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1 Basic definitions and main result

A point-line geometry S = (P ,L, I) with nonempty point set P , (possibly empty) line set
L and incidence relation I ⊆ P × L is called a partial linear space if every two distinct
points are incident with at most one line. If x1 and x2 are two points of a partial linear
space S, then the distance d(x1, x2) between x1 and x2 will always be measured in the
collinearity graph of S. A set X of points of S is called a subspace if every line having
two of its points in X has all its points in X. If X is a nonempty subspace of S, then we
denote by X̃ the subgeometry of S induced on X by those lines of S that have all their
points in X.

A near polygon is a partial linear space S with the property that for every point x
and every line L, there exists a unique point πL(x) on L nearest to x. If d is the maximal
distance between two points of a near polygon S, then S is called a near 2d-gon. A near
0-gon is a point and a near 2-gon is a line. Near quadrangles are usually called generalized
quadrangles. We now define two classes of near polygons.

Let n ∈ N. With every set X of size 2n+ 2, there is associated a point-line geometry
Hn(X): the points of Hn(X) are the partitions of X in n+ 1 subsets of size 2; the lines of
Hn(X) are the partitions of X in n−1 subsets of size 2 and 1 subset of size 4; a point p of
Hn(X) is incident with a line L of Hn(X) if and only if the partition corresponding to p is
a refinement of the partition corresponding to L. By Brouwer et al. [1], Hn(X) is a near
2n-gon with three points on each line. The isomorphism class of the geometry Hn(X) is
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obviously independent of the set X of size 2n + 2. We will denote by Hn any suitable
representative of this isomorphism class. The near polygon H0 consists of a unique point,
the near polygon H1 is the line of size 3 and the generalized quadrangle H2 is isomorphic
to the generalized quadrangle W (2) described in Payne and Thas [8, Section 3.1].

Let n ∈ N \ {0, 1}, let V be a 2n-dimensional vector space over F4 and let B =
(ē1, ē2, . . . , ē2n) be an ordered basis of V . The set of all points 〈

∑2n
i=1Xiēi〉 of PG(V )

satisfying the equation
∑2n

i=1X
3
i = 0 is a nonsingular Hermitian variety H of PG(V ). We

denote the dual polar space (isomorphic toDH(2n−1, 4)) associated withH byDH(V,B).
So, the points of DH(V,B) are the (n − 1)-dimensional subspaces of PG(V ) contained
in H, the lines of DH(V,B) are the (n − 2)-dimensional subspaces of PG(V ) contained
in H and incidence is reverse containment. The support Sp of a point p = 〈

∑2n
i=1Xiēi〉

of PG(V ) (with respect to B) is the set of all i ∈ {1, 2, . . . , 2n} for which Xi 6= 0. The
number of elements of Sp is called the weight of p (with respect to B). Observe that a
point of PG(V ) belongs to H if and only if its weight is even. Let X denote the set of all
(n − 1)-dimensional subspaces contained in H generated by n points of weight 2 (whose
supports are mutually disjoint). By De Bruyn [3], X is a subspace of DH(V,B) and

Gn(V,B) := X̃ is a near 2n-gon with three points on each line. The isomorphism class
of the geometry Gn(V,B) is obviously independent of the 2n-dimensional vector space V
and the ordered basis B of V . We will denote by Gn any suitable representative of this
isomorphism class. By [3], the generalized quadrangle G2 is isomorphic to the generalized
quadrangle Q−(5, 2) described in Payne and Thas [8, Section 3.1]. By convention, G1 is
the line with three points and G0 is the near 0-gon.

Let S1 and S2 be two partial linear spaces. An embedding of S1 into S2 is an injective
mapping e from the point set of S1 to the point set of S2 satisfying the following two
properties:
• e maps every line of S1 into a line of S2;
• e maps distinct lines of S1 into distinct lines of S2.

An embedding e of S1 into S2 will be denoted by e : S1 → S2. An embedding e : S1 → S2
is called full if it maps lines of S1 to full lines of S2. The embedding e is called isometric
if it preserves the distances between points.

Suppose e is an embedding of the partial linear space S1 into the partial linear space
S2. If θ1 and θ2 are automorphisms of respectively S1 and S2 such that θ2 ◦e = e◦θ1, then
we say that θ1 lifts (through e) to θ2. If the automorphism θ1 of S1 lifts through e to an

automorphism of S2, then we will denote by θ̃1 any of the automorphisms of S2 to which
θ1 lifts. The set G of all automorphisms of S1 which lift through e to an automorphism of
S2 is clearly a subgroup of the full automorphism group Aut(S1) of S1. If G = Aut(S1),
then e is called a homogeneous embedding.

Two embeddings e : S1 → S2 and e′ : S ′1 → S ′2 are called equivalent if there exists an
isomorphism θ1 from S1 to S ′1 and an isomorphism θ2 from S2 to S ′2 such that e′◦θ1 = θ2◦e.
Two embeddings e : S1 → S2 and e′ : S1 → S ′2 of the same partial linear space S1 are
called isomorphic if there exists an isomorphism θ from S2 to S ′2 such that e′ = θ ◦ e. If e
and e′ are isomorphic, then they are also equivalent.
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The following is the main result of this paper.

Theorem 1.1 Suppose n ≥ 3. Then there exists up to equivalence a unique isometric em-
bedding of Hn into Gn. Up to isomorphism, there are (n+1)(2n+1) isometric embeddings
of Hn into Gn.

