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to lung cancer: the role of macrophages with mixed

phenotypes
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bLaboratoire Mathématiques de Besançon, UMR - CNRS 6623, Université de

Bourgogne Franche-Comté, 25000 Besançon, France

Abstract

Macrophages’ role in the evolution of solid tumours is a well accepted fact,
with the M1-like macrophages having an anti-tumour role and the M2-like
macrophages having a pro-tumour role. Despite the fact that some clinical
studies on lung tumours have emphasised also the presence of macrophages
with mixed M1 and M2 phenotypes in addition to macrophages with distinct
phenotypes, the majority of studies still use the distinct M1-M2 classification to
predict the evolution of tumours and patient survival. In this theoretical study
we use a mathematical modelling and computational approach to investigate
the role of macrophages with mixed phenotype on growth/control/elimination
of lung tumours. We show that tumour control in the presence of M2→M1
re-polarising treatments is mainly the result of macrophages with mixed pheno-
types (due to the assumption of short half-life of M1-like macrophages). We also
show that the half-life of various macrophage phenotypes (distinct M1 or mixed
M1/M2 phenotypes) impacts the outcome of various therapeutic strategies tar-
geting tumour-associated macrophages. All these results suggest the need for a
better experimental understanding of the kinetics of macrophages inside solid
tumours.

Keywords: Mathematical modelling; Non-small cell lung cancer; M1 and M2
macrophages; Macrophages with mixed phenotypes;
2020 MSC: 92C50

1. Introduction1

The non-small cell lung cancer is the most common type of lung cancers,2

and the leading cause of cancer-related deaths in the world [1, 2]. Due to the3
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absence of clinical symptoms, most cancers are diagnosed only when they reach4

an advanced stage and when treatments are not effective anymore. For a long5

time it was thought that NSCLC is non-immunogenic, but over the last decade a6

number of studies have shown that this lack of immunity is the result of immune-7

evasive mechanisms employed by the tumour cells [1]. A recent study [3] on the8

immune cell composition of human NSCLC has shown that T cells represent the9

most abundant immune cell population (≈ 47%), followed by B cells (≈ 16%),10

macrophages (≈ 4.7%) and NK cells (≈ 4.5%). However, in [4] the authors11

found that neutrophils are the most prevalent immune cells in NSCLC, while12

in [5] the authors identified more macrophages than T cells inside tumour islets13

and stroma. A very recent study [6] that analysed publicly available raw mi-14

croarray expression data on immune composition of NSCLC concluded that the15

majority of the immune infiltrates inside these tumours is represented by the16

macrophages, followed by T cells and B cells. Moreover, in regard to the in-17

filtrating macrophages, the authors in [6] concluded that the majority of these18

cells have a M2-like phenotype (i.e., alternatively activated, anti-inflammatory19

and pro-tumour cells [7]), with the next abundant cells having M1-like pheno-20

types (i.e., classically activated, pro-inflammatory and anti-tumour cells [7]) or21

M0 (non-activated) phenotypes. It is possible that some of these contradictory22

results might be the result of the type of cell markers used to classify the cells,23

including the different types of macrophages, as discussed below in more detail.24

Because many clinical studies [8, 9, 10, 11, 12] have focused on the prognos-25

tic value of the numbers/percentages of various macrophage sub-populations26

that infiltrate various tumour areas (islets, stroma) in NSCLC patients, in this27

study we focus on the role of macrophages on the growth, control, and elim-28

ination of lung tumours. Again, we need to emphasise that all these clinical29

studies on NSCLC show different results, some being reproduced and sum-30

marised in Figure 1. One reason for these differences could be the various31

markers used to classify the various cell types; e.g., CD68/iNOS [9, 11] and32

CD68/HLA-DR [8, 9] for M1 cells; CD68/CD163 [8, 9, 11], CD68/CD204 [12],33

CD68/CD206 [13] for M2 cells). In addition, a number of studies that profiled34

human NSCLC showed that a small percentage of macrophages (i.e., between35

0-11%) have markers characterising M2 cells as well as markers characterising36

M1 cells [8, 9, 12]; see also Figure 1(a),(b). However, in a very recent study [14]37

on early-stage lung cancer the authors showed experimentally that tumour-38

associated macrophages from NSCLC expressed both M1 and M2 markers (e.g.39

HLA-DR, CD206, CD163), sometimes at levels higher than the in vitro differ-40

entiated M1 and M2 macrophages. They also showed that approximately 40%41

of CD14+ cells identified inside the NSCLC tissue had high levels of both HLA-42

DR and CD163 markers, and more than 50% had high levels of both HLA-DR43

and CD206 markers. (Note that CD14+ is a human protein produced mostly by44

macrophages.) Returning to Figure 1, we also note that since some of the mark-45

ers can be expressed by both M1 and M2 cells, the percentages shown in some46

of the sub-panels, e.g., sub-panel (b), do not add up to 100%. We can conclude47

from here that there are still many contradictory results about the proportion48

of macrophages with mixed phenotypes inside lung tumours (probably due to49
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Figure 1: Data on macrophage percentages in tumour islets (isl.) and stroma (str.) as we
approximated it from the following clinical studies on NSCLC: (a) the study in [8]. Here
we show data for M1 (blue) and M2 (green) percentages in long-term patients survival - to
compare it with the study in [9]. Percentages were calculated using the data from Table 2
in [8], by taking the ratio of M1 (or M2) cell numbers in either islets or stroma to the total
number of M1 (or M2) cells inside both islets and stroma. The authors also mentioned the
existence of a small percentage of cells with mixed M1/M2 phenotype (between 1.2%-8.1%
with a median of 3.1%; see the cyan-coloured bar). (b) the study in [9]. Here we show
data for long-term patients survival. Percentages were taken directly from Table 2 in [9].
The authors also mentioned the existence of a small percentage of cells with mixed M1/M2
phenotype (between 2.5%-10.2% with a median of 6.45%; see the cyan-coloured bar). (c) the
study in [10], where there was no mention on whether the data was for long-term or short-term
patients. Percentages were taken directly from Table 2 in [10]; (d) the study in [11], where
again there was no mention on whether the data was for long-term or short-term patients.
We calculated the percentages using the data from Table 3 in [11], by taking the ratio of the
total number of M1 (or M2) cells (from patients with stage IIA-IIB cancers) in either islets or
stroma over the total number of M1 (or M2) cells inside both islets and stroma. Similar results
were obtained for macrophage data from patients with stage IA-IB or IIIA-IIIB cancers.

the fact that the classification of macrophages subsets is still in its infancy [15]50

and still poses many challenges [16]).51

To address various questions related to tumour-macrophage interactions (as52

well as questions about the effect of different immuno- and chemo-therapies on53

tumour-macrophage interactions), the last few decades have seen the develop-54

ment of a large variety of mathematical models [17, 18, 19, 20, 21, 22, 23, 24].55

