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Abstract 24 

Disentangling the ecological mechanisms in response to  dredging disturbance is 25 

helpful to inform environmental policy for improving water quality. However, little is 26 

known about environmental adaptation and community assembly of bacterioplankton 27 

in response to dredging disturbance. Based on Illumine MiSeq sequencing and 28 

multiple statistical analyses, we have characterized interactions, functions, 29 

environmental breadth, phylogenetic signals and  clustering, and the ecological 30 

assembly processes of a bacterioplankton community before and after dredging. We 31 

found distinct changes in community composition, comparable decreases in diversity, 32 

functional redundancy, conflicting interactions, lower phylogenetic clustering, and 33 

weak environmental adaptation after dredging. The bacterioplankton community 34 

assembly was affected by both stochastic and deterministic processes before dredging, 35 

but was dominated by stochasticity after dredging. Sediment total phosphorus was a 36 

decisive factor in balancing stochastic and deterministic processes for community 37 

assemblies of bacterioplankton before and after dredging. Consequently, taxonomic 38 

and phylogenetic α-diversities of the bacterioplankton exhibited a higher contribution 39 

to the water trophic level, as represented by chlorophyl α measurement, before rather 40 

than after dredging. Our results clarify the responses of bacterioplankton to 41 

environmental change caused by dredging disturbance, with nutrient loss and 42 

ecological drift playing important roles. The findings extend knowledge of the 43 

contribution of bacterioplankton diversity to the water trophic level and decipher the 44 

mechanisms of bacterioplankton diversity maintenance in response to dredging. The 45 
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findings are also helpful for  guiding cyanobacterial bloom mitigation. 46 

 47 

Keywords: anthropogenic disturbance, environmental breadth, functional redundancy, 48 

phylogenetic clustering, phylogenetic signal, stochastic versus deterministic responses 49 

 50 

1. Introduction 51 

Bacterioplankton are important aquatic microorganisms and participate in nutrient 52 

biogeochemical cycles (Bunse and Pinhassi, 2017). Cyanobacteria, regarded as one of 53 

the most important members of bacterioplankton, generates massive blooms and cause 54 

worldwide environmental problems (Hamilton et al., 2016; Te et al., 2017). 55 

Cyanobacterial blooms threaten human health and the diversity of aquatic organisms 56 

via release of algal toxins and consuming oxygen (Huisman et al., 2018; Olson et al., 57 

2020). Many studies have reported that the superfluous input of phosphorus (P) and 58 

nitrogen (N) leads to cyanobacterial blooms (Te et al., 2017; Zhang et al., 2017; Kim 59 

et al., 2020), and non-cyanobacterial bacterioplankton are reported to be responsible 60 

for the bloom of cyanobacteria (Berg et al., 2009; Te et al., 2017; Wan et al., 2020). 61 

Blocking nutrient input, especially N and P,  into aquatic ecosystems and changing 62 

bacterioplankton interactions might mitigate cyanobacteria blooms. 63 

 Dredging can improve water quality and achieve environmental protection by 64 

changing both abiotic and biotic factors in water-sediment ecosystems (Liu et al., 65 

2016; Zhang et al., 2017; Wan et al., 2020). Such large-scale anthropogenic 66 

disturbance has exhibited good performance for removing nutrients (e.g., N and P) 67 

from sediment (Liu et al., 2016). However, dredging affects bacterioplankton 68 
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community composition (Zhang et al., 2017) and decreases bacterioplankton 69 

α-diversity (Wan et al., 2020). Deciphering maintenance of microbial diversity  is of 70 

importance to estimate diversity-driven ecosystem processes and functions. However, 71 

the ecological mechanisms underlying bacterioplankton diversity maintenance as a 72 

result of dredging disturbance is poorly understood. 73 

Microbial diversity maintenance is often clarified through two major aspects: 74 

environmental adaptation and community assembly (Jiao and Lu, 2020; Wan et al., 75 

2021a, 2021b). Environmental adaptation of microorganisms involves two criteria: 76 

environmental breadth at a taxonomic level and phylogenetic signals at a phylogenetic 77 

level (Jiao and Lu, 2020; Wan et al., 2021c). Microbial environmental breadth reflects 78 

the distribution threshold of taxa along an environmental gradient over space or time 79 

(Baker and King, 2010). The phylogenetic signal is used to assess the strength of the 80 

microbial response to environmental preferences (Oliverio et al., 2017). This 81 

phylogeny-based trait characterizes how microorganisms interact with their 82 

environment, providing a solid foundation for predicting the preservation of microbial 83 

diversity (Martiny et al., 2015; Goberna and Verdú, 2016). Additionally, microbial 84 

responses to ongoing environmental change show phylogenetic conservatism, namely, 85 

species are not randomly distributed along the tree of life (Martiny et al., 2015). For 86 

instance, 30 isolated aerobic methane-oxidizing bacteria show strong phylogenetic 87 

conservatism to pH and temperature (Krause et al., 2014). Consequently, revealing 88 

environmental breadths and phylogenetic signals can explain major ecological 89 

phenomena, including species distribution patterns, seasonal succession, and 90 
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responses to global environmental change (Thomas et al., 2016; Monk et al., 2017). 91 

