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Abstract

This paper concerns the stochastic instability of impulsive stochastic systems

with application to image encryption. Based on comparison principle, the suf-

ficient conditions for instability in probability of impulsive stochastic systems

are obtained by the instability of continuous comparison system established by

Lyapunov function. It also shows how to determine stochastic instability of

impulsive stochastic systems when stability conditions fail. The effectiveness of

theoretical results is verified by two numerical examples, whose chaotic signals

are successfully used for image encryption.

Keywords: Instability, impulsive stochastic system, comparison principle,

image encryption

1. Introduction

Due to wide applications of stochastic systems in financial systems, net-

works, biological systems and air traffic systems [1–6], the last few decades have

witnessed an avalanche of works on stochastic systems [7–12]. Among the recent

reported literatures, impulsive stochastic systems (ISSs) have been the common5

interest of many researchers [13–19] whose intensive efforts are oriented towards
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stability conditions [11]. If the stability conditions are not satisfied, the dy-

namical behavior of ISSs may be stable or unstable. Therefore, the consequent

concern is how to determine instability properties, when stability cannot be as-

certained. In [20], Li et al. have studied instability properties of a deterministic10

impulsive differential system, but there is less relative work about instability

properties of ISSs. Therefore, the primary concern of this work is to generalize

the method developed in [20] for instability analysis of ISSs.

In stability analysis of ISSs, comparison principle has been an effective

method (see [21–24] and references therein). For instance, stochastic stability15

of ISSs was studied by comparison principle combined with Lyapunov function

and Itô formula in [21]. Then, comparison principles with delays were proposed

for impulsive stochastic delay systems [22–24]. Most of the existing studies

focus on the upper comparison systems for ISSs with stable continuous dynam-

ics and destabilizing impulse or unstable continuous dynamics and stabilizing20

impulse, and the few care about the lower comparison systems. However, the

lower comparison systems are crucial for instability analysis of ISSs because

their instability implies the instability of ISSs once the corresponding compari-

son principle is established. Hence, an additional inspiration of this work is to

construct the lower comparison system of unstable ISSs by comparison principle.25

As one of the major applications of nonlinear systems, chaos-based image

encryption has sparked many valuable works [25–28]. For instance, Fridrich

fistly proposed two main procedures of chaos-based image encryption schemes,

permutation and diffusion, in [25]. Then, a symmetric image encryption scheme

with bit-level permutation was developed in [27], which was extended in [28].30

Recently, image encryption schemes based on neural networks were proposed

in the literatures [29–31]. In most of the existing works on image encryption,

the parameters of nonlinear systems are usually set by experimental tests. The

question, under what conditions a nonlinear system is unpredictable by prob-

abilistic polynomial-time machines, is crucial in image ecryption [26]. If ISSs35

have unstable dynamical behavior, the numerical signals generated by ISSs may

be unpredictable, indicating promising application of unstable ISSs to image en-
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cryption. Moreover, the random factor in stochastic dynamical systems usually

causes more fluctuation than deterministic systems, so one may courageously

think that stochastic systems, especially ISSs, are likely to generate chaotic sig-40

nals suitable for image encryption. However, there are less relative studies on

the application of ISSs to image encryption.

Motivated by the above discussions, this work investigates the instability

of ISSs by comparison principle and proposes an unstable impulsive stochas-

tic system for image encryption. The contribution lies as follows: (1) A novel45

comparison principle of an impulsive system and a continuous system is given

where the instability of the impulsive system can be determined by the contin-

uous comparison system, which extends Ref. [20] to a general case; (2) Based

on the comparison results, sufficient conditions for instability in probability of

ISSs are obtained to determine instability properties of ISSs when stability con-50

ditions fail; (3) The signals generated by ISSs are successfully applied to image

encryption.

Notations: N = {1, 2, 3, · · · }. Rn is the n-dimensional Euclidean space

equipped with norm | · |. For any interval T ⊆ R and I ⊆ Rn, C(T, I) = {φ :

T → I is continuous} and PC(T, I) = {φ : T → I is piecewise continuous and55

φ(t−) = φ(t)}. For a function φ : R+ → R+, D−φ(t) , lim inf
∆t→0−

φ(t+∆t)−φ(t)
∆t is

the lower-left Dini derivative of φ(t). The impulsive sequence satisfies 0 ≤ t0 <

t1 < · · · < tk < · · · and lim
k→∞

tk =∞. N(t, s) represents the number of impulses

in interval [s, t). PC∗ = {φ ∈ PC(R+,R+)|φ is discontinuous only at points

{tk}∞k=1}. w(t) = (w1(t), w2(t), · · · , wl(t))T is an l-dimensional Brownian mo-60

tion defined on complete probability space (Ω,F , P ) with a filtration {Ft}t≥0.

For any random variable ξ, E(ξ) denotes the expectation value of ξ. tr is the

trace operator. A function φ : R+ → R+ is of class K∞ if it is continuous, strictly

increasing and φ(0) = 0, lim
t→∞

φ(t) = +∞. K1 = {φ ∈ K∞ : φ(E(ξ)) ≤ E(φ(ξ))}

and K2 = {φ ∈ K∞ : φ(E(ξ)) ≥ E(φ(ξ))} where ξ ≥ 0 and E(ξ) < +∞.65
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2. Preliminaries

Consider the following n-dimensional impulsive stochastic systems dx(t) = f(t, x(t))dt+ g(t, x(t))dw(t), t ≥ t0, t 6= tk,

x(t+k ) = Ik(tk, x(tk)), k ∈ N,
(1)

with initial value x(t0) = x0 ∈ Rn, where x(t) ∈ Rn, f : R+ × Rn → Rn,

g : R+ × Rn → Rn×l, and Ik : R+ × Rn → Rn, k ∈ N. Assume that f , g and

Ik are left continuous with right limit and satisfy local Lipschitz condition and

linear growth condition to ensure the existence and uniqueness of the solutions70

to system (1) [32]. If f(t, 0) = 0, g(t, 0) = 0, and Ik(tk, 0) = 0 for k ∈ N, it

admits a trivial solution x(t) ≡ 0.

