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Abstract 

The non-Newtonian Sutterby fluid model can be implied to characterize the significant characteristics of shear-

thinning and shear-thickening for various ranges of the power-law index. The Sutterby fluid has a vast number of 

applications in engineering processes and industrial fluid mechanics. The steady two-dimensional stagnant flow of 

Sutterby nanofluid inside the boundary layer over a stretching wedge placed in a porous medium is investigated. The 

viscous incompressible fluid is electrically conducting, and a uniform magnetic field is imposed perpendicularly. 

The heat and mass transfer phenomenon is analyzed by incorporating the effects of nonlinear radiation, viscous 

dissipation, Joule heating, heat source/sink, and activation energy subject to convective-Nield boundary conditions. 

The physically modeled partial differential equations (PDEs) are lessened into ordinary differential equations 

(ODEs) with precise similarity variables. The numerical solution is obtained through the shooting method. The 

effects of several types of emerging parameters upon the dimensionless distributions of velocity, temperature, and 

concentration are exhibited graphically. A tabular comparison is presented to show the convergence and accuracy of 

the shooting method. It can be concluded that the pertinent parameters are altered in such a way that they have 

produced a substantial influence upon the dimensionless boundary layer distributions. The fluid velocity enhances, 

whereas temperature and concentration of nanofluid are observing two diverse behaviors for the pertinent 

parameters. Finally, the present study effectively fills the missing gap in the existing literature. 

Keywords: Non-Newtonian Sutterby nanofluid; Stagnation point boundary layer flow, Heat, and Mass transfer; 

Stretching Wedge, Shooting method. 
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1. Introduction 

Until now, the researchers have performed theoretical and experimental investigations to analyze the behavior of 

non-Newtonian fluids due to their numerous emerging applications in biological and industrial applications. 

Compared with Newtonian fluids, the non-Newtonian fluids are much appreciated because of their enormous 

engineering applications such as biomedical fluids, biological tissue, emulsions, food processing, paper production, 

and polymers lubricants, and nuclear fuel slurries. Based on the diverse rheological characteristics of non-Newtonian 

fluids, several rheological models have been demonstrated. Power-law fluid model, Carreau fluid model, Williamson 

fluid model, Sisko fluid model, Jeffery fluid model, Sutterby fluid model are some existing non-Newtonian fluid 

models. Among these non-Newtonian fluid models, the non-Newtonian Sutterby fluid model got much acceptance 

because it can be used to inspect the notable pseudo-plastic and dilatant characteristics of non-Newtonian fluids. 

The Sutterby fluid model has an advantage over other flow models because it can be used to exhibit the Newtonian, 

shear-thinning, and shear-thickening behaviors of the fluid for various power-law index ranges. The Sutterby fluid 

model was firstly introduced by Sutterby [1] in 1966 and provided experimental results. He characterizes the 

rheological behavior of the polymer solutions with the help of viscosity data in the converging channel experiment. 

The Sutterby fluid model has taken a long journey to accomplish its significance [2-5].  Hayat et al. [6-7] investigated 

the peristaltic flow of electrically conducting Sutterby fluid inside the channel. Hayat et al. [8-9] further studied the 

effects of MHD and explored the three-dimensional flow of Sutterby fluid over disk geometry. Ahmad et al. [10] 

deliberated the flow characteristics of Sutterby fluid through dual stratification inside a squeezed channel. They 

adopted the Homotopy Analysis Method to tackle the governing system of nonlinear equations. Azhar et al. [11] used 

the shooting method to numerically investigate the stagnant flow of non-Newtonian Sutterby fluid through Cattaneo-

Christov heat flux model. Khan et al. [12] analyzed the Sutterby fluid flow upon a rotatory disk with the aid of 

homogenous-heterogeneous reactions. Rehman et al. [13] analyzed the stagnation point flow of Sutterby fluid over a 

sheet, which is linearly shrinking. Imran et al. [14] theoretically explored the thermal transportation for the Sutterby 

fluid model, which is obeying the peristaltic mechanism with the help of chemical reactions.  

The heat transfer phenomenon is extensively utilized to examine the fluid characteristics, which are naturally 

non-Newtonian. The heat transfer mechanism has significant importance in the manufacturing, biological and 

industrial processes such as water flow in reservoirs, energy storage, catalytic reactors, plasma-platelet flow in the 

blood, oil production in industries, heat exchangers systems, cooling of electronic devices, and power generation. 

Because of these promising applications, the heat transfer mechanism captured the attention of researchers, 

mathematicians, engineers, geologists, and architectures. Heat can be transmitted inside a body or between two bodies 

because of the temperature difference. Fourier’s law is used to examine the heat transfer from decads. Thus, several 

researchers investigated the heat transfer for different fluid models over diverse geometries [15-18]. The heat transfer 

fluids effectively rely upon their physical features like heat density, thermal conductivity, heat capacity, and viscosity. 

The fluids with smaller thermal conductivity is the main problem for heat transfer. Thus, it is required to establish the 

mechanism through which the thermal conductivity can be enhanced. A novel way of improving thermal conductivity 

is by mixing the nono-sized solid particles of length 100nm within the base fluid called nanofluid. The term nanofluid 

was initially presented by Choi [19]. After that, Buongiorno [20] has suggested a model to examine the heat transfer 
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enhancement in nanofluids by investigating the seven slip phenomena such as inertia, Magnus, gravity, Brownian 

diffusion, diffusiophoresis, thermophoresis, and fluid drainage. He concluded that in nanofluid, thermophoresis and 

Brownian diffusion are the dominating slip phenomena. Azhar et al. [21] presented the numerical analysis for entropy 

generation upon the stagnant flow of Sutterby nanofluid upon a plate. Ahmad et al. [22] investigated the heat and 

mass transfer in squeezed MHD flow of Sutterby nanofluid subject to convective boundary conditions. Khan et al. 

[23] further considered the influence of MHD, heat source/sink, and radiative heat flux on the nonlinear mixed 

convective flow of Sutterby fluid between two stretchable rotatory disks and investigated the homogeneous-

heterogeneous reactions. Nawaz [24] analyzed the thermal performance of hybrid nanoparticles and numerically 

obtained the outcomes through the finite element method. Sajid et al. [25] investigated the impact of MHD, heat 

source/sink, and activation energy upon the flow, heat, and mass transfer of the Maxwell-Sutterby fluid. Sohail and 

Naz [26] explored the MHD flow of Sutterby nanofluid within a cylinder by considering the modified models for heat 

and mass transfer. Rehman et al. [27] scrutinized the electrically conducting Sutterby nanofluid flow, which was 

flowing with the help of a linearly stretching sheet to elaborate the heat transfer phenomena. Fayyadh et al. [28] 

theoretically investigated the stagnation point flow and heat transfer of Sutterby nanofluid upon a permeable sheet in 

the presence of MHD and thermal radiation. The study of nanofluids has attracted many researchers due to its large 

applications in science and engineering. The researchers, under various assumptions, have performed several 

investigations [29-33] on nanofluids flow. 

