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Abstract 

With the development of modern high-throughput omic measurement platforms, it has 
become essential for biomedical studies to undertake an integrative (combined) approach 
to fully utilise these data to gain insights into biological systems. Data from various omics 
sources such as genetics, proteomics, and metabolomics can be integrated to unravel the 
intricate working of systems biology using machine learning-based predictive algorithms. 
Machine learning methods offer novel techniques to integrate and analyse the various 
omics data enabling the discovery of new biomarkers. These biomarkers have the potential 
to help in accurate disease prediction, patient stratification and delivering of precision 
medicine. This review paper explores different integrative machine learning methods which 
have been used to provide an in-depth understanding of biological systems during normal 
physiological functioning and in the presence of a disease. It provides insight and 
recommendations for interdisciplinary professionals who envisage employing machine 
learning skills in multi-omics studies. 

Keywords: Multi-omics, Machine Learning, Predictive Modelling, Supervised Learning, 
Unsupervised Learning, Systems Biology 
 

List of Abbreviations 

ATHENA Analysis Tool for Heritable and Environmental Network 
Associations 

BCC Bayesian consensus clustering 

BN Bayesian Network 

CS Concatenation-based Supervised Learning 

CU Concatenation-based Unsupervised Learning 

DNA Deoxyribo-Nucleic Acid 

FCA Formal Concept Analysis 

FDA Food and Drug Administration 

fMKL-DR fast multiple kernel learning for dimensionality reduction 

FSMKL Multiple Kernel Learning with Feature Selection 

HI-DFNForest Hierarchical integration deep flexible neural forest 

JBF Joint Bayes Factor 

JIVE Joint and Individual Variation Explained 

KNN k-nearest neighbors 

LASSO Least Absolute Shrinkage and Selection Operator 

LDA Linear Discriminant Analysis 

lncRNAs long non-coding RNAs 

MDI Multiple Dataset Integration 

MDS Multi-Dimensional Scaling 

Meta-SVM Meta-analytic SVM 
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miRNA microRNA 

ML Machine Learning 

MOFA Multi‐Omics Factor Analysis 

MOLI Multi-omics late integration 

MORONET Multi-Omics gRaph cOnvolutional NETworks 

MOSAE Multi-omics Supervised Autoencoder 

mRNA messenger Ribo-Nucleic Acid 

MS Model-based Supervised Learning 

MU Model-based Unsupervised Learning 

NEMO NEighborhood based Multi-Omics clustering 

NMF Non-negative Matrix Factorisation 

PCA Principal Component Analysis 

PINS Perturbation clustering for data integration and disease 
subtyping 

PSDF Patient-Specific Data Fusion 

RF Random Forest 

rMKL-LPP regularised multiple kernel learning for Locality Preserving 
Projections 

RVM Relevance Vector Machine 

SDP-SVM Semi-Definite Programming SVM 

SmSPK smoothed shortest path graph kernel 

SNF Similarity Network Fusion 

SSL Semi-supervised learning 

SVM Support Vector Machine 

SVR Support vector regression 

TS Transformation-based Supervised Learning 

TU Transformation-based Unsupervised Learning 

1 INTRODUCTION 

Digital information is growing rapidly, in terms of five V‘s (volume, velocity, veracity, variety 
and value), and hence this is hailed as the big data era (BCS, 2014; Bellazzi, 2014; Lee 
and Yoon, 2017). Health-based big data including linked information for patients, such as 
their clinical data (for example gender, age, pathological and physiological history) and 
omics data (such as genetics, proteomics and metabolomics) has now become more widely 
available (Canuel et al., 2015; Singhal et al., 2016). Recently, such data has been used for 
precision (also called personalised or stratified) medicine to provide customised healthcare, 
i.e. providing a bespoke treatment for individuals (Gibson et al., 2015; Kalaitzopoulos, 2016; 
Malod-Dognin et al., 2017). There has been unprecedented growth in the development of 
precision medicine supported by ML (machine learning) approaches (Delavan et al., 2017; 
Peterson et al., 2013; Zou et al., 2017) and data mining tools (Chawla and Davis, 2013; 
Cheng et al., 2015; Margolies et al., 2016). These techniques have also helped to discover 
novel omics biological markers which can identify the molecular cause of a disease. 

A biomarker is a substance, structure, or process that can be measured in the human body 
or its products and can provide surrogate information about the presence of a 
disease/condition (Strimbu and Tavel, 2010). Molecular biomarkers are discovered by 
analysing the cascade of information provided by different omics (Debnath et al., 2010). For 
example, the high-sensitivity C-Reactive protein test provides an accurate and quantitative 
risk assessment for cardiovascular disease (Pfützner and Forst, 2006; Shrivastava et al., 
2015). Biomarkers play a significant role in planning preventive measures and decisions for 
patients (Nielsen, 2017) and can be classified as either diagnostic, prognostic or predictive 
(Le et al., 2016; Shaw et al., 2015). Diagnostic biomarkers are used for determining the 
presence of disease in a patient, while prognostic biomarkers provide information on the 
overall outcome with or without the standard treatment (Carlomagno et al., 2017). 
Predictive biomarkers are used to identify who is at risk of an outcome (Nalejska et al., 
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2014). All of these biomarkers can also be used to identify which treatment will be most 
suitable for a given patient. For example, the ADNI (Alzheimer's Disease Neuroimaging 
Initiative) study used a combination of neuroimaging, biochemical and genetic biomarkers 
to discriminate early Alzheimer‘s patients from healthy volunteers with an accuracy of 98% 
(Gupta et al., 2019). Similarly, different forms of Parkinson's syndromes have been 
investigated by developing an automated tool which fuses multi-site diffusion-weighted MRI 
imaging biomarkers and disease rating score (MDS-UPDRS III) (Archer et al., 2019). 
Biomarkers can help identify high-risk individuals before their physiological symptoms are 
evident. Moreover, they also help in measuring disease progression (Mandel et al., 2010). 

In the context of precision medicine, ML has been used to develop diagnostic, prognostic 
and predictive tools from single omics data (Dias-Audibert et al., 2020; Mamoshina et al., 
2018; Sonsare and Gunavathi, 2019). However, ML may have deteriorated performance for 
certain single omics such as gene data due to inherent characteristics (Kim et al., 2020). 
ML methods are now also being applied to with multi-omics data (Bersanelli et al., 2016), to 
investigate and interpret the relationships between data and phenotypes (Kim and 
Tagkopoulos, 2018). Although ML analysis of multi-omics is still in its embryonic stage, it 
has already been explored for a wide range of applications, as reported in recent reviews 
on brain diseases (Garali et al., 2018; Young et al., 2013), diabetes (Kavakiotis et al., 
2017), cancers (Borad and LoRusso, 2017; Chaudhary et al., 2017; Wong et al., 2016) 
cardiovascular disease (Weng et al., 2017), medical imaging (Erickson et al., 2017), single-
cell analysis in humans (Cao et al., 2020; A. Ma et al., 2020) and plant science studies 
(Acharjee et al., 2011). Currently, many of the multi-omic reviews are focussed on individual 
sub-topics. For example, designing studies (Haas et al., 2017; Hasin et al., 2017), setting 
up workflows (Kohl et al., 2014), choosing software tools (Misra et al., 2019) and evaluating 
overfitted performance (McCabe et al., 2020). 

In contrast, this review aims at a broader focus, presenting an interdisciplinary perspective 
to new readers in this domain by providing a background on multi-omics and ML. It takes 
forward the integration terminologies introduced by Ritchie (Ritchie et al., 2015) and 
summarises the recent integrative state-of-the-art approaches. We aim to cover various 
integration methods concisely and include a recommendation flowchart enabling 
interdisciplinary scientists to have a quick head start in this domain (Bersanelli et al., 2016; 
Nguyen and Wang, 2020). 

Scope of this review: This review investigates the two primary learning strategies in ML, 
i.e. supervised and unsupervised, which are commonly used within the context of multi-
omics integration. This review considers multi-omics integration as a process of combining 
different single omics. Although various ML specialisations such as reinforcement 
(Coronato et al., 2020), hybrid (Zhou et al., 2019), multi-view (Zhao et al., 2017) and self-
supervised learning (Chen et al., 2019) are now emerging in generic health-care 
applications, they have not yet gained enough momentum in multi-omics analysis, hence 
they remain beyond the scope of this review. 

This paper is organised as follows. Section 2 provides a short background related to multi-
omics and ML. Section 3 describes how ML is employed for multi-omics analysis and what 
are the various real-world challenges of it. In Section 4, details of different multi-omics 
integration approaches are presented. Section 5, published multi-omics studies using ML 
methods are discussed. Section 6 describes a recommendation flowchart for choosing an 
appropriate method for multi-omics integration. Conclusions are provided in Section 7. 
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2 BACKGROUND 

2.1 Multi-omics 

In living beings, genetic information in the cells flows from DNA (deoxyribo-nucleic acid) to 
the mRNA (messenger ribo-nucleic acid) to protein and is dictated by the central dogma of 
molecular biology (Lodish et al., 2000). This flow of information is often considered 
analogous to a computer system which has facilitated the understanding of biological 
information processing (Wang and Gribskov, 2005; D‘Onofrio and An, 2010). 

