A characterisation result on a particular class of non-weighted minihypers

J. De Beule, A. Hallez and L. Storme

Abstract

We present a characterisation of $\{\epsilon_1(q+1)+\epsilon_0,\epsilon_1;n,q\}$ -minihypers, q square, $q=p^h, p>3$ prime, $h\geq 2, q\geq 1217$, for $\epsilon_0+\epsilon_1<\frac{q^{7/12}}{2}-\frac{q^{1/4}}{2}$. This improves a characterisation result of S. Ferret and L. Storme [6], involving more Baer subgeometries contained in the minihyper.

Keywords: minihypers, Griesmer bound, blocking sets

1 Introduction

Let PG(n,q) be the *n*-dimensional projective space over the finite field \mathbb{F}_q of order q. A weight function w of PG(n,q) is a mapping from the point set of PG(n,q) to the set of non-negative integers. For a point P, the integer w(P) is called the weight of the point P, and for a set M of points, its weight is the sum of the weights of its points. The sum of the weights of all points of PG(n,q) is the total weight of w.

Definition 1.1 An $\{f, m; n, q\}$ -minihyper, $f \geq 1$, $n \geq 2$, is a pair (F, w), where F is a set of points of PG(n, q), w is a weight function of PG(n, q), and

^{*}This author is a postdoctoral research fellow of the Research Foundation Flanders – Belgium (FWO).

[†]This research was initiated while the third author was visiting the Justus-Liebig-Universität Gießen, Germany, with a Fellowship of the Alexander von Humboldt Foundation.

 $P \in F \iff w(P) > 0$; the total weight of w is f, and m is the minimum weight of the hyperplanes of PG(n, q), i.e.,

$$\sum_{P \in \pi} w(P) \ge m,$$

for any hyperplane π of PG(n,q), with equality for at least one hyperplane of PG(n,q).

Of course, the set F is determined by the weight function w. When the range of w is $\{0,1\}$, the converse is true and then the minihyper is identified with F and is called a non-weighted minihyper. Thus, a non-weighted $\{f,m;n,q\}$ -minihyper is a set F of f points of $\mathrm{PG}(n,q)$ such that every hyperplane contains at least m points of F. This is the definition of a minihyper given by Hamada and Tamari in [12] and it was generalised to the definition of a weighted minihyper in [7]. (Weighted) minihypers can also be called (weighted) multiple blocking sets. In the sequel, we will always clearly distinguish between weighted and non-weighted minihypers and use the term minihyper to denote a non-weighted minihyper.

As (weighted) minihypers are (weighted) multiple blocking sets with respect to the hyperplanes of a projective space, the study of these objects fits completely in the rich literature on the study of blocking sets and generalisations. But (weighted) minihypers are also a geometric interpretation of linear codes meeting the Griesmer bound. This connection is described in detail in several references, such as [4, 5].

Denote the number of points in an *i*-dimensional projective space PG(i, q) by θ_i , i.e., $\theta_i = \frac{q^{i+1}-1}{q-1}$, and define $\theta_{-1} = 0$. The following characterisation theorem was shown by Hamada, Helleseth and Maekawa.

Theorem 1.2 ([10, 11]) $A \{\sum_{i=0}^{s} \epsilon_{i}\theta_{i}, \sum_{i=0}^{s} \epsilon_{i}\theta_{i-1}; n, q\}$ -minihyper is the union of pairwise disjoint ϵ_{i} projective subspaces of dimension i, for $i = 0, \ldots, s$, if $\sum_{i=0}^{s} \epsilon_{i} = h < \sqrt{q} + 1$.

In [6], Ferret and Storme proved that increasing h to $2\sqrt{q}-1$ allows one Baer subgeometry in the minihyper.

Theorem 1.3 ([6, Theorem 5.9]) Let F be a $\{\sum_{i=0}^{k-2} \epsilon_i \theta_i, \sum_{i=0}^{k-2} \epsilon_i \theta_{i-1}; k-1, q\}$ -minihyper, q square, $q = p^h$, h even, p prime, where $\sum_{i=0}^{k-2} \epsilon_i \leq \min\{2\sqrt{q}-1, c_p q^{5/9}\}$, $c_p = 2^{-1/3}$, $q \geq 2^{14}$, when p = 2, 3, and where $\sum_{i=0}^{k-2} \epsilon_i \leq \min\{2\sqrt{q}-1, q^{6/9}/(1+q^{1/9})\}$, $q \geq 2^{12}$, when p > 3.

Then F consists of the union of pairwise disjoint

- (1) ϵ_{k-2} spaces $PG(k-2,q), \epsilon_{k-3}$ spaces $PG(k-3,q), \ldots, \epsilon_0$ points, or
- (2) one subgeometry $PG(2l+1, \sqrt{q})$, for some integer l with $1 \le l \le \frac{k-2}{2}$, ϵ_{k-2} spaces $PG(k-2,q), \ldots, \epsilon_{l+1}$ spaces $PG(l+1,q), \epsilon_l \sqrt{q} 1$ spaces $PG(l,q), \epsilon_{l-1}$ spaces $PG(l-1,q), \ldots, \epsilon_0$ points, or
- (3) one subgeometry $PG(2l, \sqrt{q})$, for some integer l with $1 \leq l \leq \frac{k-1}{2}$, ϵ_{k-2} spaces $PG(k-2,q), \ldots, \epsilon_{l+1}$ spaces $PG(l+1,q), \epsilon_l 1$ spaces $PG(l,q), \epsilon_{l-1} \sqrt{q}$ spaces $PG(l-1,q), \epsilon_{l-2}$ spaces $PG(l-2,q), \ldots, \epsilon_0$ points.

In this article, in Theorems 3.11 and 4.2, we give a characterisation of these minihypers with $h < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$ and s = 1. In particular, we prove the following theorem.

Theorem 1.4 Let F be a non-weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; n, q\}$ -minihyper, q square, $q = p^h$, p > 3 prime, $h \ge 2$, $q \ge 1217$, $n \ge 4$, where $\epsilon_1 + \epsilon_0 = \eta(\sqrt{q} - q^{1/6}) < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$, then F is the union of pairwise disjoint A lines, B isolated Baer subplanes $PG(2, \sqrt{q})$ and C Baer subgeometries $PG(3, \sqrt{q})$, with $A + B + C(\sqrt{q} + 1) = \epsilon_1$, and $\epsilon_0 - B\sqrt{q}$ extra points.

