
50

Mechanistic Analytical Modeling of Superscalar In-Order
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Superscalar in-order processors form an interesting alternative to out-of-order processors because of their
energy efficiency and lower design complexity. However, despite the reduced design complexity, it is nontrivial
to get performance estimates or insight in the application–microarchitecture interaction without running
slow, detailed cycle-level simulations, because performance highly depends on the order of instructions within
the application’s dynamic instruction stream, as in-order processors stall on interinstruction dependences
and functional unit contention. To limit the number of detailed cycle-level simulations needed during design
space exploration, we propose a mechanistic analytical performance model that is built from understanding
the internal mechanisms of the processor.

The mechanistic performance model for superscalar in-order processors is shown to be accurate with an
average performance prediction error of 3.2% compared to detailed cycle-accurate simulation using gem5. We
also validate the model against hardware, using the ARM Cortex-A8 processor and show that it is accurate
within 10% on average. We further demonstrate the usefulness of the model through three case studies:
(1) design space exploration, identifying the optimum number of functional units for achieving a given
performance target; (2) program–machine interactions, providing insight into microarchitecture bottlenecks;
and (3) compiler–architecture interactions, visualizing the impact of compiler optimizations on performance.
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—We added modeling of an arbitrary number of functional units of any type in contrast to a fixed number in
the ISPASS paper (i.e., 4 ALUs and 1 unit for all other types).

—We completely revised the modeling of interinstruction dependences and unified it with the functional
unit contention modeling.

—We added modeling of memory-level parallelism, which has a nonnegligible impact on performance for
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1. INTRODUCTION

For studying processor performance, both researchers and designers heavily rely on
detailed cycle-accurate simulation. Although detailed simulation provides accurate
performance projections for a particular design configuration, deriving fundamental
insight into the interactions that take place within a processor is more complicated.
Understanding trend behavior of microarchitecture structure scaling and the interac-
tions among microarchitecture structures, as well as how the microarchitecture inter-
acts with its workloads, requires a very large number of simulations. The slow speed of
detailed cycle-accurate simulation makes it a poor fit to understand these fundamental
microarchitecture–application interactions.

In this article, we focus on mechanistic analytical performance modeling, which is
a better method for gaining insight and for reducing the large number of detailed
simulations in large design spaces. Mechanistic modeling is derived from the actual
mechanisms in the processor. A mechanistic model has the advantage of directly dis-
playing the performance effects of individual mechanisms, expressed in terms of pro-
gram characteristics such as interinstruction dependence profiles and fine-grained
instruction mix; machine parameters such as processor width, number of functional
units, and pipeline depth; and program–machine interaction characteristics such as
cache miss rates and branch misprediction rates. Mechanistic modeling is in contrast
to the more common empirical models that use machine learning techniques and/or
statistical methods (e.g., neural networks, regression) to infer a performance model
[Dubach et al. 2007; Ipek et al. 2006; Joseph et al. 2006a, 2006b; Lee and Brooks 2006;
Ould-Ahmed-Vall et al. 2007; Mariani et al. 2013]. Empirical modeling involves run-
ning a large number of detailed cycle-accurate simulations to infer or fit a performance
model. In contrast, mechanistic modeling builds a model from the internal structure of
the processor and does not require simulation to infer or fit the model.

Detailed simulations or well-trained empirical models can show the performance im-
pacts of different processor designs, but it is time-consuming and challenging at times
to reveal the underlying reason why a design improves performance for one application
but not another. Figure 1 illustrates this. Figure 1(a) shows that gsm_c and susan_s
have a similar fraction of multiply instructions, yet Figure 1(b) shows that they behave
differently when we increase the number of multipliers on the baseline microarchitec-
ture from one to two (see Section 6 for a detailed description of the experimental setup).
Mechanistic performance modeling provides a level of insight that enables quick and
deep understanding of such performance phenomena by breaking up total execution
time into different components that account for instruction latencies, dependences,
cache misses, branch mispredictions, and so forth. (We refer back to this case study in
Section 9.1.)

Whereas prior work in mechanistic performance modeling has focused on superscalar
out-of-order processors [Eyerman et al. 2009; Karkhanis and Smith 2004], in this ar-
ticle we propose a mechanistic model for superscalar in-order processors. Compared
to out-of-order processors, the performance of superscalar in-order processors is quite
sensitive to the order of instructions in the dynamic instruction stream, interinstruc-
tion dependences, instruction execution latencies, and the number of functional units
available. Therefore, it is impossible to mimic the behavior of an in-order processor
with the existing models by constraining out-of-order resources (e.g., limiting the ROB
size to the pipeline width).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 50, Publication date: December 2014.

http://dx.doi.org.10.1145/2678277


Mechanistic Analytical Modeling of Superscalar In-Order Processor Performance 50:3

Fig. 1. Based on the instruction mix for gsm_c and susan_s (left graph), one would expect performance to
improve by adding an additional multiply unit. However, simulation results (right graph) show a significant
performance increase for gsm_c but not for susan_s.

We believe that this work is timely given that energy and power efficiency are pri-
mary design concerns in contemporary computer system design. Whereas the focus
is on extending battery lifetime in embedded systems, improving energy and power
efficiency also has important implications on cooling and total cost of ownership of
server and data center infrastructures. In-order processors are less complex, consume
less power, and incur less chip area compared to out-of-order processors, which makes
them an attractive design point for specific application domains. In particular, in-order
processors are commonly used in the mobile space, ranging from cell phones to tablets
and netbooks; example processors are the Intel Atom (except for the recent Silvermont
architecture) and ARM Cortex-A7/A8. For server throughput computing, integrating
many in-order processor cores on a single chip maximizes total chip throughput within
a given power budget. Commercial examples include Sun Niagara [Kongetira et al.
2005] and AMD/SeaMicro’s Intel Atom based server1; recent research projects have
also studied in-order processors for Internet-sector workloads [Andersen et al. 2009;
Lim et al. 2008; Reddi et al. 2010].

The overall structure of the article is as follows. We start with a general overview
of the framework and a description of the assumed superscalar processor in Section 2.
Next, we construct the mechanistic model in Sections 3 through 5. Our experimental
setup is explained in Section 6. The evaluation in Section 7 shows that our model
reaches an average absolute prediction error of 3.2% compared to detailed cycle-level
simulation with gem5. Further, Section 8 shows that our model can be used to predict
the performance of the ARM Cortex-A8 with an average absolute prediction error of
10%. In Section 9, we demonstrate the usefulness of the model through three case
studies. We first leverage the model to understand program–machine interactions and
reveal insight into the example just described in Figure 1. Second, we use the model to
minimize the number of functional units while achieving a performance target of 98%
compared to using a total of 16 functional units in a four-wide superscalar in-order pro-
cessor. Third, we evaluate how compiler optimizations affect in-order performance and
derive some interesting conclusions. We end by discussing related work in Section 10,
by providing ideas for future work in Section 11, and by concluding in Section 12.

2. MODELING CONTEXT

Before describing the proposed model in great detail, we first set the context within
which we build the model. We present a general overview of the modeling framework,
as well as a description of the assumed superscalar in-order processor architecture.

1http://www.seamicro.com/.
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Fig. 2. Overview of the mechanistic modeling framework.

2.1. General Overview

The framework of the mechanistic model is illustrated in Figure 2. It requires a profiling
run to capture a number of statistics that are specific to the program only and are
independent of the machine. These statistics relate to the program’s instruction mix
and interinstruction dependences, and need to be collected only once for each program
binary.

