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Abstract 

Converging electrophysiological and brain-imaging results show that sensory processing in V1 

can be modulated by attention. In this study, we tested the prediction that this early filtering 

effect depends on the current affective state of the participant. We recorded visual evoked 

potentials (VEPs) to visual peripheral distractors while participants performed a demanding task 

at fixation, whose perceptual load was manipulated in a parametric fashion. Crucially, levels of 

negative affect were either increased or decreased independently of changes in perceptual load. 

Concurrent psychophysiological measurements and self-report scales confirmed that changes in 

emotional state were effective. In the control condition, ERP results showed that the C1 

component generated in response to the exact same peripheral distractors systematically varied in 

amplitude with the amount of perceptual load imposed at fixation, being larger when perceptual 

load decreased. However, this early modulatory effect in V1 was disrupted when participants 

transiently experienced increased state anxiety, resulting in a decreased C1 amplitude even 

though task load at fixation remained low. These results suggest that early bottom-up processing 

in V1 is not only influenced by the amount of attention resources available, but also by the 

current internal state of the participant.  
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1. Introduction  

1.1. Permeability of human V1 to cognitive factors 

A growing number of studies provides evidence for the permeability of sensory processing 

within the human primary visual cortex (V1) to higher-order top-down cognitive effects, 

including learning, attention or stimulus predictability (Alink, et al., 2010; Hopf et al., 2004; 

O'Connor et al., 2002; Poghosyan and Ioannides, 2008; Poghosyan et al., 2005). At the 

electrophysiological level, reliable stimulus-related activation of V1 is classically assessed in 

humans by recording the first cortical component of the Visual Evoked Potentials (VEPs), the 

retinotopic C1. This component usually peaks ~50-100 ms post-stimulus onset over occipito-

parietal leads, and its main generators are classically ascribed to pyramidal neurons of layers III 

and V covering the fundus of the calcarine fissure (Clark et al., 1995; Di Russo et al., 2002; Foxe 

and Simpson, 2002; Jeffreys and Axford, 1972). The C1 has for a long time been described as 

being resistant to modulatory effects exerted by distant fronto-parietal attention control regions 

onto lower tier visual cortex (Clark and Hillyard, 1996; Handy et al., 2001; Martinez et al., 

1999). More recently, systematic C1 amplitude changes have been reported with top-down 

cognitive manipulations (see Rauss et al., 2011a for a recent review), including perceptual 

learning and expertise (Bao et al., 2010; Jin et al., 2010; Pourtois et al., 2008), emotional valence 

(Eldar et al.,  2010; Halgren et al., 2000; Pourtois et al., 2004; West et al., 2011), and feature-

based or spatial attention (Karns and Knight, 2009; Kelly et al., 2008; Proverbio et al., 2010; 

Zani and Proverbio, 2009). With regards to attention, not only increases of the C1 to attended 

visual stimuli were shown, but also substantial reductions of this same early visual component to 

unattended or task-irrelevant stimuli were evidenced, suggesting flexible and adaptive gain 

control mechanisms exerted by putative fronto-parietal networks onto lower tier visual cortex, 
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including V1 (Slotnick et al., 2003). Moreover, in line with theories and results suggesting that 

the first sweep of bottom-up cortical processing in V1 may be gated as a function of attentional 

capacity (see Lavie, 2005; Desseilles et al., 2009; Rees et al., 1997; Schwartz et al., 2005), recent 

ERP findings confirmed that increases in perceptual load reliably reduced the amplitude of the 

C1 recorded in response to (unattended) peripheral visual distractors (Rauss et al., 2009). Hence, 

attentional control mechanisms can exert top-down modulatory effects in early sensory cortex, 

including in V1.  

1.2. Permeability of V1 to affective factors 

However, not only attention selection, but also the internal state of the participant at a given time 

can influence low-level encoding of the incoming visual stimulus, as early as in V1 (Supèr et al., 

2003), and hence presumably the C1 component. Consistent with this view, in a previous ERP 

study, Stolarova et al. (2006) reported amplitude changes of the C1 to gratings as a function of 

aversive conditioning. These early modulatory effects taking place in V1 rapidly following 

stimulus onset may be caused by direct feedback effects exerted from distant deep limbic 

structures, like the amygdala, onto the occipital cortex, including V1 (Amaral et al., 2003; Keil et 

al., 2007; Rudrauf et al., 2008; Vuilleumier, 2005). This neurophysiological mechanism could 

potentially account for tradeoff effects in low-level perception triggered by unattended negative 

visual emotional stimuli (e.g., feaful faces, see Phelps, Ling, and Carrasco, 2006; Bocanegra and 

Zeelenberg, 2009).  

1.3. Rationale for the study 

An unanswered question is whether attention selection and affective state each contribute 

separately to the perceptual encoding of an incoming visual stimulus in V1, or whether these two 

concurrent factors may show interaction effects instead. Because attentional load (Rauss et al., 
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2009, 2011b) and emotion control (Stolarova er al., 2006) by themselves yield amplitude 

modulations of the C1 component during visual perception, we hypothesized a possible 

combined effect of the two factors influencing this early visual evoked component. More 

precisely, because negative affect typically leads to a narrowing of spatial attentional focus 

(Derryberry and Reed, 1998; Derryberry and Tucker, 1993; Easterbrook, 1959), we surmised that 

the transient induction of a negative affective state may alter the normal attentional filtering in 

V1. Therefore, we predicted that normal early load-dependent attention effects at the level of the 

C1 in response to peripheral, irrelevant stimuli, may be altered after the induction of state 

anxiety, relative to a control condition. By comparison, under positive affective state, we 

hypothesized that decreasing (perceptual) load at fixation ought to result in a larger C1 

component in response to the exact same peripheral distractors, consistent with previous results 

(Rauss et al., 2009) and early attention selection models (Lavie, 2005).  

To address this question, we used a standard experimental paradigm (Schwartz et al., 2005), and 

recorded high density VEPs to unattended peripheral distractors while parametrically 

manipulating perceptual load at fixation. Critically, either a negative or positive affective state 

was transiently induced while participants performed a demanding task at fixation, enabling us to 

test whether the amplitude of the C1 component generated in response to these visual peripheral 

distractors could be influenced concurrently by perceptual load and affective state.  

2. Materials and Methods  

2.1 Participants 

Twenty-five university student volunteers participated in the study (mean age = 22 years, S.D. = 

2 years, 11 males, 23 right handed). Participants had normal or corrected-to-normal vision, were 

unaware of the purpose of the study and declared no history of psychiatric or neurological 
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disorders. None of them had used any psychoactive medication before or during testing. The 

study protocol was designed and conducted in accordance with the Declaration of Helsinki and 

approved by the local ethical committee of Ghent University. 

2.2 Stimuli and Task 

During a visual oddball task (standard-target proportion 4:1) participants saw at fixation a rapid 

serial visual presentation (RSVP) of tilted gray lines on a black background (see Figure 1). The 

standard lines were always equally tilted (35
o
 clockwise in half of the session, counterclockwise 

in the other half of the session, subtending 0.8
o
 of visual angle). Randomly intermixed with the 

standard lines, deviant lines with a slightly different in-plane orientation were presented: 

participants were instructed to treat them as targets, and silently count their occurrences during 

the whole duration of the block (i.e., mental counting task). Participants were prompted to enter 

this number at the end of each block. The angular difference between standard and target stimuli 

was manipulated in order to obtain a parametric variation along the perceptual load dimension
1
: 

in the Low Load (LL) condition the difference consisted in 10
o
 of angle (standards inclined 35

o
, 

targets inclined either 45
o
 or 25

o
); in the intermediate condition (Medium Load, ML) the 

difference was reduced to 5
o
 (standards inclined 35

o
, targets inclined either 40

o
 or 30

o
). This 

angular difference was further reduced to 3
o
 in the High Load condition (HL, standards inclined 

                                                 

1
 Although our main manipulation concerns variations in the discrimination difficulty, it does not correspond to the 

construct of stimulus degradation per se (Lavie and De Fockert 2003). Instead, it shares more similarities with the 

original construct of perceptual load (i. e., primarily taxing processing capacities), put forward previously (Lavie, 

1995, 2005), and similarly implemented in previous studies (e.g., Barnhardt et al., 2008; Erthal et al., 2005; Handy 

and Mangun, 2000, experiment 1). Therefore, we label our attention manipulation perceptual load throughout the 

manuscript.  
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35
o
, targets inclined either 32

o
 or 38

o
). Target and standard lines were presented for 250 ms in 

the center of the screen, with an average ISI of 1325 ms (randomly varied between 1150 and 

1500 ms). Peripheral, non predictive visual textures of horizontal line elements (8.8
o
 x 34

o
 of 

visual angle) were flashed for 250 ms in the upper visual field during the ISI. These peripheral 

distractors were previously associated with the generation of a conspicuous C1 component, with 

its main generators source-localized in V1 (Pourtois et al., 2008; Rauss et al., 2009). The 

peripheral textures were presented with a temporal jitter with respect to the offset of the central 

stimuli, thus never overlapping in time with them, and they were to be ignored by the 

participants. 

---------------------------------------------------------------------------------------------------------------------  

Insert Figure 1 about here 

---------------------------------------------------------------------------------------------------------------------  

 A total of 100 central stimuli were presented per block (80 standards, 20 targets), while 50 

visual textures were shown (10 following a target stimulus, 40 following a standard stimulus, 

using a pseudo-random order). Accordingly, in only half of the trials the central stimulus was 

followed by a peripheral distractor. For the other half, no peripheral distractor was presented 

following the central stimulus (although the trial structure was temporally identical), providing a 

baseline condition used in some auxiliary analyses controlling for component overlap (see here 

below). Note that although the visual targets (small lines with deviant orientations) corresponded 

to perceptually different stimuli across the three load levels, both peripheral distractors and 

central standard stimuli remained unchanged throughout the whole experimental session (except 

for the clockwise/anticlockwise orientation change of the central stimuli between the two halves 

of the session, see procedure). This procedure allowed us to compare, at the electrophysiological 

level, the perceptual processing of the exact same stimuli (peripheral distractors following 

standard stimuli) while perceptual load at fixation was varied in a parametric fashion. The 
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peripheral textures were presented with a vertical offset of 7.3
o
 of visual angle above fixation 

during the test blocks, and randomly above or below fixation (identical distance from fixation) 

during two independent extra blocks, carried out at the end of the main experimental session. 

