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Tweetable ERS abstract: 

Topological data analysis of 396 primary ciliary dyskinesia patients shows genetic mutations of 

worse (CCDC39), variable (DNAH5) and milder (DNAH11) effects on lung function, offering 

the potential for more accurately targeted disease management. 
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Abstract  

Background Primary ciliary dyskinesia (PCD) is a heterogeneous inherited disorder caused by 

mutations in approximately 50 cilia-related genes. PCD genotype-phenotype relationships have 

mostly arisen from small case series because existing statistical approaches to investigate 

relationships have been unsuitable for rare diseases.  

Methods We applied a  topological data analysis (TDA) approach to investigate genotype-

phenotype relationships in PCD. Data from separate training and validation cohorts included 396 

genetically defined individuals carrying pathogenic variants in PCD genes. To develop the TDA 

models, twelve clinical and diagnostic variables were included. TDA-driven hypotheses were 

subsequently tested using traditional statistics. 

Results Disease severity at diagnosis measured by FEV1 z-score was (i) significantly worse in 

individuals with CCDC39 mutations compared to other gene mutations and (ii) better in those 

with DNAH11 mutations; the latter also reported less neonatal respiratory distress. Patients 

without neonatal respiratory distress had better preserved FEV1 at diagnosis. Individuals with 

DNAH5 mutations were phenotypically diverse. Cilia ultrastructure and beat pattern defects 

correlated closely to specific causative gene groups, confirming these tests can be used to 

support a genetic diagnosis.  

Conclusions This large scale multi-national study presents PCD as a syndrome with overlapping 

symptoms and variation in phenotype, according to genotype. TDA modelling confirmed 

genotype-phenotype relationships reported by smaller studies (e.g. FEV1 worse with CCDC39 

mutations), and identified new relationships, including FEV1 preservation with DNAH11 

mutations and diversity of severity with DNAH5 mutations. 
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Introduction 

Primary ciliary dyskinesia (PCD) is clinically and genetically heterogeneous. Symptoms relate to 

dysfunction of multiple motile cilia and can include neonatal respiratory distress syndrome 

(NRDS), wet cough, recurring upper and lower respiratory tract infections, otitis media, 

bronchiectasis, infertility, situs inversus and congenital heart disease (CHD) [1]. Mutations in 50 

ciliary genes have been described so far [2, 3].  

Understanding of genotype-phenotype relationships informs diagnostic decisions and treatment, 

but due to the rarity (≈1:10 000) and diversity of PCD, and the constraints of traditional 

statistical methods, a large patient cohort has never been studied for genotype-phenotype 

relationships. Evidence for clinically relevant genotype-phenotype associations is mostly limited 

to small case series for a specific gene or clinical characteristic. For example, individuals with 

variants in HYDIN, a radial spoke head gene, or in multiciliogenesis gene variants like MCIDAS 

and CCNO are unlikely to have situs inversus, as nodal cilia are not affected [4-7]. Using 

traditional statistical approaches, cohort studies have been underpowered to investigate by single 

genes, and instead have combined functionally similar genes for analysis. A North American 

study of 137 children reported worse lung disease in those with central apparatus or microtubular 

disorganisation with inner dynein arm ultrastructural defects, most of whom have CCDC39 and 

CCDC40 variants, than in patients with outer dynein arm defects caused by DNAH5 variants [8, 

9].  

Topological data analysis (TDA) allows for the visual exploration of data without establishing a 

priori hypotheses [10]. It can be used to explore the underlying patterns in complex datasets by 

generating clusters of individuals with similar features in multiple dimensions in an unsupervised 

manner, as extensively validated in several clinical studies [11-13]. TDA can be used to highlight 
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small groups of interest in large or complex datasets, that could be overlooked when applying 

traditional clustering methods that are typically more constrained by a requirement for pre-

selection of parameters (e.g. definition of the number of clusters) to drive data analyses [10, 14]. 

In doing so, TDA can uncover patient subgroups more likely to benefit from a particular 

therapeutic intervention [12, 15-17]. It thereby provides a promising approach to investigate 

genotype-phenotype associations in heterogeneous patients with rare diseases.  

