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The involvement of the clathrin-mediated endocytic internalization route in the uptake of cholera 
toxin (CT) was investigated using different cell lines, including the human intestinal Caco-2 and 
T84 cell lines, green monkey Vero cells, SH-SY5Y neuroblastoma cells and Madin-Darby canine 
kidney cells. Suppression of the clathrin-mediated endocytic pathway by classical biochemical 
procedures, like intracellular acidification and potassium depletion, inhibited cholera toxin up-
take by up to about 50% as well as its ability to raise intracellular levels of cAMP. Also prior 
exposure of these cell types to the cationic amphiphilic drug chlorpromazine reduced the func-
tional uptake of cholera toxin, even to a greater extent. These effects were dose- and cell type-
dependent, suggesting an involvement of clathrin-mediated endocytosis in the functional uptake 
of cholera toxin. For a more straightforward approach to study the role of the clathrin-mediated 
uptake in the internalization of cholera toxin, a Caco-2eps- cell line was exploited. These Caco-
2eps- cells constitutively suppress the expression of epsin, an essential accessory protein of clath-
rin-mediated endocytosis, thereby selectively blocking this internalization route. CT uptake was 
found to be reduced by over 60% in Caco-2eps- paralleled by a diminished ability of CT to raise 
the level of cAMP. The data presented suggest that the clathrin-mediated uptake route fulfils an 

important role in the functional internalization of cholera toxin in several cell types.
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Introduction

Cholera toxin (CT), the enterotoxin secreted 
by the Vibrio cholerae bacteria, classical as well as 
El Tor biotypes, is the major virulence factor caus-
ing acute diarrhoeal disease in humans (de Haan & 
Hirst, 2004; WHO, 2006). CT belongs to the super-
family of AB toxins. The toxin is an oligomeric pro-
tein composed of a heterodimeric A-subunit (CT-A, 
Mr 27 400) and a homopentameric B-subunit (CT-B, 

Mr 58 000). CT-B is responsible for binding to the cell 
surface receptor, monosialoganglioside GM1 (Van 
Heyningen et al., 1971). CT-A consists of two distinct 
polypeptide chains (CT-A1, Mr 22 000 and CT-A2, Mr 
5 400) linked by a single disulfide bridge. CT-A1 is 
a catalytic polypeptide, displaying mono ADP-ribo-
syl transferase activity. Following ADP-ribosylation 
of the Gsα subunit of the stimulatory GTP-binding 
regulatory protein (Gs), the basolaterally located 
adenylate cyclase becomes constitutively activated. 
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The resulting increase in the intracellular cAMP 
level causes net salt and water secretion manifested 
by severe secretory diarrhoea (Vanden Broeck & De 
Wolf, 2007).

Several pathways mediating the functional 
internalization of CT have been proposed. Initially, 
internalization via non-coated invaginations (Tran 
et al., 1987) was favoured, gradually changing into 
an uptake via caveolae-like, detergent-insoluble gly-
colipid rich microdomains (DIG’s) or so-called lipid 
rafts (Fra et al., 1994; Harder & Simons, 1997; Or-
landi & Fishman, 1998; Wolf et al., 2002; Fishman & 
Orlandi, 2003) supported by the observation that li-
pid rafts and caveolae are enriched in GM1, by stud-
ies visualizing CT in caveolae and by experiments 
with drugs perturbing the cholesterol balance of the 
plasma membrane. On the other hand, several other 
lines of evidence (e.g., the time course of the intoxi-
cation process (De Wolf, 2000), CT response in cells 
lacking caveolae (Orlandi & Fishman, 1998), iden-
tification of CT in clathrin-coated vesicles (Parton, 
1996), genetic approaches (Damke et al., 1994; Torg-
ersen et al., 2001) and the effect of amphiphilic drugs 
(Shogomori & Futerman, 2001)) rather point to a 
role for clathrin-dependent endocytosis in the inter-
nalization of CT. Recently, even alternative internali-
zation mechanisms have been proposed such as an 
entry route regulated by the small GTPase ARF6, 
which has been demonstrated to interact directly 
with CT-A1 (Jobling & Holmes, 2000; Massol et al., 
2004). In addition, simultaneous blocking of all three 
described internalization routes had no effect on the 
ability of CT to raise intracellular levels of cAMP, 
thereby suggesting an involvement of other uniden-
tified endocytic pathways (Massol et al., 2004). 

In the present study experimental evidence is 
presented in favour of an involvement of the clath-
rin-mediated endocytic machinery in the functional 
internalization of CT. To this end a number of more 
classical biochemical strategies including (i) cytosolic 
acidification, (ii) K+ depletion and, (iii) preincubation 
in the presence of the cationic amphiphilic drug chlo-
rpromazine, all known to specifically interfere with 
clathrin-mediated endocytosis, have been used. To 
provide more direct evidence the recently developed 
and powerful technique of RNA interference (RNAi) 
was applied targeting the mRNA encoding epsin, an 
accessory protein of coated pit formation, generating 
a Caco-2eps- cell line with a highly reduced epsin ex-
pression and accordingly a severely impaired clathrin-
mediated uptake (Vanden Broeck & De Wolf, 2006). 

materials and methods

Materials. Highly purified CT was obtained 
from List Biological Laboratories (Campbell, CA, 

USA). HEPES, BSA, methyl-β-cyclodextrin, chlorpro-
mazine, IBMX, iodixanol were from Sigma (St. Louis, 
MO, USA). Na125I was obtained from MP Biochemi-
cals & Reagents. 125I-transferrin (diferric) and pro-
tease inhibitor cocktail were from Roche Diagnostics 
(Mannheim, Germany). Clathrin heavy chain (CHC) 
antibodies were purchased from Santa Cruz Biotech-
nology Inc. (Santa Cruz, CA, USA). BCECF-AM was 
obtained from Invitrogen-Molecular Probes.