These blocks were used to ensure that a reliable C1 component in response to the distractors 

could be recorded in each and every participant, showing the expected polarity reversal 

depending on stimulus position in the visual field (i.e., negative amplitude for the C1 for stimuli 

shown in the upper visual field, but positive amplitude for stimuli shown in the lower visual 

field, see Clark et al., 1995; Jeffreys and Axford, 1972). Hence, these two additional blocks 

served as “localizer” for the C1 component. They were composed of 80 trials each (with passive 

viewing instructions, which emphasized fixation in the center of the screen), with an equal 

number of stimuli falling randomly in the upper vs. lower visual field.  

2.3 Procedure 

Participants were first required to sign an informed consent form, and then prepared for the EEG 

recording. After preparation they were positioned in a dimly lit cabin, comfortably sitting at 57 

cm from a 19’’ CRT screen (100 Hz refresh rate), with head motions restrained by a chinrest. 

Participants were then asked to perform the first 3 blocks of the mental counting task, preceded 

by instructions and a short practice block. No information on the initial level of difficulty was 

provided to the participants. Instead, we used a “cover story” during the instruction phase: 

participants were led to believe that the focus of the experiment was the ability to learn to 

process different angular orientations, and that the feedback after each block would accurately 

inform them about their performance. Instructions emphasized the (putative) staircase nature of 

the block sequence, such that participants were encouraged to believe that task difficulty 

experienced during block n+1 was solely determined by their actual performance during block n.  
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For half of the participants (n=13), each of the first three blocks was systematically followed by 

a Positive Feedback (PF), logically leading each time to a block of increasing difficulty (LL 

followed by ML, followed by HL). The feedbacks consisted in a neutral face
2
 providing a 

message (written in a balloon). The message told the participant that his/her performance was 

very good, and that the (alleged) accuracy score was above average, relative to the mean 

performance of a group of matched participants. A scatterplot (pseudo-randomly generated), 

shown next to the face, showed the participant’s score (in the upper part of the distribution), 

relative to that of the preceding participants. The feedback was presented for 20 seconds before 

the participants received instructions again about the level of task difficulty to be encountered 

during the following block.  

The other half of the participants (N = 12) received a different fixed order of blocks (HL, ML 

and LL). Each block was systematically followed by a Negative Feedback (NF), leading to an 

easier block in terms of task difficulty (HL followed by ML, itself followed by LL). The 

structure of the PFs and NFs were identical, with the exceptions that in the NF the message in the 

balloon stated that performance was poor, and that the accuracy score of the participant was 

lower than the average of the group. In line with the message, the scatterplot showed the 

participant’s score in the lower half of the distribution. Once the three first blocks were 

completed, several self-report state-dependent affective measures were administered (Rossi and 

Pourtois, 2011). Then, participants moved to the second part of the experiment. Task instructions 

were similar to the ones of the first part, except that participants were told that from then on their 

processing ability of a different line orientation would be assessed. In detail, target and standard 

lines would be tilted counterclockwise if the stimuli in the first part (i.e. first three blocks) were 

                                                 

2
 Stimulus number NE041 or NE083 from the standardized Ekman series (Ekman and Friesen, 1976).  
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tilted clockwise, or vice versa. After completing a new practice block, three new test blocks were 

presented. During this second half of the experiment, not only the line orientation, but also the 

feedback contingency (and fixed sequence of load levels) was counterbalanced: participants who 

received three PFs in the first part of the experiment now received three NFs, and symmetrically 

for the participants who received three NFs during the first part. In the former group, participants 

now started with HL (then received negative feedback), and went on with ML and finally LL. In 

the latter group, participants started with LL (then received positive feedback), and went on with 

ML and finally HL. At the end of the second series of three test blocks, affective state measures 

were administered a second time. The added value of this procedure is that a specific affective 

state (either positive or negative) may be reliably induced, depending on the valence of the 

feedback on task performance (Nummenmaa and Niemi, 2004). The systematic association 

between a given feedback valence and a fixed order of load (i.e., positive feedback with 

ascending load and negative feedback with descending load; counterbalanced across participants) 

also ensured that participants remained sufficiently motivated and attentive to the feedback 

information displayed during the whole experimental session. Presenting a more difficult block 

(i.e., higher load) after a negative feedback, or conversely an easier block (i.e., lower load) after 

a positive feedback, would have hampered motivation and involvement in the task. Moreover, 

this procedure allowed us to compare, using a within-subject design, effects of negative vs. 

positive affective state on task performance and electrophysiological responses to the exact same 

visual distractors as well as the central line stimuli.  

The participants then completed two more blocks that were used as an independent localizer for 

the C1 component generated in response to the same peripheral distractors. These blocks were 

identical to the six experimental blocks, except that the central stimulus was replaced by a 
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fixation cross and the peripheral distractors were randomly shown either in the upper or lower 

visual field. Participants were asked to keep fixation during these blocks (passive viewing). 

Finally, participants filled out additional trait-related questionnaires (i.e., STAI-T, Spielberger, 

1983; BIS/BAS, Carver and White, 1994) before leaving the experimental room and receiving a 

complete debriefing about the goal of the study.  

2.4 Affective Measures 

Changes in affective state induced by our feedback manipulation were monitored using a set of 

standard self-report measures. Two measurement moments were implemented: a first one after 

completing the first three blocks (with constant feedbacks, either positive or negative, 

counterbalanced across participants), and a second one after completion of the last three blocks 

(with constant feedbacks, and an opposite valence compared to the first three blocks).  

State anxiety measure. The Dutch version of the State Anxiety sub-scale of the State-Trait 

Anxiety Inventory (STAI-S, Spielberger, 1983) was administered to the participants.  

Mood Visual Analogue Scales (VASs). Since our study also included induction of a positive 

mood (or presumably, a down-regulation of stress levels induced by the task demands through 

the presentation of positive feedback), seven 10 cm horizontal VASs were included in the 

affective state assessments, in order to provide a more balanced estimate of affect (taking into 

account changes not only for negative affect, but also positive affect). The anchors for the VASs 

(the Dutch translation for the terms ‘Tired’, ‘Energetic’, ‘Angry’, ‘Tense’, ‘Depressed’, 

‘Satisfied’, and ‘Happy’) were selected from the sub-scales of the Profile of Mood States 

questionnaire (POMS, McNair et al., 1992), with the integration of VASs for satisfaction and 

happiness. As it is common use for the POMS (Rossi and Pourtois, 2011), a compound measure 

of affective state was calculated by adding up the scores of the seven items (the two positive 
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affect items were reverse-scored): the compound score ranges therefore from a minimum of 0 

(minimum level of negative affect) to a maximum of 70 (maximum level of negative affect).  

2.5 Electrophysiological data recording 

EEG was continuously recorded from 128 Ag/AgCl electrodes evenly distributed over the scalp 

surface using an elastic cap (Biosemi Active Two System, http://www.biosemi.com). Signals 

were online referenced to the CMS–DRL ground (driving the average potential across the 

montage as close as possible to the amplifier zero), and digitized at 512 Hz. Vertical and 

horizontal oculograms were monitored through bipolar electrodes positioned on the outer canthi 

of each eye and above and below the left eye.  

Two bipolar electrodes were also applied to the volar surfaces of the medial phalanges of the left 

hand in order to record skin conductance levels (SCL) throughout the whole session. Participants 

were instructed to comfortably lay their forearms on the table and asked not to move during the 

experimental blocks.  

2.6 Data reduction and Analysis 

ERP waveforms obtained from the two localizer blocks and the six test blocks were computed 

separately, using Brain Vision Analyzer 2.0 (Brain Products GmbH, Munich, Germany). EEG 

signals were referenced offline to the linked mastoids and band-pass filtered between 0.016 and 

70 Hz; a notch-filter (50 Hz) was applied. EEG signals were segmented relative to the onset of 

either the central stimulus or the peripheral distractor, using a 100 ms pre-stimulus interval and a 

800 ms post-stimulus interval. In order to avoid possible contamination from mental counting 

operations (e.g., updating of working memory) on the perceptual processing of the peripheral 

distractors, only textures following standard (i.e., non-target) central stimuli were included in the 

averages. Eye-blink artifacts were detected and corrected automatically by means of the Gratton 

http://www.biosemi.com/
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et al. (1983) algorithm. Individual epochs were baseline-corrected using the 100 ms pre-stimulus 

onset interval, and all epochs affected by residual artifacts were semi-automatically rejected on 

the basis of an absolute voltage criterion of ± 75 μV difference, relative to the baseline. This 

procedure led to an average rejection rate of 7.4% of the trials, balanced between the two halves 

of the experiment (i.e. positive vs. negative affect induction). For central stimuli, rejection rate 

reached 7.9% in the positive emotion condition and 7.0% in the negative emotion condition (t24 = 

0.77, P = .44). Likewise, for peripheral distracters, rejection was 7.3% for positive and 7.6% for 

negative (t24 = 0.26, P = .80). Individual ERP averages for central targets and peripheral 

distractors were computed for each subject separately as a function of load level (HL, ML, LL) 

and feedback condition (PF, NF), and subsequently grand-average ERP waveforms for each of 

these six conditions were obtained by averaging data across participants. For the localizer blocks, 

peripheral distractors presented either below or above fixation were analyzed and averaged 

separately, following the same procedure as described here above (mean rejection rate for trials 

in the upper visual field: 8.3%; lower visual field: 9.4%; t24 = 1.44, P = .16). Based on previous 

results (Rauss et al., 2009, 2011b) and visual inspection of the grand average data, the visual C1 

in response to the peripheral distractors during the six test blocks was semi-automatically 

identified as the most negative peak present in the stimulus-locked ERPs between 70 and 110 ms 

after stimulus onset. Since no differences in peak latency were evident across load conditions in 

the grand-averaged data (consistent with previous findings, see Rauss et al., 2009, 2011b), we 

primarily focused our analyses on the peak amplitude of the C1 component. Based on 

topographic properties of the grand averaged data (highly consistent between localizer runs and 

test blocks; see Figures 4-6), the C1 was primarily scored at the midline leads A4, A19, A20 and 

A21 (where A19 actually corresponds to electrode Pz in the International extended 10-20 
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System, and these four electrodes span from centro-parietal A4/CCPz to more occipital positions 

A20/PPOz and A21/POz, along the midline, see Figure 6). Moreover, in order to rule out that the 

observed C1 modulations by load and affect may be due to a partially overlapping contribution 

of the onset phase and rise of the occipital midline P1 (P1m, see Fu et al., 2009; see also Handy 

et al., 2001), we also analyzed the peak amplitude of this extrastriate visual component as a 

function of Load and Affect. The P1m had a more occipital scalp distribution than the C1 

(showing a typical occipito-parietal distribution along the midline, see Figures 4C and 4F), and 

accordingly, the amplitude of this component was measured at parieto-occipital midline 

electrodes A20, A21, A22, A23 (with A20 corresponding to POz and A23 to Oz, see Figure 6).  