We aimed to investigate relationships between clinical, diagnostic and genetic data, 

hypothesising that different subgroups of PCD patients with particular clinical and diagnostic 

phenotypes could be identified according to their underlying genotypes.  
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Methods  

Ethics 

Local and national research and ethical approvals were obtained and adhered to (NRES 

Committee South Central Hampshire Ethics 06/Q1702/109, London Bloomsbury Research 

Ethics Committee 08/H0713/82 and Ile-de-France Ethics Committee CPP07729).  

Study Design 

Clinical and diagnostic data were retrospectively collected from patients with a confirmed 

genetic diagnosis of PCD i.e. carrying autosomal bi-allelic variants or an X-linked variant 

classified as pathogenic according to international guidelines [18, 19].  Supplementary table E1 

shows the data coding for the clinical characteristics included in the study.  

The study design was based on previous TDA studies and is outlined in figure 1 [15]. TDA was 

performed in order to generate hypotheses, which could be tested using more traditional 

statistical testing. TDA was applied to a discovery cohort of 199 patients (cohort details and 

genetics can be found in supplementary tables E2, E3, E4) and validated using a second cohort 

of 197 patients (cohort details and genetics can be found in supplementary figure E1 and tables 

E5, E6). An overview of the PCD genes affected by mutations in the full study population is 

shown in supplementary figure E2.  
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Topological data analysis 

Topological models were developed using a licensed version of TDA software through the 

Symphony AyasdiAI cloud-based platform (www.ayasdi.com, v 2.0, Ayasdi Inc., Menlo Park, 

CA). More details of TDA are in the supplementary file.  

The phenotypic data used for clustering were body mass index (BMI), forced expiratory volume 

in 1 second (FEV1) z-score, forced vital capacity (FVC) z-score, neonatal respiratory distress 

(NRDS), wet cough, rhinitis, glue ear, cardiac situs, congenital heart disease (CHD), nasal nitric 

oxide (nNO), ciliary beat pattern (CBP) and transmission electron microscopy (TEM). Genetic 

data were not used to generate the topological models, as these were the study’s main variable of 

interest; genes of interest were later mapped onto the models to develop hypotheses regarding 

genotype-phenotype associations. 

Models were generated using an automated analysis option. Locally linear embedding (LLE) is a 

non-linear dimensionality reduction technique, on which highly complex data are summarised 

and compressed into smaller representations of their variability. The topological model with the 

best-defined clusters upon visual inspection used two LLE lenses and the correlation distance as 

metric (i.e. distance function). These identical parameters were applied to develop the discovery 

and validation models.   

The Mapper algorithm was used to identify coherent groups of samples [20]. Each node of the 

topology model constitutes patients who have combinations of features that are similar between 

each other, with connecting lines (edges) representing data points that are shared between nodes. 

The size of the node represents the number of subjects with that specific combination of features. 
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Genotypes were mapped onto the model to visualise hypothesised associations between genotype 

and phenotypic clusters. Validation of hypotheses suggested by TDA were then performed using 

standard statistical analysis. Generating hypotheses using TDA prevented the requirement for 

multiple comparisons and loss of statistical power. 

TDA is an effective method to apply in clinical studies as it can allow for missing data[21]. More 

detailed explanation of TDA can be found in the supplementary material. 

Statistical analysis 

Selection of variables for hypothesis testing was guided by the topological models to limit the 

number of comparisons. Further methodological details are provided in the supplementary 

material.  