The conclusion of the theorem is false if n = 2. There is up to isomorphism a unique
isometric embedding of the generalized quadrangle H2

∼= W (2) into the generalized quad-
rangle G2

∼= Q−(5, 2).

This paper is part of a project of the author to study isometric embeddings between dense
near polygons. In the paper [5], we studied isometric embeddings of the near polygon Hn,
n ≥ 2, into the symplectic dual polar space DW (2n− 1, 2) and isometric embeddings of
the near polygon Gn, n ≥ 2, into the Hermitian dual polar space DH(2n−1, 4). Isometric
embeddings between near polygons are important for the study of valuations (De Bruyn
and Vandecasteele [6]) which themselves are very important for obtaining classification
results about near polygons.

We will prove Theorem 1.1 in Section 4. In Section 3, we will give an explicit description
of an isometric embedding of Hn into Gn. The background on near polygons and some of
the machinery that are necessary for the proof of Theorem 1.1 will be discussed in Section
2.

2 Preliminaries

2.1 Embeddings between partial linear spaces

In this subsection, we collect some facts regarding embeddings between general partial
linear spaces.

Suppose S1 = (P1,L1, I1) and S2 = (P2,L2, I2) are two partial linear spaces. We call an
embedding e : S1 → S2 regular if for all points x1 and x2 of S1, we have that e(x1) and
e(x2) are collinear if and only if x1 and x2 are collinear. Every isometric embedding is
also regular. If e : S1 → S2 is an embedding, then we denote by Se1 the subgeometry of S2
induced on the point set e(P1) by those lines of S2 that have at least two points in e(P1).

Lemma 2.1 Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two partial linear spaces and
suppose e : S1 → S2 is a regular embedding. Then e defines an isomorphism between S1
and Se1 .

Proof. Suppose L1 = {xi | i ∈ I} is a line of S1 for some index set I of size at least 2.
Then e(L1) = {e(xi) | i ∈ I} is contained in some line L2 of S2. We claim that e(L1) is a
line of Se1 . If this were not the case, then L2 would contain a point e(y) where y ∈ P1 \L1.
If z denotes an arbitrary point of L1, then the points y and z must be incident with a
unique line L′1 of S1 as the points e(y) and e(z) are collinear in S2. Since each of the
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sets e(L1) and e(L′1) are contained in the same line L2 of S2, we should have L1 = L′1, in
contradiction with y ∈ L′1 \ L1. So, e(L1) is indeed a line of Se1 .

Conversely, suppose that L′1 is a line of Se1 , let x and y be two distinct points of
e−1(L′1) and let L1 denote denote the unique line of S1 containing x and y. By the
previous paragraph, e(L1) should be a line of Se1 which necessarily equals L′1.

So, the bijection e between the point sets of S1 and Se1 defines a bijection between the
line sets of S1 and Se1 preserving incidence. �

Lemma 2.2 Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two partial linear spaces and
let e1 and e2 be two embedding of S1 into S2. Then:

(1) If e1 and e2 are regular embeddings and if there exists an automorphism θ2 of S2
mapping e1(P1) to e2(P1), then e1 and e2 are equivalent embeddings.

(2) If e1 is a homogeneous embedding and e2 is equivalent to e1, then e1 and e2 are
isomorphic.

(3) The following are equivalent for an automorphism θ1 of S1: (i) θ1 lifts through e1
to an automorphism of S2; (ii) the embeddings e1 and e1 ◦ θ1 are isomorphic.

Proof. (1) The automorphism θ2 of S2 induces an isomorphism between Se11 ∼= S1 and
Se21 ∼= S1. Hence, θ1 := e−11 ◦ θ−12 ◦ e2 is an automorphism of S1 and e2 = θ2 ◦ e1 ◦ θ1.

(2) Let θ1 be an automorphism of S1 and θ2 be an automorphism of S2 such that

e2 = θ2 ◦ e1 ◦ θ1. Then e2 = θ2 ◦ θ̃1 ◦ e1. Hence, e1 and e2 are isomorphic.
(3) The embeddings e1 and e1 ◦ θ1 are isomorphic if and only if there exists an auto-

morphism θ2 of S2 such that θ2 ◦ e1 = e1 ◦ θ1, i.e. if and only if θ1 lifts through e1 to an
automorphism of S2. �

By Lemma 2.2(1)+(2), we immediately have:

Corollary 2.3 Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two partial linear spaces and
let e∗ be a given regular homogeneous embedding of S1 into S2. If e is a regular embedding
for which there exists an automorphism θ2 of S2 such that e(P1) = θ2 ◦ e∗(P1), then e is
isomorphic to e∗.

Corollary 2.3 can be improved as follows:

Proposition 2.4 Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two partial linear spaces
and let e∗ be a given regular embedding of S1 into S2. Let G denote the full automorphism
group of S1 and let H denote the subgroup of G consisting of all automorphisms of S1
which lift through e∗ to an automorphism of S2. Choose an index set I of size |G : H| and

automorphisms θ
(i)
1 , i ∈ I, of S1 such that {H ◦ θ(i)1 | i ∈ I} is the set of all right cosets of

H in G. Then the following holds:
(1) Any two embeddings of the set {e∗ ◦ θ(i)1 | i ∈ I} are nonisomorphic.
(2) If e is a regular embedding for which there exists an automorphism θ2 of S2 such

that e(P1) = θ2 ◦ e∗(P1), then e is isomorphic to (precisely) one of the embeddings of the

set {e∗ ◦ θ(i)1 | i ∈ I}.
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Proof. (1) Suppose i1 and i2 are two distinct elements of I such that the embeddings

e∗ ◦ θ(i1)1 and e∗ ◦ θ(i2)1 of S1 into S2 are isomorphic. Then also the embeddings e∗ and

e∗ ◦ θ(i1)1 ◦ [θ
(i2)
1 ]−1 of S1 into S2 are isomorphic. By Lemma 2.2(3), this would imply that

θ
(i1)
1 ◦ [θ

(i2)
1 ]−1 ∈ H, clearly a contradiction.

