predominantly at the G1-S transition in synchronized cells (Huysman 

et al., 2010), coinciding with the peak of dsCYC2 protein levels (Figure 3.1e).    
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Table 3.1: Overview of the candidate dsCYC2 interactors identified by Y2H library 
screening. 
 

Description protein ID #clones interaction with 
dsCYC2FL 

HSF (1) 42824 17 strong (10mM 3AT) 
MYB 37454 5 strong (10mM 3AT) 
phox-like 45401 4 strong (10mM 3AT) 
Helicase 43867 2 strong (3mM 3AT) 
heavy metal binding/metal ion 
transport 43709 1 strong (10mM 3AT) 

HSF (2) 49567 1 strong (10mM 3AT) 
chr10 (SAIP, similar to ankyrin repeat 
and IBR-domain-containing protein / 
ariadne) 

EST 1 strong (3mM 3AT) 

bZIP TF 47686 1 strong (10mM 3AT) 

Unknown bd1360 
(unmapped) 1 strong (3mM 3AT) 

HSP20A 35158 127 weak 
HSP20 54656 20 weak 
hypothetical protein 48027 11 weak 
SWI/SNF 45920 2 weak 
exonuclease 19092 1 weak 
AP-1 13511 1 weak 
chr23 (annexin-like?) EST 1 weak 
chr23 (annexin-like?) EST 1 weak 
alpha-tubulin 54534 1 weak 
flavonol synthase? 50451 1 weak 
no description 1381 1 weak 

 

 

 

 
Figure 3.6: Interaction of dsCYC2 with CDKA1. Yeast PJ694-alpha cells were co-transformed with bait and 

prey plasmid as indicated. Co-transformation was analyzed on medium lacking leucine and tryptophan (-L-T). 

Co-transformants were tested for their ability to activate the histidine marker gene by assessing yeast growth on 

medium lacking leucin, tryptophan and histidin (-L-T-H) and for their ability to activate the LacZ reporter gene 

(X-Gal). Constructs containing GUS were used as negative controls. For each combination three independent 

colonies were screened, of which one is shown. 
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Overexpression of dsCYC2 shortens G1 phase, but lengthens G2-M  

To investigate the role of dsCYC2 during the transition from dark to light, we 

generated overexpression lines by introducing a construct containing the full-length dsCYC2 

open reading frame fused N-terminally to eYFP under control of the fucoxanthin chlorophyll 

binding protein B (fcpB) promoter (Figure 3.7a). Overexpression of the fusion in different 

transgenic lines was evaluated by real-time qPCR, and two overexpressing lines (OE3 and 

OE14) were retained for further analysis (Figure 3.7b). We performed a growth analysis by 

absorbance measurements during eight consecutive days to examine whether dsCYC2 

overexpression could have an effect on cell cycle progression. To this end, cells were grown 

under continuous light conditions to ensure that overexpression of dsCYC2 driven by the 

light-regulated fcpB promoter would be constant. The growth curve shows that both 

overexpression lines display no major differences in growth  rate compared to WT cells, 

indicating that  overexpression of dsCYC2 would  have no negative or positive effect on  
 

 

 

 

 

Figure 3.7: Effect of dsCYC2 

overexpression on cell cycle 

progression. a. Schematic 

representation of the dsCYC2 

overexpression construct. b. 

Real-time qPCR analysis of 

dsCYC2 transcript levels in WT, 

OE3 and OE14 lines. Expression 

values were normalized against 

the expression levels of WT 

cells. c. Growth curves of WT, 

OE3 and OE14 lines. d. Real-

time qPCR analysis of different 

cell cycle marker genes in WT, 

OE3 and OE14 lines. * p<0.1; ** 

p<0.05 (One-tailed student’s T-

test). Error bars represent 

standard errors of the mean of 

three independent experiments. 
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overall cell cycle length (Figure 3.7c). However, determination of expression levels of 

different cell cycle marker genes (Huysman et al., 2010) during asynchronous growth, 

revealed slightly higher levels of the G2-M phase marker (CYCB1) and lower levels of both 

early G1 marker genes (CYCP6 and dsCYC7) in the overexpression lines compared to the WT 

cells (Figure 3.7d). G1-S phase markers (CDKA1 and CDKD1) were not differentially 

expressed in overexpression versus WT cells (Figure 3.7d). These data suggest that dsCYC2 

overexpressing cells proceed more rapidly through the G1 phase, and compensate this by 

spending a longer time in the G2-M phases. In agreement with this hypothesis, flow 

cytometric analysis of exponentially growing asynchronous cultures showed that dsCYC2 

overexpressing cells contain a small subpopulation of cells with a 4C DNA content (Figure 

3.8a). Moreover, estimation of the cell cycle phase distribution in the histograms showed that 

overexpression cells contained a higher fraction of G2/M cells, but a reduced number of cells 

in G1 (Figure 3.8b). These data point to a role for dsCYC2 as a positive regulator of G1 

progression. 

 
 

Figure 3.8: a. DNA distribution in WT cells versus OE lines (n=5000). Grey line indicates the raw histogram. 

Orange line shows the fitted curve obtained by applying the MultiCycle software for cell cycle analysis. G1, S 

and G2-M phase fittings are indicated in blue, pink and green, respectively. b. Cell cycle phase distribution 

estimates of WT and overexpression cells based on flow cytograms depcited in (a). 95 % confidence intervals 

(C.I.) for the S- and G2-M phase estimates are shown. Green and red numbers indicate high and low reliability, 

respectively, of the estimates by the intra- or intermodal error analyses (for more information see Materials and 

Methods section).  
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Silencing of dsCYC2 slows down cell cycle progression by prolongation of the G1-phase 

To study the effect of silencing of dsCYC2 in P. tricornutum, we generated knock-

down lines by introducing a hairpin construct under control of the histone H4 promoter (De 

Riso et al., 2009) targeting the N-terminal part of dsCYC2 (Figure 3.9a). Silencing was 

evaluated by comparing dsCYC2 transcript levels at 15 minutes after illumination in WT cells 

and six independent mutant lines. Two lines, dscyc2-2.4 and dscyc2-2.8, showed the same 

levels of dsCYC2 transcript as the WT cells, while four other lines (dscyc2-2.6, dscyc2-2.9, 

dscyc2-3.4 and dscyc2-3.5) showed 40 to 75% reduction of the transcript compared to WT 

cells (Figure 3.9b).  

To test whether dsCYC2 silencing had an effect on cell cycle progression, growth was 

monitored during 11 consecutive days by absorbance measurements on WT and mutant cells 

grown in a 12-hour light/ 12-hour dark (12L/12D) light regime. No effect could be observed 

for the non-silenced internal control lines (dscyc2-2.4 and dscyc2-2.8) (Figure 3.9c). In 

contrast, all knock-down lines (dscyc2-2.6, dscyc2-2.9, dscyc2-3.4 and dscyc2-3.5) showed a 

significant increase of their generation time compared to WT cells (Figure 3.9c), indicating 

that dsCYC2 is crucial for proper cell cycle progression. In addition, we examined the effect 

of a 24-hour dark treatment on the strongest silenced line (dscyc2-2.9) and its cell cycle  
 

 
Figure 3.9: Effect of silencing of dsCYC2 on cell cycle progression. a. Schematic representation of the dsCYC2 

inverted repeat constructs used for silencing analysis. In the dscyc2-2 construct, the large fragment is positioned 

first and followed by the small fragment. In the dscyc2-3 construct, the small fragment is followed by the large 

fragment (see arrows) b. Real-time qPCR analysis of dsCYC2 transcript levels in WT and mutant lines. Cells 

were dark-adapted for 24 hours and transcript levels were measured 15 minutes after light exposure. Transcript 

levels of WT cells were set at 100% c. Generation times of WT and mutant lines. Error bars represent standard 

deviations of the mean of three independent experiments. * p<0.005; ** p<0.001 (two-tailed student’s T-test).  
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progression after transfer to light by means of flow cytometry (Figure 3.10). In contrast to the 

WT cells, no predominant G1-arrest could be observed for the mutant cells after 24 hours of 

darkness. Instead, a broad shoulder was visible next to the 2C peak in the DNA histogram, 

indicative for S-phase cells (Figure 3.10a). Cell cycle analysis of the flow cytograms 

confirmed the S-phase identity of almost 50% of the dark-arrested silenced cells (Figure 

3.10b). After 12 hours of illumination, WT and mutant cells showed both a 2C and 4C peak, 

but the 2C peak of WT cells was higher compared to mutant cells, probably because more WT 

cells already completed their first division cycle and entered the next one (Figure 3.10a). Cell 

cycle analysis of the flow cytograms showed that most of the silenced cells were situated in 

the S and G2-M phases, while the majority of the WT cells had a G2-M or G1-phase identity 

after 12 hour of light exposure (Figure 3.10b). 

 

 

 

 
 

Figure 3.10: DNA distribution in WT versus dscyc2-2.9 cells (n=10000). Grey line indicates the raw histogram. 

Orange line shows the fitted curve obtained by applying the MultiCycle software for cell cycle analysis. G1, S 

and G2-M phase fittings are indicated in blue, pink and green, respectively. b. Cell cycle phase distribution 

estimates of WT and dscyc2-2.9  cells based on flow cytograms depcited in (a). 95 % confidence intervals (C.I.) 

for the S- and G2-M phase estimates are shown. Green and red numbers indicate high and low reliability, 

respectively, of the estimates by the intra- or intermodal error analyses (for more information see Materials and 

Methods section). 24hD: cells incubated in darkness for 24 hours; 12hL: cells incubated in darkness for 24 hours 

and then illuminated for 12 hours. 
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Transcriptional analysis of several cell cycle marker genes during light-dependent cell 

cycle re-entry of 24-hour dark-arrested WT and dscyc2-2.9 cells provided more evidence that 

silencing of dsCYC2 results in the attenuation of the G1-S phase transition (Figure 3.11). 

Transcript levels of the G1-phase marker gene dsCYC7 were reduced in mutant versus WT 

cells (Figure 3.11), in particular at the moment that dsCYC2 shows normally its transcriptional 

peak, indicating that dsCYC7 might be a downstream target of dsCYC2. Whereas in WT cells, 

the late G1 marker gene CYCH1 shows an initial downregulation of its transcript after light 

exposure (Figure 3.11), to have a second and maximal expression peak at 2 hours after 

illumination in synchronized cells (Huysman et al., 2010), CYCH1 transcript levels in mutant 

cells are only downregulated after 30 to 45 minutes of illumination, and a transcriptional peak 

is apparent only at 6h after reillumination. Moreover, the G1-S phase marker CDKD1 was 

overall higher expressed in mutant versus WT cells, indicative for a higher proportion of cells 

at the G1-S transition in the mutant line. Surprisingly, CYCB1 levels were also generally 

higher in mutant cells, although the flow cytometry data of dark-arrested cells did not show 

higher accumulation of 4C cells compared to WT cells (Figure 3.10). On the other hand, 

transcript levels of hCDK1, another M-phase marker showing the same cell cycle-dependent 

expression pattern as CYCB1 (Huysman et al., 2010), were not markedly affected by dsCYC2 

silencing (Figure 3.11). Unscheduled CYCB1 expression has been shown to be induced in G1-

phase cancer cell lines and tissues (Shen et al., 2004), and it has been reported that cyclin B1 

possesses cryptic S-phase-promoting abilities (Moore et al., 2003). Moreover, in fission yeast 

cyclin B can regulate both the S- and M-phase progression in the absence of G1-cyclins 

(Fisher and Nurse, 1996). Together, these data point to an activating role for dsCYC2 in cell 

cycle progression, probably through regulating cell cycle initiation after dark arrest. 

 

 

DISCUSSION 
 

In this study we showed that the expression of dsCYC2 is regulated strictly by light. 

Upon illumination, transcript levels increase within 10 to 15 minutes, where after protein 

synthesis starts and transcript levels decline to stay low during the remaining light period. We 

have shown that the inhibition of protein synthesis at the dark-to-light transition delays        

the decrease  of dsCYC2  transcript levels in the light and results in the accumulation of higher 
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Figure 3.11: Real-time qPCR analysis of different cell cycle marker genes in WT and dscyc2-2.9 cells. Cells 

were exponentially grown in a 12-hour light/12-hour dark photoperiod and dark-incubated for 24 hour at the 

third day after medium refreshment. Samples were taken at different timepoints after illumination (from 0 

minutes (0minL) to 6 hour (6hL) after illumination). dsCYC7 and CYCH1 are G1-phase marker genes, CDKD1 

is an S-phase marker gene and CYCB1 and hCDK1 are G2-M phase marker genes (See chapter 2). Error bars 

represent standard errors. 

 
transcript levels after illumination, suggesting that upon light a repressor of dsCYC2 

transcription is produced. Moreover, the CHX experiment on the prom-YFP reporter line 

indicated that this repressor would act on the promoter of dsCYC2. Examination of the 
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promoter region of dsCYC2 for cis-regulatory elements using the signal scan database PLACE 

(Higo et al., 1999) (data not shown) revealed the presence of several light-regulated elements 

(LREs), including GATA- or I-boxes, GT-1 consensus sites (Terzaghi and Cashmore, 1995; 

Arguello-Astorga and Herrera-Estrella, 1998) and SORLIP sequences (Hudson and Quail, 

2003). Next to these specific light-regulated elements, also several recognition sites for MYB 

transcription factors were detected that have been reported to be involved in transcriptional 

regulation of light-harvesting proteins in higher plants (Wang et al., 1997).  

The mechanism(s) that controls the transduction of the light signal to the nucleus of 

the cell, the compartment where dsCYC2 transcription should be initiated, still remains to be 

elucidated. However our results suggest that a plausible mechanism to relay the light signal 

might occur through the change of redox state of the chloroplast. Cultures treated during the 

light period with DCMU, an oxidative agent specifically targeting the PQ pool of 

photosystem II, show relatively higher levels of dsCYC2 transcript, but lower protein levels 

during the light period compared to non-treated cells. Cells treated during darkness with DTT, 

a reducing agent, show a delayed accumulation of the transcript against non-treated cells. 

Similar redox control of transcript abundance has been reported for nuclear-encoded 

chloroplast genes in the green alga Chlamydomonas reinhardtii (Salvador and Klein, 1999) 

and for the cab gene regulation of Dunaliella tertiolecta (Escoubas et al., 1995). 

 

Based on the results presented here, we propose a schematic model for dsCYC2 

regulation in P. tricornutum (Figure 3.12). Light triggers the activation of electron transport in 

the chloroplast compartment of the cell and this signal is transduced to the nucleus through an 

unknown signaling mechanism. It is possible that this signal-transduction occurs through a 

phosphorylation cascade, as already suggested for cab gene expression in D. tertiolecta 

(Escoubas et al., 1995), but to proof this in P. tricornutum, more experimental work will be 

required using specific phosphorylation inhibitors. This unknown signaling pathway results in 

the activation of a transcriptional activator (TA), which recognizes and activates a light-

responsive element (LRE) in the promoter region of dsCYC2. Shortly after activation, a 

transcriptional repressor (R) is produced that either recognizes and inhibits the LRE or 

interferes with the activity of the TA. This repressor could be an early transcription factor. 

The opposite response of transcript and protein levels during the first hour after illumination, 

and the relatively lower dsCYC2 protein, but higher transcript levels in DCMU-treated 

cultures, suggests that a negative autoregulatory feedback loop could be present, in which 
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dsCYC2 would act as its own transcriptional repressor or as an activator of a yet undefined 

repressor. The latter could possibly be one of the TFs identified in our interaction screen 

(Table 3.1). Such a feedback mechanism would ensure that dsCYC2 is only expressed at a 

defined time window. The limited timing of dsCYC2 expression is likely to be extremely 

important, as both overexpression and silencing of dsCYC2 interfere with normal cell cycle 

progression. Most probably it contributes to resetting the cells to become sensitive for a new 

dark period. 

 

Figure 3.12: Schematic model of the light-dependent regulation of dsCYC2 in P. tricornutum. For detailed 

description see text. Green and black lines indicate positive and negative regulation, respectively. LRE, light-

responsive element; PSI, photosystem I; PSII, photosystem II; PQ, plastoquinone, R, repressor protein; TA, 

transcriptional activator in non-active state; TA*, transcriptional activator in active state. 

 

The negative effect of dsCYC2 silencing on the culture growth rate clearly indicates 

that dsCYC2 is required for proper cell cycle progression after dark arrest. Our data suggest 

that lower dsCYC2 levels at light exposure result in a prolongation of the G1-to-S-phase 

transition, as shown by an altered DNA distribution pattern in dark-arrested dscyc2-2.9 cells, 

and by the delayed transcription of the late G1 marker CYCH1 and the higher transcript levels 

of the S-phase marker CDKD1 during illumination. In analogy with a putative role for 

dsCYC2 to induce the cell cycle after dark arrest, cell cycle re-entry upon exogenous 

stimulatory signals in yeast, animals and plants is mediated by specific G1 cyclins. In yeast, 
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appropriate growth and nutrient status of the cell triggers G1 progression through activation of 

first Cln3 and later Cln1 and Cln2 in association with Cdc28 to finally activate the G1/S 

transcription factor SBF/MBF and transcription of S-phase genes (Tyers et al., 1993; 

Reviewed in Mendenhall and Hodge, 1998). In animals and plants, D-type cyclins are 

stimulated by serum growth factors and hormones or sucrose, respectively. D-type cyclins 

associate with CDKs and phosphorylate the Rb protein, leading to the release and activation 

of E2F transcription factors and G1-S phase transition (Reviewed in Oakenfull et al., 2002). 

Overexpression or silencing of these G1 cyclins has been reported to induce various effects on 

G1 phase duration and overall cell cycle length, dependent on the type of cyclin and the type 

of cells (Quelle et al., 1993; Resnitzky et al., 1994; Sherr, 1995; Menges et al., 2006). Both 

Cln1-3 and D-type cyclins are characterized by PEST sequences that render the proteins 

unstable and confer rapid turnover (Rechsteiner and Rogers, 1996; Renaudin et al., 1996; 

Mendenhall and Hodge, 1998). Furthermore, plant and animal D-type cyclins also possess an 

LxCxE motif at their N-terminal part that is responsible for the interaction with Rb (Dowdy et 

al., 1993; Renaudin et al., 1996). However, none of these motifs could be recognized in the 

dsCYC2 sequence (data not shown), suggesting that dsCYC2 turnover is regulated by 

alternative mechanisms and that the protein probably does not directly interacts with the Rb 

protein. Alternatively, it is possible that dsCYC2 expression results in the transcription or 

activation of other G1 cyclins that regulate the Rb protein in P. tricornutum. Because diatom 

cell cycle progression depends not only on light, but also on other environmental factors, such 

as nutrient availability, it is to be expected that multiple cyclins are involved in G1 control, 

representing a complex integrative fine-tuning network of different signaling pathways.  

