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Abstract 

This paper applies the additive relational network DEA model to examine the multi-period efficiency and 

productivity of Regional Banks I and II in Japan between 2002 and 2017. The examined timeframe covers 

two turbulent periods; the Global Financial Crisis and the economic recession in the aftermath of the Great 

East Japan Earthquake. We extend the additive relational network DEA model into a multi-period 

structure in order to evaluate the overall efficiency for the time period in question, as well as the annual 

period efficiencies. We show that the overall efficiency can be expressed as a weighted average of the 

period efficiencies. In addition, we examine the implications of different returns to scale assumptions. The 

newly proposed model is able to calculate common-weight Malmquist Productivity Indices. The results 

reveal a dispersion of inefficiency levels for Japanese Regional Banks in general, and a difference between 

Regional Banks I and II in particular. Furthermore, the Global Financial Crisis caused a significant negative 

effect on the productivity growth and the technical progress of Japanese Regional Banks, while the Great 

East Japan Earthquake had a negative effect on the technical efficiency change. 
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1. Introduction 

Since the 1990s the Japanese economy has experienced a turbulent economic period. This included the 

burst of the real estate bubble, which resulted in the collapse of asset prices, the liquidation of non-bank 

financial institutions that were responsible for mortgage loans, an evolving problem of non-performing 

loans and eventually the failure of major banking institutions (Hoshi and Kashyap, 2010). The extreme 

economic conditions forced the Japanese government to intervene and provide a rescue plan for the 

banks. In the late 1990s at the peak of the financial crisis, the banking sector went through an intensive 

restructuring and consolidation process, which significantly affected the Japanese banking sector 

including Regional Banks. This unprecedented reconstruction attracted considerable research interest in 

the Japanese banking system,  see, for example, Assaf et al. (2011), Fukuyama and Weber (2015, 2017), 

Mamatzakis et al. (2015), and Fukuyama and Matousek (2017, 2018) among others. 

In 2007 Japan again relapsed into economic depression caused by the Global Financial Crisis (GFC). 

Specifically, during the second half of 2007, the GFC affected Japan with a fall in the Nikkei stock exchange, 

severe losses in bank equity portfolios and lower credit ratings (Fujii and Kawai, 2010). In 2008, the 

economic crisis then moved to the real economy after a substantial decline in the export of motor vehicles, 

information technology and capital goods. These adverse economic conditions were mainly caused by 

demand shocks in the US and Europe (Sommer, 2009). A direct consequence was a severe economic 

recession with a sharp decline in GDP of 5.4% in 2009. In March 2011 the Great East Japan Earthquake 

(GEJE) hit the Pacific coast. The subsequent effect on the economy resulted in further supply chain 

disruptions, decline in exports and energy production, power shortages, increased oil and gas imports and 

a decrease in consumer demand for domestic goods. This in turn led to a sharp increase in business 

bankruptcies (Besstremyannaya, 2017).  

Based on the foregoing, this study explores how the particular segment of the Japanese banking 

sector represented by the Regional Banks has adjusted to these disruptions. Regional Banks are 

considered to play a pivotal role within the Japanese financial system. Regional Banks experienced a sharp 

increase in the volume of non-performing loans (NPLs) along with a deterioration in bank capital and a 

rise in financial losses (Fukuyama and Matousek, 2017). As Mamatzakis et al. (2015) point out, the 

Japanese government failed to address the underlying issues of the sector which resulted in a further 

weakening of their financial position. Regional Banks currently face weak profitability, which force them 

to make riskier investments (Tomisawa, 2019).  

This study provides a fresh insight into the Japanese banking sector by examining the efficiency 

of Japanese Regional Banks from 2002 to 2017. This time period starts after the extensive consolidation 
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process that took place in the late 1990s and covers two periods of high economic uncertainty, including 

the GFC and the GEJE. The analysis of the effect of two crises with different and distinct characteristics on 

Japanese Regional Banks is of extreme importance. This is because the Japanese financial system relies 

on banks in general and SMEs, which are the backbone of the economy, rely on Regional Banks in 

particular. Besstremyannaya (2017) shows that the GFC (2007–2009) and the economic recession 

following the GEJE (2011–2013) had an adverse effect on banks’ cost efficiency. This study sheds light on 

the endogenous and exogenous factors that might undermine the performance of Regional Banks.  Rather 

than following the previous studies which focused on the cost and revenue efficiency of Japanese banks 

during periods of financial distress, this paper examines technical efficiency, productivity change and its 

determinants. Thus, this study differs from the previous research by considering shifts in the frontier over 

time rather than focusing entirely on changes in the dispersion around the frontier. 

In terms of methodological contribution, our approach builds on the previous research on 

relational network Data Envelopment Analysis (DEA) models and banking efficiency. The evaluation of the 

efficiency and productivity of banking institutions is one of the most important applications of DEA 

(Emrouznejad and Yang, 2018). Despite the extensive range of literature evaluating banking institutions, 

there remain several current contested issues that take into account the unique features of banking 

production. At the core of the discussion about the modelling of the bank production process is the so-

called deposits dilemma, which refers to the use of deposits either as inputs or as outputs. As Berger and 

Humphrey (1992) argue, deposits are understood as: (i) inputs under the intermediation approach; (ii) 

outputs under the production approach; or, (iii) either as inputs or as outputs based on the net 

contribution of deposits to the bank revenue under the cost approach. In order to preserve the dual role 

of deposits, an alternative approach has been proposed by Fukuyama and Weber (2010) which is based 

on the network DEA framework. The main idea here is that deposits serve as an intermediate measure in 

a two-stage network model, therefore they are considered as outputs in the first stage and inputs in the 

second.  

Furthermore, the incorporation of the time component is an important element in the evaluation 

of bank efficiency. There are a number of studies, see for example Kao and Hwang (2008), Chen et al. 

(2009) and Wang and Chin (2010), which use the aggregated data from a number of years in order to 

evaluate the efficiency of the whole period. Other studies such as Portela et al. (2012) use the average 

data for a number of years in order to assess the efficiency. Kao and Hwang (2014) pointed out that those 

two approaches should yield the same results due to the unit-invariant property. Alternatively, the 

efficiency scores for all independent time periods should be aggregable into an overall efficiency score. 
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That raises questions regarding the correct form of aggregation. In order to solve this issue, Kao and 

Hwang (2014) suggested an approach that takes into account each individual period of time. Then it is 

possible to evaluate both the efficiency for the whole period as well as the efficiency for each year by 

applying a parallel structure. This model ensures that in order for a DMU to be efficient for the whole 

period, it needs to be efficient in all individual years, which is not the case with all the previous 

approaches. 

The choice of the network structure reflects the assumption about the contribution of each stage 

to the overall efficiency. Relational network DEA models assume a mathematical relationship 

(multiplicative or additive) and yield efficiency scores for the two stages. The multiplicative model of Kao 

and Hwang (2008) implicitly assumes that the two stages contribute equally to the overall process while 

the additive model of Chen et al. (2009) determines the contribution of each stage endogenously based 

on the most favourable outcome for the DMU.  

Our study considers the aforementioned issues and contributes to the literature by introducing a 

novel multi-period additive relational network DEA model that is underpinned by an investigation of the 

model characteristics, such as the implications of the returns-to-scale assumption. Due to its multi-period 

parallel structure, the model differs from previous relational network studies which are static in nature 

(Kao and Hwang, 2008; Chen et al., 2009; Kourtzidis et al., 2018). The proposed model also differs from 

Kao and Hwang (2014) by adopting an additive instead of a multiplicative efficiency decomposition. The 

additive nature of the model is a more attractive and reasonable choice, since it determines the 

contribution of each stage endogenously based on the most favourable outcome for the DMU. Essentially, 

it allows the asymmetrical contribution of individual stages to the overall process. Next, we demonstrate 

that the overall efficiency, in an additive relational network DEA model with a parallel structure, is the 

weighted average of the subsystems’ efficiencies. For each subsystem, the attached weight is the ratio of 

total inputs in the subsystem over total inputs in the overall system. Moreover, the new model allows us 

to evaluate the overall efficiency through the years and the efficiency of each individual year. A common-

weight global Malmquist Productivity Index (MPI) can be calculated in order to measure productivity 

change between two periods. The MPI which is calculated from the multi-period structure, calculates the 

efficiency scores using the same frontier facet for every year. Therefore, the results are more comparable 

among different DMUs compared to those calculated from a conventional MPI (Kao and Hwang, 2014). 

The rest of the paper is organized as follows: Section 2 presents a background on Japanese 

banking and the most recent review of the literature; Section 3 demonstrates the framework and the 
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methodology used throughout the paper; and Section 4 discusses the empirical application to the 

Japanese regional banking sector. Section 5 provides our conclusions. 

