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Abstract

Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and
Allergies (NDA) derives dietary reference values (DRVs) for riboflavin. The Panel considers that the
inflection point in the urinary riboflavin excretion curve in relation to riboflavin intake reflects body
saturation and can be used as a biomarker of adequate riboflavin status. The Panel also considers that
erythrocyte glutathione reductase activation coefficient is a useful biomarker, but has limitations. For
adults, the Panel considers that average requirements (ARs) and population reference intakes (PRIs) can
be determined from the weighted mean of riboflavin intake associated with the inflection point in the
urinary riboflavin excretion curve reported in four intervention studies. PRIs are derived for adults and
children assuming a coefficient of variation of 10%, in the absence of information on the variability in the
requirement and to account for the potential effect of physical activity and the methylenetetrahydrofolate
reductase 677TT genotype. For adults, the AR and PRI are set at 1.3 and 1.6 mg/day. For infants aged
7–11 months, an adequate intake of 0.4 mg/day is set by upward extrapolation from the riboflavin intake
of exclusively breastfed infants aged 0–6 months. For children, ARs are derived by downward
extrapolation from the adult AR, applying allometric scaling and growth factors and considering
differences in reference body weight. For children of both sexes aged 1–17 years, ARs range between
0.5 and 1.4 mg/day, and PRIs between 0.6 and 1.6 mg/day. For pregnant or lactating women, additional
requirements are considered, to account for fetal uptake and riboflavin accretion in the placenta during
pregnancy or the losses through breast milk, and PRIs of 1.9 and 2.0 mg/day, respectively, are derived.
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Summary

Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition
and Allergies (NDA) was asked to deliver a scientific opinion on dietary reference values (DRVs) for the
European population, including vitamin B2. The Panel considers in this Scientific Opinion that vitamin
B2 is riboflavin.

Riboflavin or 7,8-dimethyl-10-ribityl-isoalloxazine, is a water-soluble compound naturally present in
food of plant and animal origin as free riboflavin and, mainly, as the biologically active derivatives
flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).

Riboflavin is the integral part of the coenzymes FAD and FMN that act as the cofactors of a variety
of flavoprotein enzymes such as glutathione reductase or pyridoxamine phosphate oxidase (PPO). FAD
and FMN act as proton carriers in redox reactions involved in energy metabolism, metabolic pathways
and formation of some vitamins and coenzymes. In particular, riboflavin is involved in the metabolism
of niacin and vitamin B6 and FAD is also required by the methylenetetrahydrofolate reductase
(MTHFR) in the folate cycle and thereby is involved in homocysteine metabolism. Signs of riboflavin
deficiency are unspecific and include sore throat, hyperaemia and oedema of the pharyngeal and oral
mucous membranes, cheilosis, glossitis (magenta tongue), and normochromic normocytic anaemia
characterised by erythroid hypoplasia and reticulocytopenia. No tolerable upper intake level has been
set for riboflavin.

Dietary riboflavin associated with food protein is hydrolysed to free riboflavin and its absorption
mainly takes place in the proximal small intestine through carrier-mediated, saturable transport
process. The Panel considers an absorption efficiency of dietary riboflavin of 95%. Free riboflavin
transported into enterocytes is subjected to phosphorylation to form FMN, subsequently converted to
FAD. From the small intestine, riboflavin enters the plasma, where FAD is reported to be the major
form. The uptake of riboflavin into the cells of organs such as the liver is facilitated and may require
specific carriers. Absorbed riboflavin appears partly in the plasma, and partly is sequestered by the
liver on the first pass through the portal vein from the gut. There is a positive transfer of riboflavin
from the pregnant woman to the fetus. Most of the riboflavin in tissues including erythrocytes exists
predominantly as FAD and FMN, covalently bound to enzymes. Unbound FAD and FMN are rapidly
hydrolysed to free riboflavin that diffuses from cells and is excreted. When riboflavin is absorbed in
excess, it is catabolised to numerous metabolites and little is stored in the body tissues. Urine is the
main route for elimination of riboflavin.

The Panel reviewed possible biomarkers of riboflavin status and intake, i.e. urinary excretion of
riboflavin, erythrocyte glutathione reductase activation coefficient (EGRAC), plasma and erythrocyte
riboflavin, FAD and FMN, as well as PPO activity and activation coefficient. The Panel considers that the
inflection point in the mean urinary riboflavin excretion curve in relation to riboflavin intake reflects
body saturation and can be used to indicate adequate riboflavin status. The Panel also considers that
EGRAC is a useful biomarker of riboflavin status and that EGRAC of 1.3 or less indicates adequate
riboflavin status in all population groups. However, the Panel considers that the data on the
relationship between riboflavin intake and EGRAC cannot be used alone to set DRVs for riboflavin, but
can be used in support of data on the inflection in the urinary excretion curve in view of setting DRVs
for riboflavin.

The Panel also notes that riboflavin status is modified by physical activity as urinary excretion of
riboflavin is (generally) decreased and EGRAC increased when physical activity is increased, suggesting
higher utilisation of riboflavin with increased energy expenditure. However, there is a lack of
experimental data showing a clear quantitative relationship between riboflavin status biomarkers
(urinary excretion of riboflavin and EGRAC) and energy expenditure (or physical activity). In addition,
the Panel considers that relationship between riboflavin intake and biomarkers of riboflavin status is
also influenced by MTHFR C677T polymorphism, as homozygosity for the T allele can increase the
individual requirement for riboflavin, although the extent of this increase cannot be defined. After
having reviewed the existing evidence, the Panel concludes that available data on intake of riboflavin
and health outcomes cannot be used to derive DRVs for riboflavin.

The Panel notes that new scientific data have become available for adults since the publication of
the Scientific Committee for Food (SCF) report in 1993, and considers that updated average
requirements (ARs) and population reference intake (PRIs) can be set for adults, children, pregnant
and lactating women.

For adults, the Panel considers that an AR of 1.3 mg/day (after rounding) can be determined from
the weighted mean of riboflavin intake associated with the inflection point in the mean urinary
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riboflavin excretion curve in relation to riboflavin intake as reported in four intervention studies in
different non-European Union (EU) countries. The Panel considers that the potential effect of physical
activity and of MTHFR 677TT genotype on riboflavin requirement is covered by the data presented
from the studies considered, thus is accounted for in the assumed the coefficient of variation (CV)
applied to set the PRI for riboflavin. A CV of 10% was used to calculate PRIs from the ARs for adults,
i.e. 1.6 mg/day after rounding, and the same CV was used for all other population groups. The
Panel considers that there is no indication of different riboflavin requirement according to sex or
between younger and older adults, and sets the same DRV for men and women (without correction
per difference in body weight) of all ages.

For all infants aged 7–11 months, in the absence of sufficient data to set an AR, the Panel sets an
AI of 0.4 mg/day based on the estimated intake of riboflavin of exclusively breastfed infants from birth
to six months, and upward extrapolation by allometric scaling (on the assumption that riboflavin
requirement is related to metabolically active body mass), taking into account the difference in
reference body weight.

For children aged 1–17 years, the Panel sets ARs by downward extrapolation from the AR of adults,
by allometric scaling (on the assumption that riboflavin requirement is related to metabolically active
body mass), applying growth factors and taking into account the differences in reference body weight.
The Panel considers unnecessary to set sex-specific ARs and PRIs for boys and girls of all ages. The
Panel sets ARs ranging from 0.5 (children aged 1–3 years) to 1.4 mg/day (children aged 15–17 years)
and PRIs ranging from 0.6 (children aged 1–3 years) to 1.6 mg/day (children aged 15–17 years).

For pregnant women, the Panel considers that data are insufficient to estimate the additional needs
for dietary riboflavin during pregnancy based on fetal uptake and riboflavin accretion in the placenta
during pregnancy. The Panel sets an AR of 1.5 mg/day, calculated by allometric scaling from the AR
for non-pregnant women, considering the mean gestational increase in body weight of 12 kg, and also
sets a PRI of 1.9 mg/day.

For lactating women, an additional riboflavin requirement of 0.31 mg/day is calculated considering
the secretion of riboflavin into milk during lactation (0.291 mg/day), the mean milk transfer during the
first six months of lactation in exclusively breastfeeding women (0.8 L/day), and an absorption
efficiency of 95%. An AR of 1.7 mg/day is calculated by the Panel, considering the additional
requirement above the AR of non-lactating women, and a PRI of 2 mg/day is set for lactating women.

Based on data from 13 surveys in nine countries of the EU, riboflavin intake mean estimates ranged
across countries from 0.6 to 1.2 mg/day in infants (< 1 year), from 0.9 to 1.4 mg/day in children aged
1 to < 3 years, from 1 to 1.8 mg/day in children aged 3 to < 10 years, and from 1.2 to 2.2 mg/day in
children aged 10 to < 18 years. Riboflavin intake mean estimates ranged between 1.4 and 2.2 mg/day
in adults.
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Background as provided by the European Commission

The scientific advice on nutrient intakes is important as the basis of Community action in the field
of nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The
Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European
Community dates from 1993. There is a need to review and if necessary to update these earlier
recommendations to ensure that the Community action in the area of nutrition is underpinned by the
latest scientific advice.

In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European
Community.1 The report provided Reference Intakes for energy, certain macronutrients and
micronutrients, but it did not include certain substances of physiological importance, for example
dietary fibre.

Since then new scientific data have become available for some of the nutrients, and scientific
advisory bodies in many European Union (EU) Member States and in the United States have reported
on recommended dietary intakes. For a number of nutrients these newly established (national)
recommendations differ from the reference intakes in the SCF (1993) report. Although there is
considerable consensus between these newly derived (national) recommendations, differing opinions
remain on some of the recommendations. Therefore, there is a need to review the existing EU
Reference Intakes in the light of new scientific evidence, and taking into account the more recently
reported national recommendations. There is also a need to include dietary components that were not
covered in the SCF opinion of 1993, such as dietary fibre, and to consider whether it might be
appropriate to establish reference intakes for other (essential) substances with a physiological effect.

In this context, the EFSA is requested to consider the existing Population Reference Intakes (PRIs)
for energy, micro- and macronutrients and certain other dietary components, to review and complete
the SCF recommendations, in the light of new evidence, and in addition advise on a PRI for dietary
fibre.

For communication of nutrition and healthy eating messages to the public, it is generally more
appropriate to express recommendations for the intake of individual nutrients or substances in food-based
terms. In this context, the European Food Safety Authority (EFSA) is asked to provide assistance on the
translation of nutrient-based recommendations for a healthy diet into food-based recommendations
intended for the population as a whole.

Terms of reference as provided by the European Commission

In accordance with Article 29 (1)(a) and Article 31 of Regulation (EC) No. 178/2002, the
Commission requests EFSA to review the existing advice of the SCF on PRIs for energy, nutrients and
other substances with a nutritional or physiological effect in the context of a balanced diet which,
when part of an overall healthy lifestyle, contribute to good health through optimal nutrition.

In the first instance, the EFSA is asked to provide advice on energy, macronutrients and dietary
fibre. Specifically advice is requested on the following dietary components:

• Carbohydrates, including sugars;
• Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty

acids, trans fatty acids;
• Protein;
• Dietary fibre.

Following on from the first part of the task, the EFSA is asked to advise on PRIs of micronutrients
in the diet and, if considered appropriate, other essential substances with a nutritional or physiological
effect in the context of a balanced diet which, when part of an overall healthy lifestyle, contribute to
good health through optimal nutrition.

Finally, the EFSA is asked to provide guidance on the translation of nutrient based dietary advice
into guidance, intended for the European population as a whole, on the contribution of different foods
or categories of foods to an overall diet that would help to maintain good health through optimal
nutrition (food-based dietary guidelines).

1 Scientific Committee for Food, Nutrient and energy intakes for the European Community, Reports of the Scientific Committee
for Food 31st series, Office for Official Publication of the European Communities, Luxembourg, 1993.

Dietary Reference Values for riboflavin

www.efsa.europa.eu/efsajournal 7 EFSA Journal 2017;15(8):4919



Assessment

1. Introduction

In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European
Community (SCF, 1993). For riboflavin, the SCF set average requirements (ARs) and PRIs for men and
women. PRIs were also set for infants and children as well as for pregnant or lactating women.

The purpose of this Opinion is to review dietary reference values (DRVs) for vitamin B2. In this
Opinion, the Panel considers that vitamin B2 is the name of the compound riboflavin.

2. Definition/category

2.1. Chemistry

Flavins (from Latin flavin, ‘yellow’) is the name of a group of water-soluble yellow pigments to
which riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) belong.

Riboflavin, or 7,8-dimethyl-10-ribityl-isoalloxazine, is the tricyclic ring isoalloxazine bound to a ribityl
side chain (IUPAC name: 7,8-Dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]benzo[g]pteridine-2,
4-dione) (Figure 1).

Riboflavin is water-soluble. In the diet, it is naturally present as free riboflavin and, mainly, as the
biologically active derivatives FMN and FAD (Figure 1) (Powers, 2003; Said and Ross, 2012). FMN is
also called riboflavin-5-phosphate (Merrill et al., 1981).

All three compounds are present in foods of plant or animal origin (Section 3.1). Riboflavin-binding
proteins have been found in egg white and yolk (Zanette et al., 1984; White and Merrill, 1988), as well
as in cow milk (Kanno et al., 1991). Although relatively heat-stable, riboflavin is readily degraded by
light in solutions (Section 2.2.2.1). Riboflavin (E 101(i)) and riboflavin 50-phosphate sodium (E 101(ii))
are also used as food colours (EFSA ANS Panel, 2013).

In this Opinion, the Panel used the terms ‘total riboflavin’ to refer explicitly to the sum of the three
components (riboflavin, FMN and FAD) and ‘free riboflavin’ whenever it is necessary to make a
distinction from FMN or FAD.

2.2. Function of the nutrient

2.2.1. Biochemical functions

Riboflavin is the integral part of the coenzymes FAD and FMN that act as the cofactors of
flavoprotein enzymes involved in a variety of reactions. FAD and FMN act as proton carriers in redox
reactions involved in energy metabolism (Section 2.5), metabolic pathways and the formation of some
vitamins and coenzymes (McCormick, 2000; SCF, 2000; Said and Ross, 2012). In particular, riboflavin is

Riboflavin Flavin adenine dinucleotide (FAD)Flavin mononucleotide (FMN)

Molecular masses: riboflavin: 376.4 g/mol; FMN: 456.3 g/mol, FAD: 785.6 g/mol.

Figure 1: Chemical structures of riboflavin, FMN and FAD
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involved in the metabolism of niacin and vitamin B6 (McCormick, 1989, 2000; EFSA NDA Panel, 2014a,
2016). FAD is also required as a cofactor for the methylenetetrahydrofolate reductase (MTHFR; EC
1.7.99.5) that is a key enzyme in the folate cycle (EFSA NDA Panel, 2015b) and it is required for the
formation of 5-methyltetrahydrofolate which, in turn, is involved in the remethylation of homocysteine
to methionine (McKinley et al., 2001).

The enzyme glutathione reductase (EC 1.8.1.7) is using FAD as a cofactor to catalyse the reduction
of the oxidised form glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), a critical
step in maintaining the reducing environment of the cell. In people with glucose-6-phosphate
dehydrogenase (G6PD) deficiency, the most common enzyme disorder caused by an enzyme defect,
with an estimated frequency of 0.4% of all births in the EU (WHO Working Group, 1989; Cappellini
and Fiorelli, 2008), glutathione reductase has an increased avidity for FAD, leading to high in vitro
activity. Another enzyme, pyridoxamine phosphate oxidase (PPO, EC 1.4.3.5.) is FMN-dependent, is
involved in the conversion of pyridoxine and pyridoxamine to the coenzyme pyridoxal phosphate and is
present in various tissues including erythrocytes (Mushtaq et al., 2009). The activity of glutathione
reductase in erythrocyte (EGR) and that of PPO are discussed in Sections 2.4.2 and 2.4.4.

2.2.2. Health consequences of deficiency and excess

2.2.2.1. Deficiency

Riboflavin deficiency (ariboflavinosis) is most often accompanied by other nutrient deficiencies, and
was reported in populations from both developed and developing countries (Venkataswamy, 1967;
Komindr and Nichoalds, 1980; Nichoalds, 1981). Clinical signs of riboflavin deficiency reported in
humans (IOM, 1998) are unspecific and include, e.g. sore throat, hyperaemia and oedema of the
pharyngeal and oral mucous membranes, cheilosis, glossitis (magenta tongue), seborrhoeic dermatitis,
skin lesions including angular stomatitis (as reported in (Horwitt et al., 1950)) and normochromic
normocytic anaemia characterised by erythroid hypoplasia and reticulocytopenia (Lane and Alfrey,
1965). The correction of riboflavin deficiency improved haematologic markers in Gambian adults
(Fairweather-Tait et al., 1992); the relationship between riboflavin status and haematologic markers is
further described in Sections 2.3.7 and 2.4.2.

Due to the photosensitivity of riboflavin, phototherapy used to treat hyperbilirubinemia in newborns
was also associated with low riboflavin status as apparent by increases of erythrocyte glutathione
reductase activation coefficient (EGRAC) values with the duration of phototherapy (see Section 2.4.2
on EGRAC) (Gromisch et al., 1977; Tan et al., 1978; Hovi et al., 1979; Parsons and Dias, 1991). The
maximum absorption spectrum of riboflavin is at a wavelength similar to that at which the degradation
of bilirubin occurs (Gromisch et al., 1977).

A woman with riboflavin deficiency (indicated by an EGRAC of 2.81), although no clinical symptoms
of deficiency were reported, gave birth to a child with malformations of the urinary tract and with the
clinical and biochemical signs of multiple acyl-coenzyme A (CoA) dehydrogenase deficiency (MADD)
due to a heterozygous deletion of the solute carrier SLC52A1 gene in the mother that codes for the
human riboflavin transporter 1 (hRFT1) (Chiong et al., 2007; Ho et al., 2011).

2.2.2.2. Excess

A tolerable upper intake level (UL) for riboflavin could not be derived by the SCF because there was
not sufficient clinical evidence for adverse effects of ‘high’ riboflavin intakes (SCF, 2000). No adverse
effects from ‘high’ riboflavin intakes from food or supplements have been reported (Rivlin, 2010). The
Panel notes that revising the UL for riboflavin is not within the scope of the present Opinion.

2.3. Physiology and metabolism

2.3.1. Intestinal absorption

Dietary FMN and FAD associated with food protein are hydrolysed to free riboflavin (Merrill et al.,
1981; Nichoalds, 1981). Acidification in the stomach releases the non-covalently bound coenzymes FAD
and FMN, which are also hydrolysed to free riboflavin by non-specific phosphatases of the brush
border and basolateral membranes of enterocytes in the upper small intestine (Merrill et al., 1981; Said
and Ross, 2012).

Absorption of free riboflavin mainly takes place in the proximal small intestine through a
carrier-mediated, saturable transport process (Jusko and Levy, 1967; Rivier, 1973; Meinen et al., 1977;
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Merrill et al., 1981; Daniel et al., 1983; Said and Ma, 1994; IOM, 1998; Said and Ross, 2012).
A carrier-mediated absorption of riboflavin is also present in the colon (Sorrell et al., 1971; Yuasa
et al., 2000; Said and Ross, 2012). A small amount of riboflavin circulates via the enterohepatic system
(Said and Ross, 2012).

The absorbed quantity of oral doses of riboflavin (assessed by the urinary recovery of riboflavin)
linearly increases according to intake up to about 25–30 mg riboflavin (Levy and Jusko, 1966; Jusko
and Levy, 1967) (also reported in reviews (Jusko and Levy, 1975; Merrill et al., 1981)). This was
confirmed by the pharmacokinetics study by Zempleni et al. (1996) using oral riboflavin doses, which
calculated the maximum amount of riboflavin that can be absorbed as about 27 mg. IOM (1998)
based its discussion on bioavailability of riboflavin on Zempleni et al. (1996), which showed that
absorption from the gut lumen was 95% complete within 4.4 h. In a study in 20 healthy women using
13C-labelled riboflavin in semiskimmed milk or 15N-labelled free riboflavin and FMN in spinach soup and
urinary monitoring, there was no significant difference in true absorption between the spinach meal
and the milk meal (Dainty et al., 2007).

Prevalence of riboflavin deficiency is high in chronic alcoholics (Said and Ross, 2012), and the
proposed mechanism investigated in animals and in vitro is that ethanol consumption inhibits the
release of riboflavin from dietary FMN and FAD and its absorption (Pinto et al., 1987). A significant
negative association between dietary phytate forms and apparent absorption of dietary riboflavin
(�0.86, p < 0.05) was observed in ileostomy patients (Agte et al., 2005).

The Panel notes that the absorbed quantity of riboflavin linearly increases up to an intake of
25–30 mg, and that absorption efficiency of dietary riboflavin is 95%.

2.3.2. Transport

Free riboflavin transported into enterocytes is subjected to adenosine triphosphate (ATP)-dependent
phosphorylation by the cytosolic flavokinase (EC 2.7.1.26) to form FMN subsequently converted to FAD
by the FAD-dependent FAD synthetase (EC 2.7.7.2).

Free riboflavin, FMN and FAD are transported in plasma bound to albumin and to immunoglobulins
(Ig) (IgA, IgG and IgM), as shown in healthy subjects (Innis et al., 1985) and in patients (Innis et al.,
1986). Hustad et al. (2002) (Section 2.4.3.1) reported FAD as the major form in plasma in healthy
individuals compared to free riboflavin or FMN (median concentrations were 74, 10.5 and 6.6 nmol/L,
respectively).

FAD concentration in erythrocyte was reported to be higher than that of FMN (medians of 469 and
44 nmol/L respectively, with only traces of free riboflavin) (Hustad et al., 2002).

Pregnancy increases the blood concentration of a carrier protein available for riboflavin and identified
in umbilical cord serum and sera of pregnant women (Visweswariah and Adiga, 1987; Natraj et al.,
1988), that is essential to normal fetal development (Foraker et al., 2003). In in vitro perfusion system
(Dancis et al., 1985), radioactive riboflavin analysed via high-performance liquid chromatography (HPLC)
was transferred across placentas of term mothers without being converted to FMN or FAD, with a
transfer rate towards the fetus that suggested a transport mediated by a carrier system, as later
confirmed by Dancis et al. (1986). The transfer of riboflavin to the fetus is efficient (Dancis et al., 1988).
Calculation of the difference in plasma concentration between the umbilical vein and the umbilical
artery multiplied by umbilical plasma flow in term infants, showed that fetal free riboflavin uptake was
0.1 mg/kg per day (Zempleni et al., 1995). Riboflavin content of the placenta has been investigated
(Baker et al., 1981; Zempleni et al., 1995). Content of FAD+FMN measured by HPLC in the placenta of
full-term infants was higher than that of free riboflavin (Zempleni et al., 1995), as already suggested in a
study of placentas of 54 mothers of full term infants showing high riboflavin status (Section 2.4.1) in
relation with its high FAD content (Ramsay et al., 1983).