However, environmental breadth and phylogenetic signals of bacterioplankton to 92 

environmental change has been rarely reported in eutrophic lakes. 93 

Ecological assembly processes mediate microbial community structure and 94 

coexistence patterns (Huber et al., 2020; Jiao et al.,2020), and have been found to be 95 

imperative in connecting microbial community structure with ecosystem function  96 

(Stegen et al., 2016; Wan et al., 2021c). Briefly, stochastic and deterministic processes 97 

adjust microbial community assembly (Yan et al., 2017; Huber et al., 2020). For 98 

instance, deterministic processes have great effects on bacterial community assembly 99 

in coastal waters of the East China Sea in autumn (Wang et al., 2020). Many studies 100 

have revealed that the balance between determinism and stochasticity is affected by 101 

environmental factors (Stegen et al., 2016; Huber et al., 2020). For example, pH was 102 

the major factor in determining bacterioplankton community assembly in 25 discrete 103 

freshwater lakes in Denmark (Ren et al., 2015). However, it remains unclear whether 104 

similar environmental variables regulate the balance between determinism and 105 

stochasticity of bacterioplankton communities in eutrophic freshwater lakes. 106 

 Freshwater lakes functioning for aquaculture, storing water, irrigating farmland, 107 

and providing recreation. However, freshwater lakes are facing severe challenges 108 

because of serious water eutrophication (Tao et al., 2017; Te et al., 2017), and 109 

dredging represents a massive human disturbance  to enhance water quality. To 110 

investigate responses of bacterioplankton to dredging disturbance, we chose Lake 111 

Nanhu (Wuhan, China) as our study area. We selected nine representative sites in 112 
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Lake Nanhu (Fig. S1), and collected water and sediments samples before and after 113 

dredging. In a previous study, we found significant decreases in nutrients after 114 

dredging (Fig. S2), and our results demonstrated that cyanobacterial blooms can be 115 

mitigated by dredging via changing the interconnection between the bacterioplankton 116 

community and sediment biogeochemistry (Wan et al., 2020). In the present research, 117 

we aimed to (i) investigate contributions of taxonomic and phylogenetic diversity to 118 

the water trophic level before and after dredging, (ii) estimate environmental 119 

adaptation and community assembly processes before and after dredging, and (iii) 120 

decipher effects of community assembly on bacterioplankton interactions and 121 

functions. Since  dredging led to nutrient loss, we hypothesized that dredging might 122 

weaken bacterioplankton environmental adaptation and intensify ecological drift. To 123 

achieve our goals and validate our hypothesis, we applied 16S rRNA gene amplicon 124 

sequencing and determined water and sediment physicochemical properties. 125 

 126 

2. Materials and methods 127 

2.1. Data collection 128 

Detailed information about dredging procedures was described in prior research 129 

(Wan et al., 2020). In April and July, 2017 (before dredging) and in April and July, 130 

2018 (after dredging), 36 water samples and 36 sediment samples were collected from 131 

9 sites in Lake Nanhu (Wuhan, China). We estimated water physicochemical 132 

properties, including pH, turbidity (Tur), dissolved oxygen (DO), temperature (T), 133 

nutrient phosphorus PO4
3--P (PO4), nutrient nitrite  NO2

--N (NO2), nutrient nitrate  134 

NO3
--N (NO3), and nutrient ammonia  NH4

+-N (NH4). Sediment physicochemical 135 
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properties were also assessed, including total carbon (TC), total nitrogen (TN), total 136 

phosphorus (TP), Olsen P, inorganic phosphorus (IP), non-apatite inorganic 137 

phosphorus (NAIP), organic phosphorus (OP), and apatite phosphorus (AP). 138 

Sampling information and measurement of physicochemical properties have been 139 

previously  described in detail (Wan et al., 2020). To assess the  water trophic level, 140 

we estimated the content of chlorophyl α (Chl-α) based on a spectrophotometric 141 

method (Te et al., 2017). 142 

Universal primers of 338F (5'- ACT CCT ACG GGA GGC AGC A-3') and 806R 143 

(5'- GGA CTA CHV GGG TWT CTA AT-3') were used to amplify bacterial 16S rRNA 144 

gene targeting V3–V4 regions (Mori et al., 2013). Illumina sequencing was performed 145 

at the Majorbio Bio-Pharm Technology Co., Ltd. Shanghai, China. Detailed 146 

description of bacterioplankton recovery from water samples, DNA extraction, and 147 

16S rRNA gene amplification, and sequencing  are reported in a previous study (Wan 148 

et al., 2020) and also summarized in the Supplementary materials (Supplementary 149 

method 1). The purified sequences were classified into operational taxonomic units 150 