The derived hypotheses were tested through statistical analyses of the whole dataset and of the 

validation dataset alone. Where the same outcome was tested twice, p-values were adjusted using 

the Bonferroni correction (p≤0.049 was found to be significant). Continuous data were compared 

using student t-tests, ANOVA and Kruskal-Wallis, and categorical data were compared using 

chi-square or Fisher’s exact tests. Tukey’s test was used for pairwise comparisons following 

ANOVA and Dunn’s test with Holm-Sidak adjustment following Kruskal-Wallis.Multiple 

regression models were used to model FEV1 z-scores, adjusting for age at diagnosis, history of 

NRDS and presence of CHD. Normality of residuals was investigated using kernel density 

estimations, and visual inspection of histograms and residuals versus fits graph plots. Number of 

observations (n), regression coefficients (r) with 95% confidence intervals (CI) and model’s 

goodness-of-fitness (adjusted R2) were reported for each model. Data were analysed in STATA 

(version 14.0, StataCorp, College Station, TX). 
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Results 

Data-driven genotype-phenotype associations using topological data analysis in a discovery 

group of 199 PCD patients  

Genotype and diagnostic test phenotype associations  

TEM defect and CBP mapped visually very closely to corresponding gene group (figure 2). 

 

Genotype and FEV1 associations  

Systematic exploration of each of the features collected for this study showed that patients with 

defects in the ‘radial spoke/central complex’ and ‘nexin-dynein regulatory complex (N-

DRC)/molecular ruler’ gene functional groups had worse FEV1 z-scores at diagnosis (as 

indicated in figure 3.B by dark blue coloured nodes) than those with dynein structural gene 

mutations (higher FEV1 z-scores, indicated in white coloured nodes in figure 3.B). Interestingly, 

in the cluster with predominantly poor FEV1 (figure 3.B in dark blue), which corresponds to N-

DRC or molecular ruler genes (CCDC39, CCDC40, CCDC65, DRC1; figure 3A), there was a 

defined group showing absence of history of rhinitis (supplementary figure E3.B).  

The group with predominantly preserved lung function at diagnosis (figure 3.B in white) 

corresponds to a cluster of individuals with absence of NRDS (figure 3.C in white) and an area 

associated with gene defects of dynein structure (figure 3.A. in blue). Further exploration of the 

topological model showed that within this dynein structural defects group, it was predominantly 

DNAH11 patients that had preserved lung function at diagnosis and absence of NRDS (figure 

3.E in green).  
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In contrast, individuals with variants in DNAH5 (the commonest genetic cause of PCD and most 

predominant patient group in the cohort) were a phenotypically diverse group regarding lung 

function, with no clear cluster observed (figure 3.F).  

 

Genotype and other clinical phenotype associations 

The model shows a group of patients with central complex and N-DRC/molecular ruler gene 

mutations without situs inversus but increased likelihood of glue ear (supplementary figures 

E3.A in yellow and orange, E3.C in red) [7, 22]; and a lack of laterality defects associated to 

MCIDAS and CCNO in the ‘other function’ gene group (supplementary figure E3.D; red) [6, 

23]. Conversely, TDA revealed a cluster of patients with absence of glue ear; this was a 

genetically diverse group of individuals with dynein structural and assembly defects 

(supplementary figures E3.A in blue and green and E3.C in white).  

 

Validation using topological data analysis in a replication group of 197 PCD patients 

A validation topological model was generated by analysis of a replication cohort of 197 

additional patients: 61 from the UK, 28 from the Netherlands and 108 from France 

(supplementary tables E5, E6). This confirmed the discovery group findings, with CCDC39 

mutation patients clustering in an area of the structure with lower FEV1 z-scores at diagnosis 

(figure 4.B in dark blue and figure 4.D in green) and a higher proportion of reported NRDS 

(figure 4.C in red), while DNAH11 mutation patients clustered in an area with higher FEV1 z-

scores (figure 4.E in green and figure 4.B in light blue and white) and less reported NRDS 

(figure 4.C in red and white). The model also confirmed the absence of a clear cluster of patients 
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with DNAH5 mutations (figure 4.F in green). Additional features of the validation cohort are 

shown in supplementary figure E4. 

When analysing gene groups, those with mutations in the ‘dynein regulatory/molecular ruler’ 

genes category had worse FEV1 z-scores (figure 4.A in orange and figure 4.B in dark blue) and 

less rhinitis (data not shown) at diagnosis, as seen in the discovery model. The cluster with 

preserved lung function was mostly formed by patients with dynein structure gene variants 

(figure 4.B in light blue and white and figure 4.A in blue), particularly DNAH11 (figure 4.E in 

green). 