The Panel notes that riboflavin is transported in the plasma (bound to albumin and
immunoglobulins), or mainly in erythrocytes, and that there is a positive transfer of riboflavin from the
pregnant woman to the fetus.

2.3.3. Distribution to tissues

At physiological concentrations, the uptake of riboflavin into the cells of organs is facilitated and
may require specific carriers (Bowman et al., 1989; McCormick, 1989; IOM, 1998). Carrier-mediated
processes have been identified for riboflavin transport in the liver and in human retinal pigment
epithelium (Said and Ross, 2012). Dainty et al. (2007) (Section 2.3.1) suggested that the absorbed
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riboflavin partly appears in the plasma, and partly is sequestered by the liver on the first pass through
the portal vein from the gut.

2.3.4. Storage

Most of the riboflavin in tissues, including erythrocytes (Section 2.3.2), exists predominantly as FAD
and as FMN, covalently bound to enzymes (Singer and Kenney, 1974; Hustad et al., 2002). Unbound
FAD and FMN are hydrolysed to free riboflavin that diffuses from cells and is excreted, thus the
intracellular phosphorylation of riboflavin to FMN and FAD is a form of metabolic trapping important for
riboflavin homeostasis (Gastaldi et al., 2000; Powers, 2003). In men on a restricted riboflavin intake
(0.5 mg/day for 9 months) compared to controls, the riboflavin content of erythrocytes became
significantly lower in the restricted group within 45 days of the restriction and slowly decreased further
during the ensuing months (Bessey et al., 1956). When riboflavin is absorbed in excess, little is stored
in the body tissues and the excess is excreted, mainly in the urine (Sauberlich, 1999)
(Section 2.3.6.2).

2.3.5. Metabolism

Riboflavin is converted to its coenzymes derivatives FAD and FMN in the cellular cytoplasm of most
tissues, e.g. in the small intestine, liver, heart, and kidney (Darby, 1981; Brown, 1990; IOM, 1998).
The first step of this metabolism is the ATP-dependent phosphorylation of riboflavin to FMN, catalysed
by the enzyme flavokinase under hormonal control. In a second step, FMN is complexed with specific
apoenzymes to form different flavoproteins, or is mainly converted to FAD by the FAD synthetase. The
conversion to FAD is controlled by the FAD content of the tissues and an excess of FAD inhibits this
conversion as shown in rats (Yamada et al., 1990). Riboflavin is metabolised only in small amounts
(Sauberlich et al., 1974; Roughead and McCormick, 1991).When riboflavin is in excess in tissues, it is
catabolised to numerous metabolites such as 7-hydroxymethylriboflavin and lumiflavin (Powers, 2003).

2.3.6. Elimination

2.3.6.1. Faeces

No significant faecal excretion of riboflavin has been reported.

2.3.6.2. Urine

Intakes of riboflavin in excess of tissue capacities are excreted in the urine (Section 2.3.4). Riboflavin
generally accounts for about 60–70% of all urinary flavins (McCormick, 1989; Sauberlich, 1999; Said and
Ross, 2012), while riboflavin metabolites, including 7a-hydroxyriboflavin, 8a-sulfonylriboflavin, lumiflavin,
8a-hydroxyriboflavin, and 10-hydroxyethylflavin, could amount to 28–39% of total urinary flavins
(Chastain and McCormick, 1987). Some urinary metabolites also reflect bacterial catabolism of riboflavin
in the gastrointestinal tract (Chastain and McCormick, 1987; Powers, 2003).

Well-nourished subjects aged 3–62 years were given one capsule containing 1.7 mg riboflavin in
addition to the dietary intake (mean total riboflavin intake was 2.13 mg/day, range 0.26–5.17 mg/day),
and urinary excretion of riboflavin and its metabolites was investigated (Roughead and McCormick,
1991). The correlation between intake of riboflavin and the urinary excretion of all riboflavin metabolites
was weak but positive (correlation coefficients of 0.04–0.25). There was a strong positive correlation
(r > 0.7) between the urinary excretion of riboflavin expressed as a function of creatinine and that of
almost all urinary metabolites of riboflavin.

Urinary excretion over 24 h (expressed as total riboflavin excreted or in relation to urinary
creatinine) can be measured directly by fluorometric methods (Chastain and McCormick, 1987;
Roughead and McCormick, 1991; Gibson, 2005). A more sensitive and specific HPLC method includes a
fixed-wave-length spectrofluorometer and allows the separation of urinary riboflavin from other
molecules such as riboflavin-5-phosphate, non-riboflavin fluorescing molecules and photodegraded
riboflavin, thus results for riboflavin excretion via the HPLC method with fluorometry tend to be lower
than those with the fluorometric method alone (Smith, 1980; Gibson, 2005).

Urinary riboflavin has been shown to increase under conditions causing negative nitrogen balance
and with the administration of antibiotics (IOM, 1998; Gibson, 2005).
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2.3.6.3. Breast milk

Riboflavin is secreted into breast milk in concentrations that are sensitive to maternal riboflavin
intake and can be increased, although slightly, by riboflavin supplementation (Deodhar et al., 1964;
Nail et al., 1980; Bates et al., 1982a,b).

The main flavins in breast milk are riboflavin and FAD, but FMN and some riboflavin metabolites
(10-hydroxyethylflavin, 10-formylmethylflavin, 7a-hydroxyriboflavin, 8a-hydroriboflavin) are also
present (Roughead and McCormick, 1990).

The Panel used a comprehensive search of the literature published from 1990 onwards as
preparatory work to the present opinion in order to identify data on which DRVs for riboflavin may
potentially be based (Buijssen et al., 2014), including data on breast milk concentration of ‘total flavin’
or total or free riboflavin (Ortega et al., 1999; Sakurai et al., 2005; Kodentsova and Vrzhesinskaya,
2006). The Panel also considered additional individual studies reviewed by the SCF (2003) or by Bates
and Prentice (1994) and Picciano (1995) on ‘total flavin’ or total or free riboflavin concentration in
breast milk (Nail et al., 1980; Thomas et al., 1980; Ford et al., 1983; Dost�alov�a et al., 1988; Roughead
and McCormick, 1990).

Appendix A reports the mean concentration of ‘total flavin’ or total/free riboflavin in human milk
from healthy lactating women in eight studies. One of them was conducted in Japan but was kept for
completeness (Sakurai et al., 2005).

In seven studies conducted in Europe (Ford et al., 1983; Dost�alov�a et al., 1988; Ortega et al.,
1999) or in USA and Russia (Nail et al., 1980; Thomas et al., 1980; Roughead and McCormick, 1990;
Kodentsova and Vrzhesinskaya, 2006), only two European studies (Ford et al., 1983; Dost�alov�a et al.,
1988) clearly stated that infants were full term, and five studies in the EU or in the USA measured
content in mature milk (Nail et al., 1980; Thomas et al., 1980; Ford et al., 1983; Dost�alov�a et al.,
1988; Ortega et al., 1999). Riboflavin was measured by different methods (fluorometric,
spectrophotometric methods or microbiological methods). In the seven studies in Western countries,
the mean concentration of total flavin or total or free riboflavin in milk of mothers (across all stages of
lactation) ranged between 180 and 799 lg/L. Specifically in unsupplemented mothers, this range was
216–485 lg/L.

Among the studies considered, maternal riboflavin status was reported in plasma (EGRAC, see
Section 2.4.2) (Ortega et al., 1999) or in urine (Nail et al., 1980; Thomas et al., 1980) by different
analytical methods. Mean maternal riboflavin intake was reported in four studies (Nail et al., 1980;
Thomas et al., 1980; Roughead and McCormick, 1990; Ortega et al., 1999), but in one study it was
not clear if the intake was from the diet or supplements or both (Roughead and McCormick, 1990).
Focussing on three studies carried out with unsupplemented mothers in Spain (Ortega et al., 1999),
and in the USA (Nail et al., 1980; Thomas et al., 1980), for which the maternal riboflavin intake and
status were reported, the mean riboflavin concentration in mature milk ranged between 243 and
485 lg/L (mid-point: 364 lg/L).

Considering a mean milk transfer of 0.8 L/day during the first 6 months of lactation in exclusively
breastfeeding women (Butte and King, 2002; FAO/WHO/UNU, 2004; EFSA NDA Panel, 2009), and a
concentration of riboflavin in mature human milk of 364 lg/L, the secretion of riboflavin into milk
during lactation is estimated to be 291 lg/day, i.e. about 290 lg/day.

2.3.6.4. Conclusion on elimination

The Panel notes that urine is the main route for elimination of riboflavin. The Panel considers that
the concentration of riboflavin in breast milk is increased by maternal oral supplementation, and that
the average concentration of riboflavin in mature breast milk of unsupplemented women is about
360 lg/L.

2.3.7. Interaction with other nutrients

Regarding other B-vitamins, riboflavin is involved in the metabolism of niacin and vitamin B6 (EFSA
NDA Panel, 2014a, 2016) and FAD is also required by the MTHFR in the folate cycle (EFSA NDA Panel,
2015b) (Section 2.2.1).

In Gambian men with mean EGRAC of about 2.1., the correction of riboflavin deficiency by
riboflavin supplementation (10 mg on 6 days per week for 4 weeks) improved haemoglobin
concentration, but not plasma ferritin, packed cell volume or iron absorption assessed with labelled
iron (Fairweather-Tait et al., 1992). In Nigerian adults, some of them anaemic and whose riboflavin
intake and status were unknown, supplementation with riboflavin (5 mg/day for 8 weeks) significantly
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increased haemoglobin concentration, haematocrit concentration and erythrocyte count (Ajayi et al.,
1990). The mechanism by which riboflavin deficiency results in disturbance of the production of
erythrocytes is thought to be through impaired mobilisation of iron from ferritin (via reduced flavins)
(EFSA NDA Panel, 2015a). The relationship between riboflavin status and haematologic markers is also
discussed in Sections 2.2.2.1 and 2.4.2.

2.4. Biomarkers

2.4.1. Inflection of the urinary excretion of riboflavin

Urinary excretion of riboflavin reflects dietary intake when tissues are saturated (Section 2.3.6.2).
Within a few days, urinary excretion reacts to the lowering of riboflavin intake (Horwitt et al., 1950).
Urinary riboflavin is subject to large variations, and it is most useful in studies in which riboflavin
dietary intake is strictly controlled (e.g. (Boisvert et al., 1993)). It can be expressed as 24-h urinary
riboflavin excretion (Sauberlich et al., 1974) or as fasting (spot) urinary riboflavin (Guo et al., 2016),
with or without correction by creatinine concentration to control for the completeness of
collection. (Gershoff et al., 1956; Plough and Consolazio, 1959). Cut-off values for deficiency and
adequacy/sufficiency have been proposed based on a number of controlled depletion/repletion studies
reviewed by Sauberlich et al. (1974): values of total 24-h urinary excretion of riboflavin below 40 lg/
day (or 27 lg/g creatinine) indicated deficiency, values between 40 and 120 lg/day (or 80 lg/g
creatinine) indicated insufficiency, and values exceeding 120 lg/day indicated sufficiency in adults.
Corresponding intakes were not available. The cut-off value of 120 lg/day was recently retained by
Said and Ross (2012).

Two supplementation studies (Horwitt et al., 1948, 1949), one of them designed to assess thiamin
requirement, were described by Horwitt et al. (1950) and later used by the SCF (1993) (Section 4.1).
They were undertaken in the USA in men living in a ‘mental institution’ (hospital), who consumed
different amounts of riboflavin over many months (up to two years in one group) and whose energy
intake was not always reported. This study showed that urinary excretion of riboflavin increases as
riboflavin intake increases. Across the two projects, 24-h urinary riboflavin excretion was measured
with microbiological and fluorometric methods in a total of 66 subjects. Across the two projects,
riboflavin intake was 0.55 mg/day (basal diet alone), or 0.75, 0.85, 1.1, about 1.6, 2.05, 2.15, 2.55
and 3.55 mg/day; all intake values from basal or supplemented diets were obtained by chemical
analyses (except the 1.6 mg/day provided by a hospital diet consumed ad libitum). Differing numbers
(unclear reporting: 11 up to either 39 or 42) of these subjects were investigated under several of
these different riboflavin regimens. The highest increase in mean urinary excretion between two doses,
i.e. mean urinary excretion from 97 to 434 lg/day, corresponded to total riboflavin intakes between
1.1 and 1.6 mg/day. The Panel notes that the inflection in the urinary excretion curve occurred at
riboflavin intakes between 1.1 and 1.6 mg/day.

The results from the study by Horwitt et al. (1950) were taken into account in the review by
Bro-Rasmussen (1958) on 14 studies in adults, pregnant women and children in Western countries
published between 1941 and 1950. This review showed that, in adults, the inflection point at which
the tissues are saturated with riboflavin and its excretion into the urine starts to increase corresponds
to a dietary intake of riboflavin between 1.0 and 1.6 mg/day.

In a recent study on Chinese adult men (Guo et al., 2016), 78 (73 completers) young healthy men
(aged 18–22 years) in the army, were randomly assigned either to one of six groups that received, for
6 weeks, daily riboflavin supplements of 0, 0.2, 0.4, 0.6, 0.8 or 1.0 mg, respectively. They had no
clinical signs of riboflavin deficiency, were physically active, and mean body weights were 62.9–68.8 kg
according to groups, and mean energy intake was 13.9 MJ/day. The mean riboflavin intake from food
was between 1.0 and 1.1 mg/day according to groups (mean baseline intake obtained from chemical
analysis); therefore the total riboflavin intake (food + supplements) was 1, 1.3, 1.5, 1.6, 1.9 and
2.0 mg/day for the six groups, respectively. In the group with a riboflavin intake of 1.5 mg/day, mean
‘fasting’ urinary riboflavin excretion (assessed fluorophotometrically in the morning urine) was 543 lg/g
creatinine. With riboflavin intakes above 1.4 mg/day (calculated by the authors), riboflavin excretion
showed a strong positive linear correlation with riboflavin intake (R2 = 0.9667, p < 0.01). The
Panel notes the inflection point of the curve of mean urinary excretion according to intake, calculated
by the author as the intercept of two regression lines developed among different riboflavin intake
groups, is 1.4 mg/day, which is a result similar to that of Horwitt et al. (1950) although the excretion
values were not similar.
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Older subjects in Guatemala (4 men and 10 women, mean age was 70.9 years), with light physical
activity, participated in a 16-week intervention study (Boisvert et al., 1993) (Section 2.4.2). Fourteen
subjects were fed for 2–5 weeks a basal diet with a low content of riboflavin (weekly mean was
0.65–0.7 mg/day assessed by a microbiological assay), and with an average weekly energy content of
10.2 MJ/day. In the following periods (duration 2–5 weeks each), the diet was supplemented with
increases of 0.2 mg riboflavin per period, amounting to a total riboflavin intake of 0.9, 1.1, 1.3 and
1.5 mg/day, respectively. There was a sharp increase in mean 24-h urinary excretion of riboflavin
(assessed by HPLC with fluorescence detection) for an intake between 1.1 and 1.3 mg/day. At
these intakes, mean urinary excretion increased from about 12.4 to 79 lg/day but was higher than
141 lg/day only at intakes ≥ 1.5 mg/day. The Panel notes that the inflection point of the curve of
mean urinary excretion according to intake, calculated by the authors as the intercept of two
regression lines, was 1.13 mg/day.

In the USA (Brewer et al., 1946), 14 young healthy women (aged 21–32 years, body weights in the
range 45.5–68.2 kg) followed two 6-day preliminary periods on a self-selected diet supplemented only
in the second period with 3 mg/day of riboflavin. Then, the following phase was composed of several
12-day experimental periods. The subjects consumed a controlled experimental diet providing
0.79 mg/day riboflavin (analytically measured) for a first period of 12 days and, between each
following 12-day experimental period, they followed a 3-day intermediate period when they consumed
again their self-selected diet supplemented with 3 mg/day riboflavin (to reach a high tissue content
of riboflavin at the start of the following period). The controlled experimental diet provided
8.8–9.6 MJ/day throughout the study and the authors estimated the energy requirement for each
subject on the basis of her activity, size and food habits. Three to nine subjects were studied at each
of the following total riboflavin intakes: 0.79, 1.04, 1.26, 1.62, 2.23 and 2.72 mg/day (each value
being the average over each 12-day experimental periods). Average 24-h urinary excretion of riboflavin
(measured by fluorometry or an adsorption procedure) was averaged for the last 3 days of each
period, and values were: 0.07, 0.16, 0.13, 0.32, 1.18 and 1.31 mg/day. The Panel notes that the
inflection point in the relationship between urinary excretion and intake occurred between the intakes
of 1.26 and 1.62 mg/day (1.44 by interpolation). The Panel also notes that the authors plotted
the averages for urinary excretion of riboflavin against riboflavin intake for (i) their study, (ii) five
other studies in women published in 1941–1945 and (iii) all data combined. For each of these groups
of data, one linear regression line was plotted for urinary riboflavin at intakes ranging from 0.5 to
2 mg/day, and another linear regression line was plotted for intakes ranging from 1.3 to 7 mg/day.
The points of intersection of these two lines were between intakes of 1.3 and 1.5 mg/day riboflavin,
above which a sharp increase in urinary excretion of riboflavin occurred. The Panel notes that this
result is in line with the other studies described above.

Intervention studies with riboflavin (alone or in combination) or depletion/repletion studies,
conducted in the EU (van der Beek et al., 1988), USA (Keys et al., 1944; Davis et al., 1946; Roe et al.,
1982; Alexander et al., 1984; Roughead and McCormick, 1991), and India (Bamji, 1969), in healthy
men and women of a wide range of ages showed that the urinary excretion of riboflavin (or total
flavin) (collected as spot or 24-h urine, either corrected by creatinine or not) increases with increased
intakes/supplements over a range of around 2–11 mg/day.

Data from the Verbundstudie Ern€ahrungserhebung und Risikofaktoren Analytik (VERA Study), an
observational study made in a subsample of 2,006 adults (women n = 1,144) of the German National
Consumption Study I, showed that median 24-h urinary excretion was 614 and 504 lg/day (Heseker
et al., 1992). The median riboflavin intake was 1.5 and 1.3 mg/day (2.5–97.5th percentiles: 0.8–3.4
and 0.5–2.9 mg/day) for men and women, respectively (Heseker et al., 1994).

The inclusion of HPLC measurements in the most recent analytical methods (e.g. (Roughead and
McCormick, 1991; Boisvert et al., 1993)) reduced the overestimation of riboflavin excretion compared
to older methods, e.g. microbiological or fluorometric assays (Horwitt et al., 1950; Bro-Rasmussen,
1958), which could not separate the non-active flavin metabolites from the riboflavin fraction of the
vitamin in urine, thus improving its reliability as biomarker of nutritional status (Section 2.3.6.2).

The Panel considers that 24-h (preferably) or fasting urinary excretion of riboflavin is a suitable
biomarker of riboflavin short-term intake and of riboflavin status. The Panel notes that urinary
excretion of riboflavin is not a sensitive marker of riboflavin intakes below 1.1 mg/day (Horwitt et al.,
1950). The Panel considers that the inflection of the mean urinary excretion curve in relation to
riboflavin intake reflects body saturation of riboflavin, and the saturation of all metabolic pathways of
riboflavin, thus indicating a level at which all riboflavin functions are fulfilled. Regressing urinary
excretion against intake can be useful to derive the requirement. The Panel notes that the
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methodological limitations, especially in studies with older analytical methods (e.g. microbiological or
fluorometric assays), can influence the results for absolute values of urine riboflavin (Section 2.4.1),
but assumes that the overall profile of the curve as a function of intake and the inflection point of this
curve are not affected.

2.4.2. Erythrocyte glutathione reductase activation coefficient (EGRAC)

The activity of EGR (Section 2.2.1) expressed in terms of activation coefficient (AC) is the ratio of
the enzyme activity measured in vitro with and without addition of the cofactor FAD. An EGRAC of 1
indicates a complete saturation of EGR with intracellular FAD, while values higher than 1 indicate an
incomplete saturation of the enzyme by intracellular FAD. EGRAC therefore provides indirect
information on the riboflavin status, to which it is inversely related, and is considered to indicate the
degree of tissue saturation with riboflavin (Sauberlich et al., 1974; Hoey et al., 2009). EGRAC cannot
be used in people with G6PD deficiency, as their glutathione reductase has an increased avidity for
FAD, leading to in vitro activity that can be about 1.5–2 times higher than in erythrocytes with normal
G6PD activity (Thurnham, 1972; Nichoalds, 1981; Anderson et al., 1987; Bates, 1987; Mushtaq et al.,
2009), and that may prevent the identification of a low riboflavin status (Sections 2.2.1 and 2.4.4).
EGRAC is sensitive to riboflavin intake, particularly below 1.0 mg/day both in young and older adults
(Bates et al., 1989; Boisvert et al., 1993), but is ‘virtually unaffected by daily variations in riboflavin
intakes’ (Boisvert et al., 1993). In an observational study on 927 free-living adults aged 60 years or
more, tobacco smokers had higher EGRAC than non-smokers (Sadowski, 1992).

In the 16-weeks supplementation study by Boisvert et al. (1993) (Section 2.4.1) in 14 Guatemalan
older subjects with a mean baseline EGRAC of 1.64, EGRAC decreased significantly with increasing
riboflavin intake. In 10 out of 14 subjects, at a mean riboflavin intake of 1.3 mg/day, EGRAC was
below the ‘limit of normality’ of 1.34 chosen by the authors. Based on the inflection point of the curve
of mean urinary excretion of riboflavin according to mean EGRAC (that reflects body saturation),
urinary excretion started to increase at EGRAC below 1.3–1.4. The Panel considers that from the
results of this study, an EGRAC of 1.3 or less can be used to define adequacy in relation to changes in
urinary excretion.