(OTUs) at a 3% dissimilarity level against the SILVA v128 reference. The OTUs 151 

accounting for less than 0.001% of the total sequences were filtered out. The MiSeq 152 

raw reads were deposited in the NCBI Short Read Archive database under accession 153 

numbers PRJNA391223 (2017) and PRJNA541122 (2018).  In addition, we also 154 

measured abundances of cyanobacteria and bacterioplankton using universal primers. 155 

The amplifications of 16S rRNA genes for assessing cyanobacteria and 156 

bacterioplankton abundance were reported in a prior study (Wan et al., 2020) and are 157 
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also summarized in Supplementary materials (Supplementary method 2). 158 

 159 

2.2. Data analysis 160 

Significant differences in the data, if not otherwise stated, were analysed by the 161 

Student’s t-test when data followed normal distributions (p < 0.05). Venn diagram and 162 

non-metric multidimensional scaling (NMDS) were used to reflect the community 163 

structure of bacterioplankton using the “VennDiagram” and “ggplot2” packages of R. 164 

Canonical analyses of the principal coordinates (CAP) were employed to investigate 165 

influences of environmental factors on bacterioplankton community structure by 166 

employing the “capscale” function in the “vegan” package of R. Permutational 167 

multivariate analysis of variance (PERMAVONA) and pairwise analyses of similarity 168 

(ANOSIM) were selected to quantitatively evaluate effects of physicochemical 169 

variables on community structure of bacterioplankton by applying the “adonis” and 170 

“anosim” function in the “vegan” package of R. The OTUs observed in more than 50% 171 

of samples before and after dredging (> 9 samples) were applied to construct a 172 

co-occurrence network. The co-occurrence networks were visualized employing 173 

Gephi v. 0.9.2 (https://gephi.org/) with a significance p value < 0.01 and Spearman’s 174 

correlation coefficients (r) > 0.6. We used the ratio of positive edge 175 

(representssignificantly positive correlation) to negative edge (denotes noticeably 176 

negative correlation) to reflect bacterioplankton conflicting interactions (mainly 177 

competition and predation) (Wei et al., 2019). Functional profiling of the 178 

bacterioplankton community was conducted by employing the package ‘‘Tax4Fun2” 179 

of R, and the functional redundancy index (FRI) of each sample was calculated based 180 

https://gephi.org/
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on sequence similarity of the 16S rRNA gene (Wemheuer et al., 2020). The FRI is 181 

estimated as the proportion of species capable of harbouring a particular KEGG 182 

function and their phylogenetic relationships to each other (Wemheuer et al., 2020). 183 

Structural equation modeling was applied to analyze systems involving multiple 184 

causal interconnections, including water trophic level, taxonomic diversity, 185 

phylogenetic diversity, physicochemical properties, and community function by 186 

employing IBM SPSS Amos v.21. 187 

To evaluate the phylogenetic distance between communities, the beta mean 188 

nearest taxon distance (βMNTD) metric was employed by using the “comdistnt” 189 

function. To estimate whether species were clustering closer to the tips of the 190 

phylogeny, phylogenetic clustering based on standardised effect size measurement of 191 

the mean nearest taxon distance (SES.MNTD) was computed by applying the 192 

“ses.mntd” function in the “picante” package of R (Kembel et al., 2010). Threshold 193 

indicator taxa analysis (TITAN) was employed to estimate environmental breadth of 194 

bacterioplankton in response to environmental gradients by using the “TITAN2” 195 

package (Baker and King, 2010; Romero et al., 2019). A phylogenetic signal, 196 

reflecting phylogenetic conservation for traits that are closely correlated with 197 

microbial ecological preferences, can provide predictions for microbial evolutionary 198 

adaptation (Martiny et al., 2015). We used Blomberg’s K statistic and the Fritz-Purvis 199 

D test to estimate phylogenetic signals of bacterioplankton taxa before and after 200 

dredging (Goberna and Verdú, 2016; Wan et al., 2021a). The Blomberg’s K statistic 201 

reveals a phylogenetic signal that compares to the observed signal in a trait to the 202 
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signal based on a Brownian motion-based metric of trait evolution on a phylogeny 203 

(Blomberg et al., 2003). We computed the K value by employing the “picante” 204 

package of R (Kembel et al., 2010):high K values imply strong phylogenetic signals 205 

(Goberna and Verdú, 2016). We estimated the phylogenetic signal of binary traits by 206 

employing the “phylo.D” function in the “caper” package of R (Orme et al., 2013). 207 

The Fritz-Purvis phylogenetic dispersion (D) value compares the observed sister-clade 208 

differences in the trait against those expected for a random phylogenetic pattern 209 

(Orme et al., 2013; Goberna and Verdú, 2016). We transformed the D value into –D + 210 