2 Preliminaries

We explain formally the notion of removing a point P from a weighted minihyper (F, w). Suppose that (F, w) is a weighted minihyper. With the notation $P \in (F, w)$, we always mean w(P) > 0, equivalently $P \in F$.

Suppose that we have two weighted sets (F_1, w_1) and (F_2, w_2) in PG(n, q), where $w_1(P) \geq w_2(P)$ for all points P of PG(n, q). Then we can define the new weighted set $(F, w) = (F_1, w_1) - (F_2, w_2)$ defined by the weight function w, with $w : PG(n, q) \to \mathbb{N} : P \mapsto w(P) = w_1(P) - w_2(P)$. When the weights $w_2(P)$ of all the points P of PG(n, q) are equal to zero or one, we simply write this difference as $(F, w) = (F_1, w_1) - F_2$.

For instance, suppose that $P \in (F, w)$ and define $w' : PG(n, q) \to \mathbb{N}$: w'(R) = w(R) for any point $R \in PG(n, q) \setminus \{P\}$ and w'(P) = w(P) - 1. Then w' determines a new set F' and $(F, w) - \{P\}$ is by definition (F', w'). This is the weighted minihyper in which the point P is removed once from (F, w). It is clear that $F' = F \setminus \{P\}$ when (F, w) is a non-weighted minihyper.

We can easily extend the notion of removing points from (F, w) to removing sets $M \subseteq F$ from (F, w) by defining $w' : \operatorname{PG}(n, q) \to \mathbb{N}$: w'(R) = w(R) for any point $R \in \operatorname{PG}(n, q) \setminus M$ and w'(P) = w(P) - 1 for $P \in M$.

Removing points or sets from a minihyper (F, w) can, under certain circumstances, yield a minihyper as expected, as is shown in the next lemma.

Lemma 2.1 Let (F, w) be a weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; n, q\}$ -minihyper, $n \geq 3$, with $2\epsilon_1 + \epsilon_0 < q + 2$, containing a line L. Then (F, w) - L is a weighted $\{(\epsilon_1 - 1)(q + 1) + \epsilon_0, \epsilon_1 - 1; n, q\}$ -minihyper.

Proof. We have to show that (F, w) - L is a weighted $\{(\epsilon_1 - 1)(q + 1) + \epsilon_0, \epsilon_1 - 1; n, q\}$ -minihyper. The essential part is to show that any hyperplane intersects (F, w) - L in at least $\epsilon_1 - 1$ points. So consider the line L and an arbitrary hyperplane π . Since $|\pi \cap (F, w)| \ge \epsilon_1$, it follows immediately that $|\pi \cap ((F, w) - L)| \ge \epsilon_1 - 1$ if π intersects L in exactly one point.

We are left with the case $L \subset \pi$. If $|\pi \cap (F, w)| \ge q + \epsilon_1$, then clearly, $|\pi \cap ((F, w) - L)| \ge \epsilon_1 - 1$. So suppose that $|\pi \cap (F, w)| < q + \epsilon_1$.

Consider an (n-3)-dimensional space Ω in π skew to F. The minihyper (F, w) is projected from Ω on a weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; 2, q\}$ -minihyper (F', w'). The projection of L is a line L' contained in (F', w'). By [8, Theorem 2.2], we can reduce the weight of every point of L' by one to obtain an (ϵ_1-1) -fold blocking set F'' in this plane. But then L' is still blocked at least $\epsilon_1 - 1$ times. So π is blocked at least $q + \epsilon_1$ times by F.

As we may consider minippers containing no lines, the following lemma will provide information on their size. It is proved in [4] and it is a generalisation of a result from [1].

Lemma 2.2 A weighted $\{f, t; 2, q\}$ -minihyper (B, w), with $1 \le t < q-1$ and $q \ge 3$, contains a line or satisfies $f \ge tq + \sqrt{tq} + 1$.

We first of all wish to characterise weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; 3, q\}$ -minihypers, q square, having weighted points with total weight of the weighted points at most $\frac{2\epsilon_1^2}{q}$ and where $\epsilon_1 + \epsilon_0 = \eta(\sqrt{q} - q^{1/6}) < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$, as a sum of A lines, B isolated Baer subplanes $PG(2, \sqrt{q})$ and C Baer subgeometries $PG(3, \sqrt{q})$, where $A + B + C(\sqrt{q} + 1) = \epsilon_1$, and $\epsilon_0 - B\sqrt{q}$ extra points.

With an *isolated* Baer subplane $PG(2\sqrt{q})$ contained in F, we mean a Baer subplane $PG(2, \sqrt{q})$ contained in F, but not contained in a 3-dimensional Baer subgeometry $PG(3, \sqrt{q})$, completely contained in F.

We will focus on the existence of the isolated Baer subgeometries $PG(2, \sqrt{q})$ and the Baer subgeometries $PG(3, \sqrt{q})$ contained in (F, w). To find Baer subgeometries completely contained in (F, w), we will use a result of Barát and Storme [2]. This paper contains a lot of results on multiple (weighted) blocking sets in projective spaces, and we state a related result required in this article.

Theorem 2.3 Let B be an s-fold blocking set in PG(2,q), $q = p^h$, p prime, $h \ge 1$, having points with multiplicities. Assume that $|B| \le s(q+1) + c$ where

- (1) h > 1, $c < c_p q^{2/3}$ and $s < \min(c_p q^{1/6}, q^{1/4}/2)$ where $c_2 = c_3 = 2^{-1/3}$ and $c_p = 1$ for p > 3,
- (2) $q = p^2$, $s < q^{1/4}/2$ and $c < q^{3/4}/2$,

and assume that B has at least $(s-2)(q+\sqrt{q}+1)+16\sqrt{q}+8q^{1/4}$ simple points in (1) and at least $(s-2)(q+\sqrt{q}+1)+16\sqrt{q}+16q^{1/6}$ simple points in (2).