 

To our knowledge this is the first report of a cyclin gene involved in cell cycle 

progression whose transcription and translation is strictly controlled by light. The presence of 

such a critical molecule that coordinates the activation of the cell cycle machinery upon 

changing light conditions is of major importance for diatoms living in highly variable 

environments and allows them to pace their cell division rate to the prevailing light 

conditions. Interestingly, dsCYC2 transcription was recently shown to be higher induced in P. 

tricornutum cells overexpressing a blue light sensor CPF1 upon blue light treatment compared 

to WT cells (Coesel et al., 2009), suggesting that dsCYC2 might be a downstream target of the 

CPF1 signaling cascade. At least 40 genes have been identified that belong to the light-

harvesting complex (LHC) superfamily in P. tricornutum and some of them have been 



Regulation of the light-dependent G1-checkpoint by dsCYC2 
   

 

97 
 

characterized more in detail (Guglielmi et al., 2005; Siaut et al., 2007; Bowler et al., 2008; 

Coesel et al., 2009; Nymark et al., 2009; Bailleul et al., 2010). It would be interesting to see 

whether dsCYC2 expression can be influenced by one of these antenna proteins. In addition, 

the effect of different combinations of light quality (white, blue and red) at different fluences 

on dsCYC2 expression could be of great interest as well, as various spectral compositions 

have been reported to influence growth rates of several diatom species (Holdsworth, 1985; 

Mercado et al., 2004).   

 

To understand more in detail the signaling cascades involved in the regulation of this 

gene, future experiments should aim to identify the light-responsive element in the dsCYC2 

promoter sequence and to functionally characterize the transcriptional activator and repressor 

acting on this promoter sequence. Although dsCYC2 is clearly an important cell cycle 

regulator in P. tricornutum, the question remains to what extend this mechanism and its 

regulators are conserved among different diatom species.  

 

 

MATERIALS AND METHODS 
 

Diatom culture conditions 

 Phaeodactylum tricornutum (Pt1 8.6; accession numbers CCAP 1055/1 and CCMP2561) 

was grown in f/2 medium without silica (f/2-Si) (Guillard, 1975) made with filtered and 

autoclaved sea water collected from the North Sea (Belgium). Cultures were cultivated at 18°C-

20°C in a 12-h light/12-h dark regime at 70-100 μmol photons m-2 s-1. Liquid cultures were 

shaken at 100 rpm. For biolistic transformation, P. tricornutum cells were grown on solid f/2-Si 

medium containing 1% Select agar (Sigma). 

 

Cloning constructs and biolistic transformation 

 The 1018 bp dsCYC2 promoter sequence alone, the promoter sequence and the full 

length dsCYC2 gene sequence, or the dsCYC2 gene sequence of P. tricornutum alone was 

amplified with gene-specific primers (Table 3.2), cloned in the pDONR221 or pENTR-D-

TOPO vector (Invitrogen) and subsequently recombined in a P. tricornutum destination vector 

(pDEST) by attL x attR recombination (Invitrogen) (Siaut et al., 2007). The dsCYC2 promoter 
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sequence was recombined in the pDEST-C-EYFP for C-terminal fusion, to construct the prom-

YFP reporter line. The promoter and gene construct was recombined in the pDEST-C-HA to 

construct the HA marker line. Both plasmids were subsequently digested with SacII and NotI 

(Promega) to remove the fcpB promoter sequence. The digested product was treated with T4 

DNA polymerase in the presence of 10 mM dNTPs to produce blunt ends and then ligated using 

T4 DNA ligase according to the manufacturer’s instructions (Promega). For the overexpression 

construct, the full sequence of dsCYC2 was recombined in the pDEST-N-EYFP, resulting in an 

N-terminal fusion with the eYFP fluorescent marker (Siaut et al., 2007).  

For the creation of dsCYC2 inverted repeat constructs for silencing, a 167 bp fragment 

(corresponding to the dsCYC2 gene sequence from 13 bp to 179 bp) and a 301 bp fragment 

(corresponding to the gene sequence from 13 to 313 bp) were amplified from the dsCYC2 

cDNA, respectively, with the primers dsCYC2f1_Fw (containing a EcoRI site) and 

dsCYC2f1_Rv (containing a XbaI site), and dsCYC2f1_Fw and dsCYC2f2_Rv (containing a 

XbaI site) (Table 3.2). The fragments were digested with EcoRI and XbaI (Promega) and 

ligated in sense and antisense orientations in the EcoRI site of the linearized hir-PtGUS vector 

(De Riso et al., 2009). 
 

Table 3.2: Cloning primers.        
Primer name Sequence Target 
   dsCYC2-
CYCdomain_Fw 

AAAAAAGCAGGCTTCCGACAGCAAATGTTCGACTGG cyclin domain 

dsCYC2-
CYCdomain_Rv 

GGGTCACCGCCTCCGGATCACAAGTGCCAGGAAAGAGCA
GT 

cyclin domain 

dsCYC2_Fw CACCATGATGAAACAGCAACATTCCC gene 
dsCYC2-N_Rv TCAATTTCCATACAAAGCTTCCA gene 
dsCYC2-C_Rv ATTTCCATACAAAGCTTCCAGTTG gene 
CDKA1_Fw CACCATGGAGCGGTATCAAAGGAT gene 
CDKA1-N_Rv TTACGCCGCCTGAAAGTAT gene 
pdsCYC2-attB1_Fw GGGGACAAGTTTGTACAAAAAAGCAGGCTCTTAGAATAT

GTGGGGTTTCGT 
promoter (and 
gene) 

pdsCYC2-attB2_Rv GGGGACCACTTTGTACAAGAAAGCTGGGTCGACGTTATA
CTTAATCAGTATTTCAGG 

promoter 

dsCYC2-attB2_Rv AGAAAGCTGGGTCATTTCCATACAAAGCTTCCAG promoter and 
gene 

dsCYC2f1_Fw  ACTGAATTCCAACATTCCCAGCAAGAA hairpin 
construct 

dsCYC2f1_Rv  ACTTCTAGATTGTTAGTGATACTGGCGC hairpin 
construct 

dsCYC2f2_Rv  ACTTCTAGAAAACTGGGGACGCTGTAG hairpin 
construct 
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 Constructs were introduced into P. tricornutum by microparticle bombardment as 

previously described (Falciatore et al., 1999). The pAF6 plasmid was used to confer the 

resistance to phleomycin (Falciatore et al., 1999). Individual phleomycin-resistant colonies were 

both restreaked on f/2-Si agar plates and grown in liquid f/2-Si medium without antibiotics for 

further analysis. 

 

Inhibitor studies 

 To determine the effect of inhibition of protein translation on dsCYC2 transcription, cells 

were treated with or without cycloheximide (CHX (Duchefa Biochemie), final concentration of 

2µg/ml) 5 minutes before the onset of light.   

 To determine the effect of the photosynthetic electron transport inhibition, DCMU was 

dissolved in ethanol (EtOH) and delivered to the cells at a final concentration of 20µM 10 

minutes before onset of light. Identical volumes of EtOH were added to the solvent controls, 

and had no effect on transcript expression. 

 

Real-time quantitative PCR 

For RNA extraction, 5 x 107 cells were collected either by centrifugation (long-term 

response) or by fast filtration (short-term response, CHX and DCMU experiments), and cell 

pellets were fast frozen in liquid nitrogen and stored at -70ºC. Cell lysis and RNA extraction 

was performed using TriReagent (Molecular Research Center, Inc., Cincinnati, OH, USA) 

according to the manufacturer’s instructions. Contaminating genomic DNA was removed by 

DNaseI treatment (GE Healthcare, Little Chalfont, UK) and RNA was purified by 

amoniumacetate precipitation. To assess RNA concentration and purity, spectrophotometry was 

performed (NaNodrop ND-1000, Wilmington, DE). Total RNA was reverse transcribed using 

iScript reverse transcriptase (Roche) according to the manufacturer’s instructions. Finally, an 

equivalent of 10 ng of reverse transcribed RNA (cDNA) was used as template in each qPCR 

reaction.  

Samples in triplicate were amplified on the Lightcycler 480 platform with the 

Lightcycler 480 SYBR Green I Master mix (Roche Applied Science), in the presence of 0.5 μM 

gene-specific primers (dsCYC2_Fw: CTATCATCGCACTCGTCATCAAC and dsCYC2_Rv: 

TGTCCACCAAAGCCTCCAAAC, dsCYC2-HA_Fw: TCGCTCCTCTGGTGGAA and 

dsCYC2-HA_Rv: GTCGTAGGGGTAGGCGTAGT, other primer sequences see Huysman et 

al., 2010 and Siaut et al., 2007). The cycling conditions were 10 min polymerase activation at 



Chapter 3 
   

 

100 
 

95°C and 45 cycles at 95°C for 10 s, 58°C for 15 s and 72°C for 15 s. Amplicon dissociation 

curves were recorded after cycle 45 by heating from 65°C to 95°C. Data were analyzed using 

the ΔCt relative quantification method using qBase (Hellemans et al., 2007), with the stably 

expressed histone H4 (Figure 3.1, 3.2, 3.3, 3.4 and 3.5) or TBP and UBI-4 (Figure 3.7, 3.9 and 

3.11) as a normalization gene (Siaut et al., 2007).  

 

Western blot analysis 

 Proteins were extracted by adding 200 µl Laemli buffer to 50 x 106 frozen cells and the 

cell lysates were incubated during 15 minutes on ice. Protein concentrations were determined 

by the Bradford assay (Bio-Rad Protein Assay, Bio-Rad). Equal amounts of protein extracts 

were resolved on 12% SDS-PAGE gels, and transferred to nitrocellulose membranes 

(Millipore) using the wet-blot method. The dsCYC2-HA fusion protein was detected by 

incubating proteins transferred to nitrocellulose membranes for 1h with a 1:500 dilution of anti-

HA primary antibody at room temperature, followed by 1h incubation in a 1:10,000 dilution of 

horseradish peroxidase (HRP) anti-rat secondary antibody at room temperature. eYFP protein of 

the prom-YFP cells was detected by incubating proteins transferred to nitrocellulose membranes 

for 1h with a 1:3,000 dilution of anti-GFP primary monoclonal antibody (Rockland) at room 

temperature, followed by 1h incubation in a 1:10,000 dilution of horseradish peroxidase (HRP) 

anti-mouse secondary antibody at room temperature. eYFP proteins originating from the OE 

cells were detected by incubating proteins transferred to nitrocellulose membranes for 1h with a 

1:1,000 dilution of anti-GFP primary polyclonal antibody (Rockland) at room temperature, 

followed by 1h incubation in a 1:10,000 dilution of horseradish peroxidase (HRP) anti-goat 

secondary antibody at room temperature. Signals were visualized using the Western 

LightningTM detection kit (Pierce). 

 

Yeast-two-hybrid analysis 

Yeast-two-hybrid bait and prey plasmids were generated through recombinational 

GATEWAY cloning (Invitrogen). A 350 bp fragment encompassing the cyclin domain of 

dsCYC2, and the full length open reading frames of the P. tricornutum dsCYC2 and CDKA1 

genes were amplified with gene-specific primers (Table 3.2), cloned in the pENTR-D-TOPO 

vector (Invitrogen) and subsequently recombined in the pDEST22 and pDEST32 vectors 

(Invitrogen) by attL x attR recombination, resulting in translational fusions between the proteins 

and the GAL4 transcriptional activators and GAL4 DNA-binding domains, respectively. For the 
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Y2H library screens, the yeast strain PJ694-alpha (MATa; trp1-901, leu2-3,112, ura3-52, his3-

200, gal4D, gal80D, LYS2::GAL1-HIS3, GAL2-ADE2, met2GAL7-lacZ) was first 

transformed with the bait plasmid and transformed cells were selected on synthetic dextrose 

(SD) medium lacking leucin (Leu) by the LiAc method (Gietz et al., 1992). Subsequently the 

yeast containing the bait plasmid was transformed with 50µg of prey plasmids derived from a 

custom-made P. tricornutum Y2H library (Invitrogen) and yeast cells that hosted a successful 

interaction were selected on SD medium lacking Leu, tryptophan (Trp) and histidine (His). To 

detect strong interaction, positive colonies were restreaked on selective medium containing 

different concentrations of 3AT. For the co-transformation assay, plasmids encoding the bait 

and prey constructs were co-transformed in the yeast strain PJ694-alpha by the LiAc method 

(Gietz et al., 1992). Co-transformed yeast cells were selected on SD plates lacking Leu and 

Trp. Interaction between the introduced proteins was scored on SD plates lacking Leu, Trp 

and His, and by the LacZ test, as described by Boruc et al. (2010).   

 

Growth analysis 

 To monitor growth, cells were grown at constant illumination (overexpression lines) or 

12L/12D (silencing lines) in a 24-well plate (Falcon), in a total volume of 1 ml, over a time 

period of eleven days. Absorbances of the cultures were measured at 405 nm using the 

VICTOR3 Multilabel Plate Reader (Perkin-Elmer) each day in the morning. Obtained growth 

curves of triplicate cultures were LN(2)-transformed and mean generation times were calculated 

by determination of the derivative of the values between the points of maximal slope 

(exponential growth phase). 

 

Flow cytometric analysis 

 Flow cytometric analysis was performed on a Partec CyFlow ML platform (with data 

acquisition software Flomax; Partec GmbH, Münster, Germany) on cells fixed with 70% 

ethanol, washed three times with 1× phosphate buffered saline and stained with 4',6-diamidino-

2-phenylindole (DAPI) (final concentration of 1 ng/ml). For each sample, 5,000 to 10,000 cells 

were processed. Flow cytograms were formatted and analyzed with Multicycle AV for 

Windows (Phoenix Flow Systems, San Diego, California, USA) software to determine relative 

representation estimates of the different cell cycle stages in the samples. Estimates were 

obtained by fitting the histograms (nonlinear least-square fitting) with the default parameters of 

background modeling and zero order S phase. In addition the software automatically fits five 
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more models. For each of these fitting models a 95% intramodel confidence range is provided 

based on successive analyses of the same histogram and this interval gives an confidence 

estimation of finding the same “best” fit. To address whether the model used is appropriate for 

the histogram, 95 % intermodel confidence intervals are provided, that indicate to wich extent 

the cell cycle parameters vary depending on the model chosen. In general if either confidence 

range is wide, the parameter is more likely to be approximate and subject to increased error. It 

should be noted that the wide intermodal confidence intervals observed in our analyses (marked 

in red in Figure 3.8b and 3.10b) could all be attributed to unrealistic fitting of only one of the 

models, while the other models gave similar cell cycle phase estimates. 

     

 

  



Regulation of the light-dependent G1-checkpoint by dsCYC2 
   

 

103 
 

REFERENCES 

 

Arguello-Astorga G, Herrera-Estrella L (1998) Evolution of Light-Regulated Plant Promoters. 
Annual Review of Plant Physiology and Plant Molecular Biology 49: 525-555 

Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C, Falciatore A, Finazzi G 
(2010) An atypical member of the light-harvesting complex stress-related protein family 
modulates diatom responses to light. Proceedings of the National Academy of Sciences of the 
United States of America 42: 18214-18219 

Boruc J, Van den Daele H, Hollunder J, Rombauts S, Mylle E, Hilson P, Inzé D, De Veylder L, 
Russinova E (2010) Functional modules in the Arabidopsis core cell cycle binary protein-
protein interaction network. Plant Cell 22: 1264-1280 

Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U, Martens C, 
Maumus F, Otillar RP, Rayko E, Salamov A, Vandepoele K, Beszteri B, Gruber A, 
Heijde M, Katinka M, Mock T, Valentin K, Verret F, Berges JA, Brownlee C, Cadoret 
JP, Chiovitti A, Choi CJ, Coesel S, De Martino A, Detter JC, Durkin C, Falciatore A, 
Fournet J, Haruta M, Huysman MJJ, Jenkins BD, Jiroutova K, Jorgensen RE, Joubert 
Y, Kaplan A, Kroger N, Kroth PG, La Roche J, Lindquist E, Lommer M, Martin-
Jezequel V, Lopez PJ, Lucas S, Mangogna M, McGinnis K, Medlin LK, Montsant A, 
Oudot-Le Secq MP, Napoli C, Obornik M, Parker MS, Petit JL, Porcel BM, Poulsen N, 
Robison M, Rychlewski L, Rynearson TA, Schmutz J, Shapiro H, Siaut M, Stanley M, 
Sussman MR, Taylor AR, Vardi A, von Dassow P, Vyverman W, Willis A, Wyrwicz LS, 
Rokhsar DS, Weissenbach J, Armbrust EV, Green BR, Van de Peer Y, Grigoriev IV 
(2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. 
Nature 456: 239-244 

Brzezinski MA, Olson RJ, Chisholm SW (1990) Silicon availability and cell-cycle progression in 
marine diatoms. Marine Ecology-Progress Series 67: 83-96 

Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annual Review 
of Genetics 38: 87-117 

Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, 
Falciatore A (2009) Diatom PtCPF1 is a new cryptochrome/photolyase family member with 
DNA repair and transcription regulation activity. EMBO Rep 10: 655-661 

De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A (2009) Gene silencing in the 
marine diatom Phaeodactylum tricornutum. Nucleic Acids Research 37: e96 

Dowdy SF, Hinds PW, Louie K, Reed SI, Arnold A, Weinberg RA (1993) Physical Interaction of 
the Retinoblastoma Protein with Human D-Cyclins. Cell 73: 499-511 

Escoubas JM, Lomas M, LaRoche J, Falkowski PG (1995) Light intensity regulation of cab gene 
transcription is signaled by the redox state of the plastoquinone pool. Proceedings of the 
National Academy of Sciences of the United States of America 92: 10237-10241 

Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of Nonselectable 
Reporter Genes in Marine Diatoms. Mar Biotechnol (NY) 1: 239-251 

Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: 
integrating terrestrial and oceanic components. Science 281: 237-240 

Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340: 
245-246 



Chapter 3 
   

 

104 
 

Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-
phase and mitosis in the absence of G1 cyclins. The EMBO journal 15: 850-860 

Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency 
transformation of intact yeast cells. Nucleic Acids Res 20: 1425 

Gietz RD, Triggs-Raine B, Robbins A, Graham KC, Woods RA (1997) Identification of proteins 
that interact with a protein of interest: applications of the yeast two-hybrid system. Molecular 
and cellular biochemistry 172: 67-79 

Gillard J, Devos V, Huysman MJJ, De Veylder L, D'Hondt S, Martens C, Vanormelingen P, 
Vannerum K, Sabbe K, Chepurnov VA, Inzé D, Vuylsteke M, Vyverman W (2008) 
Physiological and transcriptomic evidence for a close coupling between chloroplast ontogeny 
and cell cycle progression in the pennate diatom Seminavis robusta. Plant Physiol 148: 1394-
1411 

Guglielmi G, Lavaud J, Rousseau B, Etienne AL, Houmard J, Ruban AV (2005) The light-
harvesting antenna of the diatom Phaeodactylum tricornutum. Evidence for a diadinoxanthin-
binding subcomplex. The FEBS journal 272: 4339-4348 

Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In WL Smith, MH 
Canley, eds, Culture of Marine Invertebrate animals. Plenum Press, New York, pp 29-60 

Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative 
quantification framework and software for management and automated analysis of real-time 
quantitative PCR data. Genome Biol 8: R19 

Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements 
(PLACE) database: 1999. Nucleic Acids Research 27: 297-300 