1 to compare with Blomberg’s K statistic (Goberna and Verdú, 2016). The evolution 211 

of a study trait (i) does not reflect a noticeable signal when –D + 1 = 0, (ii) is more 212 

conserved than expected by chance when –D + 1 > 0. 213 

Ecological community assembly processes were assessed using null and neutral 214 

model analyses (Sloan et al., 2006; Stegen et al., 2016). β-nearest taxon index (βNTI) 215 

and null model-based Bray-Curtis-based Raup-Crick (RCbray) were applied to 216 

calculate the differences in phylogenetic and taxonomic diversities. If│βNTI│> 2, 217 

this demonstrates the dominance of deterministic processes, with significantly more 218 

(i.e., variable selection; βNTI > 2) and less (i.e., homogeneous selection; βNTI < -2) 219 

phylogenetic turnover than expected. If │βNTI│< 2, RCbray < -0.95 and RCbray > 0.95, 220 

this represents the relative contributions of homogenizing dispersal and dispersal 221 

limitation, respectively. If │βNTI│< 2 and │RCbray│< 0.95, this indicates the 222 

influence of “undominated” assembly, which mostly comprises diversification, 223 

ecological drift, weak selection, and/or weak dispersal (Stegen et al., 2016; Huber et 224 
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al., 2020). The detailed algorithm for this is described in prior literature (Stegen et al., 225 

2016). The neutral model analysis was employed to further reflect the contribution of 226 

astochastic process to the bacterioplankton community assembly by predicting the 227 

interconnection between species abundance distribution and species area (Zhou and 228 

Ning, 2017). In this model, the migration rate of “m” and model fitness of “R2” were 229 

calculated by applying the “stats4” and “hmisc” packages in R (Sloan et al., 2006). 230 

 231 

3. Results 232 

3.1. Abundance, composition, and diversity of bacterioplankton community 233 

before and after dredging 234 

Significant decreases in the Chl-α content and abundance of bacterioplankton and 235 

cyanobacteria were found after dredging (Wilcoxon rank-sum test, p < 0.001; Fig. 1a). 236 

The Chl-α content was strongly positively correlated with pH and DO, while 237 

noticeably negatively correlated with NH4 before and after dredging (p < 0.05 or p < 238 

0.01) (Table 1). Linear regressions reflected significant correlations between Chl-α 239 

content and cyanobacterial abundance before and after dredging (p < 0.001), while no 240 

significant correlation was found between Chl-α content and bacterioplankton 241 

abundance (p > 0.05) (Fig. 1b). This might suggest that the  blooms in eutrophic 242 

Lake Nanhu were mainly dominated by cyanobacteria before and after dredging. 243 

We identified 1528 OTUs from the retained 1,201,742 high-quality sequences at 244 

97% sequence similarity. The bacterioplankton communities shared 1026 OTUs 245 

before and after dredging (Fig. S3), and the OTUs were classified into 33 phyla. 246 

Actinobacteria, Proteobacteria, and Bacteroidetes dominated before and after 247 
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dredging, with total relative abundances higher than 85%. The relative abundances of 248 

Proteobacteria and Bacteroidetes significantly decreased after dredging (Wilcoxon 249 

rank-sum test, p < 0.05). The NMDS plot reflected distinct differences in 250 

bacterioplankton community composition before  and after dredging, and ANOSIM 251 

further confirmed that the difference was significant (R = 0.415, p < 0.001) (Fig. S3). 252 

The 16 physicochemical variables explained 62.95% and 53.57% of total variations in 253 

community composition before and after dredging, respectively (Fig. S4). According 254 

to the PERMANOVA results, N (e.g., TN and NH4) and P (e.g., AP and TP) exhibited 255 

significant effects on bacterioplankton community structure (Fig. S4). These results 256 

suggest that nutrient loss caused by dredging affected bacterioplankton community 257 

composition. 258 

The taxonomic α-diversity represented by the Shannon-Wiener index for the 259 

bacterioplankton was significantly higher before dredging than afterwards (p < 0.05; 260 

Fig. 1a), suggesting bacterioplankton diversity loss caused by the dredging event. The 261 

phylogenetic α-diversity represented by SES.MNTD was noticeably lower before 262 

dredging than afterwards, and were all less than zero and all at p < 0.001 (Wilcoxon 263 

rank-sum test, p < 0.05; Fig. 1a). Relatively more physicochemical factors (e.g., TP, 264 

AP, NH4, and NO3) had significant effects on taxonomic or phylogenetic α-diversity 265 

before rather than after dredging (Table 1). Additionally, the taxonomic α-diversity 266 

was significantly correlated with Chl-α before dredging (p < 0.05), but was not after 267 

dredging (p > 0.05) (Fig 1b). The phylogenetic α-diversity was slightly correlated 268 

with Chl-α before rather than after dredging (p > 0.05). These results indicate that the 269 
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bacterioplankton diversity contributed differently to the water trophic level before and 270 

after dredging. 271 

 272 

3.2. Environmental adaptation of bacterioplankton at taxonomic and 273 

phylogenetic levels 274 

Both community distance (represented by Bray-Curtis dissimilarity) and 275 

phylogenetic distance (represented by βMNTD) of bacterioplankton were 276 

significantly correlated with physicochemical factor dissimilarity before and after 277 

dredging (p < 0.001; Fig. S5, S6). Subsequently, we evaluated environmental 278 

adaptation of bacterioplankton at both taxonomic and phylogenetic levels (Fig. 2). 279 

