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Abstract: Toxin-producing cyanobacteria in aquatic, terrestrial, and aerial environments can occur
alongside a wide range of additional health hazards including biological agents and synthetic
materials. Cases of intoxications involving cyanobacteria and cyanotoxins, with exposure to additional
hazards, are discussed. Examples of the co-occurrence of cyanobacteria in such combinations are
reviewed, including cyanobacteria and cyanotoxins plus algal toxins, microbial pathogens and
fecal indicator bacteria, metals, pesticides, and microplastics. Toxicity assessments of cyanobacteria,
cyanotoxins, and these additional agents, where investigated in bioassays and in defined combinations,
are discussed and further research needs are identified.

Keywords: cyanobacteria; co-occurrence; toxicity; plastics; metals; biocide

Key Contribution: This review article examines the potential for co-occurrence of cyanobacterial
toxins with other toxic compounds, bacteria, and chemicals. An understanding of such risks is
essential to accurately assess the threat of these combinations to human health.

1. Introduction

Research on the production, properties, monitoring, and analysis of toxigenic cyanobacteria,
and of particular cyanotoxins, has increased greatly over the past 40 years [1–5]. Aspects of the
environmental occurrence, biosynthesis, properties, and health significance of the most widely
investigated individual classes of cyanotoxins, principally the microcystins, nodularins, saxitoxins,
cylindrospermopsins, and anatoxins have been reviewed [6–12]. On the toxicity assessment of
cyanobacterial cultures and environmental samples containing cyanobacteria, and the involvement
of specific cyanotoxins, the research has passed through several discernible phases. The earliest
known experimental investigations into the suspected toxicity of cyanobacteria, which followed
animal poisonings, were performed by George Francis [13,14]. These involved the oral dosing of
healthy animals, of the same species which had succumbed to intoxication, with the suspected toxic
material, in this case Nodularia scum, and the consequent replication in the dosed animals of mortalities
and gross signs of organ damage. Bioassays, a quantitative development of this logical approach,
but initially without the chemical identification and quantification of the toxic substances in the test
material, were then increasingly used to test for toxic principles for several decades [1–3]. These were
gradually complemented, and then overtaken by the emerging methods for the identification and
quantification of specific cyanotoxins in the test material and the quantitative characterization of
toxicity using individual purified cyanotoxins originally obtained via bioassay-guided purification
of cyanobacterial material. The increasing availability of physico-chemical methods for analysis
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and cyanotoxin purification, especially for microcystins, nodularin-R, saxitoxins and anatoxin-a,
and later for cylindrospermopsins [1–5], appears to have led to an increased focus on the use of these
methods, with a corresponding decline in the use of the whole animal bioassays. The move away
from whole animal bioassays has been further influenced by increasing ethical and humanitarian
concerns. Although non-mammalian in vivo and biochemical, enzyme-based, and cell-based in vitro
bioassays are available [3,15] the continuing focus on the use of physico-chemical methods has also
been influenced by the increasing need for validated, quantitative procedures to satisfy statutory
regulations and guidelines [16]. In addition, genetic methods [17] may also contribute to a reduction in
bioassay use through providing alternative testing to understand the potential for toxin production
by cyanobacteria.

The further development and application of physico-chemical analytical methods for the detection,
identification, and quantification of specific cyanotoxins continues to support and enable the application
of policies for the risk management of water resources affected by cyanobacterial mass populations.
These include specific methods for individual classes of cyanotoxins [5] and, increasingly, methods for
the multiclass analysis of the toxins in single procedures [18–21]. However, whilst such methods alone
can provide a partial indication of toxicity presented by axenic strains of cyanobacteria grown in the
laboratory, they may not take into full account the toxicological significance of mass populations of
cyanobacteria in open environments.

In marine and freshwater environments and in terrestrial and aerial habitats, whilst cyanobacteria
can readily appear as “dominant”, i.e., to account for the majority of the microbial biomass, they can
be accompanied by a wide range of other microbes including microalgae, chemoheterotrophic bacteria,
and protozoa [22,23]. Where such environments are subjected to intensive anthropogenic human
pressures (e.g., wastewater and human sewage disposal and industrial discharges), the dominant
cyanobacteria can co-occur with additional biological toxins (e.g., [19]), chemical pollutants
e.g., metals [23], and with pathogenic microbes [24]. Examples of the co-occurrence of cyanotoxins,
plus other chemical agents and microbial pathogens, and cases of co-exposure are reviewed (Figure 1).
Research to further understand the health significance of cyanotoxins is discussed in a broader context of
cyanotoxin co-occurrence and co-exposures with additional biological and anthropogenic toxic agents.
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Figure 1. Examples of interactions of cyanobacteria with other potentially toxic components of water.

