
 

 

biblio.ugent.be 

 

The UGent Institutional Repository is the electronic archiving and dissemination platform for all 
UGent research publications. Ghent University has implemented a mandate stipulating that all 
academic publications of UGent researchers should be deposited and archived in this repository. 
Except for items where current copyright restrictions apply, these papers are available in Open 
Access. 

 

This item is the archived peer-reviewed author-version of: Development of a fluid bed 
granulation process control strategy based on real-time process and product measurements  

Authors: A. Burggraeve, A.F.T. Silva, T. Van Den Kerkhof, M. Hellings, C. Vervaet, J.P. Remon, 
Y. Vander Heyden, T. De Beer            

In: Talanta 100, 293-302 (2012) 

 

Optional: link to the article  

 

To refer to or to cite this work, please use the citation to the published version: 

Authors (year). Title. journal Volume(Issue)  page-page. Doi 10.1016/j.talanta.2012.07.054 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55898959?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Development of a fluid bed granulation process control strategy based on real-time process and 

product measurements 

Anneleen Burggraevea, Ana F.T. Silvaa, Tom Van Den Kerkhofb, Mario Hellingsb, Chris Vervaetc, Jean 

Paul Remonc, Yvan Vander Heydend, Thomas De Beera* 

 

aLaboratory of Pharmaceutical Process Analytical Technology, Faculty of Pharmaceutical Sciences, 

Ghent University, Belgium  

 bJohnson & Johnson Pharmaceutical Research and Development, Analytical Development, Beerse, 

Belgium 

cLaboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, 

Belgium 

dDepartment of Analytical Chemistry and Pharmaceutical Technology, Faculty of Medicine and 

Pharmacy, Vrije Universiteit Brussel –VUB, Belgium 

 

*Corresponding author: 

Thomas De Beer 

Harelbekestraat 72 

B-9000 Ghent 

Belgium 

Tel: +32 9 264 80 97 

Fax: +32 9 222 82 36 

Email: thomas.debeer@ugent.be 

  



Abstract 

This article describes the results of three case studies conducted consecutively, in order to develop a 

process control strategy for a top-spray fluid bed granulation process.  The use of several real-time 

particle size (i.e., spatial filter velocimetry and focused beam reflectance measurement) and moisture 

(i.e., near infrared (NIR) and Lighthouse near infrared spectroscopy) analyzers was examined.  A feed-

forward process control method was developed, where in-line collected granulation information 

during the process spraying phase was used to determine the optimum drying temperature of the 

consecutive drying phase.  Via real-time monitoring of process (i.e., spraying temperature and spray 

rate) and product (i.e., granule size distribution and moisture) parameters during the spraying period, 

the batch bulk density was predicted at the end of the spraying cycle, using a PLS model.  When this 

predicted bulk density was not meeting the desired value, the developed control method allowed the 

calculation of an adjusted drying temperature leading to the desired batch bulk density at the end of 

the granulation process.  Besides the development of the feed-forward control strategy, a 

quantitative PLS model for in-line moisture content prediction of the granulated end product was 

built using the NIR data.   
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1. Introduction 

Fluid bed granulation has extensively been used in the pharmaceutical industry since Wurster 

proposed the agglomeration process for pharmaceutical applications over five decades ago [1, 2]. 

Top-spray fluid bed granulation entails the suspension of powder particles in an air stream and 

spraying a binder liquid from the top down (counter-current to the fluidizing air) onto the fluidized 

bed.  In that way, moistened particles collide with each other, agglomerate and form granules.  After 

spraying the required amount of granulation liquid (spraying phase), the product is dried inside the 

fluid bed granulator until a pre-set exhaust air temperature is achieved corresponding to the desired 

moisture level (drying phase).  Similar to all other wet (or dry) granulation processing techniques, the 

main objectives of fluid bed granulation are to improve the flow characteristics and compactibility of 

a powder mixture, to decrease dustiness and/or to prevent mixture segregation. It is a complex 

process as many interrelated parameters influence the granule properties and consequently the 

quality of the resulting tablets.   

Traditionally in pharmaceutical batch manufacturing, the critical quality attributes of the end product 

are assessed via off-line laboratory testing.  Depending on the outcome of these tests, the batches 

are labeled as in- or out-of-specification products and are released or discarded.  A more efficient 

way of operating consists of in-process quality assessments based on timely measurements, offering 

real-time quality evaluation of intermediate and end products.  The Process Analytical Technology 

(PAT) framework initiated by the Food and Drug Administration (FDA) encourages to move from off-

line laboratory tests to timely measurements executed directly in or near the process environment 

[3]. Off-line measurements should be replaced by at-line, on-line or in-line measurements.   

The control of fluid bed granulation processes conventionally consists of monitoring process 

parameters (e.g., process air flow, volume, humidity) [4].  The progress of drying is determined by 

the outlet air and granule bed temperature combined with the drying time.  Fluid bed granulation 

endpoint is reached when a pre-set exhaust air temperature is obtained.  However, also direct 



product property measurements (e.g., moisture, particle size distribution, material solid state) should 

be considered.   

Both spatial filter velocimetry (SFV) [5-14] and focused beam reflectance measurement (FBRM) [15-

17] are able to record in real-time any changes to the particle size and its distribution during 

granulation.  These sizing techniques provide a picture of granule growth and breakage as a function 

of granulation time by measurement of the particle chord lengths.  A chord length is defined as the 

straight line between any 2 points on the edge of a particle.  The measuring principle of SFV consists 

of an extended spatial filter method based on the shadows created onto a detector by the 

movement of particles through a laser beam [18, 19].  From these shadows, the particle chord length 

distribution and velocity are simultaneously extracted.  FBRM uses the laser beam light 

backscattered into the probe when the beam crosses the surface of a particle [20, 21].  Multiplication 

of the duration of each reflection by the known velocity of the scanning beam results into a chord 

length measurement.  Both techniques do not require any calibration.  Whereas the FBRM C35 probe 

is equipped with a mechanical scraper on the sapphire measurement window to prevent probe 

fouling, the SFV probe utilizes a pressurized air connection to keep the measurement windows clean 

and disperse the particles.   