In an intervention study in Filipino women, either non-pregnant (n = 6), pregnant (n = 12, 2nd or
3rd trimester) or lactating (n = 11, mean of 7 weeks of lactation), and Filipino children aged 4–6 years
(n = 20) and 10–12 years (n = 14), all with mean EGRAC at baseline ranging between 1.3 and 2,
EGRAC was measured but not urinary excretion of riboflavin, and the content of the basal diet was
analysed chemically (Kuizon et al., 1998). The habitual riboflavin intake was low (0.25–0.34 mg/day in
children, 0.45 mg/day in non-pregnant women and 0.30–0.53 mg/day in pregnant and lactating
women), and the energy intake approximately met the 1976 Filipino recommended dietary allowances
(RDA)2 . The adult participants went through four sequential feeding periods with duration of
8–10 days each: with a diet containing riboflavin at the usual level of their intake (period 1) or at
increasing percentages of the 1976 Filipino RDA (0.5 mg/1,000 kcal) i.e. 80% (period 2), 100%
(period 3) then 120% (period 4). Thus, mean riboflavin intake increased up to 1.09 mg/day in
non-pregnant women, up to 1.56 mg/day in pregnant women and up to 1.6 mg/day in lactating
women in the last period. The children went through two feeding periods at their usual level of intake,
then two periods with increasing intake up to a mean of 1.21 mg/day. By regression analysis, the
authors showed that the mean intake needed to reach an EGRAC below 1.3 were 0.72 mg/day
(0.38 mg/1,000 kcal) in non-pregnant women, 1.36 mg/day (0.58 mg/1,000 kcal) in pregnant women,
1.31 mg/day (0.60 mg/1,000 kcal) in lactating women, 0.58 mg/day (0.43 mg/1,000 kcal) in children
aged 4–6 years and 0.70 mg/day (0.38 mg/1,000 kcal) in children aged 10–12 years.

In an intervention study in Gambia (non-randomised), 278 infants followed between 0 and 2 years
and their mothers, with mean EGRAC of 1.52 (cord blood) and 1.95 (at parturition), were studied to
investigate the effect of supplementation on riboflavin status (Bates et al., 1982a,b) (Section 4.2).
Some infants (n = 175) were breastfed and received a weaning food supplemented with riboflavin
(1.4 lg/g fresh weight) between 3 and 12 months of age in addition to the local weaning food. Their
mothers were supplemented to increase the content of riboflavin in breast milk. Another group of
infants were breastfed and, received, at 3–4 months of age, a local weaning food, which was a poor
source of vitamin (content not given), and their mothers were not supplemented. The mean EGRAC

2 Energy intake was about 1,900 kcal/day for non-pregnant, about 2,300–2,400 kcal/day for pregnant and lactating women, and
about 1,350 and 1,800 kcal/day for children aged 4–6 years and 10–12 years, respectively.
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corresponding to unsupplemented intakes (breast milk and weaning food) ranging between 0.13 and
0.21 mg/day in infants aged 0–12 months remained always above or only slightly below 1.3. However,
mean EGRAC remained below 1.3 until 12 months (although it increased between 9 to 12 months in
20% of the infants) in infants receiving the supplemented weaning food and breast milk from
supplemented mothers (total intake 0.3–0.4 mg/day).

Usual intakes of 0.5 mg/day induced mean EGRAC in Gambian pregnant and lactating women of
1.75 and 1.82, respectively, with associated clinical signs of deficiency, especially in mothers close to
parturition (Bates, 1981). In a study in India on pregnant and non-pregnant women, pregnant women
with clinical signs of deficiency had a mean EGRAC significantly higher than that of non-pregnant women
with clinical signs of deficiency or that of pregnant women without clinical signs of deficiency (2.64 vs
2.05 with p < 0.001, and 2.11 with p < 0.05, respectively) (Bamji and Prema, 1981) (Section 5.2.3.1). As
regards association between EGRAC and some other health parameters, in a randomised controlled trial
(RCT) in 123 women with EGRAC > 1.4, supplementation with 2 or 4 mg/day riboflavin for 8 weeks,
compared with placebo, in addition to a mean intake of 1.1–1.3 mg/day according to groups, did not lead
to any significant change in any of the haematologic markers investigated (Powers et al., 2011).
However, in this study, a significant positive relationship (p < 0.02) was observed between baseline
EGRAC and the change in haemoglobin concentration in the 4 mg/day group or both supplemented
groups combined (but not in the 2 mg/day group). The authors reported that results for erythrocyte
number were similar. There was also a significant association between baseline tertile of EGRAC and the
change in haemoglobin concentration or erythrocyte number (the greater change being observed in the
upper tertile > 1.65). The relationship between riboflavin status and haematologic markers is also
discussed in Sections 2.2.2.1 and 2.3.7.

In a study on apparently healthy children (12–14 years) in Croatia, 20% of the 124 subjects had
baseline EGRAC > 1.20 (Suboticanec et al., 1990) Then, 38 subjects were assigned to a ‘riboflavin
group’ supplemented with 2 mg/day riboflavin for two months and 40 received a placebo (mean
baseline EGRAC: 1.15 and 1.13 respectively, no randomisation, no information on energy or riboflavin
intake from the diet). Mean EGRAC did not change significantly in the placebo group (1.12 compared
to 1.13 at baseline), while it decreased significantly in the riboflavin group (1.00 compared to 1.15 at
baseline, p = 0.001) in which there were no subjects with EGRAC > 1.20 anymore. This result in
children is in line with results from intervention studies in the EU and the USA, which showed that
EGRAC decreases with increasing riboflavin intake in healthy young and older adults. EGRAC exceeded
1.3 (i.e. 1.37–1.46) with low riboflavin intakes (e.g. 0.53 mg/day) (van der Beek et al., 1988). It was
above 1.2 at intakes of 0.6 mg/1,000 kcal (energy intake not given), but declined following increased
riboflavin intakes of 0.8 and 1.0 mg/1,000 kcal (Roe et al., 1982). In older adults and adolescent
rural Gambians with initial EGRAC ranging from 1.6 to 2.06, and median dietary riboflavin intake of
0.7 mg/day, EGRAC decreased with supplementation (doses ranging from 0.25 to 2.5 mg/day),
reaching values of 1.3–1.4 with total intakes between 1.7 and 2.5 mg/day (Bates et al., 1989).

It was previously considered that an adequate riboflavin status was defined as an EGRAC of 1.2 or
less (Glatzle et al., 1970; Sauberlich et al., 1974; Sadowski, 1992; Benton et al., 1997; Sauberlich,
1999), insufficiency as EGRAC between 1.2 and 1.4, and deficiency as EGRAC greater than 1.4
(Sauberlich et al., 1974; Sadowski, 1992; Sauberlich, 1999). A revised cut-off of 1.3 to define
adequacy was used (Bates et al., 2016). From the comparison of the performance of the analytical
methods used in the National Diet and Nutrition Survey (NDNS) in 1990 and 2003, Hill et al. (2009)
concluded that the analytical method used in 1990 NDNS significantly underestimated the EGRAC
compared to that used in 2003 NDNS (p < 0.0001), due to methodological differences. The authors
concluded that the EGRAC analytical method should be standardised for measuring EGRAC in nutrition
surveys. In a systematic review including 18 supplementation studies (Hoey et al., 2009), the authors
explained that a cut-off of 1.3 had been proposed elsewhere as ‘generally indicative of suboptimal
status’ or ‘upper limit of a normal range’ or ‘upper limit of normality’ (Bates et al., 1982a,b; Powers
et al., 1987; McNulty et al., 2006) and was a result of a ‘change of assay methodology’ compared to
earlier studies.

Data on riboflavin intake and EGRAC are available from two large European observational studies.
In the NDNS (years 5–6 i.e. 2012/13–2013/14), a survey representative of the UK population (Bates
et al., 2016), for adults 19–64 years, intake (n = 965 men and women) and EGRAC (n = 526 men and
women) were measured. Mean EGRAC was 1.36, with 55% of the adults with an EGRAC above 1.3,
and the mean intake was 1.61 mg/day (2.5–97.5th percentiles: 0.54–3.14 mg/day). In earlier NDNS
(1990 and 2003), EGRAC were not correlated with intake (Hill et al., 2009). Data from the VERA
Study made in 2,006 adults in Germany (Section 2.4.1) showed a median EGRAC of 1.33 and 1.37
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(Heseker et al., 1992), with a median riboflavin intake of 1.5 and 1.3 (2.5–97.5th percentiles: 0.8–3.4
and 0.5–2.9 mg/day) for men and women, respectively (Heseker et al., 1994).

The Panel considers that EGRAC is a useful biomarker of riboflavin status. It is high in case of
clinical symptoms of riboflavin deficiency, and decreases with increasing riboflavin intakes. The
Panel notes that the analytical methods to assess EGRAC are not standardised. From a study in older
adults, the Panel also considers that an EGRAC of 1.3 or less indicates adequate riboflavin status based
on the inflection point observed in the relationship between mean EGRAC and mean urinary excretion.
The Panel considers that this cut-off value may be used in younger adults, children, infants, pregnant
women, lactating women.

2.4.3. Plasma and erythrocyte riboflavin, FAD, FMN

2.4.3.1. Plasma riboflavin, FAD and FMN concentration

Plasma/serum concentrations of riboflavin, FMN and FAD have been proposed to evaluate riboflavin
status. However, no cut-off value for these biomarkers to assess riboflavin deficiency and/or adequacy
has been proposed. Plasma/serum riboflavin reflects recent dietary intake and therefore is variable as
reviewed by Sauberlich et al. (1974) and it is significantly lowered by tobacco smoking, as investigated
by Ulvik et al. (2010).

In the RCT on Chinese adult men (Guo et al., 2016) (Section 2.4.1), compared to the group with an
intake of 1.0 mg/day, fasting plasma free riboflavin concentration was significantly higher at a mean
total riboflavin intake of 1.5 mg/day (p < 0.05) and continued to increase for the higher intake levels
investigated.

In a randomised, placebo-controlled study in Northern Ireland, 46 older subjects with EGRAC ≥ 1.2
(selected from a population of 124 individuals with mean age of 69 years) received for 12 weeks
either a placebo (n = 23) or a daily riboflavin dose of 1.6 mg (n = 23) after an overnight fast (Hustad
et al., 2002). Mean baseline dietary intake (1.6 mg/day) did not differ significantly between groups.
Mean plasma free riboflavin and plasma FMN increased significantly after supplementation compared
to baseline (13.2–19.5 nmol/L or by about 83%, p = 0.001, and 6.5–7.9 nmol/L or by about 27%
(p = 0.04 respectively), while plasma FAD (i.e. the major form present in plasma, Section 2.3.2) did
not. Plasma FMN was strongly associated with the plasma concentration of its precursor riboflavin
(Spearman correlation coefficient 0.58, p < 0.01), while the correlation coefficient of plasma FAD with
its precursor FMN was lower (0.30, p < 0.01), and plasma riboflavin and FAD concentrations were not
correlated. None of these plasma concentrations were correlated with EGRAC.

This result of Hustad et al. (2002) on a relationship of plasma riboflavin and FMN (but not FAD)
with riboflavin intake is in line with a previous study in the USA, in which 10 men received a basal diet
containing 0.55 mg/day riboflavin while six other men received the basal diet for 16 months and were
supplemented with 2.55 mg/day riboflavin for 14 months, and 3.55 mg/day riboflavin for the last two
months (Bessey et al., 1956) (Section 2.4.3.2). Supplemented subjects were reported to have
‘significantly’ higher mean plasma free riboflavin plus FMN compared to the restricted group (about
19.2 vs 7.6 nmol/L) and higher mean plasma total riboflavin (about 83.2 vs 63.7 nmol/L), but a similar
mean plasma FAD (about 62.4 vs 58.6 nmol/L) (statistics not reported).

However, the results of Hustad et al. (2002) are in contrast with an observational study (Vasilaki
et al., 2010) that reported, in 119 healthy subjects, a positive correlation between plasma FMN and
FAD, and between plasma free riboflavin and plasma FAD or FMN (r = 0.5, 0.49 and 0.55, respectively;
p < 0.001).

The Panel notes that plasma free or total riboflavin reflects recent intakes, and that plasma free
riboflavin and FMN increase with riboflavin supplementation, while plasma FAD is not a sensitive
biomarker of riboflavin intake. The Panel notes that no plateauing of the riboflavin concentration in
plasma was observed in the range of intake investigated (1–2 mg/day) and that no conclusion can be
drawn regarding the interpretation of the results on plasma concentration for this range of intake. The
Panel notes that plasma riboflavin, FMN or FAD are not correlated with EGRAC and that no normal
range or cut-off value to assess riboflavin deficiency and/or adequacy has been proposed for these
biomarkers.

2.4.3.2. Erythrocyte riboflavin, FAD, FMN concentration

The erythrocyte concentration of FAD and FMN (i.e. the main forms present in erythrocytes,
Section 2.3.2) has been considered for the evaluation of riboflavin status (Burch et al., 1948). A cut-off
of 270 nmol/L for erythrocyte riboflavin has been proposed to define riboflavin deficiency (IOM, 1998).
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According to Sauberlich et al. (1974), who used the available evidence (ICNND, 1963) to set guidelines
for the interpretation of erythrocyte concentrations of riboflavin in adults, concentrations of less than
270 nmol/L indicated deficiency, between 270 and 400 nmol/L in cells indicated insufficiency and more
than 400 nmol/L in cells indicated sufficiency.

In a first intervention study in India in 16 healthy subjects and 11 subjects with clinical signs of
riboflavin deficiency (Bamji, 1969), at baseline, the mean erythrocyte total riboflavin content in
deficient subjects was significantly lower compared to healthy subjects (616.1 vs 854.0 nmol/L,
p < 0.01) and increased to 920.7 nmol/L (significance not reported) after 7 days of supplementation
with 10 mg/day riboflavin. In a second intervention study of 15–18 days described in the same paper,
four healthy women received a basal diet containing 0.6 mg/day riboflavin, subsequently
supplemented with riboflavin at weekly intervals to reach a total intake of 0.8, 1 and 1.2 mg/day
respectively. The erythrocyte total riboflavin concentrations did not change except in one subject
(statistics not given), which may indicate saturation.

In the study by Bessey et al. (1956) (Section 2.4.3.1), in which 10 men received a basal diet
containing 0.55 mg/day riboflavin and six men received the basal diet for 16 months then were
supplemented (2.55 mg/day for 14 months, then 3.55 mg/day for 2 months), the mean erythrocyte
riboflavin concentration in the restricted group was lower than in the supplemented group (315.9 vs
602.1 nmol/L, statistics not provided). In a second study described in the same paper, four groups of
7–8 men each were fed, for 9 months (280 days), a basal diet (0.4 mg/day riboflavin) supplemented
with different amounts, reaching a total intake of riboflavin ranging across groups between 0.5
(restricted group) and 2.4 mg/day. The restricted group was later supplemented with riboflavin
(1.3 mg/day for 71 more days and 2.4 mg/day for the last two weeks). A fifth group was fed with a
regular hospital diet (1.6 mg/day riboflavin). At baseline, all groups had similar erythrocyte riboflavin
concentration (about 540 nmol/L). During the first 9 months, the restricted group had significantly
lower erythrocyte riboflavin (range 321.3–569.7 nmol/L) (p = 0.05) compared to the three other
groups that were not different from each other (range between 488.7 and 648 nmol/L) or from the
fifth group on the hospital diet and did not change with time. This difference with the restricted group
was significant when data were analysed between day 80 and day 280 when the erythrocyte
concentration in the restricted group was the lowest, i.e. about 405 nmol/L (but not anymore at the
end of the study when the restricted group was additionally supplemented to 2.4 mg/day). The
authors concluded that an erythrocyte riboflavin content of 540 nmol/L or more indicates an adequate
intake, i.e. a concentration that occurred in most individuals at intakes of about 1.5–2.5 mg/day. At
higher intakes (10 mg/day), the authors reported that, after a temporary increase of few hours,
erythrocyte riboflavin content returned to values of 540–675 nmol/L, which may indicate saturation.
The authors considered an erythrocyte riboflavin concentration of 405 nmol/L, on the contrary, as an
indication that the intake of riboflavin (i.e. about 0.5 mg/day) should be increased.

In an observational study by Graham et al. (2005), the authors compared 84 pregnant women in
Nepal (mean EGRAC = 1.7, mean erythrocyte riboflavin 141 nmol/L and unknown riboflavin intake)
with unpublished data from healthy Californian adults, in which the 5th percentile of erythrocyte
riboflavin concentration was 170 nmol/L. An erythrocyte concentration of riboflavin + FAD below
170 nmol/L detected 92% of subjects with EGRAC ≥ 1.4, whilst 73% of those with EGRAC < 1.4 had
erythrocyte riboflavin+FAD concentrations above 170 nmol/L.

In the RCT by Hustad et al. (2002) in which 46 older adults with EGRAC ≥ 1.2 received either a
placebo or a daily riboflavin dose of 1.6 mg for 12 weeks in addition to a baseline intake of 1.6 mg/day
(Section 2.4.3.1), after supplementation, the erythrocyte concentration of free riboflavin remained below
the limit of quantification (< 1 nmol/L), while mean erythrocyte FMN increased compared to baseline
(32–54 nmol/L or by 87%, p < 0.001), as well as mean erythrocyte FAD (463–525 nmol/L or by 14%,
p = 0.01). Erythrocyte FMN was correlated with erythrocyte FAD (0.57, p < 0.01). Both erythrocyte FMN
and FAD were correlated with EGRAC (r = 0.45, p < 0.01 and 0.30, p < 0.05, respectively). Neither
erythrocyte FMN nor FAD was correlated with plasma FMN or FAD.

In the observational study by Vasilaki et al. (2010), on 119 healthy subjects, erythrocyte FMN was
also positively correlated with erythrocyte FAD (r = 0.44, p < 0.001). Erythrocyte FMN (but not FAD)
was positively correlated with erythrocyte free riboflavin (p < 0.001). However, contrary to Hustad
et al. (2002), erythrocyte FAD was weakly but significantly correlated with plasma FAD (r = 0.21,
p < 0.05).

The Panel notes that the concentration of FAD and FMN in erythrocyte could be considered a
marker of long-term riboflavin intake. Erythrocyte concentration of riboflavin (mainly FMN and FAD) is
decreased with riboflavin deficiency. However, the Panel notes that limited data are available on a
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dose-response relationship with riboflavin intake: erythrocyte total riboflavin was not a sensitive
biomarker of riboflavin intakes in the range 0.8–1.2 mg/day in one study, while in another study,
erythrocyte FMN and to a lower extent erythrocyte FAD reacted to riboflavin supplementation of
1.6 mg/day in addition to the baseline intake of 1.6 mg/day. The Panel notes that erythrocyte FMN
and FAD are correlated with EGRAC, while correlation with plasma values is unclear. A variety of cut-off
values for erythrocyte concentration of riboflavin (or riboflavin + FAD) have been proposed to assess
riboflavin deficiency or adequacy. The Panel thus considers that additional data are required before a
conclusion on the suitability of the erythrocyte riboflavin content as a biomarker of riboflavin status can
be made.

2.4.4. Pyridoxamine phosphate oxidase (PPO) activity and activation coefficient

As for EGR, an activation coefficient for PPO (Section 2.2.1), i.e. PPOAC, can be defined: PPO is
expressed as nmol pyridoxal phosphate formed per hour and g haemoglobin, and PPOAC as the ratio
of the enzyme activity measured with and without the cofactor FMN in vitro (Bates and Powers, 1985;
Mushtaq et al., 2009).

PPO activity or PPOAC were proposed for measuring riboflavin status, especially in population with
high prevalence of G6PD deficiency (Section 2.4.3). In an intervention study (Bates and Powers,
1985), 72 pregnant and lactating Gambian women, the vast majority with clinical signs of riboflavin
deficiency, were randomly assigned to receive either a placebo (n = 38) or a riboflavin supplement
(5 mg/day, intake from food not reported, n = 34). In the non-supplemented group, at the end of the
study compared to baseline, mean PPO activity in haemolysates decreased (3.60 vs 4.34, p < 0.05)
and mean EGRAC increased (mean 2.88 vs 2.20, p < 0.001) significantly. In the supplemented group,
three women were G6PD deficient. Before supplementation, PPO was ‘similar’ in G6PD-deficient and
non-deficient subjects (mean of 4.44 and 5.43, respectively), while EGRAC was lower in the deficient
subjects (mean of 1.41 vs 2.24) (significance not tested). After supplementation, in subjects who were
not G6PD deficient, mean EGRAC significantly decreased compared to baseline (1.37 vs 2.24) and
mean PPO significantly increased (16.41 vs 5.43) (p < 0.001). In the G6PD-deficient subjects, the
authors reported a ‘substantial stimulation’ of PPO compared to baseline (mean value of 11.85 vs 4.44,
significance not tested), while the EGRAC decrease after supplementation was ‘small’ (mean EGRAC
1.16 vs 1.41 at baseline).

In a study in the UK, haemolysate samples were selected from a previous intervention study in
145 young healthy non G6PD deficient women selected for EGRAC ≥ 1.40 (Mushtaq et al., 2009). A
total of 68 samples were randomly selected from subjects who had received for eight weeks either a
placebo (n = 23), or riboflavin (2 or 4 mg/day, n = 23 or 22, respectively). After supplementation,
compared to baseline, mean EGRAC decreased significantly in both supplemented groups (1.34 and
1.25 for the 2 and the 4 mg/day group respectively compared to 1.59, p = 0.002 and p < 0.001), and
the decrease was significantly larger than in the placebo group (p < 0.001). Both PPO and PPOAC
responded to supplementation. There was a dose–response relationship with supplementation only for
PPO activity as its increase in the 4 mg/day group was significantly higher than in the 2 mg/day
(p < 0.001), while the decrease in PPOAC was not significantly different between the supplemented
groups. There was a strong inverse correlation between PPO activity and PPOAC (r = �0.65,
p < 0.001) and both correlated significantly with EGRAC (baseline or post-intervention, r between 0.41
and 0.57). A significant relationship was shown between PPO activity or PPOAC and riboflavin intake
measured at baseline (r = 0.35 and 0.42 respectively, p < 0.003 or 0.002 respectively)

The Panel notes that PPO activity and PPOAC are promising biomarkers, as they respond to
riboflavin intake from foods or supplements and could be used in populations with a high prevalence of
G6PD deficiency. However, the Panel also notes that no criteria have been developed for these
biomarkers to assess riboflavin adequacy.

