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Sijie Tong,1 Navreeta K. Singh,1 Rastko Sknepnek,2, 3, ∗ and Andrej Košmrlj1, 4, †
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Epithelial tissues act as barriers and, therefore, must repair themselves, respond to environmen-
tal changes and grow without compromising their integrity. Consequently, they exhibit complex
viscoelastic rheological behavior where constituent cells actively tune their mechanical properties
to change the overall response of the tissue, e.g., from solid- to fluid-like. Mesoscopic mechanical
properties of epithelia are commonly modeled with the vertex model (VM). While previous studies
have predominantly focused on the longtime behavior, we systematically studied rheological proper-
ties of the VM in the full dynamic range by applying small oscillatory shear and bulk deformations
both in solid- and fluid-like phases. We found that the shear and bulk responses in the fluid and
solid phases can be described by standard spring-dashpot viscoelastic models. Furthermore, the
solid-fluid transition can be tuned by applying pre-deformation to the system. Our study provides
insights into the mechanisms by which epithelia can regulate their rich rheological behavior.

INTRODUCTION

The development and maintenance of tissues requires
close coordination of biochemical and mechanical signal-
ing [1–3]. There is, for instance, mounting evidence for
the key role played by tissue material properties and their
regulation during embryonic development [4]. Tissues
must be able to adjust their mechanical properties in re-
sponse to internal and external stimuli. In particular,
epithelial tissues, which line all cavities in the body and
demarcate organs, must sustain substantial mechanical
stresses while also supporting numerous biological pro-
cesses such as selective diffusion and absorption/secretion
of molecules [5]. In homeostasis, the epithelial tissue
must maintain its shape and resist deformation while re-
maining flexible. The tissue must also be able to regener-
ate and repair itself, often with fast turnover, e.g., in gut
epithelia [6]. Furthermore, in morphogenesis, the epithe-
lial tissue must take up a specific shape and function [7].
During metastasis, however, the shape is lost and cancer
cells invade surrounding healthy tissues [8]. All of these
processes require that cells be able to move, often over
distances much larger than the cell size. During cell mi-
gration, however, the epithelial tissue must maintain its
integrity. It is, therefore, not surprising that epithelia s
exhibit rich viscoelastic behavior [9]. Unlike passive vis-
coelastic materials, an epithelial tissue can actively tune
its rheological response, making the study of its rheology
not only important for understanding biological functions
but also an interesting problem from the perspective of
the physics of active matter systems [10].

Collective cell migration has been extensively studied
in biology [11] and biophysics [12]. In vitro studies of
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confluent cell monolayers [13–17] focused on the phys-
ical aspects of force generation and transmission and
showed that cell migration is an inherently collective
phenomenon. Some aspects of collective cell migration
are remarkably similar to slow dynamics of structural
glasses [18–24]. This suggests that many of the observed
behaviors share common underlying mechanisms and can
be understood, at least at mesoscales (i.e., distances be-
yond several cell diameters), using physics of dense ac-
tive systems [25]. A particularly intriguing observation
is that tuning cell density [18, 26, 27], strength of cell-
cell and cell-substrate interactions [28], or cell shape pa-
rameters [21, 29] can cause the collective migration to
stop. In other words, the epithelium undergoes fluid to
solid transition. Signatures of such behavior have been
reported in several in vitro [19, 30] and developmental
systems [31–33]. This suggests that important aspects
of morphogenetic development might rely on epithelial
tissue’s ability to undergo phase transitions [4].

How an epithelial tissue responds to external and inter-
nal mechanical stresses will depend on its rheological (i.e.,
material) properties. While there have been numerous
studies focusing on the rheology of a single cell [34–36],
much less is known about tissue rheology, particularly
during development. In order to develop a comprehensive
understanding of epithelial tissue mechanics, such insight
is key. Though single cell measurements are valuable, the
mechanics of an epithelial tissue can be drastically differ-
ent from that of its constituent cells. The stiffness of cell
monolayers, for example, is orders of magnitude higher
than the stiffness of constituent cells, while the time de-
pendent mechanical behaviors of monolayers in response
to deformation vary depending on the magnitude of load-
ing [37]. Embryonic cell aggregates have been shown to
behave elastically (i.e., solid-like) at short time scales,
but they flow like fluids at long time scales, which facil-
itates both the robustness needed to maintain integrity
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and the flexibility to morph during development [9]. Ex-
periments have characterized the mechanical behaviors
of epithelial tissues at various loading conditions, which
led to a phenomenological description that models the
relaxation properties of epithelial monolayers based on
fractional calculus [38]. Notably, a recent particle-based
model that includes cell division and apoptosis provided
a plausible microscopic model for nonlinear rheological
response [39]. Particle-based models are, however, un-
able to capture geometric aspects such as cell shape. It
is, therefore, necessary to investigate rheological response
in geometric models.

The vertex model (VM) [40–42] and more recent,
closely related self-propelled Voronoi models (SPV) [21,
43] have played an important role in modeling mechanics
of epithelial tissues since they account for the shapes of
individual cells and provide a link to cellular processes,
such as cell-cell adhesion, cell motility, and mitosis [42].
These geometric models are also able to capture the solid
to fluid transition and demonstrate rich and unusual non-
linear mechanical behavior [44, 45]. While the mechani-
cal properties of the VM and SPV have been extensively
studied, most works to date focused on the long-time
behavior, e.g., by studying the quasistatic shear modu-
lus [20], effective diffusion constant of cells that is related
to the viscosity of tissues [21], and correlations between
a structural property called “softness” and the likelihood
of topological rearrangements of cells [46]. The rheolog-
ical properties of the VM that cover a broad range of
time scales, however, have not yet been systematically
explored. In this paper, we present a detailed study of
the rheology of the VM by studying its response to ap-
plied oscillatory shear and bulk deformations of small
amplitude, i.e., in the linear response regime. We mea-
sured the response stresses and used them to compute
the storage and loss moduli in both the solid and fluid
phases. We show that the dynamical response of the
VM can be fitted to standard spring-dashpot viscoelastic
models over seven decades in the driving frequency and
that the solid-fluid transition can be tuned by applying
pre-deformation to the system. Thus we argue that the
VM makes a suitable basis for studies of dynamics of
epithelial tissues beyond the quasistatic limit.