The binder liquid addition and distribution affects the granule bed moisture level during granulation, 

contributing to the agglomeration process.  The end product residual moisture content influences 

directly the granule properties, the subsequent post-granulation process steps (e.g., tabletting) and 

the product stability during storage.  Near infrared (NIR) spectroscopy is highly suitable to evaluate 

moisture in-line during granulation [22].  The NIR spectral region is defined as the area across the 

wavenumber range 12500 – 4000 cm-1.  The molecular NIR light absorptions are mainly due to 

overtone and combination bands of fundamental vibrations in the MIR region [23].  As primarily 

vibrations of C-H, O-H, S-H and N-H bonds are observed, water exhibits strong absorption bands in an 

NIR spectrum.  NIR measurements are non-destructive and the instrumentation exhibits a high 



measurement speed and robustness.  Besides chemical product information, NIR spectroscopy is also 

sensitive to physical (e.g., particle size) sample properties which are both quantitatively and 

qualitatively interpretable [24, 25].  Hence, NIR spectroscopy has been extensively used for in-line 

fluid bed granulation monitoring [8, 26-28], comprising (end product) moisture content [8, 24, 26, 27, 

29-36] and/or granule size [24, 26, 29, 31]. 

This article describes the results of three case studies conducted consecutively, in order to develop a 

process control strategy for a top-spray fluid bed granulation process.  Figure S1 (see Supplementary 

data) displays the experimental setups for the 3 case studies.  Real-time granule size distribution 

information was provided via the implementation of an SFV probe directly into the process 

environment in case studies A and B, while in case study C an FBRM probe was (identically) installed 

in the granulator.   Simultaneously, NIR spectra were collected at-line (case study A) and in-line (case 

studies B and C).  The rapid data collection offered by these PAT tools enables real-time granulation 

analysis to control the manufacturing process.   

The feed-forward process control strategy developed in this study uses the in-line collected 

granulation information during the spraying phase, to determine the optimum process setting 

(drying temperature) of the consecutive drying phase.  Via real-time collection of process (i.e., 

spraying temperature and spray rate) and product (i.e., granule size distribution and moisture) 

parameters during the spraying period, the batch density is predicted early-on, i.e., at the end of the 

spraying cycle.  When the predicted density does not meet the desired value, the control method 

proposes the use of an adjusted drying temperature leading to the desired granule density at the end 

of the granulation process.  In all case studies, 2 steps were taken to develop this feed-forward 

control method: 

(i) Using design of experiments (DoE), individual regression models for prediction of bulk and 

tapped density were developed based on 3 process parameters, i.e., spraying temperature, 

spray rate and drying temperature. 



(ii) The development of a partial least squares (PLS) model to predict the end product density (y) 

from the granulation process and product information (X) collected during the spraying 

period.  Separate PLS models were developed for bulk and tapped density. 

The resulting control strategy combines the PLS density prediction model with the design regression 

equation, as is explained later in the manuscript.   

Besides the development of a fluid bed granulation feed-forward control method, a quantitative PLS 

model for in-line moisture content prediction of the granulated end product was built using the NIR 

data.     

2. Materials and methods 

2.1. Materials 

Each batch, consisting of dextrose monohydrate (700 g, Roquette Frères, Lestrem, France) and 

unmodified maize starch (277.5 g, Cargill Benelux, Sas van Gent, The Netherlands), was granulated 

with an aqueous binder solution of Tween 20 (2.5 g, Croda Chemicals Europe, Wilton) and 

hydroxypropylmethylcellulose (HPMC) (20 g, type 2910, Dow Chemical Company, Plaquemine-LA, 

USA).  Two different HPMC viscosities were used, namely 15 mPa s (case studies A and C) and 5 mPa 

s (case study B).  Each batch consisted of a total amount of solids of 1000 g.  The HPMC binder was 

always sprayed as a 4% (w/w) solution. 

2.2. Process description 

Granulations were performed in a laboratory-scale fluid bed granulator (GPCG 1, Glatt, Binzen, 

Germany).  A 1.2 mm diameter nozzle was installed top-spray at a height of 26 cm from the 

distributor plate.  The binder liquid was atomized using a pressure of 1 bar during all granulations.  

Granulator filter bags were shaken every 45 s for a period of 7 s to prevent the entrapment of 

particles in the bags.  The inlet air temperature during the spraying phase, the spray rate and the 

inlet air temperature during the drying phase were varied according to a 2-level full factorial design 

with three centre point repetitions (i.e., 11 granulation experiments, see Table 1).  Inlet air, product 



and exhaust air temperatures were manually recorded every minute during the entire granulation 

processes.  The process was stopped when an outlet air temperature of 37°C and a product 

temperature of 45°C were obtained.   

2.3. Collection of granule information during processing 

2.3.1. Case study A: in-line SFV and at-line NIR spectroscopy  

A spatial filter velocimetry probe (Parsum IPP 70, Gesellschaft für Partikel-, Strömungs- und 

Umweltmesstechnik, Chemnitz, Germany) was installed in the fluid bed granulator at a height of 20 

cm and at approximately 5 cm from the sidewall of the granulator (Figure S1a, Supplementary data).  

Particles passed through an aperture with 4 mm diameter and an internal (20 L/min) and external (3 

L/min) pressurized air connection were used to disperse the particles and prevent fouling of the 

measurement zone by the moist product.  The experimental set-up was optimized in a previous 

study, enabling representative size measurements without disturbing the process [5].  Measured raw 

data were collected via an A/D converter.  The software (In-line Particle Probe V7.12a) operated in 

the Windows XP environment.  The SFV technique expresses the measured particle size distribution 

as a sieve distribution and via size percentiles (x01, x10, x25, x50, x63, x75, x90, x99).  The sieve sizes 

are selected prior to executing the experiments and cannot be changed afterwards.  During the 

entire granulation process, particle size measurements were continuously performed and an average 

particle size distribution was saved every 10 seconds.   

At the end of each spraying cycle, a sample was withdrawn from the granulated mass via the built-in 

sample thief.  The sample was at-line measured with diffuse reflectance NIR spectroscopy using a 

Nicolet Antaris II FT-NIR analyzer (Thermo Fisher Scientific, USA) equipped with an InGaAs detector 

and a quartz halogen lamp.  The instrument was furnished with an integrating sphere module and 

controlled with the software package RESULT 3.0.    The sampled granules were poured in the NIR 

instrument’s sample cup, after which the sample cup was placed on the detection window of the 

integrating sphere.  By rotating the cup in between NIR spectra collection, each sample was 



measurement at 3 different positions.  All spectra were collected in the 4000 – 10000 cm-1 spectral 

region with a resolution of 8 cm-1 and averaged over 32 scans.  Background was measured using the 

gold-plated inner wall of the integrating sphere. 

2.3.2. Case study B: in-line SFV and in-line NIR spectroscopy 

The granule size distribution was collected in real-time by implementing the SFV probe in the fluid 

bed granulator identically to the setup described in 2.3.1. (case study A).   

In-line diffuse reflectance NIR spectra were continuously collected during granulation by use of an 

FT-NIR spectrometer.  The NIR instrument described in 2.3.1. was used and equipped with a fiber-

optic non-contact probe for in-line measurements.  Spectra were acquired every 20 seconds in the 

4000 – 10000 cm-1 spectral region with a resolution of 8 cm-1 and averaged over 32 scans.  