The profiling run also needs to collect a number of mixed program-machine
statistics—that is, statistics that are a function of both the program binary as well
as the machine configuration. Example statistics are cache and TLB miss rates, as well
as branch misprediction rates. Although, in theory, collecting these statistics requires
separate runs for each cache, TLB and branch predictor configuration of interest; in
practice, however, most of these statistics can be collected in a single run. In particular,
single-pass cache simulation [Hill and Smith 1989; Mattson et al. 1970] allows for com-
puting cache miss rates for a range of cache sizes and configurations in a single run.
We also collect branch misprediction rates for multiple branch predictors in a single
run. Once these statistics are collected, we can predict cache miss rates and branch
misprediction rates for any combination of cache hierarchy with any branch predictor
and any processor core configuration.

These statistics, along with a number of machine parameters, serve as input to the
analytical model, which then estimates superscalar in-order processor performance.
The machine parameters include pipeline depth, pipeline width, number of functional
units and their types, functional unit latency (multiply, divide, etc.), cache access la-
tencies, and memory access latencies, as well as the configurations and sizes of caches,
TLBs, and branch predictors.

Because the analytical model basically involves computing a limited number of for-
mulas, a performance prediction is obtained almost instantaneously. In other words,
once the initial profiling is done, the analytical model allows for predicting performance
for a very large design space in the order of seconds or minutes at most.

2.2. Microarchitecture Description

We assume a superscalar in-order processor with five pipeline stages: fetch (IF), de-
code (ID), execute (EX), memory (MEM), and write-back (WB). IF and ID are referred
to as the front-end stages of the pipeline, whereas EX, MEM, and WB are back-end
stages. We consider a five-stage pipeline without loss of generality; we can model deeper
pipelines by considering longer front-end pipelines and non–unit-latency instruction
execution units, as will become clear later. Each stage has W slots (numbered from 0
to W − 1) to hold a total of W instructions, with W being the width of the processor. We
assume forwarding logic such that dependent instructions can execute back-to-back
in subsequent cycles. Further, we assume stall-on-use—in other words, the proces-
sor stalls on an instruction that consumes a value that has not been produced yet.
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These instructions block in the ID stage. Load instructions perform address calcu-
lation in the EX stage and perform the cache access in the MEM stage. Finally, we
assume in-order commit to enable precise interrupts. This implies that instructions
that take more than one cycle to execute (e.g., a multiply instruction or a cache miss)
block all subsequent instructions from going to the WB stage. Since each stage can
only hold W instructions, this further implies that when a long-latency instruction
blocks instructions from passing from the MEM stage to the WB stage, the EX stage
will eventually be filled with instructions, and hence no instructions can leave the
ID stage.

3. OVERALL FORMULA

The overall formula for estimating the total number of execution cycles T of an appli-
cation on a superscalar in-order processor is as follows:

T = N
W

+ Pmisses + Pdeps + PFU . (1)

In this equation, N equals the number of dynamically executed instructions, W stands
for the width of the processor, Pmisses is the total penalty due to miss events, Pdeps is the
total penalty due to interinstruction dependences, and PFU stands for the penalty due
to functional unit limitations (i.e., structural hazards).

The intuition behind the mechanistic model is that the minimum execution time
for an application equals the number of dynamically executed instructions divided
by processor width—that is, it takes at least N/W cycles to execute N instructions
on a W-wide processor in the absence of miss events and stalls. Miss events, inter-
instruction dependences, and functional unit contention prevent the processor from
executing instructions at a rate of W instructions per cycle, which is accounted for by
the model by adding penalty cycles.

The next sections discuss each of the terms of the formula. We start with miss event
penalties and then discuss instruction dependences and functional unit contention.

4. MISS EVENTS

We determine the penalty due to miss events using the following formula:

Pmisses =
∑

i∈{missEvents}
missesi × penaltyi. (2)

This formula computes the sum over the miss events, weighted with their respective
penalties. We make a distinction between cache (and TLB) misses and branch mispre-
dictions when it comes to computing the penalties.

4.1. Cache and TLB Misses

When an instruction cache miss occurs, the instructions in the front-end pipeline can
still enter the EX stage, but when the instruction cache miss is resolved, it takes some
time for the new instructions to refill the front-end pipeline. It is easy to understand
that the front-end pipeline drain time and refill time offset each other—that is, the
penalty for an instruction cache miss is independent of the front-end pipeline depth.
In case of a data cache miss, the MEM stage blocks, and no instructions can leave or
enter the EX stage until the data cache miss is resolved.

From the preceding discussion, it follows that the penalty for both an instruction and
data cache miss equals its miss latency (i.e., the access time to the next level of cache
or main memory). However, some instructions can complete execution in parallel with
the miss penalty. In case of an instruction cache miss on a four-wide processor, one,
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two, or three instructions could have already been fetched before the instruction cache
miss occurred. Similarly, for a data cache miss, depending on the slot number at which
the load instruction enters the MEM stage, one (the load instruction enters the MEM
stage at slot 1), two (the load instruction enters at slot 2), or three older instructions
(the load instruction enters at slot 3) can proceed to the WB stage. These instructions
can complete underneath the cache miss and are therefore hidden. Assuming that
cache misses are uniformly distributed across a W-wide instruction group, the average
number of instructions hidden underneath a cache miss equals W−1

2 . This means that
the miss penalty can be reduced by W−1

2W cycles (which is less than one cycle). The total
penalty for a cache or TLB miss thus equals

penaltycacheMiss = MissLatency − W − 1
2W

. (3)

Memory-level parallelism. Memory-level parallelism (MLP) is defined as the num-
ber of simultaneously outstanding misses if at least one is outstanding [Chou et al.
2004]. This implies that we only have to account for the first, nonoverlapped memory
access latency, as independent memory accesses later in the instruction stream are
hidden underneath the first one. Out-of-order processors make use of this property by
implementing a reorder buffer and miss status handling registers (MSHRs) to exploit
MLP over a large window of instructions. For in-order processors, on the other hand,
this window is limited to the width W of the processor, and hence the amount of MLP
is very low—that is, MLP can be exploited up until the instruction in the instruction
stream that depends on the load miss (stall-on-use). When taking MLP into account,
the penalty associated with the cache miss term in Formula (2) gets scaled as in the
following Formula (4):

PcacheMisses = cacheMissesi

MLP
× penaltycacheMiss. (4)

As described by Van Craeynest et al. [2012], we can calculate the MLP as the number
of memory accesses between a load instruction and its first consumer, since this con-
sumer blocks the ID stage. However, since the processor can only hold W instructions
per pipeline stage, the load instruction will block any instruction at a distance larger
than (W −1) instructions from proceeding to the next stage. This implies that we never
need to account for memory accesses outside of a window larger than W instructions,
even if the first consumer of the load is further than (W − 1) instructions apart. We
have implemented a simple profiler that determines the average dependence distance
between a load and its first consumer with the interinstruction dependence profile.
We combine this with the fine-grained instruction mix profile to count the number of
independent load instructions within this distance.