The study of DNA, mRNA and proteins is broadly denoted as genomics, transcriptomics, 
and proteomics respectively. The genetic blueprint of a cell is explored using genomics, 
which looks at the DNA of individuals and helps us to investigate the presence or absence 
of certain genes (Gibson, 2015; Vogel and Motulsky, 1997). Transcriptomics studies the 
transcribed genetic material and examines the genes which are actively expressed and 
provides information about what is happening at the cellular level (Milward et al., 2016). 
Proteomics helps in characterising the information flow happening within the cell and the 
organism in the form of protein pathways and their networks (Wu et al., 2014). 

Although metabolomics, lipidomics, and glycomics do not form part of the central dogma 
analysis (Cobb, 2017), they still provide an invaluable amount of information regarding the 
metabolites, lipids and glycans (synthesised by the proteome via biosynthetic pathways) 
(Barh et al., 2011). These substances are the intermediate products of a cell‘s information 
flow and therefore are considered to be excellent indicators of the cell‘s activity. Similar to 
single-genome studies, metagenomics is used to sequence genetic information from 
environmental samples without the requirement of isolating individual species (Hugenholtz 
and Tyson, 2008). 

All measured omics data can be used as a biomarker which helps us to understand and 
analyse the underlying characteristics and complexities of biological systems (Alberts et al., 
2008). Table 1 shows some of the important omics used to study biological systems 
(Handelsman et al., 1998; Kuska, 1998; Lindon et al., 2011; ―Proteomics, transcriptomics,‖ 
1999; Vasta and Ahmed, 2008; Wang et al., 2016; Wilkins and Appel, 2007). All of them are 
part of the same pipeline of biological information, whose output depends on the different 
inputs and regulation. As shown in Table 1, each of these omics can be measured using 
specialised high-throughput technologies (for example microarray (Bumgarner, 2013) and 
mass spectrometry (Glaves et al., 2014) for genomics and metabolomics respectively). The 
table also includes a list of recent reviews on each of these omics. High-throughput 
generated omics data (Lightbody et al., 2019) has played a pivotal role in developing 
precision medicine biomarkers for diseases such as Alzheimer's (Hampel et al., 2017, 
2016; Kovacs, 2016), diabetes (Capobianco, 2017; McCarthy, 2017; Mutie et al., 2017), 
cancer (Borad and LoRusso, 2017; Senft et al., 2017), hypertension (Barnes et al., 2016; 
Dominiczak et al., 2017), cardiovascular (Costantino et al., 2017) and chronic respiratory 
diseases (Agache and Rogozea, 2017; Hanania and Diamant, 2017). Recently, these 
omics have also been integrated for COVID-19 studies (Barh et al., 2020; Overmyer et al., 
2020; Zhou et al., 2020). Many other specialised omics have also emerged such as 
pharmacogenomics (Wang, 2010), methylomics (Liu et al., 2013), interactomics (Luck et al., 
2017) and radiomics (Lambin et al., 2017; Wong et al., 2016). 

Overall, these omics provide a complete picture of cell biology and related cellular function 
(Cox, 2009). This provided the impetus for the development of various software 
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mechanisms which can offer a prediction of a particular phenotype while using the available 
next-generation multi-omics data (Ritchie et al., 2015). Furthermore, they can be utilised to 
develop materials and devices which be used for the diagnostic and preventive purpose at 
the molecular level while targeting molecules with greater accuracy (Giovanni Martinelli et 
al., 2015). 

 

Table 1: The omics technologies which help us draw a complete picture of the cell biology 
and related function. 

S. 
No 

Omic name Term coined in Data extracted 
Commonly used High-
throughput technologies 

Common 
Reference 
databases 

Recent reviews 

1 Genomics 
1986 (Kuska, 
1998) 

Single 
nucleotide 
polymorphisms, 
Rare variants 
and Copy 
number 
variations. 

DNA-Sequencing (Sanger 
(Sanger et al., 1977), Whole-
genome (J. Huang et al., 2017), 
Whole-exome (Weisz 
Hubshman et al., 2018), Single-
Cell DNA (L. Zhang et al., 2019) 
and targeted sequencing 
(Bewicke-Copley et al., 2019)), 
Microarray (Bumgarner, 2013). 

DDBJ (Tateno et 
al., 2002), 
GenBank 
(Benson et al., 
2011), ENA 
(Leinonen et al., 
2011) 

(Reuter et al., 
2015) 

2 Transcriptomics 

1999 
(―Proteomics, 
transcriptomics,‖ 
1999) 

Messenger, 
Micro and Long 
non-coding 
RNA 
expression. 

RNA-Sequencing (Sanger 
(Alidjinou et al., 2017), Single-
Cell RNA (Hwang et al., 2018) 
and targeted sequencing 
(Mercer et al., 2012)), 
Microarray (Zhao et al., 2014). 

miRBase 
(Kozomara et al., 
2019), 
Rfam (Kalvari et 
al., 2018) 

(Lowe et al., 
2017) 

3 Proteomics 
1994 (Wilkins 
and Appel, 
2007) 

Protein 
expression 

Reverse Phase Protein Array 
(Boellner and Becker, 2015), 
Liquid Chromatography - Mass 
Spectrometry (Karpievitch et al., 
2010) and Mass Spectrometry 
(Timp and Timp, 2020) 

HPA (Uhlen et 
al., 2010), 
PDB (Burley et 
al., 2019), 
Pfam (Finn et al., 
2010), UniProt 
(The UniProt 
Consortium, 
2019) 

(Aslam et al., 
2017) 

4 Metabolomics 
2001 (Lindon et 
al., 2011) 

Metabolite 
expression 

Mass Spectrometry (Glaves et 
al., 2014), Liquid 
Chromatography - Mass 
Spectrometry (Zhou et al., 
2012), Gas Chromatography - 
Mass Spectrometry (Fiehn, 
2016). 

HMDB (Wishart 
et al., 2018), 
KEGG 
(Kanehisa and 
Goto, 2000) 

(Zampieri et al., 
2017) 

5 Lipidomics 
2003 (Wang et 
al., 2016) 

Lipids 

Liquid Chromatography - Mass 
Spectrometry (Li et al., 2020), 
High-performance Liquid 
Chromatography - Mass 
Spectrometry (Knittelfelder et 
al., 2014) and Direct-
Infusion/Shotgun - Mass 
Spectrometry (Köfeler et al., 
2012). 

LMSD (Sud et 
al., 2007), 
LipiDAT (Caffrey 
and Hogan, 
1992), 
LipidBank 
(Watanabe et al., 
2000), 
LipidHome 
(Foster et al., 
2013), 
LipidPedia (Kuo 
and Tseng, 
2018), 

(Yang and Han, 
2016) 

6 Glycomics 
1990 (Vasta 
and Ahmed, 
2008) 

Glycomes 

Matrix-Assisted Laser 
Desorption/Ionization Time-of-
Flight - Mass Spectrometry (Y. 
Zhang et al., 2019). 

GlyTouCan 
(Tiemeyer et al., 
2017), UniCarb-
DB (Campbell et 
al., 2014) 

(Rojas-Macias et 
al., 2019) 

7 Metagenomics 
1998 
(Handelsman et 
al., 1998) 

Genetic data 
from 
environmental 
(soil, water) 
samples. 

Target Gene Sequencing, 
Shotgun Metagenome 
Sequencing, Metatranscriptome 
Sequencing (Zhou et al., 2015) 

MG-RAST 
(Meyer et al., 
2008), 
SRA (Kodama et 
al., 2012), 
MGnify (Mitchell 

(Pérez-Cobas et 
al., 2020) 
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et al., 2020) 

 

2.2 Machine learning 

Classical statistical modelling has always been the de facto standard choice for health data 
analysis and its interpretation. In recent years, with the increasing availability of affordable 
computing power and high-throughput omics data and the success of artificial intelligence 
technology in various fields, the use of ML has become popular in health sciences (Lee and 
Yoon, 2017; Clifton et al., 2015; Hung, 2019; Barnett-Itzhaki et al., 2020; Kirchebner et al., 
2020). ML can be used to mine information hidden in the experimental data. In contrast, a 
conventional statistics-based model is usually developed using the statistical assumptions 
and draws an inference about a population from a given dataset (Bzdok, 2017). 

The objective of ML methods is to acquire knowledge from historic or present-day data and 
utilise that understanding to make forecasts or choices for unidentified forthcoming data 
measures (Gammerman, 2010; Obermeyer and Emanuel, 2016). To assist beginners in the 
ML domain, a glossary of learning approaches covered in this review (Table 2), standard 
ML terminology (Table 3) and commonly used ML algorithms (Table 4) are provided. The 
basic foundations of ML and its uses have been extensively covered in literature (Bishop, 
2006). 

ML is employed in a wide range of scenarios, where designing and programming of explicit 
algorithms with optimal results is challenging, such as email filtering (Dada et al., 2019), 
hand-written optical character recognition (Memon et al., 2020), and computer vision 
(O‘Mahony et al., 2020). Also, it has been deployed for self-driving cars (Badue et al., 
2021), cyber-security (Handa et al., 2019), automated assistants such as ‗Siri‘, websites 
that recommend items based on the purchasing decisions of other people and novel 
solutions to some of the challenging problems of the real world (Watt et al., 2020). 