(2) By Lemma 2.2(1), e∗ and e are equivalent embeddings. Hence, there exists an
automorphism θ1 of S1 and an automorphism θ2 of S2 such that e = θ2 ◦ e∗ ◦ θ1. Now,
there exists a unique θ′1 ∈ H and a unique i ∈ I such that θ1 = θ′1 ◦ θ

(i)
1 . Then e =

θ2 ◦ e∗ ◦ θ′1 ◦ θ
(i)
1 = θ2 ◦ θ̃′1 ◦ e∗ ◦ θ

(i)
1 . Hence, e and e∗ ◦ θ(i)1 are isomorphic. �

2.2 Near polygons

Let S = (P ,L, I) be a near polygon. If x is a point of S and i ∈ N, then Γi(x) denotes
the set of points at distance i from x. A subspace X of S is called convex if every point
on a shortest path between two points of X is also contained in X. Clearly, the whole
point set P is an example of a convex subspace and the intersection of any number of
(convex) subspaces of S is again a (convex) subspace of S. If X is a nonempty convex

subspace of S, then X̃ itself is also a near polygon. If ∗1, ∗2, . . . , ∗k are k ≥ 1 objects of S,
each being a point or a nonempty set of points, then 〈∗1, ∗2, . . . , ∗k〉 denotes the smallest
convex subspace of S containing ∗1, ∗2, . . . , ∗k. The set 〈∗1, ∗2, . . . , ∗k〉 is well-defined since
it equals the intersection of all convex subspaces containing ∗1, ∗2, . . . , ∗k.

A near polygon is called dense if every line is incident with at least three points and
if every two points at distance 2 have at least two common neighbors. Suppose now that
S is a dense near 2n-gon. If x and y are two points of S at distance δ from each other,
then by Shult and Yanushka [9, Proposition 2.5] and Brouwer and Wilbrink [2, Theorem
4], 〈x, y〉 is the unique convex subspace of diameter δ containing x and y. The convex
subspace 〈x, y〉 is called a quad if δ = 2 and a max if δ = n − 1. For every point x of S,
let L(S, x) be the point-line geometry whose points are the lines through x, whose lines
are the quads through x, and whose incidence relation is containment. L(S, x) is called
the local space at x. The modified local space ML(S, x) at x is obtained from L(S, x) by
removing all lines of size 2. A proof of the following proposition is essentially contained
in Brouwer and Wilbrink [2].

Proposition 2.5 Let x and y be two distinct points of a dense near polygon S and let Lx,y
denote the set of lines through x containing a point at distance d(x, y)−1 from y. Then: (i)
a line through x is contained in 〈x, y〉 if and only if L ∈ Lx,y; (ii) 〈L |L ∈ Lx,y〉 = 〈x, y〉.

If x is a point of a dense near polygon S at distance 1 from a nonempty convex
subspace F , then F contains a unique point x′ collinear with x and d(x, y) = 1 + d(x′, y)
for every point y of F . A convex subspace F of S is called classical in S if for every
point x of S, there exists a (necessarily unique) point πF (x) ∈ F such that d(x, y) =
d(x, πF (x)) + d(πF (x), y) for every point y of F . The map P → F ;x 7→ πF (x) is called
the projection on F . A max M of S is called big in S if every point outside M is collinear
with a (necessarily unique) point of M . Every big max M of S is classical in S and for
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every point x outside M , πM(x) is the unique point of M collinear with x. If M is a big

max and F is a convex subspace meetingM , then either F ⊆M or F∩M is a big max of F̃ .
If M1 and M2 are two disjoint big maxes of S, then the map M1 →M2;x 7→ πM2(x) is an

isomorphism between M̃1 and M̃2, and its inverse map is given by M2 →M1;x 7→ πM1(x).
Suppose S = (P ,L, I) is a dense near polygon with three points on each line, and that

M is a big max of S. For every point x of M , we define RM(x) := x. For every point x
outside M , let RM(x) denote the third point on the line through x and πM(x). The map
RM : P → P defines an automorphism of S and is called the reflection about S. So, if F
is a convex subspace of S, then RM(F ) is a convex subspace of the same diameter as F .
If F is a big max, then also RM(F ) is a big max.

Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two near polygons. We suppose that the
sets P1, P2, L1 and L2 are mutually disjoint. We define the following point-line geometry
S = (P ,L, I):
• P = P1 × P2;
• L = (P1 × L2) ∪ (L1 × P2);
• the point (x, y) of S is incident with the line (z, L) ∈ P1 × L2 if and only if x = z

and (y, L) ∈ I2; the point (x, y) of S is incident with the line (M,u) ∈ L1×P2 if and only
if (x,M) ∈ I1 and y = u.
The point-line geometry S is also denoted by S1 × S2 and is called the direct product of
S1 and S2. If Si, i ∈ {1, 2}, is a (dense) near 2di-gon, then S1 × S2 is a (dense) near
2(d1 + d2)-gon. A generalized quadrangle is called an (s1 + 1) × (s2 + 1)-grid if it is
isomorphic to the direct product of a line of size s1 + 1 and a line of size s2 + 1. If p is
a point of S1 × S2, then there exist convex subspaces F1 and F2 through p such that the
following properties are satisfied: (i) F̃1

∼= S1 and F̃2
∼= S2; (ii) every line through p is

contained in either F1 or F2; (iii) if Li, i ∈ {1, 2}, is a line contained in Fi, then ˜〈L1, L2〉
is a grid.