Background was measured holding a golden plate (dimensions 7.6 cm x 2.5 cm) to the measurement 

window of the probe.  The NIR probe was mounted into the granulator at a height of 7 cm (identical 

to the height of the system integrated sampling thief) and depth of 0.5 cm (Figure S1b, 

Supplementary data). 

 2.3.3. Case study C: in-line FBRM and in-line Lighthouse NIR spectroscopy 

The granule size distribution was continuously monitored by implementing a focused beam 

reflectance measurement probe (model C35, Mettler Toledo, Columbus (Ohio), USA) in the fluid bed 

granulator (Figure S1c, Supplementary data).  The pressurized air activated scraper cleaned the probe 

window every 2 s and the acquisition parameters were set to save the average particle size 

distribution every 10 s using a scan speed of 4 m/s.  The FBRM probe was positioned at a height of 20 

cm (identical to the SFV probe) and depth of 3 cm inside the fluid bed container.  Due to the location 

of the FBRM measurement window at the probe tip, the instrument was inserted with a smaller 

depth compared to the SFV probe.  Nevertheless, FBRM and SFV measurements were performed at 

identical locations since SFV windows are approximately 2 cm distant from the probe tip. 



In-line diffuse reflectance NIR spectra were continuously collected during granulation using an FT-NIR 

spectrometer (MATRIXTM-F Duplex, Bruker Optics Ltd., UK) equipped with a fiber-optic Lighthouse 

ProbeTM (LHP, GEA Pharma Systems nv – Collette, Wommelgem, Belgium).  The LHP is an immersion 

probe with seven radial windows that radiate and collect light.  Hence, sampling is performed 360° 

around the probe.  The spectrometer operated in the 4000 – 10000 cm-1 NIR region and spectra with 

a resolution of 8 cm-1 and averaged over 32 scans were continuously collected.  The NIR 

measurements in case studies B and C were performed at identical locations inside the granulator, 

but the NIR LHP had to be inserted with a greater depth as the measurement windows are positioned 

3.75 cm from the probe tip (the measurement window of the NIR probe used in case study B was 

located at the probe tip itself).  The close proximity of the NIR probe to the bottom of the fluid bed 

granulator ensured a measurement position with continuous dynamically flowing material in front of 

the probe window.  However, this also introduced the danger of modifying the airflow pattern in the 

granulator and consequently the agglomeration process.  Figure S2 (see Supplementary data) 

displays the off-line sieve analysis results of batches 2, 1 and 7 granulated in case studies A and C to 

show the effect of implementing the NIR LHP.  Batch 2 was granulated using a spraying temperature 

of 50°C and spray rate of 12 g/min (Table 1).  The perfect agreement between batch 2 sieve 

distributions for case studies A and C proved that the NIR LHP did not influence the agglomeration 

process under low-moisture spraying phase conditions.  However, the particle size distributions of 

batch 1 and particularly batch 7 (granulated at an inlet air temperature of 30°C and spray rate of 12 

respectively 20 g/min) shifted to larger sizes in case study C.  Hence, the influence of the NIR LHP on 

the granulation process was more pronounced using medium- and high-moisture granulation 

conditions.  The probe significantly disturbed the airflow pattern and consequently the simultaneous 

process of heat and moisture transfer during granulations with a low spraying temperature and/or a 

fast spray rate.  Therefore, the granulation liquid was not efficiently evaporated and overwetted 

granules were produced.   



Although the information provided by the in-line FBRM and NIR LHP in case study C described the 

different stages of granulation and allowed to monitor the process, the design and/or location of the 

NIR LHP was not suitable for the laboratory-scale fluid bed granulator.  Hence, it was impossible to 

generate a feed-forward control strategy for case study C. 

2.4. Characterization of granules 

2.4.1. Karl Fischer titration 

Reference moisture content of the granule batches was determined off-line using a V30 volumetric 

Karl Fischer titrator (Mettler Toledo, Gießen, Germany).  Hydranal®-Composite 5 (1-component, 

Sigma-Aldrich, Germany) was used as titrant and Hydranal®-Methanol dry (Sigma-Aldrich, Germany) 

as solvent.  Three Karl Fischer determinations were performed for each completed batch.  The water 

content in samples was determined via the quantitative reaction of water molecules with iodine and 

sulfur dioxide in the presence of methanol and imidazole as base.  The amount of iodine 

consumption as a result of the reaction with water was measured. 

 2.4.2. Density measurements 

The bulk density and tapped density were determined for each completed batch.  Twenty-five g 

samples were gently poured into a 100 mL graduated cylinder.  By use of the granule weight and 

volume, bulk density was calculated.  Next, each sample was tapped 1250 times employing an 

automatic tapper (J. Engelsmann AG, Ludwigshafen am Rhein, Germany) and the new volume was 

used to determine the tapped density.  All density measurements were performed in triplicate and 

the average density was calculated.   

2.5. Development of the granulation feed-forward control strategy 

In-process measurements of the agglomerates’ properties, performed during the spraying phase of 

the batch process, were used to predict end product granule characteristics (bulk and tapped 

density) using a PLS model (see (ii) below).  When these predicted densities were not as desired, the 

drying temperature of the successive drying phase was adjusted.  The extent to which the drying 



temperature had to be adjusted was derived from a DoE model (see (i) below), expressing the 

granule bulk and tapped density as function of the spraying temperature, spray rate and drying 

temperature.   

(i)  A 2-level full factorial design (see 2.2. and Table 1) was carried out, resulting in a polynomial 

regression model (considering the 3-factor interaction term negligible) for each response: 

with y the response (i.e., bulk or tapped density), x1-3 the coded process variables (the inlet air 

temperature during the spraying phase, the spray rate and the inlet air temperature during the 

drying phase), β0 the intercept and βi the model coefficients expressing for each factor how much 

the response is affected by changing the factor from the coded DoE level 0 to +1.  Individual 

regression models were developed for bulk and tapped density.  The authors acknowledge that 

the use of a central composite design might improve the predictive capability of the models, as 

each factor is then varied on five experimental levels instead of three.  Analysis of the design 

experiments and development of the DoE models were done with the MODDE software (Version 

9.0, Umetrics, Umeå, Sweden).   

(ii) Partial least squares models were built using the SIMCA-P+ software (Version 12.0.1, Umetrics, 

Umeå, Sweden), correlating two data matrices, X and y.  The X-matrix contained granulation 

information collected during the spraying period of the 11 DoE batches, while the y-vectors 

consisted of the design responses, bulk and tapped density.  Individual PLS models were 

developed for bulk and tapped density.  Applying these PLS models during new granulations 

allows predicting the density of a completed batch (i.e., after spraying and drying phase) at the 

end of the spraying period.   