However, we could not confirm the inverse association between upper airway (rhinitis and glue 

ear) and lower airway disease (FEV1 and NRDS) observed in the discovery model (Figure E4). 

The distribution of gene variants in the total 396 patients from both cohorts, in 31 PCD genes, is 

shown in figure 5 and the clinical and diagnostic characteristics in supplementary tables E7 & 

E8.  

 

Validation of hypothesis suggested by TDA using standard statistical analysis 

Two genes, CCDC39 and DNAH11, fulfilled the criteria for further hypothesis-driven statistical 

analysis. This required the identification of clearly defined clusters of patients with mutations in 

each gene showing distinct features, in both the hypothesis-driving discovery (figure 3) and the 

validation (figure 4) topological models, along with sufficient patients in each phenotype to 

allow standard statistical approaches (n = 35 and 48, respectively, figure 5). These two genes 

clustered in areas with extreme values of FEV1 z-scores in both topological models, leading to 
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the hypothesis that CCDC39 and DNAH11 patients had a distinct respiratory phenotype 

compared to the rest of the study population.  

Testing these hypotheses using traditional statistical analyses, CCDC39 mutation patients had 

significantly lower FEV1 z-scores at diagnosis compared to all other patient genotypes grouped 

together (r = -1.2; 95% CI, -1.88 to -0.55, adjusted R2 = 8.0%, p<0.001 n = 205), adjusted for age 

at diagnosis, NRDS and CHD. Conversely, those with DNAH11 had significantly higher FEV1 z 

values at diagnosis (r = 0.09; 95% CI, 0.27 to 1.53; adjusted R2 = 5.8%, p = 0.003, n = 205) and 

reported less NRDS compared to patients with mutations in any of the other genes (41.03% vs 

63.91%, p=0.008).  

In contrast, there were no statistically significant differences in NRDS for patients with CCDC39 

mutations (67.86% vs 60.29% for any of the other genes), or in upper airway symptoms (i.e. 

rhinitis and glue ear) for patients with CCDC39 (96.77%) or DNAH11 mutations (97.67%) 

compared to any of the other genes (93.44% and 93.18%, respectively).  
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Discussion 

This is the first large-scale study to systematically investigate associations between genotype and 

phenotype in the genetically heterogeneous disorder PCD. It demonstrates the use of a new 

methodology for the visualisation of data and generation of hypotheses complementing more  

traditional statistical approaches, where used alone these would  not be sufficiently powered, 

even in multinational cohorts. TDA cluster modelling in nearly 400 individuals from three 

European countries identified several previously unknown genotype-phenotype relationships, in 

addition to confirming previously reported genetic associations [7, 22, 24]. PCD, a disease with 

many well-defined features and 50 causal genes, leant itself to TDA and machine learning for the 

identification of distinct phenotypic clusters that might share an underlying genetic mutation. 

TDA was able to identify clinical patterns amongst relatively small numbers of patients (<40) 

with mutations in a particular gene. We suggest the approach might be beneficial for similar rare 

diseases, where traditional statistical methods are not suitable. 

The TDA model confirmed well-established associations between diagnostic tests (TEM, CBP) 

and genetics, as seen by the similar colour patterns in the topological models (figure 2) where 

TEM defect and CBP mapped visually very closely to corresponding gene group. This confirms 

a strong association that is in agreement with the published PCD literature [2, 21]. Distinct 

genetic findings were also associated with disease severity. We found CCDC39 patients had 

significantly worse lung function at diagnosis (FEV1 z-score) when compared to all other groups, 

as has previously been observed in individuals with microtubular defects [8, 9, 25, 26]. 

Furthermore, modelling identified other findings not reported before, including that individuals 

with DNAH11 mutations were significantly less likely to have NRDS and, in turn, that the 

absence of NRDS is associated with better lung function at diagnosis. These findings were 
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consistent between discovery and validation groups, and when using traditional statistical 

approaches. 