More information on (dense) near polygons and proofs of the above-mentioned facts can
be found in the book [4]. Regarding isometric embeddings between dense near polygons,
we can say the following.

Proposition 2.6 (Huang [7, Corollary 3.3]) Let S1 = (P1,L1, I1) and S2 = (P2,
L2, I2) be two dense near polygons with respective distance functions d1(·, ·) and d2(·, ·)
and respective diameters n1 and n2. Let e be a map from P1 to P2 satisfying the following
for any two points x and y of P1: if d1(x, y) = 1, then also d2(x, y) = 1. Then e is
an isometric embedding of S1 into S2 if and only if there exist points x∗ and y∗ in S1
satisfying d1(x

∗, y∗) = d2(e(x
∗), e(y∗)) = n1.

Proposition 2.7 (De Bruyn [5, Proposition 2.5]) Let S1 = (P1,L1, I1) and S2 =
(P2,L2, I2) be two dense near polygons and let e be an isometric embedding of S1 into S2.
Then for every nonempty convex subspace F of S1, there exists a unique nonempty convex
subspace F of S2 satisfying:
• F and F have the same diameter;
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• F ∩ e(P1) = e(F ).
If F1 and F2 are two distinct nonempty convex subspaces of S1, then F1 and F2 are distinct.

2.3 Properties of the near 2n-gons Hn and Gn

In this subsection, we collect some known properties of the near 2n-gons Hn and Gn which
can be found in the book [4].

Let n ≥ 2, let X be a set of size 2n+ 2 and put Hn := Hn(X).
Let P1 and P2 be two points of Hn, i.e. P1 and P2 are two partitions of X in n + 1

subsets of size 2. Let ΓP1,P2 denote the graph with vertices the elements of X, with two
distinct vertices i and j adjacent whenever {i, j} is contained in P1∪P2. Then the distance
between P1 and P2 in the near polygon Hn is equal to n+ 1− C where C is the number
of connected components of ΓP1,P2 .

Every quad of Hn is either a grid-quad or a W (2)-quad, with both types of quads

occurring if n ≥ 3. Every line of Hn is contained in n− 1 W (2)-quads and (n−1)(n−2)
2

grid-
quads. Every W (2)-quad of Hn is classical in Hn. There exists a bijective correspondence
between the nonempty convex subspaces F of Hn and the partitions PF of X in subsets
of even size. This correspondence is as follows: F consists of all partitions of X in
n + 1 subsets of size 2 that are refinements of the partition PF . In the sequel, we will
often say that PF is the partition of X corresponding to F , or that F is the convex
subspace of Hn corresponding to PF . The grid-quads of Hn are precisely the convex
subspaces of F that correspond to the partitions of X in n− 3 subsets of size 2 and two
subsets of size 4. The W (2)-quads of Hn are precisely the convex subspaces of F that
correspond to the partitions of X in n− 2 subsets of size 2 and one subset of size 6. The
maxes of Hn are the convex subspaces of Hn that correspond to the partitions of X in
2 subsets of even size. If P is a partition of X in a subset of size 2m and a subset of
size 2n + 2 − 2m (m ∈ {1, 2, . . . , n}), then the convex subspace corresponding to P is
isomorphic to Hm−1 ×Hn−m. The big maxes of Hn are precisely the convex subspaces of
Hn that correspond to the partitions of X in a subset of size 2 and a subset of size 2n.
If M is a big max, then M̃ ∼= Hn−1. There exists a bijective correspondence between the
big maxes M of Hn and the subsets YM of size 2 of X. This correspondence is as follows:
M consists of all partitions P of X in n + 1 subsets of size 2 such that YM ∈ P . In the
sequel, we will often say that YM is the subset of size two corresponding to M , or that M
is the big max corresponding to YM .

Let L(Hn) be the following point-line geometry:
• The points of L(Hn) are the subsets of size 2 of {1, 2, . . . , n+ 1}.
• The lines of L(Hn) are of two types: (i) lines of the form {{a, b}, {c, d}} where a, b, c

and d are four distinct elements of {1, 2, . . . , n+1}; (ii) lines of the form {{a, b}, {a, c}, {b,
c}} where a, b and c are three distinct elements of {1, 2, . . . , n+ 1}.
• Incidence is containment.

Then every local space of Hn is isomorphic to L(Hn).
Suppose M1 and M2 are two distinct big maxes of Hn. Let {xi, yi}, i ∈ {1, 2}, be the

subset of size 2 corresponding to Mi. If |{x1, y1} ∩ {x2, y2}| = 1, say x1 = x2 and y1 6= y2,
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then M1 and M2 are disjoint and the subset of size 2 of X corresponding to the big max
RM1(M2) is equal to {y1, y2}. If {x1, y1} ∩ {x2, y2} = ∅, then M1 ∩M2 6= ∅.

Every permutation of X determines in a natural way a permutation of the point set
of Hn = Hn(X) defining an automorphism of Hn. Every automorphism of Hn is obtained
in this way. The correspondence between the permutations of X and the automorphisms
of Hn is bijective for n ≥ 2. So, the automorphism group of Hn, n ≥ 2, is isomorphic to
the symmetric group S2n+2.

