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Abstract

In this paper, we will determine the fundamental solution for the higher spin Dirac operator Qλ,
which is a generalization of the classical Rarita-Schwinger operator to more complicated irreducible
(half-integer) representations for the spin group in m dimensions. This will allow us to generalise
Stokes’ theorem, the Cauchy-Pompeiu theorem and Cauchy’s integral formula, which lie at the
very basis of the function theory behind arbitrary elliptic higher spin operators.

Keywords: Clifford analysis, fundamental solution, higher spin, Dirac operator, Stokes’ theorem,
Cauchy integral formula

1. Introduction

This article is to be situated in the theory of Clifford analysis, a generalisation of classical complex
analysis in the plane to the case of an arbitrary dimension m ∈ Z (in case of a negative dimension,
one is dealing with so-called super Clifford analysis). At the heart of the theory lies the Dirac
operator ∂x on Rm, a conformally invariant first-order differential operator which plays the same
role in classical Clifford analysis as the Cauchy-Riemann operator ∂z does in complex analysis.
Moreover, the Dirac operator satisfies the relation ∂2

x = −∆x, which means that Clifford analysis
can be seen as a refinement of harmonic analysis on Rm.
The classical theory is centered around the study of functions on Rm which take values in the
complex Clifford algebra Cm or a corresponding Spin(m)-subrepresentation, known as the spinor
spaces (cfr. [1, 6, 10]). In recent years, several authors [2, 3, 4, 8] have been studying generalisations
of classical Clifford analysis techniques to the so-called higher spin theory. This brings us to higher
spin Dirac operators (or HSD-operators for short), generalised Dirac operators acting on functions
on Rm, which take values in arbitrary irreducible representations S±λ of the Spin(m)-group, with
dominant half-integer highest weights. An explicit expression for these HSD-operators, which can
be seen as generalised gradients in the sense of Stein and Weiss, was determined in [7]. The first
generalisation appearing in Clifford analysis was the Rarita-Schwinger operator, originally inspired
by equations coming from theoretical physics (see [12]). In the present context it is considered as the
conformally invariant operator acting on functions taking values in S±1 (see below for a definition).
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In classical Clifford analysis, the Cauchy integral formula has proved to be a corner stone of the
function theory: it can be used to decompose arbitrary null solutions for the Dirac operator into
homogeneous components and forms the basis to develop boundary value theory. This article
explains how a higher spin version of this formula can be obtained. Cauchy integral formulae
naturally rely upon the existence of a fundamental solution for the (higher spin) Dirac operator.
That is why, in the first place, a fundamental solution for Qλ will be constructed, hereby relying on
results from distribution theory. Also, this will lead to a generalized Stokes’ and Cauchy-Pompeiu
theorem.

2. On Clifford analysis

The universal Clifford algebra Rm is the associative algebra generated by an orthonormal basis
(e1, . . . , em) for Rm. The multiplication in the Clifford algebra is governed by the relations eiej +
ejei = −2δij , for all i, j ∈ {1, . . . ,m}. The complexification of Rm is defined by Cm = Rm ⊗ C.
Let eA be a basis element of Cm, defined as eA = ei1 · ei2 · . . . · eih , with i1 < i2 < · · · < ih. The
reversion or main anti-involution a 7→ a∗ is defined on basis elements by means of e∗A = eih · . . . ·ei1 ,
and is then linearly extended to the entire Clifford algebra Cm:

(aAeA + aBeB)∗ = aAe
∗
A + aBe

∗
B ,

for all aA, aB ∈ C. This anti-involution has the property that (ab)∗ = b∗a∗ for all a, b ∈ Cm.
Analogously, we can define the Hermitean conjugation a 7→ a†. On the basis elements eA, it is
defined by means of e†A = (−1)he∗A = (−1)heih · . . . · ei1 , and it is then extended anti-linearly:

(aAeA + aBeB)† = aAe
†
A + aBe

†
B ,

for all aA, aB ∈ C. Here, · denotes the complex conjugation. An alternative basis for Cm, which
will turn out to be very convenient to introduce the spinor spaces, is the so-called Witt basis:

Definition 1. The Witt basis in C2n is defined by means of

(
fj , f
†
j

)
:=

(
ej − iej+n

2
,−ej + iej+n

2

)
,

where 1 ≤ j ≤ n.