4.2. Branch Mispredictions

Branch mispredictions are slightly different from cache misses from a modeling per-
spective. Upon a branch misprediction, all instructions fetched after the mispredicted
branch need to be flushed. In particular, when a branch misprediction is detected in the
EX stage, all instructions in the front-end pipeline, as well as the instructions fetched
after the branch in the EX stage, need to be flushed. Hence, the penalty of a branch
misprediction equals

penaltybranchMiss = D + W − 1
2W

, (5)

with D the depth of the front-end pipeline. The first term is the number of cycles
lost due to flushing the front-end pipeline: there are as many cycles lost as there are
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Fig. 3. Pattern distribution matrix generation for part of the dct_chroma routine of the h264 benchmark.

front-end pipeline stages, namely D. The second term is the penalty of flushing instruc-
tions in the EX stage; this number ranges between 0 and W − 1. We again assume a
uniform distribution.

Correctly predicted branches may also introduce a performance penalty. In our setup,
a branch is predicted one cycle after it was fetched, and if it is predicted taken, the
instruction(s) in the IF stage and the instructions in the ID stage that are younger
than the branch (which were fetched assuming a nontaken branch) need to be flushed,
incurring a pipeline bubble. This incurs 1 + W−1

2W penalty cycles per branch that is
predicted taken, even if it is correctly predicted. We will refer to this penalty as the
taken-branch hit penalty.

5. INTERINSTRUCTION DEPENDENCES AND FUNCTIONAL UNIT CONTENTION

To determine the penalty caused by interinstruction dependences and functional unit
contention, we need to keep track of (1) the distance between dependent instructions
(the smaller the distance, the more likely the processor will stall to resolve the depen-
dence) and (2) the order in which different instructions execute (subsequent instruc-
tions of the same type will put more pressure on the specific functional unit). In many
cases, instructions will suffer from both dependences on prior instructions and from
contention on functional units. We therefore summarize this information collectively
in the pattern history distribution matrix (H-matrix), which we will use to calculate
the penalty caused by interinstruction dependences and functional unit contention.
Before explaining the formula, we will first illustrate how the H-matrix is constructed.
Each instruction in the dynamic instruction stream can be represented by recording
the history of the types of the W − 1 previous instructions, which we call a pattern,
together with the distance to the closest instruction on which it depends. We can use
this pattern i and dependence distance j as row and column indices, respectively, to
increment a counter in the H-matrix for each instruction. As a result, the elements
of the H-matrix represent counters that indicate the occurrences of pattern i with a
dependence distance of j.

Figure 3 illustrates this using a small portion of the dynamic instruction flow of
the dct_chroma routine of h264 on the left, together with its associated H-matrix on
the right. For the ease of visualization, each assembly instruction is represented by a
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symbol that indicates the type of instruction: A stands for an ALU instruction, M for a
multiply/divide, L for a load, and X for all other instructions that are not needed for the
penalty calculation (e.g., store instructions).2 To construct the H-matrix, we make use
of a sliding window that slides through the whole instruction stream, instruction by
instruction. The size of the window equals the maximum processor width W of interest,
which we set to 4 here and in all subsequent examples (unless stated otherwise). For
each last instruction in the window, we record the distance to the closest instruction
on which it depends together with the history of preceding instructions in the order
executed from old (left) to most recent (right). Consider the position of the sliding
window in Figure 3. The last instruction in the window is an ALU instruction, and
the history pattern of instructions is denoted by MAAA. The last instruction has a
dependence on the multiply instruction at distance 3 (as indicated by the red arrow).
Therefore, we increment the H-matrix counter at the row with pattern MAAA and
the column that represents dependence distance 3. We can now shift the window one
instruction down to increment a counter for pattern AAAA at distance 1. We continue
this process for all instructions.

By associating a penalty term to each row and column in the H-matrix, we can
determine a cost matrix C. The C-matrix represents the cost (in number of cycles) that
a specific history/dependence pattern incurs on the performance of the processor. By
multiplying the matrices C and H term-wise and by accumulating them (i.e., taking
the Frobenius product), we can calculate the total penalty term for functional unit
contention and interinstruction dependences, as shown in Formula (6):

Pdeps + PFU =
∑

i∈patterns,d=1..2×W

Ci,d × Hi,d = C : H. (6)

To determine the individual terms in the C-matrix (i.e., the cost associated with
a specific history pattern and dependence distance), we need to determine (1) the
penalty for the specific history pattern assuming that there are no dependences and
(2) the penalty for the specific dependence distance assuming a sufficient number of
functional units. In case an instruction waits both for a dependence to resolve and for a
functional unit to become available, the largest of those two penalties will be accounted
for, as shown in Formula (7):

Ci,d = max
(
cdep(i, d), c f u(i)

)
. (7)

cdep(i, d) represents the penalty of pattern i when the last instruction in the pattern
has a dependence distance d. c f u(i) is the penalty caused by functional unit contention
for pattern i—in other words, when multiple instructions from the same instruction
type reside in pattern i, we need to account a penalty waiting for an appropriate unit
to start processing the last instruction of pattern i. The terms cdep(i, d) and c f u(i) are
the subject of the following subsections.

Although Formula (6) shows how the sum of dependence penalties and functional
unit contention penalties can be calculated together, we will show in Section 9.1 how
we can determine these penalties separately.

5.1. Interinstruction Dependences

5.1.1. Dependences on Unit-Latency Instructions. In this section, we derive the penalty
of an instruction that depends on the outcome of a close-by (within W instructions)

2X stands for don’t care instructions, as these instructions do not contribute to the penalty calculation for
dependences and functional unit contention. Note that in the remainder of the article, we will mark other
instructions irrelevant for the calculation with X.
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Fig. 4. Four possible instruction flows for an instruction dependent on an ALU instruction at distance d = 2.

unit-latency instruction. In our setup, integer ALU instructions are the only unit-
latency instructions, so for the remainder of this section, we will refer to them as
ALU instructions. Dependences on an ALU instruction resolve the cycle after the ALU
instruction gets executed.

To illustrate the penalty calculation, consider the example pattern XAXA, where
the first (oldest) ALU instruction produces a data value that is consumed by the next
ALU instruction—that is, the dependence distance d equals 2. There are four possible
positions at which the instructions can enter the ID stage (see the ID stage at t0 in the
four parts of Figure 4). (The oldest instruction in an instruction group is shown at the
top of each pipeline stage, and “0” denotes a bubble or an empty slot due to a stall.) In
case (a), the dependent instruction enters the ID stage at position 3. When the ALU
instruction starts execution at t1, the dependent instruction gets blocked because the
result of the ALU instruction is not available yet. Since the dependent instruction is
the last instruction in the ID stage at t0, one slot will be unused in the EX stage at
t1 (marked with 0); hence, we lose 1

4 of a cycle. In case (b), the dependent instruction
enters the ID stage in slot 2 at t0. As in case (a), it gets blocked from going to the EX
stage at t1. In addition, the younger instruction that was at slot 3 in the ID stage of t0
gets blocked from going to the EX stage. This means that we now lose 2

4 of a cycle. In
cases (c) and (d), the producing ALU instruction already started execution at t0. This
means that the dependence is resolved by the time the dependent instruction starts
execution, and hence no cycles are lost.

Assuming that the four situations have equal probability of occurring (uniform dis-
tribution of the instructions in the pipeline), we derive the penalty for an instruction
dependent on an ALU instruction at distance 2 as follows:

cdep(XAXA, 2) = (Prob[pos = 0] + Prob[pos = 1]) × 0

+ Prob[pos = 2] × 2
4

+ Prob[pos = 3] × 1
4

= 1
4

× 0 + 1
4

× 0 + 1
4

× 2
4

+ 1
4

× 1
4

= 3
16

.