RESULTS

Vertex model dynamics. In the VM, the state of an
epithelial tissue is approximated as a polygonal tiling of
the plane. The degrees of freedom are vertices, i.e., meet-
ing points of three or more cell-cell junctions. In the sim-
plest formulation, junctions are assumed to be straight
lines. The energy of the VM is a quadratic function of
cell areas and perimeters [41], i.e.,

E =
∑
C

[
KC

2
(AC −AC0)

2
+

ΓC
2

(PC − PC0)
2

]
, (1)

whereKC and ΓC are the area and perimeter elastic mod-
uli. AC and AC0 are the actual and preferred areas of cell
C, respectively. Similarly, PC and PC0 are the actual and
preferred perimeters of the same cell, respectively. In this
work, we assumed KC , ΓC , AC0, and PC0 to be identical
for all cells (i.e., KC ≡ K,ΓC ≡ Γ, AC0 ≡ A0, PC0 ≡ P0).
Further, we fixed the values of K and A0, and measured
the energy in units of KA2

0, stresses in units of KA0,

and lengths in units of A
1/2
0 . Since the ratio between the

perimeter and area elastic moduli does not qualitatively
change the behavior of the VM [20, 41], we fixed that
ratio to Γ/(KA0) ≈ 0.289. The only variable parameter
in simulations was the preferred cell perimeter P0, which
sets the dimensionless cell-shape parameter, defined as
the ratio p0 = P0/

√
A0.

The cell-shape parameter, p0, plays a central role in
determining whether the system behaves as a fluid or
solid [20]. Bi, et al. [20] argued that the rigidity transition
occurs at p0 = pc ≈ 3.812 for a random polygonal tiling.

The transition point is, however, at pc =
√

8
√

3 ≈ 3.722
for a regular hexagonal tiling [47]. In the fluid phase,
the energy barrier for neighbor exchanges vanishes and
cells can flow past each other [48]. As p0 is reduced below
pc, the energy barrier becomes finite, neighbor exchanges
cease and the system becomes solid. While the transition
point for hexagonal tilings can be understood in terms of
the mechanical stability and the excess perimeter [44],
the mechanism that leads to a larger value for random
tilings is more subtle and not fully understood [49].

For definiteness, we started every simulation from a
regular hexagonal tiling in a nearly square box subject
to periodic boundary conditions, where the initial cell ar-
eas AC matched the preferred areas A0 (see Methods).
For the solid phase with p0 . 3.722, the ground state of
the energy in Eq. (1) [47] is a hexagonal tiling, and it was
directly used to investigate rheological properties. Note
that there was some residual hydrostatic stress (due to
the mismatch of cell perimeters PC from the preferred
values P0), which could be eliminated by the appropri-
ate relaxation of the simulation box. This hydrostatic
stress, however, does not qualitatively affect the rheo-
logical behavior of the system (see Supplementary In-
formation, Sec. III for further discussion). For the fluid
phase with p0 & 3.722, the hexagonal tiling corresponds
to a saddle point of the energy in Eq. (1) [47]. A small
random perturbation was applied to each vertex by a
displacement drawn from the Gaussian distribution with
zero mean and standard deviation 1.5 × 10−4

√
A0 (see

Methods); the system was then relaxed using the FIRE
algorithm [50] to reach a local energy minimum. Note
that the energy landscape in the fluid phase has many
local minima and a large number of soft modes (see Sup-
porting Information, Sec. VII). We repeated simulations
to investigate rheological properties for multiple config-
urations corresponding to different local energy minima
(see Methods).

In order to probe the dynamic response of the VM,
we need to specify the microscopic equations of motion
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FIG. 1. Loss and storage shear moduli in the solid (top row) and fluid phase (bottom row). An overlay of the representative
reference (grey) and sheared (yellow) configurations in (a) the solid and (b) the fluid phase. The magnitude of the shear
is highly exaggerated for demonstration purposes. (c-d) show the representative storage (G′) and loss (G′′) shear moduli as
functions of the shearing frequency, ω0, for different values of the cell-shape parameter, p0. Dashed curves are the fits based
on (c) the Standard Linear Solid (SLS) model in the solid phase [see Eq. (4)] and (d) the Burgers model in the fluid phase
[see Eq. (7)]. (e-f) The collapse of the moduli curves for different values of p0 for (e) the solid phase and (f) the fluid phase.
The insets show the representation of (e) the SLS model and (f) the Burgers model in terms of the springs and dashpots. The
majority of the data corresponds to the system of nearly square shape with Nx = 15 cells in the horizontal direction, and we
also show examples of larger systems with Nx = 37 and Nx = 51 cells in the horizontal direction.

for vertices. Assuming the low Reynolds number limit,
which is applicable to most cellular systems due to their
slow speed, inertial effects can be neglected [51]. The
equations of motion are then a force balance between
friction with the substrate and elastic forces due to de-
formations of cell shapes, i.e.,

γṙi = Fi. (2)

Here, ri is the position vector of vertex i in a labora-
tory frame of reference, Fi = −∇riE is the mechanical
force on vertex i due to deformation of cells surrounding
it, γ is the friction coefficient, and dot denotes the time
derivative. Therefore, each vertex experiences dissipative
drag proportional to its instantaneous velocity. In simu-
lations we fixed the value of γ, which sets the unit of time
as γ/ (KA0). Furthermore, we neglected thermal fluctua-
tions and hence omit the stochastic term in Eq. (2). This
is a reasonable assumption since typical energy scales in
tissues significantly exceed the thermal energy, kBT , at
room temperature T , where kB is the Boltzmann con-
stant. It is, however, worth noting that in epithelia there
are other sources of stochasticity (e.g., fluctuations of the
number of force-generating molecular motors) which are

important for tissue scale behaviors [52]. Here, we did not
consider such effects but note that they could be directly
included in the model as additional forces in Eq. (2).