The underlying pattern of the discovery topological model data suggests that patients with 

compromised lower airways at diagnosis (i.e. decreased lung function and history of NRDS) 

reported less upper airway symptoms (i.e. history of glue ear and rhinitis). However, these 

findings could not be verified in the validation model; as they may result from over-fitting of the 

model, this requires independent validation in an adequately powered independent dataset. 

Comparison to previous literature 

Our findings confirm and add to evidence from other PCD genotype-phenotype studies. The 

largest of these have been two cross-sectional and longitudinal studies from the USA and Canada 

(Genetic Disorders of Mucociliary Clearance Consortium) which also showed that patients with 

microtubular defects have worse lung function, based on ultrastructural phenotype and limited 

genotype information [8, 9]. We also confirmed associations previously described in smaller 

studies, such as the absence of situs inversus in individuals with radial spoke, central complex, 

N-DRC/molecular ruler gene mutations [4, 5, 22, 27, 28].  

A previous study using lung clearance index as a more sensitive measure of lung function 

showed preserved lung function in a small group of patients from our cohort with normal 

ultrastructure, of which the majority have DHAH11 defects [26]. We have further confirmed that 

this genotype is associated with milder lung disease by showing that these patients clustered in 

an area with higher values of FEV1 z-scores. Traditional statistics also showed better preserved 

lung function in patients with DNAH11 variants compared to those with mutations in any of the 

other genes. 



14 
  

Notably, patients carrying mutations in DNAH5 were phenotypically diverse. The reasons for 

this are unclear, but may likely be connected to the variety of different mutations within this 

large gene. DNAH5 was the gene found to have the widest spectrum of gene variants in our 

overall cohort. This diversity and high number of different mutations is in line with DNAH5 

being the commonest overall genetic cause of PCD and most frequently mutated gene in affected 

individuals, with at least 100 different pathogenic mutations recorded worldwide [29]. It is likely 

in PCD that there will be patient phenotypic differences associated not just with the specific 

gene, but also the nature and location of the mutations within that gene. These genotype related 

differences are already emerging on a smaller scale. For example in DNAH5,  diagnostic results 

are known to vary somewhat depending on the mutation type, e.g. premature stop codon 

(nonsense) vs missense [30]. Differences are also associated with missense versus truncation 

mutations in CCDC103, where a milder diagnostic and clinical phenotype was described in 

individuals with p.His154Pro missense mutations [18].  

Strengths and weaknesses 

This is the largest study investigating genotype-phenotype associations in PCD to date. Using a 

new methodology of hypothesis-free TDA to examine underlying patterns in the dataset, 

genotype–phenotype patterns were identified from relatively few patients, something that would 

be difficult with usual clustering methods. The use of temporally and geographically distinct 

training and validation groups is highly recommended for such topological clustering approaches 

[31]. Initial UK discovery findings were validated in the mixed internal and external dataset, 

including by replication of several important previously published associations, suggesting these 

results are generalisable to other PCD populations. 
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The major weakness of our study remains the statistical power required to tease out relationships 

in a heterogeneous rare condition. To avoid problems with multiple comparisons and loss of 

statistical power, TDA-led hypothesis testing was performed for only two genes (CCDC39 and 

DNAH11) and this required combining the discovery and validation datasets. A multinational 

dataset larger than any existing cohort will be required to ascertain further differences, especially 

to analyse whether variant types (stop-gain, frameshift, splicing, missense, copy number 

variants) explain some of the differences seen in the phenotypic data.   

Another limitation of our study was potential recall bias for neonatal and early life events, with 

reliance on parental memory to report symptoms at the time of diagnosis. Not all medical records 

were complete and therefore missing data were recorded for some of these variables; however, 

TDA is particularly robust to missing data (see supplementary for additional information) [14]. 

Finally, we acknowledge that TDA is not completely hypothesis free, as we chose variables to 

enter into the models and there may be confounding variables affecting our models that have not 

been identified. 

