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Abstract
Field-programmable gate arrays represent an army of logical units which can

be organized in a highly parallel or pipelined fashion to implement an algorithm
in hardware. The flexibility of this new medium creates new challenges to find
the right processing paradigm which takes into account the natural constraints of
FPGAs: clock frequency, memory footprint and communication bandwidth. In this
paper first the use of FPGAs as a multiprocessor on a chip or its use as a highly func-
tional coprocessor are compared, and the programming tools for hardware/software
codesign are discussed. Next a number of techniques are presented to maximize the
parallelism and optimize the data locality in nested loops. This includes unimodu-
lar transformations, data locality improving loop transformations and use of smart
buffers. Finally, the use of these techniques on a number of examples is demon-
strated. The results in the paper and in the literature show that, with the proper
programming tool set, FPGAs can speed up computation kernels significantly with
respect to traditional processors.
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Introduction

Modern FPGAs consist of logic blocks, gates, memories, ALUs and even embedded
processors, which can be arbitrarily interconnected to implement a hardware algorithm.
Because of their flexibility and growing capabilities, field programmable gate arrays are
the topic of intensive research in high-performance computing.

The high reconfigurability and inherent parallelism creates a huge potential to adapt
the device to a particular computational task. At the same time, the embodiment of a
hardware algorithm constitutes a departure from the classical Von Neumann or Harvard
processor architecture. New computing paradigms need to be explored in order to ex-
ploit FPGAs to their full potential [8,22]. This involves a thorough knowledge of the
design constraints, the development environment, the hardware description tools and
the methodology for mapping an algorithm onto the hardware. On the other hand, tra-
ditional performance metrics such as instructions per cycle, clock speed, instructions
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per second, have no direct meaning for an algorithm that is directly executed in hard-
ware [26,21,35]. In order to give an overview of the possibilities and challenges of this
new and rapidly evolving technology, the following topics will be covered. First the hard-
ware of the FPGAs is discussed. Next the different constellations of FPGAs used in high-
performance computing are explored. An important aspect is the software tools required
to configure the hardware, in particular the number of high-level languages which fa-
cilitate hardware-software codesign. Finally, a number of program transformations are
described which improve the execution speed, data locality and performance of the hard-
ware designs.

1. Architecture, computing power and programmability

Semantically, a Field-Programmable Gate Array (FPGA) means an array of gates which
can be arbitrarily interconnected by a configuration program that describes the paths
between the logic components. After programming, the FPGA is able to implement any
logic function or finite state machine (see fig. 1).

CLB Interconnection network

Figure 1. Schematic representation of an FPGA architecture: CLBs (configurable logic blocks) and intercon-
nection network.

Since its conception in the 1980s, the granularity and the complexity of the logic
blocks has much evolved. Apart from the fine-grained AND, XOR and NOT gates, the
most important blocks are lookup tables or LUTs, which are able to implement a logic
function of 4 to 6 inputs. Flip-flops are able to store the state of a calculation, and turn the
FPGA into a finite state machine. In addition to the fine-grained cells, most FPGAs have
medium grain four-bit ALUs which can be joined to form ALUs of arbitrary precision,
as well as coarse grain components, e.g. word size ALUs, registers and small proces-
sors with an instruction memory. All these components can be arbitrarily interconnected
using a two-dimensional routing framework. More recently, heterogeneous FPGAs con-
tain embedded multiplier blocks, larger memories and even full-fledged microproces-
sors, such as the PowerPC in the Vertex family of Xilinx, all integrated in one chip. These
developments make the FPGA all the more attractive.
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1.1. FPGAs versus ASICs

The ’algorithm in hardware’ concept may also be implemented in an application-specific
integrated circuit. ASICs are used to improve the computational tasks by implementing
algorithmic functionality into optimized HPC hardware, e.g. a JPEG encoder [28].

Similar design steps

Both FPGAs and ASICs have a similar design cycle, which involves the behavioral de-
scription of the hardware, the synthesis, placement and routing steps. First the algorithm
is described in a hardware description language, such as VHDL2 or Verilog. Next the be-
havioral description is converted into a hardware realization using logic synthesis. This
step is comparable to the translation of a high-level program into machine instructions.
However the results of the translation process is not an executable program, but an algo-
rithm implemented in hardware. The synthesis step uses the logic components available
in the FPGA or the ASIC target, similar to a compiler using the machine instructions
available in a processor. Next, the components are mapped or placed onto the substrate
and finally in the routing step the components are interconnected.