It is well established that when exposure to toxic compounds involves mixtures of two or more toxic
substances, the effect of such mixtures on susceptible individuals or populations can be unpredictable,
but different from the exposures to each of the toxins if applied separately. Examples of the three
possible outcomes, namely additive, synergistic, and antagonistic effects [25] are increasingly emerging,
where bioassays including toxigenic cyanobacteria, and specifically when purified cyanotoxins and
non-cyanobacterial toxic agents, are performed (Table 1).
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Table 1. Examples of toxicity assessment by bioassay of purified cyanotoxins in combinations and of
cyanotoxins plus additional environmental toxins/pollutants.

Toxic Agents Test Organism/Cell Line Outcome 1 Ref.

MC-LR plus Antx-a Mouse, intranasal bioassay SYN [26]

MC-LR plus Antx-a Selenastrum capricornutum SYN [27]

MC-LR plus Antx-a Cyprinus carpio, carp cells SYN (potential) [28]

MC-LR plus Antx-a Vallisneria natans, and microbial biofilm ANTAG [29]

MC-LR plus Microcystis LPS Artemia salina and Daphnia sp. ANTAG [30]

MC-LR plus CYN Chlorella vulgaris SYN [31]

MC-LR plus cyanobacterial
λ-linolenic acid Daphnia magna ADDIT [32]

MC-LR plus aflatoxin B1 Human hepatic cells ANTAG [33]

MC-LR plus aflatoxin B1,
and plus fumonisin B1 HepG2, Caco2, MDBK cell lines ADDIT, SYN, ANTAG [34]

MC-LR and copper Danio rerio SYN [35]

MC-LR plus copper Vallisneria natans SYN [36]

MC-LR plus linear alkyl-
benzene sulphonate Lactuca sativa SYN [37]

MC-LR plus phenanthrene Lemna gibba ANTAG, SYN, ADDIT [38]

CYN plus chloropyrifos Human SH-SY5Y neuroblastoma cell line ANTAG [39]

CYN plus bisphenols HepG2 cells SYN, ADDIT [40]
1 SYN, synergistic; ADDIT, additive; ANTAG, antagonistic toxicological outcomes of applications of multiple toxic
agents. MC-LR, microcystin-LR, Antx-a, anatoxin-a; CYN, cylindrospermopsin. Outcomes in several systems were
influenced by relative concentrations, and in some cases by timing of applications of toxins/toxicants, see references.

Of the classes of toxins produced by cyanobacteria, with the exception of guanitoxin (formerly
anatoxin-a(S) [41]), all encompass multiple chemical structures, ranging from a few (e.g., anatoxin-a and
homoanatoxin-a) to hundreds, in the case of microcystins (>240, [42]). Similarly, analyses of blooms and
cultures of cyanobacteria have shown that multiple variants can exist in extracts of individual strains,
such as for Microcystis PCC7820 with at least 10 microcystin variants reported [43] and a Thai strain of
Cylindrospermopsis that has been shown to produce two additional variants of cylindrospermopsin [44].
Therefore, when toxicity assessment is performed, then although classes of cyanotoxins may be
identified, the differing amounts of variants, whether of e.g., microcystins or anatoxins, each with
potentially differing toxicities when determined individually (e.g., [45]), may influence the risk
assessment of such bloom material. On occasion, some strains have been reported to include multiple
classes of toxins, such as microcystins and guanitoxin, as in Anabaena 525-17 [46]. In addition to these
cyanotoxins, all cyanobacteria characteristically produce lipopolysaccharide endotoxins [47].

Fitzgeorge et al. [26] provided early evidence of the synergistic action of two purified cyanotoxins
(anatoxin-a and microcystin-LR) when administered intranasally to mice. In this case, the administration
of a sublethal dose of microcystin-LR 30 min before that of anatoxin-a lowered the LD50 of the latter
four-fold. Perhaps the most high-profile human poisoning event occurred at Caruaru, Brazil [48,49].
Extensive investigations into the deaths of 50 people at a hemodialysis clinic identified microcystins as
the most likely principal cause of the fatalities, although several symptoms were reported by those
affected. Investigations continued into the intoxications and cylindrospermopsin was also implicated,
suggesting the possibility of multiple cyanotoxin exposures [50].