(8)
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In general, we can calculate the penalty for an instruction dependent on an ALU
instruction at distance d (with d < W) using the following formula:

cdep(i, d < W) =
W−1∑
j=0

Prob [pos = j|pat = i] ×
{

W− j
W if d ≤ j

0 else
(9)

=
W−1∑
j=d

1
W

× W − j
W

(10)

= (W − d) (W − d + 1)
2W2 . (11)

In this equation, i represents the pattern, W the processor width, d the dependence
distance to the closest ALU instruction, and Prob [pos = j|pat = i] the probability that
the newest instruction in the pattern i is at position j in the ID stage. Note that i
can be any pattern, with the constraint that the (d + 1)-th symbol is an “A”-symbol
(i.e., the producer is an ALU instruction). The inequality j ≥ d indicates that we only
need to account penalty when the producing ALU instruction is in the ID stage at
the same cycle. In Formula (10), we make use of the assumption that instructions are
uniformly distributed in the pipeline stage. We find this assumption to be accurate
for the set of benchmarks used in our setup. However, one could conceive a corner
case application that is dominated by instructions with dependence distances of 1
that causes all instructions to be serialized. Hence, most of the instructions of this
application will enter the first slot of the ID stage. To model these corner cases, one could
estimate the probabilities with a heuristic based on the overall average dependence
distance: if the average dependence distance is close to 1, more weight needs to be
given to Prob[pos = 0]. However, we found this case to be very rare in our setup, and
modeling it increases the complexity of the model without noticeably improving its
accuracy.

5.1.2. Dependences on Load Instructions. Unlike ALU instructions, load instructions do
not produce their result in the EX stage but in the MEM stage. This has two conse-
quences for calculating the penalty caused by instructions dependent on a load instruc-
tion. First, this means that if a load instruction and its consumer reside in the ID stage
in the same cycle, an additional penalty cycle will need to be accounted for on top of
the one calculated with Formula (11). Second, even when the load instruction and its
dependent instruction reside in consecutive stages (load in the EX stage, dependent
instruction in the ID stage), a penalty needs to be accounted for.

When 0 < d < W, the load instruction can either be in the same stage or in a consec-
utive stage as the dependent instruction. When W ≤ d < 2W , the load instruction and
the dependent instruction can never reside in the same stage, and hence we will only
need to account a penalty when they reside in consecutive stages.

The reasoning for calculating the penalty when W ≤ d < 2W is fairly similar as for
dependences on ALU instructions where d < W . We can find the penalty for depen-
dences on load instructions for a dependence distance W ≤ d < 2W by substituting d
by d − W in Formula (10):

cdep(i, d ≥ W) =
W−1∑

j=d−W

1
W

× W − j
W

(12)

= (2W − d + 1)(2W − d)
2W2 . (13)
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For 0 < d < W , the penalty can be calculated using Formulas (14) and (15). The first
term in Formula (14) reflects that for d < W , we always need to account a penalty, since
both instructions either reside in the same stage or in consecutive stages. The second
term reflects that if both the dependent instruction and the load instruction reside in
the ID stage at the same time, we need to account an additional cycle:

cdep(i, d < W) =
W−1∑
j=0

1
W

× W − j
W

+
W−1∑
j=d

1
W

× 1 (14)

= 3W + 1 − 2d
2W

. (15)

5.1.3. Dependences on Long-Latency Instructions. Other long-latency instructions, such as
integer multiply instructions, wait in the MEM stage until their result is calculated.
Therefore, instructions that depend on long-latency instructions are penalized the
same way as instructions that depend on load instructions (see Formulas (15) and (13)
for 0 < d < W and W ≤ d < 2W , respectively). Note that the latency of the long-
latency instruction itself will be accounted for as a functional unit penalty (see the
next section), so for the dependent instruction, we only have to account for the empty
issue slots between the long-latency instruction and the dependent instruction.

However, as we will show in Sections 5.2.2 and 5.2.3, long-latency instructions can
sometimes be executed in parallel, depending on the number of functional units avail-
able. As a result, no penalty is accounted to the instruction executing in parallel with
another instruction. However, if there is a dependence between these instructions, the
latency will not be hidden. We account for this by adding the latency of the long-latency
instruction to the dependence penalty if the closest dependent instruction is of the same
type.

5.2. Functional Unit Contention

5.2.1. ALU Contention. We first derive the penalty for integer ALU instructions due
to functional unit contention. We model ALU contention penalties in a way that is
analogous to dependence penalties on ALU instructions. For this, we need to define an
analogy to the dependence distance:

dU (i) : distance to the instruction that causes functional unit contention
when the processor has U units, for pattern i.

For example, for a superscalar processor of width W = 4 with two ALUs, the contention
distance for pattern XAAA, dU (XAAA), equals 2, because the last instruction in the
group can only start execution when the first one (at distance 2) finished its execution.

Replacing the dependence distance d with dU (i) in Formula (10) allows us to deter-
mine the ALU contention penalty:

c f u(i) = fr(i) =
W−1∑
j=0

Prob [pos = j|pat = i] ×
{

W− j
W if dU (i) ≤ j

0 else

=
W−1∑

j=dU (i)

Prob [pos = j|pat = i] × W − j
W

(16)

≈ (W − dU (i))(W − dU (i) + 1)
2W2 . (17)
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Fig. 5. An example instruction stream with multiply instructions.

These equation, i represents the pattern, W the processor width, dU (i) the distance
to the closest instruction that causes contention when U units are present, as defined
before, and Prob [pos = j|pat = i] the probability that the newest instruction in this
pattern is in position j in the ID stage. The inequality j ≥ dU (i) indicates that we only
need to account a penalty when the contending ALU instruction is in the ID stage at
the same cycle. Note that we also defined the function fr(i) for future reference.

For the approximation in Formula (17), we again use the assumption that instruc-
tions are uniformly distributed in a pipeline stage. As with calculating inter-instruction
dependencies, this assumption does not always hold true. In case the number of ALU
instructions (e.g., three in the pattern AAXA) is larger than the number of ALUs+1
(e.g., U = 1) , some positions will make the instruction shift to another position because
of contention between older ALU instructions in the pattern. For example, for the pat-
tern AAXA and one ALU, only the first “A” will be executed, meaning that the next ALU
instruction will have to stall for one cycle, and the second next ALU instruction will
have to stall for (at least) two cycles. We model this effect by considering the pattern
distribution matrix and by accounting for the number of stalls per pattern. Calculating
these extra stall penalties is done in an automated way, and we find it to be important
for the model’s accuracy.

5.2.2. Nonpipelined Long-Latency Functional Units. We now derive formulas for long-
latency instructions for a fixed number of functional units. We first explain how to
model nonpipelined units and then discuss pipelined units in Section 5.2.3. Although
the formulas are general enough to be applied to all types of functional units, we use
integer multiply instructions3 as an example to derive them. The only parameter that
needs to be adjusted for other types of functional units is the latency.

Accounting penalty for a limited number of integer multiply instructions can be split
up in two parts: (1) the fraction of cycles that is lost because of multiple M-instructions
in the same stage in the same cycle and (2) the additional cycles we need to wait for the
previous multiply instruction to finish (because they are not pipelined). The first part
can be calculated as before using Formula (16). The second (and largest) part requires
knowledge of how many multiply instructions can be issued in parallel.