This basis has the properties that fjfk = −fkfj , f†jf
†
k = −f†kf

†
j and fjf

†
k+ f†kfj = δjk. In terms of these

basis elements, one can then define the idempotent I = f1f
†
1 · · · fnf†n, satisfying I2 = I. We will now

introduce the spinor space(s) S±2n, vector spaces carrying the basic half-integer representations for
the Spin(m)-group, which can be realised inside the Clifford algebra Cm by means of

Spin(m) :=

s =

2k∏
j=1

ωj : k ∈ N, ωj ∈ Sm−1

 ,

where Sm−1 denotes the unit sphere in Rm. Note that the parity sign will only play a role in case the
dimension m = 2n is even. First of all, we define the complex vector space S2n = C2nI. This space
carries a canonical multiplicative action of the Clifford algebra C2n, denoted by γ : C2n → End(S2n)
and defined by means of γ(a)[ψ] = aψ, for all a ∈ C2n and ψ ∈ S2n. As Spin(2n) ⊂ C2n, we can now
also restrict this representation for C2n to the spin group. However, as each element of Spin(2n)
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belongs to the even subalgebra C+
2n of C2n, the restriction of γ to Spin(2n) splits into 2 irreducible

subrepresentations (the so-called spinor representations), respectively given by

ρ± : Spin(2n)→ Aut(S±2n),

where S2n = S+
2n ⊕ S−2n, and S±2n are the graded subspaces of S2n. The highest weights for these

representations are the basic half-integer highest weights ( 1
2 , . . . ,

1
2 ,±

1
2 ). In case the dimension

m = 2n + 1 is odd, there exists a unique spinor representation for Spin(m), which amounts to
saying that the parity index can be omitted. To define this representation, we first note that
Spin(2n+ 1) ⊂ C+

2n+1
∼= C2n, where the algebra isomorphism can be defined in terms of the basis

vectors by means of
ψ : C2n → C+

2n+1 : ej 7→ ejem (1 ≤ j ≤ 2n) .

Using this isomorphism, we can define the spinor representation for Spin(2n+ 1) as follows:

ρ : Spin(2n+ 1)→ Aut(S2n) : s 7→ γ
(
ψ−1(s)

)
.

Another option is to define the action of Spin(2n + 1) on S±2n+2, taking into account that both
spinor spaces then become isomorphic. Note that we will from now on omit the dimension in the
notation for spinor spaces, and write S± instead of S±2n. The parity index should then be omitted
in case m = 2n+ 1 is odd.

As was mentioned in the introduction, the Dirac operator is a key operator in Clifford analy-
sis (cfr. [1, 6, 10]). It is defined by means of

∂x :=

m∑
j=1

ej∂xj ∈ HomC
(
C∞(Rm,S±), C∞(Rm,S∓)

)
.

In order to define general HSD-operators we need to define the spaces of (homogeneous) simplicial
and harmonic polynomials in several vector variables, as they provide explicite models for more
complicated representations for the spin group (e.g. [5]). For notational convenience, we will use
the notation ∂i for the Dirac operator ∂ui

in the vector variable ui, and the short-hand notation
u(p) = (u1, . . . , up) ∈ Rpm (with p ∈ N the number of dummy indices).

Definition 2. A function P : Rpm → S± : (u(p)) 7→ P (u(p)) is called simplicial monogenic if it
satisfies the system

∂iP = 0 (i = 1, . . . , p)

〈ui, ∂j〉P = 0 (1 ≤ i < j ≤ p) .

The space of S±-valued simplicial monogenic polynomials which are homogeneous of degree li in
ui, will be denoted by S±l1,...,lp , or S±λ for short (λ = (l1, . . . , lp)).

Definition 3. A function P : Rpm → C : (u(p)) 7→ P (u(p)) is called simplicial harmonic if it
satisfies the system

〈∂i, ∂j〉P = 0 (i = 1, . . . , p)

〈ui, ∂j〉P = 0 (1 ≤ i < j ≤ p) .

The vector space of C-valued simplicial harmonic polynomials which are homogeneous of degree li
in ui will be denoted by Hl1,...,lp or Hλ for short. The space of polynomials Hλ can be seen as a
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module for the spin group under the induced regular representation, also known as the H-action,
defined for all s ∈ Spin(m) by means of

H(s)P (u(p)) = P (s∗u(p)s),

where s∗u(p)s = (s∗u1s, . . . , s
∗ups). The polynomial space S±λ can also be seen as a module for the

spin group under the induced representation, known as the L-action, defined for all s ∈ Spin(m)
by means of L := H ⊗ ρ±. In other words:

L(s)P (u(p)) = sP (s∗u(p)s).

Remark 1. We will also need the L-action for arbitrary vectors x ∈ Rm (hereby slightly abusing
the notation, as x ∈ Rm is not a spin element). With xu(p)x := (xu1x, . . . , xupx), this action is
defined as follows: L(x)P (u(p)) := xP (x∗u(p)x). This action is well-defined, since x∗uix = xuix =
−2〈x, ui〉x+ |x|2ui ∈ Rm is still a vector.