Deep learning has emerged in recent years as the leading class of ML algorithms. It uses 
neural networks composed of hidden layers performing different operations to find complex 
representations of data. It has pushed the performance of classifiers beyond that of 
traditional ML algorithms, especially in scenarios involving large-scale datasets with high 
dimensionality. On the other hand, it is very computationally intensive, requiring high-
throughput or high-performance hardware, and lacks explainability (transparency) in feature 
selection (black-box approach), in the sense that it is difficult to extract from the network the 
features that the network has found as mainly responsible for the task, e.g. classification 
(LeCun et al., 2015). However, in the context of multi-omic integration, deep learning offers 
an exciting opportunity. 

 

Table 2: The different ML learning approaches reviewed for multi-omics integration. 

Learning approach Goal Description 

Supervised Predict new data 

Supervised learning involves fitting a model with labelled training data and then 
use it for prediction. It can be classed either as a regression (predicted variable 
is numeric) or classification (predicted variable is categorical) problems (Jiang 
et al., 2020). The three steps in supervised learning are: (1) fitting a model from 
the sample input observations (2) evaluating the model and then extensively 
tuning the hyper-parameters of the model (3) setting up the model for the 
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production stage and using it for prediction (Foster et al., 2014).  

Unsupervised Identify clusters 

Unsupervised learning is used to find the underlying patterns in unlabelled data 
using input feature variables without the target/output variable (Badillo et al., 
2020). It can be used for clustering (Xu and Tian, 2015), anomaly detection 
(Thudumu et al., 2020) and dimensionality reduction (X. Xu et al., 2019). 

 

Table 3: The standard ML terminology and related terms. 

Term Definition 

Accuracy 
It is a ratio of correctly predicted outcomes of a given class to the total outcomes. Accuracy is a 
measure of the performance of an ML model. It ranges from 0% to 100%. 

Classification 
It is a supervised learning method which provides predicted output as a discrete class. Classification 
can be binary, multi-class or multi-label. 

Clustering 
It is an unsupervised learning method which can group data based on the attributes of the input 
features. 

Cross-Validation 
It is a technique which allocates a given set of samples from the dataset which are not used for model 
training but set aside for testing (to evaluate model performance). K-fold and Leave one out are 
commonly used cross-validation methods. 

Curse of dimensionality 
It refers to a set of problems which arise when using datasets with high dimensionality. In the context 
of ML, it can impact the predictive performance of an ML model (Duda et al., 2001). 

Dataset 
It is a collection of structured data which comprises of input feature variables and sometimes a 
corresponding target/output variable. 

Ensemble Learning  
It is a paradigm where different models are trained for solving the same problem and then combined to 
get better performance. Bagging, boosting and stacking are commonly used in ensemble learning 
methods. 

Explainability 
Supervised learning models can be classed as ‗white‘ or ‗black-box‘ based on their explanation (or lack 
thereof) of how a decision is reached. This is a growing and important domain of research in deep 
learning. 

Feature Selection 
It is a process for selecting the most discriminating features without impacting the classification 
performance. 

Hyper-parameter It is an empirically tuned internal parameter of an ML model. 

Imputation 
It is a process of replacing missing values in a dataset with a corresponding statistical estimate. 
Imputation can be done using mean, median values or employing methods such as KNN (Crookston 
and Finley, 2008) or MICE (Azur et al., 2011)  

Outlier 
It is an extremely low or high value of a feature in a dataset (based on the range and distribution). 
Performance of ML algorithms is sensitive to outliers, hence their detection and exclusion are crucial 
(Domingues et al., 2018). 

Performance Metric 
It is a method to evaluate and compare the performance of ML models. For example, precision, 
recall/sensitivity, specificity, F1 score, Kappa and mean absolute error. 

Regression It is a supervised learning method which provides predicted output as a continuous value. 

Training 
It is a first step in the learning process which uses training dataset to fit the parameters of a supervised 
ML model. 

Testing 
It is a second step in the learning process which uses testing dataset (independent of the training 
dataset) to assess the predictive performance of a trained supervised ML model. 

Bias-variance trade-off 
In order to achieve optimal prediction performance, a supervised model should ideally have low bias 
and low variance. A model is over or underfitted when trade-off is not achieved. 

 

Table 4: The commonly used ML algorithms and their attributes. The rank [1 – Low, 2 – 

Medium, 3 – High, 4 – Very High] denoted to attributes is pragmatically assigned based on 

available literature (Amancio et al., 2014; Barredo Arrieta et al., 2020; de Andrade et al., 

2020; Lorena et al., 2011; Rashidi et al., 2019; Sakr et al., 2017). 

Family Models 

C
o

m
p

a
ra

ti
v
e

 A
c

c
u

ra
c
y

 

O
v
e
rf

it
ti

n
g

 R
is

k
 

S
a
m

p
le

s
 n

e
e
d

e
d

 

E
x
p

la
in

a
b

il
it

y
 

H
y
p

e
r-

p
a
ra

m
e

te
r 

T
u

n
in

g
 

C
o

m
p

le
x

it
y

 

Im
p

le
m

e
n

ta
ti

o
n

 T
im

e
 

C
o

m
p

u
ta

ti
o

n
 C

o
s

t 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Probability-based (Bayesian) 
Bayesian Network 2 2 2 2 3 3 2 3 

Naive Bayes 2 2 2 2 2 3 2 3 

Information based (Tree) 

Decision Tree 2 3 2 3 2 2 1 2 

Random Forest 3 2 1 3 3 2 1 2 

Gradient Boosting 3 3 2 1 4 4 2 3 

Error based (Linear) 

Linear Regression 1 3 2 3 1 2 1 2 

Logistic Regression 1 3 2 3 1 2 1 2 

Partial Linear Regression 2 1 3 3 2 2 1 2 

Similarity-based (Instance) 
K nearest neighbour 2 3 2 2 2 3 1 1 

Self-Organising Maps 2 3 2 2 3 3 1 1 

Support Vectors 
Linear SVM 3 3 3 1 3 2 2 2 

Non-linear (Kernel) SVM 3 3 3 1 3 3 3 3 

Neural Network-based 
Artificial Neural Network 3 3 2 1 3 3 3 3 

Deep Learning (Neural Network) 4 1 4 1 4 4 4 4 

 

Figure 1 shows the number of publications indexed on the Web of Science website 
(Clarivate Analytics, 2020) with different key topics. This information was collected from the 
Web of Science by entering a different keyword and searching across all databases2. 
Although the use of ML in medical science can be dated back to 1970s (Davenport and 
Kalakota, 2019), more rapid growth is evident in the past 10 years. Moreover, publications 
based on ‗multi-omics integration‘ and ‗multi-omics and machine learning‘ have started to 
emerge in the last 5 years and have gained popularity in precision and computational 
medicine domain. Although deep learning is widely popular in other related domains (such 
as medical imaging (Erickson et al., 2017) and clinical natural language processing (Wu et 
al., 2020)), the interest has been more limited for multi-omics analysis (X. Tan et al., 2020). 
This is because multi-omics studies are challenging to deploy as they require specialised 
high-throughput omic infrastructure (as highlighted earlier in section 2). This fact is 
reinforced by the evidence that most of the current literature employs deep learning on 
large-scale multi-omics datasets from open sources such as TCGA3, CCLE4 and GDSC5 for 
cancer prognosis (Poirion et al., 2018; Seal et al., 2020; Tong et al., 2020; Lee et al., 2020; 
Zhu et al., 2020) and anti-cancer drug response (Sharifi-Noghabi et al., 2019; Li et al., 
2019; Deng et al., 2020). 

 

3 CHALLENGES IN MULTI-OMICS ANALYSIS USING MACHINE LEARNING 

The use of ML to analyse high-throughput generated multi-omic data poses key unique 
challenges. They can be summarised as follows. 

3.1 Heterogeneity, sparsity and outliers 

                                            
 

2
 All Web of Science databases included: Web of Science Core Collection, BIOSIS Citation Index, BIOSIS 

Previews, Current Contents Connect, Data Citation Index, Derwent Innovations Index, KCI-Korean Journal 
Database, MEDLINE

®
, Russian Science Citation Index, SciELO Citation Index and Zoological Record. 

3
 TCGA: The Cancer Genome Atlas 

4
 CCLE: Cancer Cell Line Encyclopaedia 

5
 GDSC: Genomics of Drug Sensitivity in Cancer 
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Multi-omic data from different high-throughput sources are usually heterogeneous 
(Bersanelli et al., 2016). For example, transcriptomics and proteomics use different 
normalisation and scaling techniques before omics analysis. This leads to different dynamic 
ranges and data distribution. Also, some omics are more prone to generating sparse data 
(e.g. in the case of metabolomics, some values might be below the limit of detection and 
hence assigned null value (Antonelli et al., 2019)) than others. Therefore, imputation (Liew 
et al., 2011) and outlier detection (Vivian et al., 2020) should be considered for each omic 
separately, before planning their integration. 