Holdsworth ES (1985) Effect of Growth-Factors and Light Quality on the Growth, Pigmentation and 
Photosynthesis of 2 Diatoms, Thalassiosira-Gravida and Phaeodactylum-Tricornutum. Marine 
Biology 86: 253-262 

Hudson ME, Quail PH (2003) Identification of promoter motifs involved in the network of 
phytochrome A-regulated gene expression by combined analysis of genomic sequence and 
microarray data. Plant Physiology 133: 1605-1616 

Huysman MJJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, Bowler C, Inzé D, Van 
de Peer Y, De Veylder L, Vyverman W (2010) Genome-wide analysis of the diatom cell 
cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol 11: 
R17 

Inzé D, De Veylder L (2006) Cell cycle regulation in plant development. Annu Rev Genet 40: 77-105 

Kooistra WH, De Stefano M, Mann DG, Medlin LK (2003) The phylogeny of the diatoms. Prog 
Mol Subcell Biol 33: 59-97 

Mendenhall MD, Hodge AE (1998) Regulation of Cdc28 cyclin-dependent protein kinase activity 
during the cell cycle of the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 62: 
1191-1243 

Menges M, Samland AK, Planchais S, Murray JA (2006) The D-type cyclin CYCD3;1 is limiting 
for the G1-to-S-phase transition in Arabidopsis. The Plant cell 18: 893-906 

Mercado JM, Sanchez-Saavedra MD, Correa-Reyes G, Lubian L, Montero O, Figueroa FL 
(2004) Blue light effect on growth, light absorption characteristics and photosynthesis of five 
benthic diatom strains. Aquatic Botany 78: 265-277 

Moore JD, Kirk JA, Hunt T (2003) Unmasking the S-phase-promoting potential of cyclin B1. 
Science 300: 987-990 



Regulation of the light-dependent G1-checkpoint by dsCYC2 
   

 

105 
 

Morgan DO (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell 
Dev Biol 13: 261-291 

Nymark M, Valle KC, Brembu T, Hancke K, Winge P, Andresen K, Johnsen G, Bones AM 
(2009) An integrated analysis of molecular acclimation to high light in the marine diatom 
Phaeodactylum tricornutum. PLoS One 4: e7743 

Oakenfull EA, Riou-Khamlichi C, Murray JA (2002) Plant D-type cyclins and the control of G1 
progression. Philosophical transactions of the Royal Society of London. Series B, Biological 
sciences 357: 749-760 

Quelle DE, Ashmun RA, Shurtleff SA, Kato JY, Barsagi D, Roussel MF, Sherr CJ (1993) 
Overexpression of Mouse D-Type Cyclins Accelerates G(1) Phase in Rodent Fibroblasts. 
Genes & Development 7: 1559-1571 

Rechsteiner M, Rogers SW (1996) PEST sequences and regulation by proteolysis. Trends in 
biochemical sciences 21: 267-271 

Renaudin JP, Doonan JH, Freeman D, Hashimoto J, Hirt H, Inzé D, Jacobs T, Kouchi H, Rouze 
P, Sauter M, Savoure A, Sorrell DA, Sundaresan V, Murray JAH (1996) Plant cyclins: A 
unified nomenclature for plant A-, B- and D-type cyclins based on sequence organization. 
Plant Molecular Biology 32: 1003-1018 

Resnitzky D, Gossen M, Bujard H, Reed SI (1994) Acceleration of the G1/S phase transition by 
expression of cyclins D1 and E with an inducible system. Molecular and cellular biology 14: 
1669-1679 

Salvador ML, Klein U (1999) The redox state regulates RNA degradation in the chloroplast of 
Chlamydomonas reinhardtii. Plant Physiology 121: 1367-1374 

Shen M, Feng Y, Gao C, Tao D, Hu J, Reed E, Li QQ, Gong J (2004) Detection of cyclin b1 
expression in g(1)-phase cancer cell lines and cancer tissues by postsorting Western blot 
analysis. Cancer Research 64: 1607-1610 

Sherr CJ (1995) D-type cyclins. Trends in biochemical sciences 20: 187-190 

Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, Manfredonia A, Falciatore A, 
Bowler C (2007) Molecular toolbox for studying diatom biology in Phaeodactylum 
tricornutum. Gene 406: 23-35 

Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and 
molecular data. Phycologia 45: 361-402 

Smetacek V (1999) Diatoms and the ocean carbon cycle. Protist 150: 25-32 

Terzaghi WB, Cashmore AR (1995) Light-Regulated Transcription. Annual Review of Plant 
Physiology and Plant Molecular Biology 46: 445-474 

Tyers M, Tokiwa G, Futcher B (1993) Comparison of the Saccharomyces-Cerevisiae G1 Cyclins - 
Cln3 May Be an Upstream Activator of Cln1, Cln2 and Other Cyclins. Embo Journal 12: 
1955-1968 

Van den Hoek C, Mann, D.G., and Jahns, H.M. (1995) Algae: An Introduction to Phycology. 
Cambridge University Press, Cambridge 

Vaulot D, Olson RJ, Chisholm SW (1986) Light and Dark Control of the Cell-Cycle in 2 Marine-
Phytoplankton Species. Experimental Cell Research 167: 38-52 

Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM (1997) A Myb-related transcription 
factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. The Plant cell 
9: 491-507 



Chapter 3 
   

 

106 
 

Zhu SH, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: role of LI818-
like proteins in response to high light stress. Biochimica Et Biophysica Acta 1797: 1449-1457 

 

 



  



 



109 
 

4 
Characterization of the Rb-mediated pathway for 

G1-S phase transition in the diatom Phaeodactylum 

tricornutum 
 

Marie J.J. Huysman1,2,3, Klaas Vandepoele2,3, Cindy Martens2,3, Joris Huylebroek2,3, Dirk 

Inzé2,3, Yves Van de Peer2,3, Wim Vyverman1 and Lieven De Veylder2,3 

 

1Protistology and Aquatic Ecology, Department of Biology, Ghent University, 9000 Gent, Belgium. 
2Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium. 

3Department of Plant Biotechnology and Genetics, Ghent University, 9052 Gent, Belgium. 

 

 

Manuscript in preparation 

 

 

 

 

 

 

 

 
 

 

Authors’ contributions 

MJJH, KV, CM, DI, YvdP, WV and LDV conceived and designed the study. KV and CM performed the 

annotation and phylogenetic analysis and the in silico motif prediction. MJJH performed the synchronization and 

expression experiments. MJJH and JH performed the interaction and transactivation assays. MJJH analyzed the 

data and wrote the chapter. WV and LDV revised the manuscript.  



Chapter 4 
   

 

110 
 

ABSTRACT 

 

  In plants and animals, the Retinoblastoma (Rb)-mediated pathway, including the Rb protein 

and the E2F family of transcription factors is crucial for control of the G1-to-S transition and 

the start of DNA replication. Here, we report the annotation, isolation and characterization of 

members of the Rb-pathway in the diatom Phaeodactylum tricornutum. One Rb-related gene, 

two classical E2F genes, two DP genes and one atypical E2F gene were identified. Transcript 

analysis during synchronized growth indicated that these genes are differentially expressed 

during the cell cycle. Using a yeast-two-hybrid interaction assay we found that E2F2 and both 

DP proteins associate, indicating that these heterodimers might form functional transcription 

factor complexes in the diatom. Furthermore, through de novo motif detection, we identified a 

diatom-specific E2F cis-regulatory element, deviating from the conserved E2F motif found in 

plants and animals. E2F2 together with DP1b could activate a reporter gene under control of 

promoter sequences containing this diatom-specific E2F element, indicating that the motif is 

functional.    
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INTRODUCTION 
 

In plants and animals, but not in yeast, the Retinoblastoma (Rb)-mediated pathway is in 

charge of the G1-to-S transition and the start of DNA replication. Positive regulation of this 

pathway promotes the transcription of genes necessary for S-phase entry (e.g. DNA replication 

genes) by E2F transcriptional regulators that consist of a heterodimer of the related E2F and DP 

proteins. The transactivating potential of E2F transcription factors is inhibited through binding 

of the Rb protein and related pocket proteins in their hypophosphorylated state. Phosphorylation 

of the Rb and pocket proteins by cyclin-dependent kinase (CDK) activity inhibits their binding 

on the E2F transcription factor complex and hence triggers the G1-to-S-phase transition 

(Weinberg, 1995; de Jager and Murray, 1999; Claudio et al., 2002).  

When forming heterodimers with DPs, E2F proteins can recognize and bind specific cis-

regulatory elements, the E2F motif, in the promoter region of E2F target genes (Vandepoele et 

al., 2005). The domain responsible for this interaction is the N-terminally located DNA-binding 

domain (DBD), a domain structurally related to a winged helix motif that is highly conserved in 

animal and plant E2F and DP proteins (Ramirez-Parra et al., 1999; Zheng et al., 1999; 

Mariconti et al., 2002). This DBD is flanked towards the C-terminus by a domain containing a 

leucine zipper motif, called the dimerization domain (DD), enabling heterodimerization of E2F 

with a DP partner protein (Helin et al., 1993). The DD is followed by another conserved 

sequence called the marked box that has been shown to be involved in DNA bending (Cress and 

Nevins, 1996).  

In human, six classical E2F (E2F1 to 6) and two DP (DP1 and DP2) proteins have been 

described, while Arabidopsis thaliana possesses three E2F (E2Fa, E2Fb and E2Fc) and two DP 

(DPa and DPb) proteins (Dyson, 1998; Vandepoele et al., 2002). All of these proteins contain 

the conserved DBD and DD and most of the E2F sequences, except animal E2F6, possess a Rb-

binding region in their C-terminal part that in some cases overlaps with a transactivation domain 

(Mariconti et al., 2002). In addition, animals and plants also possess atypical E2F proteins, also 

called DP-E2F-like (DEL) proteins, that contain duplicated conserved DBDs, but lack any of 

the other conserved regions of animal and plant E2Fs (Reviewed in Lammens et al., 2009). 

These atypical E2Fs can recognize and interact with consensus E2F cis-acting elements in a 

DP-independent manner due to the presence of two DBDs (Kosugi and Ohashi, 2002; Di 

Stefano et al., 2003; Logan et al., 2004; Logan et al., 2005). 
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Diatoms are unicellular eukaryotic photoautotrophs that account for about one fifth of 

the global carbon fixation (Van den Hoek, 1995; Field et al., 1998). Besides their ecological 

importance, diatoms have a broad industrial potential as producers of various high value 

compounds including poly-unsaturated fatty acids and pigments. Aditionally, they are used as  

feed in aquaculture, and because of their highly structured mesoporous cell wall diatoms also 

gained interest for nanotechnological purposes (Lebeau and Robert, 2003b; Bozarth et al., 

2009). In this respect, large-scale cultivation of diatoms needs optimization to be fully 

profitable, and therefore we need to understand the basic mechanisms controlling the diatom life 

cycle. Recently it was shown that the diatom core cell cycle machinery is conserved, but that 

some aspects appear to be diatom-specific, including the presence of an expanded cyclin family, 

of which a major part are diatom-specific (Huysman et al., 2010).  

 

The main goal of this study was to examine whether the regulatory mechanism of G1-S 

transition governed by the Rb-mediated pathway is conserved in diatoms. As a first step, we 

performed a genome-wide annotation analysis in the diatom Phaeodactylum tricornutum to 

identify homologs of the Rb and E2F/DP family. Further subclassification of the putative 

homologs was examined by phylogenetic analysis and determination of domain organization by 

sequence analysis. Next, a functional analysis of the identified genes was performed including 

transcript profiling during synchronized cell cycle progression and identification of putative 

E2F/DP complexes by interaction assays. Finally, using a de novo motif search approach we 

identified a diatom-specific E2F cis-acting element that deviates from the motif found in 

animals and plants. To investigate whether this diatom-specific E2F motif is functional in 

diatoms we performed transient transactivation assays using promoter sequences that contain 

the E2F motif.     
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RESULTS 
 

In silico annotation and sequence analysis of the members of the Rb-pathway in 

Phaeodactylum tricornutum 

Using a family-based structural annotation approach we could identify several members 

of the Rb-pathway in the genome of P. tricornutum (Bowler et al., 2008). These include 1 Rb- 

related gene, 2 E2F genes, 2 DP genes and 1 atypical E2F gene (for an overview see Table 4.1). 

A phylogenetic analysis of the E2F/DP/DEL family members is shown in Figure 4.1.  

 

Table 4.1: Overview of the annotated members of the Rb-pathway in P. tricornutum 

Gene Name Protein Name Protein ID 

Phatr;RBR1 RBR1 Phatr2_46245 
Phatr;DP1 DP1 Phatr2_14805 
Phatr;DP2 DP2 Phatr2_5060 
Phatr;E2F1 E2F1 Phatr2_43065 
Phatr;E2F2 E2F2 Phatr2_47264 
Phatr;DEL1 DEL1 Phatr2_48930 
    

 

Alignment of both P. tricornutum E2F proteins with representatives of the E2F family 

of animals and Arabidopsis thaliana shows that E2F1 has a shorter sequence than E2F2, mainly 

due to a shorter N-terminal part, while E2F2 displays a C-terminal extension that is not present 

in any of the other sequences (Figure 4.2). Both PtE2F proteins possess typical conserved 

domains, including the DNA binding domain (DBD) and dimerization domain (DD) (Figure 4.2 

and Figure 4.3a). While in E2F2, the marked box can be recognized, E2F1 appears to lack this 

domain. Finally, the Rb-binding domain seems not to be conserved in either of the diatom 

sequences. When looking in more detail to the amino acid residues in the DNA-binding domain 

important for DNA recognition, it can be seen that in both sequences the typical RRXYD motif 

for recognition of the core DNA sequence is conserved (Figure 4.3b). E2F1 however, lacks a 

hydrophilic arginine (R) residue (substituted by a hydrophobic isoleucine (I) residue) that is 

invariant among E2F family members and important for base pair contact (Zheng et al., 1999). 

Furthermore E2F1 also lacks several other important residues, but these have been substituted 
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by amino acids with the same properties, unlikely to have an effect on DNA binding or 

heterodimerization (Figure 4.3b). 

 

 

 
 

Figure 4.1: Phylogenetic analysis of the members of the E2F-family in P. tricornutum. Neighbor-joining tree 

(TREECON, based on multiple alignments of amino acids generated with MUSCLE, Poisson correction, 1000 

replicates). The P. tricornutum sequences are shown in bold. Abbreviations: Arath, Arabidopsis thaliana; Caeel, 

Caenorhabditis elegans; Danre, Danio rerio; Drome, Drosophila melegonaster; Homsa, Homo sapiens; Musmu, 

Mus musculus; Phatr, Phaeodactylum tricornutum; Thaps, Thalassiosira pseudonana. The P. tricornutum 

sequences are show in bold. 
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Figure 4.2: Alignment (generated with ClustalW) of the P. tricornutum E2F proteins (Pt) with E2F members of 

human, mouse, Drosophila (Drome) and Arabidopsis (At). Conserved domains are marked as indicated. 

Conserved residues are indicated by an asterix. 
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Figure 4.2: Continued. Alignment (generated with ClustalW) of the P. tricornutum E2F proteins (Pt) with E2F 

members of human, mouse, Drosophila (Drome) and Arabidopsis (At). Conserved domains are marked as 

indicated. Conserved residues are indicated by an asterix. 
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Similarly as for the E2F sequences, the alignment of the identified DP proteins with 

representatives of the DP family in human and A. thaliana shows that conserved domains, 

including the DBD and the DD, are present in both DP sequences (Figure 4.3a and Figure 4.4). 

Amino acid residues important for DNA recognition and heterodimerization contact are 

conserved in the diatom DP proteins (Figure 4.3c). Because of the apparent absence of NLSs in 

the diatom E2F sequences (Figure 4.2), and the possibility that their nuclear localization might 

be regulated in trans by the interacting DP partner, as reported for animal E2F4/5 proteins (de 

la Luna et al., 1996), signal motif prediction was performed for both DP sequences resulting 

in the detection of putative NLSs at their N-terminus (Figure 4.4).  

 

 

Figure 4.2: Continued. Alignment (generated with ClustalW) of the P. tricornutum E2F proteins (Pt) with E2F 

members of human, mouse, Drosophila (Drome) and Arabidopsis (At). Conserved domains are marked as 

indicated. Conserved residues are indicated by an asterix. 

 



Chapter 4 
   

 

118 
 

The alignment of the single DEL protein with DEL homologs of A. thaliana shows the 

presence of two DBDs, typical for the DEL proteins (Figure 4.3a and Figure 4.5).  

 

 

Figure 4.3: a. Schematic representation of the P .tricornutum E2F family members in comparison to human and 

plant E2F proteins. Conserved domains are indicated. NLS, nuclear localization signal; DBD, DNA-binding 

domain; DD, dimerization domain. b and c. Sequence alignment (generated with ClustalW) of the DNA-binding 

domains of known E2F and DP family members with the P. tricornutum E2F (b) and DP (c) proteins. Residues 

known to be important for DNA contact and heterodimerization contact according to Zheng et al. (1999) are 

marked as indicated by the legend. Residues that are not conserved in the E2F1 sequence are shown in bold. 

Conserved residues are indicated with an asterix. The RRXYD DNA recognition motif is indicated in the grey 

square. 
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Figure 4.4: Alignment (generated with ClustalW) of the P. tricornutum DP proteins (Pt) with DP members of 

human (Hsa), Danio rerio (Dre), Caenorhabditis elegans (Cel) and A. thaliana (At). Conserved domains are 

marked as indicated. Conserved residues are indicated by an asterix. Predicted putative NLS signals are 

underlined. 
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Figure 4.4: Continued. Alignment (generated with ClustalW) of the P. tricornutum DP proteins (Pt) with DP 

members of human (Hsa), Danio rerio (Dre), Caenorhabditis elegans (Cel) and A. thaliana (At). Conserved 

domains are marked as indicated. Conserved residues are indicated by an asterix. Predicted putative NLS signals 

are underlined. 
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Figure 4.5: Alignment (generated with ClustalW) of the P. tricornutum DEL1 protein (Pt) with DEL proteins of 

A. thaliana (At). Conserved domains are marked as indicated. Conserved residues are indicated by an asterix. 
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The P. tricornutum members of the Rb-pathway are differentially expressed during the 

cell cycle 

 Transcript accumulation of all identified genes was monitored during the cell cycle in 

synchronized cultures using real-time quantitative PCR (real-time qPCR). Synchronization of 

cell division was performed by subjecting the cells to a prolonged dark period, which arrest the 

cells uniformly at the G1-phase, followed by their synchronous release by light exposure 

(Huysman et al., 2010, see Chapter 2). Transcript levels of RBR1, E2F1, DP1 and DP2 were all 

elevated at the late G1 phase and G1/S boundary (Figure 4.6), suggesting a similar control 

regulation for these genes as in other eukaryotes. E2F2 shows a dual expression pattern during 

the cell cycle, displaying a peak of expression both at the G1/S and G2/M transition. DEL1 

showed elevated transcript levels during the G2- and M-phases.  