 

2. Literature Review 

2.1. Japanese banks: empirical research on banking efficiency 

The Japanese banking system consists of various types of banks which can be classified under three broad 

categories (Fukuyama and Matousek, 2017). The first category includes banks with international activities; 

City Banks which are large national banks with overseas branches, and Trust Banks which focus mainly, 

but not entirely, on trust services. The second category includes Regional Banks which usually operate in 

a specific prefecture and have closed ties to local companies and local authorities. They can be further 

classified as Regional Banks I and second-tier regional banks (Regional Banks II).1 Originally, second-tier 

banks were joint stock companies called Sogo Banks, which later were converted to Regional Banks and 

finally classified as ordinary commercial banks in 1989 (Second Association of Regional Banks, 2018). 

Regional Banks I and II conduct similar operations, but they have different origins. Regional Banks are 

characterized by low capitalisation and they act as the main provider of finance to SMEs. The third 

category consists of small financial institutions – credit banks and credit cooperatives – which have a large 

share of the deposit market. 

Evaluating the efficiency of the Japanese banking system has attracted much academic interest 

over the past two decades, mainly due to the economic situation during the 1990s, the extensive 

consolidation and the impact on bank performance. Starting with the seminal work of Fukuyama (1993), 

DEA models have been used to evaluate the efficiency of Japanese banks. Fukuyama (1993) investigated 

the technical efficiency (TE), the pure technical efficiency (PTE) and the scale efficiency (SE) of City and 

Regional Banks. He found that the main source of technical inefficiency was the PTE rather than the SE, 

especially for the Regional Banks. In a similar framework, Drake and Hall (2003) considered an extended 

sample of Japanese banks and found some evidence of scale inefficiencies, however, the main source of 

technical inefficiency was again the PTE. Fukuyama (1995) then studied the effect of the financial crisis of 

the early 1990s on the change in productivity of Japanese banks and found a different effect on each bank. 

However, the results showed strong evidence that the main driver of productivity growth was the 

technical change component, while the main driver of productivity regress was the efficiency change 

                                                             
1 Regional Banks I are members of the Regional Banks Association of Japan while Regional Banks II are members of 
the Second Association of Regional Banks. For a full list of member see the JBA (2019) and for the relevant definitions 
see the Bank of Japan: https://www.boj.or.jp/en/statistics/outline/note/financial.htm/. 

https://www.boj.or.jp/en/statistics/outline/note/financial.htm/
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component. Fukuyama and Weber (2005) evaluated the input allocative efficiency using a directional 

distance function (DDF) model and found an increased inefficiency over time. Barros et al. (2012) analysed 

the technical efficiency of Japanese banks using a non-radial DDF model. They found that a further 

restructuring was needed for the Regional Banks. Liu and Tone (2008) introduced a three-step approach 

to measure the technical efficiency of City Banks and Regional Banks during the South-East Asian Financial 

Crisis and the dot-com bubble. The results of the three-step approach revealed that these two crises had 

no effect on Japanese banks’ technical efficiency. Drake et al. (2009) investigated the efficiency of 

Japanese banks using a slacks-based model and three different approaches in modelling the bank output; 

the intermediation, the production, and the profit/revenue. There was a substantial variation of the 

results across the three approaches.  

Recently, a number of papers have studied the Japanese banking system using a network DEA 

framework. Fukuyama and Weber (2015) constructed a dynamic network DEA model, which allows for an 

intertemporal resource reallocation, in order to examine the efficiency of City Banks and Regional Banks. 

Along the same lines, Fukuyama and Weber (2017) constructed a dynamic Luenberger productivity 

indicator in order to study the commercial banks (City Banks and Regional Banks) and Shinkin banks that 

are cooperative financial institutions, during the period 2007–2012. The results of the dynamic model for 

commercial banks revealed a productivity regress during 2007–2008 and productivity growth for the rest 

of the period. This was attributed to technical change since the efficiency change was negative for most 

of the time period. However, the results of the static model revealed productivity growth during 2007–

2008 and productivity regress for three out of the four remaining periods. The results for Shinkin banks 

were also different for the dynamic and the static models. In a recent study, Fukuyama and Matousek 

(2017) developed a network revenue function which applies a weakly efficient frontier to explore the 

performance of Regional Banks over the period 2001–2013. They showed that Regional Banks should 

improve their cost side.  

 

2.2. Network DEA and banking 

Conventional DEA models treat the Decision Making Unit (DMUs) as a black box which employs inputs in 

order to generate outputs, without considering any procedures taking place inside the DMU. Starting with 

the seminal work of Färe and Grosskopf (1996), network DEA models unravel the black box and take into 

consideration the stages inside the DMU. Kao and Hwang (2010) distinguished the three categories of 

network DEA models that depend on assumptions about the relationship between two stages: (i) 

independent models that apply a conventional DEA model separately to each stage, without taking into 



7 
 

account possible interactions between the stages (Wang et al., 1997; Seiford and Zhu, 1999); (ii) 

connected models that take into account the interactions between the stages (Färe and Grosskopf, 1996); 

and (iii) relational models that can calculate the stage efficiencies and assume a mathematical relationship 

between the stages, which can be either multiplicative or additive (Kao and Hwang, 2008; Chen et al., 

2009). 

A substantial part of DEA literature has been focused on banking applications. The pioneering 

work of Sherman and Gold (1985) represented the first application of DEA in banking and since then, there 

has been a plethora of papers that use a DEA model to assess the performance of banking institutions 

(among others Lozano-Vivas et al., 2002; Portela and Thanassoulis, 2006, 2007; Fethi and Pasiouras, 2010; 

Barros et al., 2012; Curi et al., 2015; Curi and Lozano-Vivas, 2015). The seminal papers of Wang et al. 

(1997) and Seiford and Zhu (1999) were the first applications of network DEA in the banking sector. 

Various types of network DEA models have been employed to study banking efficiency. Mukherjee et al. 

(2003) used various resources as inputs, service quality variables as intermediate variables, and 

performance measurement variables as outputs to study Indian public sector banks. Zha and Liang (2010) 

constructed a cooperative model where inputs are allocated between the two stages. Du et al. (2011) 

then introduced a Nash bargaining game that provides an innovative way to study the profitability and 

marketability of US commercial banks. Wang et al. (2014a) applied an additive relational model to study 

the deposit generation and the profit earning of Chinese commercial banks. Wang et al. (2014b) used 

financial ratios to construct a fuzzy multi-objective model and study US bank holding companies. In the 

Brazilian banking context, a network structure with cost efficiency in the first stage and productive 

efficiency in the second stage was investigated by Wanke and Barros (2014). Lozano (2016) investigated 

the efficiency of banking institutions and bank branches using a general slacks-based network DEA model. 

Degl’Innocenti et al. (2017) and Kourtzidis et al. (2018) assessed the productivity growth in the European 

Union and a panel of Central and Eastern European countries respectively, during the GFC. Fukuyama and 

Matousek (2017, 2018) introduced a revenue efficiency network model to study Japanese banks.  

In line with our research focus, a number of studies use the dynamic element of time in the 

analysis. Akther et al. (2013) examined the case of Bangladeshi commercial and government-owned banks 

for the time period 2005–2008 and used outputs from a previous period as inputs in a subsequent period. 

Fukuyama and Weber (2013), Avrikan (2015) and Zha et al. (2016) applied a dynamic network DEA model 

where carry-overs from previous periods affect the efficiency of following periods. Kao and Liu (2014) 

constructed a multi-period model for Taiwanese commercial banks, where different time periods were 

considered as sub-processes in a parallel network DEA model. The advantage of this model is the 
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evaluation of the efficiency for the overall period and for each year using the same frontier facet. Kao and 

Hwang (2014) extended this approach to network DEA using a multiplicative relational DEA model. The 

multiplicative model implicitly assumes that the two stages contribute equally to the overall process, 

which is a very restrictive assumption.  

 

2.3. Gaps in the literature and proposed solutions 

In relation to our study, Fukuyama and Weber (2017) and Fukuyama and Matousek (2017) are the most 

direct references, however, these papers have a few distinctive characteristics. Compared to Fukuyama 

and Weber (2017) our study is different in several ways. To begin with, our paper covers a significantly 

larger time period that starts in 2002 after the extensive consolidation of the Regional Banks and ends in 

2017, allowing an up-to-date evaluation of the efficiency and productivity change. Therefore, we are able 

to investigate five phases of the Japanese economy starting in the post restructuring period and covering 

two crises; the GFC and the economic recession in the aftermath of the GEJE. This is the first study to 

analyse technical efficiency and productivity change of Japanese Regional Banks during these five phases. 

Furthermore, compared to Fukuyama and Weber (2017), our paper investigates the Regional Banks rather 

than different types of Japanese banks, therefore it narrows down the scope and allows a more focused 

discussion of the policy implications. Regarding the modelling framework, our proposed network model 

allows the examination of the first and second stage efficiencies and as a result it provides a greater depth 

of information regarding the sources of inefficiency. Finally, the productivity index that we use is a Global 

Malmquist Productivity Index (MPI). This has a number of advantages, including circularity and a single 

measure of productivity without the need for the geometric mean approach; as a result it avoids any 

infeasibility issues due to the mixed periods. If we then compare the contribution of our study to 

Fukuyama and Matousek (2017), the key distinguishing characteristics are that we do not focus on the 

revenue efficiency of Regional Banks, but on the productivity change and its determinants. Thus, this study 

differs by considering shifts in the frontier over time, rather than focusing entirely on changes in the 

dispersion around the frontier. 