Let n ≥ 3, let V be a 2n-dimensional vector space over F4 and let B = (ē1, ē2, . . . , ē2n) be
an ordered basis of V . Put Gn = Gn(V,B).

Suppose P1 and P2 are two points of Gn, i.e. two (n − 1)-dimensional subspaces of
PG(V ) that are generated by n points of weight 2 (w.r.t. B) whose supports (w.r.t. B)
are mutually disjoint. Then the distance between P1 and P2 in the near 2n-gon Gn is
equal to n− 1− dim(P1 ∩ P2).

The lines of Gn(V,B) are of two types, the special lines and the ordinary lines. The
special lines of Gn(V,B) are in bijective correspondence with the (n − 2)-dimensional
subspaces of PG(V ) which are generated by (n − 1) points of weight 2 (whose supports
are mutually disjoint): if α is such an (n − 2)-dimensional subspace, then the set of all
(n − 1)-dimensional subspaces of PG(V ) through α which are generated by n points of
weight 2 is a special line. The ordinary lines of Gn(V,B) are in bijective correspondence
with the (n − 2)-dimensional subspaces of PG(V ) which are generated by one point of
weight 4 and n−2 points of weight 2 such that the n−1 associated supports are mutually
disjoint: if α is such an (n−2)-dimensional subspace, then the set of all (n−1)-dimensional
subspaces of PG(V ) through α which are generated by n points of weight 2 is an ordinary
line.

If σ is a permutation of {1, 2, . . . , 2n}, if ψ is an automorphism of F4 and if λi ∈
F∗4 for every i ∈ {1, 2, . . . , 2n}, then the unique semi-linear map of V with associated
field automorphism ψ that maps ēi to λi · ēσ(i) for every i ∈ {1, 2, . . . , 2n} induces an
automorphism of Gn = Gn(V,B). Conversely, every automorphism of Gn, n ≥ 3, is
obtained in this way. (This latter statement would not be true if n were equal to 2.)

Every quad of Gn is either a grid-quad, a W (2)-quad or a Q−(5, 2)-quad. Every special

line of Gn is contained in exactly n − 1 Q−(5, 2)-quads, 0 W (2)-quads and 3 (n−1)(n−2)
2

grid-quads. Every ordinary line of Gn is contained in a unique Q−(5, 2)-quad, 3(n − 2)

W (2)-quads and (n−2)(3n−7)
2

grid-quads. There exists a bijective correspondence between
the convex subspaces F of diameter k ∈ {0, 1, . . . , n} of Gn and the (n−1−k)-dimensional
subspaces αF of PG(V ) which are generated by n − k points of even weight (w.r.t. B)
whose supports (w.r.t. B) are mutually disjoint. This correspondence is as follows: F
consists of all points of Gn which regarded as subspaces of PG(V ) contain αF . If M is
a max of Gn, then αM consists of a unique point xM of even weight. If the weight of
xM is equal to 2m, then M̃ ∼= Hm−1 × Gn−m. In particular, if xM has weight 2n, then

M̃ ∼= Hn−1. The big maxes of Gn are precisely the convex subspaces F for which αF
consists of a unique point of weight 2. If M is a big max, then M̃ ∼= Gm−1. If M is a big
max and Q is a Q−(5, 2)-quad meeting M , then either Q ⊆M or Q∩M is a special line.
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Now, suppose that M1 and M2 are two distinct big maxes of Gn and let xi, i ∈ {1, 2},
denote the unique point of weight 2 contained in αMi

. We can distinguish the following
three cases.

(i) x1 = 〈ēi1 +α · ēi2〉 and x2 = 〈ēi1 +β · ēi2〉 for some i1, i2 ∈ {1, 2, . . . , 2n} with i1 6= i2
and some α, β ∈ F∗4 with α 6= β. Then M1 and M2 are disjoint and every line meeting
M1 and M2 is a special line. Moreover, if γ is the unique element in F4 \ {0, α, β} and
M3 = RM1(M2), then xM3 = 〈ēi1 + γ · ēi2〉.

(ii) x1 = 〈ēi1 + α · ēi2〉 and x2 = 〈ēi2 + β · ēi3〉 for some mutually distinct i1, i2, i3 ∈
{1, 2, . . . , 2n} and some α, β ∈ F∗4. Then M1 and M2 are disjoint and every line meeting
M1 and M2 is an ordinary line. Moreover, if M3 = RM1(M2), then xM3 = 〈ēi1 + αβ · ēi3〉.

(iii) x1 = 〈ēi1 + α · ēi2〉 and x2 = 〈ēi3 + β · ēi4〉 for some mutually distinct i1, i2, i3, i4 ∈
{1, 2, . . . , 2n} and some α, β ∈ F∗4. Then M1 ∩M2 6= ∅.
Let L(Gn) be the following point-line geometry:
• the points of L(Gn) are the points of PG(n− 1, 4) whose weight is either 1 or 2 with

respect to a given reference system of PG(n− 1, 4);
• the lines of L(Gn) are the lines of PG(n− 1, 4) which contain at least two points of

L(Gn);
• incidence is derived from PG(n− 1, 4).

Then every local space of Gn is isomorphic to L(Gn).