We start with an example instruction stream that can be found in Figure 5. To
ease the discussion, we introduce subscripts to enumerate the multiply instructions.
Figure 6(a) shows four snapshots of the execution of this instruction stream, displaying
the state of the EX stage and MEM stage, according to detailed simulation for a pro-
cessor with two multiply units, where the execution latency of a multiply instruction
is five cycles. The snapshots are chosen so that they reflect the start of each group of
multiply instructions that can issue in parallel. For example, the first two multiply
instructions (i.e., M1 and M2) start execution in the EX stage in cycle 0. In cycle 1 (i.e.,
t0 = 1), they flow to the MEM stage, stay there for four cycles, and leave the MEM
stage for the WB stage at cycle 5. This makes the multiply units available to start
execution at cycle 5 for instruction M3. At cycle 6, instruction M4 can start execution
in parallel with instruction M3. The absolute start cycles are of less importance here.
More important is to note that we distinguish four groups of multiply instructions,

3In practice, modern integer multiply units are typically pipelined; older processors such as the Alpha 21064
and MIPS R4000 have nonpipelined integer multiply units. We merely use the integer multiply instruction
as an example throughout the article to explain the construction of the formulas.
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Fig. 6. Instruction flow of the example instruction stream in Figure 5 through a superscalar processor with
two multiply units.

Table I. Pattern Distribution for the Instruction Stream in
Figure 5 and Penalties Assuming Two Multiply Units

Nonpipelined Pipelined
Pattern Frequency Penalty Penalty
XXXM 3 latency − 1 latency − 1
MXXM 1 0 0
XXMM 2 0 0
XMMM 1 latency − 1 0

meaning that we penalize the performance by four times the multiply latency for the
seven “M”-instructions.

The challenge now is to calculate the penalty while having limited information com-
pared to detailed simulation—that is, using only the pattern distributions of the H-
matrix (Table I). With Formula (16), we can calculate the fraction of cycles lost because
there are more multiply instructions than multiply units available at the same time in
the same stage. To determine the parallelism of multiply instructions that can get exe-
cuted at the same time, we can again use the pattern distribution matrix. We consider
patterns that end with an M-symbol and account an appropriate penalty, based on the
total number of M-symbols in the pattern.

For the example where we have two multiply units, we do not need to account penalty
for patterns with exactly two M-symbols, as the right-most multiply instruction can be
issued in parallel with the previous one. This is also true when all four instructions in
the pattern are multiply instructions. If, however, the right-most instruction is the only
multiply instruction or if it is the third multiply instruction, the full penalty needs to
be accounted for. For the example instruction stream of Figure 6, the distribution and
penalties of patterns ending in with an M-symbol can be found in the second and third
columns of Table I.

In general, we can derive the following formula to calculate the total cost for executing
a long-latency instruction for an arbitrary number of units:

c f u(i) = fr(i) +
{

latency − 1 if (#insns(i) mod U ) = 1
0 else.

(18)
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In Formula (18), U is the number of units of this type of long-latency instruction, and
#insns(i) represents the number of instructions of this type in pattern i. The intuition
behind this formula is that the first multiply instruction will appear as an XXXM
pattern, for which we account the full penalty. The second multiply instruction will see
the first instruction as an older instruction in its pattern (e.g., XMXM), so we do not
need to account a penalty if there are two or more multiply units.

However, Formula (18) can lead to underestimations in situations where we have
a dense concentration of multiply instructions (e.g., XXXMMMMMMMM would be
accounted only two times the latency instead of four, because all of the MMMM patterns
have no latency). This can be solved by modifying the previous formula as follows:

c f u(i) = fr(i) +
{

latency − 1 if
(
#insts(i) mod U

) = 1
latency−1

min(U,#insts(i)) × Pr[dense|pattern = i] else.
(19)

Here, Pr[dense|pattern = i] is the probability that pattern i appears in a dense concen-
tration of multiply instructions. We estimate this probability by counting the frequency
of occurrence from the pattern distribution matrix.

5.2.3. Pipelined Long-Latency Functional Units. We now move to modeling the impact of
long-latency instructions that execute on pipelined functional units. Pipelined func-
tional units have the advantage that they are capable of executing a new instruction
every cycle, and hence they yield a potential performance improvement over non-
pipelined execution, but they also require a more complex design. Because of in-order
execution, however, there is a limit on the potential performance improvement: when
a long-latency instruction is being executed, it will block all younger instructions from
passing the MEM stage (because of in-order commit). This will make the EX stage fill
up with instructions, blocking younger instructions from starting execution. So, only
instructions that can make it into the EX stage can potentially execute in parallel.

In Figure 6(b), we illustrate what happens with the example of Figure 5 if the
multiply units are pipelined. We distinguish three groups of multiply instructions that
can be executed in parallel (assuming no dependences between them).

As before, we use the distribution matrix in Table I. To calculate the penalties, we
again account for two parts: the part in which we lose a fraction of a cycle because there
are more multiply instructions at the same time in the EX stage than multiply units
available, and the part where we need to account for the latency of the multiplication
itself. For pipelined units, we only need to account for this latency if the current multiply
instruction is the only multiply in the pattern. The fourth column in Table I shows the
penalties for pipelined units. Using these penalties and the distribution matrix, we
can account for the total penalty caused by long-latency instructions in the example
instruction stream.

In general, the penalty for long-latency instructions on pipelined functional units
can be calculated with Formula (20). We only account a penalty if there is exactly one
multiply instruction in the pattern, because all other instructions can be executed in
parallel. As is the case with nonpipelined functional units, we also account for a penalty
in case there is a high density of multiply instructions:

c f u(i) = fr(i,U ) +
{

latency − 1 if #insts(i) = 1
latency−1
#insts(i) × P[dense|pattern = i] else.

(20)

6. EXPERIMENTAL SETUP

We use 19 benchmarks from the MiBench benchmark suite [Guthaus et al. 2001],
which is a popular suite of embedded benchmarks from different application domains,
including automotive/industrial, consumer, office, network, security, and telecom. Next
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Table II. Parameter Settings for the Functional Units

Parameter Default Range Cortex-A8
Integer ALUs (IA) 2 1 to 4 2
Integer Multiply/ 1 1 to 4 1
Divide Units (IM) nonpipelined nonpipelined/pipelined pipelined
Floating-Point ALUs (FA) 1 1 to 4 1

nonpipelined nonpipelined/pipelined nonpipelined
Floating-Point Multiply/ 1 1 to 4 merged with
Divide Units (FM) nonpipelined nonpipelined/pipelined FA-unit

Table III. Default Parameter Settings

Parameter Default Cortex-A8
Processor width 4 2
Processor frequency 1GHz 1GHz
Pipeline depth 5 stages 13 stages
FP ALU latency 3 cycles 10 cycles
FP Multiply latency 15 cycles 17 cycles
FP Divide latency 15 cycles 65 cycles
FP MAC latency 15 cycles 26 cycles
FP Sqrt latency 15 cycles 60 cycles
Integer Multiply latency 5 cycles 3 cycles
Integer Divide latency 20 cycles NA
L1 D- and I caches 128KB 32KB

4-way set assoc 4-way set assoc
L2 cache 4MB 256KB

8-way set assoc 8-way set assoc

to these MiBench benchmarks, we also use 15 benchmarks from SPEC CPU2006.
We selected inputs from the KDataSets input database [Chen et al. 2010] so that
each MiBench benchmark executes approximately 1 billion instructions. For SPEC
CPU2006, we generated representative simulation regions of 1 billion instructions
each using SimPoint [Hamerly et al. 2005].