Then B contains the sum of s Baer subplanes and/or lines.

This theorem is proved in exactly the same way as [2, Theorem 3.10], but using two new arguments. First of all, the $t \pmod{p}$ result on small weighted minimal t-fold blocking sets in $\operatorname{PG}(2,q)$, $q=p^h$, p prime, $h\geq 1$ [8, Theorem 2.13], that is now known, has to be used. Secondly, by [8, Theorem 2.2], if a line L is contained in the s-fold blocking set B, then we can reduce the weight of every point of L by one to obtain an (s-1)-fold blocking set F'' in this plane. By using these two new arguments, the upper bound s(q+1)+c-(s-1)(s-2)/2 in [2, Theorem 3.10] can be replaced by the upper bound s(q+1)+c.

Suppose that (F, w) is a weighted minihyper in PG(n, q) and consider any subspace π of PG(n, q). Then $(F, w) \cap \pi$ is the weighted minihyper (F', w') induced in the subspace π , where $F' := F \cap \pi$ and w' is the function w restricted to the points of π . The following theorem provides useful information on intersections of weighted minihypers with subspaces.

Theorem 2.4 ([4, Result 2.9]) Let (F, w) be a weighted $\{\sum_{i=0}^{n-1} \epsilon_i \theta_i, \sum_{i=0}^{n-1} \epsilon_i \theta_{i-1}; n, q\}$ -minihyper satisfying $n \geq 1$, $\sum_{i=0}^{n-1} \epsilon_i = h \leq q$. Then every r-space π_r , $1 \leq r \leq n$, not contained in (F, w), intersects (F, w) in a weighted $\{\sum_{i=0}^{r-1} m_i \theta_i, \sum_{i=0}^{r-1} m_i \theta_{i-1}; r, q\}$ -minihyper $(F, w) \cap \pi_r$, satisfying $\sum_{i=0}^{r-1} m_i \leq h$.

Lemma 2.5 Let (F, w) be a weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; n, q\}$ -minihyper, with $\epsilon_1 + \epsilon_0 < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$, containing no lines and having at most $q^{1/6}/2$ multiple points. If a plane π intersects (F, w) in a weighted $\{m_1(q+1) + m_0, m_1; 2, q\}$ -minihyper, with $m_1 \geq 1$, then $(F, w) \cap \pi$ contains a sum of m_1 Baer subplanes.

Proof. By Theorem 2.4, we know that $m_1 + m_0 \le \epsilon_1 + \epsilon_0 < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$. The intersection of π with F does not contain lines, since F does not contain lines, so $|\pi \cap (F, w)| \ge m_1 q + \sqrt{m_1 q} + 1$ by Lemma 2.2, which implies $\sqrt{m_1 q} + 1 < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$. Hence, $m_1 < q^{1/6}/2$. By Theorem 2.3, $\pi \cap (F, w)$ contains a sum of m_1 Baer subplanes.

3 Minihypers in three dimensions

To obtain the desired characterisation, we will use an inductive argument on the dimension $n \geq 3$. In this inductive step, we will require a characterisation of weighted minihypers in three dimensions, which we will obtain in this section.

The following theorem, which is an improvement of [2, Theorem 3.1], also plays a crucial role.

Theorem 3.1 ([9, Theorem 3.1]) Let B be a t-fold blocking set in PG(n,q), $q = p^h$, p prime, $q \ge 661$, $n \ge 3$, of size $|B| < tq + c_p q^{2/3}$, with $c_2 = c_3 = 2^{-1/3}$, $c_p = 1$ when p > 3, and with $t < c_p q^{1/6}/2$. Then B contains a union of t pairwise disjoint lines and/or Baer subplanes.

We assume that (F, w) is a weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; 3, q\}$ -minihyper, q square, $q = p^h$, p > 3 prime, $h \ge 2$, $q \ge 1217$, where the total weight of the multiple points is at most $\frac{2\epsilon_1^2}{q}$ and with $\epsilon_1 + \epsilon_0 = \eta(\sqrt{q} - q^{1/6}) < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$, so $\eta < \frac{q^{1/12}}{2}$, and we assume that (F, w) does not contain a line of PG(3, q). The preceding Theorem 3.1 characterises these minihypers for $\epsilon_1 < q^{1/6}/2$, so from now on, we assume that $\epsilon_1 \ge q^{1/6}/2$.

Remark 3.2 As indicated in the preceding paragraph, we assume that $q = p^h$, q square, p > 3 prime, $h \ge 2$, and that $q \ge 1217$. The condition $q \ge 1217$ follows from the inequality at the end of the proof of Lemma 3.9.

The other inequalities in the proofs are valid for $q \geq 1217$.

In the main theorems, we repeat that $q = p^h$, p > 3 prime, $h \ge 2$, and that $q \ge 1217$, to give the correct statements of the theorems.

Projecting the minihyper (F, w) from a point $R \notin F$ onto a plane gives a weighted ϵ_1 -fold blocking set B in this plane. This set B can contain lines, and we will distinguish two cases.

First we assume that B does not contain a line.

Lemma 3.3 If B does not contain a line, then $\epsilon_1 < \frac{q^{1/6}}{2}$ and (F, w) is an ϵ_1 -fold blocking multiset containing a sum of ϵ_1 Baer subplanes and lines.

Proof. The set B is a weighted ϵ_1 -fold blocking set in PG(2,q) of size $\epsilon_1(q+1) + \epsilon_0 < \epsilon_1 q + \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$, containing no lines. Lemma 2.2 implies that $\epsilon_1 < \frac{q^{1/6}}{2}$. In this case, there are no multiple points since $\frac{2\epsilon_1^2}{q} < 1$.

So (F, w) is an ϵ_1 -fold blocking set satisfying the conditions of Theorem 3.1, and by assumption not containing lines. Using Theorem 3.1, we conclude that (F, w) contains a union of ϵ_1 pairwise disjoint Baer subplanes. Hence, (F, w) is the sum of ϵ_1 Baer subplanes and points.

An upper bound on the number of secants to F through a point R, not in F, will be very useful. The next lemma yields such an upper bound.