We note that all these models focus on the two extreme types of macrophages,56
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M1-like and M2-like cells, and ignore the possible role of macrophages with57

mixed phenotypes.58

In this paper we use a mathematical modelling and computational approach59

to shed some light on the following questions:60

• What biological mechanisms influence the level of macrophages with mixed61

M1/M2 phenotypes?62

• What is the importance of macrophages with mixed M1/M2 phenotypes63

on tumour growth/control/elimination?64

To this end, we derive a new mathematical model (an extension of a simple65

model introduced in [20]) that considers the interactions between a homoge-66

neous NSCLC population and three macrophage sub-populations: the M1 cells,67

the M2 cells, and cells with mixed M1/M2 phenotypes. Despite the human68

macrophage data shown in Figure 1, there are very little other human studies69

that would allow us to obtain a better understanding of the mechanisms in-70

volved in the macrophage-tumour interactions in human lungs. For this reason,71

in this study we focus on murine data to parametrise this new mathemati-72

cal model for tumour-macrophage interactions. Numerical simulations are per-73

formed to understand the role of macrophage polarisation rates (M1→M2) and74

re-polarisation rates (M2→M1) on the reduction/growth in tumour size, as well75

as the interactions between these rates and cell kinetics on tumour evolution.76

The paper is structured as follows: in Section 2 we introduce the new math-77

ematical model and parametrise it with murine data; in Section 3 we discuss78

the dynamics of this new model as we vary the initial conditions and different79

model parameters. Due to the uncertainty in the parameter values, we also per-80

form local and global sensitivity analysis to shed some light on the important81

parameters. We conclude in Section 4 with a summary and discussion of the82

results.83

2. Model Description84

The following mathematical model is used to describe and investigate the
interactions between tumour cells and macrophages. This model focuses on the
temporal evolution of: tumour cells (uT ), macrophages with a M1-like pheno-
type (uM1), macrophages with a M2-like phenotype (uM2), and macrophages
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Figure 2: Caricature description of the cell-cell interactions depicted by model (1).

with a mixed M1-M2 phenotype (uM12); see also Figure 2.

duT

dt
=ptuT

(

1−
uT

Kt

)

(1 + rm2uM2 + rm12uM12)− dt1uTuM1 − dt2uTuM12,

(1a)

duM1

dt
=pm1uM1

(

1−
uM1 + uM12 + uM2

Km

)

− dm1uM1 − αm1uM1
uT

uT +K∗

t

+ αm21uM12, (1b)

duM12

dt
=pm12uM12

(

1−
uM1 + uM12 + uM2

Km

)

− dm12uM12 + αm1uM1
uT

uT +K∗

t

− αm12uM12
uT

uT +K∗

t

− αm21uM12 + αm2uM2, (1c)

duM2

dt
=pm2uM2

(

1−
uM1 + uM12 + uM2

Km

)

− dm2uM2 + αm12uM12
uT

uT +K∗

t

− αm2uM2. (1d)

The above equations incorporate the following biological assumptions:85

• Equation (1a) describes the dynamics of tumour cells, which are assumed86

to grow logistically at a rate pt up to a carrying capacity KT . This87

logistic growth models the phenomenological observation that tumour88

growth slows down as size increases, due to lack of nutrients [25]. The89

macrophages with a M2-like phenotype (uM2 and uM12) contribute to the90

proliferation of tumour cells [26, 7, 16], which we model using coefficients91

rm2 and rm12. The macrophages with a M1-like phenotype reduce tumour92

growth [7] at rates dt1 (the uM1 cells) and dt2 (the uM12 cells).93
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• Equation (1b) describes the dynamics of macrophages with a dominant94

M1 phenotype (uM1). Since tissue-resident macrophages are maintained95

via self-proliferation with minimal monocyte input [27, 28, 29], and since96

in [30] the authors showed that macrophages have an exponential growth97

followed by a stationary phase, here we consider a logistic growth at a98

rate pm1, up to a carrying capacity Km. These cells die naturally [31]99

at a rate dm1. In the presence of tumour cells, the M1 macrophages can100

polarise (at a rate αm1) towards a mixed M1/M2 phenotype. External101

factors (e.g., anti-tumour treatments [32]) can re-polarise (at a rate αm21)102

the macrophages with a mixed M1/M2 phenotype towards an anti-tumour103

M1-dominant phenotype.104

• Equation (1c) describes the dynamics of macrophages with mixed M1/M2105

phenotype (uM12). As before, since tissue-resident macrophages are self-106

proliferating [27, 28] and their proliferation has an exponential phase fol-107

lowed by a stationary phase [30], here we assume a logistic growth at a rate108

pm12, up to a carrying capacity Km. Moreover, these cells die naturally109

at a rate dm12. Finally, we assume that these cells with mixed M1/M2110

phenotypes can polarise (at a rate αm12) in the presence of tumour cells111

towards a more distinct M2 phenotype, or can re-polarise (at a rate αm21)112

following external treatment [32] towards an M1 phenotype. In the pres-113

ence of tumour cells, M1 macrophages can polarise (at a rate αm1) towards114

a mixed M1/M2 phenotype. Anti-tumour treatments [32] can re-polarise115

(at a rate αm2) the M2 macrophages towards a mixed M1/M2 phenotype.116

• Equation (1d) describes the dynamics of macrophages with a dominant117

M2 phenotype (uM2). Again, we assume that this population grows lo-118

gistically at a rate pm2, up to a carrying capacity Km. These cells die119

naturally at a rate dm2 [31]. Anti-tumour treatments [32] can re-polarise120

the M2 macrophages (at a rate αm2) towards a mixed M1/M2 phenotype.121

In the presence of tumour cells, the macrophages with a mixed M1/M2122

phenotype can polarise (at a rate αm12) towards M2 cells.123

2.1. Parameter estimation124

Even if our biological questions were triggered by human NSCLC data (see125

Figure 1), to identify some of the model parameters we focus on murine experi-126

ments for which there is more data (compared to humans). Below we summarise127

the data we used to estimate different model parameters.128

• The study in [33] investigated the growth of tumours resembling non-129

small cell lung cancer (NSCLC) in mice lungs. In Figure 3 we reproduce130

the murine tumour growth data from [33], together with the solution of a131

logistic equation for tumour growth. The best fit of the numerical solution132

to the data (obtained using the classical least square method) was obtained133

for pt = 0.23 and Kt = 1400. This proliferation rate is consistent with the134

doubling time (i.e., 2.97 days) of NSCLC cells inoculated into nude mice,135

as calculated experimentally in [34] .136
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(a) (b)