Different design implementation

There are significant differences between FPGAs and ASICs.

• The major advantage of an FPGA is that the design cycle is greatly reduced. The
synthesis, mapping and routing is done using an integrated toolset which produces
a bitstream file. The bitstream file describes the way in which the logic compo-
nents are interconnected and configured. This file is loaded into static RAM and
programs the FPGA at start up in a number of milliseconds. The whole process
from hardware description to bitstream generation takes an order of minutes or
hours. On the other hand, the development of an ASIC prototype requires weeks
or months for a comparable design cycle. The prototype has to be tested and val-
idated, and possibly resubmitted to generate a new design.

• The FPGA is reconfigurable, implementing a new bitstream means a new hard-
ware design. Therefore, FPGAs can be reused for a new task in an HPC system.
The reconfiguration of an FPGA can even occur at runtime. Using reprogram-
ming, the same FPGA can be used in different phases of a program to carry out
compute intensive tasks.

• On the other hand, ASICs consume less power, less area, and deliver a higher
performance than FPGAs. This is not a critical limitation, since successful static
or fixed FPGA designs may be burned into ASICs.

1.2. FPGA characteristics and constraints

The versatility of FPGAs comes at a price: there is no clear-cut computing paradigm for
FPGAs. Reconfigurable computing may embody the traditional processor as a soft-core
processor, act as an independent finite state machine, or operate as a special-purpose
processor in conjunction with a CPU or even other FPGAs.

2VHDL = VHSIC (Very High Speed Integrated Circuit) Hardware Description Language
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FPGAs typically have a small onboard memory, no cache and a slow connection to
external memory. Although onboard memory is a critical resource (typically less than
100Mb block RAM or BRAM), the memory is dual-ported and the aggregated memory
bandwidth is in order of 100 GB/s [39]. The absence of a cache avoids cache coherency
problems, but the nonuniform memory hierarchy has to be taken into account. The use
of a high-speed scratchpad memory may be used to transparently optimize the data ac-
cess [3,25]. Novel techniques such as data reuse analysis in conjunction with a scratch-
pad memory [23] have shown to outperform cache based architectures. FPGAs are bound
to optimize data locality for an efficient operation, e.g. by reusing data in fast memory,
and optimizing the use of registers, see section 7 .

Most FPGA designs are limited to fixed point arithmetic, because floating-point
designs are complex. Furthermore, the clock frequency depends on the characteristics
of the design and is typically one order of magnitude lower than the clock frequency of
current processors.

To summarize, the versatility and programmability, together with the unbounded
parallelism make FPGAs an ideal choice to map parallel compute kernels onto fast ded-
icated hardware designs. Topical issues are:

• what computing paradigm is most suitable?
• which approach is best fitted to program HPC FPGAs?
• how to partition a program into a hardware (FPGA) and software (processor)

codesign?
• what type of applications benefits most from a hardware/software architecture?
• which program transformations optimize FPGA-based parallelism and data local-

ity?

These questions are addressed in the following sections, and answers, results and
new concepts from academia and industry are presented.

2. FPGA computing paradigms

2.1. FPGA as multiprocessor: MPSoC

Traditional computer architectures are built using a data path and a control path. In a
typical instruction cycle, the control decodes the instruction and configures the data path;
the data path performs the operations on the data and actually executes the instruction.
The configuration of the data path by the control ensures that the proper instruction is
executed. The flexibility and size of the FPGAs allows to duplicate the processor archi-
tecture as a soft core circuit. Modern FPGAs allow to instantiate 20 and more soft core
processors, or soft multiprocessors [24]. Attractive as they may be, these designs face
competition with hardware Multiprocessor Systems on a Chip (MPSoCs), which have a
higher performance and lower energy consumption. As a matter of fact, the micropro-
cessor companies deliver multicores today and announced that multicore performance
is building up [10]. However, the reconfigurability of FPGAs make this platform an at-
tractive testbed for future multicores [31]. The RAMP Gold (Research Accelerator for
Multiple Processors) uses a multithreaded Sparc instruction set to run applications on a
multicore prototype architecture simulated on an array of Xilinx Virtex FPGAs.

58



Message passing or shared memory?