Radiolabelling. CT was radiolabelled follow-
ing the Iodo-gen method as described by Fraker and 
Speck (1978). 

Cell culture. Except for the green monkey 
Vero cell line, obtained from Flow Laboratories, 
all other cell lines were purchased from ATCC. 
T84 human intestinal epithelial cells were grown 
in a 1 : 1 (v/v) mixture of Ham’s F12 and Dulbec-
co’s modified Eagle’s medium in the presence of 
2.5 mM l-glutamine and 5% foetal bovine serum 
(FBS). Caco-2 human intestinal colon carcinoma 
cells were propagated in modified Eagle’s medi-
um supplemented with 1.0 mM sodium pyruvate, 
0.1 mM non essential amino acids, 1.5 g/l sodium 
pyruvate and 20% FBS. Madin-Darby canine kid-
ney (MDCK) cells were subcultured in modified 
Eagle’s medium complemented with 2 mM l-glu
tamine, modified Earle’s balanced salt solution 
(sodium bicarbonate free) and sterile water (to 
achieve a final concentration of 1.5 g/l sodium 
bicarbonate) next to 0.1 mM non-essential amino 
acids, 1.0 mM sodium pyruvate and 10% FBS. SH-
SY5Y neuroblastoma cells were cultivated in a 1 : 1 
(v/v) mixture of Eagle’s minimum essential medi-
um and Ham’s F12 medium containing 10% FBS. 
Vero cells were grown in Medium 199 enriched 
with 5% FBS. Growth medium was changed twice 
a week and cells were passed at confluence using 
a 0.1% trypsin solution (Gibco BRL) in Dulbecco’s 
phosphate-buffered Ca2+- and Mg2+-free saline. 
Cell numbers were counted in a haemocytometer 
(Bürker) and cell viability was controlled by the 
trypan blue exclusion method.

Inhibition of clathrin-mediated endocytosis

Acidification. Acidification of the cystosol 
was performed according to a method described by 
Sandvig et al. (1987). 

K+ depletion. The procedure for intracellu-
lar K+ depletion was as described by Larkin et al. 
(1983).

Drugs. Cells were starved for 30 min in se-
rum-free medium supplemented with 25 mM Hepes 
and 1% BSA, whereafter the incubation was contin-
ued at 37°C for 60 min in the same medium in the 
presence of increasing amounts of chlorpromazine 
(CPZ), known to interfere with clathrin-mediated en-
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docytosis (Wang et al., 1993), followed by the evalu-
ation of the effects elicited by CT.

Gene silencing. Highly selective blocking of 
clathrin-mediated endocytosis was accomplished by 
post-transcriptional gene silencing as described by 
Vanden Broeck and De Wolf (2006). 

Binding of 125I-CT. Treated and control cells, 
either in monolayer or in suspension, were placed 
on ice and 125I-CT (106 cpm/ml; about 1 nM CT) 
was allowed to bind for at least 30 min at 4°C. Af-
ter washing with ice-cold phosphate-buffered saline 
(PBS), radioactivity was measured in both growth 
medium and cells.

Internalization of 125I-CT. Internalization of 
125I-CT was always monitored in cell suspensions. 
After binding of 125I-CT, cells were washed with 
ice-cold serum-free medium buffered with 25 mM 
Hepes and subsequently incubated at 37°C for the 
indicated times in prewarmed serum-free medium. 
With each medium change effector concentrations 
or experimental conditions were readjusted as re-
quired. After incubation cells were washed with 
PBS. To remove surface-bound ligand, cells were 
placed for exactly 5 min at 4°C in a solution con-
taining 0.5 M NaCl and 0.2 M acetic acid (pH = 2.5). 
Release of surface-bound CT reached an efficiency 
of about 90%, in accordance with the data of Sorkin 
and Carpenter (1991). After centrifugation, the cells 
were washed three times with ice-cold PBS followed 
by disruption overnight in 0.1 M NaOH. Radioac-
tivity was assayed in both the acid supernatant and 
lysed cells.

Internalization of 125I-transferrin. Internaliza-
tion of 125I-transferrin was monitored in cell suspen-
sions. After binding of 125I-transferrin (120 min, 4°C), 
cells were washed with ice-cold serum-free medium 
buffered with 25 mM Hepes and subsequently incu-
bated at 37°C for the indicated times in prewarmed 
serum-free medium. With each medium change ef-
fector concentrations or experimental conditions 
were readjusted as required. After incubation, cells 
were cooled and washed again with PBS. Surface-
bound and internalized 125I-transferrin were deter-
mined as described for CT in the previous section.

Assay of cyclic AMP. CT-induced activation 
of adenylate cyclase and intracellular cAMP accu-
mulation were determined as previously described 
(De Wolf, 2000).