Let C1,2(R+×Rn,R+) denote the family of all nonnegative functions V (t, x)

on R+×Rn, which are continuous, once differentiable in t and twice differentiable

in x. For each V ∈ C1,2(R+ × Rn,R+), the Itô operator LV (t, x) of function

V (t, x), associated with system (1), is defined by

LV (t, x) = Vt(t, x) + Vx(t, x)f(t, x) +
1

2
tr(gT (t, x)Vxx(t, x)g(t, x)), (2)

where Vt = ∂V
∂t , Vx = ( ∂V∂x1

, ∂V∂x2
, · · · , ∂V∂xn

), and Vxx = ( ∂2V
∂xi∂xj

)n×n [7].

Definition 1 ([33]). The trivial solution to system (1) is stable in probability,

if for each ε > 0, η > 0, there exists δ = δ(t0, ε, η) > 0 such that E(|x0|) < δ75

implies P{|x(t, t0, x0)| ≥ ε} < η for t ≥ t0. Furthermore, the trivial solution is

asymptotically stable in probability, if it is stable in probability and for each

ε > 0, η > 0, there exist δ0 > 0 and T = T (t0, ε, η) > 0 such that E(|x0|) < δ0

implies P{|x(t, t0, x0)| ≥ ε} < η for t ≥ t0 + T .

Definition 2. The trivial solution to system (1) is unstable in probability, if it80

is not stable in probability.

Definition 3. The trivial solution to system (1) is asymptotically unstable in

probability, if for arbitrary δ > 0 and T > 0, there exist ε > 0 and η > 0 and

some t̂ ≥ t0 + T such that E(|x0|) < δ implies P{|x(t̂, t0, x0)| ≥ ε} > η.
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Before investigating instability of ISSs, we propose a novel comparison prin-

ciple of an impulsive system and a continuous system and give a lemma to

determine the existence of the continuous comparison system. Define a destabi-

lizing impulsive filter by ρd(s) = ln(max{s, 1}) and a stabilizing impulsive filter

by ρs(s) = ln(min{s, 1}) for s > 0. First, let us consider the following impulsive

system and continuous system

S1:


D−m(t) ≥ µ(t)m(t), t ∈ (tk−1, tk],

m(t+k ) ≥ qkm(tk), k ∈ N,

m(t0) = m0 ∈ R+,

(3)

S2:

 ṙ(t) = λ(t)r(t), t ≥ t0,

r(t0) = r0 ∈ (0,m0],
(4)

where m ∈ PC∗, r, µ, λ ∈ C(R+,R) and {qk}k∈N are some positive constants.85

Lemma 1. Suppose that the following conditions are satisfied

ρd(qk) +

∫ t

tk

µ(s)ds ≥
∫ t

tk

λ(s)ds, (5)

ρd(qk) + ρs(qk+1) +

∫ tk+1

tk

µ(s)ds ≥
∫ tk+1

tk

λ(s)ds, (6)

for t ∈ (tk, tk+1] and k + 1 ∈ N where q0 = 1. Then, m(t) ≥ r(t) for t ≥ t0.

Proof. First, we will show that m(t) ≥ r(t) for t ∈ [t0, t1]. If it is not true, there

exists t∗ ∈ (t0, t1] such that m(t∗) < r(t∗). However, it follows from m(t) > 0

and D−m(t) ≥ µ(t)m(t) for t ∈ (t0, t1] that m(t∗) ≥ m0 exp
( ∫ t∗

t0
µ(s)ds

)
. For

r(t), the positivity of initial condition ensures that r(t) ≥ 0 for t ≥ t0 under

the continuity of λ. Similarly, we have r(t∗) ≤ r0 exp
( ∫ t∗

t0
λ(s)ds

)
. Therefore,∫ t∗

t0
µ(s)ds <

∫ t∗
t0
λ(s)ds. which contradicts (5) under the fact that ρd(q0) = 0.

Thus, m(t) ≥ r(t) for t ∈ [t0, t1]. Noticing that m(t+1 ) < m(t1) for 0 < q1 < 1,

we shall prove that m(t+1 ) ≥ r(t1) when 0 < q1 < 1. Along the same line as the

proof for the case of (t0, t1], the contrary of m(t+1 ) ≥ r(t1) results in that

ln q1 +

∫ t1

t0

µ(s)ds <

∫ t1

t0

λ(s)ds, (7)

which also contradicts (6) under the fact that ρs(q1) = ln q1 for 0 < q1 < 1.
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Then, we can derive that m(t) ≥ r(t) for t ∈ (tk, tk+1] and m(t+k+1) ≥ r(tk+1)

for 0 < qk+1 < 1, provided that m(t) ≥ r(t) for t ∈ (tk−1, tk] and m(t+k ) ≥ r(tk)

for 0 < qk < 1, k ∈ N. Suppose that there exists t∗ ∈ (tk, tk+1] such that

m(t∗) < r(t∗), one can derive that

m(t∗) ≥

 m(t+k ) exp(
∫ t∗
tk
µ(s)ds), if 0 < qk < 1,

qkm(tk) exp(
∫ t∗
tk
µ(s)ds), if qk ≥ 1,

(8)

and

r(t∗) ≤ r(tk) exp
(∫ t∗

tk

λ(s)ds
)
, (9)

which lead to

ρd(qk) +

∫ t∗

tk

µ(s)ds <

∫ t∗

tk

λ(s)ds. (10)