The flow and heat transfer past a wedge-shaped body is a dynamic area for the researchers from a theoretical and 

practical point of view due to its significant applications in engineering, chemical industry, and geographical fields, 

for instance, aerodynamics, heat exchangers, thermal insulation, hydrodynamics, extraction, nuclear wastes storage, 

groundwater pollution, and geothermal systems. Wedge flow commonly appears in supersonic flows, aircraft response 

to atmospheric gusts, hot and cold inclined surfaces, and engine greasing. A triangular-shaped tool, which is a portable 

inclined plane, and among one of the six classical simple machines, is known as a wedge. It can be utilized to separate 

two objects or parts of an object, hold an, or lift up an object in place. It can further be utilized to convert lateral force 

in the form of a transverse splitting force.  The wedge flow of viscous incompressible fluid was firstly presented by 

Falkner and Skan [34]. They considered the static wedge, which is free of external forces, and calculated the similarity 

results for boundary layer flow. They concluded that the gradient of pressure plays a pivotal role in such types of flow. 

Hartree [35] calculated the numerical solution. The similarity variables technique reduces the boundary layer equation 

to ODE, which is also known as the Falkner-Skan equation. Also, this classical problem becomes the Blasius flow 

problem if the angle of the wedge is assumed to be zero; also, this problem diminishes to Hiemenz flow in the case 

when the angle of the wedge is 180°. Rajagopal et al. [36] further extended the work of Falkner and Skan in the light 

of second-grade fluid and obtained the solution with the perturbation method. Hamid et al. [37-38] numerically 

investigated the heat transfer performance upon the unsteady flow of Williamson fluid passing through the wedge. 

Ali et al. [39] scrutinized the heat and mass transfer of steady two-dimensional flow of Carreau fluid over a wedge 

with infinite shear rate viscosity effects. Goqo et al. [40] studied the entropy generation in an MHD flow of viscous 

nanofluid over a wedge in the light of thermal radiation. Atif et al. [41] inspected the heat and mass transfer of unsteady 
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two-dimensional flow of tangent hyperbolic nanofluid passing through wedge geometry. Several investigators devoted 

their attention to exploring the heat and mass transfer phenomenon over wedge geometry [42-48]. 

Motivated by the above-stated literature survey, the current research study endeavors to investigate the steady 

two-dimensional stagnant flow, heat, and mass transfer of the Sutterby nanofluid past a stretchable rotating wedge 

embedded in a porous medium. The effects of MHD, nonlinear radiation, viscous dissipation, Joule heating, heat 

source/sink, and activation are included in the motion, energy, and concentration equations. Flow dynamics subject 

to convective-Nield boundary conditions are modeled with the aid of Navier-Stokes equations, which end up in the 

system of mixed nonlinear differential equations through similarity transformation. Then the shooting method is 

employed to obtain the solution. A comprehensive parametric influence upon the dimensionless boundary layer 

profiles is conducted.  Finally, the present study fills the missing gap in the existing literature and applicable in several 

different ways. 

2. Sutterby Constitutive Rheological Model 

Several types of fluid models satisfy various characteristics. The rheological attributes of such fluids are not 

completely expressed through Navier-Stokes equations. Therefore, numerous non-Newtonian fluid models have been 

proposed to understand the rheological attributes of complex fluids. Among these models, the non-Newtonian Sutterby 

fluid model has achieved its significance because it can be used effectively to demonstrate the shear-thinning and 

shear-thickening properties of non-Newtonian fluids for different ranges of the power-law index.  

The constitutive equation for the non-Newtonian Sutterby fluid model is written as 

  1,pI A      (1) 

with 

 
 1 *

*

Sinh
,

n

 
  

 

 
 
 
 

 (2) 

where  𝜏̅ represents the Cauchy stress tensor,  𝑝 is the pressure,  𝐼 ̅be the identity tensor, 𝛽∗ be the Sutterby fluid 

parameter, and 𝑛 denote the power-law index.  

The shear rate 𝛾 ̇ is defined as: 

 2

1

1
,

2
tr A   (3) 

The first Rivlin-Ericksen tensor  𝐴1
̅̅ ̅ is given by 

 1 ,
T

A V V    (4) 

For 𝛽∗𝛾̇ ≪ 1, we may write 
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   
 

3
*

1 * *Sinh ,
6

 
       (5) 

In the light of (5), equation (2) will become 

 
   

2
1 * *

*

Sinh
1 ,

6

nn

   
   

 

   
    

   
   

 (6) 

In the presence of (6), equation (1) will become 

 
2

*

1,1
6

n

pI A
 

 
 
    
 
 

 (7) 

The velocity  (𝑢, 𝑣) , temperature  𝑇 , and concentration  𝐶  fields for the steady two-dimensional flow are of the 

following form 

       ,  , ,  , ,, , , ,0V u x y v T T x y C C x yx y       (8) 

where 𝑢, 𝑣 denotes the components of the velocity in 𝑥 and 𝑦 directions. 

3. Problem Formulation 

Consider a steady two-dimensional stagnant flow of viscous incompressible electrically conducting Sutterby 

nanofluid moving upon the surface of a porous wedge, as shown in figure 1. In a particular way, the Cartesian 

coordinate system (𝑥, 𝑦) is considered such that the origin, the 𝑥-axis, and the 𝑦-axis are managed at the apex, along 

the surface, and perpendicular to the surface of the wedge, respectively. Also, the flow is produced due to the 

stretching wedge through the wall velocity 𝑢𝑤(𝑥) = 𝑏𝑥𝑚 and external flow is prescribed at free stream velocity 

 𝑢𝑒(𝑥) = 𝑐𝑥𝑚 subject to a uniform magnetic field 𝐵0 is imposed perpendicularly to the surface of the wedge. In 

which  𝑏, 𝑐, 𝑚 denotes the constants such that  𝑏 > 0 and  𝑏 < 0 implies the wedge is stretching and shrinking, 

respectively, the power-law Falkner-Skan constant  𝑚 can be written as  𝛽 =
2𝑚

𝑚+1
 with  0 ≤ 𝑚 ≤ 1 where 𝛽 is the 

Hartree pressure gradient, and it is also written in total wedge angle Ω form as 𝛽 =
Ω

𝜋
. The effects of thermal radiation, 

viscous dissipation, Joule heating, heat source/sink, and activation energy subject to convective-Nield boundary 

conditions are considered while modeling the energy and concentration equations. The Buongiorno mathematical 

model has been used to study and justify the nanofluid properties for thermophoresis and Brownian motion. It is 

further assumed that the constant temperature 𝑇𝑓  and nano-particles concentration 𝐶𝑓 are placed at the surface of the 

stretching moving wedge, and the fluid which flows away from the boundary layer is kept at uniform ambient 

temperature 𝑇∞ and nano-particles concentration 𝐶∞. 
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Fig. 1: The flow geometry 