Forskolin-induced activation of adenylate cy-
clase. In order to exclude direct effects on adenylate 
cyclase, cells were treated with forskolin, assumed to 
induce activation of the enzyme without intervening 
steps. The experiments were performed as described 
in section ‘assay of cAMP’ except that the cells were 
stimulated priorly by a fixed concentration of for-
skolin (50 µM) for 10 min at 37°C. 

Generation of CT-A1 and analysis by SDS 
polyacrylamide gel electrophoresis. Generation of 
CT-A1 was monitored as described previously (De 
Wolf, 2000). 

Measurement of intracellular pH. Measure-
ments of intracellular pH were performed using the 
membrane-permeable pH-sensitive probe BCECF-
AM (2’,7’-bis(2-carboxyethyl)-5(6)-carboxyfluorescein 
acetoxymethyl ester) (Molecular Probes) according 
to the method described by Rink et al. (1980). Cali-
bration was done using the K+-nigericine method 
(Thomas et al., 1979).

Preparation of clathrin-coated vesicles. Iso-
lation of clathrin-coated vesicles was according to 
the procedure of Pearse (1982) for isolating this 
type of vesicles from placenta. Caco-2 or Caco-2eps- 
cells (1.5 × 108 cells) were washed three times with 
PBS and further incubated at 4°C for 2 h with 0.5 
µg/ml 125I-transferrin (1 µg/ml, about 2.5 × 106 cpm) 
or for 1 h with 0.5 µg/ml 125I-CT (1 µg/ml, about 
1.2 × 106 cpm) in binding medium (DMEM contain-
ing 20 mM Hepes, (pH 7.4) and 0.1% (w/v) BSA). 
After washing with PBS, cells were warmed up 
for 2 min at 31°C in binding medium and washed 
four times in vesicle buffer (140 mM sucrose, 75 
mM potassium acetate, 10 mM Mes, pH 6.6, 1 mM 
EGTA, 0.5 mM magnesium acetate). After drain-
ing the dishes, the cells were scraped with a rub-
ber policeman and a protease inhibitor cocktail 
(Roche) was added. Cells were homogenized on 
ice in a Potter-Elvehjem homogenizator by pass-
ing the suspension 10 times through a 0.2540 inch 
bore containing a 0.2530 inch diameter ball. Subse-
quently a post-nuclear supernatant was prepared 
by centrifugation at 3 000 × g for 10 min. To this 
supernatant self gradient forming Iodixanol (Sig-
ma) was added to obtain a final concentration of 
12% (v/v). Nine milliliters of diluted supernatant 
were applied to 1.5 ml 15% (v/v) Iodixanol in Sor-
vall vertical centrifugation tubes. Centrifugation 
was continued until equilibrium (Centrikon T2060 
(Kontron Instruments) analytical ultracentrifuge; 
Sorvall TV-850 vertical rotor (Sorvall); 45 000 × g 
for 30 min at 4°C), whereafter 0.5 ml fractions 
were collected and further assayed for radioac-
tivity in a Beckman scintillation counter. Optical 
density of isolated fractions was determined with 
a Carl Zeiss Jena refractometer. 

Western blotting. Fractions were used im-
mediately or stored at –80°C. Protein concentra-
tions were determined by the BCA® method (Pierce 
Chemicals, Rockford, IL, USA). Fractions were sus-
pended in NuPage LDS Sample Buffer (Invitrogen) 
before loading on a NuPAGE 12% bis/tris polyacry-
lamide gel (Invitrogen) and processed as described 
previously (Vanden Broeck & De Wolf, 2006). 
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results

Effect of acidification of the cytosol on CT action

Measurement of intracellular pH. To check 
the effect of the acidity of the incubation medium 
on the intracellular pH, T84 cells were incubated in 
a series of media covering a pH range from 5.0 to 
7.5. As can be read from the inset in Fig. 2, the out-
er cellular pH was paralleled by a similar but less 
pronounced decrease of the intracellular pH, e.g. an 
extracellular pH = 6.0 (commonly used throughout 
the experiments) corresponded to the intracellular 
pH = 6.4. This pH difference can be explained by 
the cells’ capacity to resist cytosolic acidification. At 
more physiological pH values, the divergence was 
less pronounced, with nearly identical inner and 
outer pH values. 

Under all experimental conditions no differ-
ence in viability was found between control and 
treated cells, even at the lowest pH tested of 5.0 (not 
shown).

Binding of cholera toxin. As shown in Ta-
ble  1, preincubation of Caco-2, T84, SH-SY5Y, 
MDCK and Vero cells in medium supplemented 
with HAc (5 mM) to tune the intracellular acidity to 
pH = 6.5 did not alter the 125I-CT binding capacity 
appreciably. The binding capacity was measured for 
cells in suspension as well as in monolayer with a 
general tendency of a somewhat decreased binding 
potential of acidified cells in monolayer. 

Internalization of cholera toxin. In con-
trast to the minimal pH effect on the CT binding, a 
diminution of CT internalization by about 50% was 

observed in all cell types tested when they were 
treated with 5 mM HAc (Fig. 1A). Surface-bound 
toxin removal occurred initially rapidly and then 
decreased, accompanied by a concurrent increase of 
internalized 125I-CT.

