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Abstract—In this letter, the Multilevel Fast Multipole Method
(MLFMM) is combined with the Polynomial Chaos Expansion
(PCE) approach to model the stochastic variations of a scatterer.
In particular, it is demonstrated how the Stochastic Galerkin
Method (SGM) can be combined with an MLFMM accelerated
Method of Moments (MoM) and how the beneficial effects of the
MLFMM for electromagnetically large scatterers are retained in
the stochastic case.

Index Terms—Stochastic Galerkin Method (SGM), Multilevel
Fast Multipole Method (MLFMM), scattering, Method of Mo-
ments (MoM)

I. INTRODUCTION

Electromagnetic scattering analysis relies on exact data of
the considered structures such as material parameters and
geometry. In reality, these data exhibit variability and mod-
eling of these uncertainties can be achieved by combining
electromagnetic analysis and stochastic analysis methods. The
standard approach is to assume that the parameters of interest
are random variables with a predefined probability density
function (PDF). The goal is to determine the statistics of output
parameters of interest, such as the bistatic radar cross-section
(RCS) and the current distribution on the scatterer.
A standard way to analyze the effect of variability is by means
of straightforward Monte Carlo (MC) simulations which, un-
fortunately, show quite slow convergence at a rate 1/

√
Ns,

where Ns is the number of separate runs of the code. As
an alternative, spectral methods based on polynomial chaos
expansions (PCE) using orthogonal polynomials depending
on the particular distribution of the random variables were
proposed [1]. Roughly speaking, these methods come in two
flavors: the non-intrusive ones, such as the Stochastic Col-
location Method (SCM) [2] and the intrusive methods, such
as the Stochastic Galerkin method (SGM) [3]. Whereas non-
intrusive methods rely on a standard deterministic solver to
obtain the statistical information, intrusive methods require the
development of a dedicated new solver. PCE-based methods
are already used for variability analysis of (on-chip) intercon-
nects [4] [5]. Superiority of PCE-based methods over MC
simulations for scattering problems is, e.g., demonstrated in
[6] and will not be repeated in this letter.
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In this letter, we will use the SGM approach to model stochas-
tic scattering problem by means of an integral equation. As
indicated in [5], applying SGM to integral equations combined
with the Method of Moments (MoM), leads to solving a large
deterministic problem. In order to decrease the computational
complexity, the Multilevel Fast Multipole Method (MLFMM)
[7] is invoked. To the best knowledge of the authors, this
letter is the first to discuss the combination of MLFMM with
the intrusive SGM for the stochastic analysis of scattering
problems. To assess the benefits of the MLFMM approach,
we compare it to the standard MoM approach combined
with SGM. Section II discusses the theoretical framework,
combining the Electric Field Integral Equation (EFIE), its
MoM solution, the SGM with its expansion of all variables in
the proper stochastic basis functions and the way the MLFMM
can be adapted to the stochastic approach. The numerical
example in Section III illustrates the acceleration obtained by
introducing the MLFMM in the stochastic approach.

II. THE STOCHASTIC SCATTERING PROBLEM

We consider two-dimensional frequency domain scattering
by perfect electrically conducting (PEC) objects, residing
in free space, with a stochastically defined geometry. This
geometric variability of the scatterer is described by a set of
M independent random variables which are collected in the
vector ξ = [ξ1 ξ2 ... ξM ] with domain Ω. The z-axis is the axis
of invariance. The incident wave is a TM-polarized plane wave
with electric fieldEi = Eiuz . To determine the scattered field,
we apply an electric field integral equation (EFIE) solved by
the MoM. To this end, the scatterer is divided into N segments
and pulse basis functions for the current distribution are used.
As a result, a stochastic linear system equation is obtained:

Z(ξ)I(ξ) = V (ξ). (1)

Next, all elements of (1) are represented via a PCE, from
which we get:

K∑
k=0

V kφk(ξ) =

K∑
k=0

K∑
l=0

ZkI lφk(ξ)φl(ξ), (2)

where Zk, V k and I l represent the expansion coefficients of
system matrix Z, RHS V and unknown current density I ,
resp. φk(ξ) and φl(ξ) are multivariate polynomials that are
orthonormal with respect to the PDF W (ξ) of the random
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vector ξ. The expansion coefficients of any quantity f(ξ) are
obtained via:

fk =< f(ξ), φk(ξ) >, (3)

where < f(ξ), g(ξ) > represents an inner product defined as:

< f(ξ), g(ξ) >=

∫
Ω

f(ξ)g(ξ)W (ξ)dξ, (4)

with property < φj(ξ), φk(ξ) >= δjk, where δjk is the
Kronecker δ. Multivariate polynomials φk(ξ) are constructed
as products of univariate polynomials only depending on
a single random variable with sum of the orders of the
univariate polynomials (total degree) at most P . The number
of polynomials K + 1 that is used in the PCE is determined
as:

K + 1 =
(M + P )!