In addition, based on this brief literature review we identify the following gap. So far the empirical 

research does not address the important question that is the modelling of the multi-period process in a 

way that allows the asymmetrical contribution of individual stages to the overall process. In this paper we 

adopt the multi-period framework and we modify it accordingly in order to accommodate the case of the 

additive relational network DEA model. The additive model determines the contribution of each stage 
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endogenously based on the most favourable outcome for the DMU. This makes the additive model a more 

attractive and reasonable choice. 

 

3. Methodology 

This section discusses the methodological framework that is applied in this study. We start the discussion 

with the additive relational network DEA model and its extension to the multi-period framework. This is 

then followed by a discussion about the returns to scale and the analysis of productivity change and its 

decomposition. 

 

3.1 Additive relational network DEA model 

Let us assume a network process with two stages and an additive relationship between them. The 

efficiency of the overall process will be the weighted average of the stage efficiencies, where the weights 

represent the contribution of each stage to the overall efficiency. For the jth DMU (𝑗 = 1, … , 𝑛) we define 

𝑥𝑖𝑗 (𝑖 = 1, … , 𝑚), 𝑧𝑑𝑗  (𝑑 = 1, … , 𝐷) and 𝑦𝑟𝑗  (𝑟 = 1, … , 𝑠) as the ith input, the dth intermediate variable 

and the rth output respectively and 𝑣𝑖, 𝑤𝑑  and 𝑦𝑟 as their respective multipliers. Then, the overall 

efficiency for DMU 0 can be presented as: 

 
𝐸0 = 𝜉1

∑ 𝑤𝑑𝑧𝑑0
𝐷
𝑑=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

+ 𝜉2

∑ 𝑢𝑟𝑦𝑟0
𝑠
𝑟=1

∑ 𝑤𝑑𝑧𝑑0
𝐷
𝑑=1

, 
(1)  

where 𝜉1 and 𝜉2 are the weights of each stage representing its relative contribution to the whole process. 

Chen et al. (2009) defined the contribution of each stage relative to its size that can be proxied by the 

total inputs. Thus, the weight of the first stage is the ratio of total inputs of the first stage over the total 

inputs of the whole process, and similarly the weight of the second stage is the ratio of total inputs of the 

second stage over the total inputs of the whole process. The weights 𝜉1 and 𝜉2 can be calculated as:2 

 𝜉1 =
∑ 𝑣𝑖𝑥𝑖0

𝑚
𝑖=1

∑ 𝑣𝑖𝑥𝑖0+𝑚
𝑖=1 ∑ 𝑤𝑑𝑧𝑑0

𝐷
𝑑=1

,     𝜉2 =
∑ 𝑤𝑑𝑧𝑑0

𝐷
𝑑=1

∑ 𝑣𝑖𝑥𝑖0+𝑚
𝑖=1 ∑ 𝑤𝑑𝑧𝑑0

𝐷
𝑑=1

 . (2)  

According to Chen et al. (2009), the linear programming model which calculates the overall efficiency 𝐸0 

under constant returns-to-scale (CRS) can be presented as: 

 
𝐸0 = 𝑚𝑎𝑥 ∑ 𝑤𝑑𝑧𝑑0

𝐷

𝑑=1

+ ∑ 𝑢𝑟𝑦𝑟0

𝑠

𝑟=1

 
(3) 

 
s. t.              ∑ 𝑣𝑖𝑥𝑖0 + ∑ 𝑤𝑑𝑧𝑑0

𝐷

𝑑=1

= 1

𝑚

𝑖=1

                       
 

                                                             
2 Where 𝜉1 and 𝜉2 range from 0 to 1 and 𝜉1 + 𝜉2 = 1. 
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∑ 𝑤𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0

𝑚

𝑖=1

, 
 

 
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑤𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0, 
 

 𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖 ≥ 𝜀;  𝑗 = 1, … , 𝑛;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠  

where ε is a small non-Archimedean number (Charnes et al., 1979). 

 

3.2 Multi-period model 

In line with Kao and Hwang (2014), we extend our analysis to the multi-period case. For the jth DMU (𝑗 =

1, … , 𝑛) in the kth period (𝑘 = 1, … , 𝑝) we define 𝑥𝑖𝑗
(𝑘)

 (𝑖 = 1, … , 𝑚), 𝑧𝑑𝑗
(𝑘)

 (𝑑 = 1, … , 𝐷) and 𝑦𝑟𝑗
(𝑘)

 (𝑟 =

1, … , 𝑠) as the ith input, the dth intermediate variable and the rth output respectively in period k. Note 

that 𝑥𝑖𝑗 = ∑ 𝑥𝑖𝑗
(𝑘)𝑝

𝑘=1 , 𝑧𝑑𝑗 = ∑ 𝑧𝑑𝑗
(𝑘)𝑝

𝑘=1  and 𝑦𝑟𝑗 = ∑ 𝑦𝑟𝑗
(𝑘)𝑝

𝑘=1 . Therefore, model (4) yields the overall 

efficiency for the entire time period since it is evaluated using the totals of the inputs, intermediate 

variables and outputs for all p periods. In order to take into account the efficiency for each period, we 

need to add the relative constraints; ∑ 𝑤𝑑𝑧𝑑𝑗
(𝑘)𝐷

𝑑=1 − ∑ 𝑣𝑖𝑥𝑖𝑗
(𝑘)

≤ 0𝑚
𝑖=1  and ∑ 𝑢𝑟𝑦𝑟𝑗

(𝑘)𝑠
𝑟=1 − ∑ 𝑤𝑑𝑧𝑑𝑗

(𝑘)𝐷
𝑑=1 ≤

0 for the first and the second stages respectively. This will allow us to study the aggregation of the 

individual periods’ efficiencies and identify the period with the greatest impact. Then the single-period 

model (3) will be extended into a multi-period model as follows: 

  𝐸0
𝐺 = 𝑚𝑎𝑥 ∑ 𝑤𝑑𝑧𝑑0

𝐷
𝑑=1 + ∑ 𝑢𝑟𝑦𝑟0

𝑠
𝑟=1                   (4) 

 
s. t.            ∑ 𝑣𝑖𝑥𝑖0 + ∑ 𝑤𝑑𝑧𝑑0

𝐷

𝑑=1

= 1

𝑚

𝑖=1

                    

                                           Stage 1 constraints 

 

 
∑ 𝑤𝑑𝑧𝑑𝑗

𝐷

𝑑=1

− ∑ 𝑣𝑖𝑥𝑖𝑗 ≤ 0

𝑚

𝑖=1

, 

∑ 𝑤𝑑𝑧𝑑𝑗
(𝑘)

𝐷

𝑑=1

− ∑ 𝑣𝑖𝑥𝑖𝑗
(𝑘)

≤ 0

𝑚

𝑖=1

, 

                                           Stage 2 constraints 

 

 
∑ 𝑢𝑟𝑦𝑟𝑗

𝑠

𝑟=1

− ∑ 𝑤𝑑𝑧𝑑𝑗

𝐷

𝑑=1

≤ 0, 
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∑ 𝑢𝑟𝑦𝑟𝑗
(𝑘)

𝑠

𝑟=1

− ∑ 𝑤𝑑𝑧𝑑𝑗
(𝑘)

𝐷

𝑑=1

≤ 0, 

𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖 ≥ 𝜀;  𝑗 = 1, … , 𝑛;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠; 𝑘 = 1, … , 𝑝 

Because we add more constraints, efficiency scores calculated from model (4) are lower than or equal to 

those that are calculated from model (3). The first set of constraints for each one of the two stages is 

redundant. After we obtain the optimal solution to (4), we calculate the efficiency for the two stages in 

the case of unique efficiency decomposition as follows: 

 
𝐸0

𝐺1 =
∑ 𝑤𝑑

∗𝑧𝑑0
𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

       𝑎𝑛𝑑     𝐸0
𝐺2 =

∑ 𝑢𝑟
∗𝑦𝑟0

𝑠
𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

  
(5)  

 

Note that if the decomposition is not unique and there are multiple solutions, there is a need for an 

additional linear program. This allows us to find the set of multipliers that produces the largest efficiency 

score for one of the two stages, while maintaining the overall efficiency constant (Kao and Hwang, 2008).3 

In a similar way the period efficiencies can be calculated as: 

  
𝐸0

𝐺(𝑘)
=

∑ 𝑢𝑟
∗𝑦𝑟0

(𝑘)𝑠
𝑟=1 + ∑ 𝑤𝑑

∗ 𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑣𝑖
∗𝑥

𝑖0

(𝑘)𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)𝐷

𝑑=1

  ,   𝐸0
𝐺1(𝑘)

=
∑ 𝑤𝑑

∗ 𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑣𝑖
∗𝑥

𝑖0

(𝑘)𝑚
𝑖=1

       𝑎𝑛𝑑    𝐸0
𝐺2(𝑘)

=
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

  
(6)  

 

Figure 1 is the visual representation of this multi-period two-stage network structure. It will be noticed 

that this is a parallel structure with p subsystems (periods).  