3.2 Class imbalance and overfitting 

In disease classification, certain disease classes are rarer than others which can cause a 
class imbalance in the multi-omics dataset (Haas et al., 2017). For example, primary 
hypertension is the most common form of hypertension with 95% prevalence while 
endocrine hypertension occurs in only 5% (Rimoldi et al., 2014). The ML model trained 
using an imbalanced dataset may be overfitted i.e. high accuracy for training data but 
underperformance for unseen test data. Therefore, to classify these two types of 
hypertension one of the following approaches can be used: 1) Collect more data if possible, 
or 2) consider using weighted or normalised metrics to measure the ML performance (such 
as F1-Score or Kappa (Jeni et al., 2013)), or 3) consider over or under-sampling the under 
or over-represented class respectively, or 4) consider synthetic sample generation (such as 
SMOTE (Chawla et al., 2002) or ADASYN (Haibo He et al., 2008)) for the under-
represented class. Similarly, techniques such as regularisation, bagging, hyperparameter 
tuning and cross-validation can used to balance bias-variance trade-off (Lee, 2010). Any of 
the above approaches can be used, depending on data and problem, to overcome the class 
imbalance and overfitting problems. 

3.3 More features than data (p >> n) 

Most multi-omics datasets suffer from the classical ‗curse of dimensionality’ problem, i.e. 
having much fewer observation samples (n) than multi-omics features (p) (Misra et al., 
2019). The resulting high-dimensional space often contains correlated features which are 
redundant and can mislead the algorithm training (James et al., 2017). The dimensional 
space of the data can be reduced by employing dimensionality reduction techniques such 
as feature extraction and feature selection. Feature extraction refers here to techniques 
computing a subset of representative features which summarise the original dataset and its 
dimensions6. These features are functions of the original ones, for instance, PCA (principal 
component analysis) (Jolliffe, 2002), LDA (linear discriminant analysis) (Martinez and Kak, 
2001) and MDS (multidimensional scaling) (Young and Hamer, 1987). On the other hand, 
feature selection finds a subset of the original features that maximise the accuracy of a 
predictive model (Guyon and Elisseeff, 2003). It can be based on a prior knowledge i.e. 
evident from known literature or based on a database such as a Biofilter (Bush et al., 2009). 
Formally, feature selection methods can be classed as filter (Information gain (Roobaert et 
al., 2006), ReliefF (Beretta and Santaniello, 2011), Chi-square statistics (Lee et al., 2011)), 
wrapper (Recursive feature elimination (Guyon et al., 2002), Sequential feature selection 
(Pudil et al., 1994)) and embedded (such as LASSO (Least Absolute Shrinkage and 

                                            
 

6
 We note that ―feature extraction‖ has a different meaning in image processing and computer vision. 
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Selection Operator) (Zou, 2006)) techniques. Xu et al.(X. Xu et al., 2019) and Stańczyk 
(Stańczyk and Jain, 2015) provide an excellent resource for understanding and exploring 
the use of different dimensionality reduction techniques in the generic ML domain. Meng 
(Meng et al., 2016b) offers a review of these methods from the perspective of multi-omics 
data analysis. 

3.4 Computation and storage cost 

The use of ML for multi-omics analysis comes with computational and data storage cost 
(Herrmann et al., 2020). Most ML algorithms require high computation power and large 
volumes of storage capacity to save the logs, results and analysis. In recent years, ML 
models can be deployed on dedicated graphics processing units (Schmidhuber, 2015) and 
cloud computing platforms (Armbrust et al., 2010) such as Amazon EC2 (―Amazon EC2,‖ 
n.d.), Microsoft Azure (―Cloud Computing Services | Microsoft Azure,‖ n.d.) and Google 
Cloud Platform (―Cloud Computing Services,‖ n.d.). The related costs should be considered 
well in advance before planning an ML-based multi-omics workflow. 

3.5 What algorithm works best for what conditions? 

The commonly used ML algorithms have different attributes (Table 4) and therefore it is 
crucial to choose an appropriate algorithm for the multi-omics analysis. In the literature, 
many reviews cover the key strengths and weaknesses of different ML algorithms using 
single omics (Amancio et al., 2014; López Pineda et al., 2015; Sakr et al., 2017; Uddin et 
al., 2019) and multi-omics (Ma et al., 2016; Francescatto et al., 2018; J. Xu et al., 2019; 
Sathyanarayanan et al., 2020) datasets. Most of them use a systematic workflow which 
involves simultaneous performance evaluation of different algorithms using a common 
dataset. Since each multi-omics dataset is unique, using a similar workflow could allow the 
selection of the best-suited algorithm. Later, in Section 6 a recommendation flowchart is 
proposed which can help the inter-disciplinary user to choose from available methods. 

Recently, various artificial intelligence-driven automated ML platforms and tools (Feurer et 
al., 2015; Olson et al., 2018; Waring et al., 2020) have also emerged which can be utilised 
to exhaustively search for best ML model and corresponding parameter tuning, however, 
they are computationally expensive. 

3.6 Translating ML: bench to bedside 

Various ML based multi-omics publications have emerged in the past 5 years (see Figure 1) 
and some use performance metrics such as decision curve (Vickers and Elkin, 2006) and 
calibration (Dankers et al., 2019) analytics to evaluate their diagnostic utility. Still, only very 
few have been translated into clinical practice, for example, Idx (diabetic retinopathy 
detection), FerriSmart (measure liver iron concentration) and SubtleMR (image processing 
software for radiology) (Benjamens et al., 2020; Hamamoto et al., 2020). 

One of the key issue which hinders the clinical deployment of ML methods is transparency 
and explainability (Black box medicine and transparency, 2020). A transparent and 
explainable ML algorithm seems essential to build trust for clinical decision making 
(Gunning et al., 2019). Recently, the U.S. Food and Drug Administration (FDA) have issued 
the ―Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device 
Action Plan‖ to ensure deployment of ML based products is safe for patients to better assist 
the health care providers (Health, 2021). A recent in-depth analysis by Muehlematter 
showed most of the FDA approved and ―Conformité Européenne” marked ML products are 
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in the field of radiology. It also highlighted the key differences between U.S. and European 
policy implications around the approval of AI/ML-based devices (Muehlematter et al., 2021). 

All the above challenges directly impact the use of ML for multi-omics analysis. However, 
there are few other challenges related to multi-omics studies which are not ML related such 
as study design (Haas et al., 2017), multi-site sample collection & management (Pinu et al., 
2019), multi-site data sharing and governance (Saulnier et al., 2019), visualisation (Mougin 
et al., 2018), ethical standards (Lévesque et al., 2018), and finally making the research 
reproducible (Conesa and Beck, 2019) and translational (Schumacher et al., 2014). A 
broader checklist of criteria is investigated by McShane while focussing on various aspects 
ranging from specimen requirements, predictive model development to clinical trial 
designing and related regulatory approvals (McShane et al., 2013b, 2013a). 

4 DATA INTEGRATION METHODS FOR MULTI-OMICS 

In recent years, various new data integration methods have been introduced from the 
modern developments in mathematical, statistical and computational sciences. For the 
benefit of the readers, Table 5 includes a summary of a few reviews which cover the 
breadth of multi-omics integration for generic as well as specialised domains such as 
oncology (Buescher and Driggers, 2016; Nicora et al., 2020) and toxicology (Canzler et al., 
2020). Most of these reviews have strived to introduce different categorical terminologies 
(for example: ‗‘early‘, ‗late‘ and ‗intermediate‘ in (Gligorijević and Pržulj, 2015) or ‗bottom-up‘ 
and ‗top-down‘ in (Yu and Zeng, 2018)) which enable them to group the integration 
methods based on different factors/parameters. 

 

Table 5: Summary table of few reviews in multi-omics integration 

Year 
of 

review 
Review Reference 

Terminology introduced for 
classifying various 

integration methods 

Omics reviewed 

Application 
domain 
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2009 
(Van Deun et al., 
2009) 

matrix decomposition   ✓       
Micro-organism 

(Escherichia 
coli) 

2009 
(Ebbels and Cavill, 
2009) 

‗conceptual‘, ‗statistical‘ & 
‗model‘ 

  ✓ ✓      Generic 

2012 
(Lussier and Li, 
2012) 

‗cross-scale‘ & ‗multi-scale‘ ✓ ✓        
Prediction of 

clinical 
outcomes. 

2015 
(Ritchie et al., 
2015) 

‗concatenation‘, ‗transformation‘ 
& ‗model‘ 

✓ ✓        Generic 

2015 
(Gligorijević and 
Pržulj, 2015) 

‗early‘, ‗late‘ & ‗intermediate‘ ✓ ✓        Generic 

2016 
(Bersanelli et al., 
2016) 

‗sequential‘, ‗simultaneous‘, 
‗network-based versus network-
free‘ & ‗Bayesian vs non-
Bayesian‘ 

✓ ✓  ✓      Generic 

2016 
(Gligorijević et al., 
2016) 

- ✓ ✓   ✓     

Disease 
subtyping, 
biomarkers 

discovery & drug 
repurposing. 