2.4.5. Conclusion on biomarkers

The Panel considers that 24-h (preferably) or fasting urinary excretion of riboflavin is a suitable
marker of riboflavin short-term intake and of riboflavin status. The Panel considers that the inflection
of the urinary excretion curve in relation to riboflavin intake reflects body saturation of riboflavin and
can be used to indicate adequate riboflavin status. The Panel notes that analytical methods can
influence the results for absolute values of urinary riboflavin, but assumes that the overall profile of the
curve as a function of intake and the inflection point of this curve are not affected.
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The Panel considers that EGRAC is a useful biomarker of riboflavin status and that EGRAC of 1.3 or
less indicates adequate riboflavin status. The Panel also notes that EGRAC determination requires a
single blood sample, and thus is more easily performed than urine collection over 24 h. The
Panel notes that there is a lack of standardisation of EGRAC measurement (thus comparison of results
from different experimental/observational studies are difficult) and that EGR saturation with the
coenzyme cannot be considered as representative for all riboflavin functions (described in
Section 2.2.1).

The Panel considers that plasma riboflavin, either free or total, responds to riboflavin intake but this
biomarker has several limitations including its sensitivity to recent intakes. However, riboflavin status
can be derived from fasting concentration of free riboflavin (or free riboflavin + FMN) in plasma
determined in controlled conditions. Plasma FMN, but not FAD, responds to riboflavin supplementation.
A normal range or cut-off for deficiency or adequacy for plasma riboflavin, FMN or FAD is not available.
The Panel considers that that additional data are required before a conclusion on the suitability of the
erythrocyte riboflavin concentration as a biomarker of riboflavin status can be made. The Panel also
considers that PPO activity or PPOAC are promising biomarkers but notes that no criteria have been
developed for them to assess riboflavin adequacy.

Overall, the Panel considers that the inflection point of the urinary excretion curve in relation to
riboflavin intake is the most suitable biomarker to assess adequacy of riboflavin status. EGRAC can be
used as a supportive biomarker of the urinary excretion in order to assess riboflavin status.

2.5. Effect of energy intake or expenditure or exercise

Twelve US young healthy normal weight women at study entry consumed a diet with a mean riboflavin
intake of 1.45 mg/day (Belko et al., 1983). After a 2-week basal period, in which ‘caloric intakes were
adjusted to achieve weight management’ and subjects (mean EGRAC of 1.27) were fed a basal diet
providing 2,000 kcal/day and 1.2 mg/day riboflavin (0.14 mg/MJ or 0.6 mg riboflavin/1,000 kcal), the
subjects went through a 4-week sedentary period. Mean EGRAC first increased to 1.41 when subjects
were fed only the basal diet and had to continue their normal daily activities while limiting ‘any
recreational exercise’. Then, mean EGRAC decreased to 1.24 when the riboflavin content of the diet was
increased by 0.2 or 0.4 mg/1,000 kcal increments (up to 1.6 or 2 mg/day, i.e. 0.19 or 0.24 mg/MJ or 0.8
or 1.0 mg/1,000 kcal, depending on the subject). During the following period of exercise, mean EGRAC
was 1.27 (first 3 weeks) when the diet did not change except for the increased energy intake by
additional 240 kcal/day (total of 2,240 kcal, 9.37 MJ/day). Then, EGRAC decreased significantly
compared to the first 3 weeks, only when riboflavin intake was increased by 0.4 mg/day (0.047 mg/MJ or
0.2 mg/1,000 kcal), in the second 3 weeks. Throughout the study, urinary excretion of riboflavin did not
change during most of the exercise period, and remained significantly (but weakly) negatively correlated
with EGRAC (r = �0.23, p ≤ 0.01).

In a US study, 12 ‘overweight and obese’ women were randomly divided in two groups of six (Belko
et al., 1984). Both groups had an initial baseline period of non-exercise, with a diet containing
1,200 kcal and 0.96 mg/day of riboflavin (0.19 mg/MJ or 0.8 mg/1,000 kcal), and two 5-week
metabolic periods of either exercise or non-exercise (cross-over design). During the study, the
riboflavin/calorie ratio was kept constant. EGRAC increased from a baseline mean of 1.28–1.40 during
non-exercise and to 1.49 during exercise. Mean 24-h urinary excretion of riboflavin (collection over
3 days) fell from about 48% of intake during baseline to about 30% of intake during non-exercise and
to about 19% of intake during exercise (statistically significant effect of exercise: p = 0.01).

In another study in the USA (Belko et al., 1985) that also examined the effect of exercise on
riboflavin status of ‘moderately overweight’ women (defined as in Belko et al. (1984)), 12 women
consumed a diet providing 1,250 kcal/day. They were randomly assigned to receive either only the
basal diet with a riboflavin content of 1.2 mg/day (0.23 mg/MJ, 0.94 mg/1,000 kcal) (n = 6, ‘moderate
riboflavin’ group) or a diet containing 1.4 mg/day (0.28 mg/MJ or 1.16 mg riboflavin/1,000 kcal)
(n = 6, ‘high riboflavin’ group). Within each group, they were then randomly assigned to sequences of
exercise and non-exercise with a cross-over design. In both groups, mean EGRAC significantly
increased during exercise, compared to non-exercise, from 1.16 to 1.20 (‘high riboflavin’ group) and
from 1.31 to 1.36 (‘moderate riboflavin’ group) (p < 0.05). Mean urinary riboflavin excretion was
significantly lower with exercise compared to non-exercise in the ‘high riboflavin’ group (0.176 vs
0.326 mg/day, p < 0.05) but not in the ‘moderate riboflavin’ group (0.072 vs 0.127 mg/day).

Fourteen healthy women participated in a 10-week exercise study in the USA (Winters et al., 1992).
After a 2-week basal period, the subjects were randomly allocated to either a diet (‘low riboflavin,
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LRibo’) providing 1.2 mg/day riboflavin (0.15 mg/MJ or 0.6 mg/1,000 kcal, mean energy intake of
1,801 kcal/day, i.e. 7.54 MJ/day) or to the basal diet supplemented with riboflavin as FMN (‘high
riboflavin, HRibo’) providing 1.8 mg/day riboflavin (0.22 mg/MJ or 0.9 mg/1,000 kcal, mean energy
intake: 1,933 kcal/day i.e. 8.09 MJ/day). All subjects were then randomly allocated to two four-week
metabolic periods of either exercise or non-exercise, when mean energy intake was 1,875 kcal/day
(7.84 MJ/day) and about 1,976 kcal/day (8.27 MJ/day), respectively, for both LRibo and Hribo groups.
The HRibo group had significantly lower EGRAC than the LRibo group during both non-exercise
(p < 0.0005) and exercise (p not reported) periods (mean: Hribo: 1.07 (non-ex), 1.109 (ex), LRibo:
1.22 (non-ex), 1.283 (ex)). However, both the LRibo and HRibo groups showed significant increases in
EGRAC during exercise periods (p < 0.0001 for both groups) compared to the non-exercise period.
Mean urinary excretion of riboflavin in the HRibo group was approximately three times the value of
that for the LRibo group during both no exercise (0.66 and 0.17 mg/day, respectively) and exercise
(0.46 and 0.14 mg/day, respectively) and both groups showed a significant decline in urinary riboflavin
excretion with exercise (p < 0.01). These results showed that EGRAC was lower and urinary excretion
is higher in the group with the higher riboflavin intake, and that EGRAC was increased and urinary
excretion decreased by exercise.

Six healthy sedentary to moderately active men with high baseline mean EGRAC of 1.53, and with
a body mass index (BMI) 17.2–30.2 kg/m2, were enrolled in a physical intervention metabolic study3 in
India (Soares et al., 1993). The study was divided in two periods of maintenance (M1 and M2 of 16
and 12 days respectively), with an exercise period of 18 days (EXER) of daily exercise in between. The
mean total energy expenditure (TEE) across metabolic periods (10.33, 11.01 and 10.64 MJ/day in M1,
M2 and EXER, respectively) was not substantially different (p value not reported). In both maintenance
periods, energy intake was 10.34 MJ/day and riboflavin intake was 1.04 mg/day (i.e. 0.10 mg/MJ or
0.42 mg/1,000 kcal). In the exercise period, additional energy was provided to compensate for the
increased energy cost of exercise (energy intake in EXER 11.63 MJ/day), and the riboflavin intake was
higher, 1.28 mg/day (or 0.11 mg/MJ or 0.46 mg/1,000 kcal). Mean EGRAC was statistically significantly
different over the three metabolic periods (p < 0.05): 1.36 (M1), 1.57 (EXER), and 1.54 (M2). Mean
urinary excretion expressed as % of intake was significantly lower in the exercise period compared to
period M1 (p < 0.05, 18.1% (EXER, i.e. mean of 232 lg/day) vs 26.2% (M1) or 22.3% (M2)).

Two experiments in a US study aimed at investigating the effect of exercise in healthy subjects
(Tucker et al., 1960). In the first experiment, seven ‘normal’ men on uncontrolled diets collected urine
samples at rest (2 h), then after they exercised, and after another period of rest after the exercise
(1 h). Hourly urinary riboflavin excretion during three periods of rest was significantly higher than
during exercise (158%, 138% and 150% of the exercise value, respectively, p < 0.05). In a second
experiment, nine healthy men maintained a constant riboflavin intake of 2 mg/day throughout the
study. During a control period of daily exercise, the energy composition of the diet needed for
maintenance of their body weight was 3,300 kcal/day (i.e. 13.81 MJ/day), the riboflavin intake was
1.2 mg/day (0.15 mg/MJ or about 0.6 mg/1,000 kcal), and the mean urinary excretion of riboflavin
was 285 lg/day. Then, the training session intensity was increased and also the diet composition was
changed up to 5,500–6,000 kcal/day for maintenance of body weight (i.e. 23.03–25.12 MJ/day, with a
riboflavin intake of 0.69–0.77 mg/day, 0.09–0.08 mg/MJ or about 0.33–0.36 mg/1,000 kcal). This
physical activity reduced the mean urinary riboflavin excretion to 137 lg/day by the third day
(p < 0.01).

The Panel notes that some results indicate that riboflavin status is modified by physical activity.
This is supported by the influence of exercise on EGRAC (that increased) (Belko et al., 1984, 1985;
Winters et al., 1992; Soares et al., 1993) and urinary excretion of riboflavin that generally decreased
(Tucker et al., 1960; Belko et al., 1984, 1985; Winters et al., 1992; Soares et al., 1993) but not always
(Belko et al., 1983). This suggests a higher utilisation of riboflavin with increased energy expenditure,
thus these results support the idea that riboflavin requirement could be related to physical activity.
However, the Panel notes the limitations of these studies. Only one study (Soares et al., 1993) reported
TEE in a small number of subjects, over a very wide range (8.3–19.6 MJ/day) although mean TEE did not
differ during the different experimental periods in which riboflavin intake was changed. The
Panel considers this a strong limitation. The Panel also notes the lack of information on the method of
measurement of riboflavin intake in some of the studies, the particular aim of some of the studies
(i.e. weight management studies in overweight or obese women), their short duration or small sample
size, and the high variability in the characteristics of the subjects (e.g. large range of BMIs). The

3 Well-controlled studies in which participants were housed in a metabolic unit are termed metabolic studies.
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Panel considers that, from the studies available, there is a lack of experimental data showing a clear
quantitative relationship between riboflavin status biomarkers (urinary excretion of riboflavin and EGRAC)
and energy expenditure (or physical activity).

2.6. Effects of genotype

FAD is required as a cofactor for the enzyme MTHFR (Section 2.2.1). A common polymorphism of the
gene encoding this enzyme, MTHFR C677T polymorphism, is reported to have unfavourable metabolic
and health consequences related to riboflavin. Homozygosity for the T allele is associated with up to 70%
reduced enzyme activity, which is caused by an increased propensity of the enzyme to dissociate from its
FAD cofactor (Guenther et al., 1999; Yamada et al., 2001) and it results in impaired folate metabolism
and high plasma total homocysteine concentrations (Jacques et al., 1996; Hustad et al., 2007).

Studies found that impaired functioning of the MTHFR enzyme is dependent on riboflavin status
measured by EGRAC, and that elevated plasma total homocysteine concentrations are evident only in
individuals with 677TT genotype and poor riboflavin status (McNulty et al., 2002; Garcia-Minguillan et al.,
2014). Plasma riboflavin also emerged as a factor influencing plasma total homocysteine in men and
women from the Framingham Offspring Cohort (Jacques et al., 2002), as well as in a cohort of 423
healthy Norwegian blood donors (Hustad et al., 2000). An RCT with supplementation with 1.6 mg/day
riboflavin (baseline intake not reported) showed increased riboflavin status (measured by EGRAC) to the
same extent in all genotype groups (CC, CT and TT), but plasma total homocysteine lowering was found
only in people with TT genotype without any effect in those with CC and CT genotypes (McNulty et al.,
2006). Thus, both observational studies and an RCT show consistent results. This genotype-specific effect
of riboflavin on homocysteine concentrations is probably a result of stabilising the variant enzyme and
restoring MTHFR activity.

Meta-analyses of observational studies showed that the MTHFR C677T polymorphism increases the
risk of high blood pressure by 24–87% (Qian et al., 2007; Niu et al., 2012; Wu et al., 2014; Yang
et al., 2014). A meta-analysis of genome-wide association studies, based on data from 200,000
Europeans, listed the MTHFR gene among 12 independent genetic variants associated with an
increased risk of high blood pressure (Ehret et al., 2011), but mechanisms are reported to be only
speculative (McNulty et al., 2017). There is also evidence that riboflavin supplementation can modify
the effect of the MTHFR C677T polymorphism on blood pressure. Results from three RCTs conducted
in patients with premature cardiovascular disease (Horigan et al., 2010; Wilson et al., 2012) and in
hypertensive individuals without overt cardiovascular disease (Wilson et al., 2013) showed that the
high blood pressure in individuals with TT genotype is highly responsive to riboflavin supplementation
at a dose of 1.6 mg/day for 16 weeks in addition to the usual diet, with an average decrease by
6–13 mmHg. Importantly, the effect of riboflavin on blood pressure was independent of the effect of
antihypertensive drugs taken by these patients.

Two observational studies suggested that bone mineral density (BMD) is positively associated with
riboflavin intake in case of MTHFR 677TT homozygosity (a genotype that has been reported to be
associated with reduced BMD and increased risk of fracture) (Macdonald et al., 2004; Abrahamsen
et al., 2005).

Some genetic defects that result in a ‘deficiency’ of riboflavin relative to the increased need for
riboflavin have been described and respond to riboflavin administration in amounts above the
reference values. These gene defects lead to disturbed transport of riboflavin or of riboflavin
coenzymes at the plasma membrane or between intracellular organelles or to insufficient synthesis of
FAD or to dysfunctional flavoproteins and can result in a typical organic aciduria (Gregersen et al.,
1986; Barile et al., 2016). The organic aciduria is the consequence of decreased activities of multiple
acyl-CoA dehydrogenases that are involved in fatty acid, choline and amino acid metabolism (similar to
multiple acyl-CoA-dehydrogenase deficiency (MADD, MIM #231680)). Increased excretion of
dicarboxylic acids in these cases results from microsomal and peroxisomal handling of fatty acids that
cannot undergo b-oxidation (Hoppel et al., 1979; Goodman, 1981; Veitch et al., 1988).

Mutations of human riboflavin transporters RFT 2 and 3 (coded for by SLC52A2 and SLC52A3,
respectively, and expressed in brain/salivary glands and intestine, prostate/testis/stomach/pancreas,
respectively) have been identified in patients with Brown–Vialetto–van Laere syndrome (homo- or
compound heterozygous mutation of SLC52A2) and Fazio–Londe syndrome (homo- or compound
heterozygous mutation of SLC52A3), autosomal recessive progressive neurologic disorders with early
onset of sensorineural hearing loss, bulbar dysfunction and severe muscle weakness leading to
respiratory insufficiency (Bosch et al., 2011; Haack et al., 2012; Subramanian et al., 2015).
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Several mutations in the gene coding for the FAD synthetase (FLAD1) that occurs in a cytosolic and
a mitochondrial isoform have been identified in patients with riboflavin-responsive MADD and
combined respiratory chain deficiency. Riboflavin responsiveness was observed in cases with mutations
expressing proteins with residual enzyme activity (Olsen et al., 2016).

Schiff et al. (2016) reported on a unique case of a 14-year old girl with recurrent exercise
intolerance and biochemical features of the MADD syndrome, which both responded promptly to high
doses of riboflavin. The authors identified a mutation of the FAD transporter (coded for by SLC52A32)
that transports FAD from the cytosol to the mitochondrion where the flavoprotein dehydrogenases are
located.

The Panel notes that the data indicate that MTHFR 677TT genotype, with a prevalence of 12–24%
of European populations, can increase the individual requirement for riboflavin, although the extent of
this increase cannot be defined. The Panel considers that this polymorphism should be considered in
determining the requirements for riboflavin.

3. Dietary sources and intake data

3.1. Dietary sources

The primary dietary sources of riboflavin include milk, milk products, eggs and offal according to
the European Nutrient Composition Database of EFSA (Section 3.2). Cow’s milk contains mainly free
riboflavin, and smaller amounts of FMN and FAD. Milk and dairy products make the greatest
contribution to riboflavin intake in Western diets (Powers, 2003). Due to its photosensitivity, riboflavin
can be lost from breast milk used in enteral nutrition of newborns (Bates et al., 1985).

Currently, riboflavin as well as riboflavin 50-phosphate sodium (Section 2.1) can be added to food4

and food supplements.5 The riboflavin content of infant and follow-on formulae and of processed
cereal-based foods and baby foods for infants and children is regulated.6

3.2. Dietary intake

EFSA estimated dietary intake of riboflavin from food consumption data from the EFSA
Comprehensive Food Consumption Database (EFSA, 2011a), classified according to the food
classification and description system FoodEx2 (EFSA, 2011b). This assessment includes food
consumption data from 13 dietary surveys (Appendix B) from nine countries (Finland, France,
Germany, Ireland, Italy, Latvia, the Netherlands, Sweden and the UK). Individual data from these
nationally representative surveys (except for the Finnish surveys in children) undertaken between 2000
and 2012 were available to EFSA. Riboflavin intake calculations were performed only on subjects with
at least two reporting days. The data cover all age groups from infants to adults.

Composition data for riboflavin were derived from the EFSA Nutrient Composition Database (Roe
et al., 2013), involving several national food database compiler organisations that were allowed to
borrow compatible data from other countries in case no original composition data were available. Food
composition information from Finland, France, Germany, Italy, the Netherlands, Sweden and the UK
were used to calculate riboflavin intakes in these countries, assuming that the best intake estimate
would be obtained when both the consumption data and the composition data are from the same
country. The amount of borrowed riboflavin values in the seven composition databases used varied
between 15% (Germany) and 85% (Sweden). For countries not having any food composition
database, i.e. Ireland and Latvia, food composition data were used from the UK and Germany,
respectively. EFSA estimates are based on consumption of foods that may be fortified or not
(and without taking dietary supplements into account).

Data on infants (1–11 months old) were available from Finland, Germany, Italy and the UK. The
proportions of breastfed infants were between 21% and 58% according to the survey considered and
most breastfed infants were partially breastfed (see table footnotes of Appendices C and D). The
Panel notes the limitations in the methods used for assessing breast milk consumption in infants

4 Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins
and minerals and of certain other substances to foods, OJ L 404, 30.12.2006, p. 26.

5 Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the
Member States relating to food supplements, OJ L 183, 12.7.2002, p. 51.

6 Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive
1999/21/EC, OJ L 401, 30.12.2006, p.1 and Commission Directive 2006/125/EC of 5 December 2006 on processed cereal
based foods and baby foods for infants and young children, OJ L 339, 6.12.2006, p. 16.
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(table footnotes of Appendices C and D) and related uncertainties in the riboflavin intake estimates for
infants.

Riboflavin intake mean estimates ranged from 0.6 to 1.2 mg/day (0.2–0.4 mg/MJ) in infants
(< 1 year), from 0.9 to 1.4 mg/day (0.2–0.4 mg/MJ) in children aged 1 to < 3 years, from 1 to
1.8 mg/day (0.2–0.3 mg/MJ) in children aged 3 to < 10 years, and from 1.2 to 2.2 mg/day
(0.2–0.3 mg/MJ) in children aged 10 to <18 years. Riboflavin intake mean estimates ranged between
1.4 and 2.2 mg/day (0.2 mg/MJ) in adults (≥ 18 years).

The main food groups contributing to riboflavin intake among infants and children aged
1–< 3 years were ‘food products for young population’ and ‘milk and milk products’. From the age of
3 years onwards, the main contributors of riboflavin were the food groups ‘milk and milk products’,
‘grains and grain-based products’ and ‘meat and meat products’. Within these three food groups, liquid
milk types, fresh meat and breakfast cereals were the most contributing foods among adults.
Differences in main contributors to riboflavin intakes between sexes were minor.

4. Overview of dietary reference values and recommendations

4.1. Adults

D-A-CH (2015) considered data on 24 h riboflavin urinary excretion (with a target of at least 120 lg
in 24 h urine) and on EGRAC (with a target of EGRAC < 1.2) (Sauberlich et al., 1974). The reference
values were derived in consideration of the reference values for energy intake, due to the functions of
riboflavin in energy metabolism (German Nutrition Society, 2015). In long-term studies in adults
consuming 9.4 MJ/day and increasing riboflavin doses (starting from an intake of 0.55 mg/day at
which signs of deficiency were observed), a major change in 24-h urinary riboflavin excretion occurred
between intakes of 1.1 and 1.6 mg/day (0.12 and 0.17 mg/MJ), which was assumed to indicate tissue
saturation (Horwitt et al., 1950) (Section 2.4.1). Other data in children, men and women showed that,
at a riboflavin intake of about 0.12 mg/MJ, adequate EGRAC and riboflavin urinary excretion are
observed (Horwitt et al., 1950; Kuizon et al., 1998). An intake of 0.12 mg/MJ was considered as the
AR. For older adults (65 years and over), there was no indication of a requirement for riboflavin
different from the one of younger adults (Boisvert et al., 1993) (Sections 2.4.1 and 2.4.2). The PRIs
for the age ranges 19–< 51, 51–< 65 and ≥ 65 years were calculated considering a coefficient of
variation (CV) of 10% and the reference values for energy.