Lemma 3.4 There exists in PG(3,q) a point not in F lying on at most $\frac{\epsilon_1^2+2\eta^2}{2}$ secants to F, containing at least two points of F of weight one.

Proof. We count the number of points of PG(3,q), not contained in F, on secants to F through two points of weight one. Here, $|F| \leq \epsilon_1 q + \eta \sqrt{q}$, but we subtract $\frac{q^{1/6}}{2}$ from |F|, since there can be up to $\frac{2\epsilon_1^2}{q} < \frac{q^{1/6}}{2}$ multiple points in (F,w):

$$(\epsilon_{1}q + \eta\sqrt{q} - \frac{q^{1/6}}{2})(\epsilon_{1}q + \eta\sqrt{q} - \frac{q^{1/6}}{2} - 1)\frac{(q-1)}{2}$$

$$\leq \frac{\epsilon_{1}^{2}q^{3} + 2\eta\epsilon_{1}q^{2}\sqrt{q} + \eta^{2}q^{2} - \epsilon_{1}q^{2} - \eta q\sqrt{q} - \epsilon_{1}^{2}q^{2} - 2\eta\epsilon_{1}q\sqrt{q} - \eta^{2}q + \epsilon_{1}q + \eta\sqrt{q}}{2}$$

$$\leq \frac{\epsilon_{1}^{2}q^{3} + 2\eta\epsilon_{1}q^{2}\sqrt{q} + \eta^{2}q^{2} - \epsilon_{1}^{2}q^{2} - 2\eta\epsilon_{1}q\sqrt{q} - \eta^{2}q}{2}.$$

Since we can assume that $\epsilon_1 \geq q^{1/6}/2$, also $\epsilon_1 \geq \eta$, so the upper bound further simplifies to

$$\frac{\epsilon_1^2 q^3 + 2\epsilon_1 \eta q^2 \sqrt{q}}{2} \le \frac{\epsilon_1^2 q^3 + 2\eta^2 q^3}{2},$$

where the last inequality follows from $\epsilon_1 \leq \eta \sqrt{q}$.

There are $\theta_3 - |F| \ge q^3$ points in PG(3,q) not contained in F, hence, we find a point R, not in F, lying on at most $\frac{\epsilon_1^2 + 2\eta^2}{2}$ such secants to F.

Lemma 3.5 If B contains at least one line, then $\sqrt{q} - q^{1/6} \le \epsilon_1$.

Proof. Consider a point R of $\operatorname{PG}(3,q)\setminus F$ lying on at most $\frac{\epsilon_1^2+2\eta^2}{2}$ secants to F, containing at least two simple points of F. The minihyper F is projected from R onto a weighted point set in a plane containing a line L. The plane $\langle R,L\rangle$ intersects F in at least a 1-fold blocking set since $|\langle R,L\rangle\cap F|\geq q+1$ (Theorem 2.4). So Lemma 2.5 implies that $\langle R,L\rangle\cap F$ contains a Baer subplane having a Baer subline on a line through R. This Baer subline has at most $\frac{q^{1/6}}{2}$ distinct multiple points of F, so is counted at least $\frac{1}{2}(\sqrt{q}-\frac{q^{1/6}}{2})^2$ times as a secant in the previous lemma. This number must be smaller than or equal to the total number of such secants to F through R, so

$$\begin{split} (\sqrt{q} - \frac{q^{1/6}}{2})^2 & \leq \epsilon_1^2 + 2\eta^2 \\ \Leftrightarrow q - \sqrt{q}q^{1/6} + \frac{q^{1/3}}{4} - q^{1/6} & \leq \epsilon_1^2, \quad \text{since } \eta < \frac{q^{1/12}}{2} \\ \Rightarrow (\sqrt{q} - q^{1/6})^2 \leq q - \sqrt{q}q^{1/6} + \frac{q^{1/3}}{4} - q^{1/6} & \leq \epsilon_1^2. \end{split}$$

This last equation holds if $q \geq 4$ and then we have the assertion.

From now on, we assume that $\epsilon_1 \geq \sqrt{q} - q^{1/6}$.

Since $(\epsilon_1^2 + 2\eta^2)/2 \le \epsilon_1^2$ and since we will need in Lemma 3.8 a lot of points R, not in F, lying on a small number of secants to F, we will look for points R, not in F, lying on at most ϵ_1^2 secants to F containing at least two simple points of F.

Lemma 3.6 Let R be a point of $PG(3,q) \setminus F$ lying on at most ϵ_1^2 secants to F, containing at least two simple points of F. Then R lies on a line containing a Baer subline of F which is contained in at least $\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}$ Baer subplanes of F, containing at least $\frac{\epsilon_1 q}{2\eta^2} - \frac{q^{7/6}}{4\eta^2} + \sqrt{q} + 1$ points of F.

Proof. The projection of F from R is a weighted ϵ_1 -fold blocking set B in a plane, containing lines. Let x be the number of lines contained in B,

where some lines can be counted more than once in this weighted ϵ_1 -fold blocking set. It follows from Lemma 2.1 that the x lines contained in B can be removed from B to obtain a new weighted $(\epsilon_1 - x)$ -fold blocking set B', containing no lines. Denote $\epsilon_1 - x$ by ϵ'_1 . By Lemma 3.3, for an ϵ'_1 -fold blocking set B of size $\epsilon'_1(q+1) + \epsilon_0$ without lines, necessarily $\epsilon'_1 < \frac{q^{1/6}}{2}$, so B must contain at least $\epsilon_1 - \epsilon'_1 > \epsilon_1 - \frac{q^{1/6}}{2}$ lines.

For each such line $L \subset B$, let m_1 be its multiplicity as a line in the weighted set B. Then the plane $\langle R, L \rangle$ intersects F in an $\{m_1(q+1) + m_0, m_1; 2, q\}$ -minihyper, with $m_1 + m_0 \leq \epsilon_1 + \epsilon_0 < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$ (Theorem 2.4). This plane $\langle R, L \rangle$ contains m_1 Baer subplanes of F (Lemma 2.5), and, for each such Baer subplane in $\langle R, L \rangle \cap F$, there is a line through R containing a Baer subline of this Baer subplane.