This contradicts (5) as well. The deduction process of m(t+k+1) ≤ r(tk+1) for

0 < qk+1 < 1 is the same fashion and consequently omitted. By mathematical

induction, the proof of this lemma is completed.90

Lemma 2. There exists a function λ ∈ C(R+,R) such that conditions (5)-

(6) are satisfied and the solution to impulsive system S1 satisfies that m(t) ≥

r0 exp
( ∫ t

t0
λ(s)ds

)
for t ≥ t0, where r0 is a positive constant related to m0.

Proof. Define the additional functions {σk(t)}∞k=0 by

σk(t) =

 βk sin( t−tkhk
π), t ∈ (tk, tk + hk],

0, t ∈ [t0, tk] ∪ (tk + hk,+∞),
(11)

where βk = π(ρd(qk)+ρs(qk+1))
2hk

, q0 = 1, and 0 < hk ≤ tk+1 − tk. Then, we can

deduce that conditions (5)-(6) are satisfied with λ(t) = µ(t) +
∞∑
k=0

σk(t). When

t ∈ (tk, tk + hk), k + 1 ∈ N,∫ t

tk

λ(s)ds =

∫ t

tk

σk(s)ds+

∫ t

tk

µ(s)ds

≤ πρd(qk)

2hk

∫ tk+hk

tk

sin(
s− tk
hk

π)ds+

∫ t

tk

µ(s)ds (12)

= ρd(qk) +

∫ t

tk

µ(s)ds.
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When t ∈ [tk + hk, tk+1], k + 1 ∈ N,∫ t

tk

λ(s)ds =

∫ tk+hk

tk

σk(s)ds+

∫ t

tk

µ(s)ds

= βk

∫ tk+hk

tk

sin(
s− tk
hk

π)ds+

∫ t

tk

µ(s)ds (13)

= ρd(qk) + ρs(qk+1) +

∫ t

tk

µ(s)ds.

Therefore, conditions (5)-(6) are satisfied with λ(t) = µ(t) +
∞∑
k=0

σk(t) and the

continuous comparison system S2 are also determined. Since the solution to S295

is r(t) = r0 exp
( ∫ t

t0
λ(s)ds

)
, the conclusion is proved by Lemma 1.

Remark 1. Lemma 2 determines the existence of λ(t) satisfying conditions

(5)-(6), which also guarantees the existence of continuous comparison system

S2. When considering impulsive system S1, we can build up the continuous

comparison system S2 by setting λ(t) = µ(t) +
∞∑
k=0

σk(t) where the functions100

{σk(t)}∞k=0 are defined by (11). Then, the comparison principle of system S1 and

system S2 are established with functions µ(t) and λ(t) satisfying conditions (5)-

(6) and the instability of system S1 can be determined if system S2 is unstable.

Remark 2. Noted that, when µ(t) > 0, the condition D−m(t) ≥ µ(t)m(t)

implies the exponential divergence of system S1 without impulses. When the105

impulses are imported into system S1, that is m(t+k ) ≥ qkm(tk), the system

may be divergent or convergent. The conditions (5)-(6) of Lemma 1 retain the

divergence of m(t), which will lead to instability of ISSs in later section.

Remark 3. The functions ρd and ρs are the destabilizing and stabilizing im-

pulsive filters, e.g. ρd(q) = q for q > 1 and ρd(q) = 0 for 0 < q < 1. With the110

help of these filters, the comparison results can handle both destabilizing and

stabilizing impulses, so we extend Ref. [20] to a more general case.

3. Instability Analysis of ISSs

In this section, sufficient conditions for instability in probability of ISSs (1)

are derived by stochastic analysis based on the new comparison principle.115
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Theorem 1. Assume that there exist functions V ∈ C1,2(R+×Rn,R+), c1 ∈ K1,

c2 ∈ K2 and µ, λ ∈ C(R+,R) such that conditions (5)-(6) are satisfied and

(i) c1(|x|) ≤ V (t, x) ≤ c2(|x|) for (t, x) ∈ [t0,∞)× Rn;

(ii) LV (t, x) ≥ µ(t)V (t, x), t ≥ t0, t 6= tk;

(iii) V (tk, Ik(tk, x(tk))) ≥ qkV (tk, x(tk)), k ∈ N.120

Then, the instability of system S2 implies the instability in probability of the

trivial solution to system (1).