Clearly, when bioassays are performed in vivo and in vitro with an individual purified cyanotoxin
or defined combinations of purified cyanotoxins, then the responses can be unequivocally ascribed to
the toxin(s) administered. However, since cyanobacterial cells, whether in axenic monocyanobacterial



Toxins 2020, 12, 629 4 of 17

culture or in environmental samples, can produce a range of cyanotoxins and other bioactive secondary
products, then bioassays with crude extracts from such sources unavoidably involve exposures to
mixtures of toxic agents. These may be exclusively of cyanobacterial origin when derived from
monocyanobacterial axenic cultures, or from cyanobacterial plus a wide range of toxins/toxicants from
additional biological and anthropogenic sources in the case of environmental samples.

2. Environmental Intoxications Involving Toxigenic Cyanobacteria and Additional Agents

Some indications are available of contributory exposure to environmental health hazards in
addition to toxigenic cyanobacteria or specific cyanotoxins in wildlife poisoning episodes. Thus, whilst
a major role for microcystins and anatoxin-a in the mass mortalities of Lesser Flamingos (Phoeniconaias
minor) at Kenyan lakes was identified, additional contributions due to heavy metals, pesticides,
and mycobacterial infection were likely to have occurred [51,52]. A major role of microcystins was
similarly deduced from cyanotoxin analyses and pathology in the deaths of Mute Swans (Cygnus olor) in
the UK, although the additional contribution of lead was inferred from the abundance of fishermen’s lead
sinker-pellets in the birds’ stomachs [53]. Microcystin-, saxitoxin-, and cylindrospermopsin-producing
cyanobacterial blooms were indicated to have been early contributors to an extended major fish-kill in
the Lower St. John’s River, Florida. Later factors arising from cyanobacterial decomposition and lysis
included lower dissolved oxygen concentrations, elevated ammonia concentrations, and hemolytic
contribution from the dinoflagellate alga Heterosigma akashiwo [54].

Cases of human illness associated with exposure to toxigenic cyanobacteria also indicate the
possible contribution of additional factors. In 1979, a severe hepato-enteritis outbreak occurred among
consumers (mainly children) of drinking water from a Palm Island reservoir in Queensland, Australia,
containing a bloom of Cylindrospermopsis raciborskii [55]. The subsequent isolation and characterization
of cylindrospermopsin from C. raciborskii from the reservoir provided strong evidence for a contributing
role of the cyanotoxin in the Palm Island illnesses. However, as pointed out by Hawkins et al. the
evidence suggested that the cylindrospermopsin-producing bloom should be considered as only one
possible cause [55]. It is unknown whether the copper concentration in the water, arising from the
prior treatment to kill the C. raciborskii bloom, also contributed to the illness. An episode requiring
hospitalization of army cadets undergoing swimming and canoeing exercises at Rudyard Lake, northern
England, occurred after the cadets ingested microcystin-containing Microcystis aeruginosa scum [56].
Atypical pneumonia, liver damage, and blistering around the mouth were attributed to microcystin
ingestion. However, whilst no evidence for enterovirus contamination of the water was apparent,
Escherichia coli counts indicated that the water was unsuitable for bathing [56].

3. Additional Health Hazards: Their Co-Occurrence and Interactions with Cyanobacteria
and Cyanotoxins

A wide range of microbial and chemical health hazards exists with which cyanobacteria can
be associated. The associations range from the use of purified materials in experimental laboratory
designs to investigate combined toxicological responses in vitro and in vivo, to the co-occurrence of
multiple hazards in open environments.

3.1. Fungal and Algal Toxins

The health significance of human exposure to the fungal toxin aflatoxin B1 (via the diet),
plus to microcystin via drinking water, was recognized almost 30 years ago in China [57–59].
A high incidence of primary liver cancer among local populations using surface drinking water
containing microcystin-producing cyanobacteria was associated with additional chronic exposure to
the hepatocellular carcinoma risk factor aflatoxin B1 via food consumption, including moldy maize.
Further risk factors were presented by Hepatitis B virus and alcohol [60]. Whilst not characterized as
a primary carcinogen itself, the tumor-promoting action of the microcystin(s) was expressed by the
chronic exposure of the population to the cyanotoxin, and to the primary carcinogenicity of aflatoxin
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B1 and/or the Hepatitis B virus. These milestone discoveries in the history of cyanotoxins research
and risk management [6,8,9,57–59], not only illustrate the importance of exposure to cyanotoxins plus
additional health hazards, but also provide an example of the hazards of such combined exposure
via multiple exposure media: in this case, the media being water and food. Whether the timing of
the exposure to microcystin-containing cyanobacterial blooms and to aflatoxin-B1, i.e., as co-exposure
or sequential exposure, influenced the outcome among the human population, remains less certain.
Trials using human hepatic cells in vitro and rats have indicated that whilst the tumor promoting
actions of microcystin were confirmed, antagonistic action can occur when the cyanotoxin at low dose
is co-applied together with the fungal toxin [33].

