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Abstract 
During the past years, pharmaceutical counterfeiting was mainly a problem of developing 

countries with weak enforcement and inspection programs. However, Europe and North 

America are more and more confronted with the counterfeiting problem. During this study, 26 

counterfeits and imitations of Viagra® tablets and 8 genuine tablets of Viagra® were analysed 

by Raman microspectroscopy imaging.  

After unfolding the data, three maps are combined per sample and a first PCA is realised on 

these data. Then, the first principal components of each sample are assembled. The 

exploratory and classification analysis are performed on that matrix.  

PCA was applied as exploratory analysis tool on different spectral ranges to detect 

counterfeit medicines based on the full spectra (200-1800 cm-1), the presence of lactose 

(830-880 cm-1) and the spatial distribution of sildenafil (1200-1290 cm-1) inside the tablet. 

After the exploratory analysis, three different classification algorithms were applied on the full 

spectra dataset: linear discriminant analysis, k-nearest neighbour and soft independent 

modelling of class analogy. 

PCA analysis of the 830-880cm-1 spectral region discriminated genuine samples while the 

multivariate analysis of the spectral region between 1200-1290 cm-1 returns no satisfactory 

results. 

A good discrimination of genuine samples was obtained with multivariate analysis of the full 

spectra region (200-1800 cm-1). Application of the k-NN and SIMCA algorithm returned 100% 

correct classification during both internal and external validation. 
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Introduction 
 

During the past years, pharmaceutical counterfeiting was mainly a problem of developing 

countries with weak enforcement and inspection programs. Asia and Latin America are the 

most contaminated geographical regions. However, Europe and North America are more and 

more confronted to the counterfeiting problem. [1] 

Recently, the Belgian Federal Agency for Medicines and Health Products (AFMPS/FAGG) 

participated in PANGEA III, an international operation fighting against the online sale of 

counterfeit and illegal medicines [2]. The most encountered therapeutic categories in 

Belgium were weight-loss drugs and potency enhancing drugs such as Viagra® (Pfizer).  

Since its approval by the American Food and Drug Agency (FDA) [3] and the European 

Medicines Agency (EMA) [4] in 1998, Viagra® has become one of the most counterfeited 

medicines in industrialized countries. Several spectroscopic techniques have been used to 

detect counterfeit Viagra®. Rodomonte et al. used colorimetry to detect counterfeit medicines 

based on their differences of tablets and second packaging colour [5]. Vredenbregt et al. 

applied NIR spectroscopy on 103 samples to detect counterfeit Viagra® but also to check the 

homogeneity of batches and screen the presence of sildenafil citrate [6]. De Veij et al. 

showed for the first time that Raman spectroscopy was able to detect counterfeit Viagra® [7]. 

However this study compared 18 illegal samples to only one genuine tablet. Our group 

concluded that the combination of FT-IR and NIR spectroscopy was more powerful than FT-

IR, NIR or Raman spectroscopy alone to discriminate genuine from illegal Viagra® samples 

[8]. X-ray powder diffraction [9], NMR (1H, 13C, 15N) [10], and NMR (2D DOSY, 3D DOSY-

COSY, 1H NMR) [11] were also used to detect counterfeit Viagra®. However, compared to 

the first cited techniques, X-ray diffraction and NMR necessitate a more elaborated sample 

preparation and are therefore only performed by well trained analysts. 

Chemical imaging is a powerful tool since it provides physico-chemical information and 

spatial information of the sample. Raman microspectroscopy imaging is widely used in the 

biomedical field. Among others, it has been recently used to predict the cellular response to 

cisplatin in lung adenocarcinoma [12] and to study the molecular interactions between 

zoledronic acid and bone [13]. It is also used in the pharmaceutical field since it necessitates 

a negligible sample preparation (e.g. for tablet analysis, sample preparation is only cutting 

tablets in two). It has been mostly used in pharmaceutical technology applications [14-17]. 