The bacterioplankton exhibited a broader range of environmental thresholds for 280 

almost all environmental factors before dredging than after dredging (Fig 2a). 281 

Furthermore, the bacterioplankton showed stronger phylogenetic signals for almost all 282 

environmental parameters before dredging than after dredging based on Blomberg’s K 283 

statistic (Fig 2b) and Fritz-Purvis D test (Fig 2c). These results indicated that 284 

bacterioplankton taxa showed stronger environmental adaptation before rather than 285 

after dredging. 286 

 287 

3.3. Ecological processes and influence on bacterioplankton community assembly 288 

 Based on the null model, dispersal limitation (47.7%) and variable selection 289 

(28.1%) contributed most to community assembly before dredging (Fig. 3a). However, 290 

“undominated” processes (51.0%) and dispersal limitation (41.8%) contributed most 291 

to community assembly after dredging. Homogenizing dispersal and homogeneous 292 
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selection contributed less to community assembly. Consequently, stochastic and 293 

differentiating processes dominated bacterioplankton community assembly, and both 294 

processes were higher before dredging than after dredging (Fig. 3a). The neutral 295 

community model revealed that the bacterioplankton community was more affected 296 

by neutral processes after dredging (m = 0.303, R2 = 0.731) than before dredging (m = 297 

0.262, R2 = 0.717) (Fig. 3b). These results revealed that dredging led to an increase in 298 

“undominated” processes probably via increasing ecological drift, which in turn 299 

increased stochasticity. 300 

 The results of the Mantel test showed that changes in TP, AP, and Tur were 301 

significantly correlated with βNTI compared to other environmental factors before 302 

and after dredging (Table 1). Additionally, βNTI was significantly negatively 303 

correlated with a change in TP before dredging (Fig. S7), suggesting that an 304 

increasing divergence in TP led to a decrease in stochasticity. In contrast, βNTI was 305 

noticeably positively correlated with the change in TP after dredging (Fig. S7), 306 

demonstrating an increasing difference in TP resulted in an increase in stochasticity. 307 

We divided these samples into groups based on TP content, and found that increasing 308 

TP led to the relative contributions of stochasticity first decreasing and then increasing 309 

before dredging, and first increased and then declined after dredging (Fig. S8). 310 

Subsequently, we used co-occurrence networks and function profiling to reflect 311 

outcomes of stochasticity-dominated assembly of bacterioplankton community (Fig. 312 

4). We observed relatively more nodes and edges before dredging (node = 644, edge = 313 

51,082) than after dredging (node = 528, edge = 12,508) (Fig. 4a; Table S1). The ratio 314 
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of positive  to negative edges was relatively low before  (ratio = 3.38) than after 315 

dredging (ratio = 8.06) (Table S1), suggesting relatively less conflicting interactions 316 

between bacterioplankton after dredging. The core nodes in each network module 317 

were affiliated with Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, and 318 

Proteobacteria before dredging (Table S2), and were affiliated with Actinobacteria, 319 

Bacteroidetes, Chloroflexi, and Proteobacteria after dredging (Table S3). The core 320 

microorganisms represented by core nodes showed differing correlations with 321 

physicochemical variables (Table S2, S3). These results demonstrated that comparable 322 

divergence in bacterioplankton interactions  before  and after dredging. According 323 

to function profiling results, 8608 functions at KEGG pathway level 3 were detected 324 

before and after dredging, and these shared 8504 functions (Fig. S9). Among these, 325 

5632 functions showed higher functional redundancy before dredging, while 1108 326 

functions exhibited higher functional redundancies after dredging (Fig. S9). More 327 

unique functions were found after dredging, such as cytokinin dehydrogenase (EC: 328 

1.5.99.12), creatinine deaminase (EC: 3.5.4.21), and c-di-GMP phosphodiesterase 329 

(EC: 3.1.4.52). At KEGG pathway level 2, some functions (e.g., amino acid 330 

metabolism, carbohydrate metabolism, lipid metabolism, and environmental 331 

adaptation) were significantly higher before dredging than after dredging (Fig. 4b). 332 

These results suggested that a general functional decrease in the bacterioplankton 333 

community and a gain of some unique functions occurred after dredging. According 334 

to the  PERMANOVA results, sediment TP showed significantly higher effects on 335 

bacterioplankton community function compared to other physicochemical factors 336 
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before and after dredging (Fig. S10). This implies that the phosphorus resource is the 337 

determinant affecting bacterioplankton community function. 338 

 Finally, we quantitatively estimated effects of bacterioplankton community 339 

assembly on community function and water trophic level before and after dredging 340 