We can now introduce the HSD-operator Qλ ([7]):

Definition 4. Let λ be an arbitrary half-integer dominant highest weight for Spin(m). The HSD-
operator is then defined as

Qλ :=

p∏
i=1

(
1 +

ui∂i
m+ 2li − 2i

)
∂x : C∞(Rm,S±λ )→ C∞(Rm,S∓λ ).

The product should be seen as an ordered product (with i = 1 to p from left to right) since the
factors do not commute.

This first-order differential operator Qλ is elliptic and conformally invariant. Its existence and
uniqueness (up to a multiplicative constant) are guaranteed by tools coming from representation
theory, see e.g. [9, 13].

3. Fundamental solution

Before turning to the fundamental solution for the operatorQλ, we will first consider a few examples
to get a grip on the general idea behind its construction and properties.

3.1. HSD-operators of order ≤ 2

The fundamental solution N(x) for the Laplace operator ∆x is given by

N(x) =


1

(2−m)Am|x|m−2
m > 2

1

2π
log |x| m = 2,

where Am is the surface area of the unit sphere Sm−1. In view of the fact that ∆x = −∂2
x, the

fundamental solution E(x) for the Dirac operator is easily obtained as

E(x) = −∂xN(x) = − 1

Am

x

|x|m
,

This expression is also called the Cauchy kernel and, as a fundamental solution for the Dirac op-
erator, it satisfies the relation ∂xE(x) = δ(x). Denoting Rm\{0} by means of Rm0 , we can say that
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E(x) is an element of the function space C∞(Rm0 ,Cm). Because Cm can be seen as the space of
endomorphisms of the (total) spinor space S = S+⊕S−, we thus have that E(x) ∈ C∞(Rm0 ,End(S)).

For the Rarita-Schwinger operator Rl1 , the first higher spin generalisation of the Dirac opera-
tor, the fundamental solution has been constructed in [3] as

El1(x;u1, u
′
1) = − 1

Am

m+ 2l1 − 2

m− 2

x

|x|m+2l1
Kl1(xu1x, u

′
1).

Here, Kl1(u1, u
′
1) denotes the so-called reproducing kernel for l1-homogeneous monogenic polyno-

mials, which has the property that

(Kl1(u1, u
′
1), Pl1(u1))(u1) = Pl1(u′1),

where the notation (., .)(u1) refers to the Fischer inner product on P(Rm,S±), given by:

(f(u1), g(u1))(u1) =
[
f(∂1)†g(u1)

] ∣∣∣∣
u1=0

.

The fundamental solution then satisfies Rl1El1(x;u1, u
′
1) = δ(x)Kl1(u1, u

′
1). This time, the fun-

damental solution for the operator Rl1 belongs to the function space C∞(Rm0 ,End(S±l1 )). In full
generality, we can therefore expect the fundamental solution for Qλ to belong to the function space
C∞(Rm0 ,End(S±λ )).

3.2. HSD-operators of general order.
The main result of this section is the following:

Proposition 1. Let Cλ ∈ R be a constant. For every Pλ(u(p)) ∈ S±λ , the function

Eλ(x;u(p)) := Cλ|x|−m+1L

(
x

|x|

)
Pλ(u(p))

belongs to C∞(Rm0 ,S±λ ). Furthermore, Eλ(x;u(p)) belongs to the kernel of the operator Qλ and has
a singularity of degree (−m+ 1) in x = 0.

The first step in proving Proposition 1 is showing that Eλ(x;u(p)) belongs to C∞(Rm0 ,S±λ ). To do
so, we need the following relation:

Lemma 1. For all indices 1 ≤ a ≤ p, we have the relation

∂a = x∂xuaxx. (1)

Proof. We prove this by direct calculation. Let (ua)j be the j-th component of the vector variable
ua. We then get that

∂a =

m∑
j=1

ej∂(ua)j

=

m∑
j=1

ej

m∑
k=1

∂(xuax)k

∂

∂(ua)j
(−2〈ua, x〉xk + |x|2(ua)k)

=

m∑
j=1

ej

m∑
k=1

∂(xuax)k · (−2xjxk + |x|2δjk)

= |x|2∂xuax − 2〈∂xuax, x〉x
= x∂xuaxx ,

which proves the lemma.
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Lemma 2. For all Pλ(u(p)) in S±λ , the polynomial xPλ(xu(p)x) belongs to C∞(Rm,S±λ ). Moreover,
we also have that Pλ(xu(p)x) ∈ C∞(Rm,Hλ ⊗ S±).

Proof. Due to Lemma 1, we have that

∂ixPλ(xu(p)x) = −x|x|2∂xuixPλ(xu(p)x) = 0,

since ∂iPλ(u(p)) = 0. From (1), we have that ∂xuix = 1
|x|4x∂ix, leading to

〈xuix, ∂xujx〉 =
1

|x|4
〈xuix, x∂jx〉 = 〈ui, ∂j〉 .