 

Figure 1: Multi-period network structure 

 

                                                             
3 For a detailed presentation in the case of the additive network DEA model see Chen et al. (2009). 



12 
 

Kao (2009) proved that the overall efficiency in a parallel model is the weighted average of the 

subsystems’ efficiency. He used as a weight, the ratio of total inputs in each subsystem over total inputs in 

the overall system. Kao and Hwang (2014) showed that this is also valid for a two-stage network model 

with multiplicative efficiency decomposition. Here, we demonstrate that the same holds in the case of an 

additive model, where the overall efficiency is the weighted average of the individual periods’ efficiency. 

In specific: 

 
𝐸0

𝐺 = ∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸0
𝐺(𝑘)

,                𝛼(𝑘) =
∑ 𝑣𝑖

∗𝑥𝑖0
(𝑘)𝑚

𝑖=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0
𝐷
𝑑=1

 
(7) 

 
𝐸0

𝐺1 = ∑ �̌�(𝑘)

𝑝

𝑘=1

𝐸0
𝐺1(𝑘)

,                �̌�(𝑘) =
∑ 𝑣𝑖

∗𝑥𝑖0
(𝑘)𝑚

𝑖=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

 
 

 
𝐸0

𝐺2 = ∑ �̂�(𝑘)

𝑝

𝑘=1

𝐸0
𝐺2(𝑘)

,                �̂�(𝑘) =
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

 
 

 

We can work backwards to verify these relationships: 

 
∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸0
𝐺(𝑘)

= ∑ (
∑ 𝑣𝑖

∗𝑥𝑖0
(𝑘)𝑚

𝑖=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0
𝐷
𝑑=1

) ∙ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

(𝑘)𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

) = ∑ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0
𝐷
𝑑=1

)

𝑝

𝑘=1

= 𝐸0
𝐺

𝑝

𝑘=1

 
(8) 

 
∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸1
𝐺(𝑘)

= ∑ (
∑ 𝑣𝑖

∗𝑥𝑖0
(𝑘)𝑚

𝑖=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

) ∙ (
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

(𝑘)𝑚
𝑖=1

) = ∑ (
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

)

𝑝

𝑘=1

= 𝐸0
𝐺1

𝑝

𝑘=1

 
 

 
∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸2
𝐺(𝑘)

= ∑ (
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

) ∙ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

) = ∑ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

)

𝑝

𝑘=1

= 𝐸0
𝐺2

𝑝

𝑘=1

 
 

 

Therefore, the overall efficiency in a parallel model with p periods is the weighted average of the periods’ 

efficiency, and each DMU obtains the most favourable weights to aggregate the period efficiencies into 

the overall efficiency. The overall efficiency can be decomposed into stage efficiencies for each period in 

two ways: 

 
𝐸0

𝐺 = 𝜉1
∗

∑ 𝑤𝑑
∗ 𝑧𝑑0

𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

+ 𝜉2
∗

∑ 𝑢𝑟
∗𝑦𝑟0

𝑠
𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

= 𝜉1
∗ ∙ 𝐸0

𝐺1 + 𝜉2
∗ ∙ 𝐸0

𝐺2 = 𝜉1
∗ ∙ (∑ �̌�(𝑘)

𝑝

𝑘=1

𝐸0
𝐺1(𝑘)

) + 𝜉2
∗ ∙ (∑ �̂�(𝑘)

𝑝

𝑘=1

𝐸0
𝐺2(𝑘)

) 
(9) 

 
𝐸0

𝐺 = ∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸0
𝐺(𝑘)

= ∑ 𝛼(𝑘)

𝑝

𝑘=1

(𝜉1
∗ ∙ 𝐸0

𝐺1(𝑘)
+ 𝜉2

∗ ∙ 𝐸0
𝐺2(𝑘)

) 
 

 

Subsequently, the DMU is overall efficient if and only if it is efficient in both stages for every period. This 

allows decision makers to focus on the inefficient stage for future improvements.  

Furthermore, in equation (6) we calculate the period efficiencies based on the optimal multipliers 
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from model (4). However, the optimal solution might not be unique and subsequently the period 

decomposition might not be unique either. Following Kao and Hwang (2014), we solve this issue by 

maximizing the efficiency of a period t while keeping the overall efficiency constant at 𝐸0
𝐺∗, as calculated 

in model (4). The efficiency for period t can be calculated as: 

 𝐸0
𝐺(𝑡)

= 𝑚𝑎𝑥 ∑ 𝑤𝑑𝑧𝑑0
(𝑡)𝐷

𝑑=1 + ∑ 𝑢𝑟𝑦𝑟0
(𝑡)𝑠

𝑟=1                   (10) 

 
s. t.              ∑ 𝑣𝑖𝑥𝑖0

(𝑡)
+ ∑ 𝑤𝑑𝑧𝑑0

(𝑡)

𝐷

𝑑=1

= 1

𝑚

𝑖=1

                    
 

 
𝐸0

𝐺∗ ∙ (∑ 𝑣𝑖𝑥𝑖0

𝑚

𝑖=1

+ ∑ 𝑤𝑑𝑧𝑑0

𝐷

𝑑=1

) = ∑ 𝑤𝑑𝑧𝑑0

𝐷

𝑑=1

+ ∑ 𝑢𝑟𝑦𝑟0

𝑠

𝑟=1

 
 

 
∑ 𝑤𝑑𝑧𝑑𝑗

(𝑘)

𝐷

𝑑=1

− ∑ 𝑣𝑖𝑥𝑖𝑗
(𝑘)

≤ 0

𝑚

𝑖=1

, 
 

 
∑ 𝑢𝑟𝑦𝑟𝑗

(𝑘)

𝑠

𝑟=1

− ∑ 𝑤𝑑𝑧𝑑𝑗
(𝑘)

𝐷

𝑑=1

≤ 0, 
 

 𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖 ≥ 𝜀;  𝑗 = 1, … , 𝑛;  𝑖 = 1, … , 𝑚; 𝑑 = 1, … , 𝐷; 𝑟 = 1, … , 𝑠; 𝑘 = 1, … , 𝑝  

 

The efficiency of another period h can be calculated by keeping the overall efficiency constant at 𝐸0
𝐺∗ and 

the efficiency of period t constant at 𝐸0
𝐺(𝑡)∗

. The process can be continued until we find a solution for 

every period, by keeping the previously evaluated efficiencies constant at their optimal level. For example, 

if there are 16 periods to be evaluated, as is the case for the empirical application in this paper, then there 

are 17 models in total that need to be evaluated; 1 time the overall multi-period model (4) and 16 times 

the period specific model (10) adding an additional constraint for every period. Although several 

optimisations should be run for every DMU which adds computational burden, the model is 

implementable with ease. There is a technical problem that might arise when solving model (10) and that 

is possible infeasibilities due to rounding errors (Kao, 2017).  

 

3.3 Returns to scale 

The use of the CRS assumption has been linked with the operation at an optimal scale across all DMUs. 

There are various issues which can force DMUs to operate at a non-optimal scale, such as imperfect 

competition, regulations and financial constraints (Coelli et al., 2005). In such cases, a variable returns-to-

scale (VRS) assumption is preferred. However, the assumption of VRS leads to a lower discrimination 
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power (Asmild et al., 2004) as well as to a systematic bias when calculating productivity change using a 

Malmquist productivity index (Grifell–Tatje and Lovell, 1995). As Fethi and Pasiouras (2010) showed, the 

majority of the DEA studies in banking use a VRS model. There are, however, studies that use either a CRS 

model (Asmild et al., 2004) or use both CRS and VRS models (Canhoto and Dermine, 2003). 

From a modelling perspective, the VRS assumption requires the introduction of free variables 𝑢1 

and 𝑢2  in model (3), for the first and second stages respectively.4 The overall efficiency under the VRS 

assumption can be calculated as: 

 
𝐸0 = 𝜉1

∑ 𝑤𝑑𝑧𝑑0 + 𝑢1𝐷
𝑑=1

∑ 𝑣𝑖𝑥𝑖0
𝑚
𝑖=1

+ 𝜉2

∑ 𝑢𝑟𝑦𝑟0 + 𝑢2𝑠
𝑟=1

∑ 𝑤𝑑𝑧𝑑0
𝐷
𝑑=1

 
(11) 

 

Similarly, introducing the free variables 𝑢1 and 𝑢2  in model (4) will result in the VRS version of the multi-

period additive relational network DEA model, where 𝑢1(𝑘) and 𝑢1(𝑘) are seen as the corresponding vector 

of free variables for the p periods. Then, three equations (8) would become: 

 
∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸0
𝐺(𝑘)

= ∑ (
∑ 𝑣𝑖

∗𝑥𝑖0
(𝑘)𝑚

𝑖=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0
𝐷
𝑑=1

) ∙ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1 + 𝑢1(𝑘) + 𝑢2(𝑘)

∑ 𝑣𝑖
∗𝑥𝑖0

(𝑘)𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

) = ∑ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)𝑠

𝑟=1 + ∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)
+ 𝑢1(𝑘) + 𝑢2(𝑘)𝐷

𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1 + ∑ 𝑤𝑑

∗𝑧𝑑0
𝐷
𝑑=1

)