Multiple processors communicate and collaborate either by storing data and semaphores
in shared memory or by exchanging messages over dedicated channels. A shared memory
between two or more processors requires that there is one common address space. Setting
up a shared memory involves first an addressing logic which accesses the block RAMs
spread over the FPGA, and secondly a common bus with arbitration logic controlling
the access of the different processors to the shared memory. In [38] a shared memory
based multiprocessor with an hierarchical bus structure has been presented, yielding a
speedup of 3.2 on 4 processors. In [2] a testbed is developed to emulate a multiprocessor
with shared memory and a cache coherency protocol. The system is used as a research
environment to study new parallel architectures.

Despite the rising interest in multi-cores and multiprocessors on a chip, a multi-
processor on an FPGA is bound to face difficulties due to lack of support for a large
shared memory. In contrast, the regularity of the logic and interconnections on an FPGA
makes it more suitable to function as a pipelined data path instead of implementing a
full-functional processor. In fact, most FPGA developers have opted to provide FPGAs
with embedded processors, including intellectual property (IP) cores for several types
of buses linking the embedded processor with the rest of the FPGA. Examples are the
On-chip Peripheral Bus (OPB) and Fast Simplex Link (FSL) buses for the PowerPC pro-
cessor in the Virtex Xilinx FPGAs. However, no arbitration logic is yet provided for a
multi-master bus, and most solutions opt for a point-to-point link between the processors,
using message passing.

Considering the message passing alternative, FPGAs have many input-output con-
nections and are very suitable to operate as processing elements in a network of com-
puters, or as an accelerator for dedicated operations in a supercomputer, such as the
Cray XD1 [36]. In this area several initiatives have been taken to implement the mes-
sage passing interface, MPI, as a communication fabric onto the FPGA. This allows
FPGAs to communicate with each other using well-defined standards. Examples are
TMD-MPI [32] implementing a lightweight subset of MPI, which is designed for sys-
tems with limited or no shared memory, no operating system and low processing over-
head, such as Toronto’s TMD scalable FPGA-based multiprocessor [29]. A multi-FPGA
system consists of 9 soft MicroBlaze processors interconnected with a Fast Serial bidi-
rectional Link (FSL) on a single FPGA and a megabit transceiver (MGT) connecting
several FPGAs. A speedup of 32 on 40 processors executing Jacobi’s algorithm for the
heat equation is reported [33]. In [40] an FPGA based coprocessor is presented that im-
plements MPI primitives for remote memory access between processors of a multipro-
cessor.

2.2. FPGA as accelerator

Since on-chip memory is limited, large data sets need to be stored off-chip, e.g. in a pro-
cessor’s memory. Furthermore, using the hardware/software codesign concept, an FPGA
can be easily configured to perform specialized computations using a tailored hardware
algorithm. One of the major bottlenecks in such a configuration is the communication
bandwidth gap between the processor running at GHz and the FPGA running at MHz
speed. Cray uses the RapidArray communication processor which delivers a 3.2 GB/s
bidirectional interconnect with 6 Virtex-II Pro FGPAs per chassis [9]. This allows to
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download a computation kernel, such as a tiled matrix multiply, which executes 9 times
faster on the FPGAs than on the XD1’s own Opteron CPU [6].

Silicon Graphics uses the RC100 blade [34] to speed up applications with reconfig-
urable computing. A blade contains dual Xilinx Virtex 4 LX200 FPGAs and the band-
width to the processor memory is 6.4 GB/s.

Another area where the FPGA excels is its use as simulator of new computer archi-
tectures. The design of new architectural features such as prediction buffers, cache sizes,
number and function of processing elements requires a cycle-accurate simulation. By
construction, FPGAs are excellently placed to emulate many of the features studied in
new architectural designs. The use of FPGAs to speed up the simulations has two major
advantages:

1. the emulation is orders of magnitude faster than simulation;
2. the emulated architecture can be monitored directly with hardware probes located

in the FPGA at the points of interest.

The whole concept of using FPGAs for hardware design is present in the RAMP
prototyping system [2], which serves as a testbed for a large number of projects. In
another publication [37], the simulation of multiprocessors or CMPs is expedited by
orders of magnitude using FPGAs.