Accumulation of cAMP and adenylate cy-
clase activation. Incubation of intact cells in acidi-
fied medium resulted in a strong suppression of 
CT-induced cAMP accumulation. All cell lines tested 
displayed a similar sensitivity to this treatment. As 
shown in Fig. 1B acidification of the cytosol down 
to pH = 6.0 suppressed the CT action on the level of 
cAMP accumulation in all cell lines by 60 to 65%. 

The impact of acidification was investigated 
in a pH range from 5.0 to 7.4. As evidenced from 
Fig.  2, a maximal inhibitory effect on the ability of 
CT to raise intracellular cAMP was found below 
pH = 6 for the three cell types tested after 60 min 
of incubation. Already from pH = 7.0 a significant 
decrease of CT action amounting to 50% vs. con-
trol was observed. To achieve an optimal balance 
between the efficient reduction of CT action and 
cytosolic acidification most experiments were per-
formed in a medium supplemented with 5 mM HAc 
adjusted to pH = 6.0. 

When investigating the time dependence of 
the inhibitory effect of cytosolic acidification (not 
shown), it was found that the diminished cAMP 
accumulation was virtually independent of the mo-
ment of acidification, i.e. prior to or upon simultane-
ous CT administration. All cell types tested showed 
a similar acidification response.

The inhibitory effect of intracellular acidifica-
tion appeared to be a partially reversible phenom-

Figure 1. Internalization of 125I-CT and CT-induced cAMP accumulation in different cell types.
Panel A. Suspensions of cultured cells were preincubated in medium containing 5 mM HAc, adjusted to pH about 6.0 for 
10 min at room temperature (open bars) or washed with a K+-free isotonic buffer and shocked with a hypotonic K+-free 
buffer diluted 1 : 1 with H2O for 5 min at room temp. (closed bars) or incubated for 60 min at 37°C with 50 µM CPZ 
(hatched bars) in control medium prior to binding of 125I-CT. After treatment, 125I-CT was allowed to bind for 60 min 
at 4°C, cells were washed with ice cold PBS and temperature shifted to 37°C for 40 min. Cells were further assayed for 
surface-associated 125I-CT. Panel B. Suspensions of cultured cells were pretreated as described under A. After treatment, 
cells were placed at 37°C for 15 min after which cholera toxin (1 µg/ml) was added and the cells further incubated for 
60 min at 37°C. The intracellular concentration of cAMP was measured. Cells under control conditions are depicted by 
filled bars. Values are means ± S.D. of triplicate assays from one of at least three similar experiments.
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enon. Following incubation of the cells for 1 h at 
pH = 6.0 and substitution of the acidic medium by 
regular medium before CT administration, the CT 
effect as evaluated by cAMP accumulation was de-
layed, the lag phase being prolonged by nearly 20 
min; also the extent of cAMP production was some-
what reduced (Fig. 3). 

To exclude any direct effects of acidification 
on adenylate cyclase activation, intact cells were 
incubated in the presence of forskolin (50 µM), a 
cell-permeable diterpenoid known to stimulate the 
adenylate cyclase directly. No significant difference 
between control and pH-lowered cells was noted 
(not shown). This observation was confirmed when 
membranes isolated from control and HAc- treated 
cells were exposed to in vitro generated CT-A1, the 
enzymatically active subunit of the holotoxin which 
finally activates the adenylate cyclase. In both acid-
ified and control cells, no significant difference in 
the extent of activation was observed (not shown).

Effect of acidification of the cytosol on the 
generation of active CT-A1. Small amounts of CT-
A1 appeared in the cytoplasm after a delay of about 
15–20 min, increasing in a time-dependent manner 
and reaching a value of about 4.5% under control 
conditions (37°C, 60 min). In acid-treated cells the 
generation of catalytically active CT-A1 was nearly 
completely suppressed; after 1 h incubation only 
0.5% of CT-A was converted into CT-A1 (Fig. 4). The 
initial amount at time zero of cell-associated CT-A 
converted to CT-A1 was subtracted as background 
value and is probably due to non-specific reduction 
of CT-A despite the presence of NEM.

Effect of K+ depletion on CT action

Measurement of intracellular pH. Under 
conditions of K+ depletion followed by further incu-
bation with potassium-free medium (pH = 7.4), only 
a minor decrease of intracellular pH was found, ex-
cluding any side effects of hypotonic shock at the 
level of intracellular acidity (not shown). Viability of 
the shocked cells as determined by the trypan blue 
exclusion method amounted to 98 ± 0.9%. 

Binding of cholera toxin. As observed after 
intracellular acidification, also after K+ depletion 
and incubation in K+-free medium CT binding was 
not altered to any appreciable extent in Caco-2, T84, 
MDCK, SH-SY5Y and Vero cells (Table 1).

Internalization of cholera toxin. The effect 
of hypotonic shock followed by K+ depletion on 
CT internalization was strongly cell-type-depend-
ent (Fig.  1A). In MDCK cells the uptake of CT 
was reduced down to 40%, while in the other cells 
a gradual but varying decrease of cell-surface CT 
was observed in function of incubation time, the 
CT uptake being the least affected in the SH-SY5Y 
cell line. 