Given that we used short tilted line segments as central task-relevant stimuli, these visual events 

elicited a clear P300 component, while the magnitude of the preceding lateral occipital P1 and 

N1 components remained negligible (see Fig. 3A). Accordingly, we analyzed and reported 

mainly amplitude variation of the P300 component for these central task-relevant stimuli
3
.The 

P300 in response to standards and targets belonging to different load levels in each of the two 

affective conditions was identified on the basis of polarity and scalp distribution properties, in 

line with previous ERP studies (Kim et al., 2008; McCarthy and Donchin, 1981; Sawaki and 

Katayama, 2007). The component was scored as the mean amplitude of the ERP response 

between 500 and 700 ms after stimulus onset, at centro-parietal-occipital leads (A4/CCPz, 

A19/Pz, A20/PPOz and A21/POz) along the midline. C1 peak scores and P300 mean amplitude 

scores were analyzed separately by means of mixed-model analyses of variance (ANOVAs), 

                                                 

3
 Additional statistical analyses performed on the residual P1 and N1 components (time-locked to the onset of the 

task-relevant central stimuli, measured as mean amplitude of the ERP response at a cluster of lateral occipital leads) 

did not reveal any significant effect of affect or interaction between load and affect. 
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with Load (LL, ML, HL), Affective Condition (NF, PF) and Lead (A4, A19, A20, A21) as 

within subjects factors, and Group (PF first, NF first) as between subjects factor. Post-hoc 

comparisons were performed using two-tailed paired samples T-tests. Control analyses were also 

run for both components as a function of block order (see results section). Because we used a 

RSVP, we also run a control analysis to ascertain that the C1 component generated by the 

peripheral distractors was not systematically influenced by residual ERPs from the preceding 

central stimuli. For this purpose, we used a standard correction, namely the no-stim technique 

(Talsma and Woldorff, 2005). ERP waveforms computed for epochs where no peripheral 

stimulus was presented (i.e. overlap alone; 50% of the trials) were subtracted from ERP 

waveforms where a peripheral stimulus was presented (i.e. peripheral stimulus-specific ERP 

activity + overlap; 50% of the trials). As a result, ‘overlap-free’ stimulus-locked ERP 

waveforms,  including the C1, were obtained and later compared across affective states and load 

conditions (LL, ML and HL).  

We used the bipolar vertical electro-oculogram (VEOG), continuously recorded during the whole 

experiment, to quantify the spontaneous eye-blink rate, used as an indirect measure of anxiety 

(Karson, 1983; Ponder and Kennedy, 1927). Eye-blinks were automatically detected using the 

Brain-Vision Analyzer ocular correction algorithm during each of the six test blocks and 

analyzed using a 3x2 repeated measures ANOVA with Affective Condition (NF, PF) and Order 

(First block, Second Block, Third Block) as within-subjects factors. Note that the factor Order 

was selected in this statistical analysis (instead of the factor Load) because our primary goal was 

to verify whether the valence of the feedback could have a systematic influence on the 

spontaneous blink rate recorded during the immediately following block (i.e., we expected 
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increases in blink rate and hence anxiety for blocks 2 and 3 in the NF condition regardless of 

load, but no similar effect for blocks 2 and 3 in the PF condition).  

Changes in affective state induced by the feedback manipulation were also verified by 

comparing directly the self-report scores obtained for the two measurement points (i.e. after the 

first three blocks, and a second time after the last three blocks) in the STAI-S and in the 

compound VAS. Because we predicted increased levels of state anxiety and negative affect 

following NFs, one-tailed paired samples T tests were used. In order to further explore the exact 

nature of the discrete affective state induced by our manipulation, we also carried out an analysis 

comparing the pre-post scores separately for the anxiety-present and anxiety-absent items of the 

STAI-S (Spielberger, 1983).   

In order to compare levels of peripheral arousal during the positive and negative halves of the 

experiment, the continuously recorded SCL signals were segmented based on the onset of each 

of the six experimental blocks, in epochs of 143 seconds. The average SCL values in the time-

window ranging from 0 to 143 seconds (end of the block) were extracted and range-normalized 

following a standard procedure (Lykken and Venables, 1971). The normalized average SCL 

values obtained for the three blocks followed by PFs were averaged together, as were the values 

obtained for the three blocks followed by NFs. These two scores were then compared using a 

paired sample T-test (two-tailed). Furthermore, we also analyzed more phasic changes in SCL in 

response to the six feedbacks (three positive, three negative). These electrodermal response 

values were calculated as the maximum signal amplitude during the feedback presentation 

window (0-20 seconds), corrected for the minimum amplitude recorded during 10 seconds prior 

to feedback presentation. We then range-normalized these difference scores (Lykken and 
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Venables, 1971) and entered the 6 values in a repeated measures ANOVA with condition 

(Positive, Negative) and order (first, second and third feedback) as factors. 

Accuracy during the main task was computed by calculating for each subject the difference 

between the number reported at the end of each block and the correct number of deviant tilted 

lines (= 20). We calculated for each participant and each block separately the absolute deviation 

from the correct response (computed as |Correct Response minus Actual Response|) and 

submitted these values to a mixed model ANOVA with Load (LL, ML, HL) and Affective 

Condition (NF, PF) as within subjects factors, and Group (either PFs or NFs first) as between 

subjects factor.  

Since the between subjects factor Group did not yield any significant effect or interaction with 

any of the other factors included in our experimental design (neither in the ERP results, nor in 

the behavioral ones), the data of the two groups were collapsed in the statistical analyses. A 

Greenhouse-Geisser correction was applied when sphericity was violated, therefore significant 

results are reported with uncorrected degrees of freedom but corrected p values.  

3. Results 

Affective state. STAI-S scores were substantially higher after NFs (M = 36, S.D. 8.9) than PFs 

(M = 32, S.D. 7.9, t24 = -3.932, P < 0.0001) suggesting increased state anxiety following NFs. 

This change was equally evidenced for the anxiety-absent items (t24 = 3.76, p < .001) and the 

anxiety-present items (t24 = 3.25, p < .005), consistent with the idea that the feedback 

manipulation did not lead to a pure increase of state anxiety per se, but probably to an augmented 

negative affective state. Likewise, the compound VAS score obtained after combining the seven 

subscales showed a significant increase in negative affect after NFs (M = 20.73, S.D. 9.61), as 
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compared to the scores obtained after PFs (M = 17.10, S.D. 6.98), t24 = -2.785, P < 0.01 (see 

Figure 2, panel A).  

---------------------------------------------------------------------------------------------------------------------  

Insert Figure 2 about here 

---------------------------------------------------------------------------------------------------------------------  

The ANOVA performed on the spontaneous eye-blink rate corroborated these findings 

(subjective self-report measures) and suggested increased levels of tension or anxiety following 

the presentation of NFs, as evidenced by a significant interaction between Affective Condition 

and Order (F2,48 = 6.01, P < 0.01). Post-hoc comparisons using two-tailed paired-samples T tests 

revealed a significant increase in blink rate from the first (M = 25 blinks) either to the second (M 

= 32 blinks) or third block (M = 32 blinks) in the NF condition (block 1 vs. 2: t24 = -3.03, P < 

0.005; block 1 vs. 3: t24 = -2.69, P < 0.05). Blink rate did not differ significantly between block 2 

and 3 (t24 = 0.29, P > 0.7). None of the planned comparisons reached significance in the PF 

condition (all Ts < 0.3, all Ps > 0.7). These results suggest increased and sustained levels of 

anxiety, selectively following NFs, and as such, are in line with the results obtained for the self-

report measures (cf. Figure 2A and Figure 2B).  

Finally, we obtained additional evidence indicating that affective changes produced by the 

feedback likely concerned negative affect or state anxiety, but not simply peripheral (autonomic) 

arousal. The SCL continuously recorded while the participants performed the task did not 

significantly differ between the two affective conditions (t24 = 1.07, P = 0.30 for the normalized 

data; t24 = 1.16, P = 0.26 for the non-normalized data), suggesting that (peripheral) arousal per se 

did not account for the observed differences in affective state produced by our feedback 

manipulation (see Figure 2C). In addition, although evaluative feedback stimuli clearly elicited 

phasic changes in SCL, the ANOVA carried out on these normalized values did not reveal any 

significant effect of affective state or order (all Fs < .48). Combined together, these non-
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significant results for the SCL suggest that our participants did not undergo systematic changes 

in peripheral arousal during exposure to the evaluative performance feedbacks (phasic 

component) or during the execution of that task itself (tonic component).  

Behavioral performance. Results obtained during the main EEG experiment confirmed that the 

load manipulation was efficient and produced, as expected, a decreased performance when 

increasing perceptual load at fixation (see Table 1). However, this effect was similar for the 

positive and negative affective state condition. The ANOVA carried out on the accuracy scores 

revealed a significant main effect of Load (F2,48 = 11.90, P < 0.0001), but no significant effect of 

Affective Condition or interaction between these two experimental factors (all Fs < 1.09, all Ps > 

0.3). Post-hoc paired samples T-tests showed that accuracy was significantly higher in the LL 

condition as compared to either the ML (t24 = -1.99, P < 0.05, one tailed) or the HL condition (t24 

= -4.72, P < 0.00001, one tailed); accuracy was also higher in the ML condition as compared to 

the HL condition (t24 = -3.22, P < 0.01, one tailed). Average error scores were 4.5 (S.D. 4.6) for 

LL, 6.5 (S.D. 5.3) for ML and 8.8 (S.D. 4.6) for HL. These results suggest that changes in 

perceptual load reliably led to changes in behavioral performance, in a predictive way (see also 

Barnhardt et al., 2008; Erthal et al., 2005; Lavie, 1995; Rauss et al., 2009 and 2011b; Schwartz et 

al., 2005). Importantly, this effect was the same for the two affective states conditions, and 

behavioral performance in the HL condition was still acceptable.  

3.1 ERP results. 

ERPs for central target stimuli: The ANOVA performed on the mean amplitude of the P300 in 

response to the central targets revealed a significant main effect of Load (F2,48 = 44.99, P < 

0.0001), but no other significant effect (all Fs < 1.15, all Ps > 0.3). Post-hoc paired samples T 

tests showed that the P300 for target stimuli in the LL condition had a significantly larger 
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amplitude than the targets either in the ML condition (t24 = 5.61, P < 0.0001, two tailed) or in the 

HL condition (t24 = 7.37, P < 0.0001, two tailed). Additionally, the P300 amplitude in the ML 

condition had a significantly larger size than in the HL condition (t24 = 6.32, P < 0.0001, two 

tailed). These results confirmed that target identification (and presumably covert detection) was 

affected by the load manipulation in a predictive way, with easier detections during the LL (as 

reflected by a larger P300 component) compared to the ML condition, this latter condition being 

easier than the HL condition (see Figures 3A and 3C, upper panel). These results are also 

consistent with previous ERP results, reporting decreased P300 amplitudes with increased 

perceptual load or task difficulty (Kim et al., 2008; McCarthy and Donchin, 1981; Sawaki and 

Katayama, 2007; for a review, Kok, 2001)
4
. 