Thus in the light of the above-mentioned assumptions, the governing continuity, momentum, energy, and 

concentration equations can be written as [13]: 
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 (9) 
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 

*

2 2
2

2 2 *
,

n

T a
B r

C C D T C T E
u v D k C C exp

x y T y y T K T


 

         
           

          
 (12) 

The suitable boundary conditions at the surface of the wedge and away from it can be chosen as:  

     ,  0,  ,  0,    at   =0,m T
w w f f f B

T C D T
u u x bx v v x k h T T D y

y y T y

       
             

       
 (13) 

  ,   ,    ,    when   ,m

eu u x cx T T C C y       (14) 

4. Similarity Transformation 

The following set of similarity variables can be selected for the present problem to transform the governing scheme 

of differential equations (PDEs) (9-12) into ordinary differential equations (ODEs) [39]: 

 
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      

 (15) 

Thus upon using (15) into (9-12), the following system of non-dimensional coupled ODEs is obtained 
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The transformed boundary conditions (13-14) can be transmuted as 

            0,  ,  1 ,  0,    at   =0, b tF F Bi N N y                     (19) 

     1,  0,  0,    when   ,F y          (20) 
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where the dimensionless parameters are as follows 
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 

 
 



 

  






 





 




    



 
   

 
   




 

2

* 1

2
,  ,  ,  ,  ,

1
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m
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T T hE
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 






 

 
   



 (21) 

5. Physical Quantities 

5.1. Skin Friction 

The skin friction coefficient or surface drag force or gradient of the velocity  𝐶𝐹𝑥 is given by 

2
,w

Fx

f e

C
u




  (22) 

The shear stress 𝜏𝑤 is defined as 

*2

0

1 ,
6

n

w f

y

u u

y y


 



      
      

       

 (23) 

The non-dimensional form is 

   
0

1 1
1 ,

2 6 2

n

x Fx

m m
Re C F F




 



    
    
    

 (24) 

5.2. Local Nusselt Number 

The local Nusselt number or heat transfer rate, or gradient of temperature 𝑁𝑢𝑥 is defined as 

 
,w

x

f f

xq
Nu

k T T




 (25) 

Here the wall heat flux 𝑞𝑤  can be written as 

 
0

,w f x w

y

T
q k q

y


 
   

 
 (26) 
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The dimensionless form is 

       
3

0

1
1 1 1 ,

2

x
w

x

Nu m
Rd

Re 

    


      
  

 (27) 

5.3. Local Sherwood Number 

The local Sherwood number or mass transfer rate or gradient of concentration 𝑆ℎ𝑥  is delineated as 

 
,m

x

B f

xq
Sh

D C C




 (28) 

The wall mass flux 𝑞𝑚 is written as 

0

,m B

y

C
q D

y


 
   

 
 (29) 

The dimensionless will take the form 

 
0

1
,

2

x

x

Sh m

Re 
 




      (30) 

Where 𝑅𝑒𝑥 =
𝑐𝑥𝑚+1

𝜈𝑓
 denotes the local Reynolds number. 

6. Shooting Method 

The shooting method is helpful in solving the PDEs (16-18) subject to boundary conditions (19-20) because of its low 

computational cost and high level of accuracy. Therefore the solution methodology of the shooting method is based 

on the following steps: 

Step I: The boundary value problem (BVP) can be transmuted into an initial value problem (IVP) by defining the 

derivatives as follows: 

1 2 3 4 5 6 7,  ,  ,  ,  ,  ,  ,F y F y F y y y y y              (31) 

This assumption will lead to the reduction of the ODEs (16-18) into the system of 7 first-order mixed equations in the 

form of 7 functions as: 

1 2 ,y y   (32) 

2 3,y y   (33) 

   

 

2

2 1 3 2 4 6

3 1

3 3

2 2
1 1

1 1 2
,

1 1
1 1 1

6 2 6 2

p T C

n

y y y M K y Gr y Gr y Sin
m m

y
m m

y n y



 


     
                        

    
     

   

 (34) 
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4 5 ,y y   (35) 
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 

                    
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   
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(36) 

6 7 ,y y   (37) 

 
*

7 5 1 7 6 4

4

2
1 ,

1 1

nt
r

b

N E
y y LePry y K PrLey y exp

N m y




    
         

     
 (38) 

The boundary conditions are 

            1 2 5 4 7 50,  ,  1 ,  0,    at   =0, b ty y y Bi y N y N y y             (39) 

     2 4 61,  0,  0,    when   ,y y y y       (40) 

Step II: The initial conditions which are missing can be calculated by numerically integrating the differential equations 

at boundary value as an IVP. 

Step III: By estimating the dependent variable at the boundary point, the precision of the calculated missing initial 

conditions can be assured. If the calculated value of the missing initial is not converging, then another appropriate 

value can be guessed. This method can be repeated until the desired degree of accuracy is accomplished between the 

initial conditions, which are given and computed. 

Step IV: The RK method can, therefore, be used to obtain the solution of the first-order IVP coupled system along 

with the initial conditions which are missing and calculated. 

7. Convergence Analysis 

The shooting method is employed to tackle the PDEs (16-18) with boundary conditions (19-20) in Matlab software. 

A comparison in a limiting case is established in table 1 for the calculated numerical values of −𝐹′′(0) with the 

previously existing outcomes from the literature. It is witnessed that the outcomes are converging, and a remarkable 

agreement is examined. It means that the shooting method is supremely effective for such type of complex fluid flow 

problems because of its low computational cost and high accuracy level. 

Table 1: Comparison of −𝐹′′(0) for diverse 𝛽 when 𝛼 = 𝑚 = 𝑀 = 𝐾𝑝 = 𝐺𝑟𝑇 = 𝐺𝑟𝐶 = Ω = λ = 0 and 𝑛 = 1. 