The co-occurrence of cyanotoxins with microalgal phycotoxins has received little attention.
Blooms and shoreline scums of several species of toxigenic marine microalgae have long been recognized
for their roles in the mass mortalities of fish, seabirds, and sea mammals and in human intoxications,
from mild to fatal, via shellfish consumption [2]. For reviews concerning marine microalgal phycotoxins,
including the saxitoxins, palytoxins, ciguatoxins, brevetoxins, domoic acid, okadaic acid, pinnatoxins,
yessotoxins, and azaspiracids, see [61–63]. No evidence for the production of most classes of cyanotoxins
by microalgae is available, namely of microcystins, nodularins, cylindrospermopsins, anatoxin-a,
or guanitoxin. In addition, the lipopolysaccharide (LPS) endotoxins, being structural components
of Gram-negative prokaryotes are characteristic of cyanobacteria [47] but are apparently lacking in
eukaryotic microalgae. Thus, for these classes of cyanotoxins to co-occur with the potent phycotoxins
of marine waters, it is necessary (i) for toxigenic cyanobacteria to also be present and growing
in the environment, or (ii) for the cyanotoxins to be introduced into the microalgal environment.
Indeed, such an introduction occurred in the Monterey Bay National Marine Sanctuary, California,
where microcystin-producing Microcystis blooms entered the Bay waters from inland freshwaters via
river inflows. Mass deaths of sea otters (Enhydra lutris nereis) occurred due to the consumption of
marine shellfish which had accumulated the microcystins from the river inflows [64]. In this case,
analyses for other candidate cyanotoxins (nodularin and anatoxin-a) and for marine phycotoxins
(okadaic acid and yessotoxin) were negative. Another area of California, namely San Fransisco Bay,
has shown the presence of multiple toxin classes, often detected in molluscs [65]. From an analysis
of mussels, microcystins, domoic acid, diarrhetic shellfish toxins, and paralytic shellfish toxins were
identified with all four toxin classes detected in 37% of mussels.

However, some classes of cyanotoxins are not exclusively the products of cyanobacteria [66].
Saxitoxins have long been known to be produced by marine dinoflagellates, including species
of Alexandrium, Gymnodinium, and Pyrodinium [63] and by several strains of cyanobacterial
species, including Aphanizomenon spp., Dolichospermum circinale (formerly Anabaena circinalis),
Cylindrospermopsis raciborskii, Raphidiopsis brookii, Lyngbya wollei [67], and Scytonema crispum [68,69].
The neurotoxic diaminoacids, β-N-methylamino-l-alanine (BMAA), N-(2-aminoethyl)glycine (AEG),
and 2,4-diaminobutyric acid (2,4-DAB), with LC-MS/MS used to confirm analytical specificity,
also appear to have multiple origins, including diverse cyanobacteria, marine and freshwater diatoms,
and a brackish coastal water dinoflagellate [70–77], and these toxins can also be present along with
microcystins and brevetoxins [78]. Wider origins of these neurotoxins are also indicated by the presence
of BMAA in the peptides found in chemoheterotrophic bacteria including environmentally widespread
Paenibacillus spp. [79,80].

3.2. Microbial Pathogens

A close association of cyanobacteria, including toxigenic species, typically occurs with other
microbes in aquatic and terrestrial environments [22,23]. The close proximity of the cyanobacteria
and their non-phototrophic, mutualistic partners can enable the two-way exchange of metabolites
and nutrients and provide a protective physical substrate for bacterial attachment and gene transfer.
Cyanobacterial extracellular polysaccharides and glycoprotein sheath materials can provide a substrate
for the bacterial attachment [23]. In addition to the association with a wide range of non-pathogenic
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bacteria (e.g., [81]), marine, estuarine, and freshwater cyanobacteria can form close associations with
human pathogenic bacteria. When large blooms of cyanobacteria occur and people are exposed to such
blooms, then health complaints and non-specific symptoms are often reported [82]. Such symptoms
can include fever, pneumonia, and headaches as examples (reviewed in [82]). Therefore, exposure to
cyanobacterial blooms may have the added issue of multiple insults affecting human health, especially
in those individuals with underlying medical conditions.

