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Research Article

Requirement of DNMT1 to orchestrate epigenomic
reprogramming for NPM-ALK–driven lymphomagenesis
Elisa Redl1, Raheleh Sheibani-Tezerji2, Crhistian de Jesus Cardona3 , Patricia Hamminger4, Gerald Timelthaler5,
Melanie Rosalia Hassler1,6, Maša Zrimšek1, Sabine Lagger7 , Thomas Dillinger1,2, Lorena Hofbauer1,8,
Kristina Draganić1 , Andreas Tiefenbacher1,2 , Michael Kothmayer9, Charles H Dietz10, Bernard H Ramsahoye11,
Lukas Kenner1,7,12,13 , Christoph Bock10,14, Christian Seiser9, Wilfried Ellmeier4, Gabriele Schweikert15,16, Gerda Egger1,2

Malignant transformation depends on genetic and epigenetic
events that result in a burst of deregulated gene expression and
chromatin changes. To dissect the sequence of events in this
process, we used a T-cell–specific lymphoma model based on the
human oncogenic nucleophosmin-anaplastic lymphoma kinase
(NPM-ALK) translocation. We find that transformation of T cells
shifts thymic cell populations to an undifferentiated immuno-
phenotype, which occurs only after a period of latency, accom-
panied by induction of the MYC-NOTCH1 axis and deregulation of
key epigenetic enzymes. We discover aberrant DNA methylation
patterns, overlapping with regulatory regions, plus a high degree
of epigenetic heterogeneity between individual tumors. In ad-
dition, ALK-positive tumors show a loss of associated methyla-
tion patterns of neighboring CpG sites. Notably, deletion of the
maintenance DNA methyltransferase DNMT1 completely abro-
gates lymphomagenesis in this model, despite oncogenic sig-
naling through NPM-ALK, suggesting that faithful maintenance of
tumor-specific methylation through DNMT1 is essential for sus-
tained proliferation and tumorigenesis.

DOI 10.26508/lsa.202000794 | Received 25 May 2020 | Revised 28 November
2020 | Accepted 1 December 2020 | Published online 11 December 2020

Introduction

Individual tumors and tumor types show a high level of hetero-
geneity regarding their genetic and epigenetic constitution and in
the affected signaling pathways. Characteristically altered patterns
of DNA methylation, however, are a universal hallmark of human

cancer (1): In malignant cells, the genome is globally hypomethy-
lated, whereas short CpG-dense regions, referred to as CpG is-
lands (CGIs) generally show an increase in methylation (1, 2). CGIs
are often found in gene promoter regions and hypermethylated
CGIs have been associated with the silencing of tumor suppressor
genes in diverse cancers. However, linking specific DNA methyl-
ation differences with extensive expression changes during tu-
morigenesis in a cause-and-effect relationship remains challenging
because of the crosstalk of diverse epigenetic regulators. Fur-
thermore, identifying the drivers that target the DNA methylation
machinery is equally difficult. Studies in nucleophosmin-anaplastic
lymphoma kinase (NPM-ALK) positive (ALK+) T-cell lymphoma, a
subgroup of anaplastic large cell lymphoma (ALCL), have im-
plicated the transcription factor STAT3 as a central player in
epigenetic regulation (3, 4). STAT3 acts by directly and indirectly
regulating the expression of the maintenance methyltransfer-
ase DNMT1 and by directing all three major methyltransferases
(DNMT1, DNMT3A, and DNMT3B) to STAT3 binding sites within
promoters of genes such as SHP1 or IL2RG. The role of STAT3 as a
mediator of DNA methylation of target promoters was sup-
ported by recent data, demonstrating a function of acetylated
STAT3 for inducing the methylation of tumor suppressor genes
in melanoma and breast cancer (5).

On the other hand, it has been recently suggested that disor-
dered methylation patterns in tumors are resulting from stochas-
tic processes and display intra-tumor heterogeneity, which could
provide the basis for genetic and epigenetic tumor evolution
(6, 7, 8). Interestingly, DNA methylation in tumors is frequently
targeted to regions that are associated with H3K27me3 in em-
bryonic stem cells (ESCs), resulting in an epigenetic switch from
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dynamic Polycomb repressed to more stable DNA methylation-
based silencing (9, 10, 11, 12).

The impact of DNA hypomethylation has been widely studied
by using Dnmt1 hypomorphic alleles, which display reduced
DNMT1 protein and activity levels (13, 14, 15, 16, 17, 18, 19, 20, 21,
22). Loss of DNA methylation and chromosomal instability seem
to promote tumor initiation, whereas hypomethylation of tumor
suppressor–associated CGIs exerts tumor-suppressive effects
primarily during tumor progression. Such opposing effects of
DNMT1 reduction were observed in different tumor models (19,
20). In addition, the de novo enzymes DNMT3A and B were shown
to be involved in several hematological and solid cancers (23,
24, 25, 26, 27, 28, 29, 30). Thus, deregulation or mutation of DNMTs
appears to be an essential event in tumorigenesis of various
cancers.

In this study, we abrogated tumorigenesis in an NPM-ALK–driven
T-cell lymphoma model by conditionally targeting the DNA meth-
yltransferase Dnmt1 by Cd4-Cre induced deletion. This allowed us to
distinguish early NPM-ALK–driven events that occur independent of
DNA methylation from later transcriptional changes that depend on
the methylation machinery. We provide evidence for the cellular
events associated with malignant transformation, which follow a
period of latency and require the activation of MYC and NOTCH
signaling pathways as well as pronounced epigenetic deregu-
lation. Our findings provide further insight how oncogenes drive
tumorigenesis by directing large scale transcriptomic and epi-
genomic alterations. This is an important prerequisite to identify
potential therapeutic targets in ALK+ lymphoma and to gain a
deeper understanding of large-scale epigenetic rearrangements
that drive tumor transformation in general.

Results

Induction of ALK-dependent tumorigenic pathways following a
period of latency

T-cell–specific expression of the human oncogenic fusion tyrosine
kinase NPM-ALK under the control of the Cd4 promoter/enhancer
element in mice results in 100% transformation and tumor de-
velopment at a median age of 18 wk (31). Notably, the time period
before tumor onset and age of lethality is highly variable raising
important questions about the nature and order of molecular
events that need to occur during the latent phase to eventually
trigger tumor initiation.

To better understand these steps, we first investigated the
molecular state of NPM-ALK–induced tumors. We used genome-
wide RNA sequencing (RNA-seq) to compare tumor cells in ALK
transgenic mice with thymocytes isolated from age-matched wild-
type mice. Differential gene expression analysis revealed that ALK
tumor cells are characterized by a massive deregulation of gene
expression with 2,727 genes significantly down- and 1,618 genes up-
regulated as compared with control (Ctrl) cells (FDR-adjusted P <
0.05, log2 fold change > 1) (Fig 1A and Table S1).

Given the large number of deregulated genes, it is extremely
challenging to understand the role and importance of individual

expression changes. To identify oncogenic pathways that are as-
sociated with ALK-dependent tumorigenesis, we first performed
gene set enrichment analysis of significantly deregulated genes
using oncogenic gene sets from the Molecular Signatures Database
(MSigDB) (32, 33) (Fig 1B). Interestingly, the MYC pathway was among
the top up-regulated pathways in ALK tumors compared with Ctrl
thymocytes (Fig 1B and C), which we also confirmed using quan-
titative RT PCR (qRT-PCR) (Fig 1D). Besides Myc, we found the on-
cogene and Myc-regulator Notch1 (34) as well as the MYC target
genes and cell cycle regulators Cdk4 and Cdk6 to be significantly
up-regulated in ALK tumors. This indicates that MYC signaling is
involved in NPM-ALK–induced tumorigenesis, as previously ob-
served in human ALK+ ALCL (35). Furthermore, we found cAMP
signaling, which has a role for cell proliferation, differentiation and
migration as well as the homeodomain-containing transcription
factor HOXA9, which is implicated in hematopoietic stem cell ex-
pansion and acute myeloid leukemia, to be up-regulated in ALK
tumors compared with Ctrl thymocytes (36, 37). In addition, TBK1, an
AKT activator and suppressor of programmed cell death, was in-
duced in ALK tumors (38). Among down-regulated gene sets, we
found genes associated with the tumor suppressors Atf2, Pten,
Pkca, P53, and Rps14, a negative regulator of c-Myc. Furthermore,
genes associated with polycomb-repressive complex 1 (PRC1) were
also down-regulated as well as mTORC1-regulated genes (39, 40, 41,
42, 43, 44). Together, these data suggest that ALK-induced trans-
formation and lymphomagenesis involves the induction of
additional oncogenic pathways and the repression of tumor
suppressive genes.