In NNR 2012, because of the lack of new studies, the Nordic Council of Ministers (2014) maintained
their previous AR of 0.12 mg/MJ (NNR, 2004) based on data on urinary excretion and on EGRAC (Roe
et al., 1982; Belko et al., 1983; National Research Council, 1989; Toh et al., 1994). A Recommended
Intake (RI) was derived at 0.14 mg/MJ, which corresponded to about 1.5–1.6 mg/day for men and
1.2–1.3 mg/day for women with moderate physical activity. The Nordic Countries stressed that, when
planning diets, the riboflavin content should not be lower than 1.2 mg/day even at an energy intake
below 8 MJ/day (FAO/WHO, 1967; National Research Council, 1989). A Lower level of Intake of
0.8 mg/day was set based on depletion/repletion studies (Horwitt et al., 1950; FAO/WHO, 1967; IOM,
1998). Data on riboflavin intake/status and health outcomes could not be used to set DRVs (de Vogel
et al., 2008; Kabat et al., 2008; Sharp et al., 2008; Maruti et al., 2009; Shrubsole et al., 2009; Bassett
et al., 2012b; Key et al., 2012).

WHO/FAO (2004) set a Recommended Nutrient Intake for men and women respectively at 1.3 and
1.1 mg/day. The WHO/FAO reported on studies on riboflavin status measured by EGRAC (Belko et al.,
1983, 1984; Bates et al., 1989; Kuizon, 1992), on a daily intake of 1.7 mg/day that was largely
excreted in the urine (Roughead and McCormick, 1991), and noted that riboflavin tissue saturation
occurred at intake above 1.1 mg/day. Two studies undertaken in older adults were cited (Alexander
et al., 1984; Boisvert et al., 1993), but no specific value was set for this population.

Afssa (2001) set PRIs based on data on urinary riboflavin excretion (Horwitt et al., 1948), adapted
according to the energy requirements proposed by Afssa (2001), and discarded some studies where
riboflavin status was measured as EGRAC or urinary riboflavin excretion (Roe et al., 1982; Kuizon,
1992; Boisvert et al., 1993) based on their small sample size. PRIs of 1.6 mg/day (for men) and
1.5 mg/day (for women) and 1.6 mg/day (for both sexes at 75 years of age or above) were proposed.

The Health Council of the Netherlands (2000) set an adequate intake (AI) of 1.1 mg/day for men
and of 0.8 mg/day for women based on studies on urinary excretion (Horwitt et al., 1950; Horwitt,
1966). Urinary excretion increases at riboflavin intakes of 1.1–1.6 mg/day. A ratio between riboflavin
urine excretion and riboflavin intakes appeared to be constant for an intake of 1.1 mg/day, which
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meant that a saturation of tissues occurred. The Council set different PRIs for men and women on the
basis of different energy intakes (Bates et al., 1989; Zempleni et al., 1996). For older adults (over
51 years old), it was considered that data on urinary excretion studies and EGRAC did not suggest the
setting of different PRIs from those determined for younger adults (Bates et al., 1989; Lowik et al.,
1990; Boisvert et al., 1993; Bates, 1997).

IOM (1998) considered mainly studies on subjects receiving riboflavin from food or food and
supplements, and reporting occurrence of clinical signs of deficiency, and/or measuring EGRAC and/or
erythrocyte concentration of riboflavin or changes in the riboflavin urinary excretion curve. These studies
were undertaken in women (Sebrell et al., 1941; Williams et al., 1943; Brewer et al., 1946; Davis et al.,
1946; Roe et al., 1982; Belko et al., 1983; Kuizon, 1992), in men (Keys et al., 1944; Horwitt et al., 1949,
1950; Bessey et al., 1956) or both (Boisvert et al., 1993). Based on these references, the IOM considered
that normal EGRAC values were associated mostly with intakes below 1.3 mg/day. Deficiency was
observed for intakes of about 0.5–0.6 mg/day with measures of urinary riboflavin excretion by
microbiological assays (Sebrell et al., 1941; Horwitt et al., 1950). IOM (1998) considered that the
difference in riboflavin requirement between sexes was explained by size and energy expenditure. For
men (19–70 years), an estimated average requirement (EAR) of 1.1 mg/day and, using a CV of 10% (due
to a lack of data on the variation in requirements), an RDA of 1.3 mg/day was determined. Regarding
women, an EAR at 0.9 mg/day and a RDA at 1.1 mg/day were set. It was considered that the limited
data available in older adults (Alexander et al., 1984; Boisvert et al., 1993) did not support a requirement
for older adults (above 70 years old) different from that of younger adults.

The SCF (1993) assessed the intake at which clinical signs of deficiency appear, from clinical data
with controlled riboflavin intakes and from epidemiological studies that reported deficiency for an
intake range of 0.5–0.8 mg/day. The SCF also took into account the inflection in urinary riboflavin
excretion according to increasing riboflavin intakes considered as an indication of tissue content
(Horwitt et al., 1950; Bro-Rasmussen, 1958). For all adults, a lowest threshold intake was defined at
0.6 mg/day. For men, an AR was determined at 1.3 mg/day by interpolation between the intakes of
1.1 and 1.6 mg/day, between which a sharp increase in urinary riboflavin excretion occurred (Horwitt
et al., 1950). A PRI was set at 1.6 mg/day for men also on the basis of urinary excretion studies. For
women, the AR was derived from the AR for men taking into account body weight. Thus, for women,
the AR and PRI were 1.1 and 1.3 mg/day, respectively. The SCF acknowledged the conventional
expression of riboflavin requirements on the basis of energy intake, but did not relate riboflavin
requirement to energy expenditure, as flavoproteins are involved in a number of reactions not limited
to energy metabolism and therefore riboflavin requirements are not related only to energy
expenditure. The SCF considered that no evidence was available to set specific values for older adults.

The UK COMA (DH, 1991) took into account the appearance of clinical signs of riboflavin deficiency
at intakes below 0.5–0.8 mg/day (Adamson et al., 1945; Burgess, 1946; Horwitt et al., 1949; Nicol,
1949; Horwitt et al., 1950; Bro-Rasmussen, 1958; Bates, 1981). The UK COMA also took into account
the sharp increase in urinary riboflavin excretion for intakes higher than 0.11 mg/MJ
(0.44 mg/1,000 kcal) (FAO/WHO, 1967; DHSS, 1969, 1979) and the riboflavin intakes in British adults
(Gregory et al., 1990) i.e. 1.3 mg/day (for men) and 1.1 mg/day (for women), associated with EGRAC
values below 1.3 considered as representing saturation of tissues with riboflavin (Glatzle et al., 1970;
Thurnham et al., 1970). The reference nutrient intakes were determined at 1.3 mg/day (men) and
1.1 mg/day (women). The corresponding Lower Reference Nutrient Intakes (LRNI) was 0.8 mg/day
for all adults and the EARs were 1.0 and 0.9 mg/day for men and women respectively. The limited
data in older adults (Thurnham et al., 1970) and the decreased resting energy expenditure and
riboflavin intakes with age were considered as insufficient evidence to set specific values for older
adults.

An overview of DRVs for riboflavin for adults is given in Table 1.

Table 1: Overview of Dietary Reference Values for riboflavin for adults

D-A-CH
(2015)(a)

NCM
(2014)(a)

WHO/FAO
(2004)

Afssa
(2001)

NL
(2000)

IOM
(1998)

SCF
(1993)

DH
(1991)(a)

Age (years) ≥ 19 18–30 ≥ 19 20–74 ≥ 19 ≥ 19 ≥ 18 ≥ 19

PRI men
(mg/day)

1.4 1.6 1.3 1.6 1.5 1.3 1.6 1.3

PRI women
(mg/day)

1.1 1.3 1.1 1.5 1.1 1.1 1.3 1.1
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4.2. Infants and children

D-A-CH (2015) indicated that there were no data on riboflavin requirement for infants aged
4–12 months, whereas data in children 4–12 years old with riboflavin deficiency showed a return
of EGRAC to normal values of about 1.2 with a riboflavin intake of 0.12 mg/MJ (Kuizon et al., 1998).
D-A-CH (2015) set PRIs ranging from 0.4 mg/day for infants aged 4–12 months to 1.6 mg/day for
boys aged 15–< 19 years, on the basis of an AR of 0.12 mg/MJ as for adults, a CV of 10% and the
reference values for energy.

For children, the Nordic Council of Ministers (2014) used the same AR and RI expressed in mg/MJ
as for adults, and converted them into mg/day.

WHO/FAO (2004) set a Recommended Nutrient Intake (RNI) at 0.3 mg/day for infants up to six
months of age based on the daily average riboflavin content in breast milk (0.35 mg/L and an average
breast milk consumption of 0.75 L/day) (IOM, 1998). For older children, RNIs increased gradually with
age.

Afssa (2001) set PRIs for children from the adult PRIs adjusted for the energy requirement of each
age range.

The Health Council of the Netherlands (2000) derived AI for infants up to 5 months at 0.4 mg/day
on the basis of a daily human milk consumption of 0.8 L and a riboflavin concentration in milk of
0.53 mg/L (Fomon and McCormick, 1993). For children and adolescents, data to set ARs were
considered too limited (Oldham, 1944; Snyderman and Ketron, 1949; Lo, 1985). Thus, an interpolation
between the reference values of infants (under 5 months) and of adults was used to set AIs of
children and adolescents, following the IOM (1998) approach. It was considered that the AI for
children aged 14–18 years should be in line with the requirement of adults due to the linear increase
of the requirement. Thus, for this age range, an AI of 1.5 mg/day and of 1.1 mg/day, respectively, for
boys and girls was set.

Considering a riboflavin concentration of 0.35 mg/L in human milk (WHO, 1965) and a milk
consumption of 0.78 L/day, and after rounding, IOM (1998) set an AI at 0.3 mg/day for infants up to
six months of age. The IOM set the AI at 0.4 mg/day for infants aged 7–12 months based on upward
extrapolation from the value for younger infants and rounding, which was confirmed by downward
extrapolation from the adult EAR. The approach of adding riboflavin intakes from breast milk
consumption and from solid foods was discarded as providing a value considered as too high. For
children aged from 1 to 18 years, due to the limited data (Oldham, 1944; Sauberlich et al., 1973) to
base an EAR, IOM (1998) decided to extrapolate the EARs from adults to children using allometric
scaling (power 0.75) with growth factors, and rounding. A CV of 10% was also used to set RDAs.

D-A-CH
(2015)(a)

NCM
(2014)(a)

WHO/FAO
(2004)

Afssa
(2001)

NL
(2000)

IOM
(1998)

SCF
(1993)

DH
(1991)(a)

Age (years) ≥ 51 31–60 ≥ 75
PRI men
(mg/day)

1.3 1.5 1.6

PRI women
(mg/day)

1.0 1.2 1.6

Age (years) > 65 61–74

PRI men
(mg/day)

1.3 1.4

PRI women
(mg/day)

1.0 1.2

Age (years) ≥ 75
PRI men
(mg/day)

1.3

PRI women
(mg/day)

1.2

D-A-CH: Deutsche Gesellschaft f€ur Ern€ahrung, €Osterreichische Gesellschaft f€ur Ern€ahrung, Schweizerische Gesellschaft f€ur
Ern€ahrung; NCM: Nordic Council of Ministers; WHO/FAO: World Health Organization/Food and Agriculture Organization of the
United Nations; Afssa: Agence franc�aise de s�ecurit�e sanitaire des aliments; NL: Health Council of the Netherlands; IOM: US
Institute of Medicine; SCF: Scientific Committee on Food; DH: UK Department of Health.
(a): DRVs in mg/day obtained from the DRVs in mg/MJ and the respective energy requirement.
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SCF (1993) derived a PRI of 0.4 mg/day for infants 6–11 months based on data on changes in
EGRAC in Gambian infants according to the level of supplementation (Bates et al., 1982a,b), and PRIs
for children from the PRIs of adults on the basis of energy requirement due to lack of data to assess
children’s requirement.

The UK COMA (DH, 1991) set reference nutrient intakes for children by interpolation between the
adult and infant values, and corresponding LRNIs and EARs were set. The reference nutrient intakes
for infants were set at 0.4 mg/day, according to the average concentration of riboflavin in breast milk
in the UK (0.31 mg/L) (DHSS, 1977), and a supplement intake of 0.4 mg/day which led to a
satisfactory EGRAC value (1.15) in Gambian infants (Bates et al., 1982a,b).

An overview of DRVs for riboflavin for children is given in Table 2.

4.3. Pregnancy and lactation

For pregnancy and lactation, D-A-CH (2015) considered the average requirement of 0.12 mg/MJ set
for other women, a CV of 10% and the respective reference values for energy, i.e. an additional
energy requirement of 1.04 and 2.09 MJ/day in the second and third trimester of pregnancy,
respectively, and a reference value of 10 MJ/day for exclusively breastfeeding women during the first
four to six months of lactation.

Table 2: Overview of Dietary Reference Values for riboflavin for children

D-A-CH
(2015)(a)

NCM
(2014)(a)

WHO/FAO
(2004)

Afssa
(2001)

NL
(2000)(b)

IOM
(1998)

SCF
(1993)

DH
(1991)

Age (months) 4–12 6–11 0–6 0–12 6–11 0–6 6–11 7–9

PRI (mg/day) 0.4 0.5 0.3 0.4 0.4 0.3 0.4 0.4

Age (years) 1–4 1–< 2 7–12 1–3 1–3 7–12 1–3 1–3

PRI (mg/day) 0.7 0.6 0.4 0.8 0.5 0.4(a) 0.8 0.6

Age (years) 4–7 2-5 1–3 4–6 4–8 1–3 4–6 4–6

PRI (mg/day) 0.8 0.7 0.5 1 0.7 0.5 1.0 0.8

Age (years) 7–10 6–9 4–6 7–9 9–13 4–8 7–10 7–10

PRI Boys
(mg/day)

1.0 1.1 0.6 1.3 1.0 0.6 1.2 1.0

PRI Girls
(mg/day)

0.9 1.1 0.6 1.3 1.0 0.6 1.2 1.0

Age (years) 10–13 10–13 7–9 10–12 14–18 11–14 11–14
PRI Boys
(mg/day)

1.1 1.3 0.9 1.4 1.5 1.3 1.2

PRI Girls
(mg/day)

1.0 1.2 0.9 1.3 1.1 1.3 1.1

Age (years) 13–15 14–17 10–18 13–15 9–13 15–17 15–18

PRI Boys
(mg/day)

1.4 1.7 1.3 1.6 0.9 1.5 1.3

PRI Girls
(mg/day)

1.1 1.4 1.0 1.4 0.9 1.1

Age (years) 15–19 16-19 14–18
PRI Boys
(mg/day)

1.6 1.6 1.3

PRI Girls
(mg/day)

1.2 1.5 1.0

D-A-CH: Deutsche Gesellschaft f€ur Ern€ahrung, €Osterreichische Gesellschaft f€ur Ern€ahrung, Schweizerische Gesellschaft f€ur
Ern€ahrung; NCM: Nordic Council of Ministers; WHO/FAO: World Health Organization/Food and Agriculture Organization of the
United Nations; Afssa: Agence franc�aise de s�ecurit�e sanitaire des aliments; NL: Health Council of the Netherlands; IOM: US
Institute of Medicine; SCF: Scientific Committee on Food; DH: UK Department of Health.
(a): DRVs in mg/day obtained from the DRVs in mg/MJ and the respective energy requirement.
(b): AI.
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The Nordic Council of Ministers (2014) recommended an increase in intake of 0.3 mg/day for
pregnancy and of 0.4 mg/day for lactation, to be added to the RI for non-pregnant non-lactating
women.

WHO/FAO (2004) acknowledged that EGRAC increases during pregnancy and that riboflavin intakes
and fetal growth are associated (Bates, 1981; Vir et al., 1981; Kuizon, 1992; Badart-Smook et al.,
1997). An increase in intake of 0.3 mg/day for pregnant women (added to the reference value for
non-pregnant women) was considered necessary for the growth of both maternal and fetal
compartments. A transfer of 0.3 mg/day riboflavin to breast milk (IOM, 1998) and an efficiency of milk
production of 70% (WHO, 1965) were considered to set the additional riboflavin intake for lactating
women at 0.4 mg/day (rounded value, to be added to the RNI for non-lactating women).

Afssa (2001) set a PRI of 1.6 mg/day for pregnancy to cover fetus growth, and an additional intake
of 0.3 mg/day for lactation to cover riboflavin losses through breast milk.

The Health Council of the Netherlands (2000) decided to increase the value during pregnancy and
set an AR of 1.0 mg/day and a PRI of 1.4 mg/day. Indeed, it was acknowledged that a higher intake
of riboflavin is required to lower EGRAC, which rises during pregnancy (Kuizon, 1992) and that urinary
excretion decreases during the 3rd trimester (Bro-Rasmussen, 1958; FAO/WHO, 1967). For lactating
women, it was considered that an amount of 0.4 mg/day of riboflavin is excreted in human milk. Thus,
an AR of 1.2 mg/day and a PRI of 1.7 mg/day were set.

During pregnancy, IOM (1998) added 0.3 mg/day to the EAR for non-pregnant women, to allow for
the growth in maternal compartments and of the fetus. IOM (1998) noted that urinary excretion of
riboflavin is lower during pregnancy, that clinical signs of deficiency could appear more frequently for
low intakes (less than 0.8 mg/day) (Brzezinski et al., 1952; Jansen and Jansen, 1954) and that EGRAC
tends to increase during pregnancy (Heller et al., 1974; Bates, 1981; Vir et al., 1981). As 0.3 mg/day
of riboflavin is considered to be transferred to breast milk during the first 6 months of lactation, and
considering a milk production efficiency of 70% (WHO, 1965), IOM (1998) set an extra intake of
0.4 mg/day during lactation to be added to the EAR of non-lactating women. The same CV of 10%
was used to set RDAs for pregnancy and lactation, i.e. 1.4 and 1.6 mg/day respectively.

SCF (1993) stated that EGRAC data could not be used to set riboflavin requirement during
pregnancy. An increase in intake of 0.3 mg/day was recommended, added to the PRI of non-pregnant
women, to take into account the increased tissue synthesis by the fetus and the mother. In order to
meet the increased metabolic burden and the losses in breast milk, the SCF proposed an increase in
riboflavin intake of 0.4 mg/day during lactation, to be added to the PRI for non-lactating women.

The UK COMA (DH, 1991) considered an intake of 0.3 mg/day for pregnant women to be added to
the reference value of non-pregnant women, to meet the need of the fetus (DHSS, 1979) and
considered that EGRAC data in pregnancy could not be interpreted. For lactation (either before or after
4 months), an extra-intake of 0.5 mg/day was recommended, to be added to the RNI for non-lactating
women, based on the riboflavin concentration in breast milk and its metabolic cost (DHSS, 1979).

An overview of DRVs for riboflavin for pregnant or lactating women is given in Table 3.

Table 3: Overview of Dietary Reference Values for riboflavin for pregnant or lactating women

D-A-CH (2015)(a)
NCM

(2014)

WHO/
FAO

(2004)

Afssa
(2001)

NL
(2000)

IOM
(1998)

SCF
(1993)

DH
(1991)

PRI
Pregnancy
(mg/day)

1.3 (2nd trimester)
1.4 (3rd trimester)

1.6 1.4 1.6 1.4 1.4 1.6 1.4

PRI Lactation
(mg/day)

1.4 1.7 1.6 1.8 1.7 1.6 1.7 1.6

D-A-CH: Deutsche Gesellschaft f€ur Ern€ahrung, €Osterreichische Gesellschaft f€ur Ern€ahrung, Schweizerische Gesellschaft f€ur
Ern€ahrung; NCM: Nordic Council of Ministers; WHO/FAO: World Health Organization/Food and Agriculture Organization of the
United Nations; Afssa: Agence franc�aise de s�ecurit�e sanitaire des aliments; NL: Health Council of the Netherlands; IOM: US
Institute of Medicine; SCF: Scientific Committee on Food; DH: UK Department of Health.
(a): DRVs in mg/day obtained from the DRVs in mg/MJ and the respective energy requirement.
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5. Criteria (endpoints) on which to base dietary reference values

5.1. Clinical signs of deficiency

Riboflavin intakes of less than 0.5–0.6 mg/day riboflavin for several months led to clinical signs of
deficiency, but intakes of about 0.8 mg/day were sufficient to avoid them in men or women (Sebrell
et al., 1941; Williams et al., 1943; Keys et al., 1944; Horwitt et al., 1950), and non-pregnant women
with a riboflavin intake of 0.45 mg/day for 8–10 days showed no clinical signs of deficiency (Kuizon
et al., 1998) (Section 2.4.2). Regarding biomarkers, skin lesions were reported in three men (at an
intake of 0.55 mg/day riboflavin and 2,200 kcal/day) with a urinary excretion of riboflavin below
40 lg/day (Horwitt et al., 1950) (Section 2.4.1). However, older subjects with urinary riboflavin
excretion < 10 lg/g creatinine (and EGRAC > 2) did not show clinical signs of riboflavin deficiency
either before or during their participation to the study by Boisvert et al. (1993) (Sections 2.4.1 and
2.4.2).

The Panel notes that clinical signs of deficiency are unspecific (Section 2.2.2.1), take several
months to develop and are unreliable to assess adequacy or inadequacy of the riboflavin supply. The
Panel considers that clinical signs of deficiency cannot be used as criteria to set DRVs.

5.2. Indicators of riboflavin requirements

The Panel considers that the inflection point of the urinary excretion curve according to intake is
the most suitable biomarker to assess adequacy of riboflavin status. EGRAC can be used as a
supportive biomarker of the urinary excretion in order to assess riboflavin status (Section 2.4.5). The
Panel also considers that riboflavin status is modified by physical activity, urinary excretion of riboflavin
is (generally) decreased and EGRAC increased when physical activity is increased, suggesting higher
utilisation of riboflavin with increased energy expenditure (Section 2.5). However, there is a lack of
experimental data showing a clear quantitative relationship between riboflavin status biomarkers
(urinary excretion of riboflavin and EGRAC) and energy expenditure (or physical activity) (Section 2.5).
In addition, the Panel considers that the relationship between riboflavin intake and biomarkers of
riboflavin status is also influenced by MTHFR C677T polymorphism, as homozygosity for the T allele
can increase the individual requirement for riboflavin, although the extent of this increase cannot be
defined (Section 2.6).

5.2.1. Adults

The Panel notes that new scientific data have become available for adults since the publication of
the SCF report in 1993. These data are either on the inflection of the urinary excretion curve or on
EGRAC, according to riboflavin intake.

5.2.1.1. Inflection of the urinary excretion of riboflavin

The Panel considers that the inflection of the urinary excretion curve in relation to riboflavin intake
reflects body saturation of riboflavin and can be used to indicate adequate riboflavin status
(Section 2.4.1). The Panel considers that the inflection in the urinary excretion curve reflects the
overall saturation of all metabolic pathways of riboflavin (provided the collection of urinary samples are
complete), thus indicating a level at which all riboflavin functions are fulfilled.