Figure 3: (a) Reproduction of tumour growth data from [33] (black circles) together with the
solution of a logistic growth equation for tumour growth (red curve), as given by eq. (1a) in
the absence of any macrophages. Here Kt = 1400 and pt = 0.23, and the initial condition for
the numerical simulation of the tumour logistic growth is uT (0) = 4mm3. (b) Reproduction
of macrophage growth data from [30] (open circles and black squares) – where data was
transformed from number of cells to potential volume occupied by these cells (see discussion
below) – together with the solution of a logistic equation for macrophage growth (red curves),
as given by the sums of of eqns. (1b)+(1c)+(1d) when pm1 = pm12 = pm2 := pm and
dm1 = dm12 = dm2 = 0. The continuous curve was obtained for pm = 0.88 and Km = 6.72,
while the dotted curve was obtained for pm = 0.483 and Km = 6.72. The initial condition for
the numerical simulation of macrophage logistic equation is uM (0) = 0.006mm3 (where uM

describes the total macrophage size).

• In [3] the authors have calculated that macrophages represent ≈ 4.8% of137

the total immune infiltrates into human NSCLC. For our murine model,138

we assume that immune cell infiltrates represent up to 10% of tumour139

mass, and the macrophages represent 4.8% of these immune infiltrates.140

(Note that in [10] it was estimated that macrophages represent ≈ 15.84%141

of all cells inside tumour tissue, and thus our assumption is not completely142

unrealistic.) Thus, for a maximum tumour volume of Kt = 1400mm3 we143

obtain a maximum macrophage volume of Km = 6.72mm3.144

• In [35] the authors calculated the diameter of an alveolar macrophage at145

≈ 19µm. In [36] the author suggested that a volume of 1000mm3 can146

contain up to 9.39×107 cells of diameter 22µm, or up to 2.44×108 cells of147

diameter 16µm. In this study, we assume that a volume of 1000mm3 can148

contain ≈ 108 macrophages. Thus a carrying capacity Km = 6.72mm3
149

can contain ≈ 6.72 × 105 macrophages. These numbers are consistent150

with the experimental study in [37], where the authors showed that the151

number of macrophages from control mice ranged from 8×104cells/mouse152

to 2.4× 105cells/mice.153

In [30], the authors measured macrophage growth, and calculated a pro-154

liferation rate between 0.487/day and 0.88/day (in different mice). In155

Figure 3 we approximated the two macrophage data sets from [30] (Fig.156

14.20.1 in [30], which shows cell numbers), where we transformed cell num-157

bers into cell volumes (using the assumptions and calculations above).158

Since in [30] the authors showed that macrophages grow logistically, we159
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fitted a logistic growth curve with rate pm and carrying capacity Km =160

6.72mm3. The continuous red curve in Figure 3 shows macrophage growth161

for pm = 0.88, while the dashed red curve shows macrophage growth162

for pm = 0.487. Throughout this study we will consider an average163

macrophage proliferation rate of pm1 = pm12 = pm2 = 0.7.164

• The experimental study in [27], which focused on the adoptive trans-165

fer of human mononuclear phagocytes into mice, showed that classical166

(M1) macrophages circulate for a mean of 1.01 days, whereas intermedi-167

ate (M12) and nonclassical (M2) macrophages have longer mean lifespans168

of 4.30 and 7.41 days, respectively. In [31] the authors stated that the169

murine M1-like macrophages (involved in phagocytosis) have a half-life170

between 18-20hrs, while the murine M2-like macrophages (involved in tis-171

sue repair) have a half-life between 5-7 days. Therefore, in this study we172

assume that:173

– the M1-like macrophages have a half-life of≈ 0.8 days (i.e., ≈ 19.2hr),174

corresponding to a death rate dm1 = 0.87/day;175

– the mixed M1/M2 macrophages have a half-life of ≈ 3 days, corre-176

sponding to a death rate dm12 = 0.23/day;177

– the M2-like macrophages have a half-life of ≈ 5.14 days, correspond-178

ing to a death rate dm2 = 0.09/day.179

All other parameter values that appear in model (1) are unknown. In the180

following, we discuss some of the assumptions we consider when choosing the181

ranges over which we vary these parameters:182

• We assume that the presence of 1% of max tumour is enough to trigger a183

uM1 → uM12 polarisation, and further a uM12 → uM2 polarisation. Thus,184

we consider K∗

t = 1%Kt.185

• We assume that macrophages with mixed M1/M2 phenotypes exhibit half186

the anti-tumour effect of the M1 macrophages. Thus, we consider dt1 ∈187

(10−5, 10−1) (with a baseline value of dt1 = 0.01) and dt2 ∈ (5× 10−6, 5×188

10−2) (with a baseline value of dt2 = 0.005).189

• We assume that macrophages with mixed M1/M2 phenotype have half the190

pro-tumour effect of M2 macrophages. Thus, we consider rm2 ∈ (10−2 −191

100) (with a baseline value rm2 = 0.1) and rm12 ∈ (5× 10−3, 0.5) (with a192

baseline value rm12 = 0.05).193

• In humanised murine experiments [27] it has been found that that only194

a small proportion of M1 macrophages will re-polarise to an intermedi-195

ate M12 phenotype, but most M12 macrophages will re-polarise to an196

M2 phenotype during their lifespan. Throughout this study we assume197

αm1 < αm12. For the re-polarisation rates we assume αm2 = αm21. Thus,198

we consider αm1 ∈ (10−4, 10−1)/day (with a baseline αm1 = 10−3/day),199

αm12 ∈ (10−3, 10−1)/day (with a baseline of αm12 = 10−2/day), and200

8



αm2 = αm21 ∈ (10−3, 100)/day (with baselines of 0.0, since we assume201

that initially there is no treatment to force a macrophage re-polarisation202

towards an M1-like phenotype).203

All these estimated parameter values and ranges which appear in model (1)204

are summarised in Table 2.1. For simplicity, and to avoid numerical problems205

caused by a stiff system, we rescale the tumour cells by Kt and the macrophages206

by Km. This leads to unitary carrying capacities (Kt = 1, Km = 1), and to a207

rescaling of the following five parameters:208

dt1 = dt1 ×Km, dt2 = dt2 ×Km, rm2 = rm2 ×Km,

rm12 = rm12 ×Km, K∗

t =
K∗

t

Kt

. (2)

These rescaled parameter values are listed in the fourth column in Table 2.1209

– where we removed the bars for simplicity. These values are used for the210

numerical simulations performed throughout this study.211

3. Numerical results212

The initial conditions for the numerical simulations of system (1) were ob-213

tained from the rescaled initial conditions in Figure 3:214

uT (0) =
4

Kt

=
4

1400
= 0.002857,

uM1(0) =
0.006

Km

=
0.006

6.72
= 0.000893,

uM12(0) = 0.0, uM2(0) = 0.0. (3)