(Fig 5). A more significant correlation was found between βNTI and the functional 341 

redundancy index after dredging (R2 = 0.11, p < 0.001) than before dredging (R2 = 342 

0.04, p < 0.001) (Fig. 5a), suggesting bacterioplankton community function was more 343 

affected by community assembly after dredging. We also found a significant 344 

correlation between βNTI and changes in Chl-α content before dredging (R2 = 0.10, p 345 

< 0.001) rather than after dredging (R2 = 0.012, p > 0.05) (Fig. 5b). This suggested 346 

that dredging disturbance might reduce the effects of bacterioplankton community 347 

assembly on water trophic level. 348 

 349 

3.4. Relationships between trophic level, environmental factors, diversity and 350 

function of bacterioplankton 351 

 Structural equation modeling was used to reflect interconnection among five 352 

components, including water trophic level, environmental factors, taxonomic diversity, 353 

phylogenetic diversity, and community function (Fig. 6). Before dredging, 354 

physicochemical factors had a significant positive effect on bacterioplankton 355 

taxonomic diversity, which in turn noticeably positively affected the water trophic 356 

level (p < 0.05; Fig. 6a, 6c). Physicochemical factors also showed a dramatic directly 357 

positive influence on water trophic level. The model exhibited a good fit to our data, 358 

as reflected by the non-significant χ2 test (N = 18, χ2 = 0.15, d.f. = 1, p = 0.903; Fig. 359 
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6a). In contrast, physicochemical factors showed limited direct or indirect effects on 360 

water trophic level after dredging (p > 0.05; Fig. 6b, 6d). The model also exhibited a 361 

good fit to the data, as indicated by the non-significant χ2 test (N = 18, χ2 = 0.75, d.f. 362 

= 1, p = 0.387; Fig. 6b). Bacterioplankton community function showed significant 363 

positive effects on both taxonomic and phylogenetic diversities, while phylogenetic 364 

diversity exhibited limited effects on the water trophic level before and after dredging 365 

(p < 0.01; Fig. 6a, 6b). Direct effects of physicochemical factors, community function, 366 

taxonomic diversity, and phylogenetic diversity on water trophic level were stronger 367 

than indirect effects of corresponding components (Fig. 6c, 6d). These results 368 

suggested that water trophic level, environmental factors, taxonomic diversity, 369 

phylogenetic diversity, and community function were more closely connected before 370 

dredging than after dredging. 371 

 372 

4. Discussion 373 

Dredging can be regarded as a large-scale anthropogenic disturbance and can alter 374 

abiotic environmental conditions and biotic community diversity and function (Manap 375 

and Voulvoulis, 2016; Zhang et al., 2017; Wan et al., 2020). It has been routinely  376 

applied for environmental protection for purifying eutrophic lakes and rivers. Many 377 

attempts have been made to reveal ecological mechanisms behind dredging to inform 378 

environmental governance. However, most studies  investigate the effects of 379 

environmental variables on abundance, diversity, and structure of the bacterioplankton 380 

community (Su et al., 2017; Te et al., 2017), rather than environmental adaptation and 381 

community assembly. In this work, we investigated the responses of bacterioplankton 382 
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to environmental change. Unexpectedly, we found distinct shifts in diversity, 383 

composition, interactions, function, environmental adaptation, and ecological 384 

assembly processes of the bacterioplankton community after dredging. 385 

 386 

4.1. Smaller contributions of bacterioplankton diversity to the water trophic level 387 

after dredging 388 

 Published literature has reported that both taxonomic and phylogenetic 389 

α-diversities contribute significantly to multiple functions in terrestrial ecosystems 390 

(Jing et al., 2015; Luo et al., 2018). This might be also applied to aquatic ecosystems 391 

in terms of water trophic level. Unexpectedly, we found higher contributions of 392 

taxonomic and phylogenetic α-diversities to the water trophic level before dredging 393 

than after dredging. This phenomenon might be due to differences in diversity 394 

maintenance at both taxonomic and phylogenetic levels before and after dredging. 395 

 396 

4.2. Weaker environmental adaptation of bacterioplankton after dredging 397 

 Environmental adaptations of bacterioplankton before and after dredging were 398 

estimated by applying two different approaches: environmental breadth at taxonomic 399 

level based on TITAN analysis (Baker and King, 2010; Romero et al., 2019) and 400 

phylogenetic signals at a phylogenetic level based on Blomberg’s K statistic and the 401 

Fritz-Purvis D test (Goberna and Verdú, 2016; Wan et al., 2021a). We found that 402 

bacterioplankton exhibited broader environmental breadths and stronger phylogenetic 403 

signals before dredging than after dredging, suggesting stronger environmental 404 

adaptation before dredging. 405 
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Environmental breadth and phylogenetic signal analyses are useful to reflect 406 

microbial environmental adaptation (Jiao and Lu, 2020; Wan et al., 2021a). For 407 

instance, a previous study reported that Proteobacteria, Actinobacteria and 408 

Cyanobacteria are regarded as indicator taxa in wastewater treatment plants by 409 

applying TITAN analysis (Romero et al., 2019). Abundant bacteria and/or fungi 410 

exhibit stronger phylogenetic signals than corresponding rare taxa (Jiao and Lu, 2020; 411 