ALK+ tumor cells display an early double-negative (DN)
immunophenotype

To get a better understanding of the order of events that lead from
NPM-ALK expression to cancer, we next determined the immuno-
phenotype of tumor cells. We used flow cytometry analysis (FACS) to
characterize ALK-induced changes in cell composition in transgenic
mice compared with control mice at different ages. To specifically
analyze ALK+ cells, we combined an intracellular staining for NPM-
ALK, with a classical surface staining protocol for common T-cell
markers. We analyzed thymocytes isolated from thymi of 6- and 18-
wk-old wild-type and ALK tumor-free mice, as well as tumor cells
from ALK mice that had already undergone transformation (Fig 2A).
We found that already in 6-wk-old transgenic mice almost 100% of T
cells were ALK+, while showing no signs of altered thymus mor-
phology. The expression levels of ALK showed a gradual increase
from 6 to 18 wk and were highest in tumor cells compared with
untransformed thymocytes (Fig 2A right panel).

Despite early expression of ALK, the distribution of T-cell subsets
was normal in 18-wk-old ALK tumor-freemice as compared with Ctrls
(Fig S1A). In ALK tumors of 18-wk-old mice, however, we observed
the previously reported switch to CD4−CD8+ single-positive (SP) or
CD4−CD8− DN subsets (31). Furthermore, a similar fraction of Ctrls and
ALK tumor-free thymocytes expressed the TCRβ, whereas the TCRβ+

fraction was absent in cells isolated from ALK tumors (Fig S1B). These
two findings suggest that during the initial latent phase, T-cell
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development progresses normally despite NPM-ALK expression and
that the induction of T-cell transformation happens thereafter.

ALK+ T cells were also present in spleens from 18-wk-old ALK
tumor-free mice as well as ALK tumor mice (Fig S2A). Before tumor

onset, these ALK+ cells were either CD4+ or CD8+ T cells (i.e., TCRβ+),
whereas in tumor-bearing mice, additional CD4−CD8−TCRβ− tumor
cells were detectable, suggesting that a fraction of ALK-transformed
DN tumor cells was able to leave the thymus, or that the TCR

Figure 1. Deregulated gene expression in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) tumors.
(A) Volcano plot displaying the differences in gene expression determined by RNA-seq between ALK tumor cells and wild-type (Ctrl) thymocytes, where red dots indicate
significantly up- and down-regulated genes (permutation test followed by BH correction, FDR < 0.05, absolute log2(FC) higher than one) and grey dots show non-
significantly altered genes (not meeting the criteria mentioned above) between these two groups. (B) Gene set enrichment analysis performed on the significantly up- and
down-regulated genes filtered by FDR < 0.05 and absolute log2(FC) > 1 between ALK tumors and Ctrl thymocytes using oncogenic signature gene sets from MSigDB.
Pathways associated with down-regulated genes are shown in blue and pathways associated with up-regulated genes are displayed in red ranked by normalized
enrichment score. (C) Gene set enrichment analysis enrichment of MYC pathway-related genes among significantly deregulated genes filtered by FDR < 0.05 and absolute
log2(FC) > 1 between ALK and Ctrl samples. The x-axis shows the differentially expressed genes belonging to the MYC pathway and the y-axis shows positive/negative
enrichment scores for up-/down-regulated genes associated with the MYC pathway. (D) Analysis of MYC pathway related genes including Myc, Notch1, Cdk4, and Cdk6 in
Ctrl and ALK tumor samples using qRT-PCR. Analysis was performed in technical and biological triplicates. Data are represented as mean ± SD, *P < 0.05, **P < 0.01, using
unpaired t test. FC, fold change.
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Figure 2. Immunophenotype of ALK tumors.
(A) Intracellular FACS analysis of ALK expression in thymocytes isolated from 6- to 18-wk-old wild-type (Ctrl), nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)
tumor-free (ALK tf) mice compared with ALK+ tumor cells (ALK tu). Quantification of the percentage of ALK+ cells in the three groups (left). Histograms (right) depict ALK
expression levels compared with Ctrls. Dotted vertical lines indicate the peaks of ALK expression in ALK+ thymocytes of 6-wk-old ALK mice or ALK+ tumor cells at 18 wk of
age. Data are represented as mean ± SD, ****P < 0.0001, one-way ANOVA, followed by unpaired t test, n = 3. (B) Hematoxylin and eosin (HE) stainings of representative
thymi of 18-wk old NPM-ALK transgenicmice illustrating different stages of ALK tumors including a tumor-free thymus ALK tf; hyperplastic thymus, ALK hy; small tumor, ALK
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expression is silenced after exit from the thymus as suggested
previously (45) (Fig S2B).

Tumor transformation and growth is accompanied by the
occurrence of tumor cells with an immature T-cell profile

To further investigate the transformation process of thymocytes in
NPM-ALK mice, we collected a series of thymi from NPM-ALK
transgenic mice at 18 wk of age, which displayed different sizes
and morphology correlating with different tumor stages as de-
termined by histological analysis (Fig 2B). Immunophenotyping of
these thymic samples revealed a gradual switch from CD4+CD8+ DP
thymocytes to immature single positive thymocytes and DN sub-
sets, correlating with tumor progression (Fig 2C). Further analysis of
the DN population based on CD25 and CD44 expression revealed
that in tumor-free thymi, most ALK+ cells were DN3 (CD25+CD44−)
and DN4 (CD25−CD44−) stage thymocytes, which correlates with the
developmental stages at which Cd4 driven NPM-ALK expression was
induced (Fig 2D). During tumorigenesis, there was a shift towards
the DN1-like (CD25−CD44+) stage, which was also confirmed by qRT-
PCR based on Cd44 expression (Fig 2E). Together, these data suggest
that ALK tumors are developing from a subpopulation of immature
T cells or through reprogramming of DP T cells toward the DN stage
based on the direct repression of the T-cell phenotype by NPM-ALK
as previously suggested (46, 47).

DNMT1 and STAT3 are activated during the latent phase

Next, we sought to identify events that occur in the latent phase
before tumor initiation, which are potentially responsible for
triggering the observed large-scale downstream reprogramming
events. As already demonstrated by flow cytometry analysis, NPM-
ALK and its active phosphorylated form pALK were detected by
Western blot analysis independent of tumor presence, but with
increasing protein levels correlating with tumor development (Figs
2F and S3). Global STAT3 levels were unaffected by ALK expression,
however, its activated form pSTAT3 was significantly increased upon
ALK induction independent of tumor presence, suggesting an early
role in the latent phase before tumor onset. Previous work in-
cluding our own has implicated epigenetic mechanisms in NPM-
ALK–mediated lymphomagenesis in human cell lines and tumors in
part through a direct effect of NPM-ALK and STAT3 signaling for the
regulation and targeting of the major DNA methyltransferase
DNMT1 (4, 46, 48, 49, 50, 51). Thus, we investigated DNMT1 protein
levels before tumor onset and in different tumor stages from

tumor-free to end-term tumors in NPM-ALK transgenic mice in
comparison to 18-wk-old wild types. Western blot analysis revealed
a slight DNMT1 up-regulation already in tumor-free mice, which
further increased during tumor progression (Fig 2G). Up-regulation
of DNMT1 has been closely linked to the cell cycle and cell pro-
liferation (52). To test whether the observed up-regulation of DNMT1
expression in ALK tumor samples is associated with deregulation of
cell cycle–associated genes, we performed Western blot analysis
using antibodies against c-MYC, CDK4/CDK6, cyclin D1, and the
proliferation marker PCNA (Fig 2H and I). We detected a robust
induction of c-MYC in nuclear extracts derived from small tumors
and end-stage tumors compared with non-transformed thymi. In
addition, cell cycle–related proteins, including CDK4/CDK6 and
cyclin D1 were up-regulated upon tumor onset in thymi harboring
small tumors, which was maintained in end-stage tumors for most
of the samples tested. Together, these results suggest that ALK
signaling is already active in pre-tumor stages and leads to an early
activation of pSTAT3 and elevated expression of DNMT1 culminating
in ALK-dependent transformation in NPM-ALK transgenic mice,
which is accompanied by up-regulation of cell cycle genes and
c-MYC induction.