Response to a shear deformation. The hexagonal
ground state in the solid phase and states corresponding
to local energy minima in the fluid phase were used to
investigate the rheological behavior by applying an oscil-
latory affine shear deformation (Fig. 1a,b). At each time
step, we first applied the affine shear deformation to the
simulation box and all vertices followed by internal relax-
ation of vertices according to Eq. (2) (see Methods). The
affine shear deformation can be described by a deforma-
tion gradient tensor defined as F̂ = ∂x/∂X0, where the
mapping x = x (X0, t) maps the reference configuration
X0 to a spatial configuration x at time t. For simple
shear, the deformation gradient tensor is F̂ =

(
1 ε(t)
0 1

)
,

where ε (t) = ε0 sin (ω0t). Sufficiently small amplitude
ε0 = 10−7 � 1 was used to probe the linear response
properties.

The response stress tensor, σ̂C (t), for each cell C was
computed using the formalism introduced in Refs. [53–55]
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as

σ̂C = −ΠC Î +
1

2AC

∑
e∈C

Te ⊗ le, (3)

where the summation is over all junctions e belonging
to the cell C. Here, ΠC = − ∂E

∂AC
= −K (AC −A0)

is the hydrostatic pressure inside a cell, Î is the unit
tensor, and Te = ∂E

∂le
= Γ (PC − P0) le/|le| is the ten-

sion along the junction e with le being a vector joining
the two vertices on it [53–55]. The average stress ten-
sor σ̂ (t) =

∑
C wCσ̂C (t), with wC = AC/

∑
C AC , was

used as a measure for the response of the system. The
dynamic shear modulus G∗ (ω0) = τ̃(ω0)/ε̃(ω0) was then
calculated at a given frequency ω0 of applied shear strain,
where τ̃(ω) and ε̃(ω) are the Fourier transforms of the re-
sponse shear stress τ(t) = σ̂xy (t) and the applied strain
ε(t), respectively (see Methods). We ensured that sim-
ulations ran long enough to reach a steady state (see
Methods and Supplementary Information, Sec. II). The
real part of the dynamic shear modulus, G′ = Re (G∗),
is the storage shear modulus and the imaginary part,
G′′ = Im (G∗), is the loss shear modulus. The storage
shear modulus corresponds to the in-phase response and
measures the elastic (i.e., reversible) response of the sys-
tem, while the loss shear modulus corresponds to the
out-of-phase response and measures the system’s irre-
versible dissipation [56] (see also Supplementary Infor-
mation, Sec. I). For systems under an oscillatory simple
shear, storage and loss shear moduli were obtained for
different values of p0 and different system sizes in the
solid and the fluid phases for a broad range of driving
frequencies ω0 spanning over seven orders of magnitude,
as shown in Fig. 1c,d. Most simulations were performed
for systems with nearly square shapes with Nx = 15 cells
in the horizontal direction. We repeated several simu-
lations for systems with Nx = 37 and Nx = 51, which
showed that the finite size effects are negligible (Fig. 1c-
f).

In the solid phase there are two different regimes (see
Fig. 1c). At low frequencies, ω0, the storage shear modu-
lus G′ has a constant value, while the loss shear modulus
scales as G′′ ∝ ω0. At high frequencies, the storage shear
modulus G′ has a higher constant value, while the loss
shear modulus scales as G′′ ∝ ω−1

0 . Such rheological
behavior is characteristic of the Standard Linear Solid
(SLS) model [56]. Storage and loss shear moduli for the
SLS model are [56], respectively,

G′SLS (ω0) =
E2 +

η21
E2

1
ω2

0 (E1 + E2)

1 +
η21
E2

1
ω2

0

, (4a)

G′′SLS (ω0) =
ω0η1

1 +
η21
E2

1
ω2

0

, (4b)

where we used the representation of the SLS model
(Fig. 1e, inset) that consists of a spring with elastic con-
stant E2 connected in parallel with a Maxwell element,

which comprises a spring with elastic constant E1 and a
dashpot with viscosity η1 connected in series. The above
expressions in Eqs. (4) were used to fit the storage and
loss shear moduli obtained from simulations. The fitted
curves, represented with dashed lines in Fig. 1c, show an
excellent match with the simulation data, indicating that
the SLS model is indeed appropriate to describe the shear
rheology in the solid phase. This was also confirmed in
Fig. 1e, where we collapsed the storage and loss shear
moduli for different values of the shape parameter, p0,
by rescaling the moduli and frequencies with the fitted
values of spring and dashpot constants. Note that the
SLS response in the solid phase is consistent with recent
experiments on suspended MDCK monolayers [57].

As the value of the p0 increases, we observe that the
storage shear modulus reduces at all frequencies and that
the loss shear modulus reduces at high frequencies. Fur-
thermore the crossover between the two regimes shifts
towards lower frequencies (Fig. 1c). This is because the
elastic constants E1 and E2 decrease linearly with in-
creasing p0 and they become zero exactly at the solid-
fluid transition with p0 = pc ≈ 3.722 (Fig. 2a). The dash-
pot constant η1 is nearly independent of p0 and scales
with the friction parameter γ, which is the only source
of dissipation in the VM. The crossover between the two
regimes for both the storage and loss shear moduli cor-
responds to a characteristic time scale, η1/E1, which di-
verges as p0 approaches the solid-fluid transition due to
the vanishing elastic constant (Fig. 2c). Note that the
values of the elastic constants E1 and E2 can be esti-
mated analytically. In the quasistatic limit (ω0 → 0),
the external driving is sufficiently slow that the system
can relax internally. In this limit, Murisic, et al. [58]
showed that the storage shear modulus is

G′(ω0 → 0) = E2 =
1

2
KA0

(
1−

[
α(p0,Γ/KA0)

]2)
, (5)

where α(p0,Γ/KA0) is a scaling factor chosen such that
the hydrostatic stress vanishes once the system box size
is rescaled from L to αL. In the high frequency limit
(ω0 → ∞), on the other hand, the system follows the
externally imposed affine deformation and has no time
for internal relaxation. Thus, by considering the energy
cost for a hexagonal tiling under affine deformation, we
obtained the storage shear modulus (see Supplemental
Information, Sec. VI)

G′(ω0 →∞) = E1 + E2 = 3
√

3Γ

(
1− p0

pc

)
. (6)

The above Eqs. (5) and (6) were used to extract the val-
ues of elastic constants E1 and E2, which showed excel-
lent agreement with the fitted values from simulations
(Fig. 2a).