Accumulation of cAMP and adenylate cy-
clase activation. In contrast to the effect of acidifi-
cation, the response of the different cell types to K+ 
depletion was much more diverse with regard to the 
ability of CT to raise intracellular levels of cAMP 
(Fig. 1B). In T84 and Vero cells, but even more in 

Figure 2. Inhibition of cholera toxin-induced accumula-
tion of cAMP as a function of pH.
Human intestinal T84 cells (closed triangle), SH-SY5Y 
neuroblastoma cells (open triangles) and Vero cells (open 
squares) were incubated at 37°C for 60 min with medium 
at the indicated pH. Subsequently, cholera toxin (1 µg/ml) 
was allowed to bind at 4°C, excess CT washed away and 
cells were further incubated for 60 min at 37°C. The intra-
cellular concentration of cAMP was measured. Values are 
means of triplicate assays from one of three independent 
experiments. S.D. values were always below 10%.

Figure 3. Reversibility of the inhibitory effect of intracel-
lular acidification on CT action.
Human intestinal T84 (triangles) or Caco-2 cells (squares) 
in suspension were incubated at 37°C for 60 min in me-
dium with 5 mM HAc (pH = 6.0). After washing with salt 
solution, cells were resuspended in normal medium at 
pH = 7.4, cholera toxin (1 µg/ml) added and cells incubat-
ed for the indicated times, whereafter intracellular cAMP 
levels were measured. Values are means of triplicate as-
says from one of three independent experiments. S.D. val-
ues were always below 10%.
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MDCK and SH-SY5Y cells, the inhibitory effect was 
much more pronounced after K+ depletion than af-
ter acidification. On the other hand, in Caco-2 cells 
a nearly similar inhibition was observed upon K+ de-
pletion and acidification. 

A direct effect of K+ depletion on adenylate 
cyclase activation was excluded based on experi-
ments with forskolin. Also activated CT (CT-A1)-
induced stimulation of adenylate cyclase after pre-
paring crude membranes displayed no differences 
between control and potassium-depleted cells under 
the conditions used (not shown).

Effect of chlorpromazine on CT action

Binding of cholera toxin. As shown in Ta-
ble 1, administration of CPZ did not elicit any effect 
at the level of CT binding in all cells investigated, 
either in monolayer or in suspension, even at the 
highest CPZ concentration of 100 µM tested.

Internalization of cholera toxin. All experi-
ments were performed at a final concentration of 50 
µM CPZ. The response at the level of CT internali-
zation varied between the different cell types. Caco-
2 and MDCK cells were the most CPZ-sensitive (ap-
prox. 65% reduction), Vero and SH-SY5Y cells the 
most resistant (about 40–45% reduction) and T84 
cells occupied an intermediate position (about 55% 
reduction) (Fig. 1A).

Accumulation of cAMP and adenylate cy-
clase activation. The sensitivity to the drug varied 
depending on the cell type (Fig. 1B). As shown in 
Fig. 5A, to reduce the cAMP accumulation in intes-
tinal T84 cells down to 50%, a concentration of 20 
µM CPZ was needed. To achieve the same reduction 
in Caco-2 and MDCK cells up to about  60 µM CPZ 
had to be administered to the cells. SH-SY5Y and 
Vero cells were more resistant to the drug. In Vero 
cells, even at 100 µM CPZ, 50% reduction of cAMP 
accumulation could not be attained. 

Interestingly, in contrast to the findings af-
ter acidification or K+ depletion, when verifying the 
CPZ effect on forskolin-activated adenylate cyclase, 

dramatic reductions of the enzymatic activity were 
registered, the phenomenon being strongly cell-type-
dependent (Fig. 5B). At 50 µM CPZ quasi nihil or 
only limited inhibition was observed in T84, MDCK 
and Vero cells, while in Caco-2 and SH-SY5Y cells an 
inhibitory effect of over 60% was found. At 100  µM 
CPZ forskolin-activated adenylate cyclase was sup-
pressed severely in all cell types: by about 60% of 
the control in Vero and MDCK cells, over 80% in 
T84 cells and over 90% up in SH-SY5Y and Caco-2 
cells.

Activated CT (CT-A1)-induced stimulation of 
adenylate cyclase in crude membranes displayed no 

Table 1. CT binding to various cell types.

Treated and control cells, either in monolayer (ML) or in suspension (S), were placed on ice and 125I-CT (106 cpm/ml; ~ 1 
nM CT) was allowed to bind for at least 30 min at 4°C. After washing cell-bound radioactivity was measured.

Caco-2 T84 SH-SY5Y MDCK Vero
ML (%) S (%) ML (%) S (%) ML (%) S (%) ML (%) S (%) ML (%) S (%)

Control 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Acidification 93.7 94.3 86.3 103.9 78.6 95.4 87.1 83.7 86.2 106.5
K+ depletion 90.3 96.3 92.9 99.3 90.5 93.0 93.3 84.7 83.7 98.8
Chlorpromazine 95.5 94.7 88.8 92.5 93.7 95.9 96.8 81.6 79.0 113.9
Epsin-deficient 100.4 104.9 / / / / / / / /

All experiments were performed at least in triplicate with an overall S.D. of less than 7%.