M !P !
. (5)

Galerkin projection of both sides of (2) on φm(ξ) finally
leads to the following deterministic set of equations where
the dependence on ξ has been eliminated

V m =
∑

m:γklm 6=0

Zk I l γklm (6)

with γklm =< φk(ξ)φl(ξ), φm(ξ) > and where the sum-
mation is taken for all non-zero values of γklm. Equation
(6) represents a large deterministic system with (K + 1)N
unknowns as in [5]. This system has O(K2N2) memory com-
plexity and O(K3N3) computational complexity when using
a direct solver. Memory complexity is reduced to O(KN2)
and computational complexity to O(nnzN2) when using an
iterative solver, where nnz represents the number of non-zero
values of γklm. Numerical calculations show that for P = 1,
nnz = O(K), while for P > 1, nnz = O(K1.5) instead of
O(K3) when all coefficients γklm would be different from
zero.
Applying MLFMM can further decrease the computational
complexity. In the FMM procedure the structure is divided
into groups of sources and the matrix-vector product (MVP)
is computed by calculation of the electric field radiated by
one group of sources with group center ρs at the group of
observation points with group center ρo [7]. This is done via
the plane wave decomposition of the 2-D Green’s function
G(ρ(ξ),ρ′(ξ)). One element of the matrix Zk of expansion
coefficients is calculated as:

Zij,k =

∫
Ω

∫
si

∫
sj

G(ρ(ξ),ρ′(ξ))dρ′dρ φk(ξ)W (ξ)dξ, (7)

where ρ′ ∈ sj and ρ ∈ si, as testing and basis function are
constant over segments si and sj . If the distance between the
source group and observation group is sufficiently large, calcu-
lation of the interaction can be decomposed in an aggregation,
translation and disaggregation step, i.e.

Zk =

∫
Ω

D(ρ(ξ),ρo)T qA(ρ′(ξ),ρs)φk(ξ)W (ξ)dξ, (8)

where T q represents the diagonal translation matrix, where
A(ρ′(ξ),ρs) is the aggregation matrix of the source group

and where D(ρ(ξ),ρo) is the disaggregation matrix of the
observation group. Since we are dealing with independent
random variables which describe the scatterer’s geometry and
source and observation group are separated, we assume that
the aggregation matrix only depends on vector ξs which is a
subset of vector ξ and is independent of subset ξo on which the
disaggregation matrix depends. This means that the integral in
(8) can be represented as a product of two integrals, one over
subset ξs and one over subset ξo. This leads to substantial
simplifications as the PCE of disaggregation and aggregation
matrix can now be determined separately. Furthermore, the
translation matrix T q = T q(ρs,ρo) depends on the group
centers and also in case of stochastic variations we can keep
these centers fixed. Hence, T q is a deterministic function,
independent of ξ, as long as the pertinent subsets ξs and ξo
are disjunct.

In the MLFMM approach, groups are hierarchically divided
into levels, where higher level groups consist of sets of lower
level ones. To perform the MVP, first, in the aggregation
step, the radiation pattern of the source group is sampled into
outgoing plane waves (OPWs). On the lowest level this is done
by multiplying the aggregation matrix of the group with the
vector of current strengths of the sources. In the stochastic
case, we need the PCE of the OPWs. The PCE coefficients
for these OPWs, collected in vectors OPW

m , are obtained via:

OPW
m =

∑
m:γklm 6=0

Ak I l γklm (9)

where matrices Ak are the expansion coefficients of the
aggregation matrix. OPWs of groups on higher levels are
calculated via interpolation and shifting operations [7]. Via
the translation step, OPWs are converted in incoming plane
waves (IPWs) arriving at the observation group. IPWs at lower
levels are calculated via anterpolation and shifting operations
[7]. Finally, on the lowest level, stochastic IPWs are evaluated
at the observations points in the disaggregation step. This leads
to the coefficients V m in (6), given by:

V m =
∑

m:γklm 6=0

Dk IPW
l γklm (10)

where matrices Dk are the expansion coefficients of the
disaggregation matrix and IPW

l represents the expansion
coefficients of the IPWs. In the MLFMM approach advocated
here, (9) and (10) are calculated at the lowest level of the
MLFMM tree. The cost of these steps in a deterministic
MLFMM scheme is O(N) [7]. From (9) and (10), it can
be seen that the complexity is now increased to O(nnzN).
But, since the aggregation and disaggregation matrices only
depend on subsets of ξ, many expansion coefficients Ak and
Dk are zero, and the complexity is substantially decreased,
as will be numerically demonstrated in the next section.
The complexity of other operations (interpolation, shifting,
translation, anterpolation) is (K + 1) times higher than in
the deterministic case, since OPWs and IPWs are described
via PCE. For dense structures, complexity of these operations
would be O(KN). In a similar way, the matrices Zk are
however sparse, and the complexity of MVPs in the MoM
can be reduced, as will be demonstrated in the next section.
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III. NUMERICAL EXAMPLE:
A. Scattering by a finite periodic 2D array of PEC strips

We consider TM-scattering by a periodic but finite 2D
array of PEC strips with varying widths w as depicted in
Fig. 1 for the four strips case. The x-coordinates of the
position vectors of the centers of the strips remain fixed with
constant spacing T . On the other hand, the y-coordinates
vary as described by relative heights h w.r.t. the nominal
y-values. These nominal values are again equally separated
by a spacing T . The variability of the structure is hence
described by vectors of widths w and relative heights h which
are chosen to be independent uniformly distributed random
variables. The widths of the strips vary between 0.5T − λ/20
and 0.5T + λ/20, with T = λ, and the heights of the strips
between −λ/20 and λ/20, where λ is the wavelength of the
incident wave, i.e. we introduce 20% variations compared
to nominal width w = 0.5T . The incident wave is a TM-
polarized plane wave impinging under an angle α = 3π/4
with the positive x-axis and frequency f = 2.45 GHz.

In the MLFMM scheme, the structure is divided in square
boxes with fixed side T and centers indicated by B0, B1, B2

and B3 which coincide with the nominal position vectors of
the centers of the strips. In order to demonstrate the benefits
of using the MLFMM, the number of strips will be increased
to 4 by 4, 8 by 8 and 16 by 16, keeping the nominal center
positions on a regular T by T grid. At the lowest MLFMM
level the box size also remains T by T .
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T

Fig. 1. Periodic 2D array of PEC strips. Widths w and heights h are random.
For clarity, here, the case with only four strips is shown.

The PCE uses multivariate orthonormal Legendre polyno-
mials which are the proper functions to model uncertainties
in the case of uniform distributions. In the MoM approach,
matrix elements that describe interactions on the same strip
depend on a single random variable, i.e. the width, and matrix
elements that describe interactions between two strips depend
on four random variables, i.e. two widths and two heights.
Hence, in this example, the M dimensional integral in (7) is
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Fig. 2. Magnitude of the mean value (full line) and standard deviation
(dash-dotted line), of the current distribution on the top left strip for the 4×4
example and total degree P = 2.

reduced to either a one dimensional or a four dimensional
integral. When calculating Ak and Dk, matrix elements only
depend on two random variables.
The current on each of the strips is modeled using 20 equal
length subdivisions with piecewise constant basis functions.
The total number of unknowns in the MoM grows from
N = 80 in the 2×2 case to N = 5120 in the 16×16 case. The
total number of random variables also grows with a factor 4
from M = 8 to M = 512. For this example, the quantities of
interest (surface current, RHS, impedance matrix elements) are
modeled using expansions with highest polynomial order, i.e.
total degree, P = 2. Our experience shows that P = 2 suffices
to describe the wanted statistics with acceptable accuracy. In
the last example with 512 random variables, the total number
of polynomials in (5) is so large, i.e. 131841, that we have
restricted ourselves to the P = 1 case.
Fig. 2 represents the mean value and the standard deviation
of the induced current for top left strip of the scatterer for
the 4×4 case. Results from straightforward application of the
MoM-SGM combination and from MoM-SGM with MLFMM
acceleration are indistinguishable on the scale of the figure.
The most important numerical difference between the two
approaches is due to the fact that the MoM-SGM approach
uses a PCE for Z(ξ), I(ξ) and V (ξ) in (1), while the MoM-
SGM-MLFMM does the same for V (ξ) and I(ξ) but on
top of that introduces separate PCEs for the disaggregation
and aggregation matrices D(ξ) and A(ξ) in (8), possibly
leading to additional truncation errors in (9) and (10). This
truncation error when using SGM is discussed in [8], showing
that this error decreases for increasing polynomial order P
and for decreasing variations of the random variables. Another
numerical difference arises when determining the radiated field
due to a group of sources in an MLFMM box. In the MoM-
SGM approach this field is directly obtained using the Green’s
function and the PCE of the currents. In the MoM-SGM-
MLFMM approach this field emerges from the group’s OPW
expansion and depends both on the PCE of these OPWs and
on the number of sampling directions. In order to illustrate the
numerical differences, results for the mean and the variance
of the magnitude of the center current on subdivision 10 of
the top left strip for the 4× 4 and 8× 8 examples are shown
in Table I, for P = 1 and P = 2.
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TABLE I
MEAN AND VARIANCE OF THE MAGNITUDE OF THE CENTER CURRENT OF