2016 
(Buescher and 
Driggers, 2016) 

- ✓ ✓ ✓ ✓      Cancer biology 
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2017 
(Lin and Lane, 
2017) 

- ✓ ✓ ✓ ✓      

Investigated 
(Ritchie et al., 
2015) from ML 

perspective 

2017 
(S. Huang et al., 
2017) 

- ✓ ✓  ✓      
Patient survival 

prediction 

2017 (Hasin et al., 2017) 
‗genome‘, ‗phenotype‘ & 
‗environment-‘ first approach 

✓ ✓ ✓ ✓ ✓     Generic 

2018 
(Yu and Zeng, 
2018) 

‗bottom-up‘ & ‗top-down‘ mode ✓ ✓ ✓ ✓      Generic 

2018 
(Kim and 
Tagkopoulos, 
2018) 

‗data-to-data‘, ‗data-to-
knowledge‘ & ‗knowledge-to-
knowledge‘ 

✓ ✓ ✓ ✓ ✓ ✓    Generic 

2018 
(Rappoport and 
Shamir, 2018) 

- ✓ ✓  ✓      
Cancer 

benchmarking 

2019 (Tini et al., 2019) -  ✓ ✓ ✓ ✓     

Multiple 
(Mitochondrial 
metabolism, 

Platelet reactivity 
& Breast cancer) 

2019 (Mirza et al., 2019) - ✓ ✓ ✓ ✓ ✓     
Generic (more 

focussed on ML) 

2019 
(López de 
Maturana et al., 
2019) 

OnO (omics & non-omics) ✓ ✓ ✓ ✓ ✓  ✓   Generic 

2019 (Wu et al., 2019) 
‗vertical‘, ‗horizontal‘, ‗parallel‘ & 
‗hierarchical‘ 

✓ ✓ ✓ ✓      Generic 

2020 
(Canzler et al., 
2020) 

- ✓ ✓ ✓ ✓ ✓    ✓ 
Toxicological 

research 

2020 
(Eicher et al., 
2020) 

- ✓ ✓ ✓ ✓      
Generic (more 

focussed on ML) 

2020 
(Nicora et al., 
2020) 

- ✓ ✓ ✓ ✓      Oncology 

2020 (Jamil et al., 2020) 
‗element‘, ‗pathway‘ and 
‗mathematical‘ based approach 

 ✓ ✓ ✓      
Plant systems 

biology. 

2020 
(Nguyen and 
Wang, 2020) 

‗single-view‘ & ‗multi-view‘ ✓ ✓ ✓ ✓   ✓ ✓  Generic 

 

As mentioned earlier, this section adopts the categorical terminologies from Ritchie (Ritchie 
et al., 2015) and builds upon it to summarise a complete spectrum of recent integration 
methods. It concisely covers them giving a clear perspective to a new interdisciplinary user. 
The various integration methods are classed as either ‗concatenation-‘, ‗model-‘ or 
‗transformation‘-based and described below in detail. 

4.1 Concatenation-based integration methods 

Concatenation-based integration methods consider developing a model using a joint data 
matrix which is formed by combining multiple omics datasets. Figure 2 shows the stages of 
concatenation-based integration. Stage 1 includes the raw data from three individual omics 
(e.g. genomics, proteomics, and metabolomics) along with the corresponding phenotypic 
information. Commonly, concatenation-based integration does not require any pre-
processing and hence does not have a Stage 2. In Stage 3, the data from the individual 
omics is concatenated to form a single large matrix of multi-omics data. Finally, in Stage 4 
the joint matrix is used for supervised or unsupervised analysis. The main advantage of 
using concatenation-based methods is the simplicity of employing ML for analysing 
continuous or categorical data, once the concatenation of all individual omics is completed. 
These methods use all the concatenated features equally and can select the most 
discriminating features for a given phenotype. 

The different concatenation-based integration methods can be further classed as: 

4.1.1 Supervised learning concatenation-based methods 
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Different concatenation-based supervised learning methods have been used for phenotypic 
prediction. In scenarios where the number of features in the joint matrix are higher, different 
feature selection methods described in Section 3 can be employed during concatenation 
(Sorzano et al., 2014). 

The concatenated multi-omics data (in the form of a joint matrix) is provided as input to 
different classical ML methods such as DT (decision tree) (Quinlan, 1993), NB (naive 
Bayes) (Domingos and Pazzani, 1997), ANN (artificial neural networks) (Bishop, 1995), 
SVM (support vector machine) (Vapnik, 1995), KNN (k-nearest neighbors) (Altman, 1992), 
RF (random forest) (Breiman, 2001) and K-Star (Cleary and Trigg, 1995) in the literature 
(Kim and Tagkopoulos, 2018; Lin and Lane, 2017; Auslander et al., 2016; Acharjee et al., 
2016; Zhang et al., 2018; Ding et al., 2018; Wang et al., 2020). For example, a joint matrix 
of multi-omics features (which included gene expression, copy number variation and 
mutation) was used with classical RF and SVM to predict anti-cancer drug response 
(Stetson et al., 2014). 

Similarly, multivariate LASSO models (Zou, 2006; Nicolai and Bühlmann Peter, 2010; 
Mankoo et al., 2011) have been investigated. Also, Boosted trees (Elith et al., 2008) and 
SVR (support vector regression) (Awad and Khanna, 2015) have been investigated for 
finding the longitudinal predictors of glycaemic health (L et al., 2018). 

Other than classical ML algorithms, deep neural networks (Tang et al., 2019) have also 
been widely used to analyse concatenated multi-omics data. They have been studied to 
identify robust survival subgroups of liver cancer using RNA, miRNA and methylation data 
(Chaudhary et al., 2017). 

4.1.2 Unsupervised learning concatenation-based methods 

Various concatenation-based unsupervised methods have been used for clustering and 
association analysis. Different matrix factorisation-based methods have evolved in recent 
years. Joint NMF (non-negative matrix factorisation) (Zhang et al., 2012) was proposed to 
integrate multi-omics data with non-negative values. It involved decomposing the joint 
matrix into loadings and factors, bringing the different omics into a common basis matrix. 
Joint NMF is computationally slow and needs large memory allocation. 

Similarly, Shen (Shen et al., 2009) proposed iCluster framework which used principles 
similar to NMF but allows integration of datasets having negative values. They showed the 
functioning of the framework by using copy number, mRNA expression and methylation 
data to conduct a cancer subtype discovery in glioblastoma. This framework was also 
employed for a landmark study which used genomic and transcriptomic data from 2,000 
breast tumours and discovered novel subgroups amongst them (Curtis et al., 2012). 

Later, the iCluster+ framework by Mo (Mo et al., 2013), offered a significant enhancement 
over iCluster framework. The iCluster+ framework can discover patterns and combine a 
range of omics having binary, categorical and continuous values and was demonstrated by 
combining genomic data from the colorectal cancer datasets. 

Another adaptation of NMF was evaluated as JIVE (Joint and Individual Variation 
Explained) which captures joint variation across integrating data types and structural 
variation of each data type along with the residual noise (Lock et al., 2013). It was used to 
investigate gene expression and miRNA data on brain tumour samples. The sparsity 
problem in JIVE was improved by JBF (Joint Bayes Factor) (Ray et al., 2014). JBF used 
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joint factor analysis to evaluate the feature space and converted it into shared and 
datatype-specific components. 

The MoCluster proposed by Meng (Meng et al., 2016a), used multi-block multivariate 
analysis for highlighting the patterns across different input omics data and then finds the 
joint clusters amongst them. MoCluster was validated by integrating proteomic and 
transcriptomic data and shows a noticeably higher clustering accuracy and lower 
computation cost in comparison to both Cluster and iCluster+. 

Fridley (Fridley et al., 2012) has studied the genomic effects due to the gemcitabine drug 
using high-throughput data from mRNA expression and SNPs. They integrated these two 
datasets into one large input matrix and developed a Bayesian pathway analysis which 
uses a stochastic search variable selection. Their proposed that the Bayesian integrative 
model offers better performance in detecting the genomic effects in comparison to using 
conventional single-omics analysis. Similarly, Zhu (Zhu et al., 2012) has also explored BN 
(Bayesian network) to understand cell regulation in yeast using metabolomics and 
transcriptomics data. 

Also, LRAcluster (Wu et al., 2015) was developed to integrate high-dimensional multi-omics 
data and find low-dimensional manifold to identify molecular subtypes of cancer. 

Recently, iClusterBayes was introduced by Mo (Mo et al., 2018), which is a fully Bayesian 
latent variable model. It overcomes the limitations of iCluster+, in terms of statistical 
inference and computational speed. iClusterBayes includes a binary indicator prior for 
selection of variable and generalises for binary data and count data. Also, Argelaguet 

(Argelaguet et al., 2018) have developed MOFA (Multi‐Omics Factor Analysis) which 
disentangles the heterogeneity shared across different omics to discover the principal 
source of variability. It can integrate partially overlapping datasets. 