In the fluid phase, the storage and loss shear moduli
show a markedly different behavior (Fig. 1d). There are
three different regimes with two crossover frequencies,
which correspond to two characteristic time scales. At
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FIG. 2. (a-b) Fitted values of spring-dashpot models for the
system under simple shear. (a) Elastic constants as a func-
tion of target cell-shape parameter, p0. In the solid phase
(i.e., for p0 < pc ≈ 3.722), fitted values of the spring con-
stants show excellent match with the analytical predictions
obtained from Eqs. (5) and (6) (dashed lines). Inset shows
the spring constants near the critical point. (b) Dashpot vis-
cosity constants as a function of the target cell-shape param-
eter, p0. (c-d) Characteristic time scales in (c) the solid and
(d) fluid phase obtained from the fitted values of the elastic
constant and the dashpot viscosity. The normalization factor
t∗ = γ/(KA0) sets the unit of time. For the fluid phase (i.e.,
for p0 > pc ≈ 3.722), errorbars correspond to the standard de-
viation for simulations that were repeated for configurations
that correspond to different local energy minima.

low frequencies, ω0, the storage shear modulus G′ ∝ ω2
0

and the loss shear modulus G′′ (ω0) ∝ ω0. The storage
modulus approaches 0 for ω0 → 0, which indicates that
the system is indeed a fluid. At high frequencies the stor-
age shear modulus has a constant value, while the loss
shear modulus scales as G′′ (ω0) ∝ ω−1

0 . To capture this
behavior we used the Burgers model, which consists of
two Maxwell models connected in parallel (Fig. 1f, in-
set), to fit the shear moduli measured in the simulations.
The storage and loss shear moduli for a Burgers model
are [56], respectively,

G′Burg (ω0) =
p1q1ω

2
0 − q2ω

2
0

(
1− p2ω

2
0

)
p2

1ω
2
0 + (1− p2ω2

0)
2 , (7a)

G′′Burg (ω0) =
p1q2ω

3
0 + q1ω0

(
1− p2ω

2
0

)
p2

1ω
2
0 + (1− p2ω2

0)
2 , (7b)

where p1 = η1/E1 + η2/E2, p2 = η1η2/(E1E2), q1 =
η1 + η2, q2 = η1η2(E1 +E2)/(E1E2). The dashed curves
in Fig. 1d show fits of the storage and loss shear moduli
for a range of values of p0, which show good agreement
with simulations. Unlike for the solid phase, it is not pos-
sible to collapse the data for storage and loss shear mod-
uli onto single universal curves because the fluid phase is
characterized by two independent timescales η1/E1 and

η2/E2. Thus we show two different collapses for the stor-
age and loss shear moduli in the low frequency range
(Fig. 1f) and in the high frequency range (Fig. S4 in the
Supplementary Information, Sec. IV).

As the value of the p0 decreases, we observe that both
the storage and loss shear moduli reduce at intermediate
and high frequencies, but they increase at low frequencies
(Fig. 1d). We also observe that the first crossover shifts
towards lower frequencies, while the second crossover re-
mains at approximately the same frequency. This is be-
cause the elastic constants E1 and E2 decrease linearly
toward zero as p0 approaches the solid-fluid transition
at pc ≈ 3.722 (Fig. 2a). The dashpot constant η2 also
decreases linearly toward zero, while the dashpot con-
stant η1 increases but remains finite as p0 approaches the
solid-fluid transition (Fig. 2b). As a consequence, one of
the characteristic time scales η1/E1 diverges, while the
second time scale η2/E2 remains finite as p0 approaches
the solid-fluid transition (Fig. 2d). The diverging char-
acteristic time scale captures the macroscopic behavior
of the system, while the second time scale (∼ γ/KA0)
captures the microscopic details of the VM. Note that at
the solid-fluid transition there is a discontinuous jump in
the values of the dashpot constant η1 (see Fig. 2b). This
is because at p0 = pc the storage and loss shear mod-
uli are identically equal to zero (G′(ω0) = G′′(ω0) ≡ 0)
due to the vanishing elastic constants (E1 = E2 = 0),
while the dashpot constants can have arbitrary values
[see Eqs. (4) and (7)]. Finally, we note that the values of
the spring and dashpot constants are somewhat sensitive
to the local energy minimum configuration used to probe
the response in the fluid phase. The errorbars in Fig. 2
show standard deviation for different configurations that
were obtained by using the same magnitude of the initial
perturbation (see Methods). In Fig. S5 in the Supple-
mentary Information, Sec. V, we show how the values of
the spring and dashpot constants are affected when con-
figurations were obtained by using different magnitudes
of the initial perturbation.

Response to bulk deformations. We further stud-
ied the bulk rheological properties of the system by ap-
plying an oscillatory biaxial deformation (Fig. 3a,b) de-

scribed by the deformation gradient F̂ =
( 1+ε(t) 0

0 1+ε(t)

)
,

where ε(t) = ε0 sin (ω0t). We applied a sufficiently
small amplitude ε0 = 10−7 � 1 to probe the linear re-
sponse properties characterized by the average normal
stress σ(t) = 1

2 [σ̂xx(t) + σ̂yy(t)]. As in the simple shear
test, we then computed the dynamic bulk modulus as
B∗(ω0) = σ̃(ω0)/ε̃(ω0) from which we obtained the stor-
age bulk modulus B′ = Re (B∗) and the loss bulk mod-
ulus B′′ = Im (B∗) (see Fig. 3c,d).

In the solid phase, the storage bulk modulus is inde-
pendent of the driving frequency and the loss bulk mod-
ulus is zero. Thus the response of the system can be
captured by a single spring Esolid (Fig. 3e, inset). This
is because the hexagonal tiling is stable to biaxial defor-
mation in the solid phase and thus there is no internal
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FIG. 3. Loss and storage bulk moduli in the solid (top row) and fluid phase (bottom row). An overlay of the representative
reference (grey) and biaxially deformed (yellow) configurations in (a) the solid and (b) the fluid phase. The magnitude of the
bulk deformation is highly exaggerated for demonstration purposes. (c-d) show the representative storage (B′) and loss (B′′)
bulk moduli as functions of the deformation frequency, ω0, for different values of the cell-shape parameter, p0. For the solid
phase in (c), the loss bulk modulus B′′ ≡ 0. For the fluid phase in (d), dashed curves are the fits based on the Standard Linear
Solid (SLS) model [see Eq. (4)]. (e-f) The collapse of the moduli curves for different values of p0 for (e) the solid phase and
(f) the fluid phase. The insets show the representation of (e) the spring model and (f) the SLS model in terms of the springs
and dashpots.

relaxation. The measured value of the storage bulk mod-
ulus matches the analytical prediction

Btheory = 2KA0 +
4
√

12Γp0 (8)

by Staple, et al. [47], where the hexagonal tiling is as-
sumed to undergo affine deformation under biaxial de-
formation. Storage bulk moduli, normalized by Btheory,
for different values of p0 all collapse to 1 (Fig. 3e).