𝜷 −𝑭′′(𝟎) 

Present Study Ref. [36] Ref. [37] Ref. [42] Ref. [46] 

0.00 0.469600 - 0.469601 0.469600 0.4696 

0.05 0.531130 0.531130 - 0.531350 - 

0.10 0.587035 0.587035 0.587036 0.587139 0.5869 

0.20 0.686708 0.686708 - 0.686141 - 

0.30 0.774755 0.774755 0.774754 0.775524 0.7747 



Phys. Scr. 96(2021) 065003 Usman et al  

 

11 
 

0.40 0.854421 0.854421 - 0.854937 - 

0.50 0.927680 0.927680 0.927680 0.927905 0.8543 

0.60 0.995836 0.995836 - 0.995757 - 

0.70 1.059807 -  1.059421 - 

0.80 1.120268 1.120268 - 1.119574 - 

0.90 1.177728 -  1.176730 - 

1.00 1.232585 1.232585 1.232588 1.231289 - 

1.20 1.335722 1.335722 - 1.333833 - 

1.60 1.521514 1.521514 - 1.518488 - 

2.00 1.687217 -  1.683095 - 

8. Results and Discussion 

In the present study, the focus was to investigate the influence of MHD, nonlinear radiation, viscous dissipation, Joule 

heating, heat source/sink, and activation upon the steady two-dimensional stagnant flow and heat, as well as the mass 

transfer of viscous incompressible electrically conducting Sutterby nanofluid over the surface of stretching moving 

wedge subject to convective-Nield boundary conditions. The influence of several-class of pertinent parameters like 

the Hartee pressure gradient parameter  𝛽 , Sutterby fluid parameter  𝛼 , magnetic parameter  𝑀 , permeability 

parameter 𝐾𝑝 , temperature Grashof number 𝐺𝑟𝑇 , concentration Grashof number 𝐺𝑟𝐶 , the Falkner-Skan power-law 

constant 𝑚, radiation parameter 𝑅𝑑, surface heating parameter 𝜃𝑤, heat source/sink parameter 𝑄, Prandtl number 𝑃𝑟, 

Eckert number 𝐸𝑐, thermophoresis parameter 𝑁𝑡, Brownian motion parameter 𝑁𝑏, the constant chemical reaction rate 

parameter  𝐾𝑟 , temperature difference parameter  𝛿 , Lewis number  𝐿𝑒 , activation energy parameter  𝐸 , and Biot 

number  𝐵𝑖 on the non-dimensional boundary layer distributions of velocity  𝐹′(𝜂),  temperature  𝜃(𝜂) , and 

concentration 𝜑(𝜂) are analyzed. Figures 2-15 are plotted upon scaling the parameters as 𝑁 = 2.0, 𝛽 = 0.2, 𝛼 = 0.1,

𝑀 = 1.0, 𝐾𝑝 = 0.4, 𝐺𝑟𝑇 = 𝐺𝑟𝐶 = 0.6, 𝑚 = 0.3, 𝜆 = 0.5, 𝑅𝑑 = 1.0, 𝜃𝑤 = 1.5, 𝑄 = 0.2, 𝑃𝑟 = 6.8, 𝐸𝑐 = 0.6, 𝑁𝑡 =

0.25, 𝑁𝑏 = 0.35, 𝐾𝑟 = 0.8, Ω = 120, 𝑛∗ = 0.5, 𝛿 = 0.6, 𝐿𝑒 = 1.2, 𝐸 = 1.5, 𝐵𝑖 = 0.2. 

8.1. Velocity Profiles 

Figures 2-4 are plotted to show the upshots of the magnetic parameter 𝑀, permeability parameter 𝐾𝑝, Sutterby fluid 

parameter  𝛼 , Hartee pressure gradient parameter  𝛽 , temperature Grashof number 𝐺𝑟𝑇 , concentration Grashof 

number 𝐺𝑟𝐶  upon fluid velocity 𝐹′(𝜂) alongside non-dimensional similarity variable 𝜂.  

The effects of magnetic parameter 𝑀 and permeability parameter 𝐾𝑝 upon the dimensionless distribution of fluid 

velocity  𝐹′(𝜂) are depicted in figure 2. The profile of   𝐹′(𝜂)  is attained its minimum value when  𝑀 = 0 , but 

when 𝑀 ≠ 0, it is observed increasing along 𝜂. Whenever the magnetic field is applied perpendicularly, it introduces 

the Lorentz force in an electrically conducting fluid, which creates resistance within the motion of liquid particles, 

due to which the momentum boundary layer drags back to the surface. The thickness of the velocity boundary layer 

decreases for the flow over the moving wedge. The Lorentz force is physically produced under electric and magnetic 

fields, which diminishes the thickness of the momentum boundary layer by opposing the transport phenomenon. It is 

further observed that the rise in the permeability parameter 𝐾𝑝 the fluid velocity augments. Physically, it can be 

expressed as the parameter 𝐾𝑝 boosts, the regime turned out to be more porous, and the magnitude of the Darcian force 

diminishes, which slows down the motion of the fluid particles.  Thus it decreases the resistance as  𝐾𝑝 increases 
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because of which flow gradually encounters the lesser amount of drag and decreases the flow retardation thereby. 

Therefore, the permeability parameter increases the motion of the fluid inside the boundary layer. 

Also, the increment in the fluid velocity is slightly larger for 𝑀 than from  𝐾𝑝. 

The upshots of the Sutterby fluid parameter 𝛼 and Hartee pressure gradient parameter 𝛽 (or wedge angle parameter) 

upon the non-dimensional fluid velocity profile  𝐹′(𝜂) are deliberated in figure 3. The profile  𝐹′(𝜂) is escalating 

along 𝜂 for increasing values of the parameters 𝛼 and 𝛽. The mathematical expression of the non-Newtonian Sutterby 

nanofluid parameter tells us that when the parameter 𝛼 increases, the kinematic viscosity decreases, which results in 

additional fluid deformation, and consequently, fluid velocity escalates. Also, 𝛽 = 0 refers to the zero degrees wedge 

angle, which means the flat plate, and for 𝛽 = 1/2 states to the wedge angle 90 degrees, which implies the vertical 

plate. The fluid velocity increases and becomes steeper for rising values of the parameter 𝛽. The parameter 𝛽  denotes 

the pressure gradient measure; that is why the positivity of 𝛽 refers to the favorable or negative pressure gradient. In 

the accelerated flow case (or for positive values of 𝛽), the velocity distribution squeezes nearer and nearer to the wall 

surface, which does not allow the backflow or overshoot phenomenon to occur.  

Figure 4 deals to explore the effects of the temperature and concentration Grashof numbers (𝐺𝑟𝑇 , 𝐺𝑟𝐶) upon the non-

dimensional distribution of the 𝐹′(𝜂). It is found that for the higher estimation of both the parameters, the fluid velocity 

increases along 𝜂. The increase in the parameter 𝐺𝑟𝑇  causes the existence of the thermal force, which assists the flow 

because of which fluid velocity enhances, and it leads to diminishing the thickness of the thermal boundary layer. The 

increase in the 𝐺𝑟𝐶  lead to the occurrence of thermal and solutal buoyancy, which can enhance the fluid velocity. The 

thickness of the boundary layer is thinner for the parameter 𝐺𝑟𝑇  from the parameter 𝐺𝑟𝐶 . 

  
Fig. 2: Upshots of 𝑀 and 𝐾𝑝  upon 𝐹′(𝜂). Fig. 3: Upshots of 𝛼 and 𝛽 upon 𝐹′(𝜂). 