 

4.2 Model-based integration methods 

Model-based integration methods create multiple intermediate models for the different 
omics data and then build a final model from various intermediate models (Figure 2). Stage 
1 sets up the raw data from the three individual omics along with the corresponding 
phenotypic information. In Stage 2, individual models are developed for each of the omics 
which are later integrated into a joint model in Stage 3. Finally, in Stage 4 the joint model is 
analysed. The major advantage of model-based integration methods is that they can be 
used for merging models based on different omic types, where each model is developed 
from a different patient group having the same disease information (He et al., 2016; Ritchie 
et al., 2015). 

Model-based integration approaches facilitate the understanding of interactions amongst 
different omics for a certain phenotype (for example, survival in pancreatic cancer). The 
final multi-dimensional joint model in Stage 4 can be built using an ML algorithm (such as 
neural networks) which uses the most relevant variables from each omics models (from 
Stage 3). This approach allows the analysis of the improvement in the predictive power for 
individual models and also finds the best discriminating features. 

The different model-based integration methods can be further classed as follows. 

4.2.1 Supervised learning model-based methods 
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Model-based supervised learning methods include a variety of frameworks for developing a 
model, such as majority-based voting (Drăghici and Potter, 2003), hierarchical classifiers 
(Bavafaye Haghighi et al., 2019) and ensemble-based approaches (such as XGBoost (B. 
Ma et al., 2020) and KNN (Shen and Chou, 2006)). 

Deep learning methods have also been adopted for model-based supervised learning 
(Poirion et al., 2020). MOLI (multi-omics late integration) (Sharifi-Noghabi et al., 2019) 
method used type-specific encoding sub-networks to learn features from somatic mutation, 
CNA and gene expression data independently and then later concatenated them for 
predicting the response to a given drug. Lee (Lee et al., 2020) has proposed a deep 
learning-based auto-encoding approach for integrating four omics to create a survival 
prediction model. Also, HI-DFNForest (hierarchical integration deep flexible neural forest) 
framework (J. Xu et al., 2019) was developed which uses stacked auto-encoder (Vincent et 
al., 2010) to learn high-level representations from three omic datasets. Later, these 
representations are integrated to predict cancer subtype classification. Similarly, Chaudhary 
(Chaudhary et al., 2017) has used autoencoders along with SVM for survival prediction in 
subgroups of hepatocellular carcinoma. 

In the past years, ATHENA (Analysis Tool for Heritable and Environmental Network 
Associations) was developed for analysing multi-omics data (Chung and Kang, 2019; 
Holzinger et al., 2014). It uses grammatical evolution neural networks along with Biofilter 
(Bush et al., 2009) and Random Jungle (Schwarz et al., 2010) to investigate different 
categorical and quantitative variables and develop prediction models. 

Recently, MOSAE (Multi-omics Supervised Autoencoder) (K. Tan et al., 2020) was 
developed for pan-cancer analysis and compared with conventional ML methods such as 
SVM, DT, naïve Bayes, KNN, RF and AdaBoost. Similarly, Denoising autoencoder has 
been incorporated along with L1-penalized logistic regression for identifying ovarian cancer 
subtypes (Guo et al., 2020). 

4.2.2 Unsupervised learning model-based methods 

Various model-based unsupervised learning methods have been implemented in the past. 
PSDF (Patient-Specific Data Fusion) (Yuan et al., 2011) is a non-parametric Bayesian 
model for clustering prognostic cancer subtypes by combining gene expression and copy 
number variation data. It uses a two-step process and limits the integration to only two 
datatypes. Similarly, CONEXIC (Akavia et al., 2010) also uses a BN to integrate gene 
expression and copy number variation from tumour samples to identify driver mutations. On 
the other hand, clustering methods such as FCA (Formal Concept Analysis) consensus 
clustering (Hristoskova et al., 2014), MDI (Multiple Dataset Integration) (Kirk et al., 2012), 
PINS (Perturbation clustering for data integration and disease subtyping) (Nguyen et al., 
2017), PINS+ (Nguyen et al., 2019) and BCC (Bayesian consensus clustering) (Lock and 
Dunson, 2013) are more flexible and allow late-stage integration of clusters. 

Different network-based methods are also available for association analysis. Lemon-Tree 
(Bonnet et al., 2015) implemented ensemble methods for reconstructing module networks 
which used somatic copy number alterations and gene expression in brain tumour samples. 
Furthermore, SNF (Similarity Network Fusion) (Wang et al., 2014) constructs networks of 
samples for respective data type and then effectively fuse them into a joint network which 
denotes the complete range of original data. It combines mRNA expression, DNA 
methylation and microRNA (miRNA) expression data from cancer datasets. 
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4.3 Transformation-based integration methods 

Transformation-based integration methods transform each of the omics datasets firstly into 
graphs or kernel matrices and then combines all of them into one before constructing a 
model. 

Figure 2 shows the various stages of transformation-based integration. Stage 1 sets up the 
raw data from the three individual omics along with the corresponding phenotypic 
information. In Stage 2, the individual transformations (in the form of graph or kernel 
relationship) are developed for each of the omics which are later integrated into a joint 
transformation in Stage 3. Finally, in Stage 4 it is analysed. The primary advantage of the 
transformation-based integration methods is that they can be used to combine a wide range 
of omics if unique information (such as patient ID) is available. 

Graphs provide a formal means to transform and portray relationships between different 
omics samples where the nodes and edges of a graph represent the subjects and their 
relationships, respectively. Similarly, Kernel methods enable the transformation of data from 
its original space into a higher dimensional feature space. These methods then explore 
linear decision functions in the feature space which were non-linear in the original space. 

The transformation-based integrative methods can be classed as follows. 

4.3.1 Supervised learning transformation-based methods 

In the past, various transformation-based supervised learning methods have been 
presented. Most of them are kernel and graph-based algorithms (Yan et al., 2017). The 
kernel-based integration approaches include SDP-SVM (Semi-Definite Programming SVM) 
(Lanckriet et al., 2004), FSMKL (Multiple Kernel Learning with Feature Selection) (Seoane 
et al., 2014), RVM (Relevance Vector Machine) (Bowd et al., 2005; Tipping, 2001) and Ada-
boost RVM (Wu et al., 2010). Moreover, fMKL-DR (fast multiple kernel learning for 
dimensionality reduction) (Giang et al., 2020) has been used along with SVM for combining 
gene expression, miRNA expression, and DNA methylation data. Similarly, the graph-based 
integration approaches consist of graph-based SSL (semi-supervised learning7) (Tsuda et 
al., 2005; Culp and Michailidis, 2008; Kim et al., 2015; Yue et al., 2017; Bhardwaj and Van 
Steen, 2020), graph sharpening (Shin et al., 2010, 2007), composite network (Mostafavi 
and Morris, 2010) and BN (Rhodes et al., 2005). 

Overall, it is evident from the literature that kernel-based algorithms have superior 
performance to graph-based approaches, but they usually need more time for the training 
phase. In contrast, graph-based approaches can disclose the relations between samples 
while taking less computation time. Yan (Yan et al., 2017) provide an extensive comparison 
between different graph- and kernel-based integration approaches in a supervised learning 
context using various standardised test datasets. It highlights the better classification 
performance of RVM, Ada-boost RVM and SDP-SVM in comparison to SSL, graph 
sharpening, composite network and BN. 

                                            
 

7
 For the sake of simplicity, the semi-supervised integration methods (graph-based) are grouped under 

supervised learning. 
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Recently, MORONET (Multi-Omics gRaph cOnvolutional NETworks) (Wang et al., 2020) is 
introduced, which use graph convolutional networks taking benefit of the omics features 
and the associations among patients (as defined by the patient similarity networks) for 
better classification results. 

4.3.2 Unsupervised learning transformation-based methods 

Different transformation-based unsupervised methods have been introduced. Some of them 
are kernel- and graph-based methods. Lately, rMKL-LPP (regularised multiple kernel 
learning for Locality Preserving Projections) (Speicher and Pfeifer, 2015) was implemented 
for clustering analysis. It used an individual kernel for each omics along with graph 
embedding framework to identify biologically meaningful subgroups for five different cancer 
types. Similarly, PAMOGK (Tepeli et al., 2019) is developed for integrating multi-omics data 
with pathways using graph kernel, SmSPK (smoothed shortest path graph kernel). It used 
somatic mutations, transcriptomics and proteomics data to find subgroups of kidney cancer. 

Meta-SVM (Meta-analytic SVM) is proposed by Kim (Kim et al., 2017), which integrates 
multiple omics data and able to detect consensus genes associated with diseases across 
studies such as breast cancer and idiopathic pulmonary fibrosis. Recently, NEMO 
(NEighborhood based Multi-Omics clustering) (Rappoport and Shamir, 2019) is introduced 
which uses an inter-patient similarity matrix–based distance metric for evaluating the input 
omic datasets individually. These omics matrices are then combined into one matrix and 
then analysed using spectral-based clustering. It can work on partial data sets (no 
imputation needed), where measurements are only available for a subset of omics data. 

Table 6 highlights the advantages and disadvantages of various integration methods. Table 
7 summarises various multi-omics integration methods based on learning type. 

 

Table 6: The advantages and disadvantages of using different integrative methods. 