Thus, we assume that when the tumour is introduced into the system, it elicits215

a pro-inflammatory immune response characterised only by the presence of a216

non-zero uM1 population. The numerical solution is propagated in time using217

a classical fourth order Runge-Kutta method.218

3.1. Baseline system dynamics219

Figure 4(a) shows the dynamics of model (1) for the baseline parameter220

values given in Table 2.1. We see that initially (t < 10 days) the immune221

response is dominated by macrophages with a M1 phenotype. Then a transient222

increase in the cells with a mixed M1/M2 phenotype (for 10 < t < 30) is223

associated with a reduction in tumour size. Tumour relapse is associated with224

an increase in the cells with a M2 phenotype (for t > 40). We emphasise here225

that this baseline case assumes αm2 = αm21 = 0 (see Table 2.1), i.e., no external226

immune treatment to induce a re-polarisation of M2-like macrophages towards227

an M1-like phenotype [32].228

In Figure 4(b) we show the effect of externally-inducing a macrophage re-229

polarisation on model (1); i.e., αm2 = αm21 = 0.01. We observe a slight reduc-230

tion in tumour size in the long term (i.e. t > 80 days), which is associated with231

9



Table 1: Summary of the parameter values used in this study. The 2nd column shows the
dimensional parameters, the 3rd column shows their units, and the 4th column shows in bold
the rescaled parameter values; see eq. (2) (If there is no difference between the values in the
2nd and 4rd column, it means that the parameter was not rescaled). For most of the parameter
values we show a whole range, with the value inside the parentheses being the baseline value
used for the simulations. The time unit is “day”, cells are described by cell volume “vol”.

Param. Original
values

Original
Units

Rescaled
values

Description (original values)

pt 0.23 1
day

0.23 Proliferation rate of tumour cells

Kt 1400 vol 1 Tumour carrying capacity
K∗

t 14 vol 0.01 Tumour level that triggers M1→M2
macrophage polarisation

rm2 10−2 − 100

(0.1)

1
vol

6.72× 10−2−
6.72 (0.672)

Contribution of M2 macrophages to
the proliferation of tumour cells

rm12 0.005 − 0.5
(0.05)

1
vol

0.0336 −
3.36 (0.336)

Contribution of macrophages with
mixed M1/M2 phenotype to the
proliferation of tumour cells

dt1 10−2 − 100

(0.2)

1
day·vol

6.72× 10−2−
6.72 (1.344)

Tumour killing rate by M1
macrophages

dt2 5 × 10−3 −
0.5 (0.1)

1
day·vol

3.36× 10−2−
3.36 (0.672)

Tumour killing rate by macrophages
with mixed M1/M2 phenotype

pm1 0.487−0.88
(0.7)

1
day

0.487 – 0.88
(0.7)

Proliferation rate of M1 cells

pm12 0.487−0.88
(0.7)

1
day

0.487 – 0.88
(0.7)

Proliferation rate of macrophages
with mixed M1/M2 phenotype

pm2 0.487−0.88
(0.7)

1
day

0.487 − 0.88
(0.7)

Proliferation rate of M2 cells

Km 6.72 vol 1 Macrophages carrying capacity
dm1 0.83-0.924

(0.87)

1
day

0.83 – 0.924
(0.87)

Natural death rate of M1 cells

dm12 0.14-0.83
(0.23)

1
day

0.14 – 0.83
(0.23)

Natural death rate of cells with
mixed M1/M2 phenotype

dm2 0.09-0.14
(0.1)

1
day

0.09 – 0.14
(0.1)

Natural death rate of M2 cells

αm1 10−5−10−2

(0.001)

1
day

10−5 – 10−2

(0.001)
Polarisation rate of M1 cells towards
a mixed M1/M2-phenotype

αm12 10−4−10−1

(0.01)

1
day

10−4 − 10−1

(0.01)
Polarisation rate of macrophages
with a mixed M1/M2 phenotype to-
wards a M2-dominant phenotype

αm2 0−100 (0.0) 1
day

0− 100 (0.0) Re-polarisation rate of M2 cells to-
wards a mixed M1/M2-phenotype

αm21 0−100 (0.0) 1
day

0− 100 (0.0) Re-polarisation rate of macrophages
with a mixed M1/M2 phenotype to-
wards a M1-dominant phenotype
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a higher percentage of macrophages with mixed M1/M2 phenotype (and a very232

small but non-zero population of M1-like macrophages). The effect of further233

increasing αm2, αm21 will be discussed below, in Figure 7(d).234
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Figure 4: (a) Dynamics of model (1), for the baseline parameter values listed in Table 2.1,
when αm2 = αm21 = 0. (b) Dynamics of model (1), when we assume αm2 = αm21 = 0.01 > 0.
Sub-panels (i) show the time-evolution of the tumour cells and macrophages; Sub-panels (ii)
show the time-evolution of the percentage of macrophage composition.

3.2. Sensitivity analysis235

Since many parameter values were estimated within certain ranges, in the236

following we evaluate the robustness of model (1), by investigating the sensi-237

tivity of tumour size to small perturbations in some model parameters and in238

initial conditions. We start in Section 3.2.1 with a local sensitivity analysis to239

investigate how small perturbations in the initial conditions and macrophage240

polarisation/re-polarisation rates impact tumour dynamics. However, since we241

do not know if there is interaction between these polarisation/re-polarisation242

rates and all other estimated parameters that appear in the model, in Sec-243

tion 3.2.2, we perform a global sensitivity analysis.244

3.2.1. Local sensitivity analysis245

In the following we focus on tumour size at t = 40 (while tumour is decreasing246

following an increase in macrophages with mixed phenotypes; see Figure 4) and247
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at t = 60 (while tumour relapses and is close to its carrying capacity; see248

Figure 4). The change in tumour size is calculated using the discrete formula249

for the derivative of the output (tumour size) with respect to the input (e.g.,250

initial condition uj(0), where j ∈ {T,M1,M12,M2}) [38]:251

LS =
unew
T (40)− ubaseline

T (40)

|unew
j (0)− ubaseline

j (0)|
. (4)