From this, we can then derive that 〈ui, ∂j〉Pλ(xu(p)x) = 〈ui, ∂j〉xPλ(xu(p)x) = 0, for all 1 ≤ i <

j ≤ m. Putting everything together, it then follows that xPλ(xu(p)x) is an element of C∞(Rm,S±λ ).
As a result, one also has that Pλ(xu(p)x) ∈ C∞(Rm,Hλ ⊗ S±).

In [5], it was shown that the irreducible finite-dimensional representation S±λ , with highest weight
λ, is generated by the highest weight vector

〈u1, f1〉l1−l2〈u1 ∧ u2, f1 ∧ f2〉l2−l3 · · · 〈u1 ∧ · · · ∧ up, f1 ∧ · · · ∧ fp〉lpI±,

where each of these inner products is defined by means of

〈u1 ∧ · · · ∧ uk, f1 ∧ · · · ∧ fk〉 = det

〈u1, f1〉 · · · 〈u1, fk〉
...

. . .
...

〈uk, f1〉 · · · 〈uk, fk〉

 (2)

=
∑
σ∈Sk

sgn(σ)〈uσ(1), f1〉 · · · 〈uσ(k), fk〉, (3)

Sk being the symmetric group in k elements, and where I+ = I and I− = f†nI. Without loss of
generality, we can now choose

Pλ(u(p)) = 〈u1, f1〉l1−l2〈u1 ∧ u2, f1 ∧ f2〉l2−l3 · · · 〈u1 ∧ · · · ∧ up, f1 ∧ · · · ∧ fp〉lpI± ,

since all operators in AlgC{x, ∂x, u1, . . . , up, ∂1, . . . , ∂p} are Spin(m)-invariant, and

S±λ = SpanC{L(s)Pλ(u(p)) : s ∈ Spin(m)}.

Defining |λ| = l1 + · · ·+ lp, this choice for Pλ then leads to

|x|−m+1L

(
x

|x|

)
Pλ =

x〈xu1x, f1〉l1−l2 · · · 〈xu1x ∧ · · · ∧ xupx, f1 ∧ · · · ∧ fp〉lp
|x|m+2|λ| I±. (4)

We will now prove the second part of Proposition 1, namely that the expression (4) indeed belongs
the kernel of Qλ for |x| 6= 0. Let us define πλ as the projection operator

πλ : C∞(Rm,Hλ ⊗ S±)→ C∞(Rm,S±λ ).

Recalling the definition Qλ = πλ∂x for the HSD-operator on S±λ -valued functions, and invoking
the operator identity ∂xx = Γx − Ex −m for the Dirac operator, we arrive at

Qλ(|x|−m−2|λ|xPλ(xu(p)x))

= (m+ 2|λ|)|x|−m−2|λ|πλPλ(xu(p)x) + |x|−m−2|λ|πλ∂x(xPλ(xu(p)x))

= |x|−m−2|λ|πλΓxPλ(xu(p)x) .
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Here, Γx denotes the Gamma-operator (the tangential part of the Dirac operator, see e.g. [6]). So
we are left with proving the statement

πλΓxPλ(xu(p)x) = 0.

Let us recall that, in full generality, we have the following decomposition for spinor-valued poly-
nomials in the variables (u(p)) ∈ Rpm:

P(Rpm,S±) = S±λ ⊕
(
u1P(Rm,S∓) + · · ·+ upP(Rm,S∓)

)
.

The summations between brackets are obviously not direct, but we will only use the fact that the
operator πλ is the projection operator onto the first summand S±λ . So it suffices to work modulo
the vector spaces ujP(Rm,S∓). This means for example that

Γx〈x, uj〉 mod ujP = uj ∧ x mod ujP = 2〈x, uj〉 mod ujP.

This, and the fact that f2i = 0, allows us to prove the following:(
Γx〈x, uj〉〈x, fi〉fif†i

)
mod ujP =

(
(2〈x, uj〉〈x, fi〉+ fi ∧ x〈x, uj〉)fif†i

)
mod ujP

= 〈x, uj〉 (2〈x, fi〉+ fix) fif
†
i mod ujP

= −〈x, uj〉xfifif†i mod ujP = 0 .

In view of the fact that Pλ(xu(p)x) consists of factors of the form∑
σ∈Sk

sgn(σ)〈xuσ(1)x, f1〉 · · · 〈xuσ(k)x, fk〉

=
∑
σ∈Sk

sgn(σ)

k∏
i=1

(
|x|2〈uσ(i), fi〉 − 2〈x, fi〉〈x, uσ(i)〉

)
.

it is clear that the first terms between brackets will also not contribute, since they depend on the
norm of x only (on which Γx acts trivially). We are now ready to explain why we indeed have that

ΓxPλ(xu(p)x) mod ujP = 0 .