2.3. FPGA as high-performance coprocessor

A proficient use of FPGAs is as a collaborative specialized hardware algorithm running
under control of a separate processor. This is the best of both worlds: a processor is used
to control the flow of the algorithm and the FPGA is used to execute a specialized fast
hardware implementation of the algorithm. High performance computers are equipped
with reconfigurable FPGAs to operate as fast specialized computing elements, accessed,
controlled and addressed by the associated processor. The FPGAs are either connected
to a global shared memory (e.g. the SGI-Altix/RASC [34]) or directly to a companion
high performance processor (e.g. the Cray-XD1 [9]). The first configuration has more
possibilities to assign a farm of FPGAs for a particular job, while the second organization
provides a faster and direct link between the processor and the associated FPGA. Both
approaches have proven to be able to provide several orders of magnitude speedup on
the right applications, e.g. DES breaking or DNA and protein sequencing [16].

To obtain these huge speedups requires a blend of a number of hardware, software
and application characteristics, which are summarized as follows.

• A tight high-speed, low latency connection between processors and FPGAs.
• A compute-intensive problem with inherently massive regular parallelism in

fixed-point arithmetic. Floating-point IP cores take a lot of chip area and are much
slower than integer arithmetic.

• The problem must have good data locality. The data movement between the pro-
cessor and the FPGA as well as within an FPGA remains slow with respect to the
low-level parallel operations in the FPGA. Many successful FPGA applications
operate in a single program multiple data (SPMD) fashion, by replicating a com-
pute kernel many times and processing streams of data. Since FPGAs have a lim-
ited amount of memory, the data used for a computation should be fetched only
once, such that all the computations on the data are finished in one computing
step and then the data can be discarded.
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• There is a need for a high level programming environment which is able to seam-
lessly integrate the hardware/software codesign.

• The problem lends itself easily to a hardware/software partitioning in which the
software runs on the host and the hardware is executed on the FPGA.

3. FPGA programming languages

The lowest language level for programming FPGAs is VHDL. However VHDL is too
hardware specific and can be regarded as the assembly language of reconfigurable
computing. The lowest system-level language in wide use is C. In recent years many
C-dialects have been developed to program FPGAs. Examples are Handel-C [1,27],
Streams-C [17], Impulse-C [30], SystemC [18] and SPARK [20]. The major difference
between these languages is their adherence to the ANSI C standard on the one hand or
a C-like language with new pragmas and keywords for hardware synthesis on the other
hand. The advantage of all approaches over VHDL or Verilog is the higher level of ab-
straction, which fosters more productivity.

The most well known C-like language with a strong hardware flavor is SystemC.
SystemC is managed by the open SystemC Initiative (OSCI), and the language was re-
cently recognized as IEEE standard Std 1666 2005. SystemC exists as a C++ class library
which permits hardware-specific objects to be used within C++. The specific SystemC
identifiers start with ”sc ”. In particular, events, sensitivity, modules, ports and hard-
ware data types allow to express concurrency, signals and hardware structure. Handel-C
has its roots in Occam, a language using the communicating sequential processes (CSP)
paradigm to program transputers. Handel-C uses specific keywords to specify hardware,
e.g. signals, interfaces, memory types and clocks. In [7] a test is discussed where a team
of software developers without prior hardware knowledge develops an image processing
algorithm in hardware using the Handel-C to VHDL compiler. The resulting hardware
runs 370 times faster than the software algorithm.

Languages which comply with ANSI C mostly adhere to a well-defined computing
paradigm such that the machine dependent characteristics can be mostly hidden for the
programmer. An example of such a language is Streams-C or its descendant Impulse C,
where the hardware part is programmed as a C function and compiled for execution on
an FPGA. The communication between the software process and the hardware algorithm
is based on streams of data. The code generation for the processor and the configuration
generation for the FPGA is produced in one compile phase. Impulse C also generates
the stubs to mediate the traffic between processor and FPGA. Impulse C is one of the
languages available on the Cray and SGI supercomputers with FPGA accelerators.

4. Program transformations for parallelism

High-performance computing with FPGAs is most successful for applications with high
parallelism and high data locality. In addition the compute kernel running on the FPGA
should have a limited control flow in order to avoid pipeline stalling or synchronization
overhead. In the area of bioinformatics or cryptography there are applications with obvi-
ous parallelism. However many common programs with inherent parallelism need to be
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transformed in order to map the computations on an FPGA. In these cases nested loops
are often a prime candidate for a hardware implementation when the proper conditions
are met. Even when there is no obvious parallelism, there exist methods to reorient the
computations in order to improve the parallelism and data locality at the same time. In
the following, an approach using unimodular transformations is presented, which finds
the maximum number of parallel iterations and orders the computations to optimize the
data locality.