Four intervention studies investigated the inflection of the curve in 24-h or fasting urinary excretion
of riboflavin according to riboflavin intake in adults. These were: one study of the longest duration and
in 66 US men from a ‘mental institution’ (Horwitt et al., 1950) that was used by SCF (1993) for setting
DRVs, one study in 73 young physically active Chinese men (Guo et al., 2016), and two other studies
of smaller size, i.e. one study in 14 low-physically active older Guatemalan men and women (Boisvert
et al., 1993) and one study in 14 young and healthy US women (Brewer et al., 1946) (Section 2.4.1).
The Panel acknowledges that the study by Brewer et al. (1946) was published before the SCF report in
1993 in which it was not considered. However, so far, it is the only available study that provides
information on the inflection point of the urinary excretion curve according to riboflavin intake in
healthy women. The Panel notes that no study was available on subjects representative of the healthy
European population. However, the Panel notes that the average body weights of the young men (Guo
et al., 2016) and the young women (Brewer et al., 1946) investigated were close to the reference
body weights for adults in the EU, i.e. 68.1 kg for men and 58.5 kg for women.
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The inflection in the urinary excretion curve occurred at riboflavin intakes between 1.1 and 1.6 mg/day
(Horwitt et al., 1950) (inflection point estimated at 1.3 mg/day by the SCF by interpolation, Section 4.1).
The inflection occurred at intakes between 1.3 and 1.5 mg/day in adult men (Guo et al., 2016), between
1.1 and 1.3 mg/day in older men and women (Boisvert et al., 1993) and between 1.26 and 1.62 mg/day in
adult women (Brewer et al., 1946). The inflection point, calculated as the intercept of two regression lines
of mean urinary excretion vs intake, was calculated by the authors to be 1.4 mg/day (Guo et al., 2016), to
be 1.13 mg/day (Boisvert et al., 1993), or to be between 1.3 and 1.5 mg/day (Brewer et al., 1946).

The Panel notes the consistency in these results, and considers that, from these different studies,
no difference in riboflavin requirement could be shown between sex and between younger and older
adults.

5.2.1.2. Erythrocyte glutathione reductase activation coefficient (EGRAC)

The Panel considers that EGRAC is a useful biomarker of riboflavin status in all population groups,
reflecting the saturation of EGR with the coenzyme (Section 2.4.2). As discussed in Section 2.4.2, the
Panel considers that an EGRAC of 1.3 or less is indicative of adequate riboflavin status in all population
groups.

Two intervention studies investigated the relationship between dietary riboflavin intake and EGRAC
in adults: in 14 older low-physically active Guatemalan men and women (Boisvert et al., 1993), and in
six non-pregnant women in the Philippines (Kuizon et al., 1998) (Section 2.4.2). The mean intake at
which the mean weekly EGRAC was below 1.3 was 1.37 mg/day in older adults (Boisvert et al., 1993).
However, according to the regression analysis in the study by Kuizon et al. (1998), Filipino women
reached EGRAC values of 1.3 with an average riboflavin intake of 0.72 mg/day. The Panel notes that
the mean intake of 1.37 mg/day estimated by Boisvert et al. (1993) falls within the range of intake
corresponding to the inflection point of the urinary excretion curve from four intervention studies
discussed previously (Section 5.2.1.1). The Panel however notes the discrepancy in the results from
the only two intervention studies on riboflavin intake and EGRAC.

Two large observational studies in Europe (VERA in Germany and NDNS 2012–2014 in the UK) also
provide data on riboflavin intake and EGRAC (Section 2.4.2). The Panel notes that mean/median EGRAC
values from NDNS and VERA are 1.3 or higher at mean/median intake higher than that calculated to
reach an EGRAC of 1.3 from experimental data mentioned above (Boisvert et al., 1993; Kuizon et al.,
1998).

The Panel concludes that the data on the relationship between riboflavin intake and EGRAC cannot
be used alone to set DRVs for riboflavin for adults, but can be used in support of data on the inflection
in the urinary excretion curve in view of setting DRVs for riboflavin.

5.2.1.3. Conclusions on riboflavin requirements in adults

The Panel concludes that, among the available biomarkers to estimate riboflavin requirements in
adults, the inflection point in the urinary excretion curve represents the primary biomarker of riboflavin
requirement. This inflection point was estimated to occur at an intake of riboflavin between 1.13 and
1.4 mg/day (Brewer et al., 1946; Horwitt et al., 1950; Boisvert et al., 1993; Guo et al., 2016). The
Panel concludes that, using this biomarker, there is no indication of different riboflavin requirement
according to sex or between younger and older adults.

In relation to the fact that MTHFR genotype can influence the requirement for riboflavin
(Section 2.6), in the intervention studies used for setting DRVs for riboflavin for adults, no information
is provided on this genotype. The Panel, however, considers that these studies were conducted in
different countries (USA, Guatemala, Philippines and China) and population groups, and therefore
assumes that their participants represent the diversity of this polymorphism. The Panel also notes that
these studies included subjects that were either physically active (Guo et al., 2016) or with a low
physical activity (Boisvert et al., 1993). The Panel considers that the potential effect of physical activity
and of MTHFR 677TT genotype on riboflavin requirement is covered by the data presented from the
studies considered. The Panel notes that the subjects in these studies were either physically active
(Guo et al., 2016) or with a low physical activity (Boisvert et al., 1993). The Panel considers that the
potential effect of physical activity and of MTHFR 677TT genotype on riboflavin requirement is covered
by the data presented from the studies considered.
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5.2.2. Infants and children

One intervention study in infants and children aged between 0 and 2 years in Gambia (Bates et al.,
1982a,b) (Sections 2.4.2 and 4.2, used by the SCF) showed that 0.13–0.21 mg/day riboflavin intake
was not sufficient to support an EGRAC below 1.3 in infants up to 1 year. With a total intake of
0.3–0.4 mg/day (from food and supplements), most of the infants aged 3–9 months had an EGRAC
below 1.3, but at 9–12 months, EGRAC increased above 1.3 in about 20% of the infants.

Based on a regression analysis, another intervention study in Filipino children (Kuizon et al., 1998)
(Section 2.4.2) showed that EGRAC reached values of 1.3 with an average riboflavin intake of
0.58 and 0.70 mg/day in children aged 4–6 years (n = 20) and 10–12 years (n = 14), respectively.
One large observational study in Europe (NDNS 2012–2014 in the UK) (Section 2.4.2) provides
information on mean EGRAC and mean riboflavin intake in children. The Panel notes that mean EGRAC
were at or above 1.3 for children aged 4–10 years and 11–18 years but below 1.3 in children aged
1.5–3 years, while mean intakes were higher than the average intake derived in the intervention study
by Kuizon et al. (1998).

In view of the limitations in the use of EGRAC discussed previously (Sections 2.4 and 5.2.1), the
Panel concludes that these two intervention studies can provide only supportive evidence for setting
DRVs for riboflavin for infants and children. The Panel concludes that data on riboflavin intake of
breastfed infants during the first 6 months of lactation (Section 2.3.6.3) can be used to derive a DRV
for infants aged 7–11 months.

5.2.3. Pregnant and lactating women

5.2.3.1. Pregnant women

The Panel assessed whether data were available on the riboflavin transfer from the mother to the
fetus and the riboflavin accretion in the fetus and placenta during pregnancy (Section 2.3.2). Mean
EGRAC measured in placenta of full-term infants was significantly lower than in cord blood or maternal
plasma (0.92 vs 1.18 and 1.31, respectively) in relation with the high FAD placental content (Ramsay
et al., 1983). The Panel considers that riboflavin demand is increased during pregnancy in relation with
the riboflavin uptake by the fetus and concentration in the placenta (Baker et al., 1981; Dancis et al.,
1985, 1986; Zempleni et al., 1995), but that these data cannot be used to set DRVs for riboflavin for
pregnant women.

A progressive fall in maternal riboflavin status assessed by urinary excretion or EGRAC during the
third trimester was reported in studies conducted in countries with low riboflavin intake (0.5, or less than
1 mg/day, (Jansen and Jansen, 1954; Bates, 1981)) with clinical signs of deficiency towards the end of
pregnancy (Jansen and Jansen, 1954; Bamji and Prema, 1981; Bates, 1981) (Sections 2.4.2 and 4.3)

Urinary riboflavin excretion decreases during the third trimester of pregnancy (Bro-Rasmussen,
1958; FAO/WHO, 1967) (Section 4.3). EGRAC increases during pregnancy (Heller et al., 1974; Vir
et al., 1981; Kuizon, 1992) (Section 4.3).

In the intervention study in 12 Filipino pregnant women (2nd or 3rd trimester) (Kuizon et al., 1998)
(Section 2.4.2), based on a regression analysis, EGRAC reached values of 1.3 and below with an
average riboflavin intake of 1.36 mg/day, which was higher than for non-pregnant women.

The Panel concludes that studies investigating riboflavin fetal uptake and riboflavin placental
concentration provide evidence that pregnant women need more riboflavin than non-pregnant women.
However, these data are not sufficient to estimate the additional need for dietary riboflavin during
pregnancy. In view of the limitations in the use of EGRAC discussed previously (Sections 2.4 and
5.2.1), the Panel concludes that the intervention study in Filipino pregnant women can provide only
supportive evidence for setting DRVs for riboflavin for pregnant women.

5.2.3.2. Lactating women

From the available studies undertaken on healthy lactating mothers (Appendix A, Section 2.3.6.3),
the Panel estimated a riboflavin secretion of 0.291 mg/day in breast milk during the first 6 months of
lactation, based on the three studies (Nail et al., 1980; Thomas et al., 1980; Ortega et al., 1999)
undertaken in Spain and the USA providing the concentration of riboflavin in mature breast milk of
healthy unsupplemented mothers as well as information on the maternal riboflavin intake and status.

In an intervention study in 10 Filipino lactating women (Kuizon et al., 1998) (Section 2.4.2), based on
a regression analysis, EGRAC reached values of 1.3 with an average riboflavin intake of 1.31 mg/day,
which was higher than for non-lactating women.
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The Panel concludes that an additional intake of riboflavin for lactating women is required to
compensate for the amount of riboflavin secreted in breast milk during the first 6 months of exclusive
breastfeeding. In view of the limitations in the use of EGRAC discussed previously (Sections 2.4 and
5.2.1), the Panel concludes that the intervention study in Filipino lactating women can provide only
supportive evidence for setting DRVs for riboflavin for lactating women.

5.3. Riboflavin intake and health consequences

Trials (randomised or not), prospective cohort, case-control and systematic reviews of observational
studies are discussed in this Section (thus excluding, e.g. cross-sectional studies). The relationship
between riboflavin intake and chronic disease outcomes has been investigated in trials, and also in
observational studies where associations between intake and disease outcomes may be confounded by
uncertainties inherent to the methodology used for the assessment of riboflavin intake and by the
effect of dietary, lifestyle or other undefined factors on the disease outcomes investigated. A
comprehensive search of the literature published between 1990 and 2014 was performed as
preparatory work to this assessment in order to identify new data on relevant health outcomes upon
which DRVs for riboflavin could be based (Buijssen et al., 2014). An additional literature search
(in Pubmed) was performed to identify new data published until mid-2016 on riboflavin intake and
health outcomes. The Panel only considered studies that include assessment of riboflavin intake,
whereas studies on the relationship of levels of riboflavin biomarkers (Section 2.4) and health
outcomes with no quantitative data on riboflavin intake are not considered.

The Panel considers that evidence from only one observational study on a particular outcome is not
sufficient to provide strong evidence of a relationship and thus cannot be used for setting DRVs for
riboflavin. Thus, data on riboflavin intake and bone mineral density in postmenopausal women
(Rejnmark et al., 2008), the risk of overactive bladder syndrome (Dallosso et al., 2004), the risk of
premenstrual syndrome (Chocano-Bedoya et al., 2011), ‘psychological distress’ (Mishra et al., 2009),
cognition (La Rue et al., 1997), risk of total cardiovascular diseases (Zee et al., 2007), or cancer at
some sites (gastric adenocarcinoma (Eussen et al., 2010); pancreatic cancer (Chuang et al., 2011);
prostate cancer (Bassett et al., 2012a); oral carcinoma (Petridou et al., 2002); ovarian cancer (Kabat
et al., 2008); oesophageal cancer (Siassi et al., 2000); cervical cancer (Liu et al., 1993); renal cell
carcinoma (Gibson et al., 2010)) are not considered below. In addition, intervention studies
investigating riboflavin supplementation, in addition to intake, at levels higher than the observed
average intake of riboflavin in the EU (Appendices C and D) were also not considered by the Panel in
this Section (e.g. 15 mg twice weekly or between 5 and 400 mg/day (Tremblay et al., 1984; Powers
et al., 1987; Weight et al., 1988; Prasad et al., 1990; Schoenen et al., 1998; Condo et al., 2009; Di
Lorenzo et al., 2009; Bruijn et al., 2010)). Trials using combined supplementation with riboflavin and
another nutrient (Blot et al., 1993), ecological studies or narrative reviews were also not considered.
Since the reports by the SCF (1993), more data have become available on risk of cancer and other
health outcomes (risk of cataract, pregnancy-related outcomes, physical performance or all-cause
mortality), which are described below.

5.3.1. Riboflavin intake and the risk of cancer

Regarding the risk of lung cancer, after adjustments for potential confounders, there was no
association with riboflavin intake among women (Kabat et al., 2008), and a significant linear inverse
association only in current smokers (Bassett et al., 2012b).

Regarding the risk of colorectal cancer, after adjustments for potential confounders, no
association with riboflavin intake was found in most cohorts (de Vogel et al., 2008; Kabat et al., 2008;
Shrubsole et al., 2009; Key et al., 2012; Yoon et al., 2016). In one cohort (Zschabitz et al., 2013)
included in the systematic review below, no association was shown with riboflavin intake from food or
from supplement, but a significantly increased risk was observed in the highest quartile of total
riboflavin intake (food and supplements) compared to the lowest one. A significantly lower odds ratio
(OR) in the highest tertile of riboflavin intake compared to the lowest one in K-ras mutation negative
colorectal adenomas, but not K-ras mutation positive ones, was observed in one case–control study
(Wark et al., 2006). In one systematic review (Liu et al., 2015b) of five cohort studies (de Vogel et al.,
2008; Shrubsole et al., 2009; Bassett et al., 2013; Zschabitz et al., 2013), a significant inverse
association with riboflavin intake was observed (relative risk (RR) 0.86, 95% confidence interval (CI)
0.76–0.97, heterogeneity index (I2) = 0%). In another systematic review from the same author
(Liu et al., 2015a) on five cohort studies and four case–control studies (La Vecchia et al., 1997;
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Jedrychowski et al., 2001; de Vogel et al., 2008; Ma et al., 2009; Shrubsole et al., 2009; van Lee et al.,
2011; Bassett et al., 2013; Zschabitz et al., 2013), a significant inverse association with riboflavin
intake was also observed (pooled OR for the highest vs the lowest categories of intake: 0.83, 95% CI
0.75–0.91, I2=0%). The Panel considers that no quantitative value could be drawn from these two
systematic reviews to support a DRV for riboflavin.

For endometrial cancer, after adjustments for potential confounders, in most prospective cohort
or case-control studies, there was no association between riboflavin intake (from food and
supplements or from food only) and OR or hazard ratio (HR) of endometrial cancer (Xu et al., 2007a,b;
Liu et al., 2013) or the RR of type-I endometrial cancer (Uccella et al., 2011). However, a significant
positive (non-linear) association was found between supplemental intake of riboflavin or total intake
from food and supplements (but not intake from food only) and the risk of type-II endometrial cancer
(total intake: RR (95% CI) = 2.41 (1.13–5.13) for > 3.57 vs 0.23–1.61 mg/day; p trend = 0.026;
supplements: RR (95% CI) = 1.94 (1.12–3.34) for > 1.70 vs 0 mg/day; p trend = 0.011) (Uccella
et al., 2011).

For breast cancer, after adjustments for potential confounders, in three prospective cohort
studies, there was no association between riboflavin intake and the risk of breast cancer (Kabat et al.,
2008; Maruti et al., 2009; Bassett et al., 2013).

The Panel considers that the available studies on riboflavin intake and risk of various types of
cancer are inconsistent and cannot be used to derive DRVs for riboflavin.

5.3.2. Riboflavin intake and other health outcomes

Two prospective cohort studies found inconsistent results on riboflavin intake and the risk of
cataracts. There was a significant inverse non-linear association between total intake of riboflavin
(food and supplements) and the odds for nuclear lens opacities (Jacques et al., 2001). However, there
was no association between intake (total or from food only) and the risk of cataract extraction
(Hankinson et al., 1992).

Regarding all-cause mortality, one prospective cohort study did not provide evidence for an
association between mortality and the use of riboflavin supplements (users compared to non-users,
either in smokers or non-smokers: HR (95% CI) 0.71 (0.45–1.11) and 1.60 (1.00–2.56) respectively)
(Brzozowska et al., 2008). However, another prospective cohort study found a significant inverse
non-linear association between riboflavin intake and the risk of mortality (RR (95% CI: 0.38
(0.16–0.90))) for intake above 2.70 mg/day compared to intake below 1.92 mg/day, after adjustment
for potential confounders (Fortes et al., 2000).

Pregnancy-related outcomes have been investigated in three studies (Badart-Smook et al.,
1997; Smedts et al., 2008; Robitaille et al., 2009). After adjustments for potential confounders, there
was a statistically significant positive linear association between riboflavin intake at 22nd week of
gestation and bir11th length or weight (Badart-Smook et al., 1997). There was no association between
riboflavin intake (assessed at 16 months after pregnancy as a proxy for usual intake in the
preconception period) and the odds of congenital heart defects, after adjustments for potential
confounders in particular for folate and nicotinamide intake (Smedts et al., 2008). Low riboflavin intake
of women before conception was associated with the risk of transverse limb deficiencies in their infants
with an adjusted OR (95% CI): 2.94 (1.04–8.32) for women not using folic acid supplements and with
a riboflavin intake < 1.35 mg/day, compared with those also unsupplemented and with an intake
> 2.57 mg riboflavin/day) (Robitaille et al., 2009).

Regarding physical performance, trials on increasing intake of riboflavin (0.15 vs 0.22 lg/kJ, in a
cross-over study) (Winters et al., 1992) (Section 2.5), riboflavin supplementation (2 mg/day vs placebo
(Suboticanec et al., 1990), Section 2.4.2) or riboflavin restriction (to about 55% of the Dutch RDA, in a
double-blind complete factorial study) (van der Beek et al., 1994)) did not show any effect of these
dietary changes on the parameters investigated (e.g. maximal oxygen capacity, onset of blood lactate
accumulation, anaerobic threshold by gas exchange or peak power).

The Panel considers that the available studies on riboflavin intake and several health outcomes or
all-cause mortality cannot be used to derive DRV for riboflavin.

5.3.3. Conclusions on riboflavin intake and health consequences

The Panel considers that studies on riboflavin intake and health outcomes or all-cause mortality
cannot be used to set DRVs for riboflavin.
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6. Data on which to base dietary reference values

The Panel considers that, since the release of the DRVs for riboflavin by SCF (1993), new data are
available to update the AR and the PRI proposed by the SCF (1993).

6.1. Adults

The Panel concludes that, among the available biomarkers to estimate riboflavin requirements in
adults, the inflection point in the urinary excretion curve, estimated to occur at an intake of riboflavin
between 1.13 and 1.4 mg/day (Brewer et al., 1946; Horwitt et al., 1950; Boisvert et al., 1993; Guo
et al., 2016) (Section 5.2.1.3) represents the primary biomarker for assessing the riboflavin
requirement. The Panel concludes that there is no indication in the available studies of different
riboflavin requirement according to sex or between younger and older adults.

The Panel sets the same DRV for men and women and for older and younger adults, without
correction for difference in body weight between sex and age group. The AR for riboflavin in adults is
determined from the mean of the riboflavin intake, weighted for the number of subjects in each study,
associated with the inflection point in the urinary excretion curve, i.e. of 1.3 (n = 66), 1.4 (n = 73), 1.13
(n = 14) and 1.4 (n = 14) mg/day obtained in US men (Horwitt et al. (1950), Chinese young men (Guo
et al., 2016), US young women (Brewer et al., 1946), and older Guatemalan men and women (Boisvert
et al., 1993), respectively (Section 5.2.1.1). Based on this calculation, an AR of 1.34 mg/day riboflavin is
derived for men and women, rounded down to the nearest one decimal place to 1.3 mg/day.

The Panel concludes that the effect of physical activity and of MTHFR 677TT genotype on riboflavin
requirement is covered by the data from the key studies considered (Section 5.2.1.3), thus is
accounted for in the assumed CV applied to set the PRI for riboflavin. Assuming a CV of 10% (in the
absence of information on the variability in the requirement), the Panel sets a PRI of 1.61 mg/day for
men and women, rounded down to the nearest one decimal place to 1.6 mg/day.

6.2. Infants aged 7–11 months

Considering that there is no evidence for an insufficient riboflavin intake of fully breastfed infants of
healthy mothers during the first six months of life, the amount of riboflavin provided in human milk is
considered to be adequate. For infant 7–11 months of age, the Panel concludes that no sufficient data
are available to set an AR from the available study (Bates et al., 1982a,b) (Section 5.2.2), and set an
AI by upward extrapolation of riboflavin intake from breast milk in exclusively breastfed infants aged
0–6 months, by allometric scaling (on the assumption that riboflavin requirement is related to
metabolically active body mass).

Considering a mean milk transfer of 0.8 L/day during the first 6 months of lactation in exclusively
breastfeeding women and a concentration of riboflavin in mature breast milk of unsupplemented
mothers of term infants of 364 lg/L (Section 2.3.6.3), the Panel calculated the secretion of riboflavin
into milk during lactation as 0.291 mg/day. For the calculation (Table 4), the Panel used calculated
averages of the median weights of male and female infants, aged 3 months (6.1 kg) and 9 months
(8.6 kg); the median weight-for-age data came from the WHO Multicentre Growth Reference Study
Group (2006).

AIinfants 7�11months ¼ riboflavin intakeinfants 0�6months � ðweightinfants 9months=weightinfants 3monthsÞ0:75

Following this approach, the Panel calculates an AI for riboflavin for infants aged 7–11 months of
0.4 mg/day.