Near infrared chemical imaging (NIR-CI) has also been used in the field of pharmaceutical 

technology [18-21]. More recently, NIR-CI has been used by Lopes et al. to detect and 

classify counterfeit antiviral drugs [22] and to determine their chemical composition [23]. 

Puchert et al. successfully used NIR-CI to detect counterfeit bisoprolol tablets [24]. 
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During this study, 26 counterfeits and imitations of Viagra® tablets and 8 genuine tablets of 

Viagra® were analysed by Raman microspectroscopy imaging. After an exploratory PCA 

analysis, linear discriminant analysis (LDA), k-nearest neighbours (k-NN) and soft 

independent modelling by class analogy (SIMCA) were applied on the full spectra dataset, as 

classification algorithms. Other spectral ranges were also investigated to detect counterfeit 

medicines based on the presence of lactose and the spatial distribution of sildenafil inside 

the tablet. The aim of this study was to discriminate illegal samples and to evaluate which of 

the three applied classification algorithm was the best suited for purpose. As far as we know, 

this is the first time that Raman microspectroscopy imaging is used to detect counterfeit 

medicines.  

 

1. Theory 
 

1.1. Principal component analysis 
 

PCA is a variable reduction technique, which reduces the number of variables by making 

linear combinations of the original variables. These combinations are called the principal 

components and are defined in such way that they explain the highest (remaining) variability 

in the data and are by definition orthogonal.  

The importance of the original variables in the definition of a principal component is 

represented by its loading and the projections of the objects on to the principal components 

are called the scores of the objects [25].  

 

1.2. Selection of a test set for external validation. 

 
In order to perform an external validation of the classification models, matrix B was split into 

a training and a test set applying the Kennard and Stone algorithm [25, 26]. Kennard and 

Stone algorithm is a uniform mapping algorithm that consists of maximizing the minimal 

Euclidian distance between each selected point and all the other. In this study, the selection 

of the objects started with the furthest object from the mean point using the Euclidian 

distance. The second chosen object i0 is the furthest point from the previous one, i: 

 

))min((max
0

0
,ii

iiselected dd =
 

where dselected is the Euclidian distance between the new selected point i0 and the previously 

selected point i. 
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Then, all the other objects are selected the same way until the selected number of objects of 

the training set is reached. The remaining objects are included in the test set.  

 

1.3. Linear Discriminant Analysis (LDA) 
 

Linear discriminant analysis [27,28] is a feature reduction method just like PCA. But when 

PCA selects a direction which maximises the variance of the data, LDA selects the direction 

that maximises the between-class variance and so discriminate the given classes. The latent 

variable obtained is a linear combination of the original variables and is called canonical 

variate. For k classes, k-1 canonical variates are determined. To maximize the discriminating 

power, the algorithm selects a linear function of the variables, D, that maximizes the ratio 

between the between-class variance and the within-class variance. 

 

1.4. k-Nearest Neighbour (k-NN) 
 

The k-NN algorithm [27] was applied on the training set. The algorithm computes the minimal 

Euclidian distances between an unknown object and each of the objects of the training set. 

For a training set of n samples, n distances are calculated. Then it selects the k nearest 

objects (here k is set at 3) to the unknown one. The unknown object is classified in the group 

to which the majority of the k objects belong. The main advantages of this method are its 

mathematical simplicity and the fact that it is free from statistical assumptions. 

 

1.5. Soft Independent Modelling by Class Analogy (SIMCA) 
 

SIMCA [27] is not a discriminating algorithm but a classifying algorithm since it decides 

whether a new object belongs to a certain class or not. If the object doesn’t belong to a class, 

it is considered as an outlier while with LDA and k-NN it is always classified.  

The algorithm also defines latent variables and uses them to classify the objects. 