Wan et al., 2021a, 2021b). Microbial functional traits for ecological preferences rely 412 

on the evolutionary history of the species (Morrissey et al., 2019). For instance, 413 

bacterial functional traits in four forest soils in North America were mainly 414 

determined by evolutionary history and less affected by environmental filtering (e.g., 415 

vegetation type, precipitation, and temperature) (Morrissey et al., 2019). Species are 416 

not randomly distributed along the tree of life due to phylogenetic conservatism 417 

(Martiny et al., 2015), and the tree of life can provide information about evolutionary 418 

diversification, speciation and extinction rates (Stadler and Bokma, 2013). However, 419 

the stronger phylogenetic signals of bacterioplankton before dredging than afterwards 420 

might not be due to the shift in evolutionary history, since evolutionary diversification, 421 

speciation and extinction are strongly correlated with long-term environmental change 422 

(Lu et al., 2019). The stronger phylogenetic signals of bacterioplankton for functional 423 

traits before dredging might be via two pathways: (i) dredging-caused nutrient loss 424 

which in turn affected bacterioplankton community composition, and (ii) microbial 425 

ecological drift caused by removing sediment. It has been reported that exchanges of 426 

microorganisms and nutrients occurs between water and the sediment surface  (Liao 427 
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et al., 2020; Wan et al., 2020). Additionally, microbial responses to different 428 

environmental variables are phylogenetically conserved at different taxonomic levels 429 

(Martiny et al., 2015). For instance, in Acidobacteria, pH preference is reported to be 430 

deeply phylogenetically conserved at the phylum level, while  in Cyanobacteria and 431 

Actinobacteria, temperature preference appears to be shallowly conserved at the 432 

species level (Martiny et al., 2015). In the present study, bacterioplankton showed 433 

stronger phylogenetic signals before rather than after dredging which might suggest 434 

that the bacterioplankton exhibit more phylogenetic niche conservatism (Bennett et al., 435 

2010). This is similar to the results that showed that bacterioplankton exhibited closer 436 

phylogenetic clustering before dredging than after dredging. Additionally, the 437 

disturbance events of dredging can lead to an unstable ecosystem, which in turn could 438 

affect the bacterioplanktonic resistance to environmental change and the resilience to 439 

return to the original state or reach  a new stable state (Pimm, 1984; Zhang et al., 440 

2017). The significant change in bacterioplankton community composition might 441 

reflect that the bacterioplankton did not possess strong resistance to disturbance, and 442 

could not recover to the initial stable state after dredging. These findings might also 443 

explain why higher contributions of taxonomic and phylogenetic α-diversities to the 444 

water trophic level occur before dredging than after dredging. 445 

 446 

4.3. Stochasticity community assembly after dredging 447 

Before dredging, both stochastic and deterministic processes had a relatively 448 

large influencs on community assembly. These results differ from the findings of 449 

homogeneous selection referring to deterministic processes dominating 450 
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bacterioplankton community assembly in Lake Donghu across four seasons (Yan et al., 451 

2017) and in coastal waters in the East China Sea across three seasons (i.e., spring, 452 

summer, and autumn) (Wang et al., 2020). A microbial community tends to be a 453 

stochasticity-dominated assembly in nutrient-rich conditions, and inclines to be a 454 

deterministic-dominated assembly in nutrient-poor conditions (Chase, 2010). After 455 

dredging, the relative contribution of “undominated” processes to bacterioplankton 456 

community assembly increased, which is similar to a report describing that 457 

“undominated” processes show a greater contribution to bacterioplankton community 458 

assembly in a flood-occurring period than in a dry season (Huber et al., 2020). These 459 

findings indicate that both anthropogenic (i.e., dredging) and natural (i.e., flood) 460 

disturbances increase microbial ecological drift.  461 

 Before and after dredging, βNTI values of bacterioplankton community were 462 

more strongly correlated with sediment total phosphorus than other environmental 463 

variables. The decisive role of sediment total phosphorus in affecting community 464 

assembly might be partially due to the high phosphorus demand for living organisms 465 

(Canfield et al., 2020). Sediment total phosphorus is an important phosphorus source 466 

for bacterioplankton growth via release from sediment (Taylor et al., 2018).  Because 467 

the phosphorus cycle is coupled with carbon and nitrogen cycles (Canfield et al., 468 

2020), sediment organic carbon and organic nitrogen might also affect stochastic and 469 

deterministic processes. We will investigate the effects of multiple environmental 470 

variables onbacterioplankton community assembly in differing aquatic ecosystems in 471 

future research. 472 
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 473 

4.4. Less conflicting interactions and weaker functions after dredging 474 

Ecological community assembly processes determine microbial interaction 475 

patterns and functions (Xun et al., 2019; Jiao et al., 2020; Wan et al., 2021c). 476 