In the fluid phase, the bulk response behavior of the
system can be described by the SLS model (Fig. 3f, in-
set). While it might appear counter-intuitive to model
a fluid with the SLS model, this is a direct consequence
of the fact that in the fluid state, the bulk modulus is
finite but the shear modulus vanishes, i.e., the fluid flows
in response to shear but resists bulk deformation. The
fitted storage and loss bulk moduli for the SLS model
[see Eq. (4)] show an excellent match with the simula-
tion data (Fig. 3d). This was also confirmed in Fig. 3f,
where we collapsed the storage and loss bulk moduli for
different values of p0.

The fitted values of spring elastic and dashpot viscosity
constants for different values of p0 are plotted in Fig. 4.
In the fluid phase, the storage bulk modulus in the high
frequency limit B′(ω0 → ∞) = E1 + E2 [see Eq. (4)]

FIG. 4. Fitted values of spring-dashpot models for the system
under bulk deformation as a function of the target cell-shape
parameter, p0. (a) In the solid phase (p0 < pc ≈ 3.722),
the bulk storage modulus Esolid agrees with the analytical
prediction Btheory in Eq. (8). At the solid-fluid transition
point (p0 = pc ≈ 3.722), it continuously changes to the high
frequency limit of the bulk storage modulus, i.e., B′(ω0 →
∞) = E1 + E2, of the fluid phase. The low frequency limit
of the bulk storage modulus is B′(ω0 → 0) = E1 in the fluid
phase. (b) Dashpot viscosity constant as a function of p0.
For the fluid phase (p0 > pc ≈ 3.722), errorbars correspond
to the standard deviation for simulations that were repeated
for configurations that correspond to different local energy
minima.
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solid

Hessian

theory

fluid

FIG. 5. Tuning the solid to fluid transition by applying uniaxial deformation. (a) The solid-fluid transition boundary in the

a − p0 plane, where a measures the amount of uniaxial deformation described by the deformation gradient F̂ =
(
a 0
0 1

)
. Blue

line shows the analytical prediction from Eq. (10), which matches the stability analysis with the Hessian matrix (red dots).
(b,c) The fitted values of the (b) spring and (c) dashpot constants for the SLS model in the solid phase and the Burgers model
in the fluid phase when the system is under uniaxial compression (a = 0.95), no pre-deformation (a = 1.00), and under uniaxial
tension (a = 1.05).

continuously increases from the value for the solid phase
Btheory [see Eq. (8)] as the system transitions from solid
to fluid (Fig. 4a). The storage bulk modulus in the qua-
sistatic limit B′(ω0 → 0) = E2 [see Eq. (4)] emerges
at the transition point with a finite value and increases
as p0 increases from pc (Fig. 4a). Fig. 4b shows that
the dashpot constant η1 diverges as the p0 decreases to-
ward pc. Thus, the characteristic time scale η1/E1 also
diverges, but for a different reason than for the shear
deformation, where the spring constant is vanishing (see
Fig. 2). Finally, we note that, unlike for the response
to shear, the values of the spring and dashpot constants
for bulk deformation are not sensitive to the local energy
minimum configuration used to probe the response in the
fluid phase, which is reflected in the very small errorbars
in Fig. 4. This is because the bulk moduli are dominated
by the changes in cell areas.

Response to a shear deformation of a uniaxially
pre-deformed system. The solid-fluid transition for
the regular hexagonal tiling occurs when p0 ≈ 3.722,
above which the hexagonal tiling is unstable. This is
consistent with the vanishing of the affine shear mod-
ulus in Eq. (6) at the transition point. If the regular
hexagonal tiling is compressed or stretched uniaxially by
a factor a, which is described by the deformation gradient
F̂ =

(
a 0
0 1

)
, then the high frequency limit of the storage

shear modulus that is dominated by affine deformation
becomes (see Supplemental Information, Sec. VI),

G′affine (a) =
2
√

2Γ

37/4a

(
1 +

1

(1 + 3a2)
3
2

)
×
(
−3p0 +

4
√

192
(

1 +
√

1 + 3a2
))

.

(9)

By setting the affine shear modulus to 0, we obtained the
solid-fluid transition boundary in the a− p0 plane as

pc(a) =

√
8
√

3

(
1 +
√

1 + 3a2
)

3
. (10)

The above analytical prediction for the phase boundary
(Fig. 5a, blue line) shows an excellent agreement with the
stability analysis in terms of the eigenvalues of the Hes-

sian matrix ∂2E
∂ri∂rj

of the energy function [59] (Fig. 5a, red

dots). A given configuration is stable if all eigenvalues of
the Hessian matrix are positive and the loss of mechan-
ical stability occurs when the lowest eigenvalue becomes
0. For a given p0, the value of the lowest eigenvalue
reduces with decreasing a, i.e., as the magnitude of com-
pression is increased. Thus, the compression (stretching)
shifts the solid-fluid transition towards the lower (higher)
values of p0 (see Fig. 5a).