In 1884, Robert Koch, the discoverer of the cholera bacillus, suggested from field studies that
“aquatic flora” might serve as environmental reservoirs of cholera [83]. Indeed, searches for possible
reservoirs of survival of toxigenic Vibrio cholerae 01 in a pond in Dhaka, Bangladesh, used for bathing,
swimming, washing, and drinking, indicated the seasonal survival of the pathogen in the extracellular
mucilage of the cyanobacterium Anabaena variabilis [84]. Whilst the specificity of this association is not
extended to euglenoid microalgae, it does extend to the mucilaginous masses of other cyanobacteria,
including Microcystis colonies [85] and microcystin-producing Oscillatoria filaments [86]. Without the
application of more effective cyanobacterial risk management measures, the role of cyanobacteria in
providing inter-epidemic reservoirs of V. cholerae is likely to increase as compounding anthropogenic
pressures and climate change continue to result in increases in cyanobacterial population size, seasonal
duration, and geographical spread [4]. Populations of other potentially pathogenic Vibrio spp. have
increased from 2000 to 2018 in the Neuse River Estuary, North Carolina, USA but no correlations
were apparent with changes in temperature, salinity, or dissolved oxygen concentration, factors which
have influenced Vibrio abundance elsewhere [87]. The eutrophic estuary waters contain abundant
blooms including microalgae and cyanobacteria [88] although whether the cyanobacteria are physically
associated with the potentially pathogenic Vibrio spp. in the Neuse water is not apparent.

Although the waterborne human pathogenic protozoon Cyclospora was initially thought to be a
cyanobacterium, this is not so, and the protzoon is able to cause diarrhea, sickness, and abdominal
pain, similar to the protozoa Cryptosporidium parvum and Giardia lamblia [89]. An increased abundance
of potential microcystin-producing cyanobacteria (Aphanocapsa and Microcystis spp.) was observed
with Cryptosporidium and Giardia spp. in a reservoir supplying drinking water to the metropolitan
Belo Horizonte area, southeastern Brazil [90]. It is notable that waterbody conditions which favor
the persistence of Cryptosporidium and Giardia spp., including nutrient enrichment and high retention
times, can also enhance cyanobacterial growth [23], increasing the potential for co-occurrence and
co-exposure to pathogenic protozoa and cyanotoxins.

3.3. Metals

Relations between cyanobacteria and metals constitute a large field. Of toxicological relevance are
(i) the chronic and acute effects of metals on the growth, metabolism, and survival of cyanobacteria
and (ii) the ability of cyanobacteria to accumulate, detoxify, metabolize, and sequester metals [91–93].
Depending on growth conditions, the effects of dissolved metal ions (e.g., Ca, Cu, Pb, Cd) can include
both the inhibition and stimulation of Microcystis blooms [94], and the presence of copper may affect
the detoxication of e.g., nodularin by disrupting microbes that may degrade this cyanotoxin [95].
Copper is often used as a biocide to lyse cyanobacterial cells during blooms. Although successful,
in the case of e.g., Microcystis, this has had the effect of releasing cyanotoxins from an intracellular
pool to an extracellular pool with the result that liver damage may result after drinking water from
which cyanobacterial cells and cell debris have been removed, but without the assured removal of
extracellular microcystin [96]. Furthermore, if the copper used for lysis is not effectively removed
during drinking water treatment, then this may subsequently also pose an additional toxicological
burden on people and animals.

Research on metals and cyanotoxins has largely focused on the effects of iron on microcystin
production. Pioneering studies on iron limitation in axenic Microcystis aeruginosa cultures revealed
increases in microcystin-RR and -LR (MC-RR, MC-LR) production [97]. Early sampling and analytical
procedures in the latter study are likely to have resulted in the combined analysis of the former
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intra- and extracellular pools. Further investigations into microcystin production by M. aeruginosa,
Microcystis novacekii, and Phormidium autumnale cultures have included increases upon iron addition
but also increases upon iron limitation during culture. Positive effects of copper, zinc, and manganese
ions on microcystin production under conditions of metal enrichment of, and metal limitation of,
cyanobacterial cultures have also been observed, possibly indicating physiological and biochemical
roles of the metals in microcystin biosynthesis, in addition to a siderophore function for microcystins
in metal acquisition [98]. No specific differences in anatoxin-a production by P. autumnale were found
in response to growth under an environmentally encountered, low-to-high range of iron or copper
concentrations [99].