Hartung et al. [8] reported that not only residual moisture in granules affected subsequent 

process steps, but also the moisture profile of the entire granulation process.  Hence a similar 

approach, examining whether the complete spraying phase fingerprint contributed to the 

 𝑦𝑦 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝛽𝛽12𝑥𝑥1𝑥𝑥2 + 𝛽𝛽13𝑥𝑥1𝑥𝑥3 + 𝛽𝛽23𝑥𝑥2𝑥𝑥3 (1) 



predictability of the density models, was considered.  Therefore, the 3-way data matrix of [design 

batches (I)] x [collected granulation process and product variables (J)] x [spraying time (K)] was 

unfolded in the direction of the batches, creating a 2-way data matrix [design batches (I)] x 

[collected granulation process and product variables x spraying time (J x K)] (Figure S3, see 

Supplementary data) [37].  In that way, the X-matrices of the developed PLS models contained 11 

rows, corresponding to the 11 design batches, and the number of columns depended on the 

included spraying phase time-period.  This resulted in the development of several PLS models (for 

bulk and tapped density individually), differing in the number of X-matrix columns describing the 

collected spraying phase data:   

• Case study A – In-line SFV and at-line NIR measurements: The first 3 X-matrix columns for the 

various PLS models developed in case study A contained the settings of the 3 process 

variables (spraying temperature, spray rate and drying temperature) describing the collected 

granulation process data.  The following columns of models M0 and M1 consisted of the 

collected granulation product information (based on SFV and NIR measurements) at the end 

of the spraying phase (i.e., when all granulation liquid has been sprayed) (Figure 1a).  Hence, 

the X-matrix of model M0 contained the 3 process variables and the in-line SFV measured 

granule size.  The 8 percentile descriptors (see 2.3.1) were used to express the granule size 

distribution as the size of the smallest SFV sieve was set to 200 µm, which was too large to 

capture the size distribution variations between the different experiments.   

The X-matrix of model M1 was identical to the M0 X-matrix, complemented with the at-line 

collected NIR information.  To express the NIR captured spectral variation between the 11 

design batches, principal component analysis (PCA) was performed on all at-line collected 

NIR spectra (3 spectra x 11 batches).  The score values on the principal components (PC1 and 

PC2) were added to the M1 X-matrix.   

Models M2-M9 were built by adding each time the granule size distribution collected during 

the previous spraying phase minutes to the X-matrix (Figure 1a).   



• Case study B – In-line SFV and in-line NIR measurements: The M1 X-matrix included the 3 

process variables, the granule size distribution and the NIR data (expressed by PCA scores) 

collected at the end of the spraying phase, as described above for case study A.  Based on the 

granule sizes measured in case study A, the SFV sieves were correctly selected and used to 

describe the collected granule size distribution during granulation (Figure 1b).  

Since both SFV and NIR measurements were continuously performed, M2-M5 X-matrices 

contained both types of granule product information collected during the previous spraying 

phase minutes (Figure 1b). 

The goodness of fit and the predictive power of the PLS models were given by R² and Q².  R² 

expresses the percent variation of the response explained by the model and Q² measures how 

well the model is able to predict the examined response for new experiments (test batches).  In 

addition to the evaluation of R² and Q², the root mean square errors of estimation (RMSEE) and 

root mean square errors of prediction (RMSEP) were compared to select the best PLS prediction 

model.  Both errors indicate the difference between the experimentally measured value and the 

value predicted by the model under examination, for the calibration and test batches respectively.   

The feed-forward control strategy, guaranteeing the granule quality of future experiments, combines 

the optimal predictive PLS model with the DoE regression equation.  When a new granulation 

process is started, the selected PLS model allows the prediction of the end product quality (i.e. 

density of the end product) at the end of the spraying period based on the real-time collected 

granule information.  If the predicted density does not meet the predefined quality requirements, 

the DoE model terms (Eq. 1) expressing the influence of the drying temperature on the batch density 

(i.e., β3x3, β13x1x3, β23x2x3) can be used to calculate by how many (coded) units the drying 

temperature should be adjusted to lead the granulation process towards the desired density.  To 

exemplify, if the predicted density differs from the desired density by A g/mL, then the level of the 

pre-set nominal drying temperature (x3, coded according to the performed DoE) should be adjusted 



with ∆ units (coded as above) established by the following equations (expressed with coded DoE 

variables and corresponding coefficients):  

 

2.6. Development of an NIR method to predict end product moisture content 

A quantitative NIR calibration model for in-line moisture content prediction of the granulated end 

product in case study B was developed.  Calibration and validation batches were manufactured by 

granulation of the previously described formulation (2.1.), and terminating the drying period at 

different exhaust air temperatures to create granules with varying moisture levels.  Subsequently, 

the fluid bed container was removed from underneath the filter housing and by immersion of the NIR 

probe in the granule bed, static NIR spectra were at-line recorded (at different locations in the bed).  

The moisture reference value was determined by Karl Fischer titration using the average of three 

measured samples.  In total, 20 NIR spectra of each batch were correlated with the Karl Fischer 

determined moisture content using PLS regression.  The calibration model covered a water content 

range between 4% and 10% including 9 concentration levels.  In the diffuse reflectance 

measurement, the light travels various distances because the distribution of sample particles and 

particle sizes are different.  Hence, prior to modeling the absorbances in the 4500 – 7500 cm-1 

spectral region of 180 NIR spectra, standard normal variation (SNV) correction was performed to 

eliminate these scattering effects and the spectra were mean centered.  The calibration of the PLS 

model was evaluated by calculation of the RMSEE.  The model was externally and independently 

validated by computing the RMSEP using 140 spectra of 7 validation batches.     