We also probed the response to oscillatory shear ap-
plied to uniaxially compressed and stretched systems.
This analysis was done on both the uniaxially deformed
hexagonal tiling in the solid phase as well as a system in
the fluid phase obtained by relaxing the unstable, uni-
axially deformed hexagonal tiling after an initial ran-
dom perturbation (see Methods). The response to the
shear deformation is qualitatively similar and can still be
described by the SLS model in the solid phase and the
Burgers model in the fluid phase. Fig. 5b,c shows fitted
values of the parameters for spring-dashpot models when
the system is under uniaxial compression (a = 0.95), no
pre-deformation (a = 1.00, i.e., same as Fig. 2a,b), and
uniaxial tension (a = 1.05). In both the solid and fluid
phases, all spring elastic constants decrease to 0 as p0

approaches the critical value predicted by Eq. (10). The
dashpot constant η1 remains constant in the solid phase.
Once the system enters the fluid phase as p0 increases, a
new dashpot constant η2 emerges and increases from 0,
while the value of the dashpot constant η1 decreases. As
in the simple shear case, we note that the dashpot con-
stant η1 has a discontinuous jump at the solid-fluid tran-
sition (see Fig. 2c) and that the values of the spring and
dashpot constants are somewhat sensitive to the local en-
ergy minimum configuration used to probe the response
in the fluid phase. The errorbars in Fig. 2 show standard
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deviation for configurations that were obtained by us-
ing different random initial perturbation (see Methods).
Finally, we note that besides uniaxial deformation, the
solid-fluid transition point can be tuned by other modes
of deformation (see Fig. S6 and Supplementary Informa-
tion, Sec. VI).

DISCUSSION

We have performed a detailed analysis of the rheo-
logical properties of the Vertex Model subject to small-
amplitude oscillatory deformations over seven orders of
magnitude in the driving frequency. Our analysis shows
that the VM exhibits non-trivial viscoelastic behavior
that can be tuned by a single dimensionless geometric
parameter - the shape parameter, p0. In order to char-
acterize the response, we constructed constitutive rhe-
ological models that use combinations of linear springs
and dashpots connected in series and in parallel. These
models allowed us to match the shear response of the
VM to that of the Standard Linear Solid model in the
solid phase and the Burgers model in the fluid phase.
In the low-frequency, i.e., quasistatic regime, our re-
sults are fully consistent with many previous studies
[20, 21, 47, 58]. Our work, however, provides insights
into the time-dependent response of the VM over a broad
range of driving frequencies, which is important if one is
to develop full understanding of the rheological proper-
ties of the VM and how they inform our understanding
of epithelial tissue rheology.

It is important to note that the only source of dissipa-
tion in our model was the friction between epithelial tis-
sue and a solid substrate, while we neglected any internal
dissipation within the tissue. In real epithelia, dissipative
processes are far more complex and not fully understood.
An early stage embryo, for example, is not supported by
a solid substrate and an alternative, internal dissipation
mechanism would be required to model its rheological
response. Such mechanisms could be due to internal vis-
coelastic remodelling of the cortex [60]. Including the
effects of the internal dissipation would require adding
additional forces in Eq. (2) and accordingly modifying
the expression for the cell stress in Eq. (3). It is possi-
ble that such effects would result in a markedly different
rheological response than reported here.

We also showed that the critical value for the solid-fluid
transition can be tuned by applying pre-deformation. In-
terestingly, under uniaxial and biaxial (i.e., isotropic)
compression the solid to fluid transition shifts to lower
values of p0, leading to the non-intuitive prediction that
one can fluidize the system by compressing it. This is,
however, unsurprising, since the transition is driven by a
geometric parameter that is inversely proportional to the
square root of the cell’s native area. Compressing the sys-
tem reduces its area and, hence, effectively increases p0.
It is, however, important to note that this is just a prop-
erty of the VM and it does not necessarily imply that ac-

tual epithelial tissue would behave in the same way. Cells
are able to adjust their mechanical properties in response
to applied stresses, and it would be overly simplistic to
assume that compression would directly lead to changes
in the preferred area. In fact, experiments on human
bronchial epithelial cells show that applying apical-to-
basal compression, which effectively expands the tissue
laterally, (i.e., corresponds to stretching in our model)
fluidizes the tissue [19].

Furthermore, the transition from solid phase to fluid
phase is accompanied by the emergence of a large num-
ber of soft modes. As we have noted, it has recently
been argued that these soft modes lead to a nonlinear
response distinct from that obtained in classical models
of elasticity [44]. Approximately half of the eigenmodes
are zero modes (see Fig. S7 in the Supplementary Infor-
mation, Sec. VII). While the analysis of soft modes in the
VM is an interesting problem [49], it is beyond the scope
of this work. Other models in this class have intriguing
non-trivial mechanical properties, such as the existence
of topologically protected modes [61–66].

We note that while we studied the dynamical response
over a wide range of frequencies, our work focused on
the behavior in the linear response regime, where there
are effectively no plastic events, i.e., while being allowed,
T1 transformations typically did not occur during the
process of probing the rheology. A full understanding of
the VM rheology would also need to allow for cell rear-
rangements. This is, however, a very challenging problem
and first steps in addressing it have only recently been
made [45].

Regardless of whether cells in an epithelial tissue are
arrested or able to move, the rheological response of the
tissue is viscoelastic with multiple time scales [38]. This
response arises as a result of the complex material prop-
erties of individual cells combined with four basic cel-
lular behaviors: movement, shape change, division, and
differentiation. The tissue not only has a non-trivial rhe-
ological response but is also able to tune it. There is
growing evidence that this ability of biological systems
to tune their rheology, and in particular, transition be-
tween solid-like and fluid-like behaviors, plays a key role
during morphogenesis [4]. How such cellular processes
are regulated and coordinated to form complex morpho-
logical structures is only partly understood. It is, how-
ever, clear that the process involves mechano-chemical
feedback between mechanical stresses and the expression
of genes that control the force-generating molecular ma-
chinery in the cell. Any models that aim to describe
morphological processes, therefore, need to include cou-
pling between biochemical processes and mechanical re-
sponses. The base mechanical model, however, must be
able to capture the underlying viscoelastic nature of tis-
sues. Our work provides evidence that the vertex model,
a model commonly used to study the mechanics of ep-
ithelial tissues, has interesting non-trivial rheological be-
havior. This, combined with its ability to capture both
fluid- and solid-like behavior by tuning a single geomet-
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ric parameter shows it to be an excellent base model to
build more complex descriptions of real tissues.