Potential impact for clinical management and research 

A better understanding of genotype–phenotype associations from studies such as these should 

inform education and counselling for PCD patients and their families and will alter disease 

management in the future. Identifying patients that may require more aggressive or personalised 

treatment due to underlying genetics will allow for better and targeted care. High risk groups, 

such as patients with CCDC39 mutations, might benefit from more intense and targeted 

therapies.  
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The identification of mutations in known PCD-causative genes confirms a diagnosis of PCD. 

The topological models highlighted previously described links between the affected gene, TEM 

defect and CBP from high-speed video analysis (HSVA), indicating that TEM and HSVA 

diagnostic tests can play an important supportive role in the classification (likely causal nature) 

of novel gene variants and variants of uncertain clinical significance [2,19]. These tests can also 

direct genetic testing to target a specific sub-set of genes. 

Our approach for exploring genotype-phenotype associations might be useful for future 

longitudinal trials in PCD, by including longitudinal parameters such as lung function in the 

model.  It is a model-generating approach that could also be usefully applied to other rare 

diseases and to more common conditions. More accurate mapping of clinical characteristics, 

including severity, will allow a more targeted approach to treatments, with associated 

improvements in patient outcomes.  

Overall, these clinically important findings can be useful in counselling parents and when 

considering prognosis and ongoing therapeutic interventions. 
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Figure legends 

 

Figure 1. Study Design.  TDA models were used to identify clusters of clinical and diagnostic 

characteristics.  Gene groups and individual genes were mapped onto these clusters to develop 

hypotheses, which could subsequently be tested using traditional statistical approaches such as 

ANOVA. Without the use of TDA then comparison of FEV1 across >20 genes would require 

multiple comparisons and statistical power would be lost, whereas using this method we were 

able to directly test a single directed-hypothesis. 

 

Figure 2. Topological discovery model. Topology analysis display of the results of unbiased 

clustering of several levels of data, here showing the connections amongst the patients according 

to their underlying gene defect and the resulting cilia structure and motility defect. Each node 

represents combinations of features. The size of the nodes represents the number of subjects. The 

connections represent that there are patients shared between the two nodes. Models A-C are 

coloured by the following features: A. Gene group; B. Transmission electron microscopy (TEM) 

results; C. ciliary beat pattern (CBP) by high-speed video analysis (HSVA). Within each of the 

three models, patients are grouped according to five different classes of gene, TEM and CBP in 

each of the models respectively. CC= central complex defect, ODA = outer dynein arm, IDA = 

inner dynein arm, MTD = microtubular disorganisation. Asterisk indicates abbreviation for the 

nexin-dynein regulatory complex/molecular ruler group. 
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Figure 3. Topological discovery model. Each node represents combinations of features. The size 

of the nodes represents the number of subjects. The connections represent that there are patients 

shared between the two nodes. Models a-f are coloured by the following features: A. Gene 

group; B. FEV1 z-scores; C. Neonatal respiratory distress syndrome (NRDS); D. CCDC39 

mutations; E. DNAH11 mutations; F. DNAH5 mutations. Asterisk indicates abbreviation for the 

nexin-dynein regulatory complex/molecular ruler group. 

 

Figure 4. Topological validation model. Each node represents combinations of features. The size 

of the nodes represents the number of subjects. The connections represent that there are patients 

shared between the two nodes.  Models a-f are coloured by the following features: A. Gene 

group; B. FEV1 z-scores; C. Neonatal respiratory distress syndrome (NRDS); D. CCDC39 

mutations; E. DNAH11 mutations; F. DNAH5 mutations. Asterisk indicates abbreviation for the 

nexin-dynein regulatory complex/molecular ruler group. 

 

Figure 5. Total patient population according to genotype (n = 396). Mutations in 31 PCD genes 

were included for analysis. Bars are coloured according to gene group: blue represents genes 

involved in dynein structure, green in dynein assembly, yellow in radial spoke and central 

complex, orange in nexin-dynein regulatory complex/molecular ruler, and red in other functions 

such as ciliogenesis. 
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