𝑝

𝑘=1

= 𝐸0
𝐺

𝑝

𝑘=1

 
 

 
∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸1
𝐺(𝑘)

= ∑ (
∑ 𝑣𝑖

∗𝑥𝑖0
(𝑘)𝑚

𝑖=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

) ∙ (
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)

+ 𝑢1(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

(𝑘)𝑚
𝑖=1

) = ∑ (
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)

+ 𝑢1(𝑘)𝐷
𝑑=1

∑ 𝑣𝑖
∗𝑥𝑖0

𝑚
𝑖=1

)

𝑝

𝑘=1

= 𝐸0
𝐺1

𝑝

𝑘=1

 
(12)  

 
∑ 𝛼(𝑘)

𝑝

𝑘=1

𝐸2
𝐺(𝑘)

= ∑ (
∑ 𝑤𝑑

∗𝑧𝑑0
(𝑘)𝐷

𝑑=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

) ∙ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)

+ 𝑢2(𝑘)𝑠
𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

(𝑘)𝐷
𝑑=1

) = ∑ (
∑ 𝑢𝑟

∗𝑦𝑟0
(𝑘)

+ 𝑢2(𝑘)𝑠
𝑟=1

∑ 𝑤𝑑
∗𝑧𝑑0

𝐷
𝑑=1

)

𝑝

𝑘=1

= 𝐸0
𝐺2

𝑝

𝑘=1

 
  

 

The three equations (12) hold if and only if ∑ 𝑢1(𝑘)𝑝
𝑘=1 = 𝑢1 and ∑ 𝑢2(𝑘)𝑝

𝑘=1 = 𝑢2. Therefore, these two 

summing constraints are required to be included in the VRS version of the model. A potential problem is 

the number of free variables included in the model. They increase by four for each year of the analysis 

(each free variable 𝑢1 and 𝑢2 is expressed as the difference of two non-negative variables).  For example, 

if the examined time-period is 16 years, as is the case in this paper, there will be 64 new variables. 

Furthermore, a high number of variables in a DEA model leads to a lack of discrimination, a problem known 

as the curse of dimensionality (Charles et al., 2019; Sickles and Zelenyuk, 2019). Therefore, in a real life 

application this model would be considered as a suitable option only if the number of years was relatively 

low and the number of DMUs very high. 

 

 

   

                                                             
4 See model (17) in Chen et al. (2009). 
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3.4 Productivity change 

Based on the works of Shephard (1953) and Malmquist (1953) on input distance functions and Shephard 

(1970) on output distance functions, Caves et al. (1982) developed the MPI to examine the productivity 

changes between two periods. This type of MPI is calculated based on the technology of one period. On 

the contrary, a global MPI considers the technology of all periods in order to calculate the index (Pastor 

and Lovell, 2005). There are three appealing features about global MPI: (i) it is circular, which means that 

the productivity change between two periods t and l can be calculated as 𝑀𝑃𝐼𝑡,𝑙 = 𝑀𝑃𝐼𝑡,𝑘 ∙ 𝑀𝑃𝐼𝑘,𝑙  for 

any period k between t and l; (ii) it provides a single productivity measure without a need for the geometric 

mean approach; and (iii) it is immune to infeasibilities usually arising from the mixed periods problem. 

Similarly, the period efficiencies based on the overall efficiency of model (4) that are calculated 

from the equations (6) use the same set of multipliers. Therefore, each individual period efficiency is based 

on the same frontier facet and the corresponding indices are common-weight global MPIs. Following Kao 

and Hwang (2014), the common-weight global MPI can be calculated as: 

 

 𝑀𝑃𝐼𝑡,𝑙 = 𝐷𝑐
𝐺 (𝑥𝑙 , 𝑦𝑙) 𝐷𝑐

𝐺(𝑥𝑡 , 𝑦𝑡)⁄ = 𝐸𝐶
𝐺(𝑙)

𝐸𝐶
𝐺(𝑡)⁄                                                                        (13) 

 

where D stands for distance function and c for constant returns to scale. For example, 𝐷𝑐
𝐺(𝑥𝑙, 𝑦𝑙) is the 

distance function of inputs-outputs (x,y) in period 𝑙 using the global technology of all p periods as a 

benchmark technology. Accordingly,  𝐸𝐶
𝐺(𝑙)

 is the efficiency for period l and 𝐸𝐶
𝐺(𝑡)

 is the efficiency for period 

t, calculated from equations (6) under the CRS assumption. 

The 𝑀𝑃𝐼𝑡,𝑙  can be decomposed in order to identify the sources of productivity change. We apply 

a two-way decomposition which is based on the CRS technology that was introduced by Färe et al. (1994a). 

The productivity change is decomposed into an efficiency change term, which shows whether the distance 

of a DMU from the frontier has changed over time and a technical change term, which shows the shift in 

the frontier. Alternative decomposition approaches such as Färe et al. (1994b), Ray and Desli (1997) and 

Weelock and Wilson (1999) use both CRS and VRS components.5 To avoid the aforementioned problems 

of the multi-period VRS model, we apply the decomposition of Färe et al. (1994a) and we focus only on 

CRS technology. We can define 𝐷𝑐
𝑙 (𝑥𝑙 , 𝑦𝑙) as the distance function of inputs-outputs (x,y) in period 𝑙 using 

period 𝑙 as a benchmark technology. The 𝑀𝑃𝐼𝑡,𝑙 in (13) can be decomposed as: 

                                                             
5 See Kourtzidis et al. (2018) for a discussion on the alternative decomposition approaches 



16 
 

 
𝑀𝑃𝐼𝑡,𝑙(𝑥𝑡 , 𝑦𝑡 , 𝑥𝑙 , 𝑦𝑙) =  𝐸𝑓𝑓_𝑐ℎ ∙ 𝑇𝑒𝑐ℎ_𝑐ℎ =

𝐷𝑐
𝑙(𝑥𝑙,𝑦𝑙)

𝐷𝑐
𝑡(𝑥𝑡,𝑦𝑡)

∙ [
𝐷𝑐

𝐺(𝑥𝑙,𝑦𝑙)

𝐷𝑐
𝑙(𝑥𝑙,𝑦𝑙)

∙
𝐷𝑐

𝑡(𝑥𝑡,𝑦𝑡)

𝐷𝑐
𝐺(𝑥𝑡,𝑦𝑡)

]                                                                               (14) 

 

We calculate the above MPI by using the non-parametric estimators from models (3) and (4) and equations 

(6), where, 𝐸𝐶
𝐺(𝑙)

 is the efficiency for period l and 𝐸𝐶
𝐺(𝑡)

 is the efficiency for period t, calculated from the 

multi-period model (4) and equations (6) under the CRS assumption, 𝐸𝐶
(𝑙)

 is the efficiency for period l and 

𝐸𝐶
(𝑡)

 is the efficiency for period t, calculated from model (3) under CRS assumption. Then equation (14) 

can be re-written as follows: 

 
𝑀𝑃𝐼𝑡,𝑙 = 𝐸𝑓𝑓𝑐ℎ ∙ 𝑇𝑒𝑐ℎ𝑐ℎ =

𝐸𝑐
(𝑙)

𝐸𝑐
(𝑡)

∙ [
𝐸𝑐

𝐺(𝑙)

𝐸𝑐
(𝑙)

∙
𝐸𝑐

(𝑡)

𝐸𝑐
𝐺(𝑡)

] 
(15) 

 

4. Empirical Application 

In this section we apply our model to study the efficiency and productivity of Regional Banks I and II in 

Japan during the period from 2002 to 2017. The period of study begins in the aftermath of the 1990s 

financial crisis, which caused the extensive restructuring of Japanese banks, and covers two turbulent 

periods, the GFC and the economic recession in the aftermath of the GEJE.  

 

4.1. Data and model description 

Our representative sample includes 51 Regional Banks I and 23 Regional Banks II. As discussed in Section 

2.1, Regional Banks I and II have similar characteristics such as low capitalisation, they are operating in 

specific districts and they are involved in similar operations in which they compete with each other, such 

as the financing of SMEs and local governments. The specification of the inputs and outputs are in line 

with Fukuyama and Matousek (2011) and Holod and Lewis (2011). The first stage uses the total number 

of employees and fixed assets as inputs to produce deposits which are the intermediate variables in our 

model. The second stage uses deposits that are deployed for the production of loans and securities. This 

approach ensures the dual role of deposits and addresses the deposits dilemma as described in Section 1. 

Following Besstremyannaya (2017), we divide the period from 2002 to 2017 into five sub-periods that 

include: (i) the period  after the extensive restructuring of Japanese banks and before the GFC (2002–

2007); (ii) the period during the GFC (2007–2009); (iii) the period after the GFC and before the GEJE (2009–

2011); (iv) the period  of the economic recession in the aftermath of the GEJE (2011–2013); and (v) the 

period that captures the recovery after the turbulent periods (2013–2017). Table A1 in the Appendix 
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presents the descriptive statistics for our dataset throughout the years. The data sample is collected from 

the banks’ balance sheets which are provided by the Japanese Banks’ Association6 and are measured in 

million Yen. Data for the number of employees are collected from DataStream. 