Deletion of Dnmt1 abrogates NPM-ALK–dependent tumorigenesis

To investigate the functional role of DNMT1 for ALK-driven tu-
morigenesis in more detail, we intercrossed the Cd4-NPM-ALK
transgenic mice (ALK) with mice carrying a T-cell–specific loss of
Dnmt1 (Cd4-Cre) (KO) (53). The resulting strain expressed the human
NPM-ALK transgene but lacked a functional Dnmt1 gene in T cells
(ALKKO) (Fig 3A). It was shown previously that deletion of Dnmt1 via
the Cd4 promoter in the double positive stage of T-cell develop-
ment does not interfere with T-cell development (53), thus pro-
viding a suitable model to study the function of DNMT1 for ALK-
dependent transformation of thymocytes. Strikingly, deletion of
Dnmt1 in this model completely abrogated ALK-driven lympho-
magenesis as shown by Kaplan–Meier survival statistics (Fig 3B).
The life span of ALKKO mice was identical to Ctrl and Dnmt1
knockout mice, and no aberrant phenotype was detected in ALKKO
thymi (Fig 3C). Dnmt1 knockout in the context of ALK expression did
not lead to changes in the relative percentages of DN, DP, and CD4
SP and CD8 SP thymocyte subsets (Fig S4). Pharmacologic inhibition
of DNAmethylation using 5-Aza-29Deoxycytidine was also efficiently
delaying tumor formation in the ALK model when adminis-
tered from 8 to 30 wk of age (Fig S5). Effective deletion of Dnmt1
in KO and ALKKO mice was confirmed at the protein level by

sm; end-stage tumor, ALK tu. (B, C) Representative FACS analysis of ALK+ cells isolated from 18-wk old tumor-free mice compared with different tumor stages (as in B)
gated for CD4 and CD8 expression. (B, D) FACS analysis showing the expression of CD44 and CD25 to determine the different double negative (DN) stages of T-cell
development (DN1-DN4) in ALK+ cells isolated from 18-wk-old tumor-freemice and different stages of ALK tumor developingmice (as in B). (E) qRT-PCR of Cd44 expression
in thymi of 18-wk old Ctrl and NPM-ALK tumor-free (ALK tf) transgenic mice as well as early developing tumors (ALK sm) and end-stage tumors (ALK tu) normalized to
Gapdh expression. Analyses were performed in biological triplicates. Data are represented as mean ± SD, ***P < 0.001, ****P < 0.0001, using one-way ANOVA, followed by
unpaired t test. (F) pALK, ALK, pSTAT3, and STAT3 protein levels in biological triplicates of thymi of 18-wk old Ctrl and NPM-ALK tumor-free mice as well as early and end-
stage tumors were analyzed by Western blot analysis. Tubulin served as loading control. Asterisks indicate unspecific protein bands. (F, G) DNMT1 protein levels in
biological triplicates of thymi of 18-wk-old Ctrl and tumor-free NPM-ALK transgenic mice as well as early and end-stage tumors (as in F) were analyzed by Western blot
analysis. Tubulin served as loading control. Asterisks indicate unspecific protein bands. (H) Nuclear extracts were isolated from thymi of 18-wk-old Ctrl and NPM-ALK
tumor-free mice and early and end-stage tumors in biological triplicates. Protein levels of MYC were detected by Western blot analysis. The nuclear protein HDAC1
served as loading control. (I) Protein levels of the cell cycle associated genes CDK4, CDK6, PCNA, and cyclin D1 in biological triplicates of thymi of 18-wk-old Ctrl and NPM-
ALK tumor-free mice as well as early and end-stage tumors were examined using Western blot analysis. Tubulin served as loading control.
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Figure 3. Deletion of Dnmt1 abrogates lymphomagenesis in nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) transgenic mice.
(A) Generation of mice with T cell-specific Cd4-NPM-ALK expression (ALK) and T cell-specific deletion of Dnmt1 (KO) or both (ALKKO). Cd4 enh./prom., Cd4 enhancer and
promoter. Cd4 enh./prom./sil., Cd4 enhancer, promoter and silencer. (B) Kaplan-Meier survival statistics depicting overall survival of Cd4-NPM-ALK (ALK), Cd4-NPM-ALK
Cd4-Cre Dnmt1flox/+ (ALKHET), Cd4-NPM-ALK Cd4-Cre Dnmt1flox/flox (ALKKO), and Dnmt1loxP/loxP control mice (Ctrl). ****P < 0.0001, Log-rank (Mantel–Cox) test, pairwise
comparison to ALK. (C) Morphology of 18-wk-old Ctrl, KO and ALKKO thymi in comparison to ALK tumors. Pictures were taken immediately after organ collection.
(D) Protein expression of NPM-ALK, DNMT1, and pSTAT3 was analyzed by immunohistochemistry staining in Ctrl, KO, ALKKO thymi, and in ALK tumors. Pictures are

DNMT1 function in T-cell lymphoma Redl et al. https://doi.org/10.26508/lsa.202000794 vol 4 | no 2 | e202000794 6 of 22

https://doi.org/10.26508/lsa.202000794


immunohistochemistry (IHC) and Western blot analysis (Fig 3D and
E). Notably, abrogation of DNMT1 did not interfere with ALK levels or
activity in ALKKO transgenic mice as indicated by similar pALK levels
in ALK tumor cells and ALKKO thymocytes nor did it change pSTAT3
levels (Fig 3E). Thus, our data suggest that depletion of DNMT1
interrupts the chain of events that leads from ALK activation to
T-cell transformation.

Dnmt1 deletion reduces proliferation of ALKKO cells

We next studied the proliferative capacity of ALKKO thymocytes
compared with the other genotypes by assessing Ki67 expression.
As expected, ALK tumor cells showed significantly higher prolif-
eration rates than thymocytes of Ctrl, KO, and ALKKOmice (Fig 4A). A
trend towards lower proliferation than in Ctrl and KO was de-
tectable in ALKKO thymi. To specifically analyze ALK-expressing
cells, we next performed co-staining of ALK and Ki67 in ALK and
ALKKO tissues using immunofluorescence (Fig 4B). Quantification of
ALK and Ki67 double-positive cells revealed that ALK-expressing
cells showed a significant reduction of Ki67 positivity in ALKKO
thymi compared with ALK tumors, with 85.7% double positive in ALK
versus 58.7% in ALKKO samples. In particular, ALKKO cells with high
ALK expression levels showed low expression of Ki67, whereas cells
with high Ki67 levels showed very low expression of ALK, indicating
that ALK cells cannot induce or maintain stable proliferation upon
Dnmt1 deletion.

Dnmt1 knockout inhibits ALK-dependent transcription programs

To investigate the molecular mechanisms associated with Dnmt1
deletion in ALK transgenic mice, we performed RNA-seq analyses of
thymocytes isolated from Ctrl, KO, and ALKKOmice and compared it
with our tumor RNA-Seq data (Fig 5). Sample distance and principal
component analysis revealed a clear separation of ALK tumors from
all other genotypes, which were clustering together (Figs 5A and
S6A). Within the groups, ALK tumors showed the largest hetero-
geneity. Along these lines, unsupervised clustering of the 5% most
variably expressed genes revealed a clear separation of tumor
samples from all other genotypes, which showed highly similar
expression patterns (Fig 5B). Differential gene expression analysis
showed that ALKKO displayed highly similar gene expression
patterns compared with Ctrl cells: We only found 8 genes to be
significantly down- and 99 genes up-regulated (Figs 5C and S6B and
Table S2). When compared with ALK tumor samples, ALKKO was
similar to KO and Ctrl samples and showed a high degree of de-
regulation with 2,819 genes up- and 1,355 genes down-regulated (Fig
S6B).

We were particularly interested in a small group of genes, which
were consistently deregulated in both ALK+ cell types relative to Ctrl
and Dnmt1 KO cells, as identified by pairwise comparisons of gene
expression differences because they might constitute direct targets

of NPM-ALK upstream of DNMT1 (Fig S6C). Apart from ALK, we found
seven genes (Tha1, Trim66, Gzma, Socs3, Gm5611, 5830468F06Rik,
and Gm17910), which were up-regulated both in ALK and ALKKO cells
compared with Ctrl. These include the suppressor of cytokine
signaling 3 (Socs3), which is a regulator of the JAK/STAT signaling
pathway and was also found up-regulated in human ALK+ ALCL cell
lines (54), tripartite motif containing 66 (Trim66), which is part of the
rat sarcoma (RAS) pathway that regulates DNMT1 expression and is
known to promote proliferation (55, 56, 57) and granzyme A (Gzma) a
canonical cytotoxic gene that is involved in cancer initiation and
progression (58) (Fig 5D). In addition, strong up-regulation of c-Myc,
Cdk4/6, and Cyclin D1was detectable in ALK tumors at the RNA level,
which was in concordance with elevated protein levels of these cell
cycle regulators (Fig S6D). These data suggest that expression of ALK
initially affects a small number of regulatory genes including Socs3,
Trim66, and Gzma, whereas a downstream substantial rewiring of
the whole transcriptional program eventually accompanies ma-
lignant transformation.

The large heterogeneity observed in biological replicates of ALK
tumors as well as the results from FACS analyses suggested a
change in cell composition in ALK tumors compared with the other
genotypes. Thus, we established a deconvolution strategy, which
allowed us to infer different thymic cell populations in our data
from previously published thymic single-cell RNA-seq (scRNA-seq)
datasets (59). Using this strategy, along with the relative expression
of marker genes in our bulk data, we were able to show that cell
proportions of our Ctrl samples were comparable with thymi of 4-
to 24-wk-old mice used in the study by Park et al (Fig 6A). Likewise,
KO and ALKKO samples showed similar cell type proportions,
suggesting little changes in cell composition upon Dnmt1 deletion
in normal as well as ALK-positive thymocytes (Fig 6B). The one
exception was the KO2 sample, which appeared to be an outlier in
this analysis. Strikingly, we observed an increase in quiescent DN
cells (DN(Q)) and a slight decrease in SP CD4 and CD8 cells based
on thymocyte-specific marker gene expression in ALK tumor
samples (Fig 6B). Interestingly, when we included scRNA-seq
datasets and marker genes from early murine thymus develop-
ment in the deconvolution analysis, we observed a higher con-
cordance of marker gene expression patterns of ALK tumors with
early embryonic thymocytes compared with mature thymocytes
(Fig 6C).