4.1. Loops with uniform dependencies

Consider a perfect loop nest L:

for{I1 = 1..n1}
for{I2 = 1..n2}

...
for{In = 1..nn}
S(I1, I2, ...In);

This loop is represented as L = (I1, I2, . . . , In)(S) where S represents the state-
ments in the loop body and column vector I = [I1 . . . In]T , with 1 6 Ii 6 Nk; i = 1..n,
contains the loop indices.

Two iterations S(I) and S(J) are dependent, S(I)δS(J), if both iterations access
the same location, and at least one iteration writes into that location. Suppose iteration
S(I) precedes iteration S(J) in lexicographical order (i.e. the execution order of the
program). Several dependence relations are defined. If iteration S(J) writes data which
is used by iteration S(I), then S(J) is data dependent on S(I). If iteration S(J) writes
data into the same location that is read by iteration S(I), then S(J) is anti-dependent
on S(I). If iterations S(J) and S(I) write into the same location, then S(J) is output
dependent on S(I).

The dependence distance vector between two dependent iterations S(I) and S(J)
is defined as

d = J − I

For each pair of array elements where one is a write, the dependence distance vector is
the distance between the two elements. E.g. the dependence distance vectors of a loop
with statement

A[I1, I2] = A[I1 − 4, I2 + 2] + A[I1 − 4, I2 − 2]

are d1 = [4,−2]T and d2 = [4, 2]T . The dependence matrix D contains the dependence
distance vectors of the loop, i.e. D = [d1 . . . dm] where m is the number of dependence
distance vectors.

In many loops, the dependence between the array indices is fixed and the corre-
sponding dependence matrix is constant. Loops with a constant dependence matrix have
uniform dependencies. In these loops the array indices have the form i + c where c is a
constant. A canonical form of a uniform loop nest is:
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for{I}
S(I) = F (S(I − d1), S(I − d2), . . . , S(I − dm));

The loop variables S in iterations I are functions of the loop variables S in iterations
I − d1, . . . , I − dm. The dependencies between the iterations are expressed by the index
expressions I − di, i.e. iteration I depends on iterations I − d1, I − d2 . . . I − dm.

Consider dependence matrix D = [d1 . . . dm]. Then the dependence relations satisfy
the following lemmas:

Lemma 1 Two index points I1 and I2 are dependent if and only if

I1 − I2 = Dy, y = (y1y2 . . . ym)T ∈ Zm (1)

¤
In other words, the distance between two dependent iterations is a linear combination

of the distance vectors in the dependence matrix D. Starting from an arbitrary iteration
I0, the following lemma 2 finds the set of all dependent iterations.

Lemma 2 The iterations I dependent on a particular iteration I0 are given by the fol-
lowing equation

I = I0 + Dy, y ∈ Zm (2)

¤

Equation (2) defines a subset of dependent iterations. A loop is partitioned in a number
of subsets. Every subset is executable in parallel, but the iterations in each subset need to
be executed sequentially. A few questions arise:

- How are the parallel sets identified?
- What loop transformation is needed to execute the sets in parallel?

Both issues are solved by a unimodular transformation of the dependence matrix, fol-
lowed by a regeneration of the loops traversal in lexicographical order.

4.2. Unimodular transformation

A unimodular matrix is a square matrix of integer elements with a determinant value of
+1 or -1. A useful property of a unimodular matrix is that its inverse is also unimodular.
Likewise, the product of two unimodular matrices is also unimodular.

Definition 1 Unimodular transformation of the index set

A uniform transformation of the index set I ∈ Zn is the index set Y = UI with Un×n a
unimodular matrix. ¤

Unimodular transformations are of interest for constructing parallel partitions because:

1. There is a 1-1 mapping between the index sets I and Y = UI .
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2. The dependencies remain invariant after a unimodular transformation, i.e.

I1δ(D)I2 ⇔ UI1δ(UD)UI2.

where δ(D) and δ(UD) denote dependencies with respect to dependence matrix
D and UD respectively.

3. There exist algorithms to convert a dependence matrix D to a triangular or diag-
onal form.

4. The maximal parallel partitions of triangular or diagonal matrices is known.

The algorithm to transform a dependence matrix into unimodular form is based on
an ordered sequence of elementary (unimodular) row- or column-operations:

- exchange two rows;
- multiply a row or column by -1;
- add an integer multiple of one row or column to another row or column.