                                                 

4
 Because the task consisted in a mental counting task and an overt response was required only at the end of each 

block, we could not retrospectively isolate trials corresponding to seen targets, as opposed to (presumably) missed 

targets. Therefore, this reported significant effect for the P300 component might tentatively be explained by the 

inclusion of more misses in the HL compared to the ML condition (and ML compared to LL), rather than a genuine 

change in perceptual load across these conditions. However, to address this point, we performed a control analysis 

and modeled the hypothetical ‘dilution’ of the P300 component when increasing load. Since the hypothetical SNR 

values (obtained by dividing the number of correctly identified targets by the number of missed targets in the 

behavioral data) were different across conditions (1.22 for HL, 2.33 for ML and 3 for LL), we artificially matched 

the SNR level for the ERP data across load conditions by adding to the target-locked grand averages (in ML and LL) 

a proportion of standard stimuli (which presumably should not elicit any reliable P300 component, and therefore 

may be used to “simulate” ERP activity corresponding to missed targets in these conditions). As a result of this 

control analysis, the SNR level of ML and LL ERP averages were reduced to the one corresponding to HL (i.e., 

1.22). If the reported modulation of the P300 was accounted for by the proportion of perceived vs. missed targets 

rather than perceptual load, then this analysis should lead to the same P300 component across the three load levels. 
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ERPs for central standard stimuli: The centrally presented standard stimuli did not elicit a clear 

P300, as compared to the target stimuli (as it is evident in Figures 3B and 3C, lower panel). 

Nonetheless, to assess whether our affective state manipulation might influence the processing of 

these stimuli, we analyzed the mean amplitude of the ERPs in response to central standards 

across load and affective conditions at the same leads and in the same time window as we used 

for the target stimuli (500-700 ms post-stimulus onset; electrodes A4/CCPz, A19/Pz, A20/PPOz 

and A21/POz). The ANOVA showed a significant main effect of Load (F2,48 = 8.54, P < 0.01), 

and a non-significant trend for the factor Lead (F3,72 =3.36, P = 0.07). Paired T-tests indicated 

that the slow positive wave was larger under LL as compared to ML (t24 = 3.96, P < 0.0001, two 

tailed) and to HL (t24 = 2.71, P < 0.05, two tailed). No differences were observed between the 

ML and the HL condition (t24 = -1.39, P > 0.17, two tailed). The main effect of Affective 

Condition was not significant (F1,24 =0.98, P = 0.33), nor was there a significant interaction 

between Load and Affect, or Load, affect and Lead (all Ps > 0.15).  

---------------------------------------------------------------------------------------------------------------------  

Insert Figure 3 about here 

---------------------------------------------------------------------------------------------------------------- ----- 

ERPs for peripheral distractors: C1. The ANOVA performed on the mean amplitude of the C1 

generated in response to the peripheral distractors showed a significant main effect of Load (F2,48 

= 4.80, P < 0.05), but more importantly, this load-dependent effect did significantly interact with 

the Affective Condition (F2,48 = 7.94, P < 0.005). Post-hoc paired samples T tests revealed that 

the amplitude of the C1 varied, in a predictive way, with the load level (i.e. lower amplitude 

during HL than LL; see also Rauss et al., 2009) during the positive affective state condition, but 

                                                                                                                                                             

However, this control analysis confirmed a strong load-dependent variation of the P300 (LL > ML > HL; all T23 

>4.61, all Ps < .001), despite a balanced SNR level across these three conditions.   
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that this effect was merely absent during the negative affective state condition (see Figure 4ABC 

for the Positive Feedback condition, and Figure 4DEF for the Negative Feedback condition). For 

the positive affect condition, larger C1 amplitudes were found in the LL condition as compared 

either to the ML (t24 = -3.16, P < 0.005, two tailed) or the HL condition (t24 = -4.95, P < 0.001, 

two tailed). The C1 amplitude was similar between the ML and HL condition (t24 = -0.951, P > 

0.4, two tailed). For the negative affect condition, no significant modulation of the C1 as a 

function of load was observed (all ts < |1.6|, all Ps > 0.1).  

--------------------------------------------------------------------------------------------------------------------- 

Insert Figure 4ABC and 4DEF about here 

---------------------------------------------------------------------------------------------------------------------  

A detailed inspection of the ERP data generated in response to these peripheral visual distractors 

during the positive affective state condition suggested that before the peak of the C1, an even 

earlier (and unexpected) effect of load (50-70 ms post-stimulus onset) was already present. This 

effect led to a more negative baseline amplitude for the LL relative to HL condition, although no 

pre-stimulus ERP difference could be detected between these conditions (see Figure 4ABC), 

suggesting that the reported C1 change as a function of load and affect was not simply explained 

by unbalanced baselines across conditions. Moreover, no such modulatory effect of load was 

observed during the same pre-C1 interval for the negative affective state condition (see Figure 

4DEF). We performed additional statistical analyses to assess whether the significant interaction 

effect between load and affect found at the level of the C1 (peak amplitudes) might be 

contaminated by this earlier effect occurring during the onset phase of the C1. First, we extracted 

the mean amplitude of this baseline post-stimulus activity (computed from stimulus onset until 

70 ms following stimulus onset) and assessed whether a similar interaction effect was present 

during this pre-C1 time interval. The analysis failed to reveal any significant interaction effect 
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between load and affect for this pre-C1 activity (F2,48 = 2.38, P = 0.10). More importantly, we 

then subtracted for each participant and condition separately, the mean amplitude values during 

the interval 0-70 ms post-stimulus onset from the original C1 peak amplitude values and 

eventually submitted these corrected C1 amplitude values to the same ANOVA as used in the 

main analysis. This control analysis confirmed a significant Load x Affective condition 

interaction (F2,48 = 3.25, P < 0.05), suggesting that amplitude variations of the C1 component 

with load and affect could not solely be accounted for by this unexpected pre-C1 variation. Using 

these conservative corrected peak values, this analysis confirmed a substantially larger C1 

amplitude during LL compared to either ML (t24 = -2.35, P < 0.05, two tailed) or HL (t24 = -3.09, 

P < 0.005, two tailed) during positive affective state, but no significant and comparable effect of 

load on the amplitude of the C1 during negative affective state (all Ps > 0.23). Therefore, this 

control analysis confirmed that effects of perceptual load and affective state truly influenced the 

amplitude of the C1 component, and they could not easily be explained by changes in the 

baseline ERP activity following stimulus onset, but preceding the onset of this retinotopic 

component.  

To exclude the possibility that uncontrolled pre-C1 or pre-stimulus onset variations (potentially 

triggered by the preceding central and task-relevant stimulus) could account for the observed C1 

amplitude variations, we also used another conservative data analysis suited to remove possible 

residual ERP effects from the preceding stimulus (no-stim approach, see methods section above). 

Noteworthy, the repeated measure ANOVA carried out on the C1 amplitude values extracted 

from these “overlap-free” waveforms confirmed a significant interaction effect between Load 

and Affect (F2,48 = 3.59, P < 0.05). Follow-up pairwise comparisons confirmed a significantly 

larger C1 response during LL (LL: -6,47 μV) compared to either ML (-5,09 μV, t24 = -2.21, P < 
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0.05, two tailed) or HL (-4,73 μV, t24 = -3.61, P < 0.005, two tailed) during positive affective 

state, but no significant effect of load on this early component during negative affective state 

(LL: -4,72 μV; ML: -5,04 μV; HL: -5,05 μV; all Ps > 0.53).  

Although these results clearly pointed to a joint effect of load and affect on the earliest stage of 

sensory stimulus processing in V1, yet an additional (third) control analysis was run to ascertain 

that perceptual load and affect state each had a clear effect on the amplitude of the C1. Given the 

specifics of our experimental design, we assumed that during the very first block of each half of 

the experiment (see procedure here above), no affective state was transiently induced yet, 

providing a correct baseline to study pure effects of load (LL vs. HL). Hence, we extracted the 

amplitude of the C1 in the overlap-free waveforms during the first experimental block of each 

condition  and compared the size of this component for LL vs. HL blocks. We reasoned that this 

comparison should reveal a pure effect of load on the C1, with this component being larger for 

LL relative to HL (see also Rauss et al., 2009). Results of this auxiliary analysis, run on the 

overlap-free C1 amplitudes, corroborate this conclusion (see Figure 5, left panel). C1 amplitudes 

were compared using a repeated measures ANOVA with Lead and Load as factors. This analysis 

revealed a significant main effect of Load (F1,24 = 4.93, P < 0.05), with a larger early retinotopic 

component for LL(mean -6.47 μV, S. D. 3.1 μV) compared to HL (mean -5.01 μV, S. D. 3.2 

μV), when no affect had been induced yet. However, we hypothesized that this significant effect 

of load observed on the corrected C1 amplitudes would disappear once a negative affective state 

would have been induced, if affect truly influenced early sensory processing of peripheral 

distractors in V1. Consistent with this prediction, the same repeated measures ANOVA 

performed on the C1 data recorded during the last block of each staircase (also corrected for 

potential component overlap, see Figure 5, right panel), hence once affect had reliably been 
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modulated (see also behavioral and psychophysiological results here above), failed to show any 

significant effect of Load (F1,24 = 0.01, P = 0.98), indicated by a similar C1 component for LL 

(mean -4.72 μV, S.D. 2.76 μV) and HL (mean -4.73 μV, S.D. 2.76 μV). Altogether, the results of 

these control analyses converge and confirmed (i) a normal effect of load at the level of the C1 

(with larger amplitudes for LL than HL) when no affective state had been induced yet; (ii) once 

(either positive or negative) affective state had been induced, this normal load-dependent 

attentional filtering effect was abolished
5
.  