A caveat of our analysis in the case of the tumor sample was the
use of T-cell–specific scRNA-seq data for the deconvolution of bulk
tumor samples, which might contain additional cell types (e.g.,
tumor cells) not present in the single cell data. To get a better
understanding of the genes expressed in the tumor cell population
that are not accounted for in the deconvolution, we applied the
following strategy. The deconvolution of the ALK data was based on
175 specific marker genes determined on the single cell data (see
the Materials and Methods section). We then simulated genome-
wide expression patterns of a cell mixture similar to the one

representatives of biological triplicates. Graphs below the images depict quantification of stainings using Definiens Tissue Studio 4.2 software. Data are represented as
mean ± SD, ****P < 0.0001, using one-way ANOVA, followed by unpaired t test. (E) DNMT1, pALK, ALK, pSTAT3, and STAT3 protein levels in thymi of 18-wk-old Ctrl, KO, and
ALKKO mice as well as ALK tumors were analyzed by Western blot analysis. Tubulin served as loading control. Analysis was performed in biological triplicates. Asterisks
indicate unspecific band.
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expected in the ALK sample if it was only composed of the seven
accounted cell types (simALK). We assumed that if there are extra
cell types in the ALK tumor replicas these additional cell types
should be characterized through differentially expressed genes
between the simulations and the real replicas. Thus, we chose the

top 10% most highly expressed genes in the original bulk data plus
the 175 marker genes and performed a differential expression
analysis between the bulk samples and the corresponding replicas
in the simulation. Notably, the 175 maker gens showed the largest
expression changes in the simulated versus real data, suggesting

Figure 4. Deletion of Dnmt1 results in reduced
proliferation of ALK+ cells.
(A) Cell proliferation analysis by
immunohistochemistry staining of Ctrl, KO, ALKKO thymi
and ALK tumor tissues using Ki67 antibody. The graph
shows quantification of Ki67 positive cells using
Definiens Tissue Studio 4.2 software. Non-proliferative
areas in the thymus were excluded from analysis.
Data are shown as mean ± SD, ***P < 0.001, pair-wise
comparison to control using unpaired t test, n = 4.
(B) Double immunofluorescence staining of ALK
tumors and ALKKO thymi. Tissues were stained with
antibodies against ALK (red) and Ki67 (green) and
counterstained with DAPI (blue). Pictures were
acquired with identical pixel density, image resolution,
and exposure time. The graph shows quantification of
immunofluorescence staining by counting Ki67/ALK
double-positive relative to total number of cells (DAPI
positive) of two equally sized areas per tumor/thymus
from four biological replicates, respectively. Cell
counting was performed by two individuals and slides
were blinded for counting. Data are shown asmean ± SD,
***P < 0.001, using unpaired t test.
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the presence of additional cell types (Fig 6D). For the remaining
genes, we found genes associated with T-cell activation, such as
Cd6 and Cd69, and interferon response, such as Isg15, Slfn2, or
Ifit1bl1 to have lower expression than expected from the simulated
T-cell mixture, indicating substantial expression changes even in
the considered cell types (Table S3). Furthermore, genes that
showed higher expression patterns in ALK tumors compared with
the simulated mixture were associated with cancer development,
progression and aggressiveness, such as Tbx19,Nwd1, Sytl2, Amigo2,
and Dpp4. Genes that were associated with Notch signaling (Nrarp

and Dtx1) were also strongly induced in ALK tumors compared with
the simulated ALK sample (Table S4). Together, these data support
our previous findings suggesting an enrichment of DN cells, down-
regulation of T-cell–specific factors and a strong induction of oncogenic
pathways in ALK-driven tumors.

Changes in DNA methylation after Dnmt1 deletion

To assess the effect of DNMT1 depletion on global DNA methylation
in the different genotypes, we analyzed global and site-specific CpG

Figure 5. High similarity in gene expression between ALKKO and Ctrl thymocytes.
(A) Hierarchical clustering heat map illustrating sample to sample Euclidian distances based on variance stabilizing transformations of RNA-seq gene expression
values of all genes of individual Ctrl, KO, ALKKO thymi, and ALK tumor samples. (B)Heatmap showing unsupervised clustering of the top 5%most variable genes among all
samples in Ctrl, KO, ALK, and ALKKO using variance stabilizing data. (C) Volcano plot displaying the significant differences in gene expression between ALKKO compared
with Ctrl thymocytes, where red dots indicate significant differentially expressed genes (FDR < 0.05, absolute log2(FC) > 1), and grey scale dots show nonsignificant
differentially expressed genes, between these two groups. (D) Gene expression levels of Socs3, Trim66, and Gzma based on normalized counts from RNA-seq analysis of
ALK tumor and ALKKO thymus samples compared with Ctrl and KO thymi. Data are represented as mean ± SD, *P < 0.05, **P < 0.01, ****P < 0.0001, using ordinary one-way
ANOVA followed by multiple comparison using Fisher’s least significant difference (LSD) test.
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Figure 6. Deconvolution of RNA-seq data.
(A) Proportions of cell types in the sc-RNA-seq data in postnatal thymus harvested at 4, 8, and 24 wk of age compared with the proportions calculated for the
deconvolution using the bulk data (Ctrl sample). DN, double-negative T cells; DP, double-positive T cells; P, proliferating; Q, quiescent. (B) Estimation of the cell type
proportions in each sample in the bulk data. KO2 appears to be an outlier in this analysis. (C) Correlation between each replica in the bulk data and the single cell data of
different time points using the marker genes selected in the deconvolution. E, embryonic day; P0, birth; W, weeks after birth. (D) Log2(FC) values of the real versus
simulated samples for the 175 marker genes selected in the deconvolution.
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Figure 7. DNA methylation changes in ALK tumors and Dnmt1 knockout thymi.
(A) Quantification of global DNA methylation levels by dot blot analysis using 5mC immunodetection. 5mC signal intensities were normalized to total DNA input based
on methylene blue staining. Data are represented as mean ± SD, *P < 0.05, using one-way ANOVA, followed by unpaired t test, n = 3. (B) Violin plots indicating the bimodal
distribution of methylation levels determined by reduced representation bisulfite sequencing in three biological replicates of Ctrl, KO and ALKKO thymi as well as ALK
tumors. Shown are percent methylation per CpG (%mCpG). Black dots indicate the median percentage of mCpG in each sample. (C) Correlation heat map between
individual Ctrl, KO, ALKKO and ALK samples based on DNAmethylation levels of single CpGs based on correlation coefficients between samples. (D) DNAmethylation heat
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methylation, using dot blot analysis measuring 5-methyl Cytosine
(5mC) levels and genome-wide methylation patterns using reduced
representation bisulfite sequencing (RRBS), respectively (Figs 7A
and B and S7A). As shown previously (53), KO samples revealed a
slight but not significant decrease in global DNA methylation
compared with Ctrl samples. In the double mutant, ALKKO, we
observed a significant decrease in global DNAmethylation levels as
compared with Ctrl samples. The loss of DNA methylation in KO and
ALKKO samples was accompanied by strong induction of IAP ret-
rotransposon transcription, which was especially high in ALKKO, in
line with higher loss of global methylation in those samples (Fig
S7B).

CpGmethylation showed the highest correlation between Ctrl and
KO samples, whereas both ALK and ALKKO samples showed lower
correlations in relation to other genotypes but also amongst the
replicates (Fig 7C). Similarly, unsupervised hierarchical clustering of
the top 1% most variable CpGs indicated a separation of ALK tumor
samples compared with Ctrl, KO, and ALKKO thymi and a closer
proximity between Ctrl and KO compared with ALKKO samples,
suggesting that the largest changes inmethylation occur in the tumor
samples compared with the other genotypes (Fig 7D). Compared with
Ctrl, ALK samples showedboth hyper- and hypomethylation, whereas
the KO and ALKKO samples were enriched for hypomethylated sites
(Fig 7E). When comparing the change in methylation per site, we
observed that in ALKKO compared with Ctrl, most sites lost less than
half of their methylation, whereas in ALK versus Ctrl we detected
CpGs with particularly large changes reflecting stable tumor-specific
changes in DNA methylation patterns (Fig 7F). Annotation of differ-
entially methylated CpGs revealed that ALK tumor samples mainly
gained DNA methylation in promoter regions, CGIs and shores,
whereas intergenic and inter-CGI sites preferentially lost methylation
(Fig S7C and D). The large number of hypomethylated CpGs between
Ctrl and ALKKO was mainly associated with intergenic and inter-CpG
island regions and to a lesser extent with upstream promoter re-
gions, exons, shores and shelves (Fig S7E and F).