 

 

Figure 4.6: Hierarchical clustering of the transcript profiles of the diatom Rb- and E2F-family members during a 

synchronized cell cycle. Yellow: Relative upregulation. Blue: Relative downregulation. Approximate timing of the 

different cell cycle phases is indicated at the bottom. Transcript expression analysis was performed on the same set 

of samples as in Chapter 2. For cell cycle progression analysis by flow cytometry see Figure 2.1, Chapter 2. Values 

are the mean of three independent experiments normalized against the values of the consitutively expressed histone 

H4 gene. 

 

Isolation and cloning of the E2F and DP cDNA clones reveals the presence of different 

types of E2F1 and DP1 

 E2F and DP cDNA clones were isolated from cDNA prepared of an exponentially 

growing P. tricornutum culture. Plasmid DNA of the cloned fragments was isolated and the 

insert was sequenced. The obtained sequences were then compared to the respective sequence 

available from the P. tricornutum genome database (http://genome.jgi-
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psf.org/Phatr2/Phatr2.home.html). Surprisingly, for the cDNA clones obtained for E2F1 and 

DP1 certain polymorphisms were detected in different clones originating from independent 

cloning procedures, indicating that multiple alleles are present of these genes in P. 

tricornutum cells. A multiple sequence alignment (ClustalW) was performed to check if the 

polymorphisms observed between the different forms resulted into important amino acid 

changes in the protein sequence, potentially influencing the structure or functional properties 

of the proteins (summarized in Table 4.2). For E2F1, all amino acid substitutions were 

positioned outside the conserved domains (Table 4.2), indicating that they probably do not 

interfere with the protein function. For DP1, a S>T substitution at residue 92 is positioned 

within the DNA binding domain (Table 4.2), but this concerns a amino acid residue which is 

only conserved between diatoms and human, but not in plants, indicating that it might not be 

crucial to structure and/or function of the protein. 

 
Table 4.2: Different types of the annotated DP1 and E2F1 genes in P. tricornutum. 
 

Sequence Length(bp) Nucleotide substitution* Amino acid substitution* 
 PtE2F1a 1185 490G>A; 540T>C; 

665G>A; 703G>T 
164D>N; 221D>N; 234V>L 

  PtE2F1b 1185 120A>G;173C>A; 231; 
836T>C; 836T>C; 
918A>T; 1001C>T 

55L>I; 278V>A; 334T>I 

PtDP1a 839 785A>G; 794A>G 292Y>C; 295N>S 
 PtDP1b 839 169T>C; 181G>A; 

192T>G; 274T>A; 
411G>C; 609A>G; 
615G>A; 732C>T; 
742T>C; 785A>G; 

794A>G 

57F>L; 61A>T; 92S>T; 
292Y>C; 295N>S 

PtDP1c 839 No substitutions 
 

No substitutions 
 

*Substitutions compared to the available genome sequence  (http://genome.jgi-psf.org/Phatr2/Phatr2.home.html).  

 

E2F2 can interact both with DP1 and DP2 

To identify possible interactions between the different E2F and DP partners, a yeast-2-

hybrid (Y2H) interaction screen was performed. Y2H screening is a commonly used 

technique to discover protein-protein interactions based on the reconstitution of the DNA 

binding and the activation domain of a transcription factor and hence the activation of a 

reporter gene when two proteins physically interact in the yeast system. (For more 

information see Fields and Song, 1989; Gietz et al., 1997 and 

http://en.wikipedia.org/wiki/Two-hybrid_screening). In this screen we tested all possible 
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interaction combinations between the P. tricornutum E2F and DP proteins. Yeast co-

transformants carrying as bait either DP1 or DP2 and as prey E2F2 were able to grow on 

medium lacking histidine and resulted in a positive β-galactosidase test (figure 4.7), indicating 

that E2F2 can interact with both DP proteins. In the case of DP1, the interaction was 

confirmed for all tested alleles (DP1a, DP1b and DP1c), indicating that none of the 

substituted residues is necessary for heterodimer formation. No interaction was found for 

E2F1a (Figure 4.7), and we were unable to stably transform E2F1b in yeast (data not shown). 

A reciprocal test, in which E2F2 was used as bait and the DP proteins as prey, was 

unsuccessful due to self-activation of the E2F2 bait construct (data not shown). 

 

Figure 4.7: Y2H interaction assay of P. tricornutum E2F and DP proteins. Yeast PJ694-alpha cells were co-

transformed with bait and prey plasmid as indicated. Co-transformation was analyzed on medium lacking leucine 

and tryptophan (-L-T). Co-transformants were tested for their ability to activate the histidine marker gene by 

assessing yeast growth on medium lacking leucine, tryptophan and histidine (-L-T-H) and for their ability to 

activate the LacZ reporter gene (X-Gal). For each combination three independent colonies were screened, of 

which one is shown. 
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A diatom-specific E2F binding site 

Typically, E2F target genes possess E2F-binding sites in their promoter region that are 

recognized and bound by active E2F/DP complexes (Vandepoele et al., 2005). Through de novo 

motif detection with a set of 24 P. tricornutum genes homologous to known DNA replication 

genes from Arabidopsis thaliana (Table 4.3), we identified a candidate E2F consensus sequence 

(sGCsGGCs) (Figure 4.8a) which deviates from the most prominent motif found in animals and 

plants (wTTssCss) (Tao et al., 1997; Vandepoele et al., 2005). To investigate whether this E2F 

motif lacking a T-prefix is specific to the diatom-lineage, we repeated the de novo motif finding 

for T. pseudonana and Phytophthora sojae (using the same set of reference DNA replication 

genes). Whereas the former is another recently sequenced diatom (Armbrust et al., 2004), the 

latter is a member of the Oomycetes (Tyler et al., 2006), a group also belonging to the 

Stramenopiles. For T. pseudonana the detected motif was GC-rich without T prefix 

(CGGyGCCs) like in P. tricornutum, while the P. sojae motif showed a core GC-rich motif 

with an additional TTT-prefix (TTTTGGCG), as found in animals and plants (Figure 4.8b-c). 

These findings suggest that the diatom E2F consensus site has diverged from the sequence in 

other eukaryotes during evolution.   
 

 
 

Figure 4.8: Sequence logos of the E2F consensus motifs detected by de novo motif finding in a. P. tricornutum, 

b. T. pseudonana, and c. P. sojae. The logos were created using WebLogo (Crooks et al., 2004) based on the 

motif instances present in the set of reference genes homologous to known DNA replication genes from A. 

thaliana. The overall height of each stack indicates the sequence conservation at that position (measured in bits), 

whereas the height of symbols within the stack reflects the relative frequency of the corresponding nucleic acid 

at that position. 
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Mapping the candidate P. tricornutum consensus motif on all P. tricornutum promoter 

sequences yielded 572 genes containing the motif (Additional Table 4.1). Functional annotation 

based on the Gene Ontology (GO)-controlled vocabulary indicated that these genes were 

strongly enriched towards "DNA replication initiation" (9-fold enrichment; p-value < 0.01, 

hypergeometric test). Examples of DNA replication genes containing the E2F cis-acting 

element are MCM7, MCM2 and MCM3 (Phatr2_13243, Phatr2_18622 and Phatr2_51597, 

respectively); DNA mismatch repair protein MSH2 (Phatr2_19604); DNA mismatch repair 

protein MSH6-1 (Phatr2_53969); proliferating cell nuclear antigen PCNA (Phatr2_29196); 

DNA gyrase subunit A (Phatr2_33633) and a DNA-directed DNA polymerase delta catalytic 

subunit (Phatr2_54677). Interestingly, among the predicted E2F target genes, some cell cycle 

regulatory genes were identified, including cyclin P1 (Phatr2_48210), diatom-specific cyclin 1 

(Phatr2_31942) and diatom-specific cyclin 11 (Phatr2_41189), which were previously shown 

to be transcribed during the G1- and S-phases of the cell cycle (Huysman et al., 2010). 

Furthermore, also E2F1 contains the predicted diatom consensus E2F motif in its promoter 

region, suggesting that its transcription might be under control of the Rb-mediated pathway 

itself. 

 

E2F2-DP1b forms a functional transcription factor complex that activates promoters 

holding the diatom E2F motif 

To investigate if the predicted diatom E2F cis-acting element can be recognized and 

regulated by the diatom E2F/DP heterodimers, we tested the effect of the identified E2F and 

DP proteins on promoters of candidate E2F target genes (PCNA and MCM3) using a transient 

reporter assay in tobacco ‘Bright Yellow’ (BY)-2 cells. Transient reporter assays are a 

valuable tool for the functional analysis of short regulatory sequences, because they can be 

performed rapidly and at a higher scale compared to reporter studies using stable 

transformation. In such reporter assays a reporter gene is placed under control of a target 

promoter (containing the regulatory sequence) and the activity of the reporter gene product is 

quantitatively measured upon co-transformation with putative transcription factors, in this 

particular case E2F/DP genes.  

The promoter region from the PCNA and MCM3 genes, both containing a diatom E2F 

motif (Figure 4.9a and 4.9b, respectively), was cloned in front of a reporter gene (firefly 

luciferase (fluc)) and the resulting construct was transiently expressed in the presence of 

different combinations of the E2F2 and DP proteins in BY-2 cells. Co-expression of E2F2 
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and DP1b was sufficient to significantly increase luciferase activity for both promoters 

(Figure 4.9c and 4.9d). Such an increase could not be observed when only one partner of the 

putative transcription factor complex was expressed in the BY-2 cells, indicating that both 

proteins interact and cooperate to form an active complex (Figure 4.9c and 4.9d). The 

combination of E2F2 with the other DP types did not show any significant changes in 

luciferase activity (data not shown). It should be noted that both tested promoter sequences 

contain in addition to the predicted diatom E2F consensus also sequences that correspond to 

the plant/animal E2F consensus (Figure 4.9a and 4.9b), and therefore we cannot exclude that 

the observed activation of the fluc gene might be due to recognition and regulation of these 

sequences. 
 

 
 

Figure 4.9: Promoter activity assay in BY-2 cells. a. Promoter sequence of PCNA (500 bp upstream of 

translational start). b. Promoter sequence of MCM3 (1000 bp upstream of translational start). The putative 

diatom E2F motif is highlighted in blue and shown in bold. Sequences corresponding to the plant/animal E2F 

consensus (wTTssCss) are underlined. c and d. Tobacco BY-2 cells were transiently transformed with different 

combinations of expression vectors encoding E2F2 and DP1b, as indicated, with the pPCNA-fluc (c) or with the 

pMCM3-fluc (d) reporter construct. Regulatory properties of E2F2 and DP1b were assessed by analyzing 

normalized fLUC activity (n>7). *** P<0.001; ** P<0.005 (Student’s T-test). Error bars represent standard 

errors. 
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DISCUSSION 
 

Structural domain organization of the diatom E2F family members 

 Here, we report the annotation of two classical E2F genes (E2F1 and E2F2), two DP 

genes (DP1 and DP2) and one atypical E2F gene (DEL1) in the diatom P. tricornutum. 

Overall, domain organization of the diatom E2F family members resembles mostly that of 

animal and plant E2F members. The DBD appears conserved in all diatom E2F members and 

the high conservation of the amino acid residues in this domain suggests that it may adopt a 

similar structure fold as already revealed for human heterodimer E2F4-DP2 (Zheng et al., 

1999). Therefore, one should expect that diatom E2Fs would recognize and bind DNA 

sequences similar to the plant/animal E2F consensus. However, by applying de novo motif 

detection on promoters of diatom homologs of known plant E2F target genes, we could 

predict a consensus diatom E2F binding site (sGCsGGCs), that within its core resembles the 

animal/plant consensus site (wTTssCss), but that lacks the typical T-rich prefix. This T-rich 

portion renders the plant/animal E2F binding-site asymmetric, allowing orientation of the 

E2F-DP heterodimer on the promoter. An R residue conserved in the DBD of E2F, but not in 

DP proteins has been shown to be important for DNA binding near the T-rich portion (Zheng 

et al., 1999). Interestingly, whereas this R residue is present in diatom E2F2, it is lacking in 

E2F1. This observation, together with the finding of a symmetrical diatom E2F site, suggests 

a possible alternative mode of DNA binding for E2F1 in diatoms. On the other hand, E2F2 

was found to be able to transactivate promoters that hold the symmetrical diatom E2F site, 

suggesting that orientation of the heterodimer might be less important for regulation of the 

diatom E2F site. The DD can be recognized in both classical diatom E2F and DP proteins, but 

is absent in the DEL1 protein, which contains two DBDs.  

Most strikingly, we could not identify an Rb-binding motif in any of the diatom E2Fs. 

No sequence could be found that is even distantly related to the animal (DYX7EX3DLFD) 

(Cress et al., 1993; Helin et al., 1993) or plant (DYX6DX4DMWE) (Ramirez-Parra et al., 

1999) Rb-binding motif, indicating that in diatoms this sequence has possibly diverged too 

much or, alternatively, that diatom E2Fs are not controlled by pocket proteins, but perhaps by 

other regulatory proteins. The latter is true for animal E2F6, which is regulated by polycomb 

group proteins through recognition of the marked box (Trimarchi et al., 2001). Furthermore, 

no NLS could be identified in the diatom E2F sequences, although present in the classical 

animal and plant E2Fs. However, nuclear localization of animal E2F4/5 proteins, that  do not 
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possess NLSs, is driven by interaction with variants of DP2 that contain an NLS (de la Luna 

et al., 1996). Trans regulation of nuclear localization of E2Fs could be a more general 

mechanism in diatoms as signal motif prediction for both DP sequences identified putative 

NLSs in their N-terminal part. 

During the cloning procedures it was found that P. tricornutum possesses different 

types of both E2F1 and DP1, which was confirmed by examination of the available EST 

libraries (data not shown). Different polymorphisms seem to have accumulated in these genes, 

however without resulting in amino acid substitutions that would be expected to cause major 

structural or functional changes to the proteins. The presence of multiple single nucleotide 

polymorphisms does not appear to be unique for the E2F1 and DP1 genes, but seems to be 

more common for the gene repertoire of P. tricornutum (personal communication C. Bowler). 

This finding is rather astonishing, as the genome sequence available, the EST data obtained 

under different conditions, and the cultures used in the present study, were all derived from a 

monoclonal culture (Pt1 8.6) generated only ten years ago (De Martino et al., 2007; Bowler et 

al., 2008; Maheswari et al., 2010). The mechanisms responsible for this rapid mutation 

accumulation and its evolutionary and functional relevance remain to be elucidated.   

 

G1-S transition regulation 

 Transcript analysis of the annotated diatom E2F family genes during synchronized cell 

cycle progression showed that all members, except DEL1, show a peak of transcript 

expression at the G1-to-S-phase transition, suggesting a functional role for them in the 

regulation of DNA replication. RBR1 is somewhat earlier transcribed during the time course 

compared to both E2F genes, which suggests that the E2F genes could be target of RBR1 

during the G1-phase. Release of RBR1 by its phosphorylation by G1-specific CDK/cyclin 

complexes could lead to the activation of the E2F genes, resulting finally in the activation of 

S phase E2F target genes. E2F2 shows an additional transcriptional peak during the G2-phase, 

indicative of a dual role for this gene both during S- and G2-phase. Whether this concerns an 

activating or repressing role remains to be elucidated. The single DEL1 gene identified 

showed elevated expression during the G2-phase. Analogously, DEL homologs of mice and A. 

thaliana preferentially accumulate during the S-G2 phase (Lammens et al., 2008; Li et al., 

2008).  

We found that E2F2 can associate with both DP proteins, whatever type of DP1 was 

tested, indicating that none of the amino acid changes present in the different DP1 types 
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interfere with its ability to bind E2F2. Furthermore, we showed that the transactivational 

potential of E2F2 to regulate promoters that hold the predicted diatom E2F motif depends on 

co-expression with DP1b in BY-2 cells. The functionality of this transcription factor complex 

in P. tricornutum and the necessity and sufficiency of the predicted diatom E2F motif to 

transactivate E2F target gene expression await further analysis.  

Although domain organization of E2F1 is clearly conserved, we could not find any 

clear evidence of its functionality in P. tricornutum. Using the yeast-two-hybrid assay we 

were unable to detect interaction of either E2F1 alleles with a DP molecule. Possibly the 

method chosen here was not optimal, as we were unable to transform E2F1b in yeast, and 

therefore putative interactions could be revealed by applying other techniques, such as co-

immunoprecipitation. However, its transcriptional peak at the G1-S transition and the 

presence of a diatom-specific E2F motif in its promoter region suggest that E2F1 might be 

involved in or at least under control of the G1-S regulatory mechanism. 

 

To summarize, we showed that diatoms possess and express all members of the Rb-

mediated pathway and, based on their expression profile during the cell cycle, they most 

likely control S-phase entry and DNA replication. Furthermore, we identified a diatom-

specific E2F motif and characterized the E2F2/DP1b heterodimer as a transcriptional activator 

complex that is able to drive expression of potential E2F target genes. Together, these data 

form the basis to explore further the functions of the E2F family members in diatoms.  

 

 

MATERIALS AND METHODS 
 

Annotation and phylogenetic analysis of the Rb and E2F-family members 

Animal and plant Rb and E2F family members were used to build a family specific 

HMMER profile (Eddy, 1998). With this profile, the predicted P. tricornutum proteome was 

screened to detect members of the Rb and E2F family. The putative P. tricornutum homologs 

were validated by comparing them with the reference family members in a multiple alignment. 

Multiple alignments based on amino acid sequences were generated with MUSCLE (Edgar, 

2004) and manually improved using BioEdit (Hall, 1999). TREECON (Van de Peer and De 

Wachter, 1994) was used to generate the neighbor-joining tree based on Poisson-corrected 
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distances. To test the significance of the nodes, bootstrap analysis was done with 1000 

replicates. 

 

Sequence analysis 

Multiple alignments were generated using the ClustalW application in BioEdit 

(Thompson et al., 1994; Hall, 1999). NLS prediction of the P. tricornutum DP sequences was 

performed with WoLF PSORT (Horton et al., 2007). 

 

Real-time quantitative PCR 

For RNA extraction, 5 x 107 cells were collected, fast frozen in liquid nitrogen and 

stored at -70ºC. Cell lysis and RNA extraction was performed using TriReagent (Molecular 

Research Center, Inc., Cincinnati, OH, USA) according to the manufacturer’s instructions. 

Contaminating genomic DNA was removed by DNaseI treatment (GE Healthcare, Little 

Chalfont, UK). To assess RNA concentration and purity, spectrophotometry was used 

(NaNodrop ND-1000, Wilmington, DE). Total RNA was reverse transcribed using iScript 

reverse transcriptase (Roche). Finally, 1.25 ng (cell cycle expression) or 10 ng (overexpression 

lines) of cDNA was used as template for each qPCR reaction. 