Figure 4. Effect of acidification and epsin-deficiency on 
the generation of CT-A1.
Vero cells were grown in Petri dishes and preincubated 
for 10 min at room temp. in medium containing 5 mM 
HAc (pH = 6.0). After replacement by ice-cold serum-free 
medium containing 125I-CT supplemented with 5 mM HAc 
(pH = 6.0) (open squares), cells were further incubated for 
the indicated times at 37°C. Control cells (crosses) were 
also preincubated for 10 min at room temp. in normal se-
rum-free medium, whereafter also the CT-A1 generation 
was measured following 125I-CT administration. Caco-2eps- 

cells (closed squares) were grown till confluence and used 
directly. Cells were scraped and collected by low speed 
centrifugation. Generation of CT-A1 was determined after 
separation on SDS/PAGE measuring the amount of radio-
activity in the CT-A1 lanes as described in the Materials 
and Methods section. Values are means ± S.D. of triplicate 
assays from one of three independent experiments.
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differences under the working conditions between 
control and CPZ-treated cells (not shown).

Inhibition of clathrin-mediated endocytosis by  
shRNA targeting epsin

Binding of cholera toxin. The binding of 125I-
CT to Caco-2eps- cells in monolayer or suspension 
was not affected as a result of cell transformation 
with an shRNA-encoding construct directed against 
epsin mRNA (Table 1). 

Internalization of cholera toxin. In paral-
lel with the decreased transferrin internalization 
(Fig.  6B) also a reduction of CT uptake amounting 

to about 60% was observed in the Caco-2eps- cells as 
compared to the control Caco-2 cell line (Fig.  6A).

Accumulation of cAMP and adenylate cy-
clase activation. As depicted in Fig. 7, the decreased 
CT uptake was paralleled by a nearly equal, also up 
to about 65%, lowering of the CT-induced cAMP 
accumulation versus control cells (wild type Caco-2 
cells and Caco-2ss cells, transfected with a functional, 
non-targeting scrambled sequence).

Incubation of Caco-2eps- cells with 50 µM for-
skolin showed no significant difference in adenylate 
cyclase activation compared to control Caco-2 cells, 
excluding a direct effect of the genetic modification 
on the activity of adenylate cyclase (not shown).

Figure 5. Effect of different concentrations of chlorpromazine on CT- and forskolin-induced cAMP accumulation in 
different cell types.
Panel A. Suspensions of human intestinal T84 (closed triangles) and Caco-2 (closed squares) cells, SH-SY5Y (open trian-
gles) cells, MDCK (closed diamonds), or Vero (open squares) cells were preincubated for 60 min at 37°C with different 
concentrations of CPZ as indicated. After treatment, cholera toxin (1 µg/ml) was added, allowed to bind and cells were 
further incubated for 60 min at 37°C, whereafter intracellular levels of cAMP were measured. Panel B. Cells were also 
stimulated with forskolin for 30 min at 37°C after preincubation with the indicated concentrations of CPZ. Values are 
means of triplicate assays from one of three independent experiments. S.D. values were always below 10%.

Figure 6. Effect of reduced epsin expression on the internalization of CT.
Panel A. Caco-2 (circles) and Caco-2eps- cells (squares) in suspension were cooled on ice and 125I-CT was allowed to bind 
for 60 min. Cells were washed 3 times with ice-cold PBS, further incubated at 37°C for the indicated times and tempera-
ture shifted to 4°C to inhibit endocytosis. Surface-bound 125I-CT was removed using 0.1 M HAc (pH = 2.5) and samples 
were assayed for radioactivity. Panel B. Caco-2 (circles) and Caco-2eps- cells (squares) in suspension were preincubated 
for 120 min on ice in medium containing 125I-transferrin and further processed as described. Values are means ± S.D. of 
duplicate assays from one of three independent experiments.
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Effect of reduced epsin expression on the 
generation of catalytically active CT-A1. In Caco-
2eps- cells, the generation of catalytically active CT-
A1 was strongly suppressed; after 1 h incubation, 
only about 1.0% of CT-A was converted into CT-A1 
(Fig. 4). 

Effect of epsin depletion on the association 
of CT with clathrin-coated vesicles. Figure 8 repre-
sents the distribution of internalized 125I-CT (panel 
A) and 125I-transferrin (panel B) over the Iodixanol 

gradient after incubating Caco-2 and Caco-2eps- cells 
with these 125I-labelled ligands. All radioactivity pro-
files show a peak equilibrating at a density of 1.05, 
matching the density of clathrin-coated vesicles as 
reported by Pearse (1982). In addition, these 125I-la-
belled vesicles cosedimented with the clathrin heavy 
chains in the gradient as illustrated by Western blot-
ting (Fig. 8). From Fig. 8B, a dramatic reduction of 
transferrin-loaded coated vesicle generation (about 
50%) becomes obvious. Repeating the experiments 
with 125I-CT resulted in similar distribution profiles 
with again a striking depletion of coated vesicle for-
mation by about 40% in Caco-2eps- cells (Fig. 8A).