Proof. Given x0 ∈ Rn \ {0}, we denote V (t) = V (t, x(t)). By the generalizing

Itô formula [7], it yeilds

dV (t) = LV (t, x(t))dt+ Vx(t, x(t))g(t, x(t))dw(t), (14)

where t ∈ (tk−1, tk], k ∈ N. Then, integrating from t to t+ ∆t with sufficiently

absolutely small ∆t < 0 such that t+∆t ∈ (tk−1, tk] and taking the expectation,

we have

EV (t+ ∆t)− EV (t) =

∫ t+∆t

t

ELV (s, x(s))ds. (15)

Based on the continuity of V , f and g with respect to t, we have D−EV (t) =

ELV (t, x(t)). From Lemma 1, we obtain that EV (t) ≥ r(t) for t ∈ [t0, t1] ∪

(tk, tk+1], k ∈ N. Suppose that the trivial solution to system (1) is stable in

probability. Define Ωn(t) = {ω ∈ Ω : |x(t)| ≥ n} and Ωn(t) \ Ωn+1(t) = {ω ∈

Ω : n ≤ |x(t)| < n + 1} where n = 0, 1, 2, · · · . Since the trivial solution to

system (1) is stable in probability, for ε2 = n > 0 and η = a
(n+1)3 where a > 0

will be determined later, there exists δ2 > 0 such that E(|x0|) < δ2 implies

P (|x(t, t0, x0)| ≥ n) = P (Ωn(t)) < a
(n+1)3 . Since system S2 is unstable, for

δ1 = c1(δ2) > 0, there exist ε1 > 0, r0 < δ1 and some t̂ > t0 such that E|x0| < δ2

for those x0 with EV (t0, x0) ≤ r0 < δ1 and EV (t̂, x(t̂, t0, x0)) ≥ r(t̂, r0) ≥ ε1.

However,

EV (t̂, x(t̂, t0, x0)) ≤ c2(E|x(t̂, t0, x0)|) ≤ c2(

∞∑
n=0

(n+ 1)P (Ωn(t̂) \ Ωn+1(t̂)))

≤ c2(

∞∑
n=0

(n+ 1)P (Ωn(t̂))) ≤ c2(a

∞∑
n=0

1

(n+ 1)2
) < c2(2a) = ε1, (16)
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where a = c−1
2 (ε1)/2, which is contradiction. Therefore, the trivial solution to

system (1) is unstable in probability if system S2 is unstable.

Remark 4. As we all know, the stability in mean of stochastic systems implies125

the stability in probability by Chebyshev’s theorem. Conversely, the instability

in probability of ISSs (1) implies the instability in mean.

Based on Theorem 1 and Lemma 2 which determines the continuous com-

parison system S2 with λ(t) = µ(t) +
∞∑
k=0

σk(t), the following moment estimate

and corollaries are immediate consequences.130

Theorem 2. If there exist functions V ∈ C1,2(R+ ×Rn,R+), c1 ∈ K1, c2 ∈ K2

and µ ∈ C(R+,R) such that conditions (i)-(iii) in Theorem 1 hold, the solution

x(t) to system (1) satisfies the following moment estimate

EV (t, x(t)) ≥ K0 exp
(∫ t

t0

µ(s)ds
) k−1∏
i=1

qi min
i=k,k+1

{1, qi}, (17)

for t ∈ (tk, tk+1], k ∈ N, where K0 is a constant related to the initial condition.

Proof. From Lemma 2 and Theorem 1, we have EV (t, x(t)) ≥ K0 exp
( ∫ t

t0
λ(s)ds

)
for t ≥ t0, where K0 = c1(E|x0|)/2, λ(t) = µ(t) +

∞∑
k=0

σk(t) and the functions

{σk(t)}∞k=0 are defined by (11). When t ∈ (tk, tk+1), k ∈ N, we get

EV (t, x(t)) ≥ K0 exp
(∫ t

t0

µ(s)ds+

k∑
i=1

∫ ti

ti−1

σi(s)ds+

∫ t

tk

σk(s)ds
)

≥ K0 exp
(∫ t

t0

µ(s)ds+
πρs(qk+1)

2hk

∫ t

tk

sin(
s− tk
hk

π)ds
) k−1∏
i=1

qi min
i=k
{1, qi}

≥ K0 exp
(∫ t

t0

µ(s)ds
) k−1∏
i=1

qi min
i=k,k+1

{1, qi}. (18)

When t = tk, k ∈ N, the moment estimate (17) is obviously true. Then, the

proof is completed.

Corollary 1. Assume that there exist functions V ∈ C1,2(R+ × Rn,R+), c1 ∈

K1, c2 ∈ K2 and µ ∈ C(R+,R) such that conditions (i)-(iii) hold. Then, the

9



trivial solution to system (1) is unstable in probability if there exists a constant

M such that ∫ t

t0

µ(s)ds+

k∑
i=1

ln qi ≥M, t ∈ (tk, tk+1], k ∈ N.

Proof. There exists M > 0 such that
∫ t
t0
µ(s)ds+

k∑
i=1

ln qi ≥M for t ∈ (tk, tk+1]

and k ∈ N, so there exists t̂ ∈ (tk, tk+1) such that EV (t̂, x(t̂)) ≥M ′k where M ′k =

K0 min
i=k,k+1

{1, qi}eM−ln qk . Then, it follows from Theorem 2 that c2(E|x(t̂)|) ≥

M ′k, indicating that E|x(t̂)| ≥ c−1
2 (M ′k). Suppose that system (1) is stable in

probability, then for ε = n and η = a
(n+1)3 where a = c−1

2 (M ′k)/2 and n ∈ N,

there exists δ0 > 0 such that E|x0| ≤ δ0 implies P (|x(t)| ≥ n) < a
(n+1)3 .

Analogous to (16), we have

E|x(t)| ≤
∞∑
n=0

(n+ 1)P (Ωn(t)) ≤
∞∑
n=0

a

(n+ 1)2
< c−1

2 (M ′k), (19)

for all t ≥ t0, which contradicts E|x(t̂)| ≥ c−1
2 (M ′k). Therefore, the trivial

solution to system (1) is unstable in probability.135

Corollary 2. Assume that there exist functions V ∈ C1,2(R+ × Rn,R+), c1 ∈

K1, c2 ∈ K2 and µ ∈ C(R+,R) such that conditions (i)-(iii) hold. Then, the

trivial solution to system (1) is asymptotically unstable in probability if there

exists a function φ ∈ K∞ such that∫ t

t0

µ(s)ds+

k∑
i=1

ln qi ≥ lnφ(t− t0), t ∈ (tk, tk+1], k ∈ N.