A Baer subline is counted at least $\frac{1}{2}(\sqrt{q} - \frac{q^{1/6}}{2})^2$ times as a secant in Lemma 3.4. The point R lies on at most $\epsilon_1^2 \leq \eta^2(q - q^{2/3} + \frac{q^{1/3}}{4})$ secants, hence R lies on at most $2\eta^2$ different lines containing a Baer subline of F. There are at least $\epsilon_1 - \frac{q^{1/6}}{2}$ Baer sublines, in Baer subplanes of F, on lines through R. So some Baer subline lies in at least $\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}$ Baer subplanes of F. These Baer subplanes of F contain at least $\frac{\epsilon_1 q}{2\eta^2} - \frac{q^{7/6}}{4\eta^2} + \sqrt{q} + 1$ points of F.

Remark 3.7 We will denote these Baer subplanes, contained in F, through a common Baer subline on a line through R as flags of Baer subplanes corresponding to R. The next lemma shows that we can find several flags which leads to the fact that they must intersect each other in a certain minimum number of points.

Lemma 3.8 (1) There are more than $8\eta^2$ points R of $PG(3,q) \setminus F$, defining different flags of Baer subplanes.

(2) There are two such flags intersecting each other in at least $\frac{q}{16\eta^2}(\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2})$ points of F.

Proof. (1) We find the required points one by one. There exists at least one such point (Lemmas 3.4 and 3.6).

Suppose that we have already found $8\eta^2$ points R not in F with a corresponding flag of Baer subplanes, as in the previous lemma. Is there another point of $PG(3,q) \setminus F$ lying on at most ϵ_1^2 secants to F, containing at least

two simple points of F? The number of points in these $8\eta^2$ flags, in the corresponding planes PG(2,q), is at most

$$8\eta^{2}\left(\left(\frac{\epsilon_{1}}{2\eta^{2}} - \frac{q^{1/6}}{4\eta^{2}}\right)q^{2} + q + 1\right) = 4\epsilon_{1}q^{2} - 2q^{1/6}q^{2} + 8\eta^{2}(q+1).$$

We count these points in the corresponding planes PG(2,q) to assure that the new flag is different from the ones we already have. There are at least $q^3+q^2+q+1-\epsilon_1(q+1)-\epsilon_0-4\epsilon_1q^2+2q^{1/6}q^2-8\eta^2(q+1)$ points in PG(3,q) not in F and not in the extended flags. If all these points lie on more than ϵ_1^2 secants to F, then the number of incidences on the remaining secants is larger than $(\epsilon_1^2q^3+2\eta^2q^3)/2$, the total number of incidences on secants to F we had in Lemma 3.3. So there is still another point $P \notin F$ on at most ϵ_1^2 secants to F.

(2) Take $8\eta^2$ such points R and suppose that the union of the $\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}$ Baer subplanes through the Baer subline of a flag corresponding to a point R share for two such points R and R' at most $\frac{q}{16\eta^2}(\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2})$ points of F. Then

$$|F| \geq \sum_{i=1}^{8\eta^2} \left(\frac{\epsilon_1 q}{2\eta^2} - \frac{q^{7/6}}{4\eta^2} + \sqrt{q} + 1 - (i-1)\frac{q}{16\eta^2} \left(\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}\right)\right)$$

$$\geq 8\eta^2 \left(\frac{\epsilon_1 q}{2\eta^2} - \frac{q^{7/6}}{4\eta^2} + \sqrt{q} + 1\right) + \frac{(8\eta^2)^2}{2} \frac{q}{16\eta^2} \left(\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}\right)$$

$$\geq 3\epsilon_1 q - \frac{3}{2} q^{7/6} + 8\eta^2 (\sqrt{q} + 1).$$

This is false since $\epsilon_1 \geq \sqrt{q} - q^{1/6}$.

We have found different points R and R' with a corresponding flag of Baer subplanes. We now build with them a Baer subgeometry $PG(3, \sqrt{q})$ contained in F.

Lemma 3.9 The minihyper F contains a Baer subgeometry $PG(3, \sqrt{q})$ if $\epsilon_1 \geq \sqrt{q} - q^{1/6}$.

Proof. Let R and R' be two points of $PG(3,q) \setminus F$ corresponding with a flag of $\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}$ Baer subplanes of F, where these two flags share at least $\frac{q}{16\eta^2}(\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2})$ points. Denote those two flags by f_R and $f_{R'}$. Then some

Baer subplane $\pi_{R'}$ of $f_{R'}$ shares at least $\frac{q}{16\eta^2}$ points with the Baer subplanes of f_R . If this Baer subplane $\pi_{R'}$ shares at most two points with every Baer subplane of f_R , then $\frac{q}{16\eta^2} \leq 2(\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2})$, which is false since $\epsilon_1 < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$. So this Baer subplane $\pi_{R'}$ shares a Baer subline with some Baer subplane of f_R . Denote by l the Baer subline of the flag f_R . This Baer subplane $\pi_{R'}$ cannot pass through l, since then this Baer subplane $\pi_{R'}$ only shares this subline l with all these Baer subplanes of the flag f_R , but $\frac{q}{16\eta^2} > \sqrt{q} + 1$.

We wish to find a lower bound on the number of Baer subplanes of f_R , sharing a Baer subline with the Baer subplane $\pi_{R'}$. Two distinct Baer sublines share at most two points. We subtract two for every of the $\frac{\epsilon_1}{2\eta^2} - \frac{q^{1/6}}{4\eta^2}$ Baer subplanes of f_R from $\frac{q}{16\eta^2}$ and then divide by $\sqrt{q}-1$. The quotient is at least $\frac{q^{1/2}}{16\eta^2} + \frac{1}{16\eta^2} - \frac{1}{\eta}$, hence this Baer subplane $\pi_{R'}$ shares a Baer subline with at least $\frac{q^{1/2}}{16\eta^2} + \frac{1}{16\eta^2} - \frac{1}{\eta}$ Baer subplanes of f_R . Take this Baer subplane $\pi_{R'}$ and consider a Baer subplane π_R of the flag f_R which shares a Baer subline with $\pi_{R'}$. Together they define a Baer subgeometry Ω isomorphic to $PG(3, \sqrt{q})$. Every Baer subplane of f_R intersecting $\pi_{R'}$ in a Baer subline shares l and this Baer subline with Ω . Two intersecting Baer sublines define a Baer subplane in a unique way, so these Baer subplanes then lie completely in this Baer subgeometry Ω .