Table 4: Reference body weight and Adequate Intake (AI) of riboflavin for infants aged
7–11 months

Age Reference body weight (kg) AI (mg/day)

7–11 months 8.6(a) 0.4

(a): Average of the median weight-for-age of male or female infants, respectively, aged nine months according to the WHO
Growth Standards (WHO Multicentre Growth Reference Study Group, 2006).
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6.3. Children

The Panel notes that there are no sufficient data in children on which to base an AR for riboflavin
(Section 5.2.2). Therefore, the ARs were calculated by downward extrapolation from the AR of adult
men and women (the unrounded value of 1.34 mg/day was used in the calculation, Section 6.1).
Allometric scaling was used on the assumption that riboflavin requirement is related to metabolically
active body mass:

ARchildren ¼ ARadults � ðweightchildren=weightadultÞ0:75 � ð1 þ growth factorÞ

For the calculations (Table 5), median body weights of boys and girls (van Buuren et al., 2012) were
used (for the age ranging from 4 to 17 years) as well as median body weights of 18- to 79-year-old men
and women based on measured body heights of 16,500 men and 19,969 women in 13 EU Member States
and assuming a body mass index of 22 kg/m2 (see appendix 11 in EFSA NDA Panel (2013)).

The following growth factors were applied: 0.25 for boys and girls aged 1–3 years, 0.06 for boys
and girls aged 4–6 years, 0.13 for boys and girls aged 7–10 years, 0.11 for boys and 0.08 for girls
aged 11–14 years and 0.08 for boys and 0.03 for girls aged 15–17 years. Growth factors were
calculated as the proportional increase in protein requirement for growth relative to the maintenance
requirement at the different ages (EFSA NDA Panel, 2012) (Section 6.2). The value for each age group
corresponds to the mean of values for the years included (EFSA NDA Panel, 2014b). For the
calculation of the PRI, as for adults (Section 6.1), a CV of 10% was assumed. The calculated values
were rounded to the nearest one decimal place.

As for adults, the Panel considered unnecessary to set sex-specific AR and PRIs for boys and girls
of all ages.

6.4. Pregnancy

The Panel concludes that data are not sufficient to estimate the additional need for dietary
riboflavin during pregnancy based on fetal uptake and riboflavin accretion in the placenta during
pregnancy, and that only one study shows a higher requirement in pregnant women compared to
non-pregnant women (Kuizon et al., 1998) (Section 5.2.3.1).

Thus, the Panel calculates the additional riboflavin intake needed by pregnant women by allometric
scaling (on the assumption that riboflavin requirement is related to metabolically active body mass). It
was calculated from the AR of non-pregnant women (the unrounded value of 1.34 mg/day was used
in the calculation, Section 6.1), using the reference body weight for non-pregnant women and the
mean gestational increase in body weight.

The reference body weight of 18–79-year-old women (58.5 kg) was previously calculated from the
measured body heights of 19,969 women in 13 EU Member States and assuming a BMI of 22 kg/m2

(see appendix 11 in EFSA NDA Panel (2013)). A mean gestational increase in body weight of 12 kg,

Table 5: Reference body weights, average requirements (ARs) and (rounded) population reference
intakes (PRIs) of riboflavin for children

Age

Reference body
weight (kg)

Calculated
ARs (mg/day)

Calculated PRIs
(mg/day)

Proposed PRIs(f)

(mg/day)

Boys Girls Boys Girls Mean Boys Girls Mean Boys and girls

1–3 years 12.2(a) 11.5(a) 0.46 0.49 0.48 0.55 0.59 0.57 0.6

4–6 years 19.2(b) 18.7(b) 0.55 0.60 0.58 0.66 0.72 0.69 0.7
7–10 years 29.0(c) 28.4(c) 0.80 0.88 0.84 0.96 1.06 1.01 1.0

11–14 years 44.0(d) 45.1(d) 1.07 1.19 1.13 1.29 1.43 1.36 1.4

15–17 years 64.1(e) 56.4(e) 1.38 1.34 1.36 1.66 1.61 1.64 1.6

(a): Average of the median weight-for-age of male or female children aged 24 months according to the WHO Growth Standards
(WHO Multicentre Growth Reference Study Group, 2006).

(b): Average of the median weight of male or female children aged 5 years (van Buuren et al., 2012).
(c): Average of the median weight of male or female children aged 8.5 years (van Buuren et al., 2012).
(d): Average of the median weight of male or female children aged 12.5 years (van Buuren et al., 2012).
(e): Average of the median weight of male or female children aged 16 years (van Buuren et al., 2012).
(f): Values for PRIs were calculated based on the unrounded ARs and rounded to the nearest one decimal place.
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for women with a singleton pregnancy and a pre-pregnancy BMI in the range between 18.5 and
24.9 kg/m2, was also previously considered (EFSA NDA Panel, 2013). Thus, the calculation is based on
the equation below:

ARpregnant ¼ ARnon-pregnant � ðweightpregnant=weightnon-pregnantÞ0:75

The calculated AR is 1.5 mg/day.
The Panel notes that the accretion in fetal tissues mostly occurs in the last months of pregnancy. In

order to allow for the extra need related to the growth of maternal tissues (e.g. placenta), the
Panel applies this additional requirement to the whole period of pregnancy.

As for non-pregnant adults (Section 6.1), assuming a CV of 10%, and rounding to the nearest one
decimal place, a PRI of 1.9 mg/day riboflavin is derived.

6.5. Lactation

The Panel concludes that concentration of riboflavin in breast milk rises with riboflavin intake of the
mother (Sections 2.3.6.3), and that an additional intake of riboflavin is required to balance the losses
through breast milk (Section 5.2.3.2). The Panel notes that only one study shows a higher requirement
in lactating women compared to non-lactating women (Kuizon et al., 1998)

Thus, the Panel set an AR for lactating women by adding to the AR for non-lactating woman (the
unrounded value of 1.34 mg/day was used in the calculation, Section 6.1) an additional requirement
to account for the losses through breast milk (Section 5.2.3.2). This additional requirement can be
calculated as the secretion of riboflavin into milk during lactation (0.291 mg/day (Section 2.3.6.3))
corrected for absorption efficiency of 95% (Section 2.3.1). The Panel calculated an AR of 1.65 mg/day.
Considering, as for adults, a CV of 10% (Section 6.1) and rounding to the nearest one decimal place,
the Panel set a PRI of 2 mg/day for exclusively breastfeeding women during the first 6 months of
lactation.

Conclusions

The Panel concludes that ARs and PRIs for riboflavin for adults can be derived from the weighted
mean of riboflavin intake associated with the inflection point in the urinary riboflavin excretion curve
reported in four intervention studies in non-EU countries. The Panel considers that the potential effect
of physical activity and of MTHFR 677TT genotype on riboflavin requirement is covered by the data
presented from the studies considered, thus is accounted for in the assumed CV applied to set the PRI
for riboflavin. A CV of 10% was used to calculate PRIs from the ARs for adults and similarly for all
other population groups. Based on the study on men in a ‘mental institution’ considered by the SCF
(1993), data on young women published before the release of the SCF report and newly available
intervention studies in young and older men and women, the Panel sets an AR and a PRI for all adults,
without correction for body weight of men and women. For infants aged 7–11 months, no sufficient
data are available to set an AR, thus the Panel sets an AI, based on upward extrapolation by allometric
scaling from the estimated intake of riboflavin of exclusively breastfed infants from birth to six months.
For all children aged 1–17 years, the Panel sets ARs by downward extrapolation from the adult AR, by
allometric scaling, applying growth factors and taking into account the differences in reference body
weight. As for adults, the Panel considers unnecessary to set sex-specific AR and PRIs for boys and
girls of all ages. For pregnant women, the Panel derives the AR by allometric scaling from the
requirement for non-pregnant women, considering the mean gestational increase in body weight, to
account for fetal uptake and riboflavin accretion in the placenta during pregnancy. For lactating
women, the AR is increased compared to the AR for non-lactating women, to account for the secretion
through breast milk, after correction for an absorption efficiency of 95% (Table 6)

Table 6: Summary of Dietary Reference Values for riboflavin

Age
Average requirement

(mg/day)
Population reference intake

(mg/day)(a)

7–11 months – 0.4(b)

1–3 years 0.5 0.6
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Recommendation for research

The Panel suggests to undertake further research on:

• biomarkers of riboflavin intake and status, and their dose–response relationship with riboflavin
intake;

• the standardisation of EGRAC measurement, its relationship with urinary excretion of riboflavin
and the cut-off value for EGRAC to assess adequacy for riboflavin;

• the requirement for riboflavin in some population groups e.g. infants, children, pregnant or
lactating women and the potential influence of age and sex;

• the effect of physical activity and energy expenditure on riboflavin requirement;
• the quantification of the effect of genetic polymorphism on riboflavin requirement, in particular

the MTHFR C677T polymorphism.
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Appendix A – Concentrations of total flavin, or free or total riboflavin in breast milk of healthy mothers

Reference

Number of
women
(number of
samples)

Country

Maternal dietary
riboflavin intake
(diet and/or
supplements)
(mg/day)

Maternal status
(riboflavin
concentration in
urine or in
plasma)

Stage of
lactation

Riboflavin
concentration in
milk (lg/L)

Analytical
method for
breast milk
content

Comments

Kodentsova
and
Vrzhesinskaya
(2006)

n = 78
(preterm +
normal delivery)
including:
normal
delivery = 35

Russia Intake recorded but
not reported.
Dietary intake
recorded only for 25
breastfeeding
women with normal
delivery, including 15
not supplemented

Urine: not
reported/
not measured

Plasma:
spectrophotometry,
by the method of
titration with
riboflavin-binding
apoprotein.
Measured but not
reported

3–10 days
post-partum

Mean � SD (range)

Not supplemented
266 � 40 (81–358)

Supplemented
330 � 41 (152–600)

Spectrophotometry,
by the method of
titration with
riboflavin-binding
apoprotein

Volume of milk
determined by
weighing infants
before and after
breastfeeding.
24-h milk samples
(a single sample of
breast milk from
fasting women was
taken)

Sakurai et al.
(2005)

Number of
women not
reported
(n = 691 total
samples). Only
values from
Group A
reported
(n = 114
samples).
Lower number of
samples
analysed than
planned due to
problems in the
analytical
procedure (e.g.
insufficient
sample volume)

Japan Intake not reported
– Unsupplemented
women

Status not reported Various
stages of
lactation:
1–365 days
6–10 days
11–20 days
21–89 days
90–180 days
181–365 days

Total riboflavin
Mean � SD
377 � 156
340 � 97
380 � 126
397 � 126
385 � 133

HPLC (absorbance
was monitored at
530 nm using a
fluorescence
detector)

No explicit
information on
whether the infants
were born at term or
preterm. However,
mean birth weight in
group A was
3,142 � 425 g).
Concentrations
reported in this table
for breast milk are the
sum of riboflavin,
FMN and FAD. The
concentrations of
each individual
compound are also
reported in the
reference.
Concentration of FAD
is higher than FMN
and riboflavin
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Reference

Number of
women
(number of
samples)

Country

Maternal dietary
riboflavin intake
(diet and/or
supplements)
(mg/day)

Maternal status
(riboflavin
concentration in
urine or in
plasma)

Stage of
lactation

Riboflavin
concentration in
milk (lg/L)

Analytical
method for
breast milk
content

Comments

Ortega et al.
(1999)(a)

n = 57

Non-
supplemented
group = 25
(Group L:
riboflavin intake
< RI)

(a)

Supplemented
group = 32
(Group H:
riboflavin intake
> RI)(a)

Spain Five-day food
record + food
frequency intake
questionnaire.
Measured during
their third trimester
of gestation
(between weeks 32
and 36). The
authors said that
maternal intake after
giving birth did not
change drastically
(intake measured
but not reported)

Mean � SD

1.37 � 0.11

Total intake
(supplements +
diet): 2.52 � 1.00
From supplements:
0.13 � 0.50

Urine: not
measured/not
reported.

Plasma:
EGRAC
Mean � SD

1.21 � 0.35

1.06 � 0.16(b)

Transitional
milk:
13–14 days
post-partum
Mature milk:
40 days post-
partum
Transitional
milk: 13–
14 days post-
partum
Mature milk:
40 days post-
partum

216.39 � 94.78

273.04 � 95.72

356.86 � 263.51

374.06 � 164.34

Fluorometry Prospective cohort
study

Milk samples taken in
the morning by
manual expression of
a 5 mL sample from
each breast at the
beginning and end of
feeds

No explicit
information on
whether the infants
were born at term or
preterm. However,
mean length of
pregnancy: 39 weeks,
average weight of
newborns: 3.3 kg
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Reference

Number of
women
(number of
samples)

Country

Maternal dietary
riboflavin intake
(diet and/or
supplements)
(mg/day)

Maternal status
(riboflavin
concentration in
urine or in
plasma)

Stage of
lactation

Riboflavin
concentration in
milk (lg/L)

Analytical
method for
breast milk
content

Comments

Roughead and
McCormick
(1990)

n = 5 USA 24-h dietary record
for the day previous
to milk collection on
four out of the five
subjects

Total flavin (range):
1.13–2.91
No information on
supplementation

Status not reported Not reported Total flavin
(mean � SD of all
measurements per
subject):
Min.: 180 � 3
(containing 35.6 %
riboflavin, 60.5% FAD)
Max.: 799 � 25
(containing 30.7 %
riboflavin, 61.6% FAD)

Fluorescence
spectrophotometry.
n ≥ 4
measurements per
subject. Analytical
HPLC was used to
analyse types and
quantities of all
flavins (riboflavin,
FAD and other
compounds)

No information on
whether the infants
were born at term or
preterm, or on the
stage of lactation

Total flavin
concentrations
reported in milk, with
percentages of FAD,
riboflavin, 10-
hydroxyethylflavin,
10-formylmethylflavin,
7a-hydroxyriboflavin,
8a-hydroxyriboflavin

Dost�alov�a
et al. (1988)

n = 26
(number of
samples)

(12)

(4)

(4)
(18)

Switzerland Intake not reported

Not supplemented

Urine: not reported
EGRAC: measured
but not reported

Colostrum
3–5 days
post partum
Transitional
milk
6–10 days
post partum
Mature milk
Two weeks
Four months

Total riboflavin
Mean � SD (range)

307 � 150 (91–629)

240 � 110 (82–333)

471 � 121 (323–605)
485 � 149 (foremilk:
291–492, hindmilk:
539–681)

Fluorometry Mothers of infants
born at term
(37th-43rd week of
gestation).
Colostrum samples
represent a 12 h pool
of milk portions
before (foremilk) and
after (hindmilk) each
feed. Transitional and
mature milk. obtained
as a pool of fore- and
hindmilk
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Reference

Number of
women
(number of
samples)

Country

Maternal dietary
riboflavin intake
(diet and/or
supplements)
(mg/day)

Maternal status
(riboflavin
concentration in
urine or in
plasma)

Stage of
lactation

Riboflavin
concentration in
milk (lg/L)

Analytical
method for
breast milk
content

Comments

Dost�alov�a
et al. (1988)

Number not
reported

(55)

(55)

(55)

(55)

(55)

Finland Supplemented with
a multivitamin
supplement
containing 2 mg
riboflavin

Urine: not
measured/reported
Plasma: EGRAC
measured but not
reported

Colostrum
3 or 4 days
post partum
Mature milk
Eight weeks

Four months

Six months

7.5 months

Total riboflavin
Mean � SD (range)

422 � 85 (208–633)

584 � 144 (340–984)

573 � 139 (274–984)

563 � 176 (104–889)

601 � 205
(142–1,111)

Fluorometry Mothers of infants
born at term.
Each of the mothers
donated a complete
milk sample on the
3rd and 4th day after
delivery, and at 2, 4,
6 and 7.5 months of
lactation.
Colostrum and mature
milk samples were
collected during a
24-h period pooling
fore-and hindmilk of
each feed

Ford et al.
(1983)(c)

n = 35

6 (17)

10 (22)

24 (24)

UK Intake not reported.
No information on
supplementation

Not reported
Colostrum
1–5 days post
partum
Transitional
milk
6–15 days
post partum
Mature milk
16–244 days
post partum

Mean (range)
288 (120–500)

279 (130–733)

310 (200–440)

Standard
microbiological
methods

Mothers of infants
born at term (at the
39th week or later).
Composites of
samples expressed
manually over the day
during the baby’s
feeding times.
Mature milk samples
were composite
samples made up of
milk taken in mid feed
at four different times
spread over the day
on four successive
days
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Reference

Number of
women
(number of
samples)

Country

Maternal dietary
riboflavin intake
(diet and/or
supplements)
(mg/day)

Maternal status
(riboflavin
concentration in
urine or in
plasma)

Stage of
lactation

Riboflavin
concentration in
milk (lg/L)

Analytical
method for
breast milk
content

Comments

Thomas et al.
(1980)

n = 12
Non-
supplemented
group = 6

Supplemented
group = 6

USA 4-days diet record
1.87 � 0.95
(mean � SD)

Food:
3.31 � 1.25 (mean
� SD)
Supplements:
2.0

Plasma: not
reported
Urine (mg/day,
mean � SD)
0.442 � 0.231
Spectrophotometric
determination
24-h urinary
collection on the
3rd day of milk
collection
0.450 � 0.248

Six months
post partum

Mean ± SD

243 � 35

274 � 46

Spectrophotometric
determination

No information on
whether the infants
were born at term or
preterm. Foremilk
samples (25 mL)
were collected four
times per day at 4-h
intervals (0, 4, 8,
12 h in the non-
supplemented group,
and at 4, 8, 12 h in
the supplemented
group) for 3 days

Nail et al.
(1980)

n = 12 USA Intake (mg/day):
24-h dietary recall
before each milk
collection period.
3-day diet record
kept by the subjects
during 3-day
intervals of milk
collection
Mean � SD

Plasma: not
reported.
Urine excretion
urinary collection
at day 7 and 45.
Modification of the
Standards methods
of the Infant
formula Council
and
spectrophotometric
determination
mg/day
(mean � SD)

Mean ± SD Modification of the
Standards methods
of the Infant
formula Council and
spectrophotometric
determination

No information on
whether the infants
were born at term or
preterm.
Both supplemented
and unsupplemented
mothers had
consumed the
supplement during
pregnancy.
Milk samples (25 mL)
were collected four
times per day in the
morning upon arising
and at 4-h intervals
(0, 4, 8, 12 h after)
for 3 days

Dietary Reference Values for riboflavin

www.efsa.europa.eu/efsajournal 54 EFSA Journal 2017;15(8):4919



Reference

Number of
women
(number of
samples)

Country

Maternal dietary
riboflavin intake
(diet and/or
supplements)
(mg/day)

Maternal status
(riboflavin
concentration in
urine or in
plasma)

Stage of
lactation

Riboflavin
concentration in
milk (lg/L)

Analytical
method for
breast milk
content

Comments

Non-
supplemented
group = 5

Supplemented
group = 7

2.57 � 1.34

2.63 � 0.91

4.44 � 0.59 (total)
(diet: 2.44 � 0.59,
supplements: 2.0)
4.95 � 1.28 (total)
(diet: 2.90 � 1.28,
supplements: 2.0)

0.73 � 0.32

0.74 � 0.49

2.16 � 1.78

2.76 � 1.13

Colostrum
5–7 days
post-partum
Mature milk
43–45 days
post-partum

Colostrum
5–7 days
post-partum
Mature
milk43–
45 days post-
partum

367 � 128

485 � 123

880 � 168

710 � 187

Milk was expressed
after ingestion of the
vitamin supplement

EGRAC: erythrocyte glutathione reductase activation coefficient; FAD: flavin adenine dinucleotide; FMN: flavin mononucleotide; HPLC: high-performance liquid chromatography; RI: Recommended
Intake; SD: standard deviation.
For the concentration of riboflavin in breast milk, the molecular mass (MM) of 376.4 g/mol was used to convert the values reported in nmol/L to lg/L.
(a): ‘Recommended intake (RI) for the Spanish population, for women in the second half of pregnancy: 0.6 mg/1000 kcal + 0.2 mg, with a minimum provision of 1.6 mg/day’. Given that no

subject showed high energy intakes, a RI was established as 1.6 mg/day (Instituto de Nutrici�on (CSIC), 1994).
(b): The difference between EGRAC of group H and L was not statistically significant.
(c): Cited in Dost�alov�a et al. (1988).
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Appendix B – Dietary surveys in the EFSA Comprehensive European Food Consumption Database included in
EFSA’s nutrient intake calculation for riboflavin

Country
Dietary survey
(Year)

Year Method Days
Age

(years)

Number of subjects

Infants(a)

< 1 year

Children
1–< 3
years

Children
3–< 10
years

Children
10–< 18
years

Adults
18–< 65
years

Adults
65–< 75
years

Adults
≥ 75
years

Finland/1 NWSSP 2007–2008 48-h
dietary
recall(b)

2 9 2(b) 13–15 306

Finland/2 FINDIET2012 2012 48-h
dietary
recall(b)

2(b) 25–74 1,295 413

Finland/3 DIPP 2000–2010 Dietary
record

3 0.5–6 499 500 750

France INCA2 2006–2007 Dietary
record

7 3–79 482 973 2,276 264 84

Germany/1 EsKiMo 2006 Dietary
record

3 6–11 835 393

Germany/2 VELS 2001–2002 Dietary
record

6 < 1–4 158 348(c) 296(c)

Ireland NANS 2008–2010 Dietary
record

4 18–90 1,274 149 77

Italy INRAN-SCAI 2005-06 2005–2006 Dietary
record

3 < 1–98 16(d) 36(d) 193 247 2,313 290 228

Latvia FC_PREGNANTWOMEN
2011

2011 24-h
dietary
recall

2 15–45 12(d) 991(c)

Netherlands DNFCS 2007-2010 2007–2010 24-h
dietary
recall

2 7–69 447 1,142 2,057 173

Sweden RIKSMATEN 2010–2011 Dietary
records
(Web)(e)

4 18–80 1,430 295 72

United
Kingdom/1

DNSIYC-2011 2011 Dietary
record

4 0.3–1.5 1,369 1,314
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Country
Dietary survey
(Year)

Year Method Days
Age

(years)

Number of subjects

Infants(a)

< 1 year

Children
1–< 3
years

Children
3–< 10
years

Children
10–< 18
years

Adults
18–< 65
years

Adults
65–< 75
years

Adults
≥ 75
years

United
Kingdom/2

NDNS Rolling
Programme (Years 1–3)