---------------------------------------------------------------------------------------------------------------------  

Insert Figure 5 about here 

-------------------------------------------------------------------------------------------------------- ------------- 

ERPs for peripheral distractors: P1. Immediately following the C1, we also detected a smaller 

but clear positive deflection (see Figures 4-6), centered over occipital midline leads, showing no 

change in topographical distribution between the main task and the localizer runs (see Figures 

4C-4F and 6). The electrophysiological properties of this component were consistent with a 

midline-distributed P1 (P1m, Handy et al., 2001; Fu et al., 2009, 2010), peaking between 110 

and 150 ms following stimulus onset. Because of the close temporal proximity between the peak 

of the C1 and the rise of the extrastriate P1m, we performed a thorough analysis of the P1m 

component to ensure that changes in the C1 as a function of load and affect (see here above) 

                                                 

5
 A similar control analysis of variance (with Lead and Load as factors)  performed on the P300 mean amplitudes in 

response to central target stimuli revealed clear effects of Load, both at baseline (i.e., before affect induction:F1,24 = 

41.38, P < 0.0001) and after affect induction ( F1,24 = 38.43, P < 0. 0001). This result confirmed that state anxiety 

induction selectively affected brain responses in V1 to peripheral distractors, while it did not reliably influence the 

load-dependent processing of central target stimuli.  
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were not accounted for by a partially overlapping P1m effects. The ANOVA performed on the 

peak amplitude values of the P1m revealed significant main effects of Lead (F3,72 = 8.36, P < 

0.01) and Load (F2,48 = 3.82, P < 0.05). Regarding the effect of Lead (all pairwise comparisons 

across Leads t24 > |2.41|, all p < .05), the P1m had the smallest amplitude at the most parietal 

electrode location A20/PPOz (4.28 μV, S.D. 3.58 μV), but its amplitude increased linearly when 

moving towards more occipital locations, reaching its maximum amplitude at the most occipital 

lead included in the analysis, A23/Oz (4.60 μV, S.D. 3.44 μV). This effect is consistent with the 

scalp distribution of the P1m, which is markedly different relative to that of the C1 (see Fig 4; 

see also Handy et al., 2001, who scored the amplitude of the P1m response to irrelevant probes 

centered on the vertical meridian at POz and Oz). Load also reliably influenced the amplitude of 

the P1m, indicated by larger P1m magnitudes when Load increased (LL: 4.64 μV, S.D. 2.56 μV; 

ML: 5.49 μV, S.D. 3.50 μV; HL: 5.45 μV, S.D. 3.58 μV). Interestingly, a significant interaction 

between Load and Affect (F2,48 = 7.07, P < 0.01) was also evidenced in this analysis, although 

this interaction effect was clearly different compared to the significant interaction effect between 

load and affect found for the preceding C1 component. A significantly larger P1 was elicited 

under ML in the negative affect condition (PF: 4.83 μV, S.D. 3.68 μV; NF: 6.13 μV, S.D. 3.69 

μV; t24 = -2.81, P < .01), while this component reached its maximum amplitude in the HL 

condition when positive affect was induced (PF: 5.97 μV, S.D. 4.01 μV; NF: 4.92 μV, S.D. 3.47 

μV; t24 = 2.40, P < .05). No significant effect of affect was evidenced for the LL condition. 

Altogether, these additional results for the P1m suggest that amplitude variations of this 

extrastriate component likely reflect another attention mechanism active during sensory stimulus 

processing, relative to the C1.  
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ERPs during the independent localizer run. As can be seen in Figure 6, results from the localizer 

run confirmed a prominent C1 response generated in response to the distractor stimuli presented 

during passive viewing: the expected polarity reversal was clearly observed as a function of the 

spatial position of the peripheral texture in this visual field, with a negative C1 for upper visual 

field presentation and a positive C1 for lower visual field presentation. This localizer run was 

mainly introduced in order to provide independent evidence for a genuine C1 response elicited 

for these peripheral visual distractors. As can be seen when comparing Figure 4 and 6, the 

morphology, amplitude, latency and topography of the C1 component for the stimuli in the upper 

visual field are highly consistent across the main attention experiment and the localizer run. This 

confirms that joint effect of perceptual load and affective state during the main experiment 

unambiguously influenced this retinotopic visual evoked component generated in V1 early on 

following stimulus onset, during the sensory processing of these distractors.  

---------------------------------------------------------------------------------------------------------------------  

Insert Figure 6 about here 

---------------------------------------------------------------------------------------------------------------------  

 

4. Discussion 

Our new ERP results show that the filtering of visual information exerted by attention control 

mechanisms in primary visual cortex is substantially influenced by the affective state of the 

participant. Increasing perceptual load at fixation produces a reduction of the perceptual 

encoding, taking place in V1, of a peripheral task-irrelevant distractor stimulus, in agreement 

with previous ERP and imaging results (Rauss et al., 2009; Schwartz et al., 2005), as well as 

attention selection models (Lavie, 2005; Rauss et al., 2011a). However, this amplitude 

modulation of the C1 component with perceptual load was no longer evident when an increase in 

state anxiety or negative affect was transiently induced. Strikingly, even when the perceptual 
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load was low, the amplitude of the C1 to the peripheral distractor was substantially reduced if the 

participant was in a negative affective state, suggesting that the concurrent internal state can 

rapidly influence attention selection processes following stimulus onset in V1. Furthermore, a set 

of control analyses establishes that these amplitude changes of the C1 component with load and 

affect concurrently were not accounted for by either component overlap or the rapid rise of a 

P1m component following the C1.  

4.1 Negative affect narrows attentional focus  

Previous studies stressed that attention selection is sharpened under anxiety or fear (Chajut and 

Algom, 2003; Finucane and Power, 2010; Wessels and Merchelbach, 1997). Moreover, previous 

results showed that negative affect can narrow the focus of attention, when measured either on a 

trial by trial basis (e.g., Fenske and Eastwood, 2003; Gable and Harmon-Jones, 2010), or using 

more tonic or sustained indices (Derryberry and Reed, 1998; Gasper and Clore, 2002). However, 

whereas these earlier studies had to rely on indirect behavioral correlates of attention selection 

processes (such as RTs during a flanker task, for example) to infer a link between emotion and 

attention, the strength of our approach is to provide a more direct cortical measure of sensory 

processing in V1 to neutral visual stimuli and its rapid influence by attention control brain 

processes. In this context, relatively “pure” effects of attention selection processes taking place 

in V1 can be compared across experimental conditions, ruling out possible confounds related to 

response selection processes or learned stimulus-response associations (see also Forster and 

Lavie, 2008).  

Although effects of state anxiety, or less specifically, negative affect closely resemble effects of 

perceptual load during attention selection in V1, our results do not imply that an augmented  

aversive state simply mimics high load. Two observations allow us to rule out this account. First, 
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task performance was strongly influenced by perceptual load, but not by emotion. Increasing 

load resulted in a decreased behavioral performance, but this effect was similar in the two 

affective conditions. Our supplementary analysis comparing the amplitude of the P300 before 

and after affect induction confirmed that the strong effect of load on this decision-related 

component (Kok, 2001) was stable in time and did not interact with transient changes in affective 

state. The lack of clear effects of state at the behavioral level during our attention task is not 

surprising, but in line with previous studies that failed to find impairments of task performance 

under stress or negative affect (Chajut and Algom, 2003; Hainaut and Bolmont, 2005; Moriya 

and Nittono, 2011; Moser et al., 2005; Shackman et al.,  2011). Second, ERP results for the 

central target also clearly showed a genuine load-dependent modulation of the P300 component, 

but again this effect was not influenced by emotion, nor could it easily be accounted for by a 

dilution of this component across the three load levels. This former result is consistent with 

recent ERP findings (Moriya and Nittono, 2011) that failed to show any reliable modulation of 

the P300 despite the induction of negative mood through the exposure to unpleasant pictures. In 

our study, the use of negative cues challenging self-efficacy was clearly effective in modulating 

affective state and/or state anxiety levels (as confirmed by self-report measurements and changes 

in the spontaneous eye blink rate), but was probably not compelling enough to reliably deplete 

target-related ERP activities, such as reflected in changes of the P300 component (Schupp et al., 

1997), unlike previously observed using other manipulations, such as direct exposure to fear-

related stimuli (Moser et al., 2005) or threat of shock (Shackman et al., 2011). Future studies are 

needed to establish whether changes in state anxiety per se (such as typically achieved through 

threat exposure or fear induction), as opposed to changes in negative affect more generally (as 
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likely found in our study), may differentially influence the processing (and corresponding VEPs) 

of central/task-relevant, compared to peripheral/task-irrelevant visual stimuli.  

4.2 Negative affect influences the spatial encoding of the distractor 

Previous ERP studies have clearly shown that the amplitude of the C1 is influenced not so much 

by the content of the stimulus, but rather by its spatial position in the visual field, consistent with 

an early retinotopic component generated along the calcarine fissure in the primary visual cortex 

(Clark et al., 1995). Moreover, previous results showed that attention allocation not only caused 

signal enhancement in the calcarine cortex (Desimone and Duncan, 1995; Hillyard et al., 1998), 

but also tuned receptive fields of neurons in V1, eventually leading to a sharpening of the spatial 

coding of attended visual stimuli (Fischer and Whitney, 2009). In light of these findings, our new 

ERP results for the C1 suggest that the primary feature or process that may be affected 

concurrently by load and affect is the actual perceptual encoding of the spatial position of the 

distractor stimulus shown in the upper visual field. In this framework, the effect of perceptual 

load in V1 would not necessarily correspond to a genuine gating effect (i.e. under high load, the 

sensory processing of the peripheral distractor would be reduced, relative to a low load 

condition), but alternatively, perceptual load (and negative emotional state) would somehow 

hamper the spatial encoding of the distractor in the periphery. Future studies are needed to 

disentangle these two possibilities and hence gain insight into the actual functional meaning of 

these early amplitudes changes found at the level of the C1 with perceptual load and affect 

concurrently. 

4.3 Likely sources of affective sensory filtering in V1 

Although our ERP results do not enable us to draw direct conclusions about the putative source 

of this compelling modulatory effect of the early neural response in V1, hints on the underlying 
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neurophysiological mechanism can be formulated. Previous studies have pointed to a dorsal 

fronto-parietal network involved in the control of endogenous attention and exerting top-down 

influences in lower tier visual cortex, including V1 (Corbetta and Shulman, 2002; Fu et al., 2009; 

Lavie, 2005; Schwartz et al., 2005). Due to the similarities of the effects of attentional load and 

affective state on the C1 amplitude, we could assume that a similar mechanism is operating when 

either perceptual load is increased, or negative affect is transiently elicited. Alternatively, effects 

of state anxiety or more generally aversive states on early sensory processing in V1 might 

depend upon another non-overlapping neural mechanism, including changes in physiological 

arousal (Weiner and Conception, 1975). However, in our paradigm the concurrent recording of 

skin conductance during the task showed no significant difference between the mean SCL during 

the negative vs. positive affect condition, thus ruling out a simple interpretation in terms of 

changes in tonic arousal across these two affective conditions. Because our results also showed a 

sharp increase of the spontaneous eye blink rate following the presentation of negative (as 

opposed to positive) feedbacks, changes in early sensory processing in V1 may be interpreted as 

resulting from an enhanced stress response in this condition (Karson, 1983; Ponder and 

Kennedy, 1927). The spontaneous eye-blink rate has been linked indirectly to levels of dopamine 

activity as a state-dependent measure (Barbato et al., 2000; Taylor et al., 1999): the substantial 

increase in the blink rate following the presentation of negative performance feedbacks may thus 

reflect a phasic change in levels of dopamine, in particular in the frontal cortex (Abercrombie et 

al., 1989; Pani et al., 2000, for a review). Because excessive dopamine turnover in medial frontal 

structures can cause executive function impairments (Arnsten and Goldman-Rakic, 1998; 

Murphy et al., 1996), these dopaminergic-dependent neuromodulation effects triggered by the 

presentation of negative performance feedbacks (and as a result an increase in subjective levels 



32 

 

of state anxiety) could potentially account for changes in early attentional filtering observed at 

the level of the C1 in our study during negative affective state.  