  

Table 4.4: gene specific primers used in qPCR analysis.   
          Protein 
Name Protein ID Forward gene specific primer Reverse gene specific primer Product 

length (bp) 

     
RBR1 Phatr2_46245 CCCGCCACCGATGTCAAAC TACGCCACGGATTCTACACG 165 
DP1 Phatr2_14805 GGCTCAACGAGTTACAAGGA GGCGCACATTCTTTTCTTC 106 
DP2 Phatr2_5060 AAGGGCACAACGAGTTACAA CGTTGAGGACGTCGTAGATT 133 
E2F1 Phatr2_43065 CCCTAAGCGGCGGATTTACG AAGGACGAGCCAAGAAGAAGC 117 
E2F2 Phatr2_47264 CACTTTCCTCTGCCTTCGTTTC CGTGGTACTTCTGGTGGTTCG 119 
DEL1 Phatr2_48930 CACCGAAACAACCCGACCTC CCGTGCCAGCCAATGCC 138 
          

 

 Samples in triplicate were amplified on the Lightcycler 480 platform with the Lightcycler 

480 SYBR Green I Master mix (Roche Applied Science), in the presence of 0.5 μM gene-

specific primers (Table 4.4). The cycling conditions were 10 min polymerase activation at 

95°C and 45 cycles at 95°C for 10 s, 58°C for 15 s and 72°C for 15 s. Amplicon dissociation 

curves were recorded after cycle 45 by heating from 65°C to 95°C. In qBase (Hellemans et al., 

2007), data were analyzed using the ΔCt relative quantification method with the stably 
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expressed histone H4 as a normalization gene (Siaut et al., 2007). Expression profiles of the 

synchronized cell cycle series were mean relative expression from three independent sample 

series. After normalization, the mean profiles were clustered using hierarchical average linkage 

clustering (TMEV3D). 

 

Yeast-two-hybrid analysis 

Yeast-two-hybrid bait and prey plasmids were generated through recombinational 

gateway cloning (Invitrogen). Full length open reading frames of the P. tricornutum E2F and 

DP genes were isolated using gene-specific primers (Table 4.5), cloned in either the 

pDONR221 or pENTR-D-TOPO vector (Invitrogen) (Table 4.5), and subsequently recombined 

in the pDEST22 (prey) and pDEST32 (bait) vectors (Invitrogen) by attL x attR recombination, 

resulting in translational fusions between the proteins and the GAL4 transcriptional activators 

and GAL4 DNA-binding domains, respectively. Plasmids encoding the bait and prey constructs 

were co-transformed in the yeast strain PJ694-alpha (MATa; trp1-901, leu2-3,112, ura3-52, 

his3-200, gal4D, gal80D, LYS2::GAL1-HIS3, GAL2-ADE2, met2GAL7-lacZ) by the LiAc 

method  (Gietz et al., 1992). Co-transformed yeast cells were selected on synthetic dextrose 

(SD) plates lacking Leu and Trp. Interaction between the introduced proteins was scored on 

SD plates lacking Leu, Trp and His and by the LacZ test, as described before (Boruc et al., 

2010).  

 

Promoter element detection 

Promoter motifs were detected on 24 P. tricornutum genes homologous to E2F-

containing A. thaliana genes upregulated during the S phase (Menges et al., 2002; Vandepoele 

et al., 2005) with MotifSampler 3.1 (Thijs et al., 2001) (settings: -w length of motif set to 8, -b 

background model of order 3 created using all 1-kb promoter sequences, -r number of 

MotifSampler repeats set to 25 runs). For all reported putative motifs enrichment analysis 

confirmed that these motifs were specifically overrepresented in the input set compared to the 

genome-wide occurrence. Genome-wide motif mapping was done using MotifLocater (settings: 

-t 0.95) (Thijs et al., 2001). A similar approach was applied for T. pseudonana and P. sojae 

DNA replication homologs. Genes were functionally annotated using Blast2GO (Conesa et al., 

2005). Enrichment values were calculated as the ratio of the frequency in the selected set 

relative to the genome-wide frequency. The statistical significance of the functional GO 

enrichment within sets of genes was evaluated using the hypergeometric distribution adjusted 
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by the Bonferroni correction for multiple hypotheses testing. Corrected p-values<0.05 were 

considered as significant. 

 

Transient reporter assay in BY2 cells 

 The 500- and 1000-bp promoter sequences upstream of the translational start of PCNA 

and MCM3, respectively, were amplified from genomic DNA using specific primers (Table 

4.5), cloned in the pP4-P1 vector and subsequently cloned simultaneously with the fLUC 

sequence in the pm42GW7,3 pDEST vector (Karimi et al., 2007) by multisite gateway cloning 

(Invitrogen). The full-length open reading frames of the E2F and DP genes were recombined in 

the p2GW7 pDEST vector by gateway cloning, containing the 35S CaMV promoter. Both 

reporter and effector plasmids were used to transfect BY-2 protoplasts using the polyethylene 

glycol (PEG)/Ca2+ method, as described by De Sutter et al., 2005. Luciferase measurements 

were performed using the Dual-luciferase Reporter 1000 Assay System (Promega), according to 

the manufacturer’s instructions and as described before (De Sutter et al., 2005). 

 

Table 4.5: Cloning primers and cloning strategy.  
      
Primer name Sequence Vector 
 

  
DP-attB1_Fw GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCGACTGATCCTTC

AAG 
pDONR221 

DP-attB2_Rv GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAACTCTTTGCAAGACA
CACG 

pDONR221 

E2F1_Fw CACCATGAGTAGCAATCAATTAGAGCAACA pENTR-D-TOPO 
E2F1_Rv TCAAACGGCCATTTCATC pENTR-D-TOPO 
E2F2_Fw CACCATGTCGGATCAGAAAAAATCG pENTR-D-TOPO 
E2F2_Rv TCAGCGAGGTGGCCTACGAGA pENTR-D-TOPO 
pMCM3-attB4_Fw ATAGAAAAGTTGATATTCAAATGTAAACATATACGAAGACTT pP4-P1 
pMCM3-attB1r_Rv TACAAACTTGTACGTATTTGTGTACCTGATAAGAAAC pP4-P1 
pPCNA-attB4_Fw ATAGAAAAGTTGGTCCAGATCAGAAATTGAGGGT pP4-P1 
pPCNA-attB1r_Rv TACAAACTTGTGGCTAGATTAATTGGTAGTAGAGATGTAGA pP4-P1 
       

 

ADDITIONAL DATA 
 

Additional Table 4.1 is available on the accompanying compact disc.  
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ABSTRACT 

 
  Cyclin-dependent kinases are crucial regulators of cell cycle progression in eukaryotes. The 

diatom CDKA2 was originally assigned to the classical A-type CDKs, but its cell cycle-

dependent transcription at the G2/M transition is typical for plant-specific B-type CDKs. 

Here, we report the functional characterization of CDKA2 as a mitotic regulator during the 

diatom cell cycle. Using a yeast-two-hybrid library screen, CDKA2 was found to interact 

with both CKS1 and cyclinD1 (CYCD1), two cell cycle regulators transcribed during the 

G2-M phases. Localization of CDKA2 was found to be nuclear in interphase cells, while in 

cells undergoing cytokinesis the signal extended to the cell division plane. Overexpression 

of CDKA2 induced overall cell growth rate reduction, due to a prolongation of the mitotic 

phase. By contrast, overexpression of a kinase-null CDKA2 allele did not result in any 

obvious growth defects, illustrating that the phenotype observed in CDKA2 overexpressing 

cells is primary due to increased kinase activity, rather than through competition with rate-

limiting regulatory proteins. 
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INTRODUCTION 

 

 Control of cell cycle progression in eukaryotes is driven by an evolutionary conserved 

family of serine/threonine kinases, the cyclin-dependent kinases (CDKs). These CDKs form 

functional heterodimers with regulatory cyclin subunits (Morgan, 1997; Inzé and De Veylder, 

2006). Together, CDK and cyclin partners form catalytic complexes that control cell cycle 

progression through phosphorylation of target proteins, involved in DNA replication and 

mitosis (Murray, 2004). The activity of CDK/cyclin complexes is regulated at multiple levels, 

including the interaction with inhibitors or scaffolding proteins, and phosphoregulation of the 

CDK subunit.  

 In contrast to fission yeast (Schizosaccharomyces pombe) and budding yeast 

(Saccharomyces cerevisiae), where only a single CDK, Cdc2/Cdc28, controls the cell cycle 

(Hartwell et al., 1974; Nurse and Thuriaux, 1980), animals and plants possess multiple CDKs 

(Morgan, 1997; Joubes et al., 2000). The most conserved cell cycle regulators possess a typical 

PSTAIRE cyclin-binding motif (Cdc2/Cdc28 in yeast, Cdk1/Cdk2 in animals and A-type CDKs 

in plants). In addition, a class of CDKs specific to plants, called the B-type CDKs, has been 

shown to be involved in cell cycle control as well (Porceddu et al., 2001; Lee et al., 2003; 

Boudolf et al., 2004; Boudolf et al., 2009). B-type CDKs in higher plants possess a variant of 

the PSTAIRE motif, either PPTALRE (CDKB1) or PPTTLRE (CDKB2) (Joubes et al., 2000) 

and, unlike A-type CDKs that are required for both G1/S and G2/M transition, they only play a 

role at G2/M (Mironov et al., 1999).  

 With the recent advances in sequencing techniques, several more genomes have become 

available, including genomes of different algal groups. This wealth of new data makes it 

possible to study CDKB evolution by comparative genomics. CDKB-like sequences have been 

identified in different algal species, including in the green algae Ostreococcus tauri (Robbens et 

al., 2005), Chlamydomonas reinhardtii (Bisova et al., 2005), Micromonas species and 

Micromonas pusilla, in the red alga Cyanidioschyzon merolae (Cizkova et al., 2008), and also 

recently in the brown algae Ectocarpus siliculosus (Bothwell et al., 2010). Remarkably, the 

CDKB-like sequences of O. tauri and C. reinhardtii have been reported to represent functional 

homologs of A-type CDKs, mainly by their ability to complement cdc28 temperature-sensitive 

yeast mutants (Corellou et al., 2005; Cizkova et al., 2008), indicating that B-type CDKs might 

originate from a duplication of the A-type CDKs (Boudolf et al., 2005). However, to date, their 

functionality to complement higher plant B-type CDKs has not yet been investigated.  
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 Phaeodactylum tricornutum is a unicellular marine diatom belonging to the heterokont 

lineage (De Martino et al., 2007). This diatom multiplies by binary division and, unlike most 

other diatoms, it lacks a sexual phase during its life cycle, rendering this diatom a perfect model 

species to study vegetative reproduction. Furthermore, due to the presence of a light-dependent 

phase during its cell cycle (Brzezinski et al., 1990; Huysman et al., 2010), the cell division 

process in P. tricornutum can easily be synchronized by implementation of alternating 

light/dark cycles (Huysman et al., 2010). Recently, we identified the core set of cell cycle genes 

in P. tricornutum, including CDKs (Huysman et al., 2010). By phylogenetic analysis, two A-

type CDKs were identified, of which CDKA1 shows the classical PSTAIRE motif, while 

CDKA2 shows a PSTALRE cyclin-binding motif. The latter motif deviates only by one amino 

acid from the CDKA and CDKB hallmarks. Such a PSTALRE motif has also been found in the 

Dictyostelium discoideum CDC2 homolog (DdCDK1) (Michaelis and Weeks, 1992), the C. 

merolae CDKA protein (Cizkova et al., 2008) and in the O. tauri CDKB protein (Robbens et 

al., 2005). Moreover, unlike typical CDKAs, transcription of the P. tricornutum CDKA2 gene is 

cell cycle regulated and shows a peak of transcription at the G2-to-M phase transition 

(Huysman et al., 2010). However, based on its current phylogenetic position and its 

transcription pattern it is impossible to define whether CDKA2 represents a functional ortholog 

of A- or B-type CDKs. 

 The main objective of this study was to elucidate the role of CDKA2 during the cell cycle 

in P. tricornutum. First, we reanalyzed the phylogenetic position of CDKA2, this time including 

representatives of groups more closely related to the diatoms. Next, we determined its 

subcellular (re)localization during the cell cycle by microscopic analysis of transformant cells 

expressing a fluorescently-labeled version of CDKA2. In addition, a yeast-two-hybrid library 

screen was performed to fish out putative interactors of CDKA2, including cyclins. To discover 

the biological function of CDKA2 during cell division we monitored growth rate and cell cycle 

progression in CDKA2 overexpression lines. To determine whether the observed growth defects 

could be attributed to an increased kinase activity upon CDKA2 overexpression, we examined 

whether the same effects could be observed in transgenic lines expressing a kinase-null version 

of CDKA2.  
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RESULTS 
 

Phylogenetic analysis 

Considering the ambiguous classification of CDKA2, we performed a new 

phylogenetic analysis to determine the phylogenetic position of CDKA2 amongst the CDK 

family members (Figure 5.1). The recent release of genome data from several algal groups 

more closely related to P. tricornutum allowed us to include CDK sequences of these species 

in the multiple sequence alignment. In the updated phylogenetic tree, CDKA2 forms together 

with the B-type CDK representatives of E. siliculosus a well-supported clade which may 

represent a stramenopile-specific cluster. However, based on this phylogenetic analysis it 

remains impossible to detemine whether CDKA2 is more related to the A-type or B-type 

CDKs (Figure 5.1). The tree indicates rapid radiation of CDK types near the base of the 

CDKA and CDKB lineage possibly representing a CDK gene diversification phase during the 

early stages of eukaryotic evolution. 

 

CDKA2 relocalizes from the nucleus to the plane of division during cytokinesis 

 To determine the localization of CDKA2 during the cell cycle, we generated transgenic 

lines in which CDKA2 was fused N-terminally to the fluorescent marker eYFP under control of 

the fucoxanthin chlorophyll binding protein B (fcpB) promoter (eYFP-CDKA2). In interphase 

cells that contain undivided or divided translocating chloroplasts, the eYFP signal could be 

observed in the nucleus (Figure 5.2a, 5.2b and 5.2c). This nuclear localization was confirmed by 

4',6-diamidino-2-phenylindole (DAPI)-staining (Figure 5.2f). Remarkably, after karyokinesis, 

when daughter chloroplasts are fully translocated (De Martino et al., Manuscript in preparation),  

bright  fluorescent  dots  appeared  in  both daughter  nuclei  (Figure  5.2d  and  5.2f).  During 

cytokinesis the signal extended to the division plane between the two daughter chloroplasts 

(Figure 5.2e). Following division, CDKA2 relocalized to the nucleus in both daughter cells. 

 

CDKA2 can interact with CKS1 and CYCD1 

 To identify possible interactors of CDKA2, we conducted two independent yeast-two-

hybrid (Y2H) library screens using as bait either the full-length wild-type CDKA2 or a kinase 

inactive CDKA2 protein (CDKA2.N148). The latter contains a point-mutation (D148>N148) in its 

predicted catalytic site, known to interfere with correct ATP binding, and hence kinase activity  
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Figure 5.1: Updated phylogenetic analysis of the cyclin-dependent kinases of P. tricornutum. Neighbor-joining tree 

(TREECON, Poisson correction, 1000 replicates) of the CDK family. The P. tricornutum sequences are shown in 

bold. Abbreviations: Arath, Arabidopsis thaliana; Cyame, Cyanidioschyzon merolae; Drome, Drosophila 

melanogaster; Ectsi, Ectocarpus siliculosus; Homsa, Homo sapiens; Lyces, Lycopersicon esculentum; Medsa, 

Medicago sativa; Micpu, Micromonas pusilus; Mispe, Micromonas species; Musmu, Mus musculus; Nicta, 

Nicotiana tabacum; Oryja, Oryza japonica; Orysa, Oryza sativa; Ostlu, Ostreococcus lucimarinus; Ostta, 

Ostreococcus tauri; Phatr, Phaeodactylum tricornutum; Sacce, Saccharomyces cerevisiae; Schpo, 

Schizosaccharomyces pombe; Thaps, Thalassiosira pseudonana; and Xenla, Xenopus laevis. The utgroup is 

represented by human CDK10. 
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Figure 5.2: Localization of YFP-CDKA2 in P. tricornutum. Confocal images of normal fusiform YFP-CDKA2 

overexpression cells during different stages of the cell cycle. (a) Interphase cell with undivided chloroplast. (b) 

Interphase cell with twisted chloroplast. (c) Interphase cell with translocating chloroplast. (d) Cell with divided 

chloroplast and nucleus. Note the appearance of small bright fluorescent dots inside both daughter nuclei. (e) 

Cell during cytokinesis. At the time of cytokinesis, the signal is no longer prominent in the nucleus but it is also 

targeted to the cell plate. (f) Confirmation of the nuclear localization of the eYFP signal by colocalization of 

DAPI staining. BF, Bright field; Green, eYFP signal; Red, autofluorescence chloroplast (auto); Blue, DAPI 

signal. Baseball bat (BBB) shaped cell is indicated by an asterix. Scale bars represent 2µm. 

 

without altering the protein’s 3D structure (Taylor et al., 1993; Jeffrey et al., 1995). The screen 

using the wild-type allele of CDKA2 yielded four possible interactors, including the 

conservedCDK binding protein CKS1 (Table 5.1). The screen using CDKA2.N148 as a bait 

yielded seven possible interactors, including two cyclins (cyclin P6 and cyclin D1) (Table 5.1). 

 To confirm these interactions, pairwise Y2H assays were performed by co-transformation 

of CDKA2 or CDKA2.N148 fused to the DNA-binding domain of GAL-4 (DBD) and their 

respective candidate interactors fused to the GAL-4 activation domain (AD). Using CDKA2 as 

bait, we could only confirm the interaction with CKS1, whereas the assay using CDKA2.N148  
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Table 5.1: Overview of the results of the Y2H library screens using CDKA2 and CDKA2.N148 as bait.  

BAIT protein ID Description 

CDKA2 
  
  
  

Phatr2_53229 CKS1 
EST unknown1 
Phatr2_28797 PTD9, delta 9 desaturase 
Phatr2_47845 Sulfatase 

   CDKA2.N148 
 

 
 
  
  
  
  
  
  

Phatr2_35894 protein phosphatase 2C-like, PP2C-like 

 
EST unknown1 

 
Phatr2_6231 CYCP6 

 
Phatr2_50640 Unknown2  (cellulase E4) 

 
Phatr2_54511 COP beta 

 
Phatr2_29283 cyclin D1 

 
Phatr2_6231 CYCP6 

    

 

 

 

 

 

 

 

 
 

Figure 5.3: Confirmation of the candidate 

interactors by pairwise Y2H co-

transformation assays. Yeast PJ694-alpha 

cells were co-transformed with bait 

(DBD) and prey (AD) plasmid as 

indicated. Co-transformation was 

analyzed on medium lacking leucine and 

tryptophan (-L-T). Co-transformants 

were tested for their ability to activate 

the histidine marker gene by assessing 

yeast growth on medium lacking leucine, 

tryptophan and histidine (-L-T-H) and 

for their ability to activate the LacZ 

reporter gene (X-Gal). For each 

combination three independent colonies 

were screened, of which one is shown. 
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as bait confirmed CYCD1 as an interactor (Figure 5.3). One candidate interactor (unknown1) 

was identified as a general false-positive as it was able to activate itself on medium lacking 

histidine (Figure 5.4). Interestingly, both confirmed interactors (CKS1 and CYCD1) were 

previously shown to be transcribed mainly during the G2-M phase, coinciding with the 

expression pattern of CDKA2 (Huysman et al., 2010). 