To identify potential tumor-relevant pathways associated with
differentially methylated regions (DMRs), we performed ingenuity
pathways analysis (IPA, www.qiagen.com/ingenuity), interrogating
promoters that showed tumor-specific hypomethylation. Inter-
estingly, those analyses identified c-MYC as a significant upstream
regulator and several genes connected to the cellular c-MYC
network were hypomethylated in ALK tumor samples (Fig 7G).
Among these genes, Cdk5rap3, Lrp4, Eif4a1, and Taf4b were also
significantly up-regulated in tumors compared with Ctrls based on
RNA-seq data (Table S1). Interestingly, all four genes have been
implicated in proliferation control and tumorigenesis before (60,

61, 62, 63), highlighting their potential relevance for ALK driven
lymphomagenesis.

To get further information about the genomic regions that are
affected by aberrant methylation in ALK tumor cells we performed
genomic region enrichment analysis on differentially methylated
promoter-associated CpGs tiled into 200-bp genomic regions using
locus overlap analysis (LOLA) (64). We used published ChIP-Seqdatasets
integrated in the LOLA software tool including murine ESC, T lym-
phocytes, and thymus for comparison with our DNA methylation
profile of ALK tumor cells. Hypermethylated promoter regions in
ALK tumor cells showed strong enrichment of binding sites for
proteins associated with chromatin remodeling in ESC, in par-
ticular PRC associated proteins including CBX7, EZH2, MTF2,
PHF19, RING1B, RNF2, and SUZ12. In addition, we detected a
significant overlap of hypermethylated regions with ESC-specific
transcriptional regulators of pluripotency, including NANOG,
PRDM14, and TFCP2L1 (Fig 7H). Epigenetic switching from PRC
marks to DNA methylation is a well-described phenomenon in
human tumor cells reducing epigenetic plasticity of tumor cells
(9, 65). For hypomethylated regions, we identified several tran-
scription factors with T-cell–specific functions, some of which
have been implicated in human ALCL before. Those included AP-1
family members BATF, JUN, JUNB, JUND, or IRF4 and STAT3, all of
which have been associated with NPM-ALK signaling and tu-
morigenesis (66, 67, 68, 69, 70). Interestingly, motif enrichment
using the Analysis of Motif Enrichment (71) integrated in the
MEME Suite tool (72) revealed significant enrichment of several
transcription factor motifs in the DMRs previously identified in
the LOLA analysis including STAT3, ELF1, ETS1, or FOXP3 (Table S5).

Enhancers play an important role in regulating gene expression
during development and it has been shown that enhancer
methylation can be drastically altered in cancer, which can be
associated with altered expression profiles of cancer genes (73).
Therefore, we compared DMRs, defined over 1-kb tiling windows,
between ALK tumor cells and Ctrl thymocytes to ENCODE ChIP-seq
datasets for active enhancers including monomethylation of his-
tone H3 lysine K4 (H3K4me1) and acetylation of histone H3 lysine 27
(H3K27ac) in murine thymi (74, 75). Among 470 DMRs tested, we
detected a specific overlap of 118 DMRs with H3K27ac and 167 DMRs
with H3K4me1, respectively (Fig 7I). Of these, 95 DMRs overlapped
with both H3K4me1 and H3K27ac, indicative of active enhancers
in thymocytes. Interestingly, several genes nearby differentially
methylated enhancers showed significantly deregulated gene ex-
pression (Table S6). Among those genes, we found Runx1, a critical
transcription factor for early T-cell development of thymic pre-
cursors and T-cell maturation (76, 77), or Socs3, which was also

map using unsupervised clustering of the top 1% most variable CpGs in Ctrl, KO, ALK and ALKKO samples. The color code represents mean methylation levels of
individual CpG sites. (E) Significantly hyper- (red) and hypo- (blue) methylated CpGs resulting from comparison of KO, ALKKO, and ALK versus Ctrl samples identified by
methylKit analysis (P < 0.01; b-value difference >25%). (F)Methylation changes of individual CpGs relative to Ctrl for all genotypes (as in E) shown as density plot. Numbers
on the y-axis are log(10) CpG counts. (G) Network analysis based on Ingenuity Pathway Analysis of significantly hypomethylated promoter regions in ALK versus Ctrl
samples. Significantly hypomethylated genes are depicted in green, upstream regulators are depicted in red. (H) Locus overlap analysis (LOLA) region set enrichment
analysis for differentially methylated CpGs (binned into 1-kilobase tiling regions). The plot shows region sets from embryonic stem cells (green), T lymphocytes (blue) and
thymus (purple) with P < 0.05. (I) Differentially methylated regions (DMRs) between ALK versus Ctrl samples were used to map histone modifications (H3K4me1 and
H3K27ac) of ENCODE regions defined by ChIP-seq data of thymus samples using k-means clustering (k = 3). The heat map indicate overlap of individual DMRs expanded to 5
kb on both sites with H3K4me1 (left) and H3K27ac (right) in three distinct clusters, based on different signal intensity. Gene distance indicates predicted enhancers
mapped within at a 5-kb window indicating start (S) and end (E) of the DMR region. Z-min/max shows the intensity of the H3K4me1 and H3K27ac ChIP-seq signals.
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implicated in human ALCL (78, 79). Down-regulated genes included
the phosphatase and tumor suppressor Ptpn13 (80) and the TGF-β
ligand Bmp3, which might result in altered TGF-β signaling as
observed in human ALK-positive cancers (81).

Together, these data suggest that NPM-ALK–driven transformation is
accompanied by CGI hypermethylation and hypomethylation of inter-
genic regions, which is reminiscent of epigenetic reprogramming events
in human tumors and affects major oncogenic signaling pathways.

Figure 8. Analysis of associated DNA
methylation.
(A) Methylation difference of
neighboring CpGs relative to Ctrls in KO,
ALK, and ALKKO samples as analyzed
based on the distance between CpGs.
(B) CpG triplet analysis of neighboring
CpGs within a maximal distance of 20
bp. Each square represents three
neighboring CpGs. The color of the
squares indicates the methylation
level of the middle CpG from
unmethylated (blue) to fully methylated
(red). The x and y axes represent the
methylation levels of the two
neighboring CpGs annotated as (n) and
(p). Squares close to the diagonal
indicate highly correlated CpG triplets,
whereas dispersed squares represent
non-correlated triplets. (C) qRT-PCR
of Dnmt1, Dnmt3b, and Tet1 expression
in Ctrl, KO and ALKKO thymocytes as well
as ALK tumor cells normalized to
Gapdh expression. Analyses were
performed in biological triplicates. Data
are represented as mean ± SD, *P <
0.05, **P < 0.01, pairwise comparison to
the Ctrl unpaired t test.
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Furthermore, we found associations of tumor related hypermethylation
with PRC1- and PRC2-regulated regions, as well as a significant overlap of
hypomethylated regions with T-cell–specific and tumor-relevant tran-
scription factor–binding regions and motifs and thymocyte specific
enhancers.

Loss of associated methylation patterns in tumors

Recent literature has challenged the standard model of DNA meth-
ylation inheritance, in which CpGs are presumed as independent but
has rather suggested a collaborative model that takes methylation
levels of neighboring CpGs into account (82, 83). According to this
model, which also considers the distances of neighboring sites,
methylated CpGs would enforce methylation of adjoining CpGs,
whereas non-methylated CpGs would induce rather unmethylated
states depending on the presence of DNMTs and TET enzymes. We
therefore analyzed whether the distance between two neighboring
CpGs had an influence on methylation changes of those CpGs in ALK
tumor or knockout cells (ALK and ALKKO) relative to Ctrls (Fig 8A). ALK
tumor cells showed stronger hypermethylation in nearby CpGs (0–5 bp
distance), most likely reflecting tumor specific CGI hypermethylation.
More distant sites showed equal gains and losses ofmethylation in the
ALK samples. Furthermore, we found that in the KO samples as well as
in the doublemutant ALKKO, highest methylation loss was observed at
CpGs more distant from neighboring CpGs, suggesting that DNMT1 is
needed for methylation maintenance of distant CpGs.

We further examined closely associated CpG triplets, defined as CpGs
with neighboring CpGs within less than 20 bp distance to both sites, in
three biological replicates of each genotype (Fig 8B). We found that in Ctrl
samples methylation levels between neighboring sites are highly cor-
related, in a way that a highly methylated CpG is flanked by highly
methylated CpGs, whereas unmethylated CpGs are flanked by unme-
thylated CpGs. Thus, in a correlation plot, most CpGs are found close to
the diagonal in Ctrl samples (Fig 8B).Dnmt1 knockout samples showed a
general trend towards lower methylation but retained the correlation
among the CpG triplets, as illustrated by the vicinity of CpG triplets to
the diagonal in KO and ALKKO samples, suggesting that DNMT1 is not
required towarrant cooperativemethylation. Interestingly, cooperative
DNA methylation seems to be disturbed in ALK tumor cells, where we
detected a loss of correlation and observed a higher methylation
difference of neighboring CpGs, indicating a loss of collaboration
between those sites.