Consider an arbitrary Baer subplane π of Ω not through l. Then π shares at least $\frac{q^{1/2}}{16\eta^2} + \frac{1}{16\eta^2} - \frac{1}{\eta}$ Baer sublines with F, so shares at least $\frac{q}{16\eta^2} + \frac{q^{1/2}}{16\eta^2} - \frac{q^{1/2}}{\eta} + 1$ points with F. Consider the plane over \mathbb{F}_q of this Baer subplane π . This plane intersects F in an $\{m_1(q+1) + m_0, m_1; 2, q\}$ -minihyper, with $m_1 + m_0 \le \epsilon_1 + \epsilon_0 = \eta(q^{1/2} - q^{1/6})$, which contains m_1 Baer subplanes (Lemma 2.5). Suppose this Baer subplane π is not contained in F. It contains already at least $\frac{q}{16\eta^2} + \frac{q^{1/2}}{16\eta^2} - \frac{q^{1/2}}{\eta} + 1$ points of F. By [3, Lemma 4.4], we have that

$$|\pi \cap F| \le m_0 + m_1(\sqrt{q} + 1) \le 2\eta(q^{1/2} - q^{1/6}),$$

where the upper bound is obtained in the following way. First of all, $m_0 + m_1 \le \eta(q^{1/2} - q^{1/6})$. Secondly, every one of the m_1 Baer subplanes contained in the $\{m_1(q+1) + m_0, m_1; 2, q\}$ -minihyper has size $q + \sqrt{q} + 1$ and contributes $\sqrt{q} + 1$ to the sum $m_1 + m_0$. Hence, also $m_1\sqrt{q} \le \eta(q^{1/2} - q^{1/6})$.

 $\sqrt{q}+1$ to the sum m_1+m_0 . Hence, also $m_1\sqrt{q} \leq \eta(q^{1/2}-q^{1/6})$. But $\frac{q}{16\eta^2}+\frac{q^{1/2}}{16\eta^2}-\frac{q^{1/2}}{\eta}+1>2\eta(q^{1/2}-q^{1/6})$ if $q\geq 1217$, so this Baer subplane π lies completely in F. As a consequence, this Baer subgeometry Ω defined by π_R and $\pi_{R'}$ lies completely in F. **Lemma 3.10** Let F be an $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; 3, q\}$ -minihyper, with $2\epsilon_1 + \epsilon_0 < q+2$, containing a subgeometry $PG(3, \sqrt{q})$. Then $F \backslash PG(3, \sqrt{q})$ is an $\{(\epsilon_1 - \sqrt{q} - 1)(q+1) + \epsilon_0, \epsilon_1 - \sqrt{q} - 1; 3, q\}$ -minihyper.

Proof. A plane π either intersects a Baer subgeometry $PG(3, \sqrt{q})$ in a subline $PG(1, \sqrt{q})$ or a subplane $PG(2, \sqrt{q})$. We only have to discuss the case that $\pi \cap PG(3, \sqrt{q})$ is a subplane $PG(2, \sqrt{q})$ of size $q + \sqrt{q} + 1$.

If π still contains $\epsilon_1 - \sqrt{q} - 1$ other points of F, then removing this Baer subgeometry $PG(3, \sqrt{q})$ from F causes no problem for the plane π . So from now on, we assume that $q + \sqrt{q} + 1 \le |\pi \cap F| < q + \epsilon_1$.

We select a point R of $\pi \backslash F$. Project π and F from R onto a plane. Then we obtain an ϵ_1 -fold blocking multiset B in this plane containing a line L, which is the projection of $\pi \cap F$. By [8, Theorem 2.2], we can reduce the weight of every point of L by one to obtain an $(\epsilon_1 - 1)$ -fold blocking set B' in this plane. But then L is still blocked at least $\epsilon_1 - 1$ times by B'. So π is blocked at least $q + \epsilon_1$ times by F.

Theorem 3.11 Let F be a weighted $\{\epsilon_1(q+1)+\epsilon_0, \epsilon_1; 3, q\}$ -minihyper, $q=p^h$, q square, p>3 prime, $h\geq 2$, having weighted points with total weight at most $\frac{2\epsilon_1^2}{q}$ and where $\epsilon_1+\epsilon_0=\eta(\sqrt{q}-q^{1/6})<\frac{q^{7/12}}{2}-\frac{q^{1/4}}{2}$, then F contains a sum of A lines, B isolated Baer subplanes $PG(2,\sqrt{q})$ and C Baer subgeometries $PG(3,\sqrt{q})$, where $A+B+C(\sqrt{q}+1)=\epsilon_1$, and $\epsilon_0-B\sqrt{q}$ extra points.

Proof. If $\epsilon_1 < q^{1/6}/2$, this is the result mentioned in Theorem 3.1, so from now on assume that $\epsilon_1 \ge q^{1/6}/2$.

If F contains A lines, we can remove these lines from F, and then apply the arguments to F minus these A lines (Lemma 2.1). We denote the minihyper that remains again by F. Let R be a point not in the minihyper F on at most $\frac{\epsilon_1^2+2\eta^2}{2}$ secants to F, containing at least two points of F of weight one (Lemma 3.4). Projecting F from R onto a plane not through R gives a weighted ϵ_1 -fold blocking set B in this plane. If B does not contain lines, Lemma 3.3 states that F is the sum of ϵ_1 lines and Baer subplanes $PG(2, \sqrt{q})$, and possibly some extra points. If B does contain lines, we find a Baer subgeometry $PG(3, \sqrt{q})$ contained in F, which can be removed from F to obtain a new $\{(\epsilon_1 - \sqrt{q} - 1)(q + 1) + \epsilon_0, \epsilon_1 - \sqrt{q} - 1; 3, q\}$ -minihyper, see Lemma 3.10. Repeating the previous arguments with this minihyper gives us the assertion.