Proof. Suppose that the trivial solution to system (1) is not asymptotically

unstable in probability. Then, for arbitrary ε = n and η = 1
(n+1)3 , there exist

δ0 > 0 and T > 0 such that E|x0| < δ0 implies P (|x(t)| ≥ n) < 1
(n+1)3 for

t ≥ t0 + T , which indicates that E|x(t)| < 2 for t ≥ t0 + T along the same line

of (16). However, since φ ∈ K∞, there exists t̂ ≥ t0 + T such that |φ(t̂)| > eM140

for arbitrary M ∈ R, furthermore,
∫ t
t0
µ(s)ds+

k∑
i=1

ln qi > M . Analogous to the

proof of Corollary 1, we can choose M large enough so that E|x(t̂)| ≥ 2 which

leads to contradiction. Then, the proof is completed.

10



Corollary 3. Assume that there exist a constant ν, and a function µ ∈ C(R+,R+)

such that

2xT (t)f(t, x(t)) + |g(t, x(t))|2 ≥ µ(t)|x(t)|2, t ≥ t0, (20)

|Ik(tk, x(tk))|2 ≥ eν |x(tk)|2, k ∈ N. (21)

If there exists a constant M such that νN(t, s) +
∫ t
s
µ(s)ds ≥M for t0 ≤ s < t,

system (1) is unstable in probability; If there exists a function φ ∈ K∞ such that145

νN(t, s) +
∫ t
s
µ(s)ds ≥ lnφ(t − s) for t0 ≤ s < t, system (1) is asymptotically

unstable in probability.

Proof. Define a Lyapunov function by V (t, x) = p|x(t)|2 with p > 0. From the

conditions of this corollary, we see that

LV (t, x(t)) = 2pxT (t)f(t, x(t)) + p|g(t, x(t))|2 ≥ µ(t)V (t, x(t)), (22)

V (tk, Ik(tk, x(tk))) = p|Ik(tk, x(tk))|2 ≥ peν |x(tk)|2 = eνV (tk, x(tk)). (23)

Thus, all the conditions of Corollary 1 and 2 are satisfied to complete the proof.

Remark 5. Noted that the existing studies [21, 34, 35] have given the stability150

conditions of ISSs. For instance, it follows from Theorem 1 of [35] that the

ISSs are asymptotically stable in probability if the reverse of (20)-(21) and

νN(t, s)+
∫ t
s
µ(s)ds ≤ − lnφ(t−s) hold for t0 ≤ s < t and ν < 0. If the sufficient

stability conditions are not satisfied, the ISSs may be stable or unstable. At this

time, if the conditions of Corollary 3 are satisfied, we can claim the instability of155

the system. Therefore, the obtained results present how to determine instability

when stability conditions fails. It is quite a pity that the derived instability

conditions and the existing stability conditions cannot be transformed because

of the sufficiency of these conditions, and it is interesting to establish sufficient

and necessary conditions to bridge instability and stability, which will be the160

future work.

Remark 6. Although Ref. [20] has studied the instability of impulsive dif-

ferential systems with stabilizing impulses, the generalization is far from being

11



trivial because the system considered here includes stochastic factor and the

results are suitable for both the stabilizing and destabilizing impulses.165

Remark 7. It is interesting to note that, if we establish upper comparison

system along the same fashion of Lemma 1 and derive stability conditions of

ISSs, the conclusion agrees with the results in [34, 35] (see Appendix for details).

4. Applications

To show the effectiveness of theoretical results, we give two numerical exam-170

ples and apply the signals generated by ISSs to image encryption.

4.1. Numerical Examples

Example 1. Consider the following scalar stochastic system

dx(t) = a(t)x(t)dt+ b(t)x(t)dw(t), t ≥ 5, (24)

where a(t) = −1 + cos(t)
t − 1+sin(t)

t2 and b(t) =
√

2
t . Fig. 1(a) depicts the sta-

ble stochastic continuous dynamics with initial conditions x0 = −5,−4, · · · , 5.

Then, the impulse x(t+k ) = ex(tk) (tk = k, k ∈ N) is imposed into the system.175

Claim 1. The trivial solution to system (24) with the above impulse is unstable

in probability, as shown in Fig. 1(b).

Proof. Denote the solution of system (24) with impulse by x(t), a simple com-

putation yields

2x(t)f(t, x(t)) + |g(t, x(t))|2 = 2(−1 +
cos(t)

t
− sin(t)

t2
)x2(t), (25)

which results in µ(t) = 2(−1+ cos(t)
t −

sin(t)
t2 ) and v = 2. From Corollary 3, there

exists M = − 14
5 such that νN(t, s) +

∫ t
s
µ(s)ds ≥ 2(−1 + sin(t)

t − sin(s)
s ) ≥ M

for 5 ≤ s < t, indicating the instability in probability.180

Remark 8. In the literatures [36, 37], the stochastic noise was shown to desta-

bilize a stable system. As the example suggests, the impulse can also destabilize

a stable stochastic system.
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Figure 1: Trajectory simulation of system (24) without impulse (a) and with impulse (b) in

Example 1.

Example 2. Consider the following 2-D impulsive stochastic system dx(t) = Ax(t)dt+Dx(t)dw(t), t ≥ 0, t 6= tk,

x(t+k ) = Jx(tk), tk = k, k ∈ N,
(26)

where x(t) = [x1(t), x2(t)]T .