Finally, the induction of anxiety or negative affect may also have been accompanied by the 

implementation of spontaneous emotion regulation strategies in these healthy adult participants 

(Gross, 2002 for a review; Kalisch et al., 2006), in such a way to overcome the experience of 

negative affect in this condition. This effect might partially deplete residual attention capacities 

that are not used for goal-directed behavior in the task (Ochsner and Gross, 2005; Bishop, 2007; 

Wager et al., 2008). This mechanism could potentially explain why under negative affect, the 

normal filtering of the distractor taking place in V1 is strongly enhanced. In this case, either 

medial prefrontal or cingulate regions would influence V1 processing rapidly following stimulus 

onset (Ochsner and Gross, 2005), or these modulatory effects taking place in V1 could depend 

on feedback projections from a more ventral brain system involved in the control of emotional 

attention (Vuilleumier, 2005; Sabatinelli et al., 2007). This mechanism could potentially explain 

why our affective manipulation does not influence goal-directed behavior, but mainly impairs the 

processing of “irrelevant” information (Chajut and Algom, 2003; Eysenck et al., 2007). 

Following these models, anxiety (or external stressors) primarily deplete attentional resources, 

and the capacity leftover is primarily allocated to the goal-relevant dimensions of the task at 

hand, while concurrent task-irrelevant information does not receive priority and is not deeply 

processed.  

4.4 Two-stage model of attention selection influenced by affect 

Besides a clear modulation of the C1 with load and affect, we found that immediately following 

this retinotopic component, the P1m deflection was also reliably influenced by these two factors, 

though showing a different pattern relative to the C1. Whereas amplitude variations of the P1 
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component as a function of attention selection have repeatedly been reported in the ERP 

literature (e.g., Hillyard and Annlo-Vento, 1998; Luck et al., 1990; Mangun and Hillyard, 1988; 

Martinez et al., 1999), only few studies have focused on this component when it is generated in 

response to desynchronized, task-unrelated stimuli presented at an unattended spatial location, as 

in the present case. While in one study (Handy et al., 2001, experiment 2), irrelevant probe 

stimuli elicited smaller P1 responses when the task at fixation was characterized by HL, another 

did not find variations of the P1 to irrelevant unattended stimuli when load was systematically 

changed (Barnhardt et al., 2008). By contrast, in our study, sharing similarities with the 

experiment of Barnhardt et al. (2008), we found an increase in P1m amplitude when the load 

level of the task at fixation increased. This finding suggests that, unlike the C1 modulations 

likely reflecting an early attentional gating process in V1, the apparent reduction of the P1 

amplitude under LL potentially translates an active suppression mechanism operating in the 

extrastriate visual cortex (Luck et al., 1994), and aimed at downplaying the possible interference 

effect created by the distractor during early sensory stimulus processing. As such, these 

modulations of the P1m to the peripheral distractors with load would correspond to another, later 

attentional filtering mechanism relative to the C1 component, the former operating maximally 

during LL. This interpretation is consistent with a two-stage attention process (see the hybrid 

load-theory of attentional selection, Lavie, 1995, 2005), whereby top-down filtering of irrelevant 

information already influences the amplitude of the C1 in the striate cortex if perceptual load is 

high, but a later attention effect takes place in the extrastriate visual cortex at the level of the 

P1m when the task does not exceed processing capacities, as during LL in the present study. In 

this model, increasing attentional load would mainly shift the temporal locus of the active 

filtering or suppression effect of irrelevant information within the visual cortex, from extrastriate 
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(P1m) to striate cortex (C1 component). Notably, our new ERP results show that temporarily 

increasing affective state reliably influences this two-stage attention process taking place in the 

visual cortex early on following stimulus onset, indicated by a more efficient and earlier filtering 

of irrelevant information in this negative relative to a more positive affective state. This 

mechanism could eventually account for dynamic changes in attentional focus typically observed 

in several behavioral tasks after the induction of negative affect (Derryberry and Reed, 1998; 

Derryberry and Tucker, 1993; Easterbrook 1959).  

5. Conclusions 

These new ERP results are consistent with the notion that the primary visual cortex is the locus 

of substantial interaction effects between attention and emotion control processes, early on 

following stimulus onset. Increasing perceptual load at fixation leads to a narrowing of 

processing capacities in V1, and as a result a reduction of the amplitude of the C1 component to 

unattended peripheral distractors. However our results show that this early bottleneck effect in 

V1 also depends on the internal state of the participant, since increases in levels of state anxiety 

or negative affect produce a concurrent load-like effect in V1 at the same early latency following 

stimulus onset. These effects therefore translate flexible filtering mechanisms taking place in V1 

during early sensory processing. 

Acknowledgements 

This work was supported by a grant from the European Research Council (Starting Grant 

#200758). We thank Dr. Sven Mueller and two anonymous reviewers for their valuable 

comments on earlier drafts of this Ms. 

References  



35 

 

Abercrombie, E., Keefe, K., DiFrischia, D., & Zigmond, M. (1989). Differential effect of stress 

on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J 

Neurochem, 52(5), 1655-1658. 

Alink, A., Schwiedrzik, C. M., Kohler, A., Singer, W., & Muckli, L. (2010). Stimulus 

Predictability Reduces Responses in Primary Visual Cortex. J Neurosci, 30(8), 2960-2966. 

Amaral, D. G., Behniea, H., & Kelly, J. L. (2003). Topographic organization of projections from 

the amygdala to the visual cortex in the macaque monkey. Neuroscience, 118(4), 1099-

1120. 

Arnsten, A. F. T., & Goldman-Rakic, P. S. (1998). Noise Stress Impairs Prefrontal Cortical 

Cognitive Function in Monkeys: Evidence for a Hyperdopaminergic Mechanism. Arch Gen 

Psychiatry, 55(4), 362-368. 

Bao, M., Yang, L., Rios, C., He, B., & Engel, S. A. (2010). Perceptual Learning Increases the 

Strength of the Earliest Signals in Visual Cortex. J Neurosci, 30(45), 15080-15084. 

Barbato, G., Ficca, G., Muscettola, G., Fichele, M., Beatrice, M., & Rinaldi, F. (2000). Diurnal 

variation in spontaneous eye-blink rate. Psychiatry Res, 93(2), 145-151. 

Barnhardt, J., Ritter, W., & Gomes, H. (2008). Perceptual load affects spatial and nonspatial 

visual selection processes: An event-related brain potential study. Neuropsychologia, 

46(7), 2071-2078. 

Bishop, S. J. (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends 

Cogn Sci, 11(7), 307-316. 

Bocanegra, B. R., & Zeelenberg, R. (2009). Emotion Improves and Impairs Early Vision. 

Psychol Sci, 20(6), 707-713. 

Carver, C. S., & White, T. L. (1994). Behavioral Inhibition, Behavioral Activation, and Affective 

Responses to Impending Reward and Punishment: The BIS/BAS Scales. J Pers Soc 

Psychol, 67(2), 319-333. 

Chajut, E., & Algom, D. (2003). Selective Attention Improves Under Stress: Implications for 

Theories of Social Cognition. J Pers Soc Psychol, 85(2), 231-248. 

Clark, V. P., Fan, S., & Hillyard, S. A. (1995). Identification of early visual evoked potential 

generators by retinotopic and topographic analyses. Hum Brain Mapp, 2, 170-187. 

Clark, V. P., & Hillyard, S. A. (1996). Spatial selective attention affects early extrastriate but not 

striate components of the visual evoked potential. J Cognitive Neurosci, 8, 387-402. 



36 

 

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in 

the brain. Nat Rev Neurosci, 3(3), 201-215. 

Derryberry, D., & Reed, M. A. (1998). Anxiety and attentional focusing: trait, state and 

hemispheric influences. Pers Individ Differ, 25(4), 745-761. 

Derryberry, D., & Tucker, D. M. (1993). Motivating the focus of attention. In P. Niedenthal & S. 

Kitayama (Eds.), The heart’s eye: emotional influences in perception and attention (pp. 

170-196). San Diego, CA: Academic Press. 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annu Rev 

Neurosci, 18, 193-222. 

Desseilles, M., Balteau, E., Sterpenich, V., Dang-Vu, T. T., Darsaud, A., Vandewalle, G., et al. 

(2009). Abnormal Neural Filtering of Irrelevant Visual Information in Depression. J 

Neurosci, 29(5), 1395-1403. 

Di Russo, F., Martinez, A., Sereno, M. I., Pitzalis, S., & Hillyard, S. A. (2002). Cortical sources 

of the early components of the visual evoked potential. Hum Brain Mapp, 15(2), 95-111. 

Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of 

behavior. Psychol Rev, 66(3), 183-201. 

Ekman P., Friesen, W. V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting 

Psychologists Press.  

Eldar, S., Yankelevitch, R., Lamy, D., & Bar-Haim, Y. (2010). Enhanced neural reactivity and 

selective attention to threat in anxiety. Biol Psychol, 85(2), 252-257. 

Erthal, F., De Oliveira, L., Mocaiber, I., Pereira, M., Machado-Pinheiro, W., Volchan, E., et al. 

(2005). Load-dependent modulation of affective picture processing. Cogn Affect Behav Ne, 

5(4), 388-395. 

Eysenck, M., Derakshan, N., Santos, R., & Calvo, M. (2007). Anxiety and cognitive 

performance: attentional control theory. Emotion, 7(2), 336-353. 

Fenske, M. J., & Eastwood, J. D. (2003). Modulation of Focused Attention by Faces Expressing 

Emotion: Evidence From Flanker Tasks. Emotion, 3(4), 327-343. 

Finucane, A. M., & Power, M. J. (2010). The effect of fear on attentional processing in a sample 

of healthy females. J Anxiety Disord, 24(1), 42-48. 