252

Remark 1. We decided to focus on time t = 60, when the relapsing tumour253

would approach the carrying capacity (for the baseline parameter values) since254

we would like to understand the mechanisms that could impact the late-stage255

tumours, as many lung tumours are discovered when they have already reached256

a late stage. Moreover, for this local sensitivity analysis we decided to ignore257

the earlier times (e.g., t < 30) since the immune response was too weak at258

these times, and changes in immune-related parameters had almost no impact259

on tumour size. We chose to focus on t = 40 because at this time the level of260

immune response (and in particular the macrophages with mixed phenotype) is261

high enough to have a significant impact on tumour.262

Remark 2. In eq. (4) we do not normalise the sensitivity index [39]. This263

is mainly because when we investigate local sensitivity to the initial conditions,264

there are two zero baseline initial conditions for uM2 and uM12 and therefore265

we cannot divide by these values for normalisation (i.e., the ratio |unew
j (0) −266

ubaseline
j (0)|/ubaseline

j (0), j ∈ {M12,M2}, does not make sense). A similar267

problem is encountered when we perform the sensitivity to αm2 and αm21 (which268

have zero baseline values; see Table 2.1). For this reason, in this study we269

decided to work with equation (4) and not with a normalised version of this270

equation.271

Tumour sensitivity to initial conditions. In Figure 5 we show the magnitude272

of changes (i.e., LS given by eq. (4)) in tumour size on days (a) t = 40 and273

(b) t = 60, as we increase/decrease the initial conditions for the tumour and274

M1 macrophage populations by a factor of 102 from their baseline values. The275

M12 and M2 initial macrophage levels are increased from 0 to 10−3. We see in276

Figure 5 that the initial conditions for all macrophage sub-populations have a277

significant impact on the early stages of tumour growth (i.e., t < 50), and only278

the mixed phenotype macrophages seem to play an important role also in the279

later stages (t > 50). Moreover, increasing the initial tumour size by a factor280

of 102 does not seem to have an impact on either early or later tumour stages,281

which suggests that the baseline initial tumour size is already large enough.282

Only a decrease in the initial tumour size has an impact on tumour levels on283

both t = 40 and t = 60.284

Tumour sensitivity to polarisation/re-polarisation rates. In Figure 6 we show285

the magnitude of changes in tumour size on days t = 40 (panel (a)) and t = 60286
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Figure 5: Changes in tumour size (see LS in eq. (4)) on days (a) t = 40 and (b) t = 60, as
we vary the initial conditions (ICs) for each of the four variables from their baseline values
(in red colour) to the lower values (cyan colour) and the upper values (black colour) of the
indicated IC ranges. Since the baseline values for uM12(0) and uM2(0) were zero, we only
increased these values to 10−3.

(panel (b)), as we vary separately each of the rates αm1, αm12, αm21, αm2. The287

rates αm1, αm12 are increased/decreased by 90% from their baseline levels, while288

rates αm2, αm21 are increased from their zero baseline levels to 0.01. Panels289

(c),(d),(e) show the time evolution of tumour (t ∈ [0, 100]) as we vary these290

rates polarisation/re-polarisation rates. As expected, when we decrease αm12291

or we increase αm2 we see a decrease in tumour size. However, unexpectedly,292

a decrease in αm1 (which should reduce the M1→M2 polarisation), seems to293

cause a significant increase in the tumour population.294

In Figure 7 we show the effect of varying at the same time and by the same295

amount the polarisation rates αm1 and αm12 (where we assume that αm1 =296

αm12 =: α1), and the re-polarisation rates αm2 and αm21 (where we assume297

that αm2 = αm21 =: α2). Panels (a) and (b) show the magnitude of the changes298

in tumour size on days t = 40 and t = 60, while panels (c) and (d) show the time-299

variations in uT (t) as we vary simultaneously αm1 = αm12 and αm2 = αm21,300

respectively.301

• Figure 7(c): when we decrease αm1 = αm12 = α1 to α1 = 0.00001 we first302

observe a tumour increase (for t ∈ (30, 50)) followed by a large decrease303

(for t ∈ (50, 80)). The initial tumour increase is unexpected, since a304

reduction in α1 should keep the macrophages in a M1-like phenotype.305

• Figure 7(d): when we increase αm2 = αm21 = α2, we observe that306

the tumour can be reduced and eventually eliminated for very large re-307

polarisation rates (e.g., α2 = 0.2). However, in the short time (t ∈ (30, 50))308

the tumour grows to large sizes; it can even reach its carrying capacity309

before being killed by the M1-like macrophages. Therefore, these results310
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Figure 6: Changes in tumour size (see Ls in eq. (4)) on days (a) t = 40 and (b) t = 60, as
we vary separately αm1, αm12 by ±90% from their baseline values (black and cyan colours),
while αm21 and αm2 are increased separately from 0.0 to 0.01 (magenta colour). In (c),(d) we
show the time-evolution of the tumour as vary separately by ±90% (c) αm1 and (d) αm12. In
(e) we show the time-evolution of the tumour as we vary separately αm21 and αm2: each rate
is increased from 0.0 (baseline) to 0.01. The dotted vertical lines indicate the times t = 40
and t = 60.

suggests that there might be a range for the re-polarisation rates that311

would lead to optimal treatment. (For murine experiments mice are killed312

for humane reasons when the tumours grow too large, and thus a potential313

tumour decay for t > 80 would not be observed).314

To further investigate the unexpected effect of αm1 on tumour growth, in Fig-315

ure 8 we show the tumour cell volume as we vary: (a) dt1 (to verify whether316

tumour increase for low αm1 is the result of low M1 phagocytosis); (b) uM1(0)317

(to verify whether tumour increase for low αm1 is the result of low initial M1318

population); (c) dm1 (to verify whether tumour increase is the result of a con-319

tinuously low M1 population due to high death rate). It is clear that while an320

increase in dt1 and uM1(0) alone, or a decrease in dm1 alone, leads to a tempo-321

rary reduction in tumour size, when we combine them also with a decrease in322

αm1 the tumour grows back. A more significant tumour reduction is observed323

for very low dm1 values (i.e., dm1 ≤ 0.5). Only in this particular case, a de-324

crease in αm1 leads to lower tumour sizes – although the tumour will eventually325

relapse and grow to its carrying capacity. This temporary decrease in tumour326

size seems to be the result of higher %uM12 (see Figure 8(c)(ii)-(ii’)).327

Since macrophages death rates seem to play an important role in macrophage328

re-polarising treatments, in Figure 9 we explore the region in the (dm12, dm1)329
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Figure 7: Panels (a),(b) show changes in tumour size (i.e., LS value given by eq. (4)) on days
t = 40 and t = 60, as we vary at the same time the two polarisation rates αm1 = αm12 =: α1

by ±90% (from a common baseline value of α1 = 0.0001) and αm2 = αm21 =: α2 (from their
baseline value 0.0 to 0.01). Since the increase in α2 has a very little effect on tumour size
on day t = 60, to improve the visualisation we multiplied the value LS from eq. (4) by a
factor of 10. Panel (c) shows the time-evolution of uT when we assume αM2 = αM21 = 0.0
and we vary α1 := αM1 = αM12. Panel (d) shows the time-evolution of uT when we assume
αM1 = αM12 = 0.0001 and we vary α2 := αM2 = αM21. The dotted vertical lines indicate
the times t = 40 and t = 60.