First of all, as Γx is a first order differential operator, it suffices to verify that

Γx〈xu1x ∧ · · · ∧ xukx, f1 ∧ · · · ∧ fk〉aI± mod ujP = 0 ,

for all 1 ≤ k ≤ p and a ∈ N. In view of the chain rule, it suffices to prove this for a = 1, which
amounts to showing that

Γx
∑
σ∈Sk

sgn(σ)

k∏
i=1

(
|x|2〈uσ(i), fi〉 − 2〈x, fi〉〈x, uσ(i)〉

)
mod ujP = 0.

But as was explained above, none of these factors will survive, which proves Proposition 1.

Note that, until now, we have excluded the pointwise singularity of Eλ(x;u(p)) at x = 0. In
order to investigate this singularity, we use results from distribution theory.
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3.3. Riesz potentials

Consider the function x 7→ |x|α−2|λ|xPλ(xu(p)x), for a fixed α ∈ C. This is obviously an element of

the function space C∞(Rm0 ,S±λ ). Under the action of the HSD-operator, using similar calculations
as above, we get

Qλ(|x|α−2|λ|xPλ(xu(p)x)) = −(α+m)|x|α−2|λ|xPλ(xu(p)x). (5)

For α = −m, we thus have that |x|α−2|λ|xPλ(xu(p)x) belongs to the kernel of the operator HSD-
operator Qλ. Furthermore, it clearly has a pointwise singularity in the origin x = 0 of degree
(−m+ 1). The function defined by

x 7→ |x|α−2|λ|xPλ(xu(p)x)

is an element of the space of locally integrable functions Lloc1 (Rm,S±λ ) if <(α) > −m − 1, so it
defines a distribution on the space D(Rm,S±λ ) of test functions φ in C∞(Rm,S±λ ) with compact
support. Consider, for <(γ) > −m, the distribution |x|γ , whose action is defined by the integral
formula

〈|x|γ , φ〉 =

∫
Rm

|x|γφ(x)dx,

for all test functions φ(x) ∈ D(Rm). We will use the following result, see e.g. [11]:

Lemma 3. The mapping γ 7→ |x|γ can be uniquely extended to a meromorphic mapping from the
complex numbers to the space of tempered distributions on Rm (i.e. holomorphic on C, except for
a few isolated points). The poles are the points γ = −m − 2a (for all a ∈ N), and they are all
simple.

Define for γ ∈ C\{m + 2a,−2b : a, b ∈ N} the action of the Riesz potential Iγx on a rapidly
decreasing test function φ as follows:

Iγxφ :=
Γ
(
m−γ

2

)
2γπ

m
2 Γ
(
γ
2

)φ ∗ |x|−m+γ ,

where ∗ is the convolution product on Rm and I0
xφ = limγ→0 I

γ
xφ = φ. Note that he poles of |x|γ−m

are cancelled by the poles of Γ
(
γ
2

)
. The Riesz potential for γ = 2 can be seen as an ‘inverse’ of

the Laplace operator ∆x, because it satisfies the following relation in distributional sense:

Iγx∆xφ = ∆xI
γ
xφ = −Iγ−2

x φ.

For all b ∈ N, we have that Iγx = (−1)b∆b
xI
γ+2b
x , so if we define

I−2a
x := (−1)a∆a

xδ(x),

where δ(x) is the Dirac-delta distribution, then this is an analytic continuation of the mapping
γ 7→ Iγx to a holomorphic function with poles in {γ = m + 2a|a ∈ N}. These are the poles
of Γ

(
m−γ

2

)
. If we reformulate our findings in terms of the distribution |x|−m+γ , then we can

analytically extend the mapping γ 7→ |x|−m+γ to C\{−2a : a ∈ N}, according to Lemma 3. Its
singularities are simple poles, with residues

Res[|x|−m−γ , γ = −2a] = Res

[
2γπ

m
2 Γ
(
γ
2

)
Γ
(
m−γ

2

) Iγx , γ = −2a

]

=
2−2aπ

m
2

Γ
(
m
2 + a

)Res
[
Γ
(γ

2

)
, γ = −2a

]
I−2a
x .
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In view of the fact that

Res
[
Γ
(γ

2

)
, γ = −2a

]
= lim
γ→−2a

(γ + 2a)Γ
(γ

2

)
= 2

(−1)a

a!
,

it then follows that

Res[|x|−m−γ , γ = −2a] =
2−2a+1π

m
2

Γ
(
m
2 + a

)
a!