Claim 2. The trivial solution to system (26) is asymptotically unstable in

probability, if there exist constants µ, α > 0 and matrix P > 0 such that α >

e−µ,

PA+ATP +DTPD − µP ≥ 0, JTPJ − αP ≥ 0. (27)

Proof. Since α > e−µ, there exists a > 0 such that µ > a− lnα. If we consider

the Lyapunov function defined by V (t, x) = xTPx, the Itô operator, associated

with system (26), is given by

LV (t, x) = xTPAx+ xTATPx+ tr(xTDTPDx). (28)

When t 6= tk, we have that LV (t, x) ≥ µV (t, x). When t = tk, V (t+k , x(t+k )) =185

xTJTPJx ≥ αV (tk, x(tk)). Then, there exist µ(t) = µ, qk = α and φ(t) = eat

such that
∫ t

0
µ(s)ds +

k∑
i=1

ln qi ≥ (a − lnα)t + k lnα ≥ at = lnφ(t), so the

trivial solution to system (26) is asymptotically unstable in probability based

on Corollary 2.
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Remark 9. As Refs. [11, 21] stated, the impulse controller is effective to190

stabilize an unstable system. From this example, we see that the stability of the

system with impulsive controller cannot be ascertained if the stabilizing impulse

is not visited frequently enough.

4.2. Application to Image Encryption

From theoretical results and numerical examples, we obtain the conditions

for instability and asymptotic instability in probability. The instability in prob-

ability implies that ISSs are unstable for a large set of initial conditions, which

ensures that the initial condition can be used as encryption key for image en-

cryption. The asymptotic instability in probability implies that the signals

generated by system (26) fall into unstable orbit or even chaotic orbit in almost

every simulation, which implies that the unstable ISSs may generate unpre-

dictable numerical signals. To generate signals for encryption, system (26) is

numerically discretized by the method in [38] to be expressed by x(n+ 1) = x(n) +Ax(n)∆t+Dx(n)∆wn, n 6= n′,

x(n+ 1) = Jx(n), n = n′,
(29)

where n = 1, 2, · · · , n′ = 1 × 104, 2 × 104, · · · , ∆t = 10−4, and {∆wn} are the

simulated values of independent random variables of the form
√

∆tN(0, 1). The

parameters are chosen by

A =

 3 1

0 1

 , D =

 1.8 0.12

−1.2 0.6

 , J =

 0.096 0

0 0.096

 .
Obviously, the conditions in Claim 2 are satisfied with µ = 2.3449, α = 0.096

and P = I, so system (26) is asymptotically unstable in probability. From Fig.

2, we can see that the system indeed generates unstable chaotic signals. Then,

the chaotic signals are used to cipher plain images by an image cryptosystem

which includes bit-level permutation inspired by [28] and pixel-level diffusion as

follows:

Bit-Level Permutation. First, the plain image (M ×N ×K) is divided into

KM × 8N groups by bits and columns where each group has KM bits and the

14
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Figure 2: Trajectory simulation of system (26) in Example 2.

chaotic signals are processed by x = floor(|signal[H : H + MNK]|) where H

is used to discard former H values. Then, the bit groups are permuted by the

processed signals and Arnold cat map defined by m

n

 =

 1 p

q pq + 1

 i

i

mod

 8N

8N

 , (30)

where p = x[i], q = x[end − i], i represents the original bit group index, m

represents the new bit group index after permutation, and n is the circle shift

number of m bit group. Further, the bit groups are combined to generate a

permuted image.

Pixel-Level Diffusion. For pixel-level diffusion, the steps are as follows:

Step 1: the pixels in permuted image are scanned from upper-left to lower-right

and form a permuted sequence p.

Step 2: set the initial value of ciphered sequence by c[1] = C
∑MNK
i=1 p[i] where

C is a positive constant.

Step 3: each pixel in ciphered sequence c is calculated by

c[i+ 1] = {p[i] + c[i] + x[i]mod256}mod256.

where i = 1, 2, · · · ,MNK.195

Step 4: the ciphered sequence is reshaped to be a ciphered image.

The decryption procedures are the reverse scenario of encryption. For color

image (K = 3), 24 bits in pixels are extracted from red, green and blue com-

ponents to generate 3M × 8N bit groups for permutation and the permuted

15



image is reshaped to form the permuted sequence of size 3MN for diffusion.200

Through this procedures, the pixels of color images can move from one compo-

nent to another component. Therefore, the encryption scheme for color images

are inter-component encryption instead of intra-component encryption.

Remark 10. Even though the stochastic factor exists in system (26), the

corresponding discretized system (29) for encryption and decryption is self-205

synchronized because the simulated value of stochastic factor is pre-generated,

deterministic, and open to public.

4.3. Experimental Results

To testify the workable cryptosystem, we perform experiments on several

standard images and USC-SIPI database [39] (e.g. Fig. 3) including key analy-210

sis, statistical analysis and differential analysis as follows.

Figure 3: Some representative images from USC-SIPI database [39].

Key analysis. The parameters A, D, J and the initial condition x(0) of

ISSs are choosen as secret keys. To test the key sensitivity, the original images

are ciphered to form ciphered images, which are further decrypted by secret keys

and several wrong keys slight different from secret keys. The decrypted results215

and their histograms are shown in Figs. 4 and 5 where the decrypted image by

secret keys is identical with the original image while all the decryption attempts

by wrong keys fail, indicating that the encryption algorithm is sensitive to secret

keys.
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Figure 4: Images and their corresponding histograms. (a) Plain image. (b) Ciphered image.