3. Results and discussion 

 𝑦𝑦 + 𝐴𝐴 =  𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3(𝑥𝑥3 + ∆) + 𝛽𝛽12𝑥𝑥1𝑥𝑥2 + 𝛽𝛽13𝑥𝑥1(𝑥𝑥3 + ∆) + 𝛽𝛽23𝑥𝑥2(𝑥𝑥3 + ∆) (2) 

 𝐴𝐴 =  𝛽𝛽3∆+ 𝛽𝛽13𝑥𝑥1∆+ 𝛽𝛽23𝑥𝑥2∆ (3) 

 ∆=
𝐴𝐴

𝛽𝛽3 + 𝛽𝛽13𝑥𝑥1 + 𝛽𝛽23𝑥𝑥2
 

(4) 



3.1. Case Study A: in-line SFV and at-line NIR spectroscopy  

For the 11 DoE granulations performed in case study A, batch bulk and tapped densities were 

determined in triplicate and averages were used as design responses.  Individual bulk and tapped 

density multiple linear regression models were computed and the significance of the coefficients was 

determined by calculation of the 95% confidence interval.  The confidence intervals of the three 2-

factor interaction coefficients included zero indicating the statistical insignificance of the 

interactions.  The insignificant coefficients were removed and the following bulk density (BD) and 

tapped density (TD) regression equations (based on the coded variables) were obtained after 

refitting the models:  

As described in 2.5., separate PLS models were developed for bulk and tapped densities (y) to predict 

the densities of a completed batch (i.e. after spraying and drying phase) based on the collected data 

during the spraying period (Figure 1a).  Therefore, all available granulation process and product 

information related to batch density were included in the PLS X-matrices.  Herewith, the settings for 

the 3 process variables (i.e., spraying temperature, spray rate and drying temperature) were included 

as they significantly influenced end product density according to the DoE analysis.  Furthermore, 

since the density of a product is defined as the mass of the material divided by the volume the 

material occupies (i.e., volume of individual particles, inter-particle volume and the internal pore 

volume), the granule size distribution during the spraying phase is related to batch density.    

Consequently, the X-matrix of the initially constructed PLS model (model M0, Figure 1a) included the 

3 process variable settings and the particle size distribution determined at the end of the spraying 

period.   

Principal component analysis was performed on all NIR spectra collected for the 11 design batches to 

examine the spectral differences between the batches.  Using the SNV corrected 4500 – 7500 cm-1 

 𝐵𝐵𝐵𝐵 = 0.4357− 0.0268 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0204 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 − 0.0196 ∗ 𝑇𝑇𝑑𝑑𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠  (5) 

 𝑇𝑇𝐵𝐵 = 0.5307− 0.0258 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0181 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 − 0.0284 ∗ 𝑇𝑇𝑑𝑑𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠  (6) 



spectral region, a model consisting of 2 principal components (PC1 and PC2), describing 99.9% of the 

spectral variation was computed.  The PC1 and PC2 loading plots exhibited large contributions by the 

7000 cm-1 and 5200 cm-1 spectral regions, corresponding to the NIR absorption bands of water.  The 

PC1 versus PC2 scores plot showed clustering of the design experiments along PC1 describing the 

variability in granule moisture level caused by the process settings of the granulation cycles (Figure 

2).  Experiments performed at a low spraying temperature and a high spray rate (-1,1; high granule 

moisture) clustered in the outer positive region of PC1, while experiments executed using a high 

spraying temperature and low spray rate (1,-1; low granule moisture) grouped in the negative part of 

PC1.  Combinations of spraying temperature and spray rate resulting in a moderate granule moisture 

state (1,1 ; 0,0 ; -1,-1) lay around the PC1 origin.  Hence, instead of including all NIR spectral 

variables, only the PC1 and PC2 scores were added to the PLS X-matrix (model M1, Figure 1a) 

comprising the NIR captured granule moisture differences between the various batches.  The 

addition of the granule size distributions collected during the preceding spraying phase minutes 

resulted in the development of models M2, M3, ..., M9 (Figure 1a).   

Figure 3 displays the resulting R², Q², RMSEE and RMSEP values for the developed BD and TD PLS 

models M0 to M9.  The calculation of the prediction error (RMSEP) was based on the predicted 

densities of 4 new independent batches (not included in the calibration set).  Four randomly selected 

batches from the performed DoE, namely batch 4, 8 and twice the centre point, were granulated a 

second time covering drying temperatures of 50°C, 70°C and 60°C.  The bulk and tapped density R² 

and Q² values lay in the same range, with repeatedly higher values for BD models.  Adding PCA scores 

distinctively increased the models’ predictability based on about 10% rise in Q² values between M0 

and M1.  Adding the granule size distributions collected during the complete spraying phase to the X-

matrices improved only slightly the predictability.  Maximum Q² was reached by models M3 and M4.  

According to the estimation and prediction errors, optimal density prediction resulted from the 

granule information collected at the end of the spraying period.  Adding the full particle size 

fingerprint collected during spraying did not seem to contribute to a better predictability.   



The feed-forward control strategy described in 2.5. requires (i) a valid prediction of the batch density 

after completion of the spraying period, and (ii) a reliable estimation of the optimal drying 

temperature to obtain the desired density, using the DoE regression equation.  The latter was 

assessed for the previously mentioned 4 test batches by means of Eq. 1.  Hence, the drying 

temperature (x3) was computed applying the predicted BD (y), the significant regression coefficients 

(βi) and the experimentally set spraying temperature (x1) and spray rate (x2).  The BD values predicted 

by all 9 PLS models (M0 to M9) were used in these calculations and identical computations were 

carried out based on the predicted TDs.  As the drying phase of the 4 test batches was experimentally 

executed, these calculated drying temperatures were compared to the drying temperatures applied 

during processing (Table 2).  The drying temperature predictions were satisfactory, keeping in mind 

that an increase in drying temperature by 1°C, reduces the BD and TD by 0.0020 g/mL and 0.0028 

g/mL respectively.  In general, the accuracy of drying temperature prediction tends to decrease going 

from M0 to M9, caused by the growing incorrectness in batch bulk and tapped density predictions 

when adding spraying phase information collected early in the process (Figure 3). 

3.2. Case Study B: in-line SFV and in-line NIR spectroscopy 

3.2.1. Qualitative monitoring of the granulation process 

In-line SFV measurements were appended with in-line NIR spectra collection during the 11 design 

granulations to describe the continuously evolving granule size and moisture.  Figure 4a-d 

exemplifies the change in NIR spectra and SFV measured average particle size (D50) during one of the 

performed DoE experiments (batch 3).   

Examination of the raw NIR data without preprocessing (Figure 4a) showed that spraying of the 

binder liquid onto the fluidizing bed, caused a significant increase in spectrum baseline, most likely 

due to the increasing particle size [30, 38].  During subsequent drying, water removal and attrition 

decreased the granule size and therefore influenced the physical state of the measured samples.  

This was associated with a lowering of the NIR spectrum baseline.   



By SNV preprocessing of the NIR spectra, physical light-scattering effects were removed from the 

chemical light absorbance effects in the spectra [39, 40].  Figure 4b and 4c display the NIR spectra 

collected during the spraying and drying operation, respectively, after SNV preprocessing.  The color 

assignment to the spectra is related to the spraying and drying times with dark and light coloring 

indicating the start, respectively the end of the cycle.  The spectral evolution was characterized by a 

strong increase and subsequent decrease in NIR absorptions in the 5200 cm-1 and 7000 cm-1 spectral 

region.  These regions are associated with the OH combination band of the fundamental stretching 

and deformation vibration, and the first overtone of the OH bond in water, respectively.  The signal 

in the first overtone region for CH, CH2 and CH3 around 5700 – 6000 cm-1 decreased during spraying 

and increased throughout drying.     