Fischer, J., & Whitney, D. (2009). Attention Narrows Position Tuning of Population Responses 

in V1. Curr Biol, 19(16), 1356-1361. 



37 

 

Forster, S., & Lavie, N. (2008). Failures to Ignore Entirely Irrelevant Distractors: The Role of 

Load. J Exp Psychol Appl, 14(1), 73-83. 

Foxe, J. J., & Simpson, G. V. (2002). Flow of activation from V1 to frontal cortex in humans. A 

framework for defining "early" visual processing. Exp Brain Res, 142(1), 139-150. 

Fu, S., Fedota, J., Greenwood, P. M., & Parasuraman, R. (2010). Early interaction between 

perceptual load and involuntary attention: An event-related potential study. Neurosci Lett, 

468(1), 68-71. 

Fu, S., Huang, Y., Luo, Y., Wang, Y., Fedota, J., Greenwood, P. M., et al. (2009). Perceptual 

load interacts with involuntary attention at early processing stages: Event-related potential 

studies. NeuroImage, 48(1), 191-199. 

Gable, P., & Harmon-Jones, E. (2010). The Blues Broaden, but the Nasty Narrows. Psychol Sci, 

21(2), 211-215. 

Gasper, K., & Clore, G. L. (2002). Attending to the Big Picture: Mood and Global Versus Local 

Processing of Visual Information. Psychol Sci, 13(1), 34-40. 

Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular 

artifact. Electroen Clin Neuro, 55(4), 468-484. 

Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. 

Psychophysiology, 39, 281–291. 

Hainaut, J., & Bolmont, B. (2005). Effects of mood states and anxiety as induced by the video-

recorded stroop color-word interference test in simple response time tasks on reaction time 

and movement time. Percept Mot Skills, 101(3), 721-729. 

Halgren, E., Raij, T., Marinkovic, K., Jousmäki, V., & Hari, R. (2000). Cognitive Response 

Profile of the Human Fusiform Face Area as Determined by MEG. Cereb Cortex, 10(1), 

69-81. 

Handy, T. C., & Mangun, G. R. (2000). Attention and spatial selection: electrophysiological 

evidence for modulation by perceptual load. Percep Psychophys, 62(1), 175-186. 

Handy, T. C., Soltani, M., & Mangun, G. R. (2001). Perceptual load and visuocortical 

processing: event-related potentials reveal sensory-level selection. Psychol Sci, 12(3), 213-

218. 

Hillyard, S. A., & Anllo-Vento, L. (1998). Event-related brain potentials in the study of visual 

selective attention. Proc Natl Acad Sci USA, 95(3), 781-787. 



38 

 

Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a 

mechanism of selective attention: electrophysiological and neuroimaging evidence. 

Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 

353(1373), 1257-1270. 

Hopf, J.-M., Noesselt, T., Tempelmann, C., Braun, J., Schoenfeld, M. A., & Heinze, H.-J. 

(2004). Popout modulates focal attention in the primary visual cortex. NeuroImage, 22(2), 

574-582. 

Jeffreys, D. A., & Axford, J. G. (1972). Source locations of pattern-specific components of 

human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res, 16, 

1–21. 

Jin, H., Xu, G., Zhang, J. X., Ye, Z., Wang, S., Zhao, L., et al. (2010). Athletic training in 

badminton players modulates the early C1 component of visual evoked potentials: A 

preliminary investigation. Int J Psychophysiol, 78(3), 308-314. 

Kalisch, R., Wiech, K., Herrmann, K., & Dolan, R. J. (2006). Neural Correlates of Self-

distraction from Anxiety and a Process Model of Cognitive Emotion Regulation. J 

Cognitive Neurosci, 18(8), 1266-1276. 

Karns, C. M., & Knight, R. T. (2009). Intermodal auditory, visual, and tactile attention 

modulates early stages of neural processing. J Cognitive Neurosci, 21(4), 669-683. 

Karson, C. N. (1983). Spontaneous eye-blink rates and dopaminergic systems. Brain, 106(3), 

643-653. 

Keil, A., Stolarova, M., Moratti, S., & Ray, W. J. (2007). Adaptation in human visual cortex as a 

mechanism for rapid discrimination of aversive stimuli. NeuroImage, 36(2), 472-479. 

Kelly, S. P., Gomez Ramirez, M., & Foxe, J. J. (2008). Spatial attention modulates initial 

afferent activity in human primary visual cortex. Cereb Cortex, 18, 2629-2636. 

Kim, K. H., Kim, J. H., Yoon, J., & Jung, K.-Y. (2008). Influence of task difficulty on the 

features of event-related potential during visual oddball task. Neurosci Lett, 445(2), 179-

183. 

Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. 

Psychophysiology, 38(3), 557-577. 

Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. J Exp Psychol 

Hum Percept Perform, 21(3), 451-468. 



39 

 

Lavie, N. (2005). Distracted and confused?: Selective attention under load. Trends Cogn Sci, 

9(2), 75-82. 

Lavie, N., & De Fockert, J. (2003). Contrasting effects of sensory limits and capacity limits in 

visual selective attention. Percept Psychophys, 65(2), 202-212. 

Luck, S., Heinze, H., Mangun, G., & Hillyard, S. (1990). Visual event-related potentials index 

focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 

components. Electroen Clin Neuro, 75(6), 528-542. 

Luck, S. J., Hillyard, S. A., Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. 

(1994). Effects of spatial cuing on luminance detectability: psychophysical and 

electrophysiological evidence for early selection. J Exp Psychol Hum Percept Perform, 

20(4), 887-904. 

Lykken, D. T., & Venables, P. H. (1971). Direct measurement of skin conductance: a proposal 

for standardization. Psychophysiology, 8(5), 656-672. 

Mangun, G. R., & Hillyard, S. A. (1988). Spatial gradients of visual attention: behavioral and 

electrophysiological evidence. Electroen Clin Neuro, 70, 417-428. 

Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., et al. 

(1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat 

Neurosci, 2(4), 364-369. 

McCarthy, G., & Donchin, E. (1981). A metric for thought: a comparison of P300 latency and 

reaction time. Science, 211(4477), 77-80. 

McNair, D. M., Lorr, M., & Dropplemann, L. F. (1992). Manual: Profile of Mood States, 

Revised 1992. San Diego, CA: Educational and Industrial Testing Service. 

Moriya, H., & Nittono, H. (2011). Effect of mood states on the breadth of spatial attentional 

focus: An event-related potential study. Neuropsychologia, 49(5), 1162-1170. 

Moser, J. S., Hajcak, G., & Simons, R. F. (2005). The effects of fear on performance monitoring 

and attentional allocation. Psychophysiology, 42(3), 261-268. 

Murphy, B. L., Arnsten, A. F., Goldman-Rakic, P. S., & Roth, R. H. (1996). Increased dopamine 

turnover in the prefrontal cortex impairs spatial working memory performance in rats and 

monkeys. Proc Natl Acad Sci USA, 93(3), 1325-1329. 

Nummenmaa, L., & Niemi, P. (2004). Inducing Affective States With Success--Failure 

Manipulations: A Meta-Analysis. Emotion, 4(2), 207-214. 



40 

 

Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends Cogn Sci, 9(5), 

242-249. 

O'Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates 

responses in the human lateral geniculate nucleus. Nat Neurosci, 5(11), 1203-1209. 

Pani, L., Porcella, A., & Gessa, G. (2000). The role of stress in the pathophysiology of the 

dopaminergic system. Mol Psychiatr, 5(1), 14-21. 

Phelps, E. A., Ling, S., & Carrasco, M. (2006). Emotion Facilitates Perception and Potentiates 

the Perceptual Benefits of Attention. Psychol Sci, 17(4), 292-299. 

Poghosyan, V., & Ioannides, A. A. (2008). Attention Modulates Earliest Responses in the 

Primary Auditory and Visual Cortices. Neuron, 58(5), 802-813. 

Poghosyan, V., Shibata, T., & Ioannides, A. A. (2005). Effects of attention and arousal on early 

responses in striate cortex. Eur J Neurosci, 22(1), 225-234. 

Ponder, E., & Kennedy, W. P. (1927). On the act of blinking. Q J Exp Physiol, 18(2), 89-110. 

Pourtois, G., Grandjean, D., Sander, D., & Vuilleumier, P. (2004). Electrophysiological 

correlates of rapid spatial orienting towards fearful faces. Cereb Cortex, 14(6), 619-633. 

Pourtois, G., Rauss, K. S., Vuilleumier, P., & Schwartz, S. (2008). Effects of perceptual learning 

on primary visual cortex activity in humans. Vision Res, 48(1), 55-62. 

Proverbio, A. M., del Zotto, M., & Zani, A. (2010). Electrical neuroimaging evidence that spatial 

frequency-based attention affects V1 as early as 40-60 ms in humans. BMC Neurosci, 11, 

59. 

Rauss, K., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early 

activity in human primary visual cortex. Hum Brain Mapp, 30(5), 1723-1733. 

Rauss, K., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2011b). Effects of attentional load on 

early visual processing depend on stimulus timing. Hum Brain Mapp, [Epub ahead of 

print]. 

Rauss, K., Schwartz, S., & Pourtois, G. (2011a). Top-down effects on early visual processing in 

humans: A predictive coding framework. Neurosci Biobehav R, 

doi:10.1016/j.neubiorev.2010.12.011. 

Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating Irrelevant Motion Perception by Varying 

Attentional Load in an Unrelated Task. Science, 278(5343), 1616-1619. 



41 

 

Rossi, V., & Pourtois, G. (2011). Transient state-dependent fluctuations in anxiety measured 

using STAI, POMS, PANAS or VAS: a comparative review. Anxiety Stress Copin, 1-43 

[Epub ahead of print]. 

Rudrauf, D., David, O., Lachaux, J.-P., Kovach, C. K., Martinerie, J., Renault, B., et al. (2008). 

Rapid Interactions between the Ventral Visual Stream and Emotion-Related Structures 

Rely on a Two-Pathway Architecture. J Neurosci, 28(11), 2793-2803. 

Sabatinelli, D., Lang, P. J., Keil, A., & Bradley, M. M. (2007). Emotional Perception: 

Correlation of Functional MRI and Event-Related Potentials. Cereb Cortex, 17(5), 1085-

1091. 

Sawaki, R., & Katayama, J. i. (2007). Difficulty of discrimination modulates attentional capture 

for deviant information. Psychophysiology, 44(3), 374-382. 

Schupp, H. T., Cuthbert, B. N., Bradley, M. M., Birbaumer, N., & Lang, P. J. (1997). Probe P3 

and blinks: Two measures of affective startle modulation. Psychophysiology, 34(1), 1-6. 

Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). 