We use the gem5 simulation framework [Binkert et al. 2011]. We derive our profiler
from gem5’s functional simulator, and we validate our model against detailed cycle-
level simulation using gem5. Detailed simulation runs at 92 KIPS on an Intel Xeon
Harpertown (L5420) processor. Although our profiler is more than 10 times faster,
running at 1.4 MIPS, profiles need be calculated only once for a whole range of processor
configurations. With these profiles, we can quickly generate performance estimates by
evaluating the preceding analytic formulas. This is done in a couple of seconds for the
complete design space.

The parameters that we vary in the next sections are shown in Table II, along with
the default settings, which forms a design space of 2,048 configurations. For model
validation, we use a subset of 70 randomly selected configurations that span a broad
range of the design space of the total 2,048 configurations. Although our model can
be applied while varying many more parameters (such as pipeline width, depth, cache
sizes, cache associativities, and branch predictor settings), in this article, our primary
focus is on the processor core in which we vary the number and configuration of the
functional units, as this is the most complicated part to model for superscalar in-order
processors. Table III shows the default settings for the other processor parameters. We
refer the interested reader to the earlier version of the model for results in which we
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Fig. 7. Cumulative probability distribution of error for 70 configurations on SPEC CPU2006 and MiBench.

vary other processor parameters such as pipeline depth, width, cache configuration,
and branch predictor (see Breughe et al. [2012]).

For hardware validation, we use a BeagleBone Black board with the Texas Instru-
ments AM3358 Sitara ARM Cortex-A8 processor, running Debian GNU/Linux 7. The
corresponding microarchitectural parameters can be found in the right-most columns
of Tables II and III and are based on the technical references from ARM Holdings
[2010] and Texas Instruments Incorporated [2014]. Because the Cortex-A8 is an ARM-
processor, we extended our profiler to capture profiles for the ARM ISA, in addition
to the Alpha ISA, which is used for the validation against detailed simulation. We
used Linux’s built-in time command to measure user time, and we disable dynamic
frequency scaling by setting the processor to a fixed clock frequency of 1GHz in our
experiments. To avoid generating new SimPoints for SPEC CPU2006 on ARM, and
setting up the framework to execute SimPoints on hardware, our hardware validation
is limited to the MiBench suite.

7. VALIDATION AGAINST DETAILED SIMULATION

We validate the model against detailed simulation in two steps. First, we evaluate
accuracy by simulating a large range of different configurations. We consider 34 bench-
marks and 70 configurations, and we compare the CPI values of detailed simulation
versus the model. Figure 7 shows a cumulative plot comparing all simulated points
with the model. From this figure, we can see that about 90% of all evaluated points
have an error of less than 7% in CPI. Overall, the model has an error of 3.2% on average,
with a maximum error of 13%.

Second, we evaluate how well the model tracks the relative difference on a number
of configurations: starting from the baseline configuration, we increase the number
of available functional units. We also study the effect of pipelining functional units.
We start by studying the effect of adding floating-point multiply units to our baseline
configuration. As can be seen in Figure 8, adding a second multiply unit decreases
CPI significantly. (This graph shows results for the floating-point benchmarks only;
i.e., the other benchmarks do not see a performance impact from varying the number
of floating-point units.) Four multiply units reduces CPI only for a few benchmarks.
These trends are tracked accurately by our model. On average, the model has an error
of only 2.1% for the configurations in this experiment and a maximum error of 5.5%.
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Fig. 8. Model validation while varying the number of floating-point multiply units (FM) for the floating-point
benchmarks of MiBench and SPEC CPU2006.

Fig. 9. Evaluation of the model compared to detailed simulation for pipelined (P) and nonpipelined (NP)
functional units on SPEC CPU2006.

Fig. 10. Evaluation of the model compared to the Cortex-A8 microarchitecture.

We now look at the impact of pipelining all of the units (i.e., integer multiply/divide
unit, floating-point ALU, and floating-point multiply/divide unit) of the baseline con-
figuration, as shown in Figure 9. Due to space constraints, we only plot results for
SPEC CPU2006; we obtain similar results for the MiBench benchmarks. We observe
an average absolute error of 2% and a maximum error of 7.6%.

8. HARDWARE VALIDATION

Figure 10 shows CPI values for our set of 19 MiBench benchmarks when executed
on the Cortex-A8 processor, along with the prediction of our model. We find that the
average absolute prediction error is 10%, with 12 benchmarks showing an error of less
than 8%; the maximum error equals 32% for adpcm_d. Overall, the model is fairly
accurate, taking into account that we did not make important changes to the model
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compared to the ALPHA/gem5 model. The only changes are adjustments to the profiler
to be compatible with the ARM ISA and modeling Cortex A8’s variable latencies for
floating-point instructions.

More specifically, to improve the accuracy of the floating-point benchmarks, we re-
quired a more fine-grained breakdown of the floating-point instruction mix (i.e., mul-
tiply, division, multiply-accumulate, and square root). We then use this fine-grained
instruction mix together with instruction latencies found in the Cortex-A8 technical
reference [ARM Holdings 2010] to generate a weighted average of the overall floating-
point latency and feed it into our model.

Several adjustments to the model could be made to improve accuracy even further.
The gem5 models an fetch buffer with the size of an entire cache line, as observed
by Gutierrez et al. [2014], which underestimates the number of instruction cache ac-
cesses in gem5. Because our original modeling efforts are targeted at a microprocessor
similar to gem5’s in-order core, we make the same assumptions on the fetch buffer.
For example, gsm_c is an application within the top three benchmarks with most in-
struction cache misses, indicating that its instruction footprint is non–cache resident,
and hence modeling a smaller fetch buffer would correctly predict a higher execution
time. Furthermore, we are unaware of the branch prediction latency of the Cortex-A8,
whereas we model taken branches with 1 cycle of penalty. In addition, Gutierrez et al.
[2014] show that gem5’s branch prediction accuracy decreases for low MPKI values.
Both of these branch predictor inaccuracies could explain our performance underesti-
mation of adpcm_d. Further, the Cortex-A8 does not allow executing two instructions
in the same slot if they have output dependences (WAW dependences), whereas our
model abstracts this away. This likely impacts the overall performance overestimation.
Finally, we assume a fixed memory latency, whereas DRAM latency tends to depend
on the physical memory addresses for which requests are made. As correctly stated
by Desikan et al. [2001], this depends on the virtual to physical page mappings of the
native system and is quite difficult to replicate. We find that benchmarks spending a
lot of time in system calls, such as tiff2rgba and tiffmedian, indeed show performance
overestimations.

9. CASE STUDIES

9.1. Revealing Performance Bottlenecks

In our first case study, we use the model to understand the performance numbers of
the example in the introduction of the article (see Figure 1(b)).

Formula (1) derives the number of execution cycles of an application on a target
microprocessor as a sum of terms. This property is useful in determining performance
bottlenecks. By identifying the largest contributors to the execution cycles, one can find
the most promising directions to improve performance. For example, suppose that the
penalty due to data cache misses (part of the Pmisses term) is the largest contributor to
the execution cycles; performance could be improved by installing a larger cache or by
improving data locality. If, on the other hand, the penalty due to functional units (PFU )
is relatively large, we can improve performance by adding functional units.