4 Larger dimensions

We now characterise non-weighted $\{\epsilon_1(q+1)+\epsilon_0,\epsilon_1;n,q\}$ -minihypers F,q square, $q=p^h,\ p>3$ prime, $h\geq 2,\ q\geq 1217,\ n\geq 4$, where $\epsilon_1+\epsilon_0=\eta(\sqrt{q}-q^{1/6})<\frac{q^{7/12}}{2}-\frac{q^{1/4}}{2}$, by induction on the dimension n. We suppose that every $\{\epsilon_1(q+1)+\epsilon_0,\epsilon_1;n-1,q\}$ -minihyper, with $n\geq 4$, is a pairwise disjoint union of A lines, B isolated Baer subplanes $PG(2,\sqrt{q})$ and C Baer subgeometries $PG(3,\sqrt{q})$, with $A+B+C(\sqrt{q}+1)=\epsilon_1$, and $\epsilon_0-B\sqrt{q}$ extra points. As in the 3-dimensional case, we start by using Lemma 2.1 to remove the lines contained in F.

We want to project F onto a hyperplane in such a way that the number of multiple points appearing in the projection is as small as possible.

Lemma 4.1 For n=4, there is a point $R \notin F$ lying on at most $\frac{\epsilon_1^2}{q}$ secants to F. In larger dimensions n, there are points $R \notin F$ only lying on tangents to F.

Proof. The number of points on secants to F is at most

$$\frac{(\epsilon_1(q+1)+\epsilon_0)^2}{2}(q-1) = \frac{\epsilon_1(q^3+q^2-q-1)+2\epsilon_1\epsilon_0(q^2-1)+\epsilon_0^2(q-1)}{2}.$$

Now $\epsilon_1 \epsilon_0$, $\epsilon_0^2 < \frac{q^{7/6}}{4}$. For $n \geq 5$, this number is smaller than the number of points in $PG(n,q)\backslash F$. In this case, there exists at least one point R only lying on tangents to F.

For n = 4, we divide by $q^4 + q^3 \le \theta_4 - |F|$. This gives a point R lying on at most

$$\frac{\epsilon_1^2}{2q} + \frac{2q^{7/6}(q^2-1)/2 + q^{7/6}(q-1)/2}{2(q^4+q^3)} \leq \frac{\epsilon_1^2}{2q} + \frac{1}{2q^{5/6}}$$

secants to F. Either $\frac{\epsilon_1^2}{2q} + \frac{1}{2q^{5/6}} < 1$ and then R lies on zero secants to F or either $\frac{\epsilon_1^2}{2q} + \frac{1}{2q^{5/6}} \ge 1$, then $\frac{\epsilon_1^2}{2q} \ge \frac{1}{2q^{5/6}}$. In both cases, $\frac{\epsilon_1^2}{q}$ can be used as an upper bound on the number of secants to F through R.

In the case of n=4, projecting from a point $R \notin F$ as in the previous lemma gives a weighted $\{\epsilon_1(q+1)+\epsilon_0,\epsilon_1;n-1,q\}$ -minihyper with the total weight of the multiple points at most $\frac{2\epsilon_1^2}{q}$. This explains the bound in Theorem 3.11.

Theorem 4.2 Let F be a non-weighted $\{\epsilon_1(q+1) + \epsilon_0, \epsilon_1; n, q\}$ -minihyper, q square, $q = p^h$, p > 3 prime, $h \ge 2$, $q \ge 1217$, $n \ge 4$, where $\epsilon_1 + \epsilon_0 = \eta(\sqrt{q} - q^{1/6}) < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$, then F is the union of pairwise disjoint A lines, B isolated Baer subplanes $PG(2, \sqrt{q})$ and C Baer subgeometries $PG(3, \sqrt{q})$, with $A + B + C(\sqrt{q} + 1) = \epsilon_1$, and $\epsilon_0 - B\sqrt{q}$ extra points.

Proof. We prove this result by induction on n. Theorem 3.11 proves this theorem for n = 3. If F contains lines, these lines can be removed from F (Lemma 2.1); so we assume that F does not contain any lines.

Project F from a point R, lying only on tangents to F or on at most ϵ_1^2/q secants to F if n=4, onto a hyperplane π not through R. We obtain a (weighted if n=4) $\{\epsilon_1(q+1)+\epsilon_0,\epsilon_1;n-1,q\}$ -minihyper F' which is the sum of A' lines, B' isolated Baer subplanes $PG(2,\sqrt{q})$ and C' Baer subgeometries $PG(3,\sqrt{q})$, with $A'+B'+C'(\sqrt{q}+1)=\epsilon_1$, and $\epsilon_0-B\sqrt{q}$ points.

Case I: assume that F' contains a line L.

The plane $\langle R, L \rangle$ intersects F in at least a 1-fold blocking set, which contains a Baer subplane, since by assumption, F does not contain lines (Lemma 2.5).

Since $\langle R, L \rangle$ shares a Baer subplane with F, R lies on a Baer subline to this Baer subplane, but then R lies on a $(\sqrt{q}+1)$ -secant to F, which is false for n>4. For n=4, this line is projected onto a point of F' with weight up to $\sqrt{q}+1>\frac{q^{1/6}}{2}>\frac{2\epsilon_1^2}{q}$, which is false. So this case cannot occur.

Case II: assume that F' contains an isolated Baer subplane $PG(2, \sqrt{q})$.