The PC1 obtained after principal component analysis on the SNV corrected spectra (4500 – 7500 cm-1 

spectral region) accounted for 90% of the spectral variation.  Similarity between the PC1 loading 

profile and the NIR spectrum of water confirmed the association of this component with the water 

addition/removal during the granulation process.  The trajectory of PC1 scores as a function of 

granulation time (Figure 4d) displayed a clear distinction between the 3 granulation process steps.  

During heating and powder mixing (step I, data shown of the final minute), the score values were 

similar.  The addition of binder liquid in the second step increased the PC1 scores, while drying of the 

granules caused a score value decrease until a minimum value was reached similar to the PC1 scores 

in step I.  The trajectory of SFV collected D50 values during granulation exhibited a similar sequence 

of the three granulation process steps.  A constant particle size during sample agitation and heating 

was followed by a particle size increase during the spraying of binder liquid.  Drying slightly reduced 

the average granule size due to inter-particle and particle-fluid bed container collisions.  As can be 

seen from Figure 4d, the variation in NIR scores and SFV measured particle size during granulation 

provided improved knowledge on the batch evolution.  A better insight into the granulation under 

examination is achieved, compared to the traditionally used product and exhaust air temperature 

control charts.  Figure 4e shows that after approximately 8 minutes in the spraying period, the 



process variables did no longer provide information on the granulation progress as product and 

exhaust air temperatures remained constant.  During routine production, the use of a plot expressing 

particle size and moisture content trajectories (Figure 4d) allows determining whether a batch is 

developing under the normal operating conditions and granulation is being performed accordingly 

[6].   

3.2.2. Development of the granulation feed-forward control strategy 

After executing the 11 design granulations, end product bulk and tapped density were determined 

and the coefficients of the significant main and interaction effects calculated.  The following bulk 

density and tapped density regression equations (based on the coded variables) were obtained:  

To construct bulk and tapped density PLS models, a similar methodology as for case study A (3.1.) 

was followed, however with one difference.  In addition to the granule size, NIR spectra were 

continuously in-line collected during the entire DoE granulation processes.  Principal component 

analysis was performed on the SNV corrected 4500 – 10000 cm-1 spectral region of all collected NIR 

spectra (for all batches) to examine the NIR captured granule differences between the 11 design 

batches.  The NIR variables contributing most to the 2 first principal components were associated 

with the two water bands.  Hence the scores on PC1 and PC2 were added to the PLS X-matrices to 

describe the granule moisture information captured by in-line NIR spectroscopy.  Figure S4 (see 

Supplementary data) displays the RMSEE and RMSEP values of the resulting bulk density PLS models 

M1 to M5, without and with the inclusion of NIR scores in the X-matrix.  Since case study A showed 

that the information collected during the final minutes of the spraying period produced the best BD 

predictions, only 5 PLS models were developed using the granule size and moisture information 

𝐵𝐵𝐵𝐵 = 0.4733− 0.0332 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0236 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 − 0.0164 ∗ 𝑇𝑇𝑑𝑑𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0107

∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 

(7) 

𝑇𝑇𝐵𝐵 = 0.5744− 0.0211 ∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0096 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 − 0.0246 ∗ 𝑇𝑇𝑑𝑑𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 + 0.0207

∗ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑦𝑦 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟 

(8) 



collected at the end of spraying, augmented with the granule data collected during the final 4 

minutes of spraying (i.e., models M1 to M5).  To calculate the prediction error, 4 new batches (i.e., 

batch 1, 5 (twice) and 8), not included in the calibration set were granulated a second time.  The 

resulting RMSEE values decreased by the addition of NIR information, while RMSEP values exhibited 

a more random trend.   

As a result, taking Figure S4 (see Supplementary data) into account, the X-matrices of the developed 

BD and TD PLS models in case study B were composed of continuously collected granule size and 

moisture data (Figure 1b).  The resulting BD and TD PLS models showed excellent fit and 

predictability, with the BD models producing slightly higher R² and Q² values (Figure 5).   Both BD and 

TD models showed that the addition of size and NIR information collected during the final minutes of 

the spraying period, improved the fit and predictability of the calibration batches as R², Q² and 

RMSEE values reached a maximum respectively minimum for model M5.  The density prediction of 

new, independent batches did not exhibit an identical trend.  The initial addition of granule 

information resulted into a small decrease in prediction error.  Further inclusion of X-variables did 

not benefit the predictions and tends to indicate overfitting.  For both BD and TD, the models fit the 

data well, but TD predictions are less good, indicating an improved correlation between the collected 

granule information and the free bulk density.  These results are consistent with the observations 

made in case study A.   

Next to the valid prediction of batch density from the data collected during the spraying phase, the 

reliable estimation of the optimal drying temperature resulting in the required density was assessed.  

This was initially examined by calculating the drying temperatures using the PLS predicted BD and TD 

values of the 4 test batches (for the 5 PLS models), in combination with equations 5 and 6 

respectively.  The drying phases of the 4 batches were experimentally completed, which allowed the 

comparison between the predicted and the applied drying temperature (Table 3).  The correctness in 

temperature prediction based on predicted BD was comparable to the results in case study A.  The 



computed drying temperatures based on predicted TD however displayed a larger bias, probably due 

to the notable higher TD prediction error (Figure 5).     

In case studies A and B, the ability of the developed PLS models to predict the density of future 

batches was evaluated using test batches not included in the calibration set.  Hence, a primary 

selection of the X-variables correlating with the batch density was made.  Comparing the predicted 

drying temperature (from implementing the PLS predicted density in the DoE models) with the 

experimentally applied temperature allowed a first assessment of the suitability of the proposed 

feed-forward strategy.  In a next step, the developed methodology was tested during the granulation 

of new batches.  To predict the batch quality at the end of the spraying period and adjust/correct the 

granulation progress during drying, BD PLS models were combined with the BD DoE regression 

equation similar to case study A.   

Batch CS (control strategy) was granulated using an inlet air temperature of 30°C and binder addition 

rate of 12 g/min during the spraying period.  The subsequent drying phase was executed at an inlet 

air temperature of 50°C.  Throughout the complete granulation process, granule size data and NIR 

spectra were continuously collected.  The acquired granulation information was used to predict the 

batch bulk density using models M1 to M5.  Hence, by use of the 2 spraying period parameters, the 

in-line collected product information and the intended use of an inlet air temperature of 50°C during 

drying, the bulk density of the completed batch was predicted at the end of the spraying period.  