 
Fig. 4: Upshots of 𝐺𝑟𝑇  and 𝐺𝑟𝐶  upon 𝐹′(𝜂). 
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8.2. Temperature Profiles 

Figures 5-10 displays the upshots of the surface heating parameter 𝜃𝑤, radiation parameter 𝑅𝑑, the Hartee pressure 

gradient parameter 𝛽, Sutterby fluid parameter 𝛼, magnetic parameter 𝑀, the Falkner-Skan power-law constant 𝑚, 

thermophoresis parameter  𝑁𝑡 , Brownian motion parameter  𝑁𝑏 , heat source/sink parameter  𝑄 , and Biot 

number 𝐵𝑖 upon the dimensionless distribution of temperature 𝜃(𝜂) along dimensionless similarity variable 𝜂. 

The effects of the parameters 𝜃𝑤  and 𝑅𝑑 upon 𝜃(𝜂) are portrayed in figure 5. The temperature is escalating along 𝜂 for 

rising both the parameters. It is stated that  𝜃𝑤 = 1.0 corresponds to the linear radiation and  𝜃𝑤 > 1.0 means the 

nonlinear radiation. The parameter 𝜃𝑤  elucidates the comparison of the temperature between larger to ambient walls. 

When 𝜃𝑤  escalates the fluid temperatures become very large from ambient temperature, which increases the thermal 

state of the temperature. The escalation in the temperature is more considerable for nonlinear radiation than from 

linear radiation. Also, the temperature increases from 0 to higher estimation of the parameter 𝑅𝑑. The physical concept 

is that the rise in the parameter 𝑅𝑑 leads to a decreasing mean absorption coefficient, which produces additional heat 

towards the fluid direction, which causes the escalation of the temperature inside the boundary layer. The boundary 

layer thickness increases as both parameter increases. 

Figure 6 depicts the influence of the parameters 𝛼 and 𝛽 upon the profile of 𝜃(𝜂). It is examined that the temperature 

is decaying along 𝜂 for growing values of both parameters. The rise in the parameter 𝛼 causes decrements in the fluid 

temperature and thickness boundary layer. Further, the temperature decays for rising the parameter 𝛽. The maximum 

temperature is noticed for the fluid flow upon the flat plate, i.e., 𝛽 = 0, whereas the minimum temperature is detected 

for the vertical plate, i.e., 𝛽 ≠ 0. Thus, the pressure gradient becomes zero, and the temperature is enhanced due to 

the fluid motion at the wedge surface. The boundary layer thickness reduces when both parameters increases, and this 

reduction is more extensive for 𝛽. 

Figure 7 displays the effects of the parameters 𝑀 and 𝑚 upon the dimensionless distribution 𝜃(𝜂) of temperature. It is 

observed that the profile  𝜃(𝜂) is predicting two diverse behaviors along  𝜂  for increasing values of both the 

parameters (𝑀, 𝑚). The temperature is escalating for the parameter 𝑀 whereas decaying for the parameter 𝑚. The 

magnetic parameter 𝑀 portrays the Joule heating effects on the temperature profile. The temperature is minimum 

when 𝑀 = 0, and increases when 𝑀 ≠ 0. The concept behind this is that the increase in the magnetic parameter causes 

the existence of Lorentz force, which generates friction upon the flow, and this friction produces more heat energy, 

which ultimately enhances the temperature profile within the flow. On the other hand, the temperature decreases as 

the parameter 𝑚 increases. The thickness of the boundary layer turned thicker for increasing𝑀 while it becomes 

thinner for increasing 𝑚.  

The upshots of the parameters  𝑁𝑡 (solid lines) and  𝑁𝑏 (dashed lines) on the profile 𝜃(𝜂) are captured in figure 8. The 

increasing profile of the temperature along 𝜂 is examined for increasing 𝑁𝑡  and 𝑁𝑏. The increases in 𝑁𝑏 causes the rise 

in the thermal conductivity of the base fluid and surge in 𝑁𝑡  lead to the thermophoretic force production because of 

the temperature gradient, which keeps the rapid flow away from the wedge. Thus the hot fluid is dragged away from 

the surface of the wedge, and that is why the thermal boundary layer turns thicker. The thickness of the boundary layer 

is marginally higher for the thermophoresis parameter 𝑁𝑡  than from the Brownian motion parameter 𝑁𝑏. 
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Fig. 5: Upshots of 𝜃𝑤  and 𝑅𝑑 upon 𝜃(𝜂). Fig. 6: Upshots of 𝛼 and 𝛽 upon 𝜃(𝜂). 

  
Fig. 7: Upshots of 𝑀 and 𝑚 upon 𝜃(𝜂). Fig. 8: Upshots of 𝑁𝑡  and 𝑁𝑏  upon 𝜃(𝜂). 

  
Fig. 9: Upshots of 𝑃𝑟 and 𝐸𝑐 upon 𝜃(𝜂). Fig. 10: Upshots of 𝑄 and 𝐵𝑖 upon 𝜃(𝜂). 

The influence of the parameters 𝑃𝑟 and 𝐸𝑐 upon the profile of temperature 𝜃(𝜂) are exhibited in figure 9. It is implied 

that the temperature distribution is observing two different trends, i.e., escalating for the parameter 𝐸𝑐 but decaying 

for the parameter  𝑃𝑟 . Mainly the Prandtl number is connected with thermal and momentum diffusivities. 

When 𝑃𝑟 rises, the thermal diffusivity becomes weaker, which leads to the domination of momentum diffusivity over 

thermal diffusivity, and consequently, temperature decays inside the boundary layer. The temperature is escalating for 

increasing the parameter 𝐸𝑐. The Eckert number 𝐸𝑐 presents the influence of viscous dissipation. The rise in the 

parameter 𝐸𝑐 causes a conversion of kinetic energy into heat energy, which enhances the fluid thermal conductivity, 

and as a result, temperature escalates. Prandtl number helps control the thickness of the boundary layer, whereas the 

thickness of the boundary layer escalates for the Eckert number. 
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Figure 10 displays the variation within the temperature profile  𝜃(𝜂) because of the parameters  𝑄 and  𝐵𝑖 . The 

temperature is augmenting along 𝜂 for both parameters. For 𝑄 < 0 leads to the internal heat sink, which acts as a heat 

absorber, and for 𝑄 > 0 indicates the internal heat source, which behaves as a heat generator. In the internal heat sink 

process, temperature decreases because of energy absorption. During the internal heat source process, a large quantity 

of heat is generated, which increases the temperature. The Biot number 𝐵𝑖 means the ratio of heat transfer resistance 

within the body to body surface resistance. When 𝐵𝑖 > 0.1, the heat convection at the surface becomes faster from 

heat conduction, and temperature gradients are considerable. Further, the Biot number is precisely associated with the 

coefficient of heat transfer. When the numerical value of 𝐵𝑖 progresses, the fluid conductivity decreases but enhances 

the heat transfer coefficient, which causes a rise in the fluid temperature. The thickness of the boundary layer decays 

with the enhancement in both the parameters.  