Together, these data suggest that heterogeneous DNA methyl-
ation patterns in ALK+ tumors are characterized by low correlation
of DNAmethylation between nearby CpGs, whichmight be associated
with the deregulation of methylation controlling enzymes including
Dnmt1, Dnmt3b, and Tet1 (Fig 8C) that we observed based on qRT-PCR
analyses. Interestingly, the correlation between neighboring CpGs is
maintained upon DNMT1 depletion, suggesting that de novo meth-
yltransferases such as DNMT3a/b can compensate and control as-
sociated DNA methylation at sites in close vicinity.

Discussion

The ALK protein has been identified as a driver oncogene in diverse
cancers, based on its overexpression after genetic translocation,

amplification, or mutation (84, 85, 86). Overexpression of the human
NPM-ALK oncogene in mouse T cells results in lymphomagenesis
with 100% penetrance. In this model, the relatively long period of
latency despite NPM-ALK expression and activation of downstream
targets such as STAT3 and DNMT1 suggests that a secondary event is
necessary for transformation and tumorigenesis. Accordingly, the
NPM-ALK translocation and its transcripts can be detected in pe-
ripheral blood cells of human healthy donors implying that a single
genetic event is not sufficient to induce transformation (87). Both
our transcriptomic and epigenomic data point towards MYC as the
potential secondary driver in this model. MYC was previously im-
plicated in different ALK dependent malignancies including non-
small cell lung cancer neuroblastoma and ALK+ ALCL (35, 69, 88, 89,
90, 91, 92). Furthermore, MYC was shown to directly regulate ex-
pression of Cdk4 and Cdk6, affecting cell cycle progression at
multiple points (93). We observed a gradual up-regulation of those
genes on mRNA and protein level from tumor initiation to end-
stage tumors. Correspondingly, we observed strong deregulation of
Notch1 in the transgenic mousemodel. The NOTCH-MYC axis plays a
major role in the development of T-cell acute lymphoblastic leu-
kemia (T-ALL), resulting from the transformation of immature T-cell
progenitors (94). This suggests that similar processes are driving
ALK-dependent transformation, resulting in hyperproliferation and
transformation of thymocytes. Notably, deletion of Dnmt1 in an
MYC-driven T-cell lymphomamodel delayed lymphomagenesis and
resulted in reduced proliferation of tumor cells (95).

During lymphomagenesis, we observed a gradual decrease in DP
thymocytes subsets and a corresponding increase in DN and im-
mature CD8 SP (i.e., TCRβ−) cells. Similarly, human ALK+ ALCL display
a progenitor cell signature as indicated by epigenomic profiling and
a subgroup of ALCL might arise from innate lymphocyte cells as
recently described based on transcriptomic analyses (48, 68). The
fact that we observe NPM-ALK–expressing tumor cells that show a
surface marker expression pattern that is typical for DN cells, as
well as the presence of immature single positive cells suggests, that
an immature thymic cell population is targeted for transformation
or that a more mature cell population regresses to a progenitor
stage during transformation, potentially through direct repression
of the T-cell phenotype by the ALK oncogene (46). Again, MYC might
be central to this event, in line with data showing that over-
expression of MYC, activated AKT and inhibition of intrinsic apo-
ptosis by expression of BCLXL results in rapid transformation of
mature CD4 and CD8 SP mouse T cells (96). Expression of
reprogrammed DN lymphoma stem cells was recently described for
an Lck-dependent NPM-ALK mouse model (97).

The elevated expression of DNMT1 appeared to be an early event
after NPM-ALK induction in our model and depletion of DNMT1
completely abrogated lymphomagenesis. Intriguingly, we found
DNA methylation signatures, highly resembling human tumors (98),
with characteristic CGI hypermethylation and genome-wide
hypomethylation as well as DNA hypermethylation of polycomb
repressive marks (9). Generally, epigenomic patterns appeared to
be highly heterogeneous between individual ALK tumors and
showed a loss of cooperative CpG methylation. These observations
went hand in hand with up-regulation of DNMTs (DNMT1 and
DNMT3b) and TET1, implying that the oncogenic driver NPM-ALK has
the potential to interfere with methylation homeostasis and to
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induce stochastic methylation aberrations. Interestingly, deletion
of DNMT1 did not interfere with cooperative DNA methylation be-
tween closely neighboring CpGs because KO and ALKKO cells
maintained high correlation between triplet CpGs with a CpG
distance less than 20 bp. Thus, we propose that aberrant DNA
methylation patterns in tumors might not fully depend on DNMT1
deregulation and that methylation cooperativity at close-by CpGs is
independent of the maintenance machinery, but rather dependent
on DNMT3a/b and TET enzymes. In general, DNMT3a and DNMT3b
primarily bind to methylated CpG-rich regions; however, DNMT3b
seems to exhibit additional preferences for actively transcribed
genes and correlates with H3K36me3 marks (99). In addition,
DNMT3a/b is important to counteract global DNA methylation loss
caused by imperfect DNMT1 fidelity during DNA replication in mice
(100). De novomethylation occursmore frequently at adjacent CpGs
in a distance-dependent manner (99), further indicating that as-
sociation between neighboring CpGs could be maintained through
DNMT3a and DNMT3b in KO and ALKKO samples. Importantly,
DNMT3 proteins might be involved in lymphomagenesis through
their co-repressor function through interaction with MYC or other
transcription factors, even independently of their enzymatic function
(101, 102, 103).

In summary, we conclude that ALK-dependent oncogenic
pathways result in deregulation of genome-wide DNA methylation
patterns during tumorigenesis, which affect important regulatory
regions, including lineage-specific transcription factor–binding
sites and enhancers of T-cell–specific genes and tumor suppres-
sors. In addition, we suggest that the deregulation of key epigenetic
enzymes is a prerequisite to enable tumor formation and loss of
maintenance of tumor-specific DNA methylation patterns results in
a proliferation block and lack of T-cell transformation.

Materials and Methods

Mice

Transgenic mice carrying the human NPM-ALK fusion gene under
the T-cell–specific Cd4 enhancer-promoter system were crossed
with mice carrying a conditional T-cell–specific deletion of Dnmt1
(Cd4-Cre–driven recombinase) (31, 53, 104). The NPM-ALK mice were
obtained from Lukas Kenner, Department of Pathology, Medical
University of Vienna, and the Dnmt1 knockout mice were obtained
from Christian Seiser, Center for Anatomy and Cell Biology, Medical
University of Vienna. The genetic background of mice was mixed
(C57Bl/6xSV/129). Mice were kept under specific pathogen-free
conditions at the Center for Biomedical Research, Medical Uni-
versity of Vienna, and the experiments were carried out in
agreement with the ethical guidelines of the Medical University of
Vienna and after approval by the Austrian Federal Ministry for
Science and Research (BMWF; GZ.: 66.009/0304.WF/V/3b/2014). For
genotyping, tissue samples obtained from ear clipping were in-
cubated with tail lysis buffer (100mM Tris, pH 8.0, 5 mM EDTA, pH 8.0,
200 mM NaCl, and 0.1% SDS) and 40 μl of proteinase K (10 mg/ml) o/
n at 56°C. The next day, 170 μl of 5M NaCl were added, the solution
was centrifuged for 10 min at maximum speed, and the supernatant

was transferred to a new tube. 500 μl of isopropanol was added and
after centrifugation and washing with 70% EtOH, the DNA was dried
and dissolved in 150 μl of sterile water. Genotyping was performed
with Promega GoTaq Mastermix according to the manufacturer’s
suggestions.

In vivo DNMT inhibitor treatment

NPM-ALK transgenic mice were treated with 1 mg/kg of 5-aza-29-
deoxycytidine (5-aza-CdR) dissolved in PBS administered intra-
peritoneally two times per week starting at 8 wk of age up to 30
wk of age. After treatment, the mice were monitored three times
per week until euthanasia upon signs of sickness and/or tumor
development.

Flow cytometry analysis

Single cell suspensions of thymus, tumor and spleen were obtained
by passaging the tissues through a 70-μm nylon cell strainer in
staining buffer (PBS supplemented with 2% FCS and 0.1% sodium
azide). 3 × 106 cells were incubated for 5 min on ice with Fc-block
(Pharmingen), after incubation with cell surface markers for 30 min
on ice. The cells were washed and fixed with eBioscience FoxP3
Transcription Factor Fixation/Permeabilization Solution for 1 h at
4°C before. Intracellular staining for ALK (D5F3, CST #3633) was
performed for 1 h at 4°C followed by incubation with Alexa Fluor 647
goat antimouse IgG antibody (Cat. no. A-21244; Thermo Fisher
Scientific) for another hour at 4°C. The cells were washed and
resuspended in 100 μl staining buffer. The cells weremeasured with
a BD Fortessa flow cytometer and analyzed using FlowJo software.
The detailed gating strategy is displayed in Fig S8.

RNA and DNA isolation from murine tumor and thymic tissues

RNA and DNA were isolated using the QIAGEN AllPrep DNA/RNA
mini isolation kit to enable simultaneous isolation of nucleic acids
from the same specimen. Tissues were homogenized using EPPI-
Mikropistills (Schuett-biotec) and RNA and DNA isolation was
performed according to the manufacturer’s protocol. RNA and DNA
were eluted in nuclease free ddH2O.