Drying of batch CS at an inlet air temperature of 50°C enabled the comparison between this early-on 

predicted BD and the experimentally measured value (Table 4, batch ID CS).  The excellent 

agreement between the measured BD (after batch production) and the predicted BD (at the end of 

the spraying period) for models M1 to M3 demonstrated the validity of the developed PLS models.  

The predicted BD values by models M4 and M5 are also in close agreement with the measured BDs, 

but exhibit a slightly larger deviation compared to M1 – M3 predictions. 

Next, the use of the developed BD DoE regression equation to determine the optimal drying 

temperature was examined.  We decided that granulation of batch CS should give a BD of 0.48 g/mL 



instead of 0.52 g/mL.  The adjusted drying temperature resulting in a BD decrease of 0.04 g/mL, was 

calculated by use of equation 4.  Keeping in mind that the values of the process variables and 

coefficients are expressed according to the DoE scaling (i.e., spraying temperature of -1 and spray 

rate of -1), the following calculations were performed:  

𝑠𝑠𝑑𝑑𝑎𝑎𝑎𝑎𝑠𝑠𝑟𝑟𝑟𝑟𝑑𝑑 𝑥𝑥3 = 𝑥𝑥3 + ∆ = 𝑥𝑥3 + �
−0.04

𝛽𝛽3 + 𝛽𝛽13𝑥𝑥1 + 𝛽𝛽23𝑥𝑥2
� 

𝑠𝑠𝑑𝑑𝑎𝑎𝑎𝑎𝑠𝑠𝑟𝑟𝑟𝑟𝑑𝑑 𝑥𝑥3 = −1 + �
−0.04

−0.0164 + (−0.00258 ∗ −1) + (0.009275 ∗ −1)� = 0.7 

The experimental drying temperature levels of 50°C, 60°C and 70°C were coded to -1, 0 and 1 

according to the DoE (Table 1).  Hence, conversion of the coded into the uncoded value, shows that 

the pre-set drying temperature of 50°C should be increased to 67°C to obtain the desired BD: 

0.7 (𝑐𝑐𝑐𝑐𝑑𝑑𝑟𝑟𝑑𝑑) = 60 °𝐶𝐶 + (10 ∗ 0.7) = 67 °𝐶𝐶 (𝑎𝑎𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑𝑟𝑟𝑑𝑑) 

Therefore, batch CS was granulated twice more using identical spraying phase settings and a drying 

temperature of 67°C (i.e., batch CS adjusted a and b).  Table 4 displays the predicted bulk density 

based on the process settings (drying temperature of 50°C) and the collected granule information at 

the end of the spraying period.  According to the predictions by M1 – M3, this would result for both 

batches into a BD of 0.52 g/mL as observed for batch CS.  However, as we aimed to obtain a BD of 

0.48 g/mL, a temperature of 67°C derived from the BD DoE regression equation was applied during 

drying.  The subsequent experimental BD value measurements of 0.48 g/mL was consistent with the 

desired density.   

These results suggest that the developed BD PLS model allowed a reliable prediction of batch density 

using granule information collected during the end of the spraying period (M1 – M3).  The granule 

behavior fingerprint during the complete granulation cycle did not improve the predictions.  By use 

of the BD design equation, the granulation process could be adjusted during drying (adjusted drying 

temperature), hence guiding the process towards the desired density.     



3.2.3. Development of an NIR method to predict end product moisture content 

The developed PLS calibration model for end product moisture content prediction (described in 

2.6.1.) exhibited an RMSEE and RMSEP of 0.51% and 0.47% respectively.  Optimum moisture content 

predictions were obtained using 2 PLS factors.  In the selected predictive model, 94% of the spectral 

variance was correlated with 87% of the water variation.  The calibration model was applied to the 

in-line collected NIR spectra of the 11 design batches.  The moisture content predicted during the 

final minute of drying was compared to the reference moisture content determined by Karl Fischer 

titration (Table 5).  The in-line predictions were attended with an RMSEP of 0.51%, comparable to the 

error of the calibration model.  Hence, although the calibration model was developed by use of 

statically recorded NIR spectra, the model was also applicable to dynamically collected spectra.   

In addition to the in-line collected NIR spectra, 20 at-line NIR spectra were recorded per design batch 

after granulation.  At-line moisture content predictions resulted in an RMSEP of 0.43%.  Similar in-line 

and at-line prediction errors suggest that the continuous flow of particles during in-line NIR spectra 

collection did not reduce the predictability of the NIR measurements.  It also implies that the 

moisture predictions were not affected by the build-up of material on the probe using these 

granulation process conditions.  Since no cleaning device was used, the NIR window was probably 

continuously cleaned by the product itself during fluidization.   

4. Conclusions 

This work aimed to develop a fluid bed granulation control strategy based on real-time collected 

process and product information.  The developed feed-forward control strategy uses granulation 

information collected during the spraying phase to determine the optimal drying phase temperature, 

hence ensuring end product density.   

The finalized control strategy (case study B) applied an in-line SFV and NIR probe to continuously 

collect granule size and moisture data.  The developed BD PLS model enabled a good prediction of 

batch BD by use of the granule size distribution and NIR data collected at the end of the spraying 



period.  Addition of granule product information collected during the complete granulation cycle did 

not improve the predictions.  Applying the BD DoE regression equation information, the granulation 

process was modified during the drying period to meet the quality requirements.  In addition, the 

SFV measurements and NIR data allowed the clear distinction between the three different stages of a 

granulation process.  Through the development of a quantitative NIR moisture calibration model, 

adequate in-line prediction of batch end product moisture levels was achieved.   

Hence, the results showed that by combining particle size (SFV) and moisture (NIR) trajectories, real-

time monitoring of the granulation progress was accomplished.  The real-time measurement of end 

product particle size and prediction of its moisture content enabled in-line granule quality analysis.  

In addition, the adjustment of granulation progress during drying to meet the desired bulk density 

requirements showed that full control of the granulation process is possible by use of SFV and NIR 

spectroscopy.  Implementation of the (automated) control strategy should result into the production 

of high quality batches at lower overall costs. 
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Table legends 

Table 1. Overview of the performed design experiments (2-level full factorial design with 3 replicates 

of center point). 

Table 2. Comparison of the experimentally applied drying temperature with the estimated optimum 

drying temperature for 4 test batches (case study A) using the process control methodology. 

Table 3. Comparison of the experimentally applied drying temperature with the estimated optimum 

drying temperature for 4 test batches (case study B) using the process control methodology. 