3 A full isometric embedding of Hn into Gn

Let n ≥ 2 and let V be a 2n-dimensional vector space over F4 = {0, 1, ω, ω2} with
ordered basis B = (ē1, ē2, . . . , ē2n). Put X = {1, 2, . . . , 2n+ 2}. Define Hn := Hn(X) and
Gn := Gn(V,B). We now define a map e∗ from the point set of Hn to the point set of Gn.
We consider the following two possibilities for a point p of Hn:

(1) p is of the form {{a1, b1}, {a2, b2}, . . . , {an, bn}, {2n + 1, 2n + 2}}. Then we define
e∗(p) := 〈ēa1 + ēb1 , ēa2 + ēb2 , . . . , ēan + ēbn〉.

(2) p is of the form {{a1, b1}, {a2, b2}, . . . , {an−1, bn−1}, {an, 2n+1}, {bn, 2n+2}}. Then
we define e∗(p) := 〈ēa1 + ēb1 , ēa2 + ēb2 , . . . , ēan−1 + ēbn−1 , ēan + ω · ēbn〉.

It is easily seen that e∗ is injective.

Proposition 3.1 The map e∗ defines a full isometric embedding of Hn into Gn.

Proof. (a) We first prove that e∗ is full. Let {p1, p2, p3} be an arbitrary line of Hn.
Without loss of generality, we may suppose that one of the following five cases occurs (in
each of these cases, we have {a1, b1, . . . , an, bn} = {1, 2, . . . , 2n}):

Case I:

p1 = {{a1, b1}, . . . , {an−1, bn−1}, {an, bn}, {2n+ 1, 2n+ 2}},
p2 = {{a1, b1}, . . . , {an−1, bn−1}, {an, 2n+ 1}, {bn, 2n+ 2}},
p3 = {{a1, b1}, . . . , {an−1, bn−1}, {an, 2n+ 2}, {bn, 2n+ 1}}.
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Then the points

e∗(p1) = 〈ēa1 + ēb1 , . . . , ēan−1 + ēbn−1 , ēan + ēbn〉,
e∗(p2) = 〈ēa1 + ēb1 , . . . , ēan−1 + ēbn−1 , ēan + ω · ēbn〉,
e∗(p3) = 〈ēa1 + ēb1 , . . . , ēan−1 + ēbn−1 , ēbn + ω · ēan〉

of Gn are incident with the special line of Gn corresponding to the subspace 〈ēa1 +
ēb1 , . . . , ēan−1 + ēbn−1〉.

Case II:

p1 = {{a1, b1}, {a2, b2}, {a3, b3}, . . . , {an, bn}, {2n+ 1, 2n+ 2}},
p2 = {{a1, a2}, {b1, b2}, {a3, b3}, . . . , {an, bn}, {2n+ 1, 2n+ 2}},
p3 = {{a1, b2}, {a2, b1}, {a3, b3}, . . . , {an, bn}, {2n+ 1, 2n+ 2}}.

Then the points

e∗(p1) = 〈ēa1 + ēb1 , ēa2 + ēb2 , ēa3 + ēb3 , . . . , ēan + ēbn〉,
e∗(p2) = 〈ēa1 + ēa2 , ēb1 + ēb2 , ēa3 + ēb3 , . . . , ēan + ēbn〉,
e∗(p3) = 〈ēa1 + ēb2 , ēa2 + ēb1 , ēa3 + ēb3 , . . . , ēan + ēbn〉

of Gn are incident with the ordinary line of Gn corresponding to the subspace 〈ēa1 + ēb1 +
ēa2 + ēb2 , ēa3 + ēb3 , . . . , ēan + ēbn〉.

Case III:

p1 = {{a1, b1}, {a2, b2}, {a3, b3}, . . . , {an−1, bn−1}, {an, 2n+ 1}, {bn, 2n+ 2}},
p2 = {{a1, a2}, {b1, b2}, {a3, b3}, . . . , {an−1, bn−1}, {an, 2n+ 1}, {bn, 2n+ 2}},
p3 = {{a1, b2}, {a2, b1}, {a3, b3}, . . . , {an−1, bn−1}, {an, 2n+ 1}, {bn, 2n+ 2}}.

Then the points

e∗(p1) = 〈ēa1 + ēb1 , ēa2 + ēb2 , ēa3 + ēb3 , . . . , ēan−1 + ēbn−1 , ēan + ω · ēbn〉,
e∗(p2) = 〈ēa1 + ēa2 , ēb1 + ēb2 , ēa3 + ēb3 , . . . , ēan−1 + ēbn−1 , ēan + ω · ēbn〉,
e∗(p3) = 〈ēa1 + ēb2 , ēa2 + ēb1 , ēa3 + ēb3 , . . . , ēan−1 + ēbn−1 , ēan + ω · ēbn〉

of Gn are incident with the ordinary line of Gn corresponding to the subspace 〈ēa1 + ēa2 +
ēb1 + ēb2 , ēa3 + ēb3 , . . . , ēan−1 + ēbn−1 , ēan + ω · ēbn〉.

Case IV:

p1 = {{a1, b1}, . . . , {an−2, bn−2}, {an−1, bn−1}, {an, 2n+ 1}, {bn, 2n+ 2}},
p2 = {{a1, b1}, . . . , {an−2, bn−2}, {an−1, an}, {bn−1, 2n+ 1}, {bn, 2n+ 2}},
p3 = {{a1, b1}, . . . , {an−2, bn−2}, {an−1, 2n+ 1}, {bn−1, an}, {bn, 2n+ 2}}.
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Then the points

e∗(p1) = 〈ēa1 + ēb1 , . . . , ēan−2 + ēbn−2 , ēan−1 + ēbn−1 , ēan + ω · ēbn〉,
e∗(p2) = 〈ēa1 + ēb1 , . . . , ēan−2 + ēbn−2 , ēan−1 + ēan , ēbn−1 + ω · ēbn〉,
e∗(p3) = 〈ēa1 + ēb1 , . . . , ēan−2 + ēbn−2 , ēbn−1 + ēan , ēan−1 + ω · ēbn〉

of Gn are incident with the ordinary line of Gn corresponding to the subspace 〈ēa1 +
ēb1 , . . . , ēan−2 + ēbn−2 , ēan−1 + ēbn−1 + ēan + ω · ēbn〉.