 

Overexpression of CDKA2 reduces cell growth rate by interfering with G2-M phase 

progression 

 To study the effect of CDKA2 overexpression on cell cycle progression in P. tricornutum, 

we generated transgenic lines overexpressing CDKA2 C-terminally fused to eYFP (CDKA2-

YFP). Overexpression of CDKA2-YFP was evaluated by transcript analysis of CDKA2 and 

eYFP using real-time quantitative PCR (real-time qPCR) in wild-type (WT) and transformed 

cells (Figure 5.4a and 5.4b, respectively). Two lines expressed a two- to three-fold higher 

level of CDKA2 transcripts compared to WT cells (CDKA2-YFP A4 and CDKA2-YFP B1, 

respectively) (Figure 5.4a) due to the overexpression of the CDKA2-YFP fusion (Figure 5.4b), 

while another line (CDKA2-YFP B9) showed no increase in CDKA2 (Figure 5.4a), rendering 

this a good internal transformation control. Western blot analysis using a GFP-specific antibody 

was performed to detect the expression of the fusion protein, and although a weak but clear 

band at the expected height could be detected for the strongest overexpression line CDKA2-

YFP B1, no band could be detected for CDKA2-YFP A4 (Figure 5.4c). The latter might be 

related to the specificity of the GFP-antibody used or the amount of protein extract that was 

used. Increasing the protein amount and optimization of the probing conditions might be 

necessary in order to detect a clear signal on the blot.  

  To determine if CDKA2 overexpression resulted in major growth changes, a growth 

analysis was performed on transgenic cells and control cells. Optical density determination, 

which can be used as a measurement of cell density, was performed in the morning during nine 

consecutive days, in lines grown under constant light. Cells expressing increased levels of 

CDKA2-YFP (CDKA2-YFP A4 and CDKA2-YFP B1) showed longer generation times, in a 

dose-dependent manner, compared to the control cells (WT and CDKA2-YFP B9) (Figure 

5.4d). To determine the cell cycle phase that was affected during exponential growth, leading to 

a decreased growth rate, we measured transcript levels of cyclinP6 (CYCP6), E2F1 and 

cyclinB1 (CYCB1) in exponentially growing asynchronous CDKA2 overexpression and control 

cells. These genes represent diatom cell cycle marker genes specific for the G1-, S- and G2-M-
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phases, respectively (Huysman et al., 2010) (see Chapter 2, Figure 2.6a; and Chapter 4, Figure 

4.6). In both CDKA2 overexpression lines, we detected higher transcript levels of the mitotic 

marker CYCB1, and lower E2F1 levels compared to those of the control cells (figure 5.4e), 

indicating that CDKA2 overexpressing cells spend a longer time in the G2-M phases. 
 

 
 

Figure 5.4: Effect of CDKA2-YFP overexpression on cell cycle progression. a. Real-time qPCR analysis of 

CDKA2 transcript levels in WT and transgenic lines. b. Real-time qPCR analysis of eYFP transcript levels in 

WT and transgenic lines. c. Western blot analysis of CDKA2-YFP protein levels in WT and transgenic lines. d. 

Generation times of overexpression and control lines grown under constant light. e. Real-time qPCR analysis of 

different cell cycle marker genes in overexpression and control lines. f. DNA distribution in overexpression and 

control cells measured by flow cytometric analysis (n=5000). Error bars represent standard errors. 

 

 To test whether the observed growth phenotype of the transgenic cells was due to 

aberrant kinase activity of the CDKA2-YFP fusion protein or due to out titration of essential 

components, we generated transgenic lines harboring a dominant-negative version of CDKA2 

(CDKA2.N148) under the control of the overexpression fcpB promoter. Overexpression of the 

CDKA2.N148-YFP construct in P. tricornutum cells was evaluated by real-time qPCR and 

western blot analysis, and two lines were retained for further experiments (Figure 5.5a, 5.5b and 
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5.5c). Growth analysis was performed to detect growth effects and, although the selected 

CDKA2.N148-YFP lines expressed up to five-fold levels of the dominant-negative version 

versus the endogenous gene (Figure 5.5a), no reduction of cell growth rate could be observed 

for cells overexpressing the dominant-negative fusion compared to control cells (Figure 5.5d). 

Furthermore, transcript levels of the cell cycle marker genes were comparable to those of 

untransformed cells (Figure 5.5e). Together, these data indicate that the growth phenotype 

observed in CDKA2 overexpressing cells is due to aberrant kinase activity levels in the cell, 

probably being responsible for misregulation of the G2-M phase progression.  
   

   

Figure 5.5: Effect of CDKA2.N148-YFP overexpression on cell cycle progression a. Real-time qPCR 

analysis of CDKA2 transcript levels in WT and CDKA2.N148-YFP overexpressing lines. b. Real-time qPCR 

analysis of eYFP transcript levels. c. Western blot analysis of CDKA2.N148-YFP protein levels in WT and 

transgenic lines. d. Generation times of overexpression and WT cells grown in constant light. e. Real-time qPCR 

analysis of different cell cycle marker genes in overexpression and control lines. Error bars represent standard 

errors. 
 

 It is worthwhile to note that in several CDKA2 overexpression lines, a subpopulation 

could be observed that showed aberrant cell morphology, called the baseball bat (BBB) shaped 
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cells (Figure 5.2f, indicated with an asterix). However, we were unable to find a clear 

correlation between the abundance of BBB-cells and the CDKA2 overexpression level. We 

observed that within a single culture the frequency of BBB-shaped cells decreased over time, 

indicating that BBB-cells eventually cannot divide anymore and die. Therefore, the severity of 

this morphological phenotype might explain the lack of correlation between phenotype and 

transcript abundance levels, as higher levels of CDKA2 might induce more severe phenotypes 

that are counter selected in the population, and hence can be missed during analysis. 

 

   

DISCUSSION 
 

 In this study, we have attempted to elucidate the role of CDKA2 in the diatom P. 

tricornutum. This CDK was previously assigned to the A-type family, but displays a PSTALRE 

motif, a motif in between the motifs of the conserved A-type and plant-specific B-type CDKs 

(Joubes et al., 2000; Huysman et al., 2010). Unlike for classical A-type CDKs, transcription of 

diatom CDKA2 was reported to be fluctuating during the cell cycle in synchronized cells, 

starting to accumulate after S-phase and showing a peak at mitosis (Huysman et al., 2010), 

suggesting a role for CDKA2 in the control of mitosis. Reexamination of the phylogenetic 

position of CDKA2, by including the sequences of representatives of more closely related 

groups in the phylogenetic analysis, assigned CDKA2 to a cluster of CDKB-like sequences. 

Furthermore, the hypothesis that CDKA2 might function as a mitotic regulator is supported by 

the observation of YFP-CDKA2 localization at the cell division plane in pre-cytokinetic cells. 

This localization pattern suggests that CDKA2 might have an upstream regulatory function in 

the formation of the cell division plate and/or other mitotic structures, or in the recruitment of 

one or various components to the cell plate. In mammals the activity of PRC1, a microtubule 

(MT) binding and bundling protein responsible for MT stabilization during cytokinesis, is 

regulated through phosphorylation by CDKs (Jiang et al., 1998). Also in plant cells, the MT-

dependent association of CDKs with mitotic structures and the functional involvement of CDKs 

in the organization of specific MT arrays has already been reported (Mineyuki et al., 1991; 

Colasanti et al., 1993; Stals et al., 1997; Ayaydin et al., 2000; Weingartner et al., 2001).  

 We identified the interaction of CDKA2 with two other cell cycle regulators, CKS1 and 

cyclinD1, which are both reported to be transcribed mainly at the G2 phase in synchronized 
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cells (Huysman et al., 2010). The interaction with CKS1 was not surprising as CKS1 is a 

member of a conserved family of small proteins that are believed to act as docking factors that 

mediate the interaction of CDKs with regulatory proteins and putative substrates (Pines, 1996). 

Therefore CKS1 might represent a good bait to identify putative substrates of CDKA2 in further 

studies. D-type cyclins in plants and animals have mainly been reported to function as 

integrators of extracellular signals to the cell cycle during the G1-phase (Sherr, 1995; Oakenfull 

et al., 2002). However, considering its transcription profile, the diatom CYCD1 protein might 

have acquired an alternative function at the G2-to-M transition. Similar G2-M transcript 

expression patterns have been reported for D3-type cyclins in tobacco and alfalfa cell cultures 

(Sorrell et al., 1999; Meszaros et al., 2000) and, moreover, a D-type cyclin has been shown to 

interact with a mitotic CDK in alfalfa cells (Meszaros et al., 2000). Furthermore, ectopic 

expression of CYCD3;1 in A. thaliana trichomes induces cell division (Schnittger et al., 2002).  

 Although in other organisms, overexpression of wild-type CDKA or CDKB sequences 

generally does not induce any phenotype (Hemerly et al., 1995; Porceddu et al., 2001; Boudolf 

et al., 2004), we observed major growth defects in P. tricornutum cells overexpressing CDKA2. 

Most obviously, the generation time almost doubled, despite on only a three-fold increase in 

CDKA2 transcript level. By determination of cell cycle marker gene expression, we found that 

this delay probably results from a lengthening of the G2-M phases, as CYCB1 levels were 

clearly elevated in CDKA2 overexpressing cells. The study of kinase-null CDK mutants have 

been proven useful in yeast, animals and plants to assess the function of different CDKs during 

the cell cycle (Mendenhall et al., 1988; van den Heuvel and Harlow, 1993; Hemerly et al., 1995; 

Porceddu et al., 2001; Boudolf et al., 2004). Upon overexpression, these mutated alleles induce 

a dominant-negative effect, probably because of competition with the wild-type proteins for the 

association with rate-limiting interacting and regulatory proteins (van den Heuvel and Harlow, 

1993; Labib et al., 1995). Surprisingly, overexpression of a dominant-negative form of CDKA2, 

CDKA2.N148, in P. tricornutum did not show any obvious cell cycle phenotype, suggesting that 

the mitotic arrest observed in CDKA2 overexpressing cells might result from aberrant levels and 

timing of CDKA2 kinase activity, rather than from competition of the overexpressor construct 

with rate-limiting interacting proteins. Therefore, in analogy with other eukaryotes, exit from 

mitosis in P. tricornutum most likely depends on downregulation of CDK activity (Zachariae 

and Nasmyth, 1999; Weingartner et al., 2004).  

 Interestingly, all organisms in which B-type CDKs have been identified seem to lack a 

functional CDC25 phosphatase, except for O. tauri (Khadaroo et al., 2004; Robbens et al., 
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2005). Despite the presence of almost all regulatory components of the eukaryotic cell cycle in 

P. tricornutum, diatoms also lack a clear CDC25 phosphatase homolog (Huysman et al., 2010). 

In yeast and metazoans, CDC25 phosphatases are known to activate CDKs by opposing the 

activity of WEE1/MYT1/MIK1 family of inhibitory kinases (Perry and Kornbluth, 2007). 

Phosphorylation of Thr (T14) and/or Tyr (Y15) residues results in CDK inactivation upon 

activation of the cell cycle checkpoints caused by triggers that should stop the cell cycle, such as 

DNA damage or mitotic defects. Dephosphorylation of these residues by CDC25 renders the 

CDK/cyclin complex active and hence stimulates cell cycle progression (Lew and Kornbluth, 

1996). Although Tyr phosphorylation in plants is important to arrest the cell cycle under stress 

conditions, it does not seem to be crucial for G2-M progression (Hemerly et al., 1995; 

Schuppler et al., 1998; Zhang et al., 2005; De Schutter et al., 2007). The detection of an 

intriguing number of parallels in transcriptional, biochemical and functional properties of 

mammalian CDC25 and plant B-type CDKs, led to the suggestion that the CDC25-mediated 

regulatory mechanisms might have been replaced in plants by a mechanism governed by the 

plant-specific B-type CDKs (Boudolf et al., 2006). This would mean that B-type CDKs would 

probably have arisen from a duplication of the ancestral PSTAIRE-containing CDK in a 

CDC25-containing organism, followed by specification into A- and B-type CDKs and loss of 

the CDC25 gene. The absence of a CDC25 ortholog in C. merolae, E. siliculosus and P. 

tricornutum suggests that CDC25 would have been lost before their divergence. However, the 

presence of a functional CDC25 ortholog in O. tauri contradicts this possibility. Alternatively, it 

might be possible that along with the divergence of the green, red and heterokont lineage, there 

has been a co-evolution and specification of the regulatory mitotic phosphatase. The latter is 

supported by the high divergence of the O. tauri CDC25 sequence, that only shows significant 

similarity to the C-terminal, but not the N-terminal part of the animal and yeast CDC25 gene 

family (Khadaroo et al., 2004).    

 

 To find out more about the precise regulation of CDKA2, more biochemical experiments 

will be required to determine when its protein is active during the cell cycle by kinase assays 

and whether its activity is regulated by Tyr phosphorylation. Along with an in-depth cell 

biological study of the cellular structures in the CDKA2 overexpressing cells, identification of 

CDKA2 substrates might help us to determine the precise function of CDKA2 during diatom 

mitosis. 
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MATERIALS AND METHODS 
 

Phylogenetic analysis 

 Multiple alignments based on CDK amino acid sequences were generated with MUSCLE 

(Edgar, 2004) and then manually improved with BioEdit (Hall, 1999). To define subclasses 

within the gene families, phylogenetic trees were built that included reference CDK sequences 

from animals, plants and algae. TREECON (Van de Peer and De Wachter, 1994) was used to 

construct the neighbor-joining trees based on Poisson-corrected distances. To test the 

significance of the nodes, bootstrap analysis was applied using 1000 replicates. 

 

Diatom culture conditions 

 Phaeodactylum tricornutum (Pt1 8.6; accession numbers CCAP 1055/1 and CCMP2561) 

was grown in f/2 medium without silica (f/2-Si) (Guillard, 1975) made with filtered and 

autoclaved sea water collected from the North Sea (Belgium). Cultures were cultivated at 18°C-

20°C in a 12-h light/12-h dark regime and 70-100 μmol photons m-2 s-1. Liquid cultures were 

shaken at 100 rpm. For biolistic transformation, P. tricornutum cells were grown on solid f/2-Si 

medium containing 1% Select agar (Sigma). 

 

Cloning constructs 

 All expression vectors were obtained via the Gateway system (Invitrogen) (Siaut et al., 

2007). The full length sequence of CDKA2 was amplified by PCR with gene-specific forward 

and reverse primers designed to allow either N- or C- terminal fusion (Table 5.2). The purified 

fragments were then cloned into the pENTR-D-TOPO vector (Invitrogen) and the obtained 

ENTRY clone was subsequently recombined into a diatom adapted destination vector for N-

terminal or C-terrminal fusion with the eYFP fluorescent marker (Siaut et al., 2007) through 

attL×attR recombination reaction (Invitrogen). Point mutation of the CDKA2 sequence at the 

D148 residue (D>N) was performed by in vitro PCR-based mutagenesis using specific primers 

(Table 5.2).  
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Table 5.2: CDKA2 cloning primers. 

   
Primer name Sequence 

  CDKA2_Fw CACCATGGAACGTTACCATAAGATAGAAAAG 
CDKA2-N_Rv TCAGATGTTTTCCTTATCCAAGTC 
CDKA2-C_Fw GATGTTTTCCTTATCCAAGTCATCA 
CDKA2-DN_Fw TCTTAAGATAGCGAACTTTGGTCTAGC 
CDKA2-DN_Rv GCTAGACCAAAGTTCGCTATCTTAAGA 
    

 

Yeast-two-hybrid analysis 

Yeast-two-hybrid bait plasmids were generated through recombinational GATEWAY 

cloning (Invitrogen). Full length open reading frames of the P. tricornutum CDKA2 and 

CDKA2.N148 genes (see above) were recombined in the pDEST32 (bait) vector (Invitrogen) by 

attL×attR recombination, resulting in translational fusions between the proteins and the GAL4 

DNA-binding domains. Plasmids encoding the bait constructs were transformed in the yeast 

strain PJ694-alpha (MATa; trp1-901, leu2-3,112, ura3-52, his3-200, gal4D, gal80D, 

LYS2::GAL1-HIS3, GAL2-ADE2, met2GAL7-lacZ) by the LiAc method (Gietz et al., 1992). 

A library screen was performed using a custom-made Y2H cDNA library (Invitrogen). Yeast 

cells co-transformed with interaction combinations were selected on synthetic dextrose (SD) 

plates lacking Leu, Trp and His. Growing colonies were restreaked on SD medium lacking 

Leu, Trp and His, and plasmid was purified from patches using the Zymoprep I Yeast Plasmid 

Minipreparation Kit (Zymo Research) according to the manufacturers’ instructions. Yeast 

plasmid was used as a template in a PCR reaction with primers flanking the gateway cloning 

site of pDEST22 (pDEST22_Fw: TATAACGCGTTTGGAATCACT and pDEST22_Rv: 

AGCCGACAACCTTGATTGGAGAC), and the obtained product was sequenced and blasted 

against the P. tricornutum genome database to identify the interactor (http://genome.jgi-

psf.org/Phatr2/Phatr2.home.html).  

 

Biolistic transformation 

 Constructs were introduced into P. tricornutum by microparticle bombardment as 

previously described (Falciatore et al., 1999). The pAF6 plasmid was used to confer resistance 

to phleomycin (Falciatore et al., 1999). Transformants were initially selected based on their 

ability to grow on medium containing phleomycin (100µg/ml final concentration). Individual 

resistant colonies were both restreaked on f/2-Si agar plates and grown in liquid f/2-Si medium 

without antibiotics for further analysis. 
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Microscopic analysis 

Images were obtained with a scanning confocal microscope 100 M (Zeiss) equipped 

with the software package LSM510 version 3.2 (Zeiss) and a C-Apochromat 63x (1.2 NA) 

water-corrected objective. eYFP fluorescence was excited with Argon illumination (488 nm) 

and chlorophyll autofluorescence with HeNe illumination (543 nm). DAPI (4',6-diamidino-2-

phenylindole) staining was visualized by illumination at 351 nm. 

 

Real-time quantitative PCR 

For RNA extraction, 5 x 107 cells were collected, fast frozen in liquid nitrogen and 

stored at -70ºC. Cell lysis and RNA extraction was performed using TriReagent (Molecular 

Research Center, Inc., Cincinnati, OH, USA) according to the manufacturer’s instructions. 

Contaminating genomic DNA was removed by DNaseI treatment (Promega). To assess RNA 

concentration and purity, spectrophotometry was used (NaNodrop ND-1000, Wilmington, DE). 

Total RNA was reverse transcribed using iScript reverse transcriptase (Roche). Finally, 10 ng of 

cDNA was used as template in each qPCR reaction. 

 Samples in triplicate were amplified on the Lightcycler 480 platform with the 

Lightcycler 480 SYBR Green I Master mix (Roche Applied Science), in the presence of 0.5 μM 

gene-specific primers (eYFP_Fw: TGCTTCGCCCGCTACCC and eYFP_Rv: 

ATGTTGCCGTCCTCCTTGAAG; other primers see Huysman et al., 2010 and Chapter 4). 