THE TOP LEFT STRIP FOR DIFFERENT METHODS

method P mean (4× 4) variance (4× 4)
MoM 1 5.7503 2.1910

MoM-MLFMM 1 5.7497 2.1907
MoM 2 5.7598 2.0813

MoM-MLFMM 2 5.7598 2.0817
method P mean (8× 8) variance (8× 8)
MoM 1 6.0925 2.8665

MoM-MLFMM 1 6.1000 2.8930
MoM 2 6.0991 2.6294

MoM-MLFMM 2 6.0991 2.6298
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Fig. 3. Mean RCS p.u.l. with ± one standard deviation variation for structure
with 8× 8 strips for polynomial order P = 2.

The radar cross-section (RCS) per unit length (p.u.l.), also
called scattering width, is given by

σ2D = lim
ρ→∞

2πρ
|Esz |2

|Eiz|2
, (11)

where ρ is the distance to the origin O in Fig. 1, Eiz is the
incident electric field and Esz is the scattered electric field
which can be derived from the induced currents or in the
MLFMM approach, by using the OPWs expansion at the
highest level. Fig. 3 shows the mean value and variations
around this mean value with maximum variability of one
standard deviation for the structure with 8×8 strips. It can be
seen that the RCS p.u.l. is the highest in the specular reflection
direction and that the radiation pattern shows a number of side
lobes. The ± one standard deviation of these lobes is quite
substantial.
Finally, in Table II, in order to demonstrate the computational
efficiency of the proposed MLFMM approach, we present the
CPU time for one matrix-vector product (MVP) for different
cases and polynomial orders, again comparing the straightfor-
ward MoM-SGM approach to the MLFMM accelerated one.
In this table, N is the number of unknowns in the MoM (320:
4 × 4 case; 1280: 8 × 8 case; 5120: 16 × 16 case), P is the
maximum degree of the multivariate polynomials, K + 1 is
the corresponding total number of polynomials corresponding
to a particular P -value and nnz is the number of non-zero
values of γklm in (6). Remark that the case P = 0 simply
corresponds to using the nominal value of all variables, i.e.
the simple deterministic case. Further remark that nnz has to
be weighed against the maximum of K3 when all γklm would

be different from zero. Table II shows that the acceleration due
to the MLFMM is very substantial for the largest (16 × 16)
scatterer. The crossover point is found at about N = 1000, as
is also the case for traditional (deterministic) MLFMM.

TABLE II
CPU TIME FOR ONE MVP PRODUCT

N P K + 1 nnz MLFMM [s] MoM [s]
320 0 1 1 0.0017 0.0012
320 1 33 97 0.0658 0.04822
320 2 561 37521 1.8509 1.5181

1280 0 1 1 0.0103 0.0184
1280 1 129 385 1.334 2.3681
1280 2 8385 2171457 118.99 204.33
5120 0 1 1 0.0518 0.2877
5120 1 513 1537 25.34 149.07

IV. CONCLUSION

In this letter, two-dimensional TM-scattering at an electri-
cally large, stochastically varying, PEC scatterer was used to
demonstrate how the statistics of induced currents and of the
radiation pattern can be found by optimally combining the
MoM, the SGM and the acceleration due to the MLFMM.
The SGM is an intrusive method allowing to replace the
original stochastic problem by an equivalent, but much larger,
deterministic problem. As the PEC strip array example in the
paper demonstrates, the solution of this larger deterministic
problem, greatly benefits from the MLFMM by taking into
account the particularities of the matrix-vector product which
arises from the application of the SGM.
Further research is needed to include dielectrics objects to
extend this approach to the 2D analysis of multiconductor
transmission lines, and also to the 3D case in order to find
out if all conclusions remain valid.
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