Denote this Baer subplane $\operatorname{PG}(2,\sqrt{q})$ by ω . The 3-space $\langle R,\omega \rangle$ intersects F in an $\{m_1(q+1)+m_0,m_1;3,q\}$ -minihyper, with $m_1\geq 1$ (Lemma 2.4), so $\langle R,\omega \rangle \cap F$ contains by the induction hypothesis on n the union of points, isolated Baer subgeometries $\operatorname{PG}(2,\sqrt{q})$ and Baer subgeometries $\operatorname{PG}(3,\sqrt{q})$, which are all pairwise disjoint. Assume $\langle R,\omega \rangle$ contains a Baer subgeometry $\operatorname{PG}(3,\sqrt{q})$ and consider the conjugate point $R^{\sqrt{q}}$ of R w.r.t. $\operatorname{PG}(3,\sqrt{q})$. The line $RR^{\sqrt{q}}$ intersects $\operatorname{PG}(3,\sqrt{q})$ in a Baer subline, which is false since the projection of this Baer subline would lead to a projected point in F' with weight at least $\sqrt{q}+1$. So $\langle R,\omega \rangle \cap F$ contains points and isolated Baer subplanes. One of these Baer subplanes $\operatorname{PG}(2,\sqrt{q})$ is projected from R onto

Case III: assume that F' contains a Baer subgeometry $PG(3, \sqrt{q})$.

Consider two Baer subplanes ω_1 and ω_2 in PG(3, \sqrt{q}). By the arguments of case II, we find Baer subplanes ω_1' and ω_2' contained in F projected onto ω_1 and ω_2 respectively. Since there are less than $\frac{q^{1/6}}{2}$ multiple points in the intersection line of ω_1 and ω_2 , this projected Baer subline $\omega_1 \cap \omega_2$ must be the projection of a Baer subline contained in F, which must be equal to the intersection line of ω_1' and ω_2' . So ω_1' and ω_2' span a Baer subgeometry PG(3, \sqrt{q}). The 3-space over \mathbb{F}_q defined by this Baer subgeometry shares two intersecting Baer subplanes with F. By the induction hypothesis, this Baer subgeometry PG(3, \sqrt{q}) must be contained in F.

Conclusion: Let F be a non-weighted $\{\epsilon_1(q+1)+\epsilon_0,\epsilon_1;n,q\}$ -minihyper, $n \geq 4$, where $\epsilon_1 + \epsilon_0 = \eta(\sqrt{q} - q^{1/6}) < \frac{q^{7/12}}{2} - \frac{q^{1/4}}{2}$.

By assumption, if F contains a line L, then this line L can be removed from F, so that $F \setminus L$ is an $\{(\epsilon_1 - 1)(q + 1) + \epsilon_0, \epsilon_1 - 1; n, q\}$ -minihyper (Lemma 2.1). From now on, assume that all the lines contained in F are removed from F. By induction on $\epsilon_1 + \epsilon_0$, these lines contained in F are pairwise disjoint among each other.

The preceding cases I, II, and III show that the projection of F, from a suitably selected point R, onto a hyperplane leads to a minihyper in this hyperplane containing B' isolated Baer subplanes $PG(2, \sqrt{q})$ and C' Baer subgeometries $PG(3, \sqrt{q})$, with $B' + C'(\sqrt{q} + 1) = \epsilon_1$, and that these isolated Baer subplanes and 3-dimensional Baer subgeometries contained in the projected minihyper arise from B' isolated Baer subplanes $PG(2, \sqrt{q})$ and C' Baer subgeometries $PG(3, \sqrt{q})$ contained in the minihyper F.

If lines again are permitted to be contained in F, the preceding arguments therefore show that F is the union of pairwise disjoint A lines, B isolated Baer subplanes $PG(2, \sqrt{q})$ and C Baer subgeometries $PG(3, \sqrt{q})$, with $A + B + C(\sqrt{q} + 1) = \epsilon_1$, and $\epsilon_0 - B\sqrt{q}$ extra points.

References

- [1] S. Ball. Multiple blocking sets and arcs in finite planes. J. London Math. Soc. (2), 54(3):581–593, 1996.
- [2] J. Barát and L. Storme. Multiple blocking sets in PG(n,q), $n \geq 3$. Des. Codes Cryptogr., 33(1):5–21, 2004.
- [3] A. Blokhuis, L. Storme, and T. Szőnyi. Lacunary polynomials, multiple blocking sets and Baer subplanes. *J. London Math. Soc.* (2), 60(2):321–332, 1999.
- [4] J. De Beule, K. Metsch, and L. Storme. Characterization results on arbitrary non-weighted minihypers and on linear codes meeting the Griesmer bound. *Des. Codes Cryptogr.*, 49(1-3):187–197, 2008.
- [5] J. De Beule, K. Metsch, and L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. *Adv. Math. Commun.*, 2(3):261–272, 2008.
- [6] S. Ferret and L. Storme. Minihypers and linear codes meeting the Griesmer bound: improvements to results of Hamada, Helleseth and Maekawa. Des. Codes Cryptogr., 25(2):143–162, 2002.
- [7] S. Ferret and L. Storme. A classification result on weighted $\{\delta v_{\mu+1}, \delta v_{\mu}; N, p^3\}$ -minihypers. Discrete Appl. Math., 154(2):277–293, 2006.
- [8] S. Ferret, L. Storme, P. Sziklai, and Zs. Weiner. A $t \pmod{p}$ result on weighted multiple (n-k)-blocking sets in PG(n,q). Innov. Incidence Geom., 6/7:169-188, 2007/08.
- [9] S. Ferret, L. Storme, P. Sziklai, and Zs. Weiner. A characterization of multiple (n-k)-blocking sets in projective spaces of square order. Adv. Geom., submitted.
- [10] N. Hamada and T. Helleseth. A characterization of some q-ary codes $(q > (h-1)^2, h \ge 3)$ meeting the Griesmer bound. Math. Japon., 38(5):925-939, 1993.

- [11] N. Hamada and T. Maekawa. A characterization of some q-ary linear codes $(q > (h-1)^2, h \ge 3)$ meeting the Griesmer bound. II. Math. Japon., 46(2):241–252, 1997.
- [12] N. Hamada and F. Tamari. On a geometrical method of construction of maximal t-linearly independent sets. J. Combin. Theory Ser. A, 25(1):14–28, 1978.

Address of the authors:

Ghent University, Dept. of Mathematics, Krijgslaan 281-S22, 9000 Ghent, Belgium

A. Hallez: athallez@cage.ugent.be

J. De Beule: jdebeule@cage.ugent.be, http://cage.ugent.be/~jdebeule

L. Storme: ls@cage.ugent.be, http://cage.ugent.be/~ls