2008–2011 Dietary
record

4 1–94 185 651 666 1,266 166 139

DIPP: Type 1 Diabetes Prediction and Prevention survey; DNFCS: Dutch National Food Consumption Survey; DNSIYC: Diet and Nutrition Survey of Infants and Young Children; EsKiMo:
Ern€ahrungsstudie als KIGGS-Modul; FC_PREGNANTWOMEN: food consumption of pregnant women in Latvia; FINDIET: the national dietary survey of Finland; INCA: �etude Individuelle Nationale des
Consommations Alimentaires; INRAN-SCAI: Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; NANS: National Adult Nutrition Survey; NDNS:
National Diet and Nutrition Survey; NWSSP: Nutrition and Wellbeing of Secondary School Pupils; VELS: Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von S€auglingen und Kleinkindern
f€ur die Absch€atzung eines akuten Toxizit€atsrisikos durch R€uckst€ande von Pflanzenschutzmitteln.
(a): Infants 1–11 months of age.
(b): A 48-h dietary recall comprising two consecutive days.
(c): Four subjects from the VELS study (one aged between 1 and < 3 years and 3 aged between 3 to < 10 years) and one subject from Latvian study (one adult) were not considered in the

assessment due to the fact that only one 24-h dietary recall day was available.
(d): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation as the results may not be statistically robust (EFSA, 2011a) and, therefore, for these

dietary surveys/age classes, the 5th and 95th percentile estimates are not presented in the intake results.
(e): The Swedish dietary records were introduced through the internet.
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Appendix C – Riboflavin intakes in males in different surveys, estimated by EFSA according to age class and
country

Age class Country Survey
Intakes expressed in mg/day Intakes expressed in mg/MJ

n(c) Average Median P5 P95 n Average Median P5 P95

< 1 year(a) Germany VELS 84 0.7 0.8 0.3 1.2 84 0.2 0.2 0.1 0.4
Finland DIPP_2001_2009 247 0.7 0.7 0.0 1.5 245 0.3 0.3 0.1 0.5

United
Kingdom

DNSIYC_2011 699 1.2 1.3 0.5 1.8 699 0.4 0.4 0.2 0.5

Italy INRAN_SCAI_2005_06 9 0.6 0.5 – (b) – (b) 9 0.2 0.2 – (b) – (b)

1 to < 3 years Germany VELS 174 1.0 0.9 0.4 1.5 174 0.2 0.2 0.1 0.3
Finland DIPP_2001_2009 245 1.3 1.3 0.5 2.1 245 0.4 0.4 0.2 0.5

United
Kingdom

NDNS Rolling
Programme Years 1–3

107 1.4 1.4 0.6 2.4 107 0.3 0.3 0.2 0.4

United
Kingdom

DNSIYC_2011 663 1.4 1.4 0.7 2.1 663 0.3 0.3 0.2 0.5

Italy INRAN_SCAI_2005_06 20 1.2 1.1 0.7 2.1 20 0.2 0.2 0.2 0.4

3 to < 10 years Germany EsKiMo 426 1.4 1.3 0.8 2.4 426 0.2 0.2 0.1 0.3

Germany VELS 146 1.1 1.0 0.6 1.7 146 0.2 0.2 0.1 0.3
Finland DIPP_2001_2009 381 1.8 1.8 0.9 2.6 381 0.3 0.3 0.2 0.4

France INCA2 239 1.6 1.5 0.9 2.5 239 0.3 0.3 0.2 0.4
United
Kingdom

NDNS Rolling
Programme Years 1–3

326 1.4 1.3 0.7 2.3 326 0.2 0.2 0.1 0.4

Italy INRAN_SCAI_2005_06 94 1.5 1.4 0.9 2.3 94 0.2 0.2 0.1 0.3
Netherlands DNFCS 2007–2010 231 1.3 1.3 0.6 2.3 231 0.2 0.2 0.1 0.2

10 to < 18 years Germany EsKiMo 197 1.5 1.4 0.8 2.3 197 0.2 0.2 0.1 0.3
Finland NWSSP07_08 136 2.2 2.2 1.1 3.7 136 0.3 0.3 0.2 0.4

France INCA2 449 1.7 1.7 0.9 2.8 449 0.2 0.2 0.1 0.3
United
Kingdom

NDNS Rolling
Programme Years 1–3

340 1.5 1.4 0.7 2.7 340 0.2 0.2 0.1 0.3

Italy INRAN_SCAI_2005_06 108 1.7 1.7 1.0 2.6 108 0.2 0.2 0.1 0.2
Netherlands DNFCS 2007–2010 566 1.7 1.6 0.8 3.2 566 0.2 0.2 0.1 0.3
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Age class Country Survey
Intakes expressed in mg/day Intakes expressed in mg/MJ

n(c) Average Median P5 P95 n Average Median P5 P95

18 to < 65 years Finland FINDIET2012 585 2.0 1.9 0.9 3.8 585 0.2 0.2 0.1 0.3
France INCA2 936 1.9 1.8 0.9 2.9 936 0.2 0.2 0.1 0.3

United
Kingdom

NDNS Rolling
Programme Years 1–3

560 1.8 1.7 0.8 3.2 560 0.2 0.2 0.1 0.3

Ireland NANS_2012 634 2.2 2.1 1.0 3.9 634 0.2 0.2 0.1 0.4

Italy INRAN_SCAI_2005_06 1,068 1.7 1.7 1.0 2.6 1068 0.2 0.2 0.1 0.3
Netherlands DNFCS 2007–2010 1,023 1.9 1.8 0.9 3.3 1023 0.2 0.2 0.1 0.3

Sweden Riksmaten 2010 623 1.8 1.7 0.9 2.9 623 0.2 0.2 0.1 0.3

65 to < 75 years Finland FINDIET2012 210 1.7 1.6 0.7 2.9 210 0.2 0.2 0.1 0.3

France INCA2 111 1.9 1.8 0.9 2.9 111 0.2 0.2 0.2 0.3
United
Kingdom

NDNS Rolling
Programme Years 1–3

75 1.9 1.9 0.8 3.0 75 0.2 0.2 0.1 0.3

Ireland NANS_2012 72 1.9 1.8 0.9 2.9 72 0.2 0.2 0.1 0.3
Italy INRAN_SCAI_2005_06 133 1.7 1.7 1.0 2.5 133 0.2 0.2 0.1 0.3

Netherlands DNFCS 2007–2010 91 1.6 1.6 0.8 2.4 91 0.2 0.2 0.1 0.3
Sweden Riksmaten 2010 127 1.6 1.6 0.8 2.4 127 0.2 0.2 0.1 0.3

≥ 75 years France INCA2 40 1.6 1.6 – (b) – (b) 40 0.2 0.2 – (b) – (b)

United
Kingdom

NDNS Rolling
Programme Years 1–3

56 1.8 1.6 – (b) – (b) 56 0.3 0.2 – (b) – (b)

Ireland NANS_2012 34 1.7 1.6 – (b) – (b) 34 0.2 0.2 – (b) – (b)

Italy INRAN_SCAI_2005_06 69 1.7 1.6 1.0 2.5 69 0.2 0.2 0.13 0.3

Sweden Riksmaten 2010 42 1.6 1.6 – (b) – (b) 42 0.2 0.2 – (b) – (b)

DIPP: Type 1 Diabetes Prediction and Prevention survey; DNFCS: Dutch National Food Consumption Survey; DNSIYC: Diet and Nutrition Survey of Infants and Young Children; EsKiMo: Ern€ahrungsstudie als
KIGGS-Modul; FC_PREGNANTWOMEN: food consumption of pregnant women in Latvia; FINDIET: the national dietary survey of Finland; INCA: �etude Individuelle Nationale des Consommations Alimentaires;
INRAN-SCAI: Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; NANS: National Adult Nutrition Survey; NDNS: National Diet and Nutrition Survey; NWSSP:
Nutrition and Wellbeing of Secondary School Pupils; VELS: Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von S€auglingen und Kleinkindern f€ur die Absch€atzung eines akuten Toxizit€atsrisikos durch
R€uckst€ande von Pflanzenschutzmitteln.
(a): Infants between 1 and 11 months. The proportions of breastfed infants were 58% in the Finnish survey, 40% in the German survey, 44% in the Italian survey and 21% in the UK survey. Most infants

were partially breastfed. The consumption of breast milk was taken into account if the consumption was reported as human milk (Italian survey) or if the number of breast milk consumption events was
reported (German and UK surveys). For the German study, the total amount of breast milk was calculated based on the observations by Paul et al. (1988) on breast milk consumption during one eating
occasion at different age groups: the amount of breast milk consumed on one eating occasion was set to 135 g/eating occasion for infants between 6–7 months of age and to 100 g/eating occasion for
infants between 8 and 12 months of age (Kersting and Clausen, 2003). For the UK survey, the amount of breast milk consumed was either directly quantified by the mother (expressed breast milk) or
extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events were reported in the Finnish survey, breast milk intake was not taken into consideration in the
intake estimates of Finnish infants.

(b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation as the results may not be statistically robust (EFSA, 2011a) and, therefore, for these dietary surveys/
age classes, the 5th and 95th percentile estimates are not presented in the intake results.

(c): n, number of subjects.
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Appendix D – Riboflavin intakes in females in different surveys, estimated by EFSA according to age class and
country

Age class Country Survey
Intakes expressed in mg per day Intakes expressed in mg per MJ

n(c) Average Median P5 P95 n Average Median P5 P95

< 1 year(a) Germany VELS 75 0.7 0.6 0.3 1.0 75 0.2 0.2 0.1 0.4

Finland DIPP_2001_2009 253 0.7 0.7 0.0 1.5 251 0.3 0.4 0.1 0.5
United Kingdom DNSIYC_2011 670 1.1 1.1 0.4 1.6 670 0.4 0.4 0.1 0.5

Italy INRAN_SCAI_2005_06 7 0.7 0.9 – (b) – (b) 7 0.2 0.3 – (b) – (b)

1 to < 3 years Germany VELS 174 0.9 0.9 0.5 1.4 174 0.2 0.2 0.1 0.3

Finland DIPP_2001_2009 255 1.3 1.3 0.4 2.1 255 0.4 0.4 0.2 0.6
United Kingdom NDNS Rolling

Programme Years 1–3
78 1.2 1.2 0.5 1.9 78 0.3 0.3 0.2 0.4

United Kingdom DNSIYC_2011 651 1.3 1.3 0.6 2.0 651 0.3 0.3 0.2 0.5
Italy INRAN_SCAI_2005_06 16 1.1 1.0 – (b) – (b) 16 0.2 0.2 – (b) – (b)

3 to < 10 years Germany EsKiMo 409 1.2 1.2 0.7 2.0 409 0.2 0.2 0.1 0.3
Germany VELS 147 1.0 0.9 0.5 1.5 147 0.2 0.2 0.1 0.3

Finland DIPP_2001_2009 369 1.6 1.6 0.9 2.4 369 0.3 0.3 0.2 0.4
France INCA2 243 1.4 1.4 0.8 2.1 243 0.3 0.2 0.2 0.4

United Kingdom NDNS Rolling
Programme Years 1–3

325 1.3 1.2 0.6 2.0 325 0.2 0.2 0.1 0.3

Italy INRAN_SCAI_2005_06 99 1.4 1.4 0.8 2.1 99 0.2 0.2 0.1 0.3

Netherlands DNFCS 2007–2010 216 1.3 1.3 0.6 2.4 216 0.2 0.2 0.1 0.3

10 to < 18 years Germany EsKiMo 196 1.3 1.3 0.7 2.2 196 0.2 0.2 0.1 0.3

Finland NWSSP07_08 170 1.7 1.7 0.8 2.9 170 0.3 0.3 0.1 0.4
France INCA2 524 1.4 1.4 0.7 2.3 524 0.2 0.2 0.1 0.3

United Kingdom NDNS Rolling
Programme Years 1–3

326 1.2 1.1 0.6 2.2 326 0.2 0.2 0.1 0.3

Italy INRAN_SCAI_2005_06 139 1.4 1.4 0.9 2.1 139 0.2 0.2 0.1 0.3

Latvia FC_PREGNANTWOMEN_
2011(c)

12 1.9 1.5 – (b) – (b) 12 0.2 0.2 – (b) – (b)

Netherlands DNFCS 2007–2010 576 1.4 1.3 0.7 2.5 576 0.2 0.2 0.1 0.3
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Age class Country Survey
Intakes expressed in mg per day Intakes expressed in mg per MJ

n(c) Average Median P5 P95 n Average Median P5 P95

18 to < 65 years Finland FINDIET2012 710 1.6 1.5 0.8 2.8 710 0.2 0.2 0.1 0.4
France INCA2 1,340 1.5 1.5 0.8 2.4 1,340 0.2 0.2 0.1 0.4

United Kingdom NDNS Rolling
Programme Years 1–3

706 1.4 1.3 0.7 2.3 706 0.2 0.2 0.1 0.4

Ireland NANS_2012 640 1.6 1.5 0.8 2.6 640 0.2 0.2 0.1 0.3

Italy INRAN_SCAI_2005_06 1,245 1.5 1.5 0.9 2.3 1,245 0.2 0.2 0.1 0.3
Latvia FC_PREGNANTWOMEN_

2011(d)
990 1.7 1.6 0.9 2.7 990 0.2 0.2 0.1 0.3

Netherlands DNFCS 2007–2010 1,034 1.5 1.4 0.7 2.6 1,034 0.2 0.2 0.1 0.3
Sweden Riksmaten 2010 807 1.4 1.4 0.8 2.3 807 0.2 0.2 0.1 0.3

65 to < 75 years Finland FINDIET2012 203 1.4 1.3 0.6 2.3 203 0.2 0.2 0.1 0.4
France INCA2 153 1.5 1.4 0.7 2.2 153 0.2 0.2 0.1 0.4

United Kingdom NDNS Rolling
Programme Years 1–3

91 1.5 1.5 0.8 2.6 91 0.3 0.2 0.1 0.4

Ireland NANS_2012 77 1.6 1.6 0.8 3.1 77 0.2 0.2 0.1 0.4

Italy INRAN_SCAI_2005_06 157 1.5 1.5 0.8 2.3 157 0.2 0.2 0.1 0.3
Netherlands DNFCS 2007–2010 82 1.4 1.4 0.8 2.2 82 0.2 0.2 0.1 0.3

Sweden Riksmaten 2010 168 1.4 1.3 0.8 2.3 168 0.2 0.2 0.1 0.3

≥ 75 years France INCA2 44 1.5 1.4 –(b) –(b) 44 0.3 0.2 –(b) –(b)

United Kingdom NDNS Rolling
Programme Years 1–3

83 1.6 1.5 0.9 2.7 83 0.3 0.3 0.2 0.4

Ireland NANS_2012 43 1.6 1.5 –(b) –(b) 43 0.3 0.3 –(b) –(b)

Italy INRAN_SCAI_2005_06 159 1.4 1.4 0.8 2.0 159 0.2 0.2 0.1 0.3

Sweden Riksmaten 2010 30 1.5 1.4 –(b) –(b) 30 0.2 0.2 –(b) –(b)

DIPP: Type 1 Diabetes Prediction and Prevention survey; DNFCS: Dutch National Food Consumption Survey; DNSIYC: Diet and Nutrition Survey of Infants and Young Children; EsKiMo:
Ern€ahrungsstudie als KIGGS-Modul; FC_PREGNANTWOMEN: food consumption of pregnant women in Latvia; FINDIET: the national dietary survey of Finland; INCA: �etude Individuelle Nationale des
Consommations Alimentaires; INRAN-SCAI: Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; NANS::National Adult Nutrition Survey; NDNS:
National Diet and Nutrition Survey; NWSSP: Nutrition and Wellbeing of Secondary School Pupils; VELS: Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von S€auglingen und Kleinkindern
f€ur die Absch€atzung eines akuten Toxizit€atsrisikos durch R€uckst€ande von Pflanzenschutzmitteln.
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(a): Infants between 1 and 11 months. The proportions of breastfed infants were 58% in the Finnish survey, 40% in the German survey, 44% in the Italian survey and 21% in the UK survey. Most
infants were partially breastfed. The consumption of breast milk was taken into account if the consumption was reported as human milk (Italian survey) or if the number of breast milk
consumption events was reported (German and UK surveys). For the German study, the total amount of breast milk was calculated based on the observations by Paul et al. (1988) on breast
milk consumption during one eating occasion at different age groups: the amount of breast milk consumed on one eating occasion was set to 135 g/eating occasion for infants between
6–7 months of age and to 100 g/eating occasion for infants between 8 and 12 months of age (Kersting and Clausen, 2003). For the UK survey, the amount of breast milk consumed was either
directly quantified by the mother (expressed breast milk) or extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events were reported in the
Finnish survey, breast milk intake was not taken into consideration in the intake estimates of Finnish infants.

(b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation as the results may not be statistically robust (EFSA, 2011a) and, therefore, for these
dietary surveys/age classes, the 5th and 95th percentile estimates are not presented in the intake results.

(c): n, number of subjects.
(d): Pregnant women only.
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Appendix E – Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to
riboflavin intake estimates in males

Food groups
Age

< 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years

Additives, flavours,
baking and
processing aids

< 1 < 1 0–2 0–3 0–1 0 0

Alcoholic beverages < 1 < 1 < 1 < 1–1 2–8 1–5 2–4

Animal and
vegetable fats and
oils

0 < 1 < 1 < 1 < 1 < 1–1 < 1

Coffee, cocoa, tea
and infusions

< 1 < 1–1 < 1–2 < 1–2 2–13 1–13 4–14

Composite dishes < 1–2 < 1–5 < 1–7 < 1–11 < 1–12 1–11 < 1–12
Eggs and egg
products

< 1–1 1–2 1–5 1–5 1–4 2–4 2–4

Fish, seafood,
amphibians, reptiles
and invertebrates

< 1 < 1–2 < 1–3 < 1–3 1–3 2–5 2–6

Food products for
young population

46–68 4–24 < 1–2 < 1 < 1 – –

Fruit and fruit
products

1–4 2–4 2–3 1–3 1–4 2–5 2–5

Fruit and vegetable
juices and nectars

< 1–1 < 1–4 1–5 1–5 1–3 < 1–1 < 1–1

Grains and grain-
based products

1–5 3–14 4–22 5–22 10–19 9–20 11–19

Human milk < 1–25(a) < 1–1 – – – – –

Legumes, nuts,
oilseeds and spices

< 1 < 1–1 < 1–1 < 1–1 1 1 1

Meat and meat
products

< 1–4 3–8 7–16 9–19 11–20 13–21 12–18

Milk and dairy
products

16–27 53–63 38–69 32–63 24–48 22–47 29–34
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Food groups
Age

< 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years

Products for non-
standard diets, food
imitates and food
supplements or
fortifying agents

< 1 0–1 < 1–1 < 1–1 < 1–1 < 1 < 1–2

Seasoning, sauces
and condiments

< 1–1 < 1–3 < 1–2 < 1–3 < 1–3 < 1–2 < 1–2

Starchy roots or
tubers and products
thereof, sugar plants

< 1–1 < 1–1 1–3 1–4 1–3 1–3 1–2

Sugar, confectionery
and water-based
sweet desserts

0 < 1–2 1–5 1–6 < 1–2 < 1–1 < 1–1

Vegetables and
vegetable products

1–4 1–4 1–7 2–9 2–12 3–13 2–11

Water and water-
based beverages

0 0 < 1–2 < 1–10 < 1–6 < 1–1 < 1–1

‘–’ means that there was no consumption event of the food group for the age and sex group considered, while ‘0’ means that there were some consumption events, but that the food group does
not contribute to the intake of the nutrient considered, for the age and sex group considered.
(a): The 25% refers to the Italian INRAN_SCAI_2005_06 study with only n = 9.

Dietary Reference Values for riboflavin

www.efsa.europa.eu/efsajournal 64 EFSA Journal 2017;15(8):4919



Appendix F – Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to
riboflavin intake estimates in females

Food groups
Age

< 1 year 1 to < 3 years 3 to < 10 years 10 to < 18 years 18 to < 65 years 65 to < 75 years ≥ 75 years

Additives, flavours, baking and processing
aids

0 0 0–2 0–3 0 < 1 0

Alcoholic beverages < 1 < 1 < 1 < 1 < 1–2 < 1–2 < 1–1
Animal and vegetable fats and oils < 1 < 1 < 1 < 1 < 1 < 1 < 1

Coffee, cocoa, tea and infusions < 1–3 < 1–6 < 1–1 1–3 2–14 2–13 6–14
Composite dishes < 1–1 < 1–5 < 1–7 1–11 1–13 < 1–11 1–11

Eggs and egg products < 1–1 1–3 1–5 1–5 2–4 2–4 2–4
Fish, seafood, amphibians, reptiles and
invertebrates

< 1–1 < 1–2 < 1–2 < 1–4 1–3 1–5 2–4

Food products for young population 32–71 5–20 < 1–1 < 1 < 1 – < 1
Fruit and fruit products 2–4 2–4 1–4 1–5 2–5 3–7 2–6

Fruit and vegetable juices and nectars < 1–1 < 1–4 1–4 1–4 < 1–3 1–2 1–2
Grains and grain-based products 2–6 3–15 4–21 6–25 10–29 11–19 9–20

Human milk < 1–10(a) < 1–1 – – – – –

Legumes, nuts, oilseeds and spices < 1–1 < 1–1 1 1 1–2 1–2 1

Meat and meat products 1–3 3–7 7–16 8–17 10–18 9–18 10–16
Milk and dairy products 10–38 49–61 37–70 32–62 28–51 27–49 31–39

Products for non-standard diets, food
imitates and food supplements or fortifying
agents

< 1 < 1 0–2 < 1–1 < 1–3 < 1–2 < 1–1

Seasoning, sauces and condiments < 1–1 < 1–2 < 1–3 < 1–4 < 1–3 < 1–1 < 1–1

Starchy roots or tubers and products thereof,
sugar plants

< 1–1 1 1–3 1–4 1–3 1–2 1–2

Sugar, confectionery and water-based sweet
desserts

0–1 < 1–2 1–5 < 1–6 < 1–2 < 1–1 < 1–2

Vegetables and vegetable products 1–4 1–4 2–7 2–10 3–13 3–14 3–13

Water and water-based beverages 0 0 < 1–1 0–8 < 1–4 < 1–1 < 1

‘–’ means that there was no consumption event of the food group for the age and sex group considered, while ‘0’ means that there were some consumption events, but that the food group does
not contribute to the intake of the nutrient considered, for the age and sex group considered.
(a): The 10% refers to the Italian INRAN_SCAI_2005_06 study with only n = 7.
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