METHODS

Most simulations were performed for systems with
nearly square shapes with Nx = 15 cells in horizontal
direction (i.e., N = 240 cells in total) subject to periodic
boundary conditions. The shape of the simulation box
was chosen to be as near to a square as allowed by the ge-
ometry of a hexagon and the size of the box was such that
it accommodated N cells of area AC that matched the
preferred areas A0. Simulations of larger system sizes
(Nx = 37, 51, i.e., N = 1406, 2652 cells, respectively)
were performed for a subset of values of p0 to explore the
finite size effects. No quantitative differences between the
system with N = 240 cells and larger systems were ob-
served. Since the ratio between the perimeter and elastic
moduli does not qualitatively change the behavior of the
VM [20, 41], we used Γ/(KA0) ≈ 0.289 for all simula-
tions.

We applied an oscillatory affine deformation of fre-
quency ω0 either as simple shear described by the defor-
mation gradient F̂ =

(
1 ε(t)
0 1

)
or biaxial deformation de-

scribed by F̂ =
( 1+ε(t) 0

0 1+ε(t)

)
, where ε(t) = ε0 sin(ω0t).

In all simulations, we used a small magnitude of defor-
mation, i.e., ε0 = 10−7, so that we probed the linear
response and the measured moduli were independent of
the magnitude of the deformation. In every time step,
the system evolved according to the overdamped dynam-
ics in Eq. (2) after the affine deformation was applied.
Equations of motion were integrated using the first order
Euler method with the time step, ∆t ≈ 0.00866γ/(KA0).
Measurements of the response stresses for each cell [see
Eq. (3)] and the entire system were taken 25 times within
each cycle of oscillatory deformation.

To ensure that we were probing the steady state, we
performed the following analysis. For example, in the
case of shear deformation, the shear stress signal τ(t) =
σ̂xy(t) was divided into blocks of length T = 3T0, each
containing 3 cycles of the time period T0 = 2π/ω0 of
the driving shear deformation. Within each block n, we
performed the Fourier transform of τ(t) and obtained
τ̃n(ω) as

τ̃n(ω) =
1

T

∫ nT

(n−1)T

τ(t)eiωtdt, (11)

where n is a positive integer. Similar Fourier transform
analysis was performed for the strain, ε(t). The length of
the simulation was chosen such that it contained a suf-
ficient number of blocks in order for the τ̃n(ω0) to reach
a steady state value τ̃(ω0). The obtained steady state
value of τ̃(ω0) was used to calculate the storage and loss
shear moduli as described in the main text. Analogous
procedure was applied to the normal stress, σ(t), in the

case of the bulk deformation. Please refer to the Supple-
mentary Information, Sec. II for a representative example
of the steady state analysis.

In the solid phase, we performed rheological tests on a
hexagonal tiling. In the fluid phase, however, the hexag-
onal tiling is unstable. Instead, the hexagonal tiling was
randomly perturbed and then relaxed to a nearby local
stable state using the FIRE optimizer [50]. The local
energy minimum was determined with the relative ac-
curacy of 10−12. A random perturbation was applied
to each vertex i, i.e., each vertex was displaced from
its original position in the hexagonal tiling by a vector
δri = δxiex + δyiey, where xi and yi were Gaussian ran-
dom variables with zero mean and standard deviation
1.5× 10−4

√
A0. The rheology of a local stable state was

then probed following the same procedure as in the solid
case.

During the energy minimization and oscillatory defor-
mations, T1 transitions were allowed but were not com-
mon. T1 transitions were implemented following the pro-
cedure introduced by Spencer, et al. [67].
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Linear Viscoelastic Properties of the Vertex Model for Epithelial Tissues
Supplementary Information

I. CONNECTION BETWEEN STRESS RESPONSE AND RHEOLOGY

Fig. S1 shows a typical average shear stress τ(t) in response to an applied oscillatory simple shear with the
strain ε = ε0 sin(ω0t). The shear stress response can be represented as τ(t) = τ0 sin(ω0t + δ) = τ0 cos(δ) sin(ω0t) +
τ0 sin(δ) cos(ω0t). The storage shear modulus is related to the in-phase response and is defined as G′ = (τ0/ε0) cos δ.
The loss shear modulus is related to the out-of-phase response and is defined as G′′ = (τ0/ε0) sin δ [56].

FIG. S1. Typical shear stress (red curve) as a function of time in response to a periodic shear strain (blue curve) in (a) the
solid phase and (b) the fluid phase. The shear stress is averaged over all cells.

II. APPROACH OF THE RESPONSE STRESS TOWARDS THE STEADY STATE

Here, we show an example of how the steady state shear stress τ̃(ω0) is measured in response to the applied
oscillatory simple shear with a time period T0 = 27.7γ/ (KA0) = 2π/ω0 for the shape parameter p0 = 3.723, which is
very close to the critical point pc ≈ 3.722 for the solid-fluid transition. The shear stress signal τ(t) was divided into
blocks of length T = 3T0, each containing 3 cycles of the time period of the driving shear deformation (see Fig. S2a).
Within each block n, we performed the Fourier transform of τ(t) and obtained τ̃n(ω) as

τ̃n(ω) =
1

T

∫ nT

(n−1)T

τ(t)eiωtdt, (S1)

where n is a positive integer. The value of τ̃n(ω0) converges exponentially to the steady state value (see Fig. S2b),
where the relaxation time is related to the characteristic time scales of the viscoelastic models (see Fig. 2c,d in the
main text). For values of p0 far away from pc, the system quickly reaches a steady state (within 3–6 cycles). As p0

approaches pc the relaxation times become much longer, which is reflecting the diverging characteristic time scales of
the viscoelastic models (see Fig. 2c,d in the main text).
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FIG. S2. Approach of the response shear stress towards the steady state. (a) The shear stress signal τ(t) was divided into
blocks indicated by the vertical dashed lines. (b) Fourier transform of the response shear stress τ̃n(ω0) at the driving frequency,
ω0, as a function of the block number, n.