Direct interaction between cyanotoxin molecules and metals has been investigated in vitro
with two classes of cyanotoxins. The purified post-synaptic neuromuscular blocking neurotoxin,
BMAA, is a potent chelator of divalent metal cations including copper and zinc [100]. Whether such
chelation occurs in BMAA-producing cyanobacterial cells and, if so, if toxicity is thereby influenced,
is not known. Divalent copper and zinc binding occur to at least three purified microcystins
(MC-LR, MC-LW, MC-LF) with formation constants (Ki) indicating that all three cyanotoxins are
medium-strength metal ligands. Single amino acid substitution in the heptapeptide microcystin
ring (arginine versus tryptophan, or versus phenylalanine) did not influence the strength of the
metal-microcystin association [101]. Whether metal-microcystin binding influences toxicity and
whether this binding occurs in the cyanobacterial producer-cells and/or in the surrounding water after
microcystin release are also unknown. However, this possibility is viewed alongside the increasing
evidence for the combined toxicity of microcystins and metals: co-exposure bioassays involving
MC-LR and copper, at environmentally encountered concentrations, have revealed synergistic toxicity
against the early development of the zebrafish, Danio rerio. Uptake of the toxins by the fish involved
microcystin and copper transporters [35]. Toxicity assessment of BMAA and methylmercury to primary
neurocortical cells show a synergistic toxicity [102] and assessment of other cyanotoxins with such
organic forms of metals is required.

3.4. Pesticides

One cyanotoxin, the phosphorylated cyclic N-hydroxyguanidine, guanitoxin (anatoxin-a(S)) exerts
toxicity via the irreversible inhibition of acetylcholinesterases in common with organophosphorus
pesticides [6,103]. No other cyanotoxins are known to have the same modes of action as those of
synthetic pesticides. The co-occurrence of cyanobacteria, and of pesticides, including herbicides,
fungicides, and insecticides, is a concern in water resources with a high human usage and dependency.
For example, in paddy fields nitrogen-fixing cyanobacteria can serve as a valuable biofertilizer and
contribute to rice production and an aim is to reduce the negative impacts of the pesticides on
cyanobacterial growth [104]. Nevertheless, the inadvertent entry of pesticides into waterbodies
from human activities, especially agriculture, appears to be a ubiquitous process and numerous
investigations into the inhibitory impacts of pesticides on aquatic biota have occurred. A wide-ranging
survey of investigations into the effects of pesticides in aquatic microbes included the effects of
insecticides, herbicides, and fungicides on the viability of cyanobacteria, with overall dose-dependent
growth inhibition occurring [105]. Most of the named cyanobacteria in this survey were members
of cyanotoxin-producing taxa. However, investigations to date do not appear to have included
relations between pesticides and the production and impacts of cyanotoxins. In addition to the
possible contribution of pesticides (and metals) alongside cyanotoxins to the mass mortalities of Lesser
Flamingos in East African lakes [51,52,106], both pesticides and cyanotoxins may contribute to the
marked decline in the American Alligator (Alligator mississippiensis) population in eutrophic Lake
Apopka, Florida, with high egg failure and anomalous endocrine function [107].

The adult invertebrate grazer Daphnia pulicaria was exposed to the purified pesticide carbaryl
(1-naphthyl methylcarbamate) plus whole cells of microcystin-producing M. aeruginosa at a range
of sublethal concentrations [108]. The actual dose of microcystin(s) assimilated per animal was
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estimated from the analysis of whole D. pulicaria by ELISA, although the immunoassay used does not
distinguish between authentic microcystin(s) and a range of microcystin detoxification products [109].
However, at a range of sublethal carbaryl concentrations, adverse effects on egg numbers per female,
delayed maturation, offspring mortality, and body malformations occurred with outcomes increased
by the addition of M. aeruginosa cells. Additive and synergistic actions between carbaryl and the
microcystin-containing cyanobacterial cells were indicated [108]. Hinojosa et al. [39] have recently
provided a significant example of the needed, quantitative, baseline studies on the toxicology of
pesticides in co-occurrence with cyanotoxins. In vitro bioassays using the human neuroblastoma cell line
SH-SY5Y evaluated the effects of individual, versus combined exposure to purified cylindrospermopsin
and chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothionate]. Cytotoxicity and
mechanistic endpoint comparisons after 24 and 48 h of exposure, at environmentally relevant
concentrations, indicated antagonistic action between the pesticide and cyanotoxin [39].