8.3. Concentration Profiles 

The effects of the parameter like thermophoresis parameter 𝑁𝑡, Brownian motion parameter 𝑁𝑏, Prandtl number 𝑃𝑟, 

Lewis number  𝐿𝑒 , the constant chemical reaction rate parameter  𝐾𝑟 , the Falkner-Skan power-law constant  𝑚 , 

activation energy parameter 𝐸, and temperature difference parameter 𝛿 upon the non-dimensional distribution of the 

concentration 𝜑(𝜂) along dimensionless similarity, variable 𝜂 are deliberated in figures 11-14. 

Figure 11 elucidates the impacts of the parameters 𝑁𝑡  and  𝑁𝑏 upon 𝜑(𝜂). The profile of 𝜑(𝜂) examines two trends 

along 𝜂 for various values of the thermophoresis and Brownian motion parameters (𝑁𝑏 , 𝑁𝑡). The concentration of 

nanoparticles enhances as the thermophoresis parameter increases. Because during the thermophoresis process, 

nanoparticles are dispersed from the warm surface to ambient fluid as the nano-sized particles undergo resistance from 

the heated surface. In this way, the thermophoretic force permits nanoparticles to transfer the heat from the surface 

towards the moving fluid. The thickness of the concentration boundary layer turns thicker. The concentration of 

nanoparticles decays as the Brownian motion parameter increases. It can be physically explained as the Brownian 

motion happens because of the nano-particles collision with that of base fluid inside a nanofluid system. The heat 

conduction is demonstrated by Brownian diffusion. The nanoparticles enlarge the area of the wedge surface for heat 

transfer. A nanofluid is mainly a two-phase system in which the arbitrary motion of the nanoparticles increases the 

kinetic energy. Nevertheless, the diffusion of nanoparticles is strongly affected by Brownian motion. The thickness of 

the concentration boundary layer declines in the case of Brownian motion. 

The impressions of the parameters 𝑃𝑟 and 𝐿𝑒 upon 𝜑(𝜂) are accentuated in figure 12. The nanoparticle concentration 

and the concentration boundary layer thickness decays along 𝜂 for the higher approximation of 𝑃𝑟 and 𝐿𝑒. The rise in 

the Prandtl number owns a weaker thermal diffusivity, which reduces the temperature and concentration of the 

nanoparticles. Also, the concentration of nanoparticles reduces as Lewis number 𝐿𝑒 enhances. The Lewis number 

expresses the ratio between mass and momentum diffusivities. During mass and momentum diffusion convection, the 

Lewis number is used to characterize the fluid flow. It is further connected with the relative thickness of the mass 

transfer boundary layer and hydrodynamic layer. The rise in the parameter 𝐿𝑒 lead to the occurrence of substantial 

molecular motions that reduces the Brownian diffusion coefficient 𝐷𝐵  because the Lewis number is in an inverse 
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relationship with 𝐷𝐵  due to which particles diffuse inside the fluid deeper. Therefore, the decrease in the diffusivity 

implies the declination in the concentration of nanoparticles. 

  
Fig. 11: Upshots of 𝑁𝑡  and 𝑁𝑏 upon 𝜑(𝜂). Fig. 12: Upshots of 𝑃𝑟 and 𝐿𝑒 upon 𝜑(𝜂). 

  
Fig. 13: Upshots of 𝐾𝑟  and 𝑚 upon 𝜑(𝜂). Fig. 14: Upshots of 𝐸 and 𝛿 upon 𝜑(𝜂). 

Figure 13 interprets the effects of the parameters  𝐾𝑟  and  𝑚 upon the non-dimensional profile of  𝜑(𝜂) . The 

concentration of nanoparticles and the thickness of the concentration boundary layer decays along 𝜂 for different 

parameters' values. Whenever the chemical reaction parameter  𝐾𝑟  enhances the number of solute molecules 

experiencing the chemical reaction gets escalated because of which the concentration of nanoparticles reduces. Thus 

the thickness of the solutal boundary layer is greatly decreased by a destructive chemical reaction rate. Further, the 

concentration decreases as the Falkner-Skan power-law constant 𝑚 rises. The thickness of the concentration boundary 

layer is thicker near the wall for the parameter 𝐾𝑟  and thinner for the parameter 𝑚, whereas away from the wall, this 

behavior gets reversed.  

The upshots of the parameters  𝐸 and  𝛿 upon the dimensionless profile  𝜑(𝜂) are encapsulated in figure 14. Two 

different types of trends are observed along 𝜂 for rising values of the activation energy parameter 𝐸, and temperature 

difference parameter 𝛿. The lowest form of energy is required to begin a reaction, which is referred to as activation 

energy. It is shown that a decrease in the reaction rate constant is brought about at lower temperatures and high 

activation energy, which gradually decelerates the chemical reaction, and an increase in the mass fraction field occurs.  

Therefore the concentration of nanoparticles is escalating as Arrhenius activation energy parameter 𝐸 increases. Also, 

the escalation in the temperature difference parameter 𝛿 causes the increment in the destructive rate of chemical 

reaction because of which the concentration of nanoparticles reduces. The thickness of the concentration boundary 

layer is thicker for the parameter 𝐸, whereas it is thinner for the parameter 𝛿. 
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8.4. Skin Friction Coefficient 

Table 2 elucidates the numerical assessment of the skin friction coefficient  √𝑅𝑒𝑥𝐶𝐹𝑥  in the case when 𝑛 = 1.0, 

and 𝑛 = 2.0 for diverse values of the parameters 𝛼, 𝑚, 𝛽, 𝑀, 𝐾𝑝, 𝐺𝑟𝑇 , 𝐺𝑟𝐶  and 𝜆. The other parameters are set as 𝑅𝑑 =

1.0,  𝜃𝑤 = 1.5, 𝑄 = 0.2, 𝑃𝑟 = 6.8, 𝐸𝑐 = 0.6,  𝑁𝑡 = 0.25,  𝑁𝑏 = 0.35,  𝐾𝑟 = 0.8, Ω = 120, 𝑛∗ = 0.5, 𝛿 = 0.6, 𝐿𝑒 =

1.2, 𝐸 = 1.5, 𝐵𝑖 = 0.2. It is observed that the skin friction reduces with the increase of the Sutterby fluid parameter, 

whereas it increases with the increase of the Hartee pressure gradient parameter. The magnetic field also enhances the 

skin friction at the wedge surface; this enhancement is due to field lines in the fluid perpendicular to the fluid motion. 

These magnetic field lines resist the fluid from flowing, and fluid particles stick with magnetic field lines. It is also 

seen that temperature Grashof enhances the skin friction and concentration Grashof reduces the skin friction. 

Table 2: Calculated values of the skin friction coefficient. 