The elementary transformations are obtained by a left (for rows) or right (for
columns) multiplication with a unimodular matrix representing an elementary operation.
Multiplication of the elementary matrices yields the unimodular transformation matri-
ces U and V such that Dt = DV or Dd = UDV with Dt and Dd the conversion
of the dependence matrix D into triangular or diagonal form. The algorithms for these
transformations are given in [12].

Lemma 3 The triangular dependence matrix Dt = DV with V unimodular, represents
the same dependencies as the dependence matrix D

Proof. With D = DtV −1 the dependence equation (2) of two dependent iterations I1

and I2 becomes

I1 − I2 = DtV −1y, y ∈ Zm

Now, let y′ = V −1y, then

I1 − I2 = Dty′, y′ ∈ Zm

which expresses that I1 and I2 are dependent under dependence matrix Dt. ¤
As a result, it is possible to parallelize the loops and calculate the new loop bound-

aries using the triangular dependence matrix.

4.3. Loop partitioning

With a triangular dependence matrix Dt = DV , obtained by a unimodular transforma-
tion of the dependence matrix D, the dependence set, i.e. the iterations dependent on a
particular iteration I0 are given, using equation (2):
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I1 = I0,1 + Dt
11y1

I2 = I0,2 + Dt
21y1 + Dt

22y2

. . .

In = I0,n + Dt
n1y1 + . . . + Dt

nnyn

Now, for an arbitrary iteration I , a unique label I0 = [I0,1, I0,2, I0,3] with I0,i ∈
{0, . . . , Dt

ii − 1}, is calculated as follows:

I0,1 = I1 mod Dt
11

y1 = (I1 − I0,1)/Dt
11

I0,2 = (I2 −Dt
21y1) mod Dt22

y2 = (I2 − I0,2 −Dt
21y1)/Dt

22

. . .

I0,i = (Ii −
i−1∑

j=1

Dt
ij) mod Dt

ii

yi = (Ii − I0,i −
i−1∑

j=1

Dt
ij)/Dt

ii

Each label generates a different set of dependent iterations, using equation (2). The
number of different labels, and therefore the parallelism |L| of the loop L is

|L| =
n∏

i=1

Dt
ii = | det(Dt)| = | det(D)|,

since the unimodular transformation Dt = DV maintains the absolute value of the de-
terminant det(D).

4.4. Example

Consider the following loop:

for{I1 = 1..16}
for{I2 = 1..16}
for{I3 = 1..16}
a(I1, I2, I3) = A(I1 − 1, I2 + 2, I3 − 4) + A(I1 − 2, I2 − 4, I3 + 1)

−A(I1, I2 − 4, I3 − 2);

A unimodular transformation of the dependence matrix D
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D =




1 2 0
−2 4 4
4 −1 2




yields Dt = DV with

Dt =




1 0 0
−2 4 0
4 2 13


 and V =




1 0 2
0 0 −1
0 1 2




Now the loop can be refactored as follows:

1. Construct parallel outer loops, generating a label I0 for each parallel dependence
set. The step size of the outer loops equals the diagonal elements of Dt.

2. Construct sequential inner loops, which generate the dependent iterations for la-
bel I0.

3. Maintain the body of the original loop.

This gives:

for all{I0,1 = 1..1}
for all{I0,2 = 1..4}
for all{I0,3 = 1..13}
for{I1 = I0,1..16, step 1}
y1 = (I1 − I0,1)/1
I2,min = 1 + (I0,2 − 1− 2 ∗ y1) mod 4
for{I1 = I2,min..16, step 4}
y2 = (I2 − I0,2 + 2 ∗ y1)/4
I3,min = 1 + (I0,3 − 1 + 4 ∗ y1 + 2 ∗ y2) mod 13
for{I3 = I3,min..16, step 13}
A(I1, I2, I3) = A(I1 − 1, I2 + 2, I3 − 4) + A(I1 − 2, I2 − 4, I3 + 1)

−A(I1, I2 − 4, I3 − 2);

There are 52 parallel iterations in the three outer loops. Each parallel iteration con-
sists of three sequential loops.

5. Program transformations for locality

Since data movement in FPGAs is expensive, it is important to ensure that the calcula-
tions on the same data are conglomerated. The data locality is measured by the reuse
distance:

Definition 2 Reuse distance

The reuse distance is defined as the number of distinct data elements accessed between
the use and the reuse of the same data [15]. ¤
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E.g. given an access pattern A(1), A(3), A(5), A(1) . . . the reuse distance of A(1)
is 3.