The herbicide glyphosate has been used widely to control plants and it has been shown
to occur in waterbodies, with toxicity demonstrated [110]. Its presence in waterways is well
known and has been shown to have an adverse effect on the growth of cyanobacteria, including
Microcystis [111]. Further effects of glyphosate on cyanobacteria include enhanced extracellular release
of microcystins [112] with the potential for organisms to respond to combinations of microcystins and
glyphosate, such as the mussel Unio pictorium [113].

3.5. Microplastic and Nanoplastic Particles and Contaminants

The global occurrence of microscopic plastic particles (microplastics) throughout the world’s oceans
has been recognized for several years [114] and their further occurrence in human feces, freshwater lakes
and rivers, groundwater, and estuaries is becoming increasingly recognized [115,116]. Cyanobacteria in
both marine and freshwaters are among the wide range of microbes which, with mineral particles,
attach to microplastics, forming a biofilm. The adhesion of microbes, with subsequent development
of an extracellular polysaccharide layer, may contribute to the sinking or buoyancy properties of
these complexes, and to the further sorption of metals, particularly, iron and manganese [117].
Among toxicological hazards presented by the microplastics accumulating in water resources
are the endocrine-disrupting bisphenol contaminants, including bisphenols A, S, F, and AF [118].
Cylindrospermopsin is a strong candidate for toxicity evaluation in combination with bisphenols since
(i) its wide geographical occurrence in freshwaters is becoming more apparent; (ii) a high percentage
of the total cylindrospermopsin pool is extracellular when the C. raciborskii producer cells are still
intact, and (iii) the cyanotoxin exhibits a wide range of actions, including hepatotoxicity, inhibition
of protein synthesis, genotoxicity, and potential carcinogenicity [6,9,40]. A complex of interactions
between purified cylindrospermopsin and bisphenols was found in in vitro bioassays using HepG2
cells. Whilst bisphenols alone reduced cell viability or induced DNA double strand breaks, antagonistic
activity of bisphenol against these actions by cylindrospermopsin was indicated. However, further
possible additive or synergistic effects on HepG2 gene deregulation were also indicated by co-exposure
to the bisphenols plus cylindrospermopsin [40]. No bioassays involving purified microcystins
with micro- or nanoplastics are yet apparent, although toxicologically significant interactions have
been reported between nanoplastics and Microcystis aeruginosa cells [118], and laboratory-ware
plastics are also known to bind microcystins from solution [119,120] and plastic nanoparticles
may also bind glyphosate [111]. Amino-modified polystyrene nanoplastics increase microcystin
production by the cyanobacterial cells and also increase the extracellular release of the toxin(s)
according to microcystin immunoassay. The prevalence and proximity of microplastics, nanoplastics,
and cyanobacteria [115–117], and widespread ability of the latter to produce microcystins [5,8,9,11,12]
require further research into the toxicological interactions of these ubiquitous synthetic and naturally
occurring, biological health hazards.
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4. Implications for Water Safety Guidelines, Legislation, and Water Treatment

The need to provide safe recreational and bathing waters and drinking water provides multiple
challenges due to the potential for combinations of toxic compounds, with possible synergistic and
additive effects, to occur at concentrations deemed unsafe for human health [121,122]. In order to
prevent potential adverse toxicities arising from exposure to multiple toxins, to cyanotoxins plus
microbial pathogens, and to cyanotoxins plus more recently recognized health hazards including
microplastics, the ability of water safety guideline values (GV) and legislation to provide adequate
safety margins in the event of potential multiple exposures need to be verified. In several cases, the same
drinking water treatment technologies are used for the removal and/or destruction of cyanotoxins, and
of other toxicants (Table 2).

Table 2. Examples of water treatment processes for the removal of potentially toxic compounds.

Toxicant Treatment Process References

Fungal/microbial toxins SF, C [123]
Pesticides Oz, AC, [124–126]

Microplastics C, U [127,128]
Metals C, A [129,130]

Microcystins AC, Ox, Oz, Cl [121,131]
Anatoxin-a Oz, Ox, Cl [132]
Saxitoxins AC, Cl [133]

Cylindrospermopsin AC, Oz, Cl [134,135]

AC, activated carbon; Ox, oxidation; Ozonation; Cl, chlorination; C, coagulation; A, adsorption; U, ultrafiltration;
SF, sand filtration.