𝜶 𝒎 𝜷 𝑴 𝑲𝒑 𝑮𝒓𝑻 𝑮𝒓𝑪 𝝀 
√𝑹𝒆𝒙𝑪𝑭𝒙 

𝒏 = 𝟏. 𝟎 𝒏 = 𝟐. 𝟎 

0.1 0.3 1/4 0.5 0.3 0.6 0.6 0.5 0.7398 0.7359 

0.3        0.7320 0.7202 

0.5        0.7239 0.7040 

0.9        0.7072 0.6692 

0.1 0.4       0.7504 0.7453 

 0.6       0.7691 0.7547 

 0.8       0.7892 0.7744 

 0.3 1/6      0.7444 0.7306 

  1/3      0.7611 0.7571 

  1/2      0.7972 0.7831 

  1/4 0.0     0.5874 0.5744 

   1.0     0.7878 0.7739 

   2.0     0.9054 0.8904 

   0.5 0.5    0.7820 0.7784 

    0.7    0.8132 0.8095 

    0.9    0.8435 0.8396 

    0.3 1.0   0.8604 0.8569 

     1.5   0.8837 0.8702 

     2.0   0.9072 0.8936 

     0.6 1.0  0.7286 0.7152 

      1.5  0.7070 0.6937 

      2.0  0.6826 0.6795 

      0.6 0.0 1.2310 1.2181 

       0.3 0.8990 0.8825 

       0.6 0.5367 0.5246 

       1.0 0.0218 0.0118 

8.5. Local Nusselt Number 

The values of the local Nusselt number  
𝑁𝑢𝑥

√𝑅𝑒𝑥
  alongside the different values of the 

parameters 𝛼, 𝑅𝑑, 𝜃𝑤 , 𝑃𝑟, 𝑚, 𝐸𝑐, 𝑀, 𝑄, 𝑁𝑡 , 𝑁𝑏 and 𝐵𝑖 in the case when 𝑛 = 1.0, and 𝑛 = 2.0 are computed in Table 3. 

The remaining parameters are scaled as 𝛽 = 0.2, 𝐾𝑝 = 0.4, 𝐺𝑟𝑇 = 𝐺𝑟𝐶 = 0.6, 𝜆 = 0.5, 𝐾𝑟 = 0.8, Ω = 120, 𝑛∗ =

0.5, 𝛿 = 0.6, 𝐿𝑒 = 1.2, 𝐸 = 1.5. It is seen from the tabulated data of the Nusselt number that the heat transfer rate at 
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the wedge surface falls with the enhancement of the radiation effects. Similar effects were captured with the Sutterby 

fluid parameter variation, whereas the Eckert and magnetic parameters enhanced the heat transfer rate at the wedge 

surface. The heat transfer rate is decreased with an increase in thermophoresis effects, whereas it increases with the 

increase of Brownian motion of the nanoparticles.  

Table 3: Calculated values of local Nusselt number. 

𝜶 𝑹𝒅 𝜽𝒘 𝑷𝒓 𝒎 𝑬𝒄 𝑴 𝑸 𝑵𝒕 𝑵𝒃 𝑩𝒊 

𝑵𝒖𝒙

√𝑹𝒆𝒙

 

𝒏 = 𝟏.0 𝒏 = 𝟐. 𝟎 

0.1 0.5 1.3 7.0 0.3 0.5 0.5 0.5 0.2 0.1 0.2 0.3879 0.3845 

0.3           0.3809 0.3706 

0.5           0.3737 0.3560 

0.9           0.3584 0.3244 

0.1 1.0          0.3408 0.3362 

 1.5          0.3019 0.2979 

 2.0          0.2679 0.2545 

 0.5 1.0         0.4334 0.4264 

  1.5         0.3659 0.3505 

  1.9         0.3031 0.2986 

  1.3 8.0        0.4236 0.4114 

   9.0        0.5529 0.5450 

   10.0        0.6463 0.6324 

   7.0 0.4       0.3116 0.3094 

    0.6       0.2623 0.2503 

    0.8       0.1884 0.1665 

    0.3 1.0      0.4972 0.4840 

     1.5      0.6056 0.5907 

     2.0      0.9008 0.8942 

     0.5 0.0     0.5610 0.5497 

      1.0     0.7538 0.7327 

      2.0     0.9408 0.9299 

      0.5 -1.0    0.1244 0.1146 

       0.0    0.2909 0.2804 

       1.0    0.5128 0.5013 

       0.5 0.4   0.3487 0.3337 

        0.6   0.2649 0.2506 

        1.0   0.1420 0.1376 

        0.2 0.3  0.4322 0.4205 

         0.5  0.5240 0.5323 

         0.9  0.6490 0.6374 

         0.1 0.6 0.4173 0.4040 

          1.0 0.5222 0.5179 

          2.0 0.6280 0.6127 

          3.0 0.7307 0.7248 

8.6. Local Sherwood Number 

Table 4 demonstrates the calculated values of the local Sherwood number  
𝑆ℎ𝑥

√𝑅𝑒𝑥
 for the different values of the 

parameters 𝑁𝑡 , 𝑁𝑏 , 𝐿𝑒, 𝑃𝑟, 𝑚, 𝐾𝑟 , 𝛿, and 𝐸 in the case when 𝑛 = 1.0, and 𝑛 = 2.0. The other involved parameters are 

adjusted as   𝛽 = 0.2, 𝛼 = 0.1, 𝑀 = 1.0, 𝐾𝑝 = 0.4, 𝐺𝑟𝑇 = 𝐺𝑟𝐶 = 0.6, 𝜆 = 0.5, 𝑅𝑑 = 1.0, 𝜃𝑤 = 1.5, 𝑄 = 0.2, 𝐸𝑐 =

0.6, Ω = 120, 𝑛∗ = 0.5, 𝐵𝑖 = 0.2. It is examined from the tabulated data of the local Sherwood number that the mass 
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transfer rate enhances with the enhancement in the thermophoresis parameter, Brownian motion parameter, Lewis 

number, Prandtl number. Similar effects are noticed for the constant chemical reaction rate parameter and activation 

energy parameter. Whereas the mass transfer rate decreases as a positive constant increases. The escalation in mass 

transfer rate for 𝑛 = 1.0 is slightly larger than from 𝑛 = 2.  

Table 4: Calculated values of the local Sherwood number. 