space for which a decrease in αm1 (from 103 to 104) leads to a decrease or an330

increase in tumour size. The thick red curve in the top-left panel corresponds to331

a stationary tumour (i.e. the dot and dash-dot curves overlap, and the tumour332

is neither increasing nor decreasing). For three cases corresponding to three cor-333

ners of this main panel, we show both the time-evolution of the tumour, and the334

percentage of macrophages corresponding to some of these tumours. We observe335

that tumour reduction/control for dm12 = 0.14, dm1 = 0.45 is associated with a336

large percentage of macrophages with mixed M1/M2 phenotypes. In contrast,337

tumour reduction/control for dm12 = 0.35, dm1 = 0.45 is associated with a very338

low percentage of macrophages with mixed M1/M2 phenotypes. Hence, the339

death rates of macrophages with M1-like phenotype or mixed M1/M2-like phe-340

notype seem to play an important role on tumour growth/control/decay, and341

on the percentage of mixed macrophages during tumour growth/control/decay.342

We will discuss these results in more detail in Section 4.343
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Figure 8: Time-evolution of tumour cell volume as we vary different parameters related to
M1 cells. The “baseline” case (continuous curve) corresponds to the parameter values listed
in Table 2.1, where αm1 = 10−3. (a) Vary dt1 alone (dotted curve) or in combination with
αm1 (dash-dot curve). To see some difference in tumour dynamics, we had to increase dt1 by
a factor of 30: from dt1 = 1.344 to dt1 = 201.6 (b) Vary the initial condition uM1(0) alone
(dotted curve) or in combination with αm1 (dash-dot curve). Here we increased the initial
condition by a factor of 100: from uM1(0) = 0.000892 to uM1(0) = 0.0892. (c) Vary dm1

alone (dotted curve) or in combination with αm1 (dash-dot curve). Here we show the effects
of medium vs. low values of dm1: (i) dm1 = 0.6, (ii) dm1 = 0.5. For this panel (c) we also
show the percentage of various types of macrophages: (i’) for the case dm1 = 0.6, (ii’) for the
case dm1 = 0.5.

3.2.2. Global sensitivity analysis344

To determine the impact that possible interactions between multiple uncer-345

tain parameters have on overall tumour dynamics, next we perform a global346

sensitivity and uncertainty analysis using the classical LHS/PRCC (Latin Hy-347

percube Sampling/Partial Rank Correlation Coefficient) approach [40, 41].348

In Figure 10 we show the results of a global sensitivity and uncertainty anal-349

ysis for: (a) tumour population (uT ), (b) M1 macrophage population (uM1),350

(c) macrophage population with mixed M1/M2 phenotypes (uM12), and (d) M2351

macrophage population (uM2), as we sample independently (100 times) the 14352

parameter values within the ranges listed in Table 2.1. Sub-panels (i) show the353

average population outputs (“mean” and “standard deviations” (±sd) in darker354

colours, and maximum/minimum values in lighter colours), while sub-panels (ii)355
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Figure 9: Bifurcation diagram in the (dm12, dm1) parameter space showing the regions where
a decrease in αm1 from 10−3 (dot curves) to 10−4 (dash-dot curves) leads to a decrease in
tumour size (white region) or an increase in tumour size (cyan region). To make it clear
what we mean by stationary tumour (i.e. the dot and dash-dot curves overlap), we also show
the time-evolution of the tumour and macrophage percentage at three corner points in this
parameter space: (i) dm12 = 0.14, dm1 = 0.45; (ii) dm12 = 0.37, dm1 = 0.45; and (iii)
dm12 = 0.37, dm1 = 0.67. To clarify that the delay in tumour relapse observed for case (ii)
is the result of reduced tumour levels, in this sub-figure we also show a zoom-in of tumour
growth curves for uT < 0.05.

show the PRCC values. For the PRCC analysis, we note that the parameters356

with large PRCC absolute values are the most important. In particular, values357

closer to ±1 indicate parameters that influence strongly the outcome variable,358

while the sign indicates the qualitative relation between input parameters and359
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output variables (with “ + ” sign indicating that the parameter is directly pro-360

portional to the outcome, and the ”−” sign indicating that the parameter is361

inversely proportional to the outcome). In Figure 10 we see that:362

• The parameters with the largest impact on uT are αm21, αm2, dt1, pm2363

and dm12. Interestingly, these parameters correspond to the four tumour-364

associated macrophage targeted therapeutic strategies discussed in [42]:365

antibody-mediated elimination of tumour cells (dt1), blockage of monocyte366

recruitment to tumours (pm2), re-polarisation to an M1-like phenotype367

(αm21, αm2), and suppression of macrophage survival (dm12).368

• The parameters with the largest impact on uM1 are αm2, dm12, and pm2.369

• The parameter with the largest impact on uM12 is αm21, followed by αm2,370

dm12 and pm2.371

• The parameter with the largest impact on uM2 are αm2, followed by pm2.372

Among the polarisation rates, the largest impact is provided by αm12.373

The above results identified the proliferation/recruitment rate of M2 macrophages374

(pm2) as a parameter important not only for tumour dynamics, but also for375

the dynamics of all macrophage phenotypes, including uM1 and uM12. There-376

fore, reducing pm2 will impact tumour growth both directly (through the direct377

pro-tumour effect of M2 macrophages [43, 26]) and indirectly (through the M1378

macrophages and macrophages with mixed M1/M2 phenotypes).379

4. Discussion380

In this study we developed and investigated numerically a new mathemat-381

ical model for the temporal dynamics between non-small cell lung cancer and382

macrophages in the lung, with the ultimate goal of shedding some light on the383

importance of macrophages with mixed phenotypes.384

After showing the baseline dynamics of this new model (Figure 4), we started385

performing a local sensitivity analysis, to gain some understanding of the effects386

of changes in the initial conditions (Figure 5), as well as changes in those param-387

eters describing macrophage polarisation/re-polarisation rates (Figures 6 - 9).388