Case V:

p1 = {{a1, b1}, . . . , {an−2, bn−2}, {an−1, bn−1}, {an, 2n+ 1}, {bn, 2n+ 2}},
p2 = {{a1, b1}, . . . , {an−2, bn−2}, {an−1, bn}, {an, 2n+ 1}, {bn−1, 2n+ 2}},
p3 = {{a1, b1}, . . . , {an−2, bn−2}, {an−1, 2n+ 2}, {an, 2n+ 1}, {bn−1, bn}}.

Then the points

e∗(p1) = 〈ēa1 + ēb1 , . . . , ēan−2 + ēbn−2 , ēan−1 + ēbn−1 , ēan + ω · ēbn〉,
e∗(p2) = 〈ēa1 + ēb1 , . . . , ēan−2 + ēbn−2 , ēan−1 + ēbn , ēan + ω · ēbn−1〉,
e∗(p3) = 〈ēa1 + ēb1 , . . . , ēan−2 + ēbn−2 , ēbn−1 + ēbn , ēan + ω · ēan−1〉

of Gn are incident with the ordinary line of Gn corresponding to the subspace 〈ēa1 +
ēb1 , . . . , ēan−2 + ēbn−2 , ēan−1 + ēbn−1 + ēbn + ω−1 · ēan〉.

(b) We now prove that e∗ is isometric. By Proposition 2.6, it suffices to prove that there
exist opposite points p1 and p2 in Hn such that e∗(p1) and e∗(p2) are opposite points in
Gn. Take

p1 = {{1, 2}, . . . , {2n− 1, 2n}, {2n+ 1, 2n+ 2}},
p2 = {{2, 3}, . . . , {2n, 2n+ 1}, {2n+ 2, 1}}.

Then p1 and p2 are opposite points of Hn and

e∗(p1) = 〈ē1 + ē2, . . . , ē2n−1 + ē2n〉,
e∗(p2) = 〈ē2 + ē3, . . . , ē2n + ω · ē1〉.

Since (ē2 + ē3) + · · · + (ē2n + ω · ē1) − (ē1 + ē2) − · · · − (ē2n−1 + ē2n) = (ω − 1)ē1, we
have ē1 ∈ 〈ē1 + ē2, . . . , ē2n−1 + ē2n, ē2 + ē3, . . . , ē2n + ω · ē1〉. If i ∈ {2, 3, . . . , 2n}, then
ēi = ē1 + (ē1 + ē2) + · · ·+ (ēi−1 + ēi) ∈ 〈ē1 + ē2, . . . , ē2n−1 + ē2n, ē2 + ē3, . . . , ē2n + ω · ē1〉.
Hence, 〈ē1 + ē2, . . . , ē2n−1 + ē2n, ē2 + ē3, . . . , ē2n+ω · ē1〉 = 〈ē1, ē2, . . . , ē2n−1, ē2n〉 and e∗(p1)
and e∗(p2) are opposite points of Gn. �

Lemma 3.2 Let i, j ∈ {1, 2, . . . , 2n} with i 6= j. Let M be a big max of Hn and let M be
the max of Gn corresponding to M in the sense of Proposition 2.7.
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(1) If M is the big max of Hn corresponding to {i, j}, then M is the max of Gn

corresponding to 〈ēi + ēj〉.
(2) If M is the big max of Hn corresponding to {i, 2n+ 1}, then M is the max of Gn

corresponding to 〈ω · ēi + (ē1 + ē2 + · · ·+ ē2n)〉.
(3) If M is the big max of Hn corresponding to {i, 2n+ 2}, then M is the max of Gn

corresponding to 〈ω2 · ēi + (ē1 + ē2 + · · ·+ ē2n)〉.
(4) If M is the big max of Hn corresponding to {2n + 1, 2n + 2}, then M is the max

of Gn corresponding to 〈ē1 + ē2 + · · ·+ ē2n〉.

Proof. In order to show that 〈x̄〉 is the point of PG(V ) corresponding to M , it suffices
to show that 〈x̄〉 is contained in all subspaces e∗(p), p ∈M . The verification of this claim
is rather straightforward in each of the four cases. �

Lemma 3.2 has the following corollary.

Corollary 3.3 If n ≥ 3, then for every big max M of Hn, M̃ is isomorphic to either Hn−1

or Gn−1. Moreover, M̃ is isomorphic to Gn−1 if and only if the pair {i, j} corresponding
to M is contained in {1, 2, . . . , 2n}.

Lemma 3.4 Let n ≥ 3. Let θ be an automorphism of Hn and let σ be the permutation
of {1, 2, . . . , 2n + 2} corresponding to θ. Then θ lifts through e∗ to an automorphism of
Gn if and only if σ leaves the partition {{1, 2, . . . , 2n}, {2n+ 1, 2n+ 2}} invariant.