We now build CPI stacks for the benchmarks and configurations of Figure 1(b).
Thereto, we divide the terms in Formula (1) by the total number of instructions N, and
we split up the terms Pmisses and PFU into smaller terms to get a better level of detail.
The “base” component is the first term (i.e., N

W ), which becomes 1
W when divided by N.

Pmisses can easily be split up by multiplying the number of miss events of each type
with their respective penalty as explained in Section 4.

Since PFU and Pdeps are modeled in a unified matrix C, we have to split up the matrix
C into CFU and Cdeps to determine penalties for functional units and interinstruction
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Fig. 11. CPI stacks reveal that interinstruction dependences between multiply instructions are the under-
lying bottleneck that is preventing performance improvement for susan_s. The “other” component is all other
terms in the model that only have a small component.

dependences separately. We do this similarly to how the matrix was constructed in
Formula (7):

Cdeps(i, d) =
{

cdep(i, d) ifcdep(i, d) > c f u(i)
0 else

CFU (i, d) =
{

c f u(i, d) ifcdep(i, d) ≤ c f u(i)
0 else.

The term PFU can be further broken down into PintALU , PintMultiply, PfpALU , and
PfpMultiply by accounting for the CFU (i, d) terms only, in which i denotes a pattern
associated with that functional unit (i.e., the last instruction in pattern i executes on
functional unit type FU ).

The CPI stacks for the benchmarks and configurations of Figure 1(b) are shown
in Figure 11. Although the model has a small error on the performance prediction,
it reveals why there is hardly any performance improvement for susan_s. With a
single multiply unit, we observe that the penalties due to integer multiplies (PintMultiply)
are relatively high. When we add a second multiply unit, we see that this term is
significantly reduced for gsm_c, which can be explained by the many patterns with
more than one multiply instruction. For susan_s, we see that the PintMultiply term is
also reduced; however, the term Pdeps is increased by the same amount that PintMultiply
was reduced. The decrease in PintMultiply can again be explained by patterns consisting
of multiple multiply instructions that can execute in parallel. However, the increase
in Pdeps means that these multiply instructions depend on each other, which inhibits
parallel execution.

9.2. Minimizing the Number of Functional Units for a Given Performance Target

In our second case study, we use the model to minimize the number of units needed
for a specific performance target. We use gem5 to find the performance (expressed as
IPC) of our baseline configuration (containing 5 functional units) and the maximum
achievable performance when having 4 functional units of each type (i.e., a total of
16 units). The harmonic mean of speedups over the baseline IPC equals 1.087. The
maximum speedup is observed for lame (1.52) and zeusmp (1.49).

We now use the model to find optimal configurations per benchmark (i.e., configu-
rations with a minimum number of functional units), where we set the performance
target at 98% of the maximum IPC. Detailed simulation of these optimized configu-
rations confirms that these configurations indeed have an IPC of at least 98% of the
maximum achievable IPC as predicted by the model, by using a minimum amount of
functional units. Figure 12 shows IPC numbers, resulting from detailed simulation, for
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Fig. 12. Baseline performance, the performance of the configuration with four units of each type (Maximum
units), and the performance of the configuration picked by the model with a minimum number of functional
units within 98% of the optimum (Optimized). The table aligned with the figure details the configuration
picked by the model: number of integer ALUs (IA), integer multiply/divide units (IM), floating-point ALUs
(FA), and floating-point multiply/divide units (FM).

Fig. 13. Normalized cycle stacks for five benchmarks across different compiler optimizations.

a selection of benchmarks, along with the optimal number of units of each type. Because
of space constraints, we only show the 20 benchmarks that have the largest delta in
IPC between the baseline configuration and the configuration with a total of 16 func-
tional units. (We obtain similar results for the other 14 benchmarks.) The “Optimized”
bars represent the IPC results for the configurations found in the table that is aligned
with the figure. The bars “Baseline” and “Maximum units” represent our baseline of
5 units, and the configuration with all 16 units, respectively. The harmonic mean of the
speedups of the optimized configurations over the baseline configuration equals 1.08
(maximum speedup of 1.51 for lame and 1.47 for zeusmp). We observe that for 29 out
of the 34 benchmarks, we only need 7 or fewer functional units to achieve at least 98%
of the IPC with 16 functional units. The resulting configurations are nontrivial and
time-consuming to find using detailed cycle-accurate simulation, which motivates the
use of our fast model to guide design choices.

9.3. Compiler Optimizations

In our last case study, we use the model to study how compiler optimizations affect
superscalar in-order performance (Figure 13). We consider -O3, -O3 without instruc-
tion scheduling (-O3 -fno-schedule-insns), and -O3 with loop unrolling turned on
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Fig. 14. Normalized cycle stacks for susan_s with and without loop unrolling, and on two different archi-
tectures (one and two multiply units).

(-O3 -funroll-loops) for the five benchmarks for which we observed the largest im-
pact due to compiler optimizations. Figure 13 shows normalized cycle stacks—that is,
a cycle stack is computed by multiplying a CPI stack with the number of dynami-
cally executed instructions; the cycle stacks are then normalized to the execution time
with the -O3 optimization level. For most of the benchmarks, instruction scheduling
increases the distance between dependent instructions, resulting in a lower penalty
due to dependences. For some benchmarks (e.g., gsm_c), the base component increases
slightly through instruction scheduling, meaning that the number of executed instruc-
tions increases. The reason for this is the addition of spill code. However, the cost of spill
code is compensated for by the substantial decrease in the impact of interinstruction
dependences.

Most of the benchmarks (and all of the ones in Figure 13) benefit from loop unrolling.
Three components get an important reduction through loop unrolling. First, the number
of dynamic instructions decreases because fewer branches and loop iteration counter
increments are needed after loop unrolling. Second, because there are fewer branches,
the penalty due to taken branches also decreases. Third, for susan_s, we observe the
biggest contribution from the smaller penalty due to interinstruction dependences;
clearly, loop unrolling enables the instruction scheduler to better schedule instructions
so that fewer interinstruction dependences have an impact on in-order performance.

As shown in Section 9.1, dependences prevent a performance improvement when
the number of multipliers is increased from one to two for susan_s. In Figure 14,
we show normalized cycle stacks for susan_s without loop unrolling (-O3) and with
loop unrolling enabled (-unroll) on the baseline architecture (one multiply unit) and
on the baseline architecture with an additional multiply unit (two multiply units).
As mentioned earlier, for -O3 the penalty for multiply instructions transforms into
a penalty for interinstruction dependences when a second multiply unit is added.
When we enable loop unrolling, however, many of these additional interinstruction
dependences can be removed because the instruction scheduler is now able to place
independent multiply instructions (that were originally spread across loop iterations)
closer together and dependent ones further apart. As a result, we see a considerable
performance gain when the number of multiply units is doubled for the loop-unrolled
version of susan_s.

10. RELATED WORK

We now describe prior work in analytical modeling, statistical modeling, and program
characterization that is most related to our work.
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10.1. Analytical Modeling

Basically, there are three approaches to analytical modeling: mechanistic modeling,
empirical modeling, and hybrid mechanistic/empirical modeling.