In regard to the initial conditions, our local sensitivity analysis showed that the389

most important role is played by uM12(0). For the baseline parameter values390

investigated in this study (see Table 2.1) we observed that a decrease in the391

polarisation rate αm12 (i.e., uM1 → uM12 polarisation) led to larger tumours,392

even when we increased the initial level of M1 macrophages (uM1(0)) or the M1393

macrophages phagocytosis rate (dt1). We discovered that this was the result of394

short half-life of M1 cells (i.e., large dm1; see Figures 8 - 9).395

Returning to Figure 1(a), one of the main questions of this paper was to396

shed some light on the role of macrophages with mixed phenotypes on tumour397

elimination/growth. Through numerical simulations in Figures 8-9, we showed398

that the percentage of uM12 macrophages depends on the elimination rates d1399
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Figure 10: Global sensitivity and uncertainty analysis for variables (a) uT , (b) uM1, (c) uM12,
(d) uM2 as we vary 14 parameters within the ranges specified in Table 2.1. Sub-panels (i)
show the mean+standard deviation, together with max/min values of these variables as we
vary t. Sub-panels (ii) show the PRCC values corresponding to each of the parameters varied
in Table 2.1.

and d12 (and it probably on other parameters as well). In particular, tumour400

decay/control can occur for both low and high uM12 percentages. Therefore,401

our theoretical study suggests that unless we know exactly the elimination rates402

of macrophages with different phenotypes (M1 or mixed M1/M2) we cannot use403

the macrophages with mixed phenotypes as predictors of tumour elimination404

(and patient survival).405

The results presented in this study depend heavily on the parameters used406

for the simulations. Some of these parameter values were obtained from in-vitro407

and ex-vivo experiments [30, 33], and therefore they could be different from the408

in-vivo murine parameters and even more from the in-vivo human parameters.409

Unfortunately, we do not have in-vivo data to parametrise these mathemati-410

cal models, and our best approach was a sensitivity and uncertainty analysis411

to understand the extent of variations in model outcomes. Global sensitivity412
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analysis (Figure 10) revealed the parameters with the largest impact for tumour413

dynamics (αm21, αm2, dt1, pm2 and dm12), and interestingly these parameters414

were also the parameters involved in four of the macrophage-targeted treat-415

ment approaches for cancer as identified in [42]: re-polarisation of macrophages416

towards an M1-like phenotype (αm21, αm2), suppression of tumour-associated417

macrophages survival (dm12), blockade of macrophage recruitment (pm2), and418

antibody-mediated elimination of tumour cells by macrophages (dt1).419

Overall, the results of this study emphasise the need for a better experi-420

mental understanding of the kinetics (doubling time, half lives) of macrophages421

with different phenotypes that can be found inside solid tumours (especially422

the macrophages with mixed phenotypes). Most of the experimental studies423

in the literature focus on the kinetics of T cells [44, 45], but given the im-424

portance of tumour-associated macrophages on tumour evolution, more exper-425

imental studies are necessary to better understand the macrophage kinetics.426

Unfortunately, the lack of robust macrophage markers can lead to inaccurate427

macrophage counts [16], which further impacts our hope of reliable data on428

macrophage kinetics. Until more data will become available, we have to continue429

using modelling and computational approaches to propose hypotheses regarding430

the macrophage dynamics and their interactions with various components of the431

tumour microenvironment.432
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Appendix A. Spatially-homogeneous steady states433

We have seen in Figures 7(d) and 8(c),(d) that changes in some parameters434

can lead to lower tumour sizes in the long term (for αm21, αm2 > 0), in contrast435

to the case α. To understand better this long-term dynamics of model (1), in the436

following we summarise the steady states exhibited by this model by focusing437

on two case: (i) the baseline case characterised by αm2 = αm21 = 0, and (ii) the438

treatment case characterised by αm2, αm21 > 0.439

Proposition 1. For the baseline case (i) with αm2, αm21 = 0, model (1) can440

exhibit the following steady states:441

• Tumour-Free Immune-Free (TFIF) state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) = (0, 0, 0, 0),442

which exists for all parameter values;443

• Tumour-Free M2-Present (TFM2P) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) =444

(0, 0, 0, Km(pm2−dm2)
pm2

), which exists for pm2 > dm2;445

• Tumour-Free M12-Present (TFM12P) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2)446

= (0, 0, Km(pm12−dm12)
pm12

, 0), which exists for pm12 > dm12;447

• Tumour-Free M1-Present (TFM1P) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) =448

(0, Km(pm1−dm1)
pm1

, 0, 0), which exists only for pm1 > dm1, an inequality not449

satisfied by the baseline parameter values in Table 2.1;450

• Tumour-Present Immune-Free (TPIF) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2)451

= (Kt, 0, 0, 0), which exits for all parameter values;452

• Tumour-Present M2-Present (TPM2P) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2)453

= (Kt, 0, 0,
pm2−dm2

pm2
Km) which exists for pm2 > dm2;454

• Tumour-Present M12-M2-Present (TPM12M2P) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2)455

= (u∗

T , 0, u
∗

M12, u
∗

M2) with the non-zero states connected via the following456

equations:457

u∗

M12 =
Km

[pm12(u
∗

T+K∗

t )−dm12(u
∗

T+K∗

t )+αm12u
∗

T ]
pm12(uT+K∗

t )

αm12u
∗

T

(u∗

T
+K∗

t )pm2

[

dm12
pm12

−
αm12
pm12

u∗

T
u∗

T
+K∗

t

]

−dm2(u∗

T
+K∗

t )
+ 1

, (A.1)

u∗

M2 = Km

(

1−
dm12

pm12
+

αm12

pm12

u∗

T

u∗

T +K∗

t

)

− u∗

M12, (A.2)

0 = pt

(

1−
u∗

T

Kt

)

(1 + rm2u
∗

M2 + rm12u
∗

M12)− dt2u
∗

M12.(A.3)

• Tumour-Present Immune-Present (TPIP) steady state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2).458

Proposition 2. For the case (ii) when a macrophage re-polarisation treatment459

is considered (i.e., αm2, αm21 > 0), model (1) can exhibit the following tumour-460

free and tumour-present steady states:461
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• Tumour-Free Immune-Free (TFIF) state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) = (0, 0, 0, 0),462

which exists for all parameter values;463

• Tumour-Free M1-cells Present (TFM1P) state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) =464

(0,Km
pm1−dm1

pm1
, 0, 0), which exists only if pm1 > dm1.465

• Tumour-Free M2-cells Free (TFM2F) state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) = (0, u∗

M1, u
∗

M12, 0),466

with467

u∗

M1 =
αm21Km(αm21 + dm12 − pm12)

(pm1 − pm12)αm21 − dm1pm12 + dm12pm1
,

u∗

M12 =
Km(dm12 + αm21 − pm12)(−dm1pm12 + pm1(dm12 + αm21))

pm12(pm12(dm1 + αm21)− pm1(dm12 + αm21))
.