Protein extraction and Western blot

For protein extraction from tumors and thymi, the tissue was
dounced and homogenized in lysis buffer as previously described
(105). Protein concentrations were measured using Bradford and 20
μg were used for analysis by SDS–PAGE and Western blot as pre-
viously described (105). The following antibodies were used for
protein expression analysis: ALK (D5F3, CST #3633), pALK (Tyr1278,
CST #6941), STAT3 (D3Z2G, CST #12640), pSTAT3 (Tyr705, CST #9145),
DNMT1 (H300, sc-20701), CDK4 (C-22, sc-260; Santa Cruz), CDK6
(HPA002637; Sigma-Aldrich), PCNA (ab2426; Abcam), and α-TUBULIN
(1E4C11, 66031-1-Ig; Proteintech). Goat antirabbit IgG HRP conjugate,
JD111036047, and rabbit antimouse IgG HRP conjugated, JD315035008
antibodies were used as secondary antibodies.
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Preparation of nuclear extracts

For isolation of nuclear fractions from tumors and thymi, the tissue
was carefully dounced and homogenized in sucrose buffer (0.32 M
sucrose, 10 mM Tris–HCl, pH 8.0, 3 mM CaCl2, 2 mM MgOAc, 0.1 mM
EDTA, and 0.5% NP-40) containing protease inhibitors using plastic
pestles. Nuclei were collected by centrifugation at 500g for 5 min at
4°C and supernatants, containing the cytoplasmic fractions were
transferred into new tubes. Nuclei were washed two times with
sucrose buffer without NP-40 before they were resuspended in 50
μl low salt buffer (20 mM Hepes, pH 7.9, 1.5 mM MgCl2, 20 mM KCl, 0.2
mM EDTA, and 25% glycerol [vol/vol]) containing protease inhibi-
tors. An equal amount of high salt buffer (20 mM Hepes, pH 7.9, 1.5
mM MgCl2, 800 mM KCl, 0.2 mM EDTA, and 25% glycerol [vol/vol], 1%
NP-40) containing protease inhibitors was added. Samples were
incubated for 1 h 30 min at 4°C on a shaker before they were
centrifuged at 21,000g at 4°C. Supernatant containing the nuclear
fraction was transferred into a new tube and protein concentration
was measured using Bradford. 15 μg of nuclear fractions were used
for SDS–PAGE and Western blot analysis as described previously
(105). The following antibodies were used for nuclear protein ex-
pression analysis: c-MYC (fE5Q6W, CST #18583) and HDAC1 as nu-
clear loading control.

Quantitative RT PCR (qRT-PCR)

For qRT-PCR, RNA was isolated as described above and 1 μg of RNA
was used for random hexamer cDNA synthesis using the qScript
cDNA Synthesis Kit (Quantabio) according to supplier’s protocol.
cDNA was diluted to a final concentration of 5 ng/μl and qRT–PCR
was performed with KAPA SYBR FAST qPCR kits (KAPA Biosystems)
on a C1000 thermal cycler, CFX96 real-time system (Bio-Rad) using
10 ng of cDNA per reaction. Three biological replicates per genotype
were processed. GAPDH was used for normalization. The following
primers were used for RNA-sequencing validation:

Gapdh fw: 59-CGACTTCAACAGCAACTCCCACTCTTCC-39
Gapdh rv: 59-TGGGTGGTCCAGGGTTTCTTACTCCTT-39
Cd44 fw: 59-ATGAAGTTGGCCCTGAGCAA-39
Cd44 rv: 59-GTGTTGGACGTGACGAGGAT-39
Dnmt1 fw: 59-AGGAGAAGCAAGTCGGACAG-39
Dnmt1 rv: 59-CTTGGGTTTCCGTTTAGTGG-39
Notch1 fw: 59-TGGCAGCCTCAATATTCCTT-39
Notch1 rv: 59-CACAAAGAACAGGAGCACGA-39
Myc fw: 59-AGTGCTGCATGAGGAGACAC-39
Myc rv: 59-GGTTTGCCTCTTCTCCACAG-39
Cdk4 fv: 59-TCCCAATGTTGTACGGCTGA-39
Cdk4 rv: 59-ACGCATTAGATCCTTAATGGTCTCA-39
Cdk6 fw: 59-CAGCAACCTCTCCTTCGTGA-39
Cdk6 rv: 59-GATCCCTCCTCTTCCCCCTC-39
IAP fw: 59-ACTAAcTCCTGCTGACTGG-39
IAP rv: 59-TGTGGCTTGCTCATAGATTAG-39

Immunohistochemistry

Tumor and thymic tissues were fixed in 4% paraformaldehyde,
dehydrated in ethanol, and embedded in paraffin. 2-μM sections

were cut, attached to slides, dewaxed, and rehydrated. Epitopes
were retrieved by heat-treatment in citrate buffer (pH 6.0; DAKO) or
Tris–EDTA buffer (pH 9.0; DAKO). Slides were processed and
counterstained as previously described (105). Primary antibodies
against DNMT1, ALK pSTAT3 (listed above), or Ki67 (14-5698-80;
eBioscience) were used for staining. Pictures were taken with a
Zeiss Axio10 (Zeiss) microscope and a Gryphax camera (Jenaoptics)
and quantification of positive cells was performed using Definiens
Tissue Studio 4.2 Software (Definiens Inc.). Stainings were per-
formed in four biological replicates for each genotype. For each
biological replicate, four representative pictures were analyzed and
counts were averaged. For Ki67 staining, slides were scanned using
the Pannoramic 250 Flash III scanner (3DHISTECH) and analyzed
using the Definiens software. Non-proliferative areas in thymi were
excluded from quantification. Quantification results are shown as
means ± SEM. The significance of the differences between mean
values was determined by one-way ANOVA followed by pairwise
comparisons to the control group using unpaired t tests.

Immunofluorescence

Tumor and thymic tissues were formalin fixed and paraffin em-
bedded as described above and epitopes were retrieved by heat-
treatment in citrate buffer (pH 6.0; DAKO). Slides were washed in
0.1% PBS-Tween 20 (PBS-T), permeabilized in 0.3% Triton X-100 in
PBS-T and blocked in blocking solution (10% goat serum in 0.1%
Triton X-100 in PBS-T). Primary antibodies against ALK (CST #3363)
and Ki67 (14-5698-80; eBioscience) were diluted 1:250 and 1:1,000 in
blocking solution and incubated at 4°C overnight. After incubation
with secondary antibodies (Alexa Fluor 594 goat antirabbit, Cat. no.
A-11012; Invitrogen and Alexa Fluor 488 goat antirat, Cat. no. A-11006;
Invitrogen), they were diluted 1:1,000 in blocking solution and the
slides were counterstained with DAPI (1:50,000 from 10 mg/ml stock
solution; Serva Eletrophoresis) and embedded with geltol (Cal-
biochem). Two representative pictures of four biological replicates
per genotype were taken with LSM 5 Exciter (Zeiss) with the same
exposure time for all slides and quantified by blinding pictures and
counting of SP and double-positive cells in two 3 × 3 cm squares per
picture. Quantification results are shown as means ± SEM. The
significance of the differences between mean values was deter-
mined by one-way ANOVA followed by pairwise comparisons to the
ALK group using unpaired t tests.

Dot blot analysis of methylated DNA

Genomic DNAwas isolated as described above and diluted to a final
concentration of 250 ng. DNA was denatured at 100°C for 10 min in
0.4M NaOH and 10 mM EDTA solution and neutralized using 2M ice-
cold ammonium acetate, pH 7.0, before it was applied to the dot
blot apparatus to spot the DNA on a nitrocellulose membrane,
pre-soaked in 6× saline sodium citrate buffer. After washing the
membrane in 2× saline sodium citrate buffer, the DNA was UV-
crosslinked using (UV Stratalinker 2400; Stratagene). Subsequently,
the membrane was blocked for 1 h at room temperature with 5%
milk in PBS-T and incubated with the primary antibody directed
against 5mC (D3S2Z, CST #28692) overnight at 4°C. After incubation
with the secondary antibody (goat anti-rabbit IgG HRP conjugate,
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JD111036047), 5mC signal was detected using the ChemiDoc XRS+
Imaging System (Bio-Rad) and analyzed using Image Lab Software
(Bio-Rad). Methylene blue staining (0.02% methylene blue in 0.3M
sodium acetate) was used for an internal DNA loading control.
Membranes were incubated in methylene blue staining solution for
10 min and membranes were destained 3 × 10 min in water. Meth-
ylene blue staining was measured and analyzed as described above.
Level of 5mC was calculated as a ratio of 5mC to methylene blue
signal intensity in three biological replicates per genotype and three
technical replicates, respectively.

RNA-sequencing (RNA-seq)

RNA and DNA were isolated as described above. RNA concentra-
tions were measured on the NanoDrop 2000 (Invitrogen) and 1,000
ng were sent to the Biomedical Sequencing Facility (CeMM). RNA
integrity was tested using the Agilent Bioanalyzer. Stranded mRNA-
seq (poly-A enrichment) library preparation was performed and
sequenced using an Illumina HiSeq3000/4000 platform (50 nu-
cleotide single-end reads).