 

First of all, the algorithm determines the number of eigenvectors needed to describe the 

training class by applying cross-validation. Then a critical value of the Euclidian distance 

towards the model, scrit, is defined. Along each eigenvector score limits are defined as: 

tK stt 5.0)max(max +=  

tK stt 5.0)min(min −=  

where max(tK) is the largest score of the training objects of the studied class on the 

eigenvector considered and st is the standard deviation of the scores along that eigenvector. 
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Objects with an Euclidian distance s < scrit and scores tmin < t < tmax are said to belong to the 

studied class otherwise they are considered as outliers. 

 

In fact all of the classes are modelled separately and test objects are predicted as belonging 

or not to the studied class. Afterwards the different models can be assembled. In this case, a 

test object will be predicted as belonging to the nearest class. 

 

2. Experimental 
 

2.1. Samples 
 

2.1.1.  Illegal samples 
 

A total of 26 counterfeit and imitation tablets of Viagra® were donated by the Federal Agency 

for Medicines and Health Products in Belgium (AFMPS/FAGG). They all come from postal 

packs ordered by individuals through internet sites. All samples were delivered in blisters or 

closed jars with or without packaging. All samples, once received, were stored at ambient 

temperature and protected from light.  

 

2.1.2. Reference samples 
 

Pfizer SA/NV (Belgium) kindly provided one batch of each different dosage of Viagra® (25 

mg, 50 mg, 100 mg). Two other batches of each dosage were purchased in a local pharmacy 

in Belgium. A total of 8 references (3 different batches of 100 mg, 3 different batches of 50 

mg and 2 different batches of 25 mg) were used in this study. 

All references were delivered in closed blisters with packaging and were stored protected 

from light at ambient temperature. 

 

2.2. Raman Microspectroscopy measurements 
 

Each tablet was radially and sharply cut into two parts. Each part was made as smooth as 

possible to avoid spectral intensity differences due to differences in sample to probe 

distance. and a 1700 µm x 1300 µm area of the fracture plane was scanned by a 10x long 

working distance objective lens (spot size laser = 50 µm) in point-by-point mapping mode 

with a step size of 100 µm in both the x and y directions (= 221 points per mapping).  
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The image system was a RamanRxn 1 Microprobe (Kaiser Optical Systems, Ann Arbor, 

USA), equipped with an air-cooled CCD detector (back-illuminated deep depletion design). 

The laser wavelength during the experiments was the 785 nm line from a 785 nm Invictus 

NIR diode laser. All spectra were recorded at a resolution of 4 cm-1 using a laser power of 

400 mW and a laser light exposure time of 30 sec per collected spectrum. Data collection 

was done using HoloGRAMSTM (Kaiser Optical Systems, version 2.3.5) data collection 

software, HoloMAPTM (Kaiser Optical Systems, version 2.3.5) data analysis software and 

Matlab software (The Matworks, version 7.7).  

Three maps were taken at different positions of the core of the tablet. 

 

2.3. Data analysis 
 

All data treatments were realized with Matlab (The Matworks, Natick, MA, USA, version 

7.9.0). SIMCA analysis was performed using the PLS_toolbox (Eigenvector Research, Inc., 

Wenatchee, WA, USA, version 6.0.1). 

 

2.3.1. Data pre-processing 
 

Each Raman microspectroscopic map is a spectral hypercube (Figure 1a). For a map A, X 

and Y represent the spatial information and λ the spectral information. First of all, an 

unfolding step is imperative to convert a three dimensional dataset A (λ x X x Y) in a two 

dimensional exploitable dataset Aunfolded (λ x XY). Thus, starting from the matrix A (11612 x 

13 x 17) matrix, the matrix Aunfolded (11612 x 221) is obtained after unfolding. 

 

Once each map has been unfolded, the three maps of a same sample are associated and 

only the spectral region between 200-1800 cm-1 is kept (representing 5334 recorded 

intensities). The resulting Asample matrix is normalized, a principal component analysis (PCA) 

is performed per sample and the first principal component (PC1) is retained. The first 

principal component includes the majority of the information variance of the spectral data 

over the measured regions of the sample (Table 1). 