Integrative Method Advantages Disadvantages 

Concatenation- 
Based 

 Easy and straightforward. 

 Enables the use of classical supervised 
and unsupervised methods. 

 Ideally, requires all omics data for all patients. 

 Need proper normalisation before 
concatenation. 

 Does not consider the unique distribution of 
each omics. 

 Memory and computation-intensive when the 
concatenated matrix is large. 

Model- 
Based 

 Facilitates the understanding of 
interactions amongst different omics. 

 Omics data can be from a different set of 
patients with a similar phenotype. 

 Does not increase dimensional 
complexity. 

 Not effective if omics data is extremely 
heterogeneous. 

 Could lead to an overfitted solution 

 Weak signals could be lost. 

Transformation-
Based 

 Graph representation easy to 
understand and computationally less 
intensive. 

 Kernel methods provide superior 
performance. 

 Multi-omics data for the same patient 
can be used for their disease subgroup 
analysis. 

 Kernel methods are computationally more 
intensive than graph methods. 

 Transformation can be sometimes 
challenging. 
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Table 7: The summary of multi-omics integration methods based on learning type. For 
abbreviations please refer to List of Abbreviations. 

  Multi-omics Integration Methods 

  Concatenation-based Model-based Transformation-based 

L
e
a
rn

in
g

 T
y
p

e
 S

u
p

e
rv

is
e
d

 

 Classical ML 
(DT (Quinlan, 1993), NB (Domingos 
and Pazzani, 1997), ANN (Bishop, 
1995), SVM (Vapnik, 1995), KNN 
(Altman, 1992), K-Star (Cleary and 
Trigg, 1995) 

 LASSO (Zou, 2006; Nicolai and 
Bühlmann Peter, 2010; Mankoo et 
al., 2011) 

 BT (Elith et al., 2008) 

 SVR (Awad and Khanna, 2015) 

 DNN (Tang et al., 2019) 
 

 Majority-based voting 
(Drăghici and Potter, 2003) 

 Hierarchical Classifiers 
(Bavafaye Haghighi et al., 
2019) 

 Ensemble-based classifiers 
(XGBoost (B. Ma et al., 2020) 
and KNN (Shen and Chou, 
2006)) 

 MOLI (Sharifi-Noghabi et al., 
2019) 

 HI-DFNForest (J. Xu et al., 
2019) 

 ATHENA (Chung and Kang, 
2019; Holzinger et al., 2014) 
 

 SDP-SVM (Lanckriet et al., 2004) 

 FSMKL (Seoane et al., 2014) 

 RVM (Bowd et al., 2005; Tipping, 
2001) 

 Ada-boost RVM (Wu et al., 2010) 

 fMKL-DR (Giang et al., 2020) 

 SSL (Tsuda et al., 2005; Culp and 
Michailidis, 2008; Kim et al., 2015; 
Yue et al., 2017; Bhardwaj and Van 
Steen, 2020), 

 Graph sharpening (Shin et al., 2010, 
2007) 

 Composite network (Mostafavi and 
Morris, 2010) 

 BN (Rhodes et al., 2005) 

 MORONET (Wang et al., 2020) 

U
n

s
u

p
e
rv

is
e
d

  Joint NMF (Zhang et al., 2012) 

 iCluster (Shen et al., 2009) 

 iCluster+ (Mo et al., 2013) 

 JIVE (Lock et al., 2013) 

 JBF (Ray et al., 2014) 

 BN (Fridley et al., 2012; Zhu et al., 
2012) 

 MoCluster (Meng et al., 2016a) 

 iClusterBayes (Mo et al., 2018) 

 MOFA (Argelaguet et al., 2018) 

 PSDF (Yuan et al., 2011) 

 FCA consensus clustering 
(Hristoskova et al., 2014) 

 MDI (Kirk et al., 2012) 

 BCC (Lock and Dunson, 
2013) 

 Lemon-Tree (Bonnet et al., 
2015) 

 SNF (Wang et al., 2014) 
 

 rMKL-LPP (Speicher and Pfeifer, 
2015) 

 PAMOGK (Tepeli et al., 2019) 

 Meta-SVM (Kim et al., 2017) 

 NEMO (Rappoport and Shamir, 
2019) 

 

5 APPLICATION OF INTEGRATIVE METHODS IN MULTI-OMICS STUDIES 

The availability of high-throughput omics provides a unique opportunity to explore the 
complex relationships between different omics and phenotypic targets instead of mono-
omics evaluation. This section describes various multi-omics studies which deployed 
methods investigated in the previous section. Table 8 summarises different phenotypic 
target-based, multi-omics studies published and tabulates them across the span of 7 main 
omics namely, genomics, transcriptomics, metabolomics, proteomics, glycomics, lipidomics 
and epigenomics. Genomics is further divided into gene expression, DNA methylation, 
somatic point mutation and copy number alteration. Similarly, transcriptomics is further 
classed into lncRNAs (long non-coding RNAs) and microRNAs (mRNA and miRNA). The 
various multi-omics studies are broadly grouped based on the target and the corresponding 
ML method used. 

It is evident from Table 8 that most of the multi-omics studies focus on different forms of 
cancer. In particular, the presence of many multi-omics studies related to breast (Chen et 
al., 2017; Lee et al., 2017; List et al., 2014; Ma et al., 2016; Nam et al., 2009) and ovarian 
(Anděl et al., 2015; Mankoo et al., 2011; Paik et al., 2017; Zhang et al., 2014) cancer 
highlights the research thrust by the scientific community in these domains. 

Many intra-omics studies have successfully explored the integration of gene expression and 
DNA methylation. LASSO methods have been used for this particular integration by 
Taskesen (Taskesen et al., 2015) and Lee (Lee et al., 2017) for acute myeloid leukaemia 
and breast cancer respectively. LASSO has also been employed for cancer prognosis 
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(Zhao et al., 2015). Similarly, mRNA – miRNA integration was investigated using Neural 
Fuzzy Network for colorectal cancer (Vineetha et al., 2013), SVM for pancreatic cancer 
(Kwon et al., 2015), and RF for cardiac tissue ageing (Dimitrakopoulos et al., 2014) and 
ovarian cancer (Anděl et al., 2015) respectively. SVM has also been used for oral 
squamous cell carcinoma study by integrating different transcriptomics namely mRNA, 
miRNA and IncRNA (Li et al., 2017). 

Metabolomics and proteomics have been integrated using RF for analysis of prostate 
cancer (Fan et al., 2011) and thyroid functioning (Pietzner et al., 2017). Similarly, 
metabolomics is integrated with mRNA for studying ulcerative colitis (Bjerrum et al., 2014) 
and cancer survival (Kim et al., 2014). On the other hand, glycomics and epigenomics have 
only appeared once in the multi-omics context (along with mRNA and metabolomics) and 
used by Zierer (Zierer et al., 2016) for the study of age-related comorbidities using a 
graphical variant of RF. 

Recently, metabolomics and proteomics have also been integrated with lipidomics to 
evaluate COVID-19 patients using PLS-DA (Partial Least Squares Discriminant Analysis) 
and Extra Trees (Overmyer et al., 2020; Thomas et al., 2020). 

Multi-omics studies have also been successfully conducted in plants (potato (Acharjee et 
al., 2016, 2011)) and animals (such as canine heart disease (Li et al., 2015)). 

 

Table 8: Multi-omics studies using different ML methods. For abbreviations please refer to 
List of Abbreviations. 

 Genomics Transcriptomic
s 

        

OMICS  
 

Target 
 

G
e

n
e

 e
x
p

re
s
s
io

n
 

D
N

A
 m

e
th

y
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ti
o

n
 

S
o

m
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ti
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 p

o
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t 
m

u
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ti
o

n
 

C
o
p

y
 n

u
m

b
e

r 
a
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e

ra
ti
o

n
 

m
R

N
A

 

m
iR

N
A

 

In
c
R

N
A

 

M
e

ta
b

o
lo

m
ic

s
 

P
ro

te
o

m
ic

s
 

G
ly

c
o

m
ic

s
 

L
ip

id
o

m
ic

s
 

E
p

ig
e

n
o

m
ic

s
 

M
e

th
o

d
 U

s
e

d
 

M
e

th
o

d
 T

y
p

e
 

R
e
fe

re
n

c
e
 

Humans 

Age-related     ✓   ✓  ✓  ✓ Graphical RF CU 
(Zierer et al., 

2016) 

Acute myeloid 
leukaemia 

✓ ✓           LASSO CS 
(Taskesen et 

al., 2015) 

Anti-cancer 
therapeutic 

response 
✓   ✓         RF & SVM CS 

(Stetson et al., 
2014) 

Biomedical 
data 

classification 
 ✓   ✓ ✓       MORONET TS 

(Wang et al., 
2020) 

Brain cancer 

✓ ✓ ✓ ✓  ✓       LASSO CS (Lu et al., 2016) 

✓     ✓       JIVE CU 
(Lock et al., 

2013) 

✓  ✓ ✓ ✓        
iClusterBaye

s 
CU (Mo et al., 2018) 

✓   ✓         Lemon-Tree 
M
U 

(Bonnet et al., 
2015) 