(c) Decrypted image by using secret keys.
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Figure 5: Decrypted images by using wrong keys where Ã = A, D̃ = D, J̃ = J , x̃(0) = x(0)

except (a) Ã11 = A11 + 10−6; (b) D̃11 = D11 + 10−6; (c) J̃11 = J11 + 10−6; (d) x̃1(0) =

x1(0) + 10−6.

Statistical analysis. To demonstrate the resistance to attacks, statisti-220

cal properties of plain images and ciphered images are analyzed including his-

togram, entropy, and correlation of plain images and ciphered images. If the
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Table 1: Variances of Histograms Compared with Ref. [40].

Image Lena (g) Pepper Lady Clock

Original 6.37e5 3.31e6 9.09e5 2.40e4

Ciphered 9.22e2 2.69e3 7.52e2 6.17e1

Ref. [32] 1.04e3 3.41e3 8.77e2 5.60e1

plain images are ciphered by a good encryption scheme, the variances of his-

tograms ought to decrease significantly, as shown in Table 1 for the test images

compared with Ref. [40]. Moreover, the entropies of ciphered images are also225

calculated and presented in Table 2 and 3 compared with Refs. [30, 31, 40].

The closeness of entropy to 8 implies the random-like appearance of ciphered

images and the proposed method achieves almost the best entropy and variances

of histograms.

Table 2: Entropy compared with Refs. [30, 31].

Algorithm Image Red Green Blue Image Red Green Blue

Proposed

Baboon

7.9993 7.9992 7.9994

House

7.9993 7.9993 7.9993

Ref. [30] 7.9982 7.9984 7.9980 7.9983 7.9979 7.9980

Ref. [31] 7.9992 7.9993 7.9991 7.9966 7.9972 7.9967

Proposed
F-16

7.9993 7.9993 7.9993
Lake

7.9993 7.9994 7.9994

Ref. [30] 7.9980 7.9980 7.9978 7.9978 7.9976 7.9978

Proposed
Lena

7.9976 7.9970 7.9972
Tiffany

7.9993 7.9992 7.9993

Ref. [30] 7.9978 7.9976 7.9979 7.9977 7.9979 7.9978

Proposed
Tree

7.9971 7.9968 7.9972
Splash

7.9993 7.9994 7.9993

Ref. [31] 7.9972 7.9969 7.9968 7.9993 7.9991 7.9988

Proposed
Peppers

7.9993 7.9993 7.9993
Lady

7.9968 7.9973 7.9973

Ref. [31] 7.9992 7.9993 7.9992 7.9971 7.9972 7.9965

The correlations of adjacent pixels of plain images and ciphered images are230

also evaluated in horizontal, vertical and diagonal directions, because an ideal

encryption algorithm can remove the high relation of adjacent pixels of plain

18



Table 3: Entropy compared with Ref. [40].

Algorithm Lena (g) Pepper Lady Clock

Proposed 7.9994 7.9998 7.9991 7.9891

Ref. [32] 7.9993 7.9993 7.9971 7.9901

images. As shown in Fig. 6, the pixels in plain images diffuse uniformly to form

the ciphered image. The quantification of correlations on USC-SIPI database is

Figure 6: Correlation plots of plain image (top) and ciphered image (bottom) in horizontal

direction (left), vertical direction (mid), and diagonal direction (right).

presented in Table 4 where the correlations of color images are absolute averages235

of three directions and RGB components. The absolute average correlation of

six images from USC-SIPI database is 2.10e-3 which is smaller than 1.63e-2 of

Ref. [30] and the correlation of baboon, house, tree, splash, peppers and lady

images is 1.85e-3 which is also smaller than 2.67e-3 of Ref. [31]. Thus, the

proposed encryption scheme is robust to chosen-plaintext or known-plaintext240

attacks.

Differential analysis. To resist the differential attack, the encryption

scheme should force the minor change in plain images to diffuse in the whole ci-

phered images. Generally, the number of pixels change rate (NPCR) and unified

average changing intensity (UACI) are employed to test the encryption scheme’s

resistance to differential attack. The NPCR and UACI are calculated by

NPCR =
Σi,jD(i, j)

M ×N
× 100%, UACI =

Σi,j |c(i, j)− c′(i, j)|
255×M ×N

× 100%,

where c and c′ are two ciphered images, (i, j) represents the coordinate, and

19



Table 4: Correlation performance on USC-SIPI database [39].

Image
Original (×10−1) Ciphered (×10−3)

Red Green Blue Red Green Blue

Baboon 8.81 7.89 8.76 2.08 0.70 1.20

F-16 9.55 9.52 9.38 1.10 2.17 2.34

House 9.46 9.23 9.62 1.07 1.43 0.93

Lake 9.51 9.63 9.64 1.94 2.06 0.72

Lena 9.35 9.39 8.80 6.45 2.65 3.61

Tiffany 9.40 8.99 9.01 2.82 2.34 1.89

Average 9.35 9.11 9.20 2.58 1.89 1.78

SIPI-Color 9.49 9.40 9.42 2.74 2.48 2.36

SIPI-Gray 9.21 9.07 8.60 1.56 2.07 1.76

D(i, j) is defined by

D(i, j) =

 1, c(i, j) 6= c′(i, j),

0, otherwise.