discussion

For the functional internalization of CT dif-
ferent entry routes have been proposed. The CT re-
ceptor, GM1, being enriched in detergent-insoluble 
microdomains or lipid rafts, a number of research-
ers have focussed on the potential role of lipid raft/
caveolae-assisted uptake of CT. These studies were 
mainly based on the use of pharmaceutical inhibi-
tors assumed to affect selectively DIG’s by interfer-
ing with the cholesterol content of the plasma mem-
brane. For instance cyclodextrins (Ilangumaran & 
Hoessli, 1998) are capable of extracting cholesterol 
out of the membrane, whereas filipin/nystatin binds 
and complexes cholesterol (Schnitzer et al., 1994), in 
this way perturbing normal membrane function. In 
all those studies, administration of the cholesterol-
interacting drugs resulted in a significant reduction 
of internalization of CT (Ilangumaran & Hoessli, 
1998), leading to the conclusion that CT was inter-
nalized via a non-clathrin-mediated route into the 
cell. However, it should be emphasized that other 

Figure 7. Effect of reduced epsin expression on the abil-
ity of cholera toxin to raise the intracellular concentra-
tion of cAMP.
Suspensions of cultured wild type Caco-2 cells (closed 
squares), Caco-2ss (crosses) and Caco-2eps- (open trian-
gles) were incubated with CT (1 µg/ml) on ice for 30 
min, washed with ice-cold PBS and incubated at 37°C for 
the indicated times. The Caco-2ss cell line, engineered by 
transfection with a functional, non-targeting scrambled 
shRNA sequence and wild type Caco-2 cells were used as 
negative controls. The intracellular concentration of cAMP 
was monitored. Values are means of triplicate assays from 
one of three independent experiments. S.D. values were 
always below 10%.

Figure 8. Isolation of clathrin-coated endocytic vesicles and Western blotting.
125I-CT (A) or 125I-transferrin (B) was bound to Caco-2 (closed squares) or Caco-2eps- (open circles). Cells were homog-
enized and a post-nuclear supernatant prepared before OptiPrep density gradient centrifugation. Fractions (500 µl) were 
sampled for radioactivity and assayed for clathrin heavy chain by semi-quantitative Western blotting. The figure dis-
plays one representative experiment out of three independent ones. 
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groups have reported that cholesterol depletion with 
cyclodextrins not only disrupts raft structures, but 
also flattens clathrin lattices and reduces the propor-
tion of deeply invaginated pits (Rodal et al., 1999). 
Therefore, the drug-induced inhibition of CT inter-
nalization could reflect either a disruption of lipid 
rafts/caveolae and/or a perturbation at the level of 
clathrin lattices. Accordingly, the data collected in 
experiments with cholesterol-affecting drugs must 
be carefully interpreted. Studying functional inter-
nalization is even more complicated since intracellu-
lar transport of CT is MβCD-sensitive (Shogomori & 
Futerman, 2001).

Another argument against caveolae-mediated 
endocytosis of CT comes from the time course of 
the CT-induced cAMP accumulation in several cell 
types (De Wolf, 2000), implying fast binding, inter-
nalization and intracellular transport of CT from 
the cell surface towards its intracellular target, the 
stimulatory G protein of adenylate cyclase. Indeed, 
within about 20 min after CT intoxication, the toxic 
effect, i.e. the increase of intracellular cAMP, can be 
observed. Also internalization of the transferrin re-
ceptor, a marker for clathrin-mediated endocytosis, 
is a fast phenomenon (Moya et al., 1985), whereas 
caveolae-mediated internalization is described as a 
slow process (about 3 h). Moreover, caveolae appear 
to be very stable structures of the plasma membrane 
(Thomsen et al., 2002; Carver & Schnitzer, 2003). 

In this paper, we report on the perturbation 
of the clathrin-mediated endocytic system in several 
cell lines using different experimental approaches 
and evaluate the effects of blocking this entry route 
on the internalization and toxicity of CT. 

Basic biochemical methods like acidification 
of the cytosol or K+ depletion are still commonly ap-
plied to study clathrin-mediated internalization proc-
esses. Both experimental approaches have been re-
ported to be more selective for the clathrin-mediated 
internalization route than to the other entry routes 
(Brech et al., 1998). Although both acidification of 
the cytosol and K+ depletion inhibit the uptake of 
TfR, their modes of action are different. Acidification 
of the cytosol inhibits coated pits from pinching off 
from the cell surface (Sandvig et al., 1987), while K+ 
depletion prevents the formation of coated pits at 
the inner cell surface by interfering with the clath-
rin triskelions/AP-2 adaptor interaction (Larkin et al., 
1983). However, it should be stressed that when us-
ing these basic biochemical techniques, side effects 
can never be excluded. 

Nevertheless, our data exploiting these tech-
niques demonstrate that, although CT binding to 
most cell types was hardly affected, CT uptake was 
highly reduced and accompanied by a strongly sup-
pressed toxin action, supporting an involvement of 
coated vesicles in CT internalization. The effects of 

both treatments were similar in all cell lines tested 
reflecting the specificity of these two experimental 
approaches. As no direct inhibition of adenylate cy-
clase could be excluded, forskolin-induced stimula-
tion of the enzyme was measured in both acidified 
and K+ depleted cells. In either condition, no differ-
ences in activation degree were noticed versus the 
controls. Also with crude membranes isolated from 
HAc-treated cells, the same activation of adenylate 
cyclase was found upon exposure to in vitro gener-
ated CT-A1. Moreover, the pH activity curve of ade-
nylate cyclase displays a broad pH optimum rang-
ing from pH = 6.5 to 9.5 (Sanders et al., 1986). As in 
our experiments the cytosolic pH was maintained at 
pH = about 6.5, theoretically no direct effects on ade-
nylate cyclase at this lower pH were to be expected. 
As a conclusion, neither acidification nor K+ deple-
tion elicited any direct effect on adenylate cyclase.