Bacterioplankton community functions decreased after dredging and sediment total 477 

phosphorus was essential for community functions. Phosphorus limitationaffected 478 

bacterioplankton community function in our and other studies (Yeh et al., 2020), 479 

which might be partially due to phosphorus effects on bacterioplankton community 480 

assembly. Co-occurrence networks showed that edges and nodes decreased after 481 

dredging, which is a similar finding for a flood-occurring river ecosystem in Paraná 482 

(Huber et al., 2020). The bacterioplankton community presented less conflicting 483 

interactions (mainly competition and predation) after dredging, which might be 484 

partially due to nutrient loss in water-sediment ecosystems. Sediments are important 485 

nutrient pool (Liu et al., 2016; Wan et al., 2020), and dredging-caused nutrient loss 486 

affects bacterioplankton growth, which in turn affects their abundance (Zhang et al., 487 

2017). In addition, dredging can cause microbial ecological drift, which in turn affects 488 

the exchange of bacteria between water and sediment (Liao et al., 2020), thereby 489 

influencing bacterioplankton community stability and interactions. It is worth noting 490 

that the core bacterioplankton changed in the network module after dredging, which 491 

might lead to a community functional shift. For example, the phylum Chloroflexi, 492 

reported to be responsible for production of cobalamin (amicrobial growth factor) 493 

(Mehrshad et al., 2018), was found to be one of the core nodes in the network module 494 

after dredging. Consequently, bactererioplankton function generally decreased  after 495 
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dredging, although more unique functions were gained after dredging. From the 496 

perspective of water quality improvement, dredging should be performed promptly 497 

and efficiently to decouple bacterioplankton from  their growth environment. 498 

 499 

5. Conclusions 500 

To our knowledge, our study is the first that shows that higher contributions of 501 

bacterioplankton taxonomic and phylogenetic α-diversities to water trophic level 502 

occur before dredging than after dredging. Bacterioplankton showed decreases in 503 

conflicting interactions, functional redundancy, phylogenetic clustering, and 504 

environmental adaptation after dredging. Both determinism and stochasticity 505 

governed bacterioplankton community assembly before dredging, while stochasticity 506 

dominated bacterioplankton community assembly after dredging. Sediment total 507 

phosphorus was a good indicator for bacterioplankton  community assembly. 508 

Dredging could lead to nutrient loss, cause microbial ecological drift, and weaken 509 

relationships between abiotic and biotic factors, therefore implying that dredging is an 510 

effective means to improve water quality. Our findings reveal ecological mechanisms 511 

associated with dredging and also provide a  guide for informing environmental 512 

protection policy. 513 
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Table 1 Pearson correlations between physicochemical factors and Chl-a content, taxonomic diversity (Shannon-Wiener index), and 684 

phylogenetic diversity (SES.MNTD index), and Mantel’s correlation between changes in physicochemical factors and phylogenetic turnover 685 

represented by βNTI. 686 

Property Chl-a content Taxonomic diversity Phylogenetic diversity Community assembly 

 Before After Before After Before After Before After 

pH 0.552* 0.519* 0.187 –0.129 –0.510* 0.027 0.291** 0.029 

T –0.223 –0.287 –0.268 0.250 –0.020 –0.010 0.090 –0.104 

DO 0.693*** 0.634** 0.535* 0.087 –0.037 –0.071 0.261*** 0.042 

Tur –0.726*** –0.414 –0.480* 0.091 0.300 –0.084 0.201** 0.189*** 

PO4 –0.298 –0.214 –0.508* 0.145 0.250 0.085 0.189*** 0.052 

NO2 –0.308 0.137 0.101 –0.144 0.544* –0.017 –0.021 0.415*** 

NH4 –0.517* –0.560* –0.542* –0.019 –0.027 0.154 0.019 0.522*** 

NO3 –0.189 –0.098 –0.518* 0.101 –0.144 –0.227 0.071 0.008 

TC –0.390 –0.235 –0.316 0.049 0.138 0.000 0.103 0.008 

TN –0.385 –0.181 –0.234 0.041 0.256 0.083 0.160** –0.020 

IP –0.442 –0.080 –0.551* –0.308 –0.273 –0.179 0.030 0.294*** 

OP 0.276 0.287 –0.005 0.109 0.099 0.137 0.172** 0.051 

NAIP 0.287 –0.300 –0.281 0.249 –0.310 –0.115 0.087 0.216*** 

AP –0.485* –0.011 –0.543* –0.270 –0.064 0.225 –0.177** 0.181** 

TP –0.247 0.002 –0.543* –0.450 –0.175 –0.265 –0.213*** 0.342*** 

Olsen P –0.258 –0.086 0.012 –0.253 –0.118 0.340 –0.041 0.027 

Note: The abbreviations of environmental factors are defined in Section 2. Asterisks represent significant level (*, p < 0.05; **, p < 0.01; ***, p 687 

< 0.001). 688 