RNA-seq data analysis

Reads were quality-controlled using fastQC (106) and pre-processed
using trimgalore (http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/) to trim adapter and low quality sequences. The reads
were aligned to mouse genome (mm10) and processed further using
STAR (107). Differential gene expression levels of the transcripts were
quantified by HTSeq (108) and analyzed using the Bioconductor
package DESeq2 (109). Genes with an FDR-adjusted P < 0.05 and an
absolute fold change of two were considered significantly differentially
expressed.

To gain insight into the nature of differentially expressed genes
in each analysis, the gene set enrichment analysis of significantly
deregulated genes between ALK tumors and Ctrl thymi was per-
formed using oncogenic signature gene sets from MSigDB (33).

Deconvolution strategy

We used the SCDC library (110) based on MuSiC (111) to conduct the
bulk RNA-seq data deconvolution with a sc-RNA-seq reference
thymic dataset (59) composed of 12 time points (age), 29 cell types,
and 36,084 single-nucleus transcriptomes. The method allows
deconvoluting a set of bulk RNA-seq samples based on an sc-RNA-
seq dataset with the cell type clustering as a reference without pre-
selected marker genes. The sc-RNA-Seq reference is used to build a
cell-type-specific gene expression signature matrix. This is sub-
sequently used to recover the underlying cell type proportions for
the bulk samples using a tree-guided procedure based on a cell
type similarity tree (111). A weighted non-negative least square
regression framework is used over the previously selected marker
genes, weighting each gene by cross-subject and cross cell vari-
ation. The general method considers an observed bulk gene ex-
pression Y ϵ R

N×M for N genes across M samples, each containing
K-cell types. The deconvolution will try to recover two non-negative
matrices B ϵ RN×K (average gene expression levels in each cell type
corresponding to the signature matrix) and P ϵ R

K×M (mixing

proportions of the K cell type of one sample) such that: Y ≈ BP. We
added some additional routines to the original library such as
parallelism capacity, sparse matrix capability, and an improvement
in the selection of marker genes.

Dynamic threshold for markers selection

Thenon-negativematrix factorizationmethod is sensitive to the selection
ofmarker genes andwe, therefore, tested several strategies on simulated
data. In theoriginal tool, theselectionof themarker geneswasperformed
by applying a Wilcoxon test between each cell type of interest and the
remaining single-nucleus transcriptomes in the single-cell data. A global
threshold for the adjusted P-value is used for all cell types. However, this
strategy results in an unbalanced and incomplete set of marker genes,
where cell typesmay have either a very high number, few, or zeromarker
genes. To solve this issue, we proposed a dynamic threshold for marker
selection where we first create multiple bootstrapping samples on all
clusters selecting nb clusters as background and runWilcoxon tests over
each sampling and cell type of interest. Finally, we performed an outlier
analysis basedon the log2(FC) valueusing thedbscanalgorithm. For each
cluster, we started by selecting genes with an adjusted P = 0, if this
resulted innoor too fewgeneswe relaxed the threshold to an adjustedP
< 0.05, and finally, the remaining cases were sorted by the adjusted P-
value. For each cell cluster we therefore found at least Nmin and at most
Nmax marker genes. To determine optimal parameters, we extensively
tested our selection strategy within the deconvolution procedure on
simulated bulk datasets generated from the single cell data with known
proportions. We found best deconvolution results when selecting nb = 4
background cell clusters, chosen in nbs = 40 bootstrapping samples, and
setting the number of required marker genes per cluster to be between
Nmin = 28 and Nmax = 35. With the optimal parameters we obtained
Pearson correlation values of >0.99 between the calculated proportions
and the real ones and a sum of residuals of 0.0732.

Deconvolution of bulk data

Our bulk data sample is taken from 18-wk-old mice. We therefore
filtered the single-cell dataset to only include data from 4-, 8-, and
24-wk single-cell data. We used a subset of seven cell types cor-
responding to T-Cell differentiation pseudotime (59): DN (P), DN (Q),
DP (P), DP (Q), αβT (entry), CD8+ T, and CD4+ T. These seven cell types
make up 93.4% of the expression found in the complete set of 29 cell
clusters in the single-cell data.

The following similarity tree between cell types was used for the
tree-guided procedure:

(i) Subcluster 1: DN(P), DN(Q)
(ii) Subcluster 2: DP(P), DP(Q), αβT(entry)
(iii) Subcluster 3: CD8+ T, CD4+ T

Differential expression analysis between simulated and real bulk
data

We constructed a simulation of bulk data samples based on
proportions estimated from the single cell non-tumor samples. We
assumed that if there were extra cell types in the ALK tumor replicas
these additional cell types should be characterized through
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differentially expressed genes between the simulations and the
real replicas.

We chose the top 10% most highly expressed genes in the
original bulk data plus the 175 marker genes, and performed a
differential expression analysis using DESeq2 between the bulk
samples and the corresponding replicas in the simulation.

Source code

For more details, please refer to the R notebook and the source
code at: https://github.com/crhisto/thymus_NPM-ALK_notebook.

RRBS

DNA was isolated as described above. DNA concentration was
measured using Qubit dsDNA HS Assay Kit from Invitrogen
according to the manufacturer’s protocol. In total, 500 ng (25 ng/μl,
20 μl total) of DNA was sent for RRBS analysis (Biomedical Se-
quencing Facility, CeMM) according to established protocols (112,
113).

RRBS data analysis

The global changes in methylation, individual CpGs, and clusters of
covered CpGs were analyzed using packages from R Bioconductor
(114, 115). For CpG level comparison, percentage of methylation of
individual CpGs was calculated using the methylKit package (116)
and the coverage files from the bismark aligner (117). To prevent PCR
bias and increase the power of the statistical tests, we discarded
bases with coverage less than 10 in all samples. The bisulfite
conversion rate was calculated as the number of thymines (non-
methylated cytosines) divided by coverage for each non-CpG
cytosine, as implemented in methylKit. Differential methylation
analysis of single CpGs between different groups was also per-
formed in the same package and the CpGs with P < 0.01 and β value
differences more than 25% defined as significant. In addition,
density, PCA, and correlation plots were also generated by R Bio-
conductor packages. DMRs were determined using DSS package
(118, 119, 120, 121) which outperforms other methods when the
sample size per group is small owing to the adoption of the Wald
test with shrinkage for determining differentially methylated cy-
tosines (122). We identified DMRs using the coverage files from
bismark with a P-value threshold of 0.01 and Δβ value more than
25%. The individual CpGs and DMRs were annotated using Annotatr
package (123). For the enhancer analyses, DMRsbetweenALK tumor cells
and Ctrl thymocytes were compared with ENCODE datasets for H3K4me1
and H3K27ac marks in murine thymus. We downloaded the ENCODE
datasets from the ENCODE portal (75) (www.encodeproject.org) with the
following identifiers: ENCFF666XCJ and ENCFF354DWX. Enhancers were
predicted, and k-means clustering analysis was performed using deep
Tools v2.0 (124). The “computeMatrix” command with the sub-command
“scale-regions” was used to generate the table underlying the heat
maps, using a 5-kb window indicated by start (S) and end (E) of the DMR
region. “plotHeatmap” was used to visualize the table. Region set en-
richment analysis against publicly available datasets using the LOLA
software was used to identify shared biologically patterns among DMRs
(64). Significant CpGs (P < 0.05; beta value difference >15%) from

promoter region (hyper-methylated: 850; hypo-methylated: 576) were
merged into 200 base pair tiling regions across the genome before LOLA
analysis. The significant hyper- and hypomethylated regions obtained
were used as the query set and the set of all differentially methylated
tilling regions were used as universe set. For a focused analysis, only
region sets from ESCs, T lymphocytes, and thymus in the LOLA core
databasewere included. All theenrichmentswitha FDRadjustedP <0.05
using the Benjamini Hochberg procedure were considered significant.
For network analysis, datawere analyzed through the use ofQIAGEN’s
Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, www.qiagen.
com/ingenuity).

Statistics

Data are represented as mean ± SD, if not otherwise stated and
were analyzed using GraphPad Prism (version 6, GraphPad Soft-
ware, Inc.). To assess differences between groups, unpaired t test or
one- or two-way ANOVA followed by multiple comparison were
used, depending on number of samples. Significance was defined
according to following P-values: *P < 0.05; **P < 0.01; ***P < 0.001 ****P
< 0.0001. Nonsignificant P-values are not shown. Survival statistics
were analyzed using GraphPad Prism. Pairwise curve comparison
with ALK tumors using log-rank calculations (Mantel–Cox test) were
used to assess differences between the groups.

Data Availability

The RNA-seq and RRBS datasets were deposited to the NCBI Gene
Expression Omnibus (125) accession number GSE162218. FACS raw
data were deposited to http://flowrepository.org (126) ID number
FR-FCM-Z35D.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000794.
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