  

4.2. Results 

The proposed multi-period additive relational network DEA model (4) is applied to assess the efficiency 

and productivity of the 74 Japanese Regional Banks. Based on the previous discussion, we choose a CRS 

over a VRS model to avoid the curse of dimensionality. In addition, as discussed in Section 2.1, Regional 

Banks I and II perform similar operations and operate under the same framework, therefore a CRS 

assumption is valid. In our case, we find that the CRS model has a unique efficiency decomposition across 

years and stages. This is important because we can directly use equations (6) for the period and stage 

efficiencies and avoid possible infeasibilities from additional linear programs (LP) like model (10) due to 

additional equality constraints (Kao, 2017).  

Table 2 presents the detailed results for the case of the Chiba Bank, which is the most efficient 

bank, as an illustrative example. Here we present the detailed results only for one bank. The results for all 

banks are available upon request. Columns 3-5 present the average period efficiency, the weight for each 

period calculated from equations (7) and the MPI for the consecutive yearly periods calculated from (13), 

e.g. third row presents the MPI for the period 2002–2003. Columns 6-7 and 8-9 present the same for the 

first and second stages respectively. As demonstrated in equations (8), the overall efficiency and the stage 

efficiencies for the whole period are the weighted average of the period efficiencies. Therefore, when we 

use period efficiencies in column 3 and the weights in column 4, we can calculate the overall efficiency for 

the Chiba Bank as a weighted average which is 0.806. We can calculate the weighted average for the first 

stage and the second stage efficiencies from columns 6-7 and 8-9 as 0.760 and 0.865 respectively. It is 

worthwhile noting that even though Chiba Bank is the most efficient bank in the entire period analysed, 

in terms of individual years it is the most efficient only in one period (2006). However, it is consistently 

ranked among the top four banks during the entire time period. Furthermore, the efficiency level gradually 

increases throughout the entire time period, starting from 0.691 in 2002 and reaching 0.901 in 2017. The 

main driver for this is the increase in first stage efficiency, which was relatively low at the beginning of the 

time period at 0.598 but reached a very high level later at 0.939, rather than the second stage efficiency, 

which was stable and high, ranging from 0.80 to 0.85 across the entire time period. Indeed, the first stage 

                                                             
6 These balance sheets can be found at: https://www.zenginkyo.or.jp/en/stats/year2-01/ 

https://www.zenginkyo.or.jp/en/stats/year2-01/
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efficiency was lower than the second stage efficiency up until 2014, and after that point it became greater. 

The gradual increase in the first stage efficiency can be attributed to the growth of deposits throughout 

the entire time period, which was consistently positive after 2003 with an average of 3.48% per year. Over 

the same time, a similar growth pattern for loans that was consistently positive after 2003 with an average 

of 3.69% per year, kept the second stage efficiency at a high level. The strong position of Chiba Bank in 

terms of deposits and loans is evident by the high credit ratings, such as A1 rating for the long-term bank 

deposits (Moody’s, 2015). Similarly, the ranking of individual variables through the years provides further 

insights. Specifically, Chiba Bank has the highest fixed assets, deposits and loans across all years. Chiba 

Bank has the second highest number of employees and the bank is among the top ten banks with the 

highest volume of securities. In terms of the productivity change, due to the circularity property the overall 

MPI for the whole period is the product of all period MPIs in column 5, which is 1.304, revealing that the 

performance of Chiba Bank has significantly improved during the whole period from 2002 to 2017.  

 

Table 2: Period efficiencies and MPI for the case of the Chiba Bank 

Year k Period t,l 𝐸0
𝐺(𝑘)

 𝛼(𝑘) 𝑀𝑃𝐼𝑡,𝑙 𝐸0
𝐺1(k)

 �̌�(𝑘) 𝐸0
𝐺2(k)

 �̂�(𝑘) 

2002 - 0.6909 0.0583 - 0.5976 0.0642 0.8470 0.0504 

2003 2002-2003 0.6927 0.0572 1.0026 0.6098 0.0625 0.8286 0.0501 

2004 2003-2004 0.7196 0.0560 1.0388 0.6443 0.0599 0.8365 0.0508 

2005 2004-2005 0.7537 0.0561 1.0474 0.6906 0.0584 0.8450 0.0531 

2006 2005-2006 0.8063 0.0571 1.0698 0.7349 0.0579 0.9033 0.0560 

2007 2006-2007 0.8025 0.0590 0.9953 0.7484 0.0595 0.8747 0.0585 

2008 2007-2008 0.7946 0.0598 0.9902 0.7374 0.0606 0.8722 0.0587 

2009 2008-2009 0.7980 0.0608 1.0043 0.7346 0.0617 0.8844 0.0596 

2010 2009-2010 0.7962 0.0628 0.9977 0.7348 0.0637 0.8798 0.0615 

2011 2010-2011 0.7981 0.0645 1.0024 0.7478 0.0649 0.8653 0.0639 

2012 2011-2012 0.8144 0.0652 1.0204 0.7671 0.0650 0.8762 0.0655 

2013 2012-2013 0.8361 0.0657 1.0266 0.7950 0.0644 0.8879 0.0674 

2014 2013-2014 0.8526 0.0667 1.0197 0.8454 0.0636 0.8610 0.0707 

2015 2014-2015 0.8743 0.0687 1.0255 0.8922 0.0639 0.8541 0.0750 

2016 2015-2016 0.8904 0.0701 1.0184 0.9225 0.0642 0.8556 0.0779 

2017 2016-2017 0.9008 0.0721 1.0117 0.9387 0.0655 0.8604 0.0808 

 

The overall efficiency scores for the entire period and for all banks are presented in Table 3. Columns 2-4 

and 6-8 are the CRS efficiency scores calculated from the multi-period model (4). The number in brackets 

denotes the ranking of each bank. Note that RB I and RB II denote Regional Banks I and II respectively. 

Chiba Bank is the most efficient bank with an efficiency score of 0.806 and the Miyazaki Taiyo Bank is the 
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least efficient bank with an efficiency score of 0.409. Only five banks achieve overall efficiency above 0.750 

and 11 banks above 0.700. Regarding the first stage, only one bank achieves an efficiency score over 0.750 

(Chiba Bank) and three banks achieve an efficiency score above 0.700. Regarding the second stage, eight 

banks achieve an efficiency score above 0.900 and 58.1% of banks an efficiency score above 0.850. The 

most efficient bank in the second stage is Kansai Urban Banking Corporation with an efficiency score of 

0.946.  

 

Table 3: Multi-period efficiency for 74 Japanese banks 

Bank 𝐸0
𝐺 𝐸0

1𝐺  𝐸0
2𝐺   Bank 𝐸0

𝐺 𝐸0
1𝐺  𝐸0

2𝐺  

77 Bank [RB I] 0.785 [4] 0.729 0.862  Joyo Bank [RB I] 0.757 [5] 0.671 0.885 

Aichi Bank [RB II] 0.618 [37] 0.499 0.855  Juroku Bank [RB I] 0.617 [38] 0.494 0.867 

Akita Bank [RB I] 0.638 [31] 0.524 0.855  Kagoshima Bank [RB I] 0.594 [44] 0.455 0.898 

Aomori Bank [RB I] 0.630 [32] 0.512 0.862  Kansai Urban Banking 

Corporation [RB II] 

0.691 [12] 0.550 0.946 

Awa Bank [RB I] 0.668 [19] 0.560 0.861  Keiyo Bank [RB II] 0.679 [16] 0.586 0.836 

Bank of Iwate [RB I] 0.707 [11] 0.621 0.844  Kita Nippon Bank [RB II] 0.542 [56] 0.431 0.800 

Bank of Kochi [RB II] 0.457 [70] 0.324 0.869  Kiyo Bank [RB I] 0.640 [30] 0.533 0.841 

Bank of Kyoto [RB I] 0.732 [7] 0.605 0.941  Michinoku Bank [RB I] 0.651 [26] 0.570 0.792 

Bank of Nagoya [RB II] 0.626 [35] 0.551 0.851  Mie Bank [RB I] 0.617 [39] 0.485 0.888 

Bank of Saga [RB I] 0.543 [55] 0.427 0.813  Minami Nippon Bank [RB II] 0.442 [72] 0.322 0.812 

Bank of the Ryukyus [RB I] 0.552 [54] 0.432 0.829  Minato Bank [RB II] 0.579 [47] 0.450 0.867 

Bank of Toyama [RB I] 0.510 [66] 0.385 0.833  Miyazaki Bank [RB I] 0.559 [53] 0.411 0.920 

Chiba Bank [RB I] 0.806 [1] 0.760 0.865  Miyazaki Taiyo Bank [RB II] 0.409 [74] 0.293 0.804 

Chiba Kogyo B. [RB I] 0.663 [22] 0.561 0.845  Musashino Bank [RB I] 0.659 [23] 0.547 0.865 