Table 4. Use of the developed granulation feed-forward control strategy.  Comparison of the 

predicted bulk density (BD) at the end of the spraying period using a drying temperature of 50°C, 

with the experimentally measured bulk density applying a drying temperature of 50°C (batch CS) and 

67°C (batch CS adjusted a and b). 

Table 5. Moisture content (MC) and standard deviation determined using Karl Fischer (KF) and 

predicted by the near infrared PLS calibration model for the design granulations performed in case 

study B. 

  



Figure legends 

Figure 1. The  X-matrix and y-vector for the developed bulk density and tapped density PLS models in 

case studies A (a) and B (b) (PSD = particle size distribution). 

Figure 2. PC1 (R²X = 98.4%) versus PC2 (R²X = 1.5%) scores plot of the at-line collected NIR spectra for 

the 11 design experiments performed in case study A.  The scores are labeled according to the coded 

DoE experiment settings for the spraying temperature and spray rate.  Three NIR spectra were 

collected per design experiment. 

Figure 3. R², Q², RMSEE and RMSEP for bulk density (BD) and tapped density (TD) PLS models M0 to 

M9 (case study A). 

Figure 4.  Granulation product and process information in-line collected during granulation of batch 3 

(case study B).  Pure NIR spectra collected during the mixing, spraying and drying steps of the 

granulation process (a).  SNV corrected NIR spectra collected during the spraying phase (b) and 

drying phase (c).  The color assignment to the spectra is related to the spraying and drying times with 

dark and light colors indicating the start, respectively the end of the cycle.  Evolution of D50 and PC1 

scores (d),  and product and exhaust air temperatures (e) during the granulation process. 

Figure 5. R², Q², RMSEE and RMSEP for bulk density (BD) and tapped density (TD) PLS models M1 to 

M5 (case study B). 

  



Supplementary data  

Figure S1. Front view schematic of the experimental setup in case studies A (a), B (b) and C (c).  

Standard components of the fluid bed equipment are indicated by numbers: filter bags (1), spray arm 

(2), spray nozzle (3), front window (4), sample thief (5). 

Figure S2. Sieve distributions of batches 2, 1 and 7 granulated in case study A (solid line) and case 

study C (dashed line). 

Figure S3. Unfolding of the 3-way granulation batch data matrix preserving batch direction.  

Figure S4. RMSEE and RMSEP values of bulk density PLS models M1 to M5 with X-matrices containing 

the granule size distribution either without (wo) or with (w)  the inclusion of NIR scores (case study 

B).   

  



Table 1. Overview of the performed design experiments (2-level full factorial design with 3 replicates 
of center point). 

Batch 
Inlet air T during 

spraying (°C) 
Spray rate 

(g/min) 
Inlet air T during 

drying (°C) 

1 30 12 50 
2 50 12 50 
3 30 20 50 
4 50 20 50 
5 30 12 70 
6 50 12 70 
7 30 20 70 
8 50 20 70 
9 40 16 60 

10 40 16 60 
11 40 16 60 



Table 2. Comparison of the experimentally applied drying temperature with the estimated optimum 
drying temperature for 4 test batches (case study A) using the process control methodology. 

 

  

 

 

 

 

  

  
Estimated drying temperature based on predicted bulk density (°C) 

Batch Used Tdrying (°C) M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 

T4 50 50 50 50 50 49 49 49 49 49 50 
T8 70 76 75 75 74 73 73 72 72 73 73 

TCP1 60 60 60 60 60 60 59 58 57 55 54 
TCP2 60 61 58 57 56 56 56 55 54 53 53 

  
Estimated drying temperature based on predicted tapped density (°C) 

Batch Used Tdrying (°C) M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 

T4 50 49 50 50 50 49 49 49 50 50 50 
T8 70 73 73 72 71 70 69 69 69 70 70 

TCP1 60 60 60 59 59 59 59 58 57 56 54 
TCP2 60 60 57 56 56 56 56 55 54 54 53 



Table 3. Comparison of the experimentally applied drying temperature with the estimated optimum 
drying temperature for 4 test batches (case study B) using the process control methodology. 

    Estimated drying temperature based on predicted bulk density (°C) 

Batch Used Tdrying (°C) M1 M2 M3 M4 M5 

T1 50 52 52 51 53 54 
T5a 70 67 68 62 64 63 
T5b 70 69 71 67 72 71 
T8 70 73 72 68 70 68 
    Estimated drying temperature based on predicted tapped density (°C) 

Batch Used Tdrying (°C) M1 M2 M3 M4 M5 

T1 50 51 49 52 52 54 
T5a 70 75 73 69 69 68 
T5b 70 78 81 80 78 79 
T8 70 77 79 74 73 71 

  



Table 4. Use of the developed granulation feed-forward control strategy.  Comparison of the 
predicted bulk density (BD) at the end of the spraying period using a drying temperature of 50°C, 
with the experimentally measured bulk density applying a drying temperature of 50°C (batch CS) and 
67°C (batch CS adjusted a and b). 

 
Predicted BD (g mL-1) Measured BD (g mL-1) 

Batch ID M1 M2 M3 M4 M5 Tdrying 50°C Tdrying 67°C 

CS 0.5174 0.5136 0.5165 0.5119 0.5102 0.5161 
 

        
CS adjusted a 0.5233 0.5185 0.5248 0.5192 0.5197 

 
0.4823 

CS adjusted b 0.5173 0.5130 0.5172 0.5058 0.5044 
 

0.4792 
 

  



Table 5. Moisture content (MC) and standard deviation determined using Karl Fischer (KF) and 
predicted by the near infrared PLS calibration model for the design granulations performed in case 
study B. 

DoE Batch KF MC (%) in-line NIR (%) at-line NIR (%) 
1 6.21 ± 0.23 7.69 ± 0.00 7.23 ± 0.12 
2 7.13 ± 0.18 7.05 ± 0.02 7.19 ±0.04 
3 7.28 ± 0.02 7.01 ± 0.04 7.22 ±0.07 
4 6.87 ± 0.07 6.88 ± 0.01 6.81 ±0.03 
5 7.01 ± 0.35 7.33 ± 0.02 7.36 ±0.06 
6 7.69 ± 0.12 7.46 ± 0.04 7.31 ±0.06 
7 7.21 ± 0.22 7.40 ± 0.04 7.25 ±0.10 
8 7.23 ± 0.08 7.55 ± 0.03 6.51 ±0.04 
9 6.72 ± 0.21 7.19 ± 0.02 7.13 ±0.04 

10 7.38 ± 0.06 7.03 ± 0.08 7.56 ±0.05 
11 7.17 ± 0.08 7.06 ± 0.00 7.15 ±0.04 
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