The cycling conditions were 10 min polymerase activation at 95°C and 45 cycles at 95°C for 

10 s, 58°C for 15 s and 72°C for 15 s. Amplicon dissociation curves were recorded after cycle 

45 by heating from 65°C to 95°C. In qBase (Hellemans et al., 2007), data were analyzed using 

the ΔCt relative quantification method with the stably expressed EF1a and TubA as 

normalization genes (Siaut et al., 2007).  

 

Western blot analysis 

 Proteins were extracted by adding 200 µl Laëmli buffer to frozen cells (50 * 106 cells) and 

incubation of cell lysates during 15 minutes on ice. Protein extracts (15 µg) were resolved on 

12% SDS-PAGE gels, and transferred to nitrocellulose membranes (Millipore) using the wet-

blot method. The YFP-fusion proteins were detected by incubating proteins transferred to 

nitrocellulose membranes for 1h with a 1:3,000 dilution of anti-GFP primary monoclonal 

antibody (Rockland) at room temperature, followed by 1h incubation in a 1:10,000 dilution of 
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horseradish peroxidase (HRP) anti-mouse secondary antibody at room temperature. Signals 

were detected using the Western LightningTM detection kit (Pierce). 

  

Growth analysis 

 To monitor growth, cells were grown at constant illumination in a 24-well plate (Falcon), 

in a total volume of 1 ml, over a time period of nine days. Absorbances of the cultures were 

measured at 405 nm using the VICTOR3 Multilabel Plate Reader (Perkin-Elmer) each day in 

the morning. Obtained growth curves of triplicate cultures were LN(2)-transformed and average 

generation times were calculated by determination of the derivative of the values between the 

points of maximal slope (exponential growth phase). 
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6 
General discussion and future perspectives 

 

 

General discussion 

 

In this thesis we aimed to unravel the physiological and molecular mechanisms that 

underlie the regulation of the diatom cell cycle. Diatoms can live and dominate in rapidly 

changing and sometimes extreme environments, suggesting that they possess the ability to 

adapt and survive under such conditions. Their complex evolutionary history, as illustrated by 

the recent genome sequencing of two diatom species (Armbrust et al., 2004; Bowler et al., 

2008) most likely contributes to their high versatility towards changing conditions. Diatoms 

derived from a secondary endosymbiotic event, involving a photosynthetic red alga and a 

‘green’ eukaryotic host cell (Li et al., 2006; Moustafa et al., 2009). Moreover, a substantial set 

of genes of bacterial origin was found in diatoms and phylogenomic analyses indicated that 

horizontal gene transfer is pervasive in diatoms (Bowler et al., 2008). The complex origin and 

combination of their genome repertoire has most likely provided the diatoms with novel 

metabolic capacities and possibilities for the perception and transduction of environmental 

signals. 

In order to decipher the ecological success of diatoms and to be able to fully exploit 

their commercial value, a better understanding of diatom biology, and in particular of the 

mechanisms controlling diatom life cycle strategies, is needed. Our current understanding of 

the regulation of eukaryotic cell division relies mainly on studies in model systems, such as 

yeast, mammalian and plant cells (Morgan, 1997; Inzé and De Veylder, 2006; Lloyd and 

Chan, 2006; Doonan and Kitsios, 2009), representing only two of the eight major eukaryotic 

groups (Baldauf, 2003). Although diatoms have long been the subject of cell division studies 

since Lauterborn’s remarkable microscopic observations of diatom mitosis at the end of the 

19th century (Lauterborn, 1896), only recently significant progress has been made to uncover 

the molecular secrets of diatom cell cycle regulation (Hogan et al., 1992; Thamatrakoln and 

Hildebrand, 2007; Gillard et al., 2008; De Martino et al., 2009). 
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With the genome sequences of two diatom species (Thalassiosira pseudonana and 

Phaeodactylum tricornutum) available at the onset of this thesis work (Armbrust et al., 2004; 

Bowler et al., 2008), we were able to investigate the molecular conservation of the cell cycle 

machinery in diatoms (Figure 6.1). A common basis with other eukaryotic cell cycle 

regulatory systems was found, through the identification of conserved cell cycle regulators, 

including cyclin-dependent kinases (CDKs), cyclins and regulatory molecules (Chapter 2) 

(Doonan and Kitsios, 2009), and the presence of a functional Rb-pathway (Chapter 4). In 

addition, by genome-wide analysis we detected some interesting diatom-specific features of 

cell cycle regulation. We found that the major expansion of the cyclin gene family, as already 

reported by Bowler et al. (2008), was specific to diatoms and not shared by any closely 

related group of organisms, and, by phylogenetic analysis we identified a novel class of 

diatom-specific cyclins within the cyclin gene family (Chapter 2).  

 

A diatom cell cycle study toolkit 

To be able to study cell cycle related transcription of the annotated diatom cell cycle 

genes, a robust cell cycle synchronization method for our model organism P. tricornutum was 

established. Because in general both nutrient and light deprivation causes cell cycle arrest in 

diatoms (Olson et al., 1986; Vaulot et al., 1986; Vaulot et al., 1987; Brzezinski et al., 1990), 

both strategies could potentially be used to naturally synchronize the diatom cell cycle, 

without the need of chemical cell cycle inhibitors (Planchais et al., 2000), which first need 

optimization of concentration which might cause stress to the cells. The only nutrient that has 

been reported to induce a uniform arrest in diatoms is silicon (Vaulot et al., 1987), but as P. 

tricornutum is one of the few species without silicon requirement we did not consider this 

option. On the other hand, P. tricornutum displays a single light-dependent segment during its 

cell cycle situated at the G1-phase (Brzezinski et al., 1990). As expected, light limitation 

perturbed G1-phase progression in P. tricornutum and reillumination resulted in immediate 

and synchronous release of the cell cycle arrest (Chapter 2). Such a light-induced 

synchronization method has been proven useful to synchronize cell division in S. robusta as 

well (Gillard et al., 2008). Cytological observations of the chloroplast conformation during 

synchronized growth allowed us to determine the specific timing of chloroplast division and 

plastid movements during the cell cycle (Figure 6.1). Therefore, chloroplast cytology might 

be used as an easy and fast tool to identify the cell cycle phase of a diatom cell (Chapter 2) 

(De Martino et al., Manuscript in preparation). This method can complement other more 
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laborious techniques, such as flow cytometry or quantitative epifluorescence microscopy, to 

determine the cell cycle stage (von Dassow et al., 2008). In addition, applying this 

synchronization method for monitoring the transcription of the annotated diatom cell cycle 

genes during the cell cycle, provided us with a set of cell cycle marker genes that can be used 

both in the laboratory and in the field (Chapter 2). The development of molecular cell cycle 

probes might be valuable to assess and monitor diatom growth events, either species- or 

group-specific, in nature, and might for example help to detect early bloom stages of toxin 

producing species (Diercks et al., 2008). The type of probes that can be designed, either 

universal or specific, and their applicability will largely depend on the degree of sequence 

conservation of the genes of interest. In the case of the diatom-specific cyclins, development 

of universal probes might be difficult given their high sequence divergence, but in turn, they 

might be interesting candidates for the evaluation of species-specific responses to 

environmental stresses.  

 

Diatom-specific cyclins link the environment to growth 

During the genomic analysis a novel class of diatom-specific cyclins was identified 

(Chapter 2). Their principal transcription at the G1 phase, together with a remarkable lack of 

typical D-type cyclins in diatoms, suggested that these diatom-specific cyclins might be 

involved in coupling extracellular signals to the cell cycle machinery. This hypothesis was 

corroborated by the transcription of some of these cyclins upon phosphate and silicon 

availability (Chapter 2), and the strict light-regulation of dsCYC2 (Chapter 3). The sequential 

timing of their transcription during a synchronized cell cycle, starting with the light-regulated 

dsCYC2 and followed by the nutrient-dependent dsCYCs, combined with the persistent cell 

cycle arrest upon nutrient repletion of starved cells during darkness, suggests that the light 

control checkpoint precedes nutrient control in P. tricornutum, in contrast to what has been 

reported for Thalassiosira weissflogii (Olson and Chisholm, 1983). The hierarchy of these 

checkpoints might relate to the different spectral properties of their habitats. P. tricornutum is 

mostly found in dynamic and turbid estuarine waters where changes in light intensity occur 

much faster than in open-ocean waters, while T. weissflogii represents a coastal species 

experiencing more intermediately stable irradiances (MacIntyre et al., 2000; Lavaud et al., 

2007).     

Because light is a crucial factor for a photoautotrophic organism like P. tricornutum, 

we further functionally characterized dsCYC2 to determine its precise role during the cell 
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cycle. dsCYC2 was found to be highly transcribed within minutes after illumination of dark-

arrested cells, readily followed by its translation. However, transcript levels decreased rapidly 

upon longer light exposure. By reporter line analysis, we showed that this strict regulation 

most likely occurs through regulation of dsCYC2 promoter activity. In addition, a 

transcriptional repressor probably assures that dsCYC2 is only transcribed during a defined 

time-window. Overexpression and silencing of dsCYC2 both provoked subtle to serious 

effects on cell cycle progression, respectively, indicating that the controlled timing of dsCYC2 

expression is of major importance. The latter probably contributes to resetting the cells to 

become sensitive for a new light signal after a period of darkness. The differential expression 

levels of dsCYC2 during constant light versus light-dark cycles suggest that in order to reset 

the light-sensitivity of the cells, the cells would require rapid down regulation of dsCYC2 by 

the light-induced repressor during the light, as well as the inactivation of this repressor during 

darkness. Recently, dsCYC2 was shown to be under control of a blue light sensor (CPF1) 

(Coesel et al., 2009). Therefore it would be interesting to test whether other recently 

discovered diatom light sensors or light receptors (Nymark et al., 2009; Bailleul et al., 2010) 

can regulate dsCYC2 expression, and if different light quantities and qualities can alter its 

transcription. Determination of the sequence crucial to this regulation, presumably a light-

responsive element located within the promoter of dsCYC2, might be of great importance to 

further unravel this light signaling pathway. Because co-expressed genes might be under 

control of similar promoter-based regulation, computational promoter analysis of a set of co-

expressed genes, e.g. upon different light conditions or the dark-to-light transition, could lead 

to the identification of putative light-regulatory sequences. Such analyses have been proven 

useful in several organisms for the discovery of various regulatory elements (Reviewed in 

MacIsaac and Fraenkel, 2006) and even complete regulatory networks (Pilpel et al., 2001). 

Complementary to a co-expression analysis, phylogenetic footprinting, a technique that 

identifies conserved regions based on evolutionary relationships of species, could facilitate 

the search for specific regulatory motifs (Zhang and Gerstein, 2003). Although it is clear that 

dsCYC2 plays a crucial role in the activation of cell cycle progression after dark arrest in P. 

tricornutum, it remains to be elucidated how well this mechanism is conserved among 

different diatom groups or even different species. We have shown in Chapter 2 that the 

diatom-specific cyclins form a large gene family with high sequence divergence and therefore 

it might be difficult to predict orthologs by sequence identity. However, inspection of the 

recently sequenced genome of the pennate diatom Fragilariopsis cyclindrus identified a good 
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candidate ortholog of dsCYC2 showing an overall amino acid identity of 35% (data not 

shown). Further in-depth functional analysis will be required to assess the conservation of this 

light-dependent cell cycle regulator in other diatoms.    

 

A conserved, yet specific G1/S control 

In addition to the diatom-specific cyclins, we found another specific feature of diatom 

cell cycle regulation, related to the Rb-mediated pathway controlling the G1-to-S transition 

(Weinberg, 1995; de Jager and Murray, 1999) (Chapter 4). Using a de novo motif search 

approach, we predicted a diatom-specific E2F motif (sGCsGGCs) that resembles the 

plant/animal E2F consensus (wTTssCss) in its core, but lacks the typical T-rich prefix (Tao et 

al., 1997; Vandepoele et al., 2005). Cloning of the different E2F and DP genes for functional 

analysis, revealed that multiple alleles exist for E2F1 and DP1. Interaction studies revealed 

that E2F2 could associate with both DP proteins, whatever type of DP1 was tested, providing 

evidence that none of the amino acid changes present in the different DP1 types interfere with 

its ability to bind E2F2. Furthermore, we showed that co-expression of E2F2 with DP1b 

resulted in the transactivation of promoters of candidate E2F target genes (PCNA and MCM3) 

that hold the predicted diatom E2F motif. To further test the necessity and sufficiency of the 

predicted diatom E2F cis-regulatory element to transactivate E2F target gene expression, this 

reporter assay should be repeated by using an artificial minimal promoter sequence containing 

only the diatom E2F motif. In addition, it should be considered that at this moment we only 

demonstrated transcriptional activity of the E2F2/DP1b complex in a heterologous system, 

and therefore its function should be confirmed in diatom cells by e.g. overexpression or 

reporter assays. 

 

CDKA2: Making the final cut 

Although CDKA2 was originally assigned to the classical PSTAIRE-containing A-

type of CDKs (Chapter 2), it showed some characteristics inconsistent with other members of 

this class. First, CDKA2 holds a PSTALRE cyclin-binding domain, a hallmark that deviates 

by only a single amino acid residue from those of the plant A-type (PSTAIRE) and B-type 

(PPTA/TLRE) CDKs. Furthermore, its cell cycle phase-dependent transcription at the G2-to-

M transition and its localization at the cell division plane during cytokinesis, suggested a 

specific role for CDKA2 during mitosis. This was supported by its association with CYCD1 

and CKS1, two G2-M expressed cell cycle regulators (Chapter 2), and the observation that  
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Figure 6.1:  Overview of the cell cycle regulation and conservation in P. tricornutum. Start of the cell cycle at 

the G1-phase is initiated by the presence of non-limiting amounts of external stimulatory factors, including light 

and nutrients. Perception of these growth stimuli induces an intracellular signaling cascade that leads to the 

transcription of several diatom-specific cyclins (dsCYCs). These dsCYCs subsequently interact and activate G1-

expressed CDKs, such as the conserved PSTAIRE-containing CDKA1. The active CDK/cyclin complex most 

likely phosphorylates, either directly or indirectly (through activation of other CDK/cyclin complexes), the 

RBR1 protein, resulting in the release and activation of the E2F transcription factor. E2F together with DP binds 

and transactivates a diatom-specific cis-regulatory E2F motif in the promoter of E2F target genes, leading to S-

phase progression. After DNA synthesis has completed, a mitotic CDK, CDKA2 is expressed, along with its 

interaction partners CYCD1 and CKS. In analogy with the DNA damage checkpoint known in other eukaryotes, 
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this complex is probably kept inactive during S-G2 through inhibitory phosphorylation by the MYT1 kinase. 

Possibly, this inhibitory phosphorylation is later removed by a yet to be specified phosphatase. Activation of 

CDKA2 leads to the progression of G2-M and finally results in nulear division (karyokinesis) and cell division 

(cytokinesis). Although not discussed in the thesis, note that the major cell cycle regulatory degradation 

complexes, the Skp1/Cdc53/F-box protein (SCF) complex and the anaphase promoting complex (APC), were 

also identified and have been found to be transcribed at the G1-S and M phases (Huysman et al., unpublished 

data), respectively, suggesting that they might control CDK/cylin activity at these phases. Cytokinesis involves 

the centripetal invagination of the plasma membrane, and the centrifugal neosynthesis of a new valve within the 

silica deposition vesicle (SDV). Chloroplast division and translocation both precede karyokinesis and cytokinesis. 

Conserved regulators or regulatory pathways in eukaryotes are indicated in grey, characteristics common with 

animals in pink, features common with plants in green, and diatom-specific properties in brown. Arrows and 

dashed lines indicate activation and hypothetical regulations, respectively. LDS, light-dependent segment. 

 

overexpression of CDKA2 resulted in a general increase in generation time, mainly due to a 

prolongation of the G2-M phases. The characterization of this putative B-type ortholog in an 

organism that lacks a functional CDC25 phophatase (see Chapter 2) suggests that B-type 

CDKs probably arose from a duplication of the ancestral PSTAIRE-containing CDK and that 

along with the diversification of the different lineages, the regulatory mitotic phosphatase has 

co-evolved. Next to the presence of this functional B-type homolog in diatoms, other CDKB-

like sequences have been reported in E. siliculosus, another heterokont algae (Bothwell et al., 

2010). This brings up the question whether the definition of B-type CDKs being strictly plant-

specific still holds or whether it needs revision, and perhaps could be broadened to ‘plant-

alga’-specific.     

 

 

Future directions 

 

Although the findings discussed in this thesis along with the results of the cytological 

and physiological studies from the past, definitely allow us to fill in some major gaps in the 

understanding of the diatom cell and life cycle regulation, many questions remain unresolved. 

The results discussed above all resulted from so-called reverse genetics experiments, meaning 

that we started from the available genome data and tried to reveal the biological function of a 

specific gene by studying its effect on the phenotype. A major drawback of this approach lies 

in the dependence of what is already known, resulting in the ignorance of novel genes that 

show no homology to genes in other species. As diatoms possess several unique mitotic 
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structures (De Martino et al., 2009) and have evolved strategies to live in the most extremely 

varying conditions, it is to be expected that at least part of the unknown sequences, that 

account for almost half of the gene repertoire (Bowler et al., 2008), should play a role in the 

diatom life cycle regulation. As opposed to reverse genetic techniques that are now well 

established for diatoms, forward genetic screening in diatoms seems to be more difficult 

(Reviewed in Saade and Bowler, 2009). Forward genetics involves the mutagenization of the 

cells, followed by screening for alternated phenotypes of the mutants. However, due to the 

lack of a good experimental diatom model in which sexual reproduction can be controlled, 

and because of the time-consuming and laborious process of mutant mapping, reports on 

forward genetic screens in diatoms are scarce (Alonso et al., 1996; Huesemann et al., 2009; 

Saade and Bowler, 2009). Nevertheless, ongoing work may contribute to make this possible 

in near the future by investigating the potential of Seminavis robusta, a pennate diatom in 

which the sexual cycle can be easily manipulated, as a model system (see further) and by 

exploring alternative gene disruption strategies in P. tricornutum, such as the use of 

engineered zinc-finger nucleases (ZFN) (Santiago et al., 2008) to generate targeted gene 

knockouts or transposon-based mutagenesis like the Sleeping Beauty system that allows rapid 

mapping of the mutated gene (Dupuy et al., 2005).  

 

In addition to the establishment of forward genetic techniques in diatoms, functional 

analysis of cell cycle regulators would greatly benefit from the use of inducible expression 

systems. When overexpressing or silencing regulators of a crucial process such as the cell 

cycle in any organism, one can expect that deleterious effects might occur, yielding 

transformants that have problems to reproduce. Indeed, from our functional analyses of 

dsCYC2 and CDKA2 we have witnessed that serious perturbations of cell cycle progression 

can be observed upon gene expression manipulation (see Chapter 3 and Chapter 5). Due to the 

relatively long selection time associated with the protocol of diatom transformation (lasting 

about 2-3 weeks), during which cells are selected based on their ability to confer resistance to 

antibiotics, transformants with the highest overexpression or silencing efficiencies of such 

vital genes would probably be overlooked due to perturbed reproduction. Inducible expression 

could overcome this problem and such systems have been developed for Cylindrotheca 

fusiformis, T. pseudonana and also recently for P. tricornutum based on promoter and 

terminator sequences of the nitrate reductase (NR) gene (Poulsen and Kroger, 2005; Poulsen 

et al., 2006; Hempel et al., 2009). The system represses the transcription of genes placed 
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under control of the NR regulatory sequences when ammonium is the only nitrogen source, 

and allows the rapid expression of genes upon transfer to nitrate-containing medium. 