Chikuho Bank [RB I] 0.457 [71] 0.330 0.843  Nagano Bank [RB II] 0.566 [51] 0.448 0.828 

Chugoku Bank [RB I] 0.718 [10] 0.596 0.923  Nanto Bank [RB I] 0.682 [14] 0.574 0.868 

Chukyo Bank [RB II] 0.573 [50] 0.442 0.870  Ogaki Kyoritsu Bank [RB I] 0.603 [41] 0.471 0.884 

Daisan Bank [RB II] 0.514 [62] 0.390 0.831  Oita Bank [RB I] 0.594 [43] 0.462 0.882 

Daishi Bank [RB I] 0.663 [21] 0.554 0.861  San in Godo Bank [RB I] 0.667 [20] 0.551 0.878 

Daito Bank [RB II] 0.476 [68] 0.360 0.799  Shiga Bank [RB I] 0.672 [17] 0.558 0.876 

Ehime Bank [RB II] 0.530 [59] 0.396 0.867  Shikoku Bank [RB I] 0.630 [33] 0.517 0.848 

Eighteenth Bank [RB I] 0.583 [46] 0.449 0.882  Shimizu Bank [RB I] 0.541 [57] 0.423 0.821 

Fukui Bank [RB I] 0.629 [34] 0.507 0.870  Shizuoka Bank [RB I] 0.796 [3] 0.699 0.934 

Fukuoka Chuo B. [RB II]  0.412 [73] 0.286 0.853  Suruga Bank [RB I] 0.655 [25] 0.579 0.785 

Fukushima Bank [RB II] 0.510 [65] 0.383 0.844  Taiko Bank [RB II] 0.564 [52] 0.443 0.839 

Gunma Bank [RB I] 0.726 [8] 0.615 0.906  Tochigi Bank [RB II] 0.589 [45] 0.483 0.809 

Hachijuni Bank [RB I] 0.798 [2] 0.727 0.896  Toho Bank [RB I] 0.686 [13] 0.617 0.798 

Higashi Nippon [RB II] 0.609 [40] 0.479 0.882  Tohoku Bank [RB I] 0.509 [67] 0.389 0.816 

Higo Bank [RB I] 0.642 [29] 0.524 0.867  Tokyo Tomin Bank [RB I] 0.720 [9] 0.646 0.835 

Hiroshima Bank [RB I] 0.738 [6] 0.634 0.901  Tomato Bank [RB II] 0.512 [64] 0.374 0.881 
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Hokkoku Bank [RB I] 0.643 [28] 0.518 0.884  Tottori Bank [RB I] 0.528 [61] 0.404 0.836 

Hokuetsu Bank [RB I] 0.603 [42] 0.491 0.830  Towa Bank [RB II] 0.528 [60] 0.403 0.837 

Hokuto Bank [RB I] 0.576 [49] 0.456 0.839  Tsukuba Bank [RB I] 0.579 [48] 0.468 0.815 

Howa Bank [RB II] 0.460 [69] 0.337 0.827  Yachiyo Bank [RB II] 0.534 [58] 0.422 0.799 

Hyakugo Bank [RB I] 0.649 [27] 0.532 0.869  Yamagata Bank [RB I] 0.669 [18] 0.553 0.879 

Hyakujushi Bank [RB I] 0.625 [36] 0.493 0.895  Yamaguchi Bank [RB I] 0.512 [63] 0.380 0.862 

Iyo Bank [RB I] 0.679 [15] 0.546 0.922  Yamanashi Chuo B. [RB I] 0.659 [24] 0.540 0.880 

 

Figure 2 reveals that the average overall efficiency and the average efficiency of the first stage 

have been improved through the analysed period from 0.524 to 0.685 and from 0.407 to 0.590 

respectively, while the second stage efficiency remained stable at a high level. The results are consistent 

across the years for most of the analysed banks, with some notable exceptions. Tokyo Tomin Bank, which 

was ranked as the 9th most efficient bank for the overall period, is the most notable example, achieving 

the best efficiency score for the time period 2002–2011 (with the exception of 2006, when the bank 

achieved the second highest efficiency score), while for the last three years this bank was among the five 

least efficient banks. In 2002, this bank achieved an efficiency score of 0.756, increasing to 0.872 in 2009, 

and decreasing afterwards to its lowest point at 0.491 in 2017. The driver behind this significant change is 

the bank’s inputs. During the first decade the bank had very low inputs, especially fixed assets, which 

started to increase from 2012 and they were doubled in 2015. However, this increase in inputs was not 

followed by an increase in loans, securities or deposits. The other banks which achieved the highest 

efficiency for at least one year (Chiba Bank, Hachijuni Bank, 77 Bank) consistently achieved very high 

ranking across the analysed period.  

 

Figure 2: Average period efficiency through the years 

 

 

An interesting aspect of our analysis is whether there is any difference between Regional Banks I 
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and II. Figure 3 is a clustered boxplot, which presents the difference between Regional Banks I and II for 

the overall, the first stage and the second stage efficiency scores. Evidently, there is a difference between 

Regional Banks I and II, with the former performing better in all stages. This difference is more distinct for 

the overall model and the first stage, while it is less distinct for the second stage. There are also three 

extreme observations, Chikuho Bank (44) that shows the worse performance in the segment of Regional 

Banks I for the overall model. Chiba Bank (88) performs significantly better than the rest of the Regional 

Banks I for the first stage. Finally Kansai Urban Banking Corporation (213) performs better than the rest of 

the Regional Banks II for the second stage (and Regional Banks I). Although both Regional Banks I and II 

conduct similar activities within a specific district and mainly has SMEs or local government clients, there 

are a few differences that might explain the gap in efficiency levels. Regional Banks I are bigger in size than 

Regional banks II and also the restructuring process differed between the two types of regional banks 

(Fukuyama and Matousek, 2017). Specifically, regional banks have been assisted through capital injections 

and M&A with government intervention, however, the financial support between the two types of 

regional banks was not the same as the second tier banks had to cope with their non-performing loans by 

themselves.  

 

Figure 3: Comparison of efficiency levels for Regional Banks I and II 

 
Note: Numbers 44, 88 and 213 refer to the extreme observations. Observations 1–74 refer to the overall efficiency scores, 75–
148 to the first stage efficiency scores and 149–222 to the second stage efficiency scores for the 74 banks. 

 
The average productivity change per year, along with the decomposition is presented in Table 4. 

Specifically, column 2 presents the MPI for each subsequent biannual period and column 3 the MPI for the 
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individual sub-period.  Similarly, columns 4 and 5 present the technical efficiency change and columns 6 

and 7 the technical change. The productivity change, the technical efficiency change and the technical 

change for the entire period are presented in the last row. Note that the circularity property does not hold 

for average results, but only for single banks. Therefore, if we multiply the 𝑀𝑃𝐼𝑡,𝑙  for every biannual period 

t and l in Table 2 starting from 2002–2003 and ending in 2016–2017, the result will be the 𝑀𝑃𝐼𝑡,𝑙  for the 

time period 2002–2017. However, the same does not hold in Table 4. If we multiply the average MPI for 

each biannual period starting from 2002–2003 and ending in 2016–2017, the result will be different from 

the average MPI of 1.3185 for the time period 2002–2017 which is reported in Table 4. Overall, we notice 

that there is a productivity growth during the entire period, which is mainly attributed to the technical 

change component. 

 

Table 4: Malmquist Productivity Index and decomposition 

 MPI Efficiency Change Technical Change 

2002-2003 1.0259 

1.1552 

1.0086 

0.9873 

1.0171 

1.1693 

2003-2004 1.0267 0.9982 1.0285 

2004-2005 1.0339 0.9945 1.0396 

2005-2006 1.0322 0.9894 1.0432 

2006-2007 1.027 0.9968 1.0310 

2007-2008 0.9958 
0.9968 

0.9819 
1.0044 

1.0141 
0.9926 

2008-2009 1.0012 1.0231 0.9789 

2009-2010 1.0087 
1.0213 

1.0113 
0.9963 

0.9974 
1.0247 

2010-2011 1.0123 0.9852 1.0275 

2011-2012 1.0314 
1.0511 

0.9669 
0.9250 

1.0680 
1.1351 

2012-2013 1.0187 0.9569 1.0632 

2013-2014 1.0507 

1.0859 

1.0171 

1.0248 

1.0296 

1.0547 
2014-2015 1.0167 0.9775 1.0399 

2015-2016 1.0055 1.0299 0.9772 

2016-2017 1.0101 1.0012 1.0087 

2002-2017 1.3185 0.9290 1.4184 

 

 Finally, we turn our attention to the individual sub-periods. Figure 4 is the visual representation of 

our results, where Figure 4a demonstrates the productivity change, Figure 4b the technical efficiency 

change and Figure 4c the technical change throughout the individual sub-periods. We observe a high 

productivity change of 1.1552 during the pre-crisis sub-period, which is entirely attributed to the technical 

change of 1.1693, since the technical efficiency change is around one. The GFC appears to affect Japanese 

Regional Banks unfavourably. We observe a sharp drop of 13.7% in productivity growth and 15.1% in the 
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growth of technical change, while the technical efficiency change remains around the same levels only 

with a slight increase. The sub-period after the GFC and before the GEJE is then relatively stable. We may 

observe the conflicting results for technical efficiency change and technical change during the GEJE. On 

one hand, there is a sharp increase in technical change at 1.1351, which seems unaffected by the GEJE. 