• Tumour-Free, Immune response Present (TFIP) state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2)468

= (0, u∗

M1, u
∗

M12, u
∗

M2), with469

u∗

M1 =
αm2αm21Kmpm2(dm2 + αm2 − pm2)

((−dm1 − αm21)αm2 − dm1(αm21 + dm12))p
2
m2 − pm1pm12(dm2 + αm2)

2

+ (dm2 + αm2)(pm1αm2 + (αm21 + dm12)pm1 + dm1pm12)pm2

,

470

u∗

M12 =
αm2(−dm1pm2 + pm1(αm2 + dm2))(αm2 + dm2 − pm2)Km

((−dm1 − αm21)αm2 − dm1(αm21 + dm12))p
2
m2 − pm1pm12(αm2 + dm2)

2

+ (α+m2pm1 + (αm21 + dm12)pm1 + dm1pm12)(αm2 + dm2)pm2

and471

u∗

M2 =

[pm1(αm2 + dm2)− dm1pm2] (αm2 + dm2 − pm2)
· ((−αm21 − dm12)pm2 + pm12(αm2 + dm2))Km

pm2(((−dm1 − αm21)αm2 − dm1(αm21 + dm12))p
2
m2 − pm1pm12(αm2 + dm2)

2)
+ pm2(((αm2 + αm21 + dm12)pm1 + dm1pm12)(αm2 + dm2)pm2)

.

• Tumour-Present Immune-Free (TPIF) state: (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) = (Kt, 0, 0, 0),472

which exits for all parameter values;473

• Tumour-Present M1, M12 and M2 Immune response Present (TPIP) state:474

(u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) = (u∗

T , u
∗

M1, u
∗

M12, u
∗

M2).475

Remark 3. Both cases investigated above, namely (i) no re-polarising treat-476

ment (αm2 = αm21 = 0) and (ii) re-polarising treatment (αm2, αm21 > 0) had477

a tumour-only steady state (TPIF) and coexistence steady states (TPIP). How-478

ever, case (i) can exhibit two other steady states characterised by the presence479

of tumour cells and the absence of M1-like cells (u∗

M1 = 0): the TPM2P and480

TPM12M2P states. This suggests that in the absence of any external treatment481

to re-polarise the macrophages towards an M1-like phenotype, the tumours are482

always formed of M2-like macrophages or macrophages with a mixed M1/M2483

phenotype.484
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Stability of steady states. The linear stability of the above steady states is con-485

trolled by the eigenvalues of the Jacobian matrix associated with the system486

(1):487

J(u∗

T , u
∗

M1, u
∗

M12, u
∗

M2) =









a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









, with

a11 =pt

(

1−
2u∗

T

Kt

)

(rm12u
∗

M12 + rm2u
∗

M2 + 1)− dt1u
∗

M1 − dt2u
∗

M12,

a12 =− dt1u
∗

T ,

a13 =ptu
∗

T

(

1−
u∗

T

Kt

)

rm12 − dt2u
∗

T ,

a14 =ptu
∗

T

(

1−
u∗

T

Kt

)

rm2,

a21 =
αm1u

∗

M1

u∗

TK
∗

t

( u∗

T

u∗

T +K∗

t

− 1
)

,

a22 =pm1

(

1−
u∗

M1 + u∗

M12 + u∗

M2

Km

)

−
pm1

u∗

M1

− dm1 −
αm1u

∗

T

u∗

T +K∗

t

,

a23 =−
pm1u

∗

M1

Km

+ αm21,

a24 =−
pm1u

∗

M1

Km

,

a31 =
αm1u

∗

M1

u∗

T +K∗

t

(

1−
u∗

M1

u∗

T +K∗

t

)

+
αm12u

∗

M12

u∗

T +K∗

t

( u∗

M12

u∗

T +K∗

t

− 1
)

,

a32 =
αm1u

∗

T

u∗

T +K∗

t

−
pm12u

∗

M12

Km

,

a33 =pm12

(

1−
u∗

M1 + 2u∗

M12 + u∗

M2

Km

)

− dm12 − αm21 −
αm12u

∗

T

u∗

T +K∗

t

,

a34 =αm2 −
pm12u

∗

M12

Km

,

a41 =
αm12u

∗

M12

u∗

T +K∗

t

(

1−
u∗

T

u∗

T +K∗

t

)

,

a42 =−
pm2u

∗

M2

Km

,

a43 =
αm12u

∗

T

u∗

T +K∗

t

−
pm2u

∗

M2

Km

,

a44 =pm2

(

1−
u∗

M1 + u∗

M12 + u∗

M2

Km

)

−
pm2u

∗

M2

Km

− dm2 − αm2.

Proposition 3. The steady states exhibited by model (1) for the baseline case488

αm2 = αm21 = 0 have the following linear stability:489
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• The TFIF state is always unstable.490

• The TFM2P state is always unstable when it exists (i.e., for pm2 > dm2).491

• The TFM12P state is stable provided that dm12

pm12
< min{dm2

pm2
, dm1

pm1
}, and492

ptrm12 < dt2.493

• The TFM1P state is stable provided that dm1

pm1
< min{dm2

pm2
, dm12

pm12
} and494

ptpm1 < dt1Km(pm1 − dm1).495

• The TPIF state is stable provided that pm2 < dm2 and pm1 < dm1 and496

pm12 < dm12.497

• The TPM2P state is stable provided that dm2

pm2
< min{dm1

pm1
, dm12

pm12
}.498

The stability of TPM12M2P and TPIP states (for the case αm2 = αm21 = 0)499

is more difficult to investigate for general parameters. Also the stability of the500

steady states corresponding to the case αm2, αm21 > 0 is difficult to investigate501

for the general parameters (the exceptions being the TFIF and TFM1P states,502

whose stability is given by the same conditions as in Proposition 3). For these503

reasons, the following Remark summarises the stability of all steady states for504

the baseline parameter values in Table 2.1.505

Remark 4. For the baseline parameter values given in Table 2.1 (with αm2 =506

αm21 = 0), the steady states TFM1P, TPM12M2P and TPIP do not exist.507

The stability of the existent steady states is as follows: the TFIF state is unstable508

(saddle), the TFM2P state is unstable (saddle), the TFM12P state is unstable509

(saddle), the TPIF state is unstable (saddle), and the TPM2P state is stable510

(node). These results explain the dynamics observed in Figure 4, where the511

solutions approach the only stable steady state: the TPM2P state.512

For the case αm2 = αm21 = 0.1 (and the rest of parameters as in Table 2.1),513

the steady state TFM1P does not exist.514

The stability of the existent steady states is as follows: the TFIF state is unsta-515

ble (saddle), the TFM2F state is unstable (saddle), the TFIP state is unstable516

(saddle), the TPIF state is unstable (saddle), and TPIP is stable (node). This517

explains the dynamics observed in Figure 7(d), where the solutions approach the518

only stable steady state: the TPIP state.519
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