This pre-processing step allows us to reduce a dataset of (11612 x 13 x 17) x 3 in a column 

vector of (5334 x 1) representing the sample. 
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Figure 1: Pre-processing of the Raman Microspectroscopy imaging data. All numbers presented are for the 

treatment of the 200-1800cm-1 spectral range maps. 

a. Pre-treatment step per sample, from the hyperspectral cube to the first PC.  

b. Treatment of the data, from the first principal component of each sample to the final PCA discriminating 

plot. 
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Table 1: Percentage of variation of matrix Asample (see 3.3.1.) explained by 
the three firstprincipal components.  
          

 Sample PC1 PC2 PC3 
     

illegal sample 1 99,71 0,13 0,11 
illegal sample 2 99,41 0,45 0,10 
illegal sample 3 99,87 0,08 0,03 
illegal sample 4 98,64 1,12 0,15 
illegal sample 5 99,59 0,23 0,07 
illegal sample 6 99,27 0,63 0,07 
illegal sample 7 97,47 1,90 0,44 
illegal sample 8 99,87 0,09 0,02 
illegal sample 9 99,32 0,54 0,10 

illegal sample 10 99,98 0,01 0,01 
illegal sample 11 99,97 0,02 0,01 
illegal sample 12 98,30 1,46 0,15 
illegal sample 13 99,54 0,30 0,07 
illegal sample 14 99,60 0,21 0,09 
illegal sample 15 99,31 0,45 0,09 
illegal sample 16 99,55 0,29 0,09 
illegal sample 17 99,10 0,67 0,09 
illegal sample 18 99,88 0,09 0,01 
illegal sample 19 99,36 0,53 0,05 
illegal sample 20 99,14 0,34 0,20 
illegal sample 21 97,92 1,62 0,28 
illegal sample 22 96,41 2,72 0,52 
illegal sample 23 99,70 0,28 0,01 
illegal sample 24 99,68 0,26 0,05 
illegal sample 25 99,61 0,28 0,08 
illegal sample 26 98,71 0,96 0,18 

Viagra®  25mg batch 8268130B 99,79 0,20 0,01 
Viagra®  50mg batch 8272205B 99,79 0,18 0,01 

Viagra®  100mg batch 8272604B 99,84 0,13 0,02 
Viagra®  25mg batch 8333550B 99,87 0,11 0,01 

Viagra®  100mg batch 8339107B 99,86 0,12 0,01 
Viagra®  50mg batch 9113106B 99,53 0,36 0,07 

Viagra®  100mg batch 9114001B 99,91 0,07 0,01 
Viagra®  50mg batch 9151918B 99,83 0,13 0,02 

 
    

The column vectors obtained for each sample were assembled in a (5334 x 34) matrix which 

is transposed resulting in a matrix of dimensions (34 x 5334) where 34 is the number of 

samples and 5334 the number of wavelengths for which spectral data is available (Figure 

1b). This dataset, named matrix B, was used in further analysis. 

The data pre-processing was the same for the other spectral regions. 
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3. Results and Discussion 
 

3.1. Raman microspectroscopy maps 
 

Figure 2 shows typical genuine Viagra® maps at the three dosage forms and Figure 3 shows 

the maps of 3 illegal samples which are representative of the other illegal samples. There is 

no visible difference between the dosage forms of the genuine samples at the chosen 

intensity range (1 x 107 – 10 x 107 Raman counts). However, as can be seen, the spectral 

intensities are much higher in illegal preparations than in genuine tablets. This is sometimes 

due to higher sildenafil content but in most cases this is due to a higher background shift. 

This shift may be caused by high impurity content or the use of other excipients like colored 

excipients such as sample B in Figure 3 which is a non coated blue tablet. Those excipients 

may cause fluorescence or be more Raman active and, therefore, be responsible of those 

higher spectral intensities. 

As the aim of this study was to be able to discriminate illegal Viagra® from genuine ones, the 

different shifts were not corrected. Those differences must be kept to perform a correct and 

complete discrimination based on both spectral intensities, additional peaks and also on the 

peak intensity distribution. 