Two plain images differ by one bit at only one position, which are further

ciphered by the same keys to calculate NPCR and UACI. The four corners and

the centre in images are chosen as the different position separately to calculate

the average UPCR and UACI. The results on USC-SIPI database are listed

in Table 5 which shows that NPCR and UACI can reach 0.99 and 0.33 after

first round, indicating that the proposed scheme has a good ability to resist

differential attack. Furthermore, since the proposed scheme is inter-component

encryption for color images, we also calculate the inter-NPCR (INPCR) and

inter-UACI (IUACI) defined by

INPCR =
Σi,j,kD(i, j, k)

3×M ×N
× 100%, IUACI =

Σi,j,k|c(i, j, k)− c′(i, j, k)|
255× 3×M ×N

× 100%,

where c and c′ are two ciphered images, (i, j) represents the coordinate, k =
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Table 5: NPCR and UACI performance on USC-SIPI database [39].

Image
NPCR UACI

Red Green Blue Red Green Blue

Baboon 0.9958 0.9940 0.9949 0.3368 0.3346 0.3348

Lena 0.9949 0.9947 0.9939 0.3349 0.3341 0.3341

Lake 0.9959 0.9952 0.9955 0.3350 0.3351 0.3347

SIPI-Color 0.9952 0.9947 0.9946 0.3359 0.3350 0.3343

SIPI-Gray 0.9950 0.3355

red, blue, or green, and D(i, j, k) is defined by

D(i, j, k) =

 1, c(i, j, k) 6= c′(i, j, k),

0, otherwise.

The INPCR and IUACI are calculated by changing one bit in one component. As

shown in Table 6, INPCR and IUACI also reach 0.99 and 0.33 respectively, which

implies the resistance of the proposed scheme to differential attack because

the tiny change in one component causes significant change of the whole three245

components of color images.

Table 6: INPCR and IUACI performance on USC-SIPI database [39].

Image
INPCR IUACI

Red Green Blue Red Green Blue

Baboon 0.9952 0.9947 0.9951 0.3353 0.3351 0.3348

Lena 0.9947 0.9945 0.9944 0.3350 0.3338 0.3338

Lake 0.9956 0.9953 0.9953 0.3349 0.3341 0.3345

SIPI-Color 0.9950 0.9947 0.9947 0.3353 0.3348 0.3345

5. Conclusion

This paper investigates instability of ISSs with application to image encryp-

tion. First, asymptotic behaviours of an impulsive system and its lower contin-
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uous comparison system are studied to build up comparison principle. Based250

on the novel comparison results, instability in probability of ISSs is established

by stochastic analysis. The effectiveness of theoretical results is verified by two

numerical examples and the application to image encryption.

In most of literatures about image encryption based on nonlinear systems

[29–31], the delays are usually added into models to generate chaotic signals.255

And, it is more chanllenging to investigate instability properties of impulsive

stochastic delayed systems (ISDSs), since the moment estimate of ISDSs is diffi-

cult and most of the existing inequalities on stability will be invalid. Therefore,

the future work will focus on instability analysis of ISDSs and their application

to secure communication.260

On the other hand, even though the unstable ISSs are shown to generate

chaotic numerical signals suitable for image encryption, there is a gap between

the dynamical analysis of ISSs and the application to image encryption, since

the discretized ISSs are the practical systems to generate chaotic signals and

the chaotic behaviour is the desirable property for image encryption. But the265

instability properties of ISSs are necessary for chaos analysis, because an ISS

must be unstable if it is chaotic. If we try to investigate the chaotic properties of

ISSs, more strong conditions are recommended than the established conditions.

The chaotic properties of ISSs will be another future work.
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Appendix: Upper Comparison System

To establish the upper comparison system, the following notations are addi-

tionally specified. PC ′(I, T ) = {φ : I → T is piecewise continuous and φ(t+) =

φ(t)}. PC∗∗ = {φ ∈ PC ′(R+,R+)|φ is discontinuous only at points {tk}∞k=1}.

For a function φ : R+ → R+, D+φ(t) , lim sup
∆t→0+

φ(t+∆t)−φ(t)
∆t is the upper-right

Dini derivative of φ(t). Along the same line of Section 2, consider the following

impulsive system and continuous system

S3:


D+m(t) ≤ µ(t)m(t), t ∈ [tk−1, tk),

m(t+k ) ≤ qkm(tk), k ∈ N,

m(t0) = m0 ∈ R+,

(31)

S4:

 ṙ(t) = λ(t)r, t ≥ t0,

r(t0) = r0 ∈ [m0,∞),
(32)

where m ∈ PC∗∗, r, µ, λ ∈ C(R+,R) and {qk}k∈N are some positive constants.

Claim 3. Suppose that the following conditions are satisfied

ρs(qk) +

∫ t

tk

µ(s)ds ≤
∫ t

tk

λ(s)ds, (33)

ρs(qk) + ρd(qk+1) +

∫ tk+1

tk

µ(s)ds ≤
∫ tk+1

tk

λ(s)ds, (34)

for t ∈ [tk, tk+1) and k + 1 ∈ N where q0 = 1. Then, m(t) ≥ r(t) for t ≥ t0.280

Claim 4. There exists a function λ ∈ C(R+,R) such that conditions (33)-

(34) are satisfied and the solution to impulsive system S3 satisfies that m(t) ≤

r0 exp
( ∫ t

t0
λ(s)ds

)
for t ≥ t0 where r0 is a positive constant related to m0.

Based on the comparison results established here, one can derive stability

conditions of ISSs, which will agree with recent studies [34, 35].285

References

[1] G. D. Nunno, T. Meyer-Brandis, B. Øksendal, F. Proske, Optimal portfolio

for an insider in a market driven by Lévy processes, Quant. Finance 6 (1)
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