Attentional Load and Sensory Competition in Human Vision: Modulation of fMRI 

Responses by Load at Fixation during Task-irrelevant Stimulation in the Peripheral Visual 

Field. Cereb Cortex, 15(6), 770-786. 

Shackman, A. J., Maxwell, J. S., McMenamin, B. W., Greischar, L. L., & Davidson, R. J. (2011). 

Stress Potentiates Early and Attenuates Late Stages of Visual Processing. J Neurosci, 

31(3), 1156-1161. 

Slotnick, S. D., Schwarzbach, J., & Yantis, S. (2003). Attentional inhibition of visual processing 

in human striate and extrastriate cortex. NeuroImage, 19(4), 1602-1611. 

Spielberger, C. D. (1983). Manual for the State-Trait Anxiety Inventory (Form Y) Self-Evaluation 

Questionnaire. Palo Alto, CA: Consulting Psychologists Press. 

Stolarova, M., Keil, A., & Moratti, S. (2006). Modulation of the C1 Visual Event-related 

Component by Conditioned Stimuli: Evidence for Sensory Plasticity in Early Affective 

Perception. Cereb Cortex, 16(6), 876-887. 

Supèr, H., van der Togt, C., Spekreijse, H., & Lamme, V. A. F. (2003). Internal State of Monkey 

Primary Visual Cortex (V1) Predicts Figure–Ground Perception. J Neurosci, 23(8), 3407-

3414. 



42 

 

Talsma, D., Woldorff, M. G. (2005). Methods for the estimation and removal of artifacts and 

overlap in ERP waveforms. In: Handy, T. (Ed.), Event-related Potentials: A Methods 

Handbook. MIT Press, Cambridge, MA, pp. 115-148. 

Taylor, J. R., Elsworth, J. D., Lawrence, M. S., Sladek, J. R., Roth, R. H., & Redmond, D. E. 

(1999). Spontaneous Blink Rates Correlate with Dopamine Levels in the Caudate Nucleus 

of MPTP-Treated Monkeys. Exp Neurol, 158(1), 214-220. 

Vuilleumier, P. (2005). How brains beware: neural mechanisms of emotional attention. Trends 

Cogn Sci, 9(12), 585-594. 

Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). 

Prefrontal-Subcortical Pathways Mediating Successful Emotion Regulation. Neuron, 59(6), 

1037-1050. 

Weiner, E. A., & Concepcion, P. (1975). Effects of affective stimuli mode on eye-blink rate and 

anxiety. J Clin Psychol, 31(2), 256-259. 

Wessel, I., & Merckelbach, H. (1997). The Impact of Anxiety on Memory for Details in Spider 

Phobics. Appl Cognitive Psych, 11(3), 223-231. 

West, G. L., Anderson, A. A. K., Ferber, S., & Pratt, J. (2011). Electrophysiological Evidence for 

Biased Competition in V1 for Fear Expressions. J Cognitive Neurosci, 1-10. 

Zani, A., & Proverbio, A. M. (2009). Selective attention to spatial frequency gratings affects 

visual processing as early as 60 msec. poststimulus. Percept Mot Skills, 109(1), 140-158. 



43 

 

Tables and Table captions 

 Low Load Medium Load High Load 

Positive Feedback condition 4.5 (S.D. 5.6) 7.7 (S.D. 8.3) 9.5 (S.D. 7.1) 

Negative Feedback condition 4.5 (S.D. 6.7) 5.2 (S.D. 4.5) 8.0 (S.D. 4.6) 

 

Table 1. Behavioral performance in the mental counting task for Low, Medium and High Load 

blocks, separately for positive and negative affective conditions. Values correspond to the 

absolute deviation from the correct response and corresponding standard deviations (S.D.).  

 

Figures and figure captions 
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Figure 1. Stimuli and task. Participants were instructed to attended to a rapid serial visual 

presentation (RSVP), consisting of small line segments shown in the center of the screen. A new 

small line was presented every ~1450 ms. Critically, a peripheral visual texture was flashed in 

the upper visual field at an unpredictable time following the presentation of the central line. 

Central stimuli and peripheral distractors never overlapped in space and time. The task of the 

participant was to (silently) detect and count the number of deviant lines during this RSVP. 

Peripheral distractors had to be ignored. Within a block, the ratio between standard and target 

orientations was 4:1. Across experimental blocks, standard orientation remained unchanged, but 

the angular difference between these two orientations could be large, intermediate or small, 

making the perceptual load of the task low (LL), medium (ML) or high (HL). Each participant 

performed three blocks of this task under positive affect (LL, ML and HL, in this order) and 

three other under negative affect (HL, ML and LL in this order). The standard line orientation 

(and target orientations) alternated between these two conditions, from clockwise to 

counterclockwise (counterbalanced across subjects). 
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Figure 2. Results of self-report and psychophysiological (peripheral) measurements (the symbol 

** indicates a significant effect with P < 0.01, and error bars represent 1 S.E.M.). (A) Left panel: 

the STAI-S scores, providing an estimate of the state-dependent level of anxiety, reliably 

increased after receiving negative, compared to positive, feedbacks. Right panel: the compound 

VAS scores substantially increased in the negative, relative to the positive affect condition. (B) 

Left panel: spontaneous eye-blink rates recorded during the experimental blocks associated with 

positive feedbacks. No change in the eye-blink rate was observed. Right panel: spontaneous eye-

blink rates recorded during the blocks associated with negative feedbacks. A sharp and sustained 

increase of the spontaneous blink rate was evidenced following the presentation of the first 

negative feedback. (C) Left panel: Comparison between the mean skin conductance level (SCL) 

values (not range-normalized) recorded during the induction of positive vs. negative affect. No 

difference across the two emotion conditions was observed. Right panel: Results obtained with 

the range-normalized SCL values corroborated this conclusion. (PF: Positive Feedback; NF: 

Negative Feedback; LL: Low Load; ML: Medium Load; HL: High Load) 
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Figure 3. (A) Grand average ERPs to central target lines at two representative occipito-parietal 

electrode positions along the midline. A reliable parietal P3 component was evidenced, with a 

mean latency of ~550 ms following stimulus onset. This decision-related ERP component 

substantially varied in amplitude with perceptual load, being larger for LL (green), intermediate 

for ML (orange) and smallest for HL (red), consistent with a parametric modulation of target 

detection brain processes with perceptual load. This systematic load-dependent modulation of the 

P3 component was similar for the positive and negative affective state conditions (thick vs. thin 

lines). The shaded area on the horizontal axis shows the interval (500-700 ms post-target onset) 

used to compute the mean amplitude of the P3. (B) Grand average ERPs to central standard lines 

at a representative parietal electrode (PPOz). No clear P300 component was generated in 

response to these attended central stimuli (compare with Fig. 3A and P300 elicited for target 

stimuli). Nevertheless, an analysis performed on the mean amplitude of this residual/slow wave 

in the same time-window (i.e. 500-700 ms post-stimulus onset; see inset in the Fig. 3B) showed a 

significant main effect of Load, but no interactions with Affect (see results section for exact 

values). (C) Voltage maps (horizontal view) of the P3 component, separately for the three load 

levels, showing that the amplitude of this centro-parietal ERP activity linearly decreased with 

increased perceptual load, while the configuration of the electric field remained unaffected by 

these changes. (A-Right panel) Grand average ERPs to central standard lines recorded at the 

midline occipito-parietal electrode A19. The comparison with the target-locked ERPs (see left 

panel) confirmed that the P3 component was mostly sensitive to target processing and the covert 

detection of lines with deviant orientations (see Methods). (PF: Positive Feedback; NF: Negative 

Feedback; LL: Low Load; ML: Medium Load; HL: High Load).  
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Figure 4. Grand average ERPs to peripheral distractors at four different occipito-parietal 

electrode positions along the midline, either in the positive (A, B, C) or in the negative (D, E, F) 

affective state condition. (A) A conspicuous negative C1 component peaked ~92 ms following 

stimulus onset over occipito-parietal leads. Increasing perceptual load at fixation (HL) resulted in 

a significantly lower C1 for peripheral distractors, relative to either ML or LL, as became also 

evident when computing the mean amplitude (error bars indicate 1 S.E.M) of the C1 across these 

four electrode positions (B; the symbol ** indicates a significant effect with P < 0.01). Before 

the C1 peak, an earlier effect of load arose ~50-70 ms post-stimulus onset, but this effect did not 

account for the changes found at the peak amplitude of the C1 as a function of perceptual load 

(see results). (C) The voltage maps (back view) extracted at the C1 and P1m peak latencies 

confirmed that the scalp distribution of both components were stable across the three load levels; 

only the strength of these early VEPs varied with perceptual load. (D) Although a very similar 

C1 component was clearly generated to peripheral distractors under negative affective state, its 

amplitude did not vary as a function of perceptual load changes. (E) Examining the mean 

amplitude (error bars indicate 1 S.E.M) of the C1 across these four electrode positions confirmed 

that it did not change with perceptual load. (F) The configuration of the electric field (voltage 

map) corresponding to the C1 and P1m was stable and comparable across the three perceptual 

load conditions. (LL: Low Load; ML: Medium Load; HL: High Load) 
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Figure 5. Grand average overlap-free ERPs (see methods) at two representative occipito-parietal 

electrode positions along the midline in response to peripheral distractors, separately for each 

load level (Green = LL; Red = HL). The corresponding voltage maps computed for the overlap-

free C1 peak (92 ms) are also shown. Left panel: grand average overlap-free ERPs and 

corresponding C1 voltage maps, at baseline (Block 1 of each staircase, when no reliable change 

in affective state had occurred yet). This analysis confirmed a clear effect of load (HL < LL) for 

the C1 component at baseline. Right panel: same results as for the left panel, but for the overlap-

free ERP data recorded during the last block of each staircase, hence once affective state had 

been modulated. The significant effect of load for the C1 present at baseline (see results) was 

completely abolished once (either positive or negative) affect had been induced, confirming that 

the C1 component was comparably sensitive to load and affect.  
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Figure 6. Grand average ERPs at two different occipito-parietal electrode positions along the 

midline to peripheral distractors shown either in the upper or lower visual field during the 

independent “localizer” run. A conspicuous C1 component was clearly recorded ~100 ms 

following the presentation of the peripheral distractor over occipito-parietal leads, whose 

amplitude and polarity reversed as a function of the position of the stimulus in the visual field 

(i.e., negative for upper visual field and positive for lower visual field presentations), consistent 

with the electrophysiological hallmark of this early retinotopic visual ERP component (Clark et 

al., 1995; Jeffreys and Axford, 1972; Rauss et al., 2011a and 2011b). Following the C1, a P1m 

was recorded for the stimuli presented in the upper visual field, while a more lateralized P1 was 

recorded in response to stimuli presented in the lower visual field.  