 

Figure 2: Raman Microspectroscopy imaging maps of representative genuine. Three maps in the spectral region 

of 200-1800cm-1 taken at different positions of the core of three dosage forms of genuine Viagra® are presented. 

Spectral intensity colors are comprised between 1x107 and 10x107 Raman Counts.  
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Figure 3: Raman Microspectroscopy imaging maps of representative illegal samples. Three maps in the spectral 

region of 200-1800cm-1 taken at different positions of the core of three illegal samples are presented with the 

corresponding sample photo. Spectral intensity colors are comprised between 1x107 and 10x107 Raman Counts. 

 

3.2. PCA 
 

In order to evaluate which of the whole spectrum or specific spectral regions is the best to 

discriminate genuine samples from illegal ones; principal component analysis was applied as 

exploratory method. 

 

3.2.1. spectral range 200-1800 cm-1 
 

The PCA analysis has been performed on the matrix B. The complete spectral region 

between 200 cm-1 and 1800 cm-1 has been chosen because this is the most informative 

region for pharmaceutical tablet analysis. 

As can be seen from Figure 4, a clear discrimination was obtained. This discrimination is 

mainly due to PC3 which explains only 0.1% of the variance.  

 

No real cluster can be seen but a group of three illegal samples are clearly apart from the 

other ones. This is explained by the fact that the three samples are non coated colored 

tablets. This is logical since the colorant results in higher spectral intensities. 
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Figure 4: PCA plots of the 200-1800cm-1 spectral range dataset. Black dots are illegal samples and blue circles 

are genuine Viagra® samples. 

a. PC1-PC2 plot,  
b. PC1-PC3 plot,  
c. PC2-PC3 plot.  

 
 

3.2.2. Spectral range 830-880 cm-1 

 

A second PCA analysis has been performed between the 830-880 cm-1 spectral range. In 

this region, genuine tablets shows no peak because lactose is not present in the core of 

genuine Viagra® tablets whereas illegal samples show two peaks at 851 and 876 cm-1. These 

two peaks are attributed to lactose [7, 29]. As can be seen on Figure 5, a good discrimination 

between genuine and illegal samples is achieved with the PC2-PC3 plot. These two principal 

components explain 10% and 7% of the variance respectively. One can then see that 

counterfeiters do not copy the genuine tablet formulation but use more classical filler 

excipients such as lactose. 

Some clusters or sample regrouping can be observed. However, no clear reason has been 

found since no full excipients analysis has been performed. 
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Figure 5: PCA plots of the 830-880cm-1 spectral range dataset. This spectral region corresponds to lactose 

peaks. Black dots are illegal samples and blue circles are genuine Viagra® samples. 

a. PC1-PC2 plot,  
b. PC1-PC3 plot,  
c. PC2-PC3 plot.  

 

3.2.3. Spectral range 1200-1290 cm-1 
 

A multivariate analysis has been performed keeping only the 1200-1290 cm-1 spectral range. 

This region corresponds to intense peaks at 1238 and 1272 cm−1 which are attributed to the 

C=N bond of sildenafil in Viagra® tablets [7]. To perform this analysis, the matrix B was 

normalized before the last PCA. This normalization avoided differences due to intensity while 

keeping only the information related to the distribution of sildenafil in the tablets. This 

analysis did not discriminate genuine tablets from illegal samples. It indicates that the 

distribution of the active ingredient is not sufficiently different among the different samples to 

permit discrimination.  
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3.3. Classification 
 

After the exploratory analysis, it was found that the whole spectral region was the best to 

perform the discrimination between genuine and illegal samples. As a result, classification 

algorithms were applied on the 200-1800 cm-1 spectra dataset. For official control 

laboratories, it is very important to be able to classify correctly an unknown sample in the 

genuine or in the illegal classes. This is why classification algorithms were applied and their 

correct classification rate evaluated during both internal and external validation.  