Applying this system to our cell cycle studies in P. tricornutum would facilitate the analysis 

of phenotypic effects upon overexpression and silencing, especially in the case of key genes 

that are indispensable for growth. In addition, inducible expression might be useful to study 

the effect of a gene at a particular phase or checkpoint during the cell cycle. As an example, it 

would be interesting to induce the expression of dsCYC2 specifically during darkness and 

examine whether cells can overcome the light-dependent G1 arrest in this way. In addition, 

inducible silencing of dsCYC2 could provide a way to retain the mutants with the highest 

silencing levels and would allow to study its effect on cell cycle progression in a controlled 

manner. Also in the case of CDKA2, inducible overexpression could be valuable to trigger the 

baseball-bat phenotype and elucidate its origin by microscopical analysis of different stages 

during BBB formation. 

 

Recently, the pennate diatom S. robusta was put forward as an new experimental 

model in which the sexual cycle can be easily manipulated (Chepurnov et al., 2008). As a 

consequence, S. robusta has been the subject of several cell cycle and life cycle studies in our 

lab during the last years. Gillard et al. described the first genome-wide transcript profiling, 

using a cDNA-AFLP (cDNA amplified fragment length polymorphism) approach, of S. 

robusta cells progressing synchronous through the mitotic cell cycle (Gillard et al., 2008) and 

ongoing work using the same approach aims to uncover the molecular mechanisms associated 

with the cell size reduction process and the switch from mitosis to meiosis (V. Devos and J. 

Gillard, personal communication). These studies have indicated that cell cycle modulated 

gene expression is abolished during the mating stage of mixed cultures and, in addition, point 

to the existence of a pheromone or cell pairing induced response pathway through the 

upregulation of e.g. hedgehog signaling molecules (J. Gillard, personal communication). 

Further functional charaterization of the latter genes could be done by overexpression analysis 

and monitoring of cell cycle responses in mixed cultures. However, a majority of the 

differentially expressed, relatively short transcript-derived fragments (TDFs) resulting from 

the cDNA-AFLP studies described above show no significant similarity to genes in other 

organisms, including diatoms. The current genome sequencing of S. robusta  (A. Bones, 

personal communication) will facilitate functional analysis of these TDFs by obtaining full-

length sequences. In addition, a deep transcriptomic sequencing (454 sequencing, performed 
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by the Joint Genome Institute JGI) of the mitotic and sexual cycle of four different species 

(including S. robusta) is ongoing. Without any doubt, these results will shed new light on a 

set of genes for which currently no expression or functional data exists and thanks to the 

broad phylogenetic coverage the dataset will provide more insights in life cycle gene 

evolution and conservation. 

 A crucial step towards the exploration of S. robusta as a model organism will be the 

establishment of a genetic transformation protocol  and transformation tools to enable reverse-

genetic functional analysis of the unknown genes identified in the expression studies. 

Transformation protocols of S. robusta by biolistic particle bombardment, the method 

routinely used to transform P. tricornutum (Falciatore et al., 1999) and also T. pseudonana 

(Poulsen et al., 2006), are currently being optimized in our lab. The development of the 

technique has been hampered by the high resistance of S. robusta for the antibiotics (e.g. 

phleomycin) commonly used for selection after transformation in diatoms (K. Vannerum, 

personal communication). However, testing other antibiotic substances, along with the 

generation of a transformation toolbox specific for S. robusta, including expression vectors 

containing endogenous promoter sequences for various purposes (e.g. overexpression, 

silencing, protein tagging, promoter analysis and inducible expression), will most likely make 

it possible to obtain stable S. robusta transformants in the near future. 

  

An improved understanding of the diatom life and cell cycle will also require the 

confirmation of the function assigned to a gene by lab-based studies in the natural 

environment, e.g. by the development of molecular probes that can selectively detect the gene 

from environmental samples. In addition, metatranscriptomics approaches (consisting of the 

large-scale sequencing of transcripts retrieved from natural communities) combined with in-

depth analysis of the prevailing physico-chemical parameters, hold enormous promise for 

understanding the regulation of mixed eukaryotic populations, including diatoms, in response 

to environmental variations and can facilitate functional assignment of specific encoded 

sequences (Rusch et al., 2007; Yooseph et al., 2007). In particular, this strategy would be 

extremely valuable for the functional characterization of the large set of unknown and diatom-

specific genes identified in the recent genomic and transcriptomic analyses (Armbrust et al., 

2004; Bowler et al., 2008; Gillard et al., 2008). However, the major bottleneck to apply 

metatranscriptomics approaches in diatoms comes from the availability of only a few diatom 

reference genome sequences to anchor the environmental sequences to. Nevertheless, the 
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advent of modern, so-called next-generation sequencing techniques that allow high-

throughput parallel sequencing at a lower cost might tremendously expand our current diatom 

genome sequence resources in the coming years. 
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7 
Summary 

 

 

Diatoms represent a highly diverse and ecologically important group of eukaryotic 

unicellular algae that are ubiquitous in marine and freshwater environments. Being one of the 

most species-rich classes among phytoplankton, diatoms account for about one fifth of the 

total oxygen production on our planet and they play a crucial role in the global 

biogeochemical cycling of carbon, nitrate, phosphate and silica. The complex evolutionary 

history of diatoms, including their secondary endosymbiotic origin and the pervasive lateral 

gene transfer from bacteria, resulted in a unique array of different metabolic processes and 

regulatory pathways. Combined with their diploid nature, obligate sexual reproduction and 

wide variation in mating systems, this probably contributed to their enormous diversity and 

ecological success. Furthermore, as producers of various lipids and pigments, and because of 

the mechanical properties of their finely ornamented silica cell wall, diatoms gained emerging 

interest for industrial applications, including biofuel production, nanotechnology and 

pharmaceutics. However, despite the major ecological importance of diatoms and their 

potential commercial value, many mysteries about the mechanisms that control their life cycle 

still remain. In particular, their ability to live and dominate in rapidly changing and sometimes 

harsh environments, suggests that diatoms have evolved specific strategies to adapt to and 

survive in such fluctuating conditions. Unraveling the regulatory mechanisms that underlie 

their unique life cycle strategies will be of crucial importance to understand diatom ecology 

and evolution and to further exploit their industrial potential.    

 

During the last years, the development of molecular tools for diatoms, such as genetic 

transformation, silencing and gene expression analysis, along with the sequencing of several 

diatom genomes have resulted in the accumulation of functional and physiological studies to 

uncover different aspects of diatom biology. The major aim of this thesis was to gain insights 

into the genetic mechanisms and environmental factors that control the diatom cell cycle. At 

the onset of this work, our knowledge of diatom cell division largely depended on extensive 
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microscopy studies, describing the peculiar and unique mitotic structures of diatoms, and on 

physiological studies, reporting the influence of some physicochemical factors on cell cycle 

progression, while molecular and biochemical work was still at his infancy. Our quest for cell 

cycle regulatory mechanisms was started by a genome-wide analysis of the cell cycle in the 

pennate diatom Phaeodactylum tricornutum. In general, the diatom cell cycle machinery was 

found to share some important features with the eukaryotic regulatory system, including the 

presence of classical types of cyclin-dependent kinases (CDKs) and cyclins, and some 

regulatory proteins. To gain more insight in the biological function of the identified cell cycle 

regulators we developed a cell cycle synchronization method based on the release of dark-

induced G1-arrested cells by illumination. This allowed us to monitor transcript expression 

during synchronized growth and assign the different annotated genes to specific cell cycle 

phases, yielding a set of cell cycle marker genes for diatoms.  

From the first genome analyses, it became clear that the cyclin family in diatoms 

represents an expanded gene family in diatoms. By comparative analysis of cyclin abundance 

among several closely related Chromalveolate species, this expansion was found to be 

specific to diatoms. Phylogenetic analysis of the cyclin gene family lead to the discovery of a 

novel type of cyclins, the diatom-specific cyclins (dsCYCs). Their early expression, mainly at 

the G1 and G1-S phases of the cell cycle, and the induction of several members upon 

changing nutrient or light conditions, hints at a role for the dsCYCs in transduction of the 

environmental status of the cell to the cell cycle machinery. Related to this, a crucial role in 

regulating cell cycle progression upon changing light conditions was found for dsCYC2. This 

cyclin is probably one of the first cell cycle genes expressed upon release by illumination of 

dark-arrested cells, suggesting that it might play a role in the control of the G1-specific light-

dependent checkpoint in P. tricornutum. Both silencing and overexpression of dsCYC2 

interfered with normal cell cycle progression, indicating that specific timing of dsCYC2 

expression is of major importance. Our results suggest that a light-dependent transcriptional 

repressor targeting the promoter of dsCYC2 most likely plays a central role in the regulation 

of dsCYC2 expression.    

All members of the Rb-mediated pathway, a conserved pathway controlling G1-S 

regulation in animals and plants, were found in P. tricornutum. However, the discovery of a 

diatom-specifc E2F cis-regulatory element by applying de novo motif finding, suggests at 

least some specific regulation of the G1-S transition in diatoms. The possibility to 
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transactivate promoters holding this diatom-specific E2F motif by the active E2F2/DP1b 

transcription factor complex, indicates that the motif is functional.  

Finally, we addressed the ambiguous nature of CDKA2, a CDK originally assigned to 

the A-type CDKs, but with some typical characteristics of the plant-specific B-type CDKs, 

including cell cycle-dependent transcription at the G2-M transition. Subcellular localization of 

CDKA2 at the cell division plane during cytokinesis and its interaction with other G2-M 

expressed cell cycle genes (CKS1 and CYCD1), point to a function for CDKA2 during 

mitosis. In addition, CDKA2 overexpression resulted in prolongation of the mitotic phase and 

an increase in cell cycle duration, demonstrating its role as mitotic regulator. This is the first 

functional characterization of a CDK with clear CDKB properties in a non-green lineage, and 

hence this report may question the current definition of B-type CDKs as being plant-specific. 

  

In summary, our analyses demonstrated that diatoms use a common eukaryotic base of 

cell cycle regulatory components to control their cell division, complemented with some 

novel diatom-specific features, including an expanded set of diatom-specific cyclins, which 

most probably are part of a complex integrative network allowing them to pace the cell cycle 

with the surrounding conditions. Most likely, other interesting features that control diatom 

cell and life cycle are yet to be discovered. The wealth of information coming from more 

diatom genomes and the use of new functional approaches, such as forward genetic screens, 

will without any doubt help us to resolve some of the remaining mysteries.  
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7 
Samenvatting 

 

 

Diatomeeën zijn een uiterst diverse en ecologisch belangrijke groep van eukaryote 

eencellige algen welke wijdverspreid voorkomen in zowel mariene als zoetwater milieus. Als 

één van de meest soortenrijke fytoplankton klassen staan diatomeeën in voor ongeveer een 

vijfde van de totale zuurstofproductie op onze planeet en spelen ze een belangrijke rol in de 

biogeochemische cycli van koolstof, nitraat, fosfaat en silicium. Diatomeeën bezitten een 

complexe evolutionaire geschiedenis. Ze zijn ontstaan uit een secundaire endosymbiotische 

gebeurtenis en een deel van hun genen hebben ze verkregen via laterale gen overdracht van 

bacteriën, wat resulteerde in een unieke versmelting van verschillende metabolische processen 

en regulatorische biochemische routes. Dit samen met hun diploïde natuur, obligate seksuele 

voortplanting en verscheidenheid aan paringssystemen heeft waarschijnlijk bijgedragen tot de 

enorme diversiteit en het ecologisch succes van diatomeeën. Als producenten van 

verschillende soorten lipiden en pigmenten, en omwille van de mechanische eigenschappen 

van hun fijn gestructureerde silicium-houdende celwand, is er ook interesse voor diatomeeën 

vanuit verschillende industrietakken, o.a. voor biodiesel productie, nanotechnologie en 

farmaceutische toepassingen. Ondanks hun enorm ecologisch belang en hun economische 

waarde bestaan er nog vele mysteries omtrent de mechanismen die hun levenscyclus 

controleren. Meer bepaald, hun vermogen om te leven en te domineren in snel veranderende 

en soms extreme omgevingen suggereert dat diatomeeën specifieke strategieën hebben 

ontwikkeld om te adapteren aan en te overleven in dergelijke fluctuerende condities. Het 

blootleggen van de regulatorische mechanismen die aan de basis liggen van hun unieke 

levensstrategieën is van cruciaal belang om hun ecologie en evolutie te begrijpen en om hun 

industrieel potentieel verder te ontginnen.     

 

Gedurende de laatste jaren heeft de ontwikkeling van moleculaire technieken voor 

diatomeeën, zoals genetische transformatie, silencing en gen expressie analyse, samen met de 

sequenering van verschillende genomen van diatomeeën, bijgedragen tot een toename van 
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functionele en fysiologische studies naar verschillende aspecten van de biologie van 

diatomeeën. Het hoofddoel van dit onderzoek was inzicht te verwerven in de genetische 

mechanismen en de omgevingsfactoren die de celcyclus in diatomeeën controleren. Bij het 

begin van dit werk berustte onze kennis over celdeling bij diatomeeën grotendeels op 

uitgebreide microscopische studies die de unieke mitotische structuren bij diatomeeën 

beschreven, en fysiologische studies die de invloed van een aantal fysisch-chemische factoren 

op de vooruitgang van de celcyclus rapporteerden, terwijl moleculair en biochemisch 

onderzoek nog maar net opkwam. We hebben onze zoektocht naar de mechanismen die de 

celcyclus reguleren gestart met een genoom-wijde analyse van de celcyclus in de pennate 

diatomee Phaeodactylum tricornutum. Over het algemeen werd vastgesteld dat het celcyclus 

controle systeem bij diatomeeën een aantal belangrijke eigenschappen deelt met het celcyclus 

systeem in andere eukaryoten, o.a. de aanwezigheid van de klassieke types van cycline-

afhankelijke kinasen (CDKs) en cyclines, en een aantal regulatorische eiwitten. Om meer 

inzicht te verwerven in de biologische functie van de gevonden celcyclus regulatoren 

ontwikkelden we een methode om de celcyclus te synchroniseren, gebaseerd op alternerende 

periodes van licht en donker. Dit liet ons toe om gedurende synchrone groei de transcript 

expressie op te volgen en zo de verschillende geannoteerde genen aan specifieke celcyclus 

fasen toe te wijzen, resulterend in een set merkergenen voor de celcyclus in diatomeeën.       

Na de eerste genoomanalyses werd het duidelijk dat de familie van de cyclines bij 

diatomeeën geëxpandeerd is. Door vergelijken van het aantal cyclines bij een aantal nauw 

verwante Chromalveolata soorten bleek deze expansie specifiek te zijn voor diatomeeën. 

Fylogenetische analyse van de cycline genfamilie resulteerde in de ontdekking van een nieuw 

type cyclines, de diatomee-specifieke cyclines (dsCYCs). Hun vroege expressie, voornamelijk 

tijdens de G1 en G1-S fasen van de celcyclus, en de inductie van verschillende leden bij 

variërende nutriënt- en lichtcondities, doet vermoeden dat deze dsCYCs instaan voor de link 

tussen de omgevingscondities en de regulatie van de celcyclus. Met betrekking hierop werd 

een cruciale rol gevonden voor dsCYC2 bij het reguleren van de celcyclusvooruitgang bij 

wisselende lichtcondities. Dit cycline is mogelijk één van de eerste geëxpresseerde 

celcyclusgenen na belichting van donker-gearresteerde cellen, wat doet vermoeden dat 

dsCYC2 een rol speelt in het G1-specifiek licht-afhankelijke controlepunt in P. tricornutum. 

Zowel het stilleggen als overexpressie van dsCYC2 interfereerde met normale celcyclus 

progressie, wat aangeeft dat de specifieke timing van dsCYC2 expressie van groot belang is. 

Onze resultaten suggereren dat een licht-afhankelijke transcriptionele repressor, welke de 
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promoter van dsCYC2 beïnvloedt, mogelijks een centrale rol speelt in de regulatie van 

dsCYC2 expressie.   

Alle leden van de Rb-gemedieerde pathway, een geconserveede biochemische route 

voor G1-S regulatie in dieren en planten, werden gevonden in P. tricornutum. De ontdekking 

van een diatomee-specifiek cis-regulatorisch element via de novo motief detectie suggereert 

echter toch een specifieke regulatie van de G1-S overgang bij diatomeeën. De mogelijkheid 

om promoters welke dit diatomee-specifiek E2F motief bezitten te transactiveren via het 

actieve E2F2/DP1b transcriptie factor complex, geeft aan dat het motief functioneel is.  

 Tenslotte zijn we dieper ingegaan op het dubbelzinnige karakter van CDKA2, een CDK 

dat origineel werd ondergebracht bij de A-type CDKs, maar een aantal typische kenmerken 

vertoont van de plant-specifieke B-type CDKs, zoals de celcyclusafhankelijke transcriptie 

gedurende de  G2-M overgang. Subcellulaire localisatie van CDKA2 ter hoogte van het 

celdelingsvlak tijdens cytokinese en de interactie met andere G2-M geëxpresseerde 

celcyclusgenen (CKS1 en CYCD1) duidden op een functie voor CDKA2 tijdens de mitose. 

Daarbij resulteerde de overexpressie van CDKA2 in de verlenging van de mitotische fase en een 

toename van de totale celcyclus duur, wat wijst op een rol als mitotisch regulator. Dit is de 

eerste functionele karakterisering van een CDK met duidelijke CDKB eigenschappen in een 

niet-groene lijn, en daarmee zou dit verslag dan ook de huidige definitie van B-type CDKs als 

zijnde plant-speciefiek in vraag kunnen stellen. 

 

Onze analyses toonden aan dat diatomeeën een gemeenschappelijke eukaryote basis 

van celcyclus regulerende componenten gebruiken om hun celdeling te controleren, 

aangevuld met enkele nieuwe diatomee-specifieke kenmerken, waaronder een uitgebreide set 

van diatomee-specifieke cyclines, die waarschijnlijk deel uitmaken van een complex 

integratief controle netwerk waardoor ze de celcyclus kunnen aanpassen aan de omringende 

omstandigheden. Andere interessante kenmerken die de cel- en levenscyclus van diatomeeën 

reguleren moeten hoogst waarschijnlijk nog ontdekt worden. De rijkdom van informatie 

afkomstig van meerdere diatomee genomen en het gebruik van nieuwe functionele 

benaderingen, zoals “forward genetic screens”, zal ons zonder enige twijfel helpen om een 

deel van de resterende mysteries op te lossen. 
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