∆a
xδ(x).

Thus, the mapping α 7→ |x|α−2|λ|xPλ(xu(p)x) is holomorphic in C\{−m + 2|λ| − 2a, a ∈ N}.
Moreover, the poles at the values {−m+ 2(|λ| − 1), . . . ,−m+ 2,−m} are removable singularities.
For instance, for the pole α = −m, we have that

Res[|x|α−2|λ|xPλ(xu(p)x), α = −m] = lim
α→−m

(α+m)|x|α−2|λ|xPλ(xu(p)x).

Putting x = rω with r = |x|, this can then be rewritten as

lim
α→−m

(α+m)rα+1ωPλ(ωu(p)ω) = 0.

Similar calculations can be done for the other singularities. So we have proved the following
proposition:

Proposition 2. The mapping α 7→ |x|α−2|λ|xPλ(xu(p)x) can be continued holomorphically in
C\{−m− 2a, a ∈ N}.

This means that (5) holds in distributional sense in C, as long as <(α) > −m − 1. Hence, with
this restriction on α,

Qλ
(
|x|−m−2|λ|xPλ(xu(p)x)

)
= − lim

α→−m
(α+m)|x|α−2|λ|πλPλ(xu(p)x)

= −Res
[
|x|α−2|λ|, α = −m

]
πλPλ(xu(p)x)

=
2−2|λ|+1π

m
2

Γ
(
m
2 + |λ|

)
|λ|!

(∆|λ|x δ(x))πλPλ(xu(p)x). (6)

Moreover, in view of the fact that 〈δ, ϕ〉 = ϕ(0), we get:

〈(∆|λ|x δ)(πλPλ(xu(p)x)), φ〉 = 〈∆|λ|x δ, (πλPλ(xu(p)x))φ〉
= 〈δ,∆|λ|x ((πλPλ(xu(p)x))φ)〉
= 〈δ,∆|λ|x (πλPλ(xu(p)x))φ+ · · ·〉 ,

where the dots indicate all other terms coming from the action of ∆
|λ|
x . They can safely be ignored,

in view of the fact that we still need to act with the distribution δ(x), which will make all these
terms disappear. We thus get that

〈(∆|λ|x δ)(πλPλ(xu(p)x)), φ〉 = 〈δ,∆|λ|x (πλPλ)φ〉 = 〈∆|λ|x (πλPλ)δ, φ〉 .

This means that formula (6) reduces to

Qλ
(
|x|−m−2|λ|xPλ(xu(p)x)

)
=

2−2|λ|+1π
m
2

Γ
(
m
2 + |λ|

)
|λ|!

∆|λ|x (πλPλ(xu(p)x))δ(x).
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In order to calculate the remaining expression ∆
|λ|
x (πλPλ(xu(p)x)), we first note that ∆x and πλ

commute. Next, we introduce the operator ξx by means of

ξx : S±λ → P2|λ|(x)⊗Hλ(u(p))⊗ S± : Pλ(u(p)) 7→ Pλ(xu(p)x).

It can easily be calculated that the map ∆
|λ|
x ξx is Spin(m) invariant:

∆|λ|x ξxL(s)Pλ(u(p)) = ∆|λ|x sPλ(s∗xss∗u(p)ss
∗xs)

= s∆|λ|x Pλ(s∗xss∗u(p)ss
∗xs).

The image of the Spin(m)-invariant map ∆
|λ|
x ξx equals S±λ . According to Schur’s lemma, there

must therefore exist a constant Cλ such that

∆|λ|x ξxPλ(u(p)) = CλPλ(u(p)). (7)

Let us then determine the constant Cλ explicitly. We do this by complexifying the variables uj
and choosing a specific value for them: uj := ej + ien+j , for all j = 1, . . . , n. Then our results
simplify a great deal, since 〈ui, fj〉 = δij and thus Pλ(u(p)) = I±. Furthermore,

〈xu1x ∧ · · · ∧ xukx, f1 ∧ · · · ∧ fk〉

= |x|2k〈u1 ∧ · · · ∧ uk, f1 ∧ · · · ∧ fk〉 − 2

k∑
j=1

|x|2k−2〈uj , x〉〈(u1 ∧ · · · ∧ uk)j , f1 ∧ · · · ∧ fk〉

= |x|2k − 2

k∑
j=1

|x|2k−2〈uj , x〉〈x, fj〉

= |x|2k−2(x2
k+1 + · · ·+ x2

n + x2
n+k+1 + · · ·+ x2

m).

Putting x(j) = (0, . . . , 0, xj , . . . , xn, 0, . . . , 0, xn+j , . . . , xm), we then get that

Pλ(xu(p)x) = |x|2|λ|−l1 |x(2)|2(l1−l2) · · · |x(p)|2(lp−1−lp)|x(p+1)|2lpI± .