 ✓   ✓ ✓       SNF M (Wang et al., 
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U 2014) 

Breast cancer 

✓ ✓           RF CS 
(List et al., 

2014) 

✓ ✓           LASSO CS 
(Lee et al., 

2017) 

✓       ✓     RF & SVM CS 
(Nam et al., 

2009) 

✓ ✓  ✓         LASSO CS 
(Chen et al., 

2017) 

✓       ✓     SVM CS 
(Auslander et 

al., 2016) 

✓   ✓         iCluster CU 
(Shen et al., 

2009) 

✓   ✓     ✓    

SVM, RF, 
SVM & Multi-

Kernel 
Learning 

CS 
& 

TS 
(Ma et al., 2016) 

✓   ✓         iCluster CU 
(Curtis et al., 

2012) 

 ✓   ✓ ✓   ✓    BCC 
M
U 

(Lock and 
Dunson, 2013) 

✓   ✓         FSMKL TS 
(Seoane et al., 

2014) 

 ✓  ✓ ✓        Meta-SVM TU 
(Kim et al., 

2017) 

Cancer 
survival 

    ✓   ✓     SVM & RF CS 
(Kim et al., 

2014) 

Cancer 
prognosis 

✓ ✓  ✓  ✓       LASSO CS 
(Zhao et al., 

2015) 

✓   ✓         PSDF 
M
U 

(Yuan et al., 
2011) 

✓   ✓         CONEXIC 
M
U 

(Akavia et al., 
2010) 

Cancer drug 
response 

✓  ✓ ✓         MOLI (DL) MS 
(Sharifi-Noghabi 

et al., 2019) 

Cardiac tissue 
ageing 

    ✓ ✓       RF CS 
(Dimitrakopoulo
s et al., 2014) 

Colorectal 
cancer     ✓ ✓       

Neural Fuzzy 
Network 

CU 
(Vineetha et al., 

2013) 

COVID-19 
analysis 

       ✓ ✓  ✓  PLS-DA CS 
(Thomas et al., 

2020) 

       ✓ ✓  ✓  Extra Trees CS 
(Overmyer et 

al., 2020) 

Chronic 
lymphocytic 

leukaemia 
 ✓ ✓  ✓        MOFA CU 

(Argelaguet et 
al., 2018) 

Gastric cancer ✓     ✓       SVM & RF CS 
(Yan et al., 

2012) 

Kidney cancer 
 ✓ ✓ ✓ ✓ ✓       

iClusterBaye
s 

CU (Mo et al., 2018) 

✓  ✓      ✓    PAMOGK TU 
(Tepeli et al., 

2019) 

Liver cancer  ✓   ✓ ✓       
Auto-

encoder, 
SVM 

MS 
(Chaudhary et 

al., 2017) 

Lung cancer 
✓   ✓         iCluster CU 

(Shen et al., 
2009) 

 ✓  ✓ ✓ ✓       Auto-encoder MS 
(Lee et al., 

2020) 

Neuroblastom
a 

✓   ✓         
Auto-

encoders, 
SVM & NB 

CS 
(Zhang et al., 

2018) 

Ovarian 
cancer 

    ✓ ✓       RF CS 
(Anděl et al., 

2015) 

 ✓   ✓        RF CS 
(Paik et al., 

2017) 

✓ ✓  ✓  ✓       LASSO CS 
(Mankoo et al., 

2011) 

✓ ✓    ✓       Joint NMF CU 
(Zhang et al., 

2012) 

✓ ✓  ✓         JBF CU 
(Ray et al., 

2014) 

✓ ✓ ✓ ✓         BN TS (Zhang et al., 
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2014) 

✓ ✓  ✓  ✓       Graph SSL TS 
(Kim et al., 

2015) 

Oral 
squamous cell 

carcinoma 
    ✓ ✓ ✓      SVM CS (Li et al., 2017) 

Pan-cancer 
analysis 

✓  ✓ ✓         iCluster+ CU (Mo et al., 2013) 

    ✓    ✓    moCluster CU 
(Meng et al., 

2016a) 

✓ ✓ ✓ ✓         LRAcluster CU 
(Wu et al., 

2015) 

 ✓   ✓ ✓       XGBoost MS 
(B. Ma et al., 

2020) 

✓ ✓ ✓          RF MS 
(Bavafaye 

Haghighi et al., 
2019) 

✓ ✓    ✓       
HI-DFN 

Forest (AE) 
MS 

(J. Xu et al., 
2019) 

 ✓   ✓ ✓   ✓    MOSAE MS 
(K. Tan et al., 

2020) 

✓ ✓  ✓  ✓       PINS 
M
U 

(Nguyen et al., 
2017) 

✓ ✓   ✓        fMKL-DR TS 
(Giang et al., 

2020) 

✓ ✓    ✓       rMKL-LPP TU 
(Speicher and 
Pfeifer, 2015) 

✓ ✓    ✓       NEMO TU 
(Rappoport and 
Shamir, 2019) 

Pancreatic 
cancer 

    ✓ ✓       SVM MS 
(Kwon et al., 

2015) 

Prostate 
cancer 

       ✓ ✓    RF CS 
(Fan et al., 

2011) 

Precision 
oncology 

✓   ✓         

Auto-
encoders, 

Elastic Net, 
SVM & 

Consensus 
Clustering 

CS 
& 
M
U 

(Ding et al., 
2018) 

Thyroid 
function 

       ✓ ✓    RF CS 
(Pietzner et al., 

2017) 

Ulcerative 
colitis 

    ✓   ✓     LASSO CS 
(Bjerrum et al., 

2014) 

Plants 

Potato flesh 
colour 

✓       ✓ ✓    RF CS 
(Acharjee et al., 

2016) 

✓       ✓     RF MS 
(Acharjee et al., 

2011) 

Animals & Micro-organisms 
Dog heart 

disease     ✓   ✓     RF CS (Li et al., 2015) 

Yeast ✓       ✓     BN CU 
(Zhu et al., 

2012) 

 

Overall, the different recent multi-omics studies highlight the superiority of integration 
methods in understanding the complexity of different diseases and uncovering the 
underlying abnormalities from the vastly generated multi-omics data, which is not always 
possible with individual omics analysis. 

6 RECOMMENDATIONS 

Today a plethora of multi-omic integration methods are available for both supervised and 
unsupervised learning as evident in the current review. This information can overwhelm 
interdisciplinary scientists and would require a time-consuming effort to understand the 
challenging mathematical and computational concepts behind them. Hence, we suggest 
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that interdisciplinary teams working on multi-omics always include ML practitioners to assist 
with the choice of methods, the development of solutions, the interpretation of results and 
their significance and limits. Such truly interdisciplinary teams offer real opportunities for 
better mutual understanding of the different fields, practice and expertise necessary, 
leading ultimately to more robust conclusions. In addition, to facilitate the method selection 
process, a recommendation flowchart is proposed in Figure 3. It shows the various decision 
steps required for choosing an appropriate method (or family of methods) for a given 
scenario. For example, to choose a method for integrating two omics for unsupervised 
learning one can choose model-based method such as ‗PSDF or Lemon-Tree‘ if the two 
omics are gene expression and CNV, otherwise ‗MDI or SNF‘ can be used. Similarly, 
‗NEMO‘ can be used in scenarios where the datasets are partially overlapping, and 
transformation approach is required. Hence, it can be used for the purpose of biomedical 
analysis, including diagnosis, prognosis and biomarker identification, by posing them as 
supervised or unsupervised learning problems. 

Clearly, a ‗one-size-fits-all‘ approach is not feasible. Also, unfortunately, the existing 
literature does not provide many direct comparisons between methods using the same 
publicly available datasets. Hence, to choose the best method which suits a given dataset 
and question, an empirical approach which investigates the use of different methods, 
guided by ML practitioners is recommended. 

7 CONCLUSIONS 

This paper reviewed various ML approaches used for integration of multi-omics data for 
analysis. A concise background of multi-omics and ML was presented. It examined the 
concatenation-, model- and transformation-based integration methods, employed for multi-
omics data along with their advantages and disadvantages. Also, various existing multi-
omics studies have been summarised. Finally, a recommendation flowchart is presented for 
interdisciplinary professionals to choose an appropriate method for a multi-omics dataset. 
Overall, this work showcases the recent findings in the multi-omics domain and signifies the 
key role of ML in the future of personalised healthcare. 
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FIGURE LEGENDS 

Figure 1:Number of publications published per year on different search keywords. *For the year 
2020, the annual count was extrapolated using the count of publications until October 2020. 

Figure 2: Workflow pipelines for different types of integration methods for multi-omics analysis. 

Figure 3: Recommendation flowchart for choosing a method for multi-omics integration. For 
abbreviations please refer to List of Abbreviations. 
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HIGHLIGHTS 

 Machine learning methods are novel techniques to integrate omics datasets 

 Recently, publications based on ‗multi-omics integration‘ have gained popularity 

 Integration of omics data using concatenation, model- or transformation-based 

methods 

 Multi-omics studies offer a more comprehensive view of complex diseases 

 Recommendation flowchart included for interdisciplinary professionals 
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