 

a.                                                                     b. 
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Figure 6: Homogenous distribution of the test set samples (squares) among the training set samples (crosses) 

selected by the Kennard and Stone algorithm on the 200-1800cm-1 spectral range dataset. These datasets were 

used for the application of the prediction algorithms. 
a. PC1-PC2 plot,  

a. PC1-PC3 plot,  
b. PC2-PC3 plot.  
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The dataset was split into a training set and a test set for the external validation. The 

samples of each dataset were chosen applying the Kennard and Stone algorithm on the 

matrix B. Test set size was set at 12 objects and included two reference samples. The 

training set is composed of the first 22 samples chosen by the algorithm.  

 

Three classification algorithms were tested.  

Application of the LDA algorithm gave good results even though not all samples were 

classified correctly. The correct classification rate was 95,5% for the leave-one-out cross-

validation (LOOCV) and 91,2% for the external validation. One illegal sample was 

misclassified in both internal and external validation. 

The k-NN analysis has been performed on the training set using a LOOCV for the internal 

validation. Both internal and external validations returns 100% correct classification when 

considering the 3 nearest neighbours to the new sample. This confirms that the method can 

be used to detect illegal medicines since their spectral intensities are not the same as the 

ones of genuine samples.  

As third a SIMCA analysis was performed. The SIMCA algorithm optimises of the number of 

principal components used to describe each class of samples by LOOCV. In this case, two 

and five principal components were respectively used to define a model for the genuine and 

the illegal samples. Each model separately was not able to classify all samples of the test set 

correctly, though using the nearest class principle SIMCA returned 100% correct 

classification in both the internal and external validation.  

Comparison of the three algorithms showed that they could all be applied to model this type 

of data. For our dataset k-NN and SIMCA gave the best results. Based on the easiness of 

computation and interpretation the k-NN model was preferred and chosen as the best model 

for this dataset. Though it should be kept in mind that the preferred algorithm is case 

sensitive and can change in function of the data. For example when data is available for 

generic products, the model should deal with a multiclass problem. It is possible that in this 

case better results can be obtained with SIMCA or LDA compared to k-NN. 
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4. Conclusion 
 
Raman microspectroscopy is a powerful tool allowing a complete mapping of a limited area 

of a tablet with a limited sample preparation. The analysis of these maps may provide a lot of 

information about the identification of chemical compounds present, their distribution and 

their amount [30]. In this study, the core of 26 counterfeit and imitation tablets of Viagra® and 

8 genuine samples of Viagra® were analysed by Raman microspectroscopy over the spectral 

regions of 200-1800 cm-1, 830-880 cm-1 and 1200-1290 cm-1. 

 

After a pre-processing step that made the data suitable for further analysis, a principal 

component analysis has been performed. The results in the spectral regions of 200-1800 cm-

1 allowed a clear discrimination between genuine and illegal samples. This discrimination is 

mainly due to differences in spectral intensities between genuine and illegal samples. These 

differences may be explained by differences in chemical composition such as the presence 

of colored excipients in the core of the tablets.  

A second PCA analysis of the dataset in the spectral region of 830-880 cm-1 allows a 

detection of illegal samples based on the presence of lactose. This common filler excipient is 

not present in the core of genuine Viagra tablets. 

A third PCA analysis was performed on the spectral region of 1200-1290 cm-1 that is 

correlated with the presence of sildenafil in tablets. The aim of this analysis was to detect 

illegal samples based on the spatial distribution of sildenafil. No discrimination has been 

obtained revealing that the spatial distribution of sildenafil between illegal and genuine 

samples is not sufficiently different. 

 

Three predictive models have been tested on the spectral regions of 200-1800 cm-1 dataset. 

The best results were obtained with k-NN and SIMCA, showing both a correct classification 

for all samples during internal and external validation steps. Based on its simplicity the k-NN 

algorithm was chosen as the most suited method for this two class classification. 

 

This feasibility study shows that Raman microscpectroscopy is able to discriminate illegal 

samples from genuine ones using unsupervised chemometrics. 
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