Together with the relation

∆a
x|x|2b =

min(a,b)∑
j=0

(
a

j

)
22jj!

(
b

j

)
Γ
(
m
2 + Ex − b+ a+ j

)
Γ
(
m
2 + Ex − b+ a

) |x|2(b−j)∆a−j
x ,

which follows from the fact that [∆x, |x|2] = 2m+ 4Ex, we find that

∆|λ|x Pλ(xu(p)x)

= 22|λ||λ|!
Γ
(
m
2 + |λ|

)
Γ
(
m
2 + l1

) Γ
(
m
2 + l1 − 1

)
Γ
(
m
2 + l2 − 1

) · · · Γ (m2 + lk−1 − k + 1
)

Γ
(
m
2 + lk − k + 1

) Γ
(
m
2 + lk − k

)
Γ
(
m
2 − k

) Pλ(xu(p)x).

This then leads to the following conclusion:

Qλ
(
|x|−m−2|λ|xPλ(xu(p)x)

)
=

π
m
2 2−|λ|+1

Γ
(
m
2 + |λ|

)
|λ|!

2|λ||λ|!Γ
(
m
2 + |λ|

)(
m
2 + l1 − 1

)
· · ·
(
m
2 + lk − k

)
Γ
(
m
2 − k

)Pλ(u(p))δ(x)

= −Am
p∏
j=1

m− 2j

m+ 2lj − 2j
Pλ(u(p))δ(x),

To conclude our findings:
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Theorem 1. Defining the constant Cλ by means of

Cλ = − 1

Am

k∏
j=1

m+ 2lj − 2j

m− 2j
,

the distribution

eλ(x) := Cλ|x|−m+1L

(
x

|x|

)
∈ C∞(Rm0 ,End(S±λ ))

satisfies, for every Pλ ∈ S±λ , in distributional sense

Qλeλ(x)Pλ = δ(x)Pλ.

Let us then introduce the notation (., .)(u(p)) for the Fischer inner product on Pλ, which is defined
as follows:

(f(u1, . . . , up), g(u1, . . . , up))(u(p)) =
[
f(∂1, . . . , ∂p)

†g(u1, . . . , up)
] ∣∣∣∣
u1=···=up=0

.

In order to obtain a fundamental solution for Qλ, we then let the distribution eλ(x) act on the
reproducing kernel Kλ(u(p), u

′
(p)) for S±λ , satisfying the defining relation

(Kλ(u(p), u
′
(p)), Pλ(u(p)))(u(p)) = Pλ(u′(p)),

for each Pλ(u(p)) ∈ S±λ .

Definition 5. The fundamental solution for the operator Qλ is defined as

Eλ(x;u(p), u
′
(p)) := eλ(x)Kλ(u(p), u

′
(p)).

4. Basic integral formula

Now that we have constructed the fundamental solution, we can prove the main integral formulas
in higher spin Clifford analysis. Define the volume element dx = dx1 ∧ · · · ∧ dxm and surface
element dσx =

∑m
j=1(−1)j−1ejdx̂j , where dx̂j = dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ dxm.

Theorem 2. Let Ω′ ⊂ Rm and Ω ⊂ Ω′. Then for f(x) and g(x) ∈ C∞(Ω′,S±λ ), where we will
not mention the variables u(p) to avoid overloaded notations, we have the following formulae (for
arbitrary y ∈ Ω′)

(i) (Stokes’ theorem)∫
Ω

[
−(Qλg(x), f(x))(u(p)) + (g(x),Qλf(x))(u(p))

]
dx =

∫
∂Ω

(g(x), πλ(dσx)f(x))(u(p)).

(ii) (Cauchy-Pompeiu)

−
∫
∂Ω

(Eλ(y − x), πλ(dσx)f(x))(u(p)) +

∫
Ω

(Eλ(y − x),Qλf(x))(u(p))dx =

{
f(y) y ∈ Ω

0 y /∈ Ω.

(iii) (Cauchy integral formula) If Qλf = 0 in Ω′, one has

−
∫
∂Ω

(Eλ(y − x), πλ(dσx)f(x))(u(p)) =

{
f(y) y ∈ Ω
0 y /∈ Ω,
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where πλ(dσx)f(x) is an S∓λ -valued (m− 1)-form.

Proof. Let f(x), g(x) ∈ C∞(Ω′,S±λ ). The classical Stokes’ formula for the Dirac operator (e.g. [6])
leads to ∫

Ω

[
−(∂xg(x))†f(x) + g(x)†(∂xf(x))

]
dx =

∫
∂Ω

g(x)†dσxf(x).