As a third alternative experimental approach 
to suppress clathrin-assisted uptake, we used the 
drug CPZ that has been shown to exert specific in-
hibitory effects on the clathrin-mediated endocytic 
process (Sofer & Futerman, 1995). Treatment with 
CPZ causes clathrin lattices to assemble on endo-
somal membranes, simultaneously preventing coat-
ed pit formation at the plasma membrane (Wang et 
al., 1993). 

Our data reveal that CPZ suppresses the in-
ternalization of CT in all cell types tested, further 
supporting the involvement of classical coated vesi-
cles in the endocytic process. Interestingly, a prom-
inent cell-dependent sensitivity was noted; e.g., in 
T84 cells only 20 µM CPZ was required to achieve 
a 50% reduction of cAMP accumulation, while Vero 
cells were much more resistant, needing more than 
100 µM CPZ to attain the same degree of reduc-
tion. This cell CPZ-sensitivity and accompanying 
variability for CT internalization have also been re-
ported by other authors. In hippocampal neurons 
(Sofer & Futerman, 1995), 25 µM CPZ was suffi-
cient to block the internalization process of CT by 
about 50%, while according to Orlandi and Fishman 
(1998) relatively high concentrations of CPZ are re-
quired for inhibition of CT uptake by Caco-2 cells, 
in agreement with the results in this study. On the 
other hand, according to Ma and Lim (2003) much 
lower CPZ concentrations are sufficient to inhibit 
significantly the internalization process in the same 
cell line, although it should be noted that those au-
thors studied the uptake of chitosan and associated 
insulin instead of CT.

It should be mentioned that CPZ also gener-
ates direct effects on the intracellular CT target, i.e. 
adenylate cyclase, as indicated by the inhibition of 
forskolin-stimulated adenylate cyclase. This direct 
effect of CPZ on adenylate cyclase therefore com-
plicates the quantitative assessment of the func-
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tional internalization based on changes of cAMP 
accumulation. 

As a final experimental approach, a Caco-
2eps- cell line was developed, constitutively express-
ing shRNA targeting the mRNA coding for epsin 
(Vanden Broeck & De Wolf, 2006). Epsin is an in-
trinsic regulatory component of clathrin-mediated 
endocytosis and to our knowledge the EPN1 gene 
has been proven to be highly specific for this type 
of internalization process. The protein is involved in 
the induction of membrane curvature, clathrin po-
lymerization and recruitment of the AP-2 complex 
(Ford et al., 2002). The cell line is characterized by a 
severe depletion of epsin expression, resulting in a 
dramatic reduction of clathrin-mediated endocytosis 
as evidenced from the attenuated transferrin inter-
nalization. We have shown that in this Caco-2eps- cell 
line, the CT uptake was also severely suppressed, 
paralleled by a nearly equal lowering of the ability 
of CT to raise cytosolic cAMP levels. 

Summarizing, all our data point to an in-
volvement of clathrin-coated pits in the functional 
uptake of CT. On the other hand, one cannot negate 
the experimental evidence obtained with cholester-
ol-interacting drugs by others (Orlandi & Fishman, 
1998) and also in our laboratory (unpublished), sug-
gesting CT uptake via non-clathrin-mediated endo-
cytic mechanisms. These divergent opinions might 
be reconciled by the hypothesis that there is not al-
ways a strict segregation of clathrin-dependent and 
raft-dependent endocytic pathways and that CT 
uptake could rely on a crosstalk between signalling 
and internalization components. In other words, the 
site of CT binding does not necessarily coincide with 
the site of internalization. Such a model has already 
been proposed by Shogomori and Futerman (2001) 
for uptake of CT by hippocampal neurons, assum-
ing initial binding of the toxin occurring in a GM1 
hotspot (lipid raft) followed by internalization via 
a clathrin-dependent mechanism. This CT/raft com-
plex could either diffuse directly into the coated pit 
and be internalized, as the dimensions of a standard 
coated pit (70 nm to 100 nm) (Ehrlich et al., 2004) are 
sufficient to accept an intact lipid raft. Nevertheless, 
it has been described that coated pits are depleted 
in raft components (Nichols, 2003). Alternatively, the 
CT/GM1 complexes might move laterally from the 
raft, subsequently being internalized via the clathrin-
mediated pathway. 

In conclusion, all our data resulting from ex-
periments applying different approaches to affect 
clathrin-assisted endocytosis confirm that functional 
internalization of CT occurs, at least partially, via the 
clathrin-mediated uptake system. The most convinc-
ing data were gathered from the development of a 
Caco-2eps- cell line by RNA interference which was 
severely depleted in epsin, a regulatory protein as-

sumed to be exclusively associated with the clath-
rin-mediated endocytosis at the level of the plasma 
membrane. The lowered epsin levels in this cell line 
resulted in a firm decrease in TfR uptake, as well as 
of CT. The latter effect was paralleled by a drastic 
reduction of the physiological effects generated in-
tracellularly as a consequence of CT intoxication.
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