When the reuse distance is smaller than the available memory, no reload of the data is
necessary. The unimodular loop transformation has a beneficial effect on the data locality,
because related iterations are conglomerated in a number of serial loops. For the example
in section 4.4, the reuse distance before and after the transformation is shown in figure 2.

110
1001,00010,000

1 10 100 1,000 10,000Reuse dstance
Freqency

Figure 2. Reuse distance frequency in the example program before and after a unimodular transformation in
a log-log scale. Squares are reuses of the original program, diamonds represent reuses after the unimodular
transformation. The program transformation reduces the reuse distance almost 50 times.

The maximum reuse distance of the original and transformed program is respectively
2298 and 47. The unimodular transformation therefore decreased the reuse distance by a
factor of almost 50.

The execution of the loops in parallel assumes that the participating FPGAs have
a parallel access to a large shared memory. Moreover, the loop control and the modulo
calculations shown in the example 4.4 create some overhead, which hampers the effi-
ciency. In a hardware/software codesign configuration, the FPGAs are connected to the
processor via a streams channel. A further unimodular transformation allows to get rid
of the modulo operation and stream the data to the different cooperating FPGAs.

5.1. Data streaming using unimodular transformations

Consider a unimodular transformation by which the dependence matrix is brought into
the diagonal form: Dd = UDV . The dependence equation (2) becomes

UI = UI0 + UDdy′, y′ ∈ Zm, (3)

considering that UDy = UDV V −1y = Ddy′ with y′ = V −1y an arbitrary integer
vector in Zm. Let Y = UI be an iteration in the transformed iteration space and denote
Y0 = UI0 the label of the dependence set Y0 +Ddy′. Since dependent iterations Y differ
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by a multiple of the diagonal elements, a unique label for the dependence set of Y is Y0

such that

Y0,i = Yi mod Dd
ii, i = 1 . . .m. (4)

It now becomes possible to assign an iteration I to a processing element as follows:

1. calculate the transformed index, Y = UI ,
2. calculate the iteration label Y0 according to equation (4),
3. assign the iteration to a processor according to the formula:

p = 1+(Y0,1+Dd
11(Y0,2+Dd

22(Y0,3+. . .+Dd
n−1,n−1(Y0,n) . . .))) mod pmax

(5)

where pmax is the actual number of FPGA processing elements available for the com-
putation. Now in a hardware/software codesign environment, the processor executing
the parallel loops, calculates the iteration label and processor number p and sends the
data of the sequential loops to the streaming channel of FPGA processing element p, see
figure 3.

Figure 3. Streams operation: the parallel loops are assigned to FPGAs using formula 5.

The lexicographical ordering is maintained and each FPGA operates in a pipelined
fashion on the incoming data stream.

6. Program transformations enhancing locality

When unimodular techniques described in the previous section are not applicable, the
data locality in loops may still significantly be improved by a number of well known loop
transformations.
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6.1. Loop fusion

When the same data is used in adjacent loops, it is useful to merge the loops such that
the data is traversed only once. E.g. the reuse distance of A[i] drops from M to 0 in the
following loops:

for{i = 1..M}
...A[i] + t...

for{j = 1..M}
...A[j] + v...

A[1]A[2]...A[M ]A[1]...A[M ]

for{i = 1..M}
...A[i] + t...
...A[i] + v...

A[1]A[1]A[2]...A[M ]

6.2. Loop interchange

When data is reused between two iterations of an outer loop, the reuses can be coalesced
by interchanging the outer and the inner loop. In the following example, this decreases
the reuse distance from N to 0.

for{i = 1..M}
for{j = 1..N}
...A[j]...

A[1]A[2]...A[N ]A[1]

for{i = 1..N}
for{j = 1..M}
...A[j]...

A[1]A[1]...A[1]A[2]

6.3. Loop tiling

When data is reused both in the inner and the outer loop, loop interchange is not helpful,
because it will improve the inner loop accesses, but worsen the outer loop accesses. Loop
tiling improves the locality in both loops by an extra loop, minimizing the data access in
the inner loops to a small fraction of the data set.

for{i = 1..M}
for{j = 1..N}
...A[i] + B[j]...

A[1]B[1]A[1]B[2]...B[N ]A[2]B[1]

for{t = 1..N, step 10}
for{i = 1..M}
for{j = t.. min(t + 10, N)}
...A[i] + B[j]...

A[1]B[1]A[1]B[2]...B[11]A[2]B[12]...