III. EFFECT OF RESIDUAL HYDROSTATIC STRESS ON THE SPRING CONSTANTS IN THE SOLID
PHASE

In the solid phase, we studied the rheology of the hexagonal tiling with each cell of area AC = A0 but with the
perimeter PC unequal to the preferred perimeter P0, which induces residual hydrostatic stress in equilibrium. This
residual stress can be eliminated if the lattice is uniformly rescaled by a factor α, which minimizes the following
dimensionless energy per cell,

eC(α) =
1

2

(
α2 − 1

)2
+

Γ̃

2
(αpC − p0)

2
, (S2)

where eC = EC

KA2
0
, Γ̃ = Γ

KA0
, pC = PC√

A0
= 4
√

192 ≈ 3.722, i.e., α is the root of equation e′C(α) = 0. In the solid phase,

α < 1, and the system shrinks to relax the residual stress. At the solid-fluid transition point, α = 1 since the area
and perimeter of each cell match their preferred values simultaneously. If the residual stress is eliminated by rescaling
the box, the rheology of the system subject to a simple shear can still be described by the SLS model, although the
fitted values of spring constants are different, as shown in Fig. S3.

FIG. S3. The fitted spring constants in the solid phase when the simulation box is not rescaled (closed symbols) and rescaled
(open symbols) to eliminate residual stresses.
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IV. COLLAPSE OF STORAGE AND LOSS SHEAR MODULI IN THE FLUID PHASE

In Fig. 1f in the main text, we showed the collapse of storage and loss shear moduli for the fluid phase in the low
frequency regime. Here we show the collapse in the high frequency range (see Fig. S4), where we took into account
that the relevant characteristic timescale scales as η2/E2 ∼ γ/(KA0).

FIG. S4. The collapse of the storage (G′) and loss (G′′) shear moduli curves in the high frequency regime for different values
of p0 for the fluid phase.

V. EFFECTS OF THE INITIAL PERTURBATION ON THE SPRING AND DASHPOT CONSTANTS
IN THE FLUID PHASE

We note that the rheological behavior in the fluid phase is sensitive to the magnitude σD of the initial perturbation
that was used to obtain different local energy minima configurations. In the main text, we showed the fitted values
of spring and dashpot constants (Fig. 2) for the local energy minima configurations that were obtained by displacing
each vertex coordinate of the hexagonal tiling by a Gaussian random variable with zero mean and standard deviation
σD = 1.5×10−4

√
A0. Here, we show that the fitted values of the spring and dashpot constants are somewhat sensitive

to the magnitude σD of the random perturbation (see Fig. S5).

FIG. S5. Fitted values of (a) spring and (b) dashpot constants for the system under simple shear deformation as a function
of the target cell-shape parameter, p0, and the magnitude σD of the random perturbation that was used to obtain different
local energy minima configurations in the fluid phase. Errorbars correspond to the standard deviation for simulations with
σD = 1.5× 10−4

√
A0 that were repeated for configurations that correspond to different local energy minima.
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VI. TUNING PHASE TRANSITION WITH DIFFERENT MODES OF DEFORMATION.

In the main text, we showed that the solid-fluid transition point can be tuned by uniaxially pre-
compressing/stretching the system. Here, we discuss other deformation modes that can also tune the transition.

If the hexagonal lattice is deformed biaxially by F̂ =
(
a 0
0 a

)
, the shear modulus due to the affine deformation becomes

Gaffine = 3
√

3Γ

(
1− p0

a
√

8
√

3

)
. (S3)

By setting Gaffine to 0, the phase boundary in the a− p0 plane is

pc(a) = a

√
8
√

3. (S4)

Similarly, consider a pure shear deformation F̂ =
(
a 0
0 1/a

)
. The shear modulus due to the affine deformation then

becomes

Gaffine =
2
√

2
(
1 +
√

1 + 3a4 + 3a4
√

1 + 3a4
) (

2
√

2 31/4(1 +
√

1 + 3a4)− 3ap0

)
Γ

37/4a(1 + 3a4)3/2
, (S5)

and the phase boundary is

pc(a) =

√
8
√

3
(1 +

√
1 + 3a4)

3a
. (S6)

The phase diagrams for a system that is under biaxial deformation or pure shear are shown in Fig. S6. The phase
boundary in the a − p0 plane follows Eq. (S4) for biaxial deformation and Eq. (S6) for pure shear. The system can
be rigidified by stretching or shearing.

FIG. S6. Phase diagrams when the system is under (a) biaxial deformation and (b) pure shear.

Note that there are two equivalent ways to derive the shear modulus due to affine deformation. The first one is
to calculate the energy density of the system perturbed by an additional simple shear F̂ =

(
1 ε
0 1

)
where ε � 1. For

example, for the hexagonal tiling without any pre-deformation (i.e., regular hexagons), the energy density can be
expanded in a power series in ε as

E

A0
=

1

2
3
√

3

(
1− p0√

8
√

3

)
Γε2 + o

(
ε4
)
≡ 1

2
Gaffineε

2 + o
(
ε4
)
, (S7)

where we neglected the constant term. The quadratic term characterizes the linear response of the system, which gives
the shear modulus as in Eq. (6) in the main text. The second approach is to directly use the expression for the stress

tensor Eq. (3). Assume the system is perturbed by a simple shear F̂ =
(

1 ε
0 1

)
where ε � 1, and calculate the shear

stress. The coefficient of the leading order term in ε is the shear modulus, which coincides with the modulus from the
energy calculation. Similar derivation of the shear modulus can be carried out for the pre-deformed hexagonal tilings.
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VII. SPECTRUM OF THE NORMAL MODES

We calculated the eigenvalues λ of the Hessian matrix ∂2E
∂ri∂rj

associated with the energy functional of the VM. We

associate each positive eigenvalue λ with a corresponding eigenfrequency ω =
√
λ, which describes the oscillations of

that mode as the system is perturbed about its stable point. Fig. S7 shows the cumulative density of states, which is
defined as [20]

N(ω) =

∫ ∞
0+

D(ω′)dω′ +N(λ = 0)θ(ω), (S8)

where D(ω) is density of states, N(λ = 0) is the fraction of zero eigenvalues and θ(ω) is the Heaviside step function.
In the solid phase, there are no zero modes other than the two translational rigid body motions. In the fluid phase,
however, approximately half of the eigenmodes are zero modes. As p0 approaches the critical value pc in both solid
and fluid phase, N(ω) curves move to the left so the system becomes softer, which is consistent with the dependence
of the spring constants on p0 shown in Fig. 2a in the main text.

FIG. S7. Cumulative density of states in the solid phase (solid lines) and in the fluid phase (dashed lines).
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