𝑵𝒕 𝑵𝒃 𝑳𝒆 𝑷𝒓 𝒎 𝑲𝒓 𝜹 𝑬 

𝑺𝒉𝒙

√𝑹𝒆𝒙

 

𝒏 = 𝟏.0 𝒏 = 𝟐. 𝟎 

0.2 0.1 0.5 7.0 0.3 0.2 0.2 1.0 0.3379 0.3263 

0.4        0.5419 0.5299 

0.6        0.6824 0.6701 

1.0        0.8648 0.8521 

0.2 0.3       0.4012 0.3908 

 0.5       0.5293 0.5192 

 0.9       0.7247 0.7194 

 0.1 1.0      0.3824 0.3707 

  2.0      0.4496 0.4376 

  3.0      0.5474 0.5350 

  0.5 8.0     0.3990 0.3871 

   9.0     0.4722 0.4600 

   10.0     0.5475 0.5349 

   7.0 0.4    0.3192 0.3075 

    0.6    0.2949 0.2831 

    0.8    0.2737 0.2617 

    0.3 0.6   0.3627 0.3511 

     1.0   0.3966 0.3850 

     2.0   0.4469 0.4353 

     0.2 0.6  0.3593 0.3477 

      1.0  0.3796 0.3681 

      2.0  0.4004 0.3989 

      0.2 2.0 0.3774 0.3659 

       3.0 0.4071 0.3956 

       4.0 0.4470 0.4355 

       5.0 0.5069 0.4954 

8.7. Stream Lines 

In figure 15, the streamlines are plotted to predict the flow behavior for the various 𝑚. The variation of m are assumed 

0.1, 0.3, 0.4, 1.0. It can be seen that for 𝑚 = 0.1 and 𝑚 = 0.3 the one-sided flow occurs near the stagnation point. 

Whereas for 𝑚 = 0.4 and higher values, the flow occurs on both sides of the stagnated line. 
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Fig. 15: Streamlines patterns for 𝑚. 

8.8. Conclusion 

A new mathematical model is developed to investigate the influence of MHD, nonlinear radiation, viscous dissipation, 

Joule heating, heat source/sink, and activation energy subject to convective-Nield boundary conditions upon a steady 

two-dimensional stagnant flow of electrically conducting viscous incompressible Sutterby nanofluid upon a surface 

of stretching wedge embedded in a porous medium. The shooting method is used to obtain the results numerically to 

demonstrate the characteristics of boundary layer flow as well as heat and mass transfer through their dependence on 

several types of pertinent parameters. Therefore, the following conclusion can be drawn from the present study: 

 The fluid velocity is effectively enhanced through the appropriate change of the 

parameters 𝑀, 𝐾𝑝 , 𝛼, 𝛽, 𝐺𝑟𝑇  and 𝐺𝑟𝐶 . 

 The fluid temperature is observed increasing with the parameter  𝑀, whereas decreasing with the 

parameters 𝑚, 𝛼, and 𝛽. 

 An escalation in the nanofluid temperature is noticed with the parameters 𝑅𝑑, 𝜃𝑤 , 𝑁𝑡 , 𝑁𝑏 , 𝐸𝑐, and 𝑄 but it 

decays through the parameter 𝐸𝑐. 

 The nanofluid temperature is effectively enhanced through the utilization of convective-Nield’s boundary 

conditions. 

 The concentration of nanoparticles is increased by the proper alterations in the parameters 𝑁𝑡, and 𝐸. 

 The change in the parameters 𝑁𝑏 , 𝑃𝑟, 𝐿𝑒, 𝐾𝑟 , 𝑚, and 𝛿 slowed down the nanoparticle concentration. 
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Nomenclature 
  Dimensions    Dimensions 

𝑥, 𝑦 Cartesian coordinates [L] 𝐹 Dimensionless 

velocity 

- 

𝑢, 𝑣 Horizontal and vertical 

velocity components  
[L/T] 𝐺𝑟𝑇  Temperature Grashof 

number 

- 

𝑢𝑒 Free stream velocity [L/T] 𝐺𝑟𝐶  Concentration Grashof 

number 

- 

𝑢𝑤 Stretching velocity [L/T] 𝑅𝑑 Radiation parameter - 

𝑛 Power-law index - 𝑃𝑟 Prandtl number - 

𝐵0 Uniform magnetic field [M½L½T-2] 𝐸𝑐 Eckert number - 

𝑘𝑝
∗  Permeability parameter 

of the porous medium 
[L2] 𝑄 Dimensionless heat 

source/sink parameter 

- 

g Acceleration due to 

gravity 
[L/T2] 𝑁𝑏 Brownian motion 

parameter 

- 

𝑇 Temperature [K] 𝑁𝑡 Thermophoresis 

parameter 

- 

𝑇𝑓 Wall temperature [K] 𝐾𝑟  The constant chemical 

reaction rate parameter 

- 

𝑇∞ Ambient temperature [K] 𝐵𝑖 Biot number - 

𝐶 Concentration - 𝑁𝑢𝑥 Local Nusselt number - 

𝐶𝑓 Wall concentration - 𝑆ℎ𝑥 Local Sherwood 

number 

- 

𝐶∞ Ambient concentration - 𝑞𝑚 Wall mass flux - 

𝑘𝑓 Thermal conductivity [MLT−3K−1] Greek symbols  

(𝑐𝑝)
𝑓
 Specific heat capacity 

of the base fluid 
[L2T-2K-1] 𝛽∗ Sutterby fluid 

coefficient 

- 

𝑝 Pressure [M L-1 T-2] 𝜏̅ Cauchy stress tensor [M L-1 T-2] 

𝑉̅ Velocity vector [L T-1] 𝛾̇ Shear rate [T-1] 

𝐼 Identity tensor - 𝜐𝑓 Effective kinematic 

viscosity 

- 

𝑄∗ Heat source/sink 

coefficient 
[M L2T-1] 𝜇𝑓 Effective dynamic 

viscosity 

- 

𝐷𝐵   Coefficient of 

Brownian diffusion 

- 𝜎𝑓 Effective electrical 

conductivity 

- 

𝐷𝑇  Coefficient 

Thermophoresis 

diffusion 

- 𝜌𝑓 Effective fluid density [M L-3] 

𝑘𝑟 The constant chemical 

reaction rate 

- (𝛽𝑇)𝑓 Thermal expansion 

coefficient 

- 

𝑛∗ Fitted constant rate - (𝛽𝐶)𝑓 Volumetric expansion 

coefficient 

- 

𝐸𝑎 Activation energy - Ω Total wedge angle - 

𝐾∗ Boltzmann constant - 𝜏∗ The ratio of the heat 

capacity 

- 

𝑚 Positive constant - 𝜂 Non-dimensional 

similarity variable 

- 

ℎ𝑓 Heat transfer 

coefficient 

- 𝜓 Stream function - 
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𝑐 Constant rate - 𝜃 Non-dimensional 

temperature 

- 

𝑀 Magnetic parameter - 𝜑 Non-dimensional 

concentration 

- 

𝐾𝑝 Dimensionless 

permeability parameter 

- 𝛼 Sutterby fluid 

parameter 

- 

𝐿𝑒 Lewis number - 𝛽 Hartee pressure 

gradient parameter 

- 

𝐸 Activation energy 

parameter 

- 𝜃𝑤 Surface heating 

parameter 
[K] 

𝐶𝐹𝑥 Skin friction coefficient - 𝛿 Temperature 

difference parameter 
[K] 

𝑅𝑒𝑥 Local Reynolds 

number 

- 𝜆 Velocity ratio 

parameter 

- 

𝑞𝑤   Wall heat flux - 𝜏𝑤 Shear stress [M L-1 T-2] 
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