Mechanistic modeling derives a model from the mechanics of the processor, and prior
work focused on mechanistic modeling of out-of-order processor performance for the
most part. Michaud et al. [1999] build a mechanistic model of the instruction window
and issue mechanism. Karkhanis and Smith [2004] extend this simple mechanistic
model to build a complete performance model that assumes sustained steady-state
issue performance punctuated by miss events. Chen and Aamodt [2008] improve on this
model through more accurate modeling of pending data cache hits, overlaps between
computation and memory accesses, and the impact of a limited number of MSHRs.
Taha and Wills [2008] propose a mechanistic model that breaks up the execution into
so-called macro blocks, separated by miss events. Eyerman et al. [2009] propose the
interval model for superscalar out-of-order processors. Whereas all of this prior work
focused on out-of-order processors, Breughe et al. [2011] proposed a mechanistic model
for scalar in-order processors. This article presents a mechanistic model for superscalar
in-order processors that involves substantial modeling enhancements with respect to
functional unit contention and interinstruction dependences, as explained in Sections 3
through 5.

In contrast to mechanistic modeling, empirical modeling requires little or no prior
knowledge about the system being modeled: the basic idea is to learn or infer a perfor-
mance model using machine learning and/or statistical methods from a large number
of detailed cycle-accurate simulations. Empirical modeling seems to be the most widely
used analytical modeling technique today and was employed for modeling out-of-order
processors only, to the best of our knowledge. Some prior proposals consider linear
regression models for analysis purposes [Joseph et al. 2006a], nonlinear regression for
performance prediction [Joseph et al. 2006b], spline-based regression for power and
performance prediction [Lee and Brooks 2006], neural networks [Dubach et al. 2007;
Ipek et al. 2006], or model trees [Ould-Ahmed-Vall et al. 2007].

Hybrid mechanistic-empirical modeling targets the middle ground between mecha-
nistic and empirical modeling: starting from a generic performance formula derived
from understanding the underlying mechanisms, unknown parameters are derived by
fitting the performance model against detailed simulations. For example, Hartstein
and Puzak [2002] propose a hybrid mechanistic-empirical model for studying optimum
pipeline depth; the model is tied to modeling pipeline depth only and is not gener-
ally applicable. Eyerman et al. [2011] propose a more complete mechanistic-empirical
model that enables constructing CPI stacks on real out-of-order processors.

10.2. Interinstruction Dependence Modeling and Functional Unit Contention

Dubey et al. [1994] present an analytical model for the amount of instruction-level
parallelism (ILP) for a given window size of instructions based on the interinstruction
dependence distribution. Kamin et al. [1994] approximate the interinstruction depen-
dence distribution using an exponential distribution. Later, Eeckhout and De Bosschere
[2001] found a power law to be a more accurate approximation.

The interinstruction dependence distribution is an important program statistic for
statistical modeling. Noonburg and Shen [1997] present a framework that models
the execution of a program on a particular architecture as a Markov chain, in which
the state space is determined by the microarchitecture and in which the transi-
tion probabilities are determined by the program. Statistical simulation [Eeckhout
et al. 2003; Oskin et al. 2000] generates a synthetic program or trace from a set of
statistics.
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Most of the previous work on functional unit contention has focused on out-of-order
processors, such as Taha and Wills [2008]. Other work, such as Noonburg and Shen
[1994], Lee [2010], and Zhu et al. [2005] has models that can be applied for in-order
processors as well. Noonburg and Shen [1994] make a distinction between program
parallelism and machine parallelism, and both are combined to determine the over-
all processor performance. Zhu et al. [2005] employ a multiple-class multiple-resource
queuing system to model a variable number of functional units to arrive at a hybrid
mechanistic-probabilistic approach to estimate processor performance. Although pre-
vious work takes the instruction mix into account for determining performance for a
different number of functional units, they lose in accuracy because this instruction mix
is a global instruction mix. However, this work uses fine-grained instruction mixes and
requires only one profiling run (no parameter fitting is needed) to determine perfor-
mance for all possible numbers of functional units.

11. FUTURE WORK

The proposed mechanistic model focuses on single-core processors only. It would be
interesting to extend this work toward multicore processors with superscalar in-order
cores. The challenge with this extension is the need to account for additional cache
misses and longer memory access penalties because of resource sharing. To be able to
use the model in a multicore environment, parameters corresponding to cache misses
and memory access times would need to be estimated before evaluating Formula (2).
Existing work by Van Craeynest and Eeckhout [2011] and Chen and Aamodt [2009]
provides mechanisms to calculate these estimates and are orthogonal to our work.

Another interesting extension would be toward multithreaded processors. Multi-
threaded processors are built to hide stall latencies by executing multiple applications
on the same processor. This means that next to resource contention, we would also
need to model the overlapping of stalls from the different application threads. Chen
and Aamodt [2009] model multithreaded processors for scalar (single-issue) in-order
cores. They implement a Markov chain that transitions between states, where each
state indicates how many threads are stalled. The inputs to the model are IPC results
of the individual applications along with probabilities for stall events. Eyerman and
Eeckhout [2010] use similar inputs (i.e., single-thread statistics) to calculate overall
system throughput for simultaneous multithreading (SMT) out-of-order processors.
The challenge when considering multithreaded superscalar, in-order processors is that
our detailed instruction profile (the H-matrix) would depend on the runtime context, re-
sulting in a complex chicken-and-egg problem—that is, per-thread progress determines
interthread interleaving and interference, and vice versa, interthread interference af-
fects per-thread progress. One possible solution might be, instead of computing a single
profile for each application, to compute multiple profiles at intervals of a fixed number
of instructions for each application individually. We could then build a single combined
profile for the possible co-executions in the multithreaded instruction stream, in a man-
ner similar to the co-phase matrix work [Van Biesbrouck et al. 2004]. An alternative
solution might be to solve the chicken-and-egg problem through an iterative approach
that computes the impact of per-thread progress on multithreaded resource sharing
and vice versa, in a manner similar to the work of Van Craeynest and Eeckhout [2011]
and Eklöv et al. [2011].

12. CONCLUSION

In this article, we propose a performance model for superscalar in-order processors
that uses analytical formulas derived from understanding the internal mechanics of
the microarchitecture. The formulas reflect the impact of functional unit contention and
interinstruction dependences on superscalar processor performance. By combining a
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detailed instruction mix and dependence distance profiles of a program’s dynamic
instruction stream with a number of program-machine characteristics (e.g., cache miss
rates, MLP, and branch misprediction rates), we demonstrate that our model has an
error of only 3.2% on average compared to detailed simulation with gem5. Hardware
validation against the ARM Cortex-A8 demonstrates an average absolute error of 10%.
The evaluation speed of the model is close to instantaneous, as it only involves solving
a number of analytical formulas. Furthermore, the microarchitectural independent
profiling step, which is needed to provide the model input, is a one-time cost and is at
least 10 times faster than a single detailed simulation run.

We use the model both as an exploration tool and one to gain insight into an appli-
cation’s execution behavior, as well as to visualize microarchitectural bottlenecks. We
demonstrate how the model can find an optimal set of functional units to achieve a given
performance target. Finally, we demonstrate the model’s usefulness to identify microar-
chitectural bottlenecks. Instead of analyzing results of many detailed simulations, the
model can visualize how an application interacts with a microarchitecture and hence
provides insights on how performance can or cannot be improved. By applying this visu-
alization technique on differently optimized binaries of the same application, the model
provides insight into how compiler optimizations affect the program–microarchitecture
interactions.
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