On the other hand, the technical efficiency change component 0.9250 is considerably low in this sub-

period, presumably, owing to the GEJE. In the aftermath of the GEJE, we notice an increase in the technical 

efficiency change at 1.0248, while the growth rate of the technical change is slowed down. The 

productivity change replicates the technical change until 2011 and then gradually increases for the rest of 

the sub-period. That counterbalances the effects of the technical efficiency change and technical change. 

In particular, there is no significant difference in productivity change or its components between Regional 

Banks I and II, with the only exception being the technical change for Regional Banks II during the GEJE, 

which remained at the same level as before the earthquake, and sharply increased afterwards, surpassing 

the relative increase for Regional Banks I. 

 

Figure 4: MPI and its components in the five sub-periods 
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5. Conclusions 

The paper introduces a multi-period additive relational network DEA model to assess the efficiency and 

productivity of 74 Japanese Regional Banks I and II during the period from 2002 to 2017. We contribute to 

the literature in the following ways. Firstly, we investigate five phases of the Japanese economy, starting 

in the post restructuring period and covering two crises; the GFC and the economic recession in the 

aftermath of the GEJE. This is the first study to analyse the technical efficiency and the productivity change 

of Japanese Regional Banks during these five phases. Secondly, we introduce a multi-period model that 

allows the asymmetrical contribution of individual stages to the overall process. Furthermore, we 

demonstrate that the overall efficiency in the additive relational network DEA model with a parallel 

structure, is the weighted average of the sub-systems’ efficiency. For each sub-system, the attached weight 

is the ratio of total inputs in the sub-system over total inputs in the overall system. This new multi-period 

model is used to evaluate the overall efficiency of the entire period of the analysis, as well as the period 

efficiencies, the productivity change and its decomposition. 

 The results reveal that the overall and first stage efficiencies improve through the years, while the 

second stage efficiency is stable at a high level through the entire time period. Furthermore, there is a 

difference in efficiency levels for Regional Banks I and II, with the former performing better than the latter. 

In addition, there is a productivity growth of 1.3185 through the entire time period, which is entirely 

attributed to the technical change component. The decomposition of the productivity change through the 

five periods under examination provides useful insights regarding the behaviour of banks during crises and 

policy implications for the decision makers. Overall, the results provide evidence that the GFC had a 

significant impact on the performance of Japanese Regional Banks. Regardless of the fact that our findings 

align with Fukuyama and Matousek (2017), who found that the revenue performance of Japanese Regional 

Banks was affected by the GFC, the research scope of our study is completely different. Instead of focusing 

solely on efficiency scores, this paper examines the performance of Regional Banks from a productivity 

perspective and investigates the sources of productivity change. In the case of the GFC, the main driver 

behind the sharp decrease in the productivity growth of the Japanese Regional Banks is the technical 

change, rather than the technical efficiency change component. This means that the GFC affected the 

ability of the banks to optimally combine inputs and outputs and caused distortions in the production 

possibility frontier, which can be explained by the financial environment in Japan during the GFC (the fall 

of the Nikkei stock exchange, lower credit ratings, etc) and the general economic environment in the 

country (huge decline in exports, deep economic recession and decline in GDP growth).  

Moreover, this is in line with studies on productivity performance in other countries, where 
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technical change is the main driver for productivity regress during periods of financial crisis (Degl'Innocenti 

et al., 2017). From a bank manager’s perspective, this finding means that during a financial crisis, the banks 

choose to focus on the technical efficiency side by utilising their existing resources, rather than on the 

technical change side by investing on innovation and new technologies. From a decision maker’s 

perspective (such as the government and central bank), this finding means that the target should be to 

stimulate the technical change during periods of financial crisis, in order to ignite productivity growth. 

Indeed, for the case of Japan, in an attempt to inject money in the banking system, the Bank of Japan 

launched a quantitative easing round in 2011 (Matousek et al., 2019). This coincided with the start of the 

sharp growth in technical change and productivity growth in our study. 

 The GEJE had no effect on technical change, on the contrary, the Japanese Regional Banks 

experienced technical progress for the entire time period after the GFC. However, the GEJE affected the 

technical efficiency change component, thus the ability of the banks to utilise their existing resources. As 

a result, despite growth in productivity for the entire period after 2010, it can be suggested that technical 

efficiency change hampered the rate of this growth. Besstremyannaya (2017) also found a significant 

impact of the GEJE on the cost efficiency of Japanese banks, although this impact was heterogeneous and 

differed between high-cost and low-cost banks. Our results reveal that the impact of the GEJE on the 

technical efficiency change is similar for all the regional banks. 

It is worthwhile mentioning that the methodology introduced in this paper can be generalised to 

more than two stages and applied to applications outside the banking field. Furthermore, an interesting 

direction for future research would be the incorporation of non-performing loans (NPLs) into the 

suggested modelling framework. This is particularly important for Japanese Regional Banks that have been 

facing the problem of increased NPLs for the past two decades (Fukuyama and Matousek, 2017) and 

currently are once more subject to sweeping reforms (Harding, 2020). Another interesting dimension for 

future research would be the examination of alternative decomposition approaches for the MPI, such as 

those suggested by Ray and Desli (1997) and Wheelock and Wilson (1999). However, this would require a 

VRS term, therefore a solution for the problem of dimensionality created by the free variables in each 

period of the analysis.  
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Appendix 

Table A1: Descriptive statistics  

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 

Fixed 
assets 

Mean 36745.5 35836.6 35554.3 34750.6 33635.1 31998.9 32141.2 32546.9 32293.7 32108.2 31844.1 31530.8 32269.3 32805.4 33170.5 33039.0 

Std. dev 23411.0 22554.3 21642.8 21024.2 20395.2 19897.9 19958.1 20353.7 20054.3 20184.0 19960.4 20226.5 20731.0 20874.9 20902.3 20896.6 

Min 5243 5051 4946 4913 4815 4637 4564 4513 4603 4466 4808 5043 4942 4740 4897 4693 

Max 109687 103747 101097 98403 95627 89272 90270 90841 88779 91028 93301 93529 97580 97250 96934 96120 

Number of 
employees 

Mean 1995.9 1936.2 1896.2 1841.1 1809.9 1806.3 1846.3 1879.2 1931.4 1955.8 1936.9 1911.3 1896.6 1892.1 1909.3 1911.7 

Std. dev 1010.2 980.8 940.4 919.9 911.9 927.7 953.1 980.3 1000.6 1019.4 1015.5 1009.0 999.7 983.0 995.3 1011.1 

Min 468 436.0 424.0 412.0 406.0 421.0 451.0 423.0 401.0 383.0 362.0 369.0 342.0 329.0 336.0 337.0 

Max 4839 4839.0 4839.0 4839.0 4839.0 4839.0 4761.0 4732.0 4649.0 4490.0 4491.0 4454.0 4399.0 4420.0 4437.0 4543.0 

Deposits 

Mean 2279944 2277888 2304043 2346253 2365507 2422549 2456722 2510427 2604798 2665001 2768766 2835944 2950818 3043333 3100014 3166877 

Std. dev 1516159 1505152 1506845 1538722 1562331 1611548 1629944 1679404 1729753 1777968 1846932 1939356 1998516 2085311 2151128 2213919 

Min 325943 330657 337969 353638 356395 347587 351525 358860 362943 371505 374504 402929 415216 432026 437108 441243 

Max 7218238 7174913 7266461 7594015 8009102 8371579 8401098 8529344 8805261 9138396 9376500 9636831 10121889 10733396 11140215 11565778 

Loans 

Mean 1674038 1655971 1666232 1683536 1726953 1784487 1829055 1900275 1919999 1948464 1986955 2033382 2114080 2193903 2274274 2358922 

Std. dev 1113942 1087508 1091434 1114751 1155789 1213430 1258744 1338279 1352069 1385911 1410538 1484168 1519541 1584079 1650387 1736928 

Min 251354 255898 256001 255811 260182 255775 255857 266844 269742 270882 276819 282053 274062 275185 281817 284337 

Max 5749973 5606409 5678111 5881472 6167437 6407516 6656245 6991343 7158314 7371452 7581708 7912140 8083049 8461180 8797479 9305388 

Securities 

Mean 611746 641310 691464 738087 793347 778804 744151 710050 795991 836287 913303 976114 1002726 1061736 1021271 974529.2 

Std. dev 490441 515119 550597 588732 657263 637961 609488 548576 606490 627292 694870 782150 808801 832669 792653.9 749885.4 

Min 44444 42834 53469 64654 70844 73399 72689 60068 73581 72231 74633 91809 98872 99135 93980 91721 

Max 2039529 2070023 2255553 2430824 2634013 2607267 2732104 2293862 2712081 2761760 2866325 3402860 3716530 3683636 3478904 3242629 

 