This identity still depends on the vector variables u(p) ∈ Rpm. To obtain the generalised Stokes’
theorem for the operator Qλ, it is sufficient to take the Fischer inner product with respect to u(p),
since we have that

(Qλg(x), f(x))(u(p)) = (πλ∂xg(x), f(x))(u(p)) = (∂xg(x), f(x))(u(p)),

(g(x),Qλf(x))(u(p)) = (πλ∂xf(x), g(x))†(u(p))
= (∂xf(x), g(x))†(u(p))

= (g(x), ∂xf(x))(u(p)) ,

and
(g(x), πλ(dσx)f(x))(u(p)) = (g(x), (dσx)f(x))(u(p)).

The Cauchy-Pompeiu formula for the operator Qλ is then obtained from Stokes’ formula, by
substituting g(x;u(p)) = Eλ(y − x;u(p), u

′
(p)). We then get∫

Ω

[
−(δ(y − x)K(u(p), u

′
(p)), f(x;u(p))) + (Eλ(y − x;u(p), u

′
(p)),Qλf(x;u(p)))(u(p))

]
dx

=

∫
∂Ω

(Eλ(y − x;u(p), u
′
(p)), πλ(dσx)f(x;u(p)))(u(p))

⇔
∫

Ω

[
−δ(y − x)f(x;u′(p)) + (Eλ(y − x;u(p), u

′
(p)),Qλf(x;u(p)))(u(p))

]
dx

=

∫
∂Ω

(Eλ(y − x;u(p), u
′
(p)), πλ(dσx)f(x;u(p)))(u(p)) .

In order to further simplify these integrals, we invoke the definition for the fundamental solution
and proceed as follows:

−f(y, u′(p)) +

∫
Ω

(eλ(y − x)Kλ(u(p), u
′
(p)),Qλf(x;u(p)))(u(p))dx

=

∫
∂Ω

(eλ(y − x)Kλ(u(p), u
′
(p)), πλ(dσx)f(x;u(p)))(u(p)).

Using the fact that(
L

(
x

|x|

)
P (u(p)), R(u(p))

)
(u(p))

= −
(
P (u(p)), L

(
x

|x|

)
R(u(p))

)
(u(p))

,

for any P (u(p)), R(u(p)) ∈ S±λ , we can now rewrite these expressions as

⇔ −f(y, u′(p))−
∫

Ω

eλ(y − x)(Kλ(u(p), u
′
(p)),Qλf(x;u(p)))(u(p))dx

= −
∫
∂Ω

eλ(y − x)(Kλ(u(p), u
′
(p)), πλ(dσx)f(x))(u(p))

⇔ f(y, u′(p)) +

∫
Ω

eλ(y − x)Qλf(x;u′(p))dx

= +

∫
∂Ω

eλ(y − x)πλ(dσx)f(x;u′(p)).

Invoking the fact that f ∈ kerQλ immediately gives us the Cauchy integral formula.
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5. Conclusion

Using the theory of Riesz distributions and techniques coming from representation theory, the
fundamental solution Eλ(x;u(p)u

′
(p)) for the higher spin Dirac operator Qλ was determined. This

fundamental solution allows us to prove a generalised version of the classical integral formulae
(Stokes’ theorem, the Cauchy-Pompeiu theorem and the Cauchy integral formula), which are nec-
essary in order to develop a function theory for the operator Qλ.
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[6] Delanghe, R., Sommen, F., Souček, V., Clifford analysis and spinor valued functions, Kluwer
Academic Publishers, Dordrecht (1992).

[7] De Schepper, H., Eelbode, D., Raeymaekers, T., On a special type of solutions for arbitrary
higher spin Dirac Operators, J. Phys. A: Math. Theor. 43 (2010) 325208 (13pp).

[8] Eelbode, D., Smid, D., Factorization of Laplace operators on higher spin representations,
Compl. Anal. Oper. Theo. 6 No. 5 (2012), pp 1011-1023.

[9] Fegan H.D., Conformally invariant first order differential operators, Quart. J. Math. 27
(1976), 513–538.

[10] Gilbert, J., Murray, M.A.M., Clifford algebras and Dirac operators in harmonic analysis,
Cambridge University Press, Cambridge (1991).

[11] Helgason, S., Groups and geometric analysis: Integral geometry, invariant differential opera-
tors and spherical functions, Academic Press, Inc. (1984)

[12] Rarita, W., Schwinger, J. On a Theory of Particles with Half-Integral Spin, Phys. Rev. 60, 61
(1941)

[13] Stein, E.W. , Weiss, G., Generalization of the Cauchy-Riemann equations and representations
of the rotation group, Amer. J. Math. 90 (1968), pp. 163-196.

13