6.4. SLO: suggestions for data locality

In complex programs it is often not easy to find the parts with poor data locality, and
even more so to find the right program transformation which improves the locality. E.g.
current cache profilers are able to indicate the region where cache misses occur, but this
is usually not the place where a program transformation improves the locality.

One of the reasons is that the cache profilers point at the endpoint of a long use/reuse
chain, i.e. the cache miss. A new locality profiler, SLO (Suggestions for Locality Opti-
mizations) [4,5] measures the reuse distance and registers a miss when the reuse distance
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exceeds the memory size. At the same time, SLO analyzes the code executed between
use and reuse, and finds the loops where a transformation will have the highest impact
on the reuse distance. Next, a suggestion is given to fuse, interchange or tile these loops.

Since SLO is based only on the reuse distance, the profiling is independent of the
memory architecture and the suggestions can be applied equally well to optimize the
use of FPGA memory. In [11] SLO has been successfully applied to find and refactor
loops of a 2-dimensional inverse discrete wavelet transformation (2D-IDWT) used in an
FPGA-based video decoder.

7. Optimizing data reuse with smart buffers

Many C to VHDL compilers, e.g. Streams-C, Impulse C or Handel-C apply the streams
paradigm to use the FPGA as a hardware procedure. For example, in Impulse C, a proce-
dure is first tested locally for correctness, and next the hardware version of the procedure
is generated for implementation on the FPGA. Software and hardware stubs are created
for streaming the data to and from the FPGA. Many multimedia and signal processing
applications are suitable for streaming execution, in which a signal or an image is sent
to the FPGA and results are fed back. In the FPGA, the data is stored in block RAM.
In the previous section, it was shown that the data locality can be optimized by suitable
transformations. An additional optimization for streaming applications is the use of a
smart buffer [19]. A smart buffer is a number of named registers equal to the number
of variables used in the computation kernel of the application. The idea is to organize
the data in such a way that they are fetched only once from the block RAM, and used
repeatedly in the smart buffer for all iterations operating on the fetched data. Consider
for example the following N-tap FIR filter program:

S = 0
for{i = 0; i < N ; i++}
S = S + A[n− i] ∗ coeff [i]

Out[n] = S

With N=5, the array element A[n] is used in five consecutive iterations to calculate
Out[n], Out[n + 1], . . . , Out[n + 4]. A C to VHDL compiler will fetch A[n] five times
from block RAM. In fact, five elements of the compute kernel are fetched from block
RAM in each iteration. This creates a large overhead. By storing the elements in the
registers, the access is much faster, and only one new element from block RAM is needed
per iteration. This however requires the rewriting of the loop kernel computations five
times, and replacing the array elements with named registers.

Since the block RAM access is the slowest operation, the use of a smart buffer
achieves an almost fivefold speedup. In [14], the code produced by the Impulse C com-
piler has been adapted for use of a smart buffer, both for one dimensional and two di-
mensional applications.

In two dimensional applications such as image processing, the smart buffer consists
of a window of registers representing the pixels used in the calculation. For example,
in edge detection, the window consists of the pixels surrounding pixel A[i][j]. A two
dimensional smart buffer creates an additional complication in that there are no results
in each time step, because three data elements have to be fetched before a new result
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is available. This delay can be shortened by unrolling the inner loop in such a way that
two or three adjacent rows are treated in the same unrolled iteration. In [14] it is shown
that the application of the smart buffer technique on a FIR filter and an edge detection
algorithm yield a speedup of respectively 4.14 and 4.99, using a small Spartan-3 FPGA
board.

8. Conclusion

The use of FPGAs for high performance computing has drawn a lot of attention in the
scientific world, at different levels of the algorithmic, application and hardware side. The
computer architects have recognized the usefulness of FPGAs, as is evidenced by su-
percomputing companies like Cray and Silicon Graphics, which have successfully em-
bedded FPGAs in their systems [9,34]. In the academic world, the paradigms by which
FPGAs can be used have shown that there are plenty of opportunities [13]. Even so, we
are still looking for one consolidating paradigm which tries to synthesize the findings
of different approaches. Finally, the compilers need to be aware of specialized program
transformations that deal with the characteristics of FPGAs, notably the slower process-
ing clock, the limited amount of block RAM memory and the implications of the stream-
ing communication, which seems to be the prevailing connection between processor and
FPGA. In any case, FPGAs and reconfigurable computing will remain a very important
building block for parallel and high-performance computing.
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