Consequently, in order to prevent or reduce toxicity during events when co-occurrence arises,
then the efficacy of such multipurpose water treatment technologies needs to be verified, and increased
where needed, with respect to each of the classes of cyanotoxins and of additional toxicants in the raw
water. Furthermore, the development and implementation of advanced water treatment technologies
should take into account the potential for real-world exposures to a wide range of toxicants and
scenarios, from e.g., natural occurrence [121], to deliberate or man-made additions [136]. Such events
can potentially occur alone or in combination and during times of high-water usage which may include
cyanobacterial blooms in source waters, the potential for multiple exposures should be acknowledged
and contingency plans should consider this issue. Furthermore, often contingencies may include the
switching of source waters and if different, but potentially hazardous situations exist in these waters,
then alternative or enhanced treatment technologies, or e.g., the temporary provision of bottled waters,
may be required.

Understanding of the health risks presented by cyanotoxins has progressed considerably [6–9],
but the risk management of microcystins, and of microcystin-producing cyanobacteria has been the
focus of guideline derivation for health protection [137]. GVs in addition to those for microcystins,
including for cylindrospermopsin [121,134] are also being derived. Although GVs for microplastics
do not exist, the WHO has derived GVs for six monomers which can leach from the plastics, ranging
from 0.3 to 300 µg/L [138]. Some metals and pesticides also have GVs for drinking water and are
also generally in the low µg/L range [139]. Whether the GV values, with in-built safety margins,
accommodate the additive and synergistic toxicities which can arise due to cyanotoxin co-occurrences
and to the co-occurrence of cyanotoxins with other toxicants including microplastics derivatives
(Section 3.5) merits investigation.

5. Concluding Remarks

Following wildlife-, domestic animal-, and human-intoxications due to exposure to cyanobacterial
mass populations, the volume of research over recent years into the toxicology and toxinology
of cyanobacteria and cyanotoxins has increased greatly and such growth continues e.g., [1,5,7,8].
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In recognition of the co-occurrence of multiple variants within individual classes of cyanotoxins,
of different cyanotoxin classes, and of cyanotoxins plus phycotoxins, it is encouraging that
physico-chemical methods for the co-analysis of these combinations are being developed [5,19–21,140].
However, since cyanobacterial mass populations commonly develop in waterbodies which are under
intensive anthropogenic use (e.g., for domestic, industrial, and agricultural wastewater discharge,
abstraction for drinking water treatment, recreation, crop irrigation, and fisheries) it should be
anticipated that toxigenic cyanobacteria can co-occur with a wide range of additional biological and
chemical health hazards. Indeed, sufficient examples exist, reviewed here, of animal and human
health incidents and intoxications associated with multiple health hazards including cyanobacteria
and cyanotoxins, and other contributory biological toxins, microbial pathogens and anthropogenic
chemical products. Whilst further research on the toxicity of the established and emerging cyanotoxins
via bioassays is needed, including defined cyanotoxin combinations and environmental materials [15],
more cyanotoxin bioassays including other environmental toxins and toxicants, as exemplified in
Table 1, are required. Data on the toxicity of cyanotoxins in combination with other biotoxins and
chemical toxic compounds, may then contribute to the assessment of whether guideline values and
legislation for health protection can also accommodate multiple exposure to cyanotoxins plus the
other biological and chemical agents. The route of administration of cyanotoxins may also affect the
toxicological outcome or the mixtures of compounds that may be present, such as lead and particular
matter (PM2.5 and PM10) that can occur as airborne components [141,142], potentially in addition to
cyanotoxins [143].

The recognition of the multiple occurrence and combined toxicity of cyanotoxins, plus additional
toxicants and pathogens, is a growing area of research and such co-occurrences may increase further
with the growth of the human population, increasing demands upon water resources and climate
change. However, such co-occurrence(s) may have already adversely affected human health in an
earlier period. High concentrations of mercury, of phosphate consistent with eutrophic conditions, plus
16S rRNA amplicons indicating Planktothrix and Microcystis blooms (and thus potentially microcystins),
have been found in dated sediment profiles from former reservoirs serving the ancient former Mayan
city of Tikal in Guatemala. This potentially toxic combination may have contributed to the demise of
the Mayan population and of the city in the ninth Century CE [144].
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