Proof. (1) Suppose θ lifts through e∗ to an automorphism of Gn. Let i, j be two arbitrary
distinct elements of {1, 2, . . . , 2n}, let M1 denote the big max of Hn corresponding to {i, j}
and let M2 denote the big max of Hn corresponding to {σ(i), σ(j)}. We will now apply

Corollary 3.3. Since M̃1 is isomorphic to Gn−1 also M̃2 must be isomorphic to Gn−1 and
hence {σ(i), σ(j)} ⊆ {1, 2, . . . , 2n}. Since i and j were arbitrary distinct elements of
{1, 2, . . . , 2n}, σ leaves the partition {{1, 2, . . . , 2n}, {2n+ 1, 2n+ 2}} invariant.

(2) Suppose σ leaves the partition {{1, 2, . . . , 2n}, {2n + 1, 2n + 2}} invariant. Then
σ = σ1 ◦ σ2, where σ1 is a permutation of {1, 2, . . . , 2n+ 2} fixing 2n+ 1 and 2n+ 2 and
σ2 is either the identity or the transposition (2n + 1 2n + 2). Let θi, i ∈ {1, 2}, denote
the automorphism of Hn corresponding to σi. It suffices to show that θ1 and θ2 lift to
automorphisms of Gn.

(a) Consider the automorphism θ1 of Hn. Let θ̃1 be the automorphism of Gn induced

by the following linear map of V : ēj 7→ ēσ1(j), j ∈ {1, 2, . . . , 2n}. Then θ̃1 ◦ e∗ = e∗ ◦ θ1.
(b) Consider the automorphism θ2 of Hn. If σ2 is the identity, let θ̃2 be the trivial

automorphism of Gn. If σ2 = (2n + 1 2n + 2), let θ̃2 denote the automorphism of Gn

corresponding to the following semi-linear map of V :
∑2n

i=1Xiēi 7→
∑2n

i=1X
2
i ēi. In either

case, we have θ̃2 ◦ e∗ = e∗ ◦ θ2. �

Corollary 3.5 Suppose n ≥ 3. Then:
(1) The embedding e∗ is not homogeneous.

12



(2) If G is the full automorphism group of Hn and if H is the group of all auto-
morphisms of Hn which lift through e∗ to an automorphism of Gn, then |G : H| =
(n+ 1)(2n+ 1).

4 Proof of Theorem 1.1

Let n ≥ 3. Let X be a set of size 2n+ 2 and let V be a 2n-dimensional vector space over
F4 = {0, 1, ω, ω2} with basis B∗ = (ē∗1, ē

∗
2, . . . , ē

∗
2n−1, ē

∗
2n). The set of all points 〈

∑2n
i=1Xiē

∗
i 〉

of PG(V ) satisfying
∑2n

i=1X
3
i = 0 is a nonsingular Hermitian variety H(2n − 1, 4) of

PG(V ).
The dual polar space DH(V,B∗) associated with H(2n− 1, 4) is a dense near 2n-gon.

If p is a point of H(2n−1, 4), then the set of all maximal singular subspaces of H(2n−1, 4)
containing p is a max Mp of DH(V,B∗), and every max of DH(V,B∗) is obtained in this
way. We call Mp the max of DH(V,B∗) corresponding to p and p the point of H(2n−1, 4)
corresponding to Mp. Every max of DH(V,B∗) is big. If L is a line of PG(V ) intersecting
H(2n − 1, 4) in three points p1, p2 and p3, then {p1, p2, p3} is called a hyperbolic line
of H(2n − 1, 4). The set {Mp1 ,Mp2 ,Mp3} of maxes of DH(V,B∗) corresponding to this
hyperbolic line {p1, p2, p3} satisfies the following properties.

(1) The maxes Mp1 , Mp2 and Mp3 are mutually disjoint.

(2) Every point of Mp1 is contained in a unique line meeting Mp2 and this line also
meets Mp3 .

Now, put Hn := Hn(X) and Gn := Gn(V,B∗). Before we will study isometric embeddings
of Hn into Gn, we need to give some introductory lemmas (4.1 till 4.5)

Lemma 4.1 Let k ∈ {1, 2, . . . , 2n} and let ni, i ∈ {1, 2, . . . , k} be strictly positive integers

such that n1 +n2 + . . .+nk = 2n. Then
∑k

i=1
ni(ni−1)

2
≥ (2n− 1)(n− 2) if and only if one

of the following two conditions hold:
• there exists a j ∈ {1, 2, . . . , k} such that nj ∈ {2n, 2n− 1, 2n− 2};
• n = 3, k = 2 and n1 = n2 = 3.

Proof. If there exists a j ∈ {1, 2, . . . , k} such that nj ∈ {2n, 2n − 1, 2n − 2}, then∑k
i=1

ni(ni−1)
2

≥ nj(nj−1)
2

≥ (2n−2)(2n−3)
2

> (2n−1)(2n−4)
2

= (2n − 1)(n − 2). If n = 3, k = 2

and n1 = n2 = 3, then
∑k

i=1
ni(ni−1)

2
= 6 > 5 = (2n− 1)(n− 2).

Conversely, suppose that
∑k

i=1
ni(ni−1)

2
≥ (2n−1)(n−2). Together with

∑k
i=1 ni = 2n,

this implies that
∑k

i=1 n
2
i ≥ (2n−1)(2n−4)+2n = 4n2−8n+4. On the other hand, we also

know that
∑k

i=1 n
2
i +2·

∑
i<j ninj =

(∑k
i=1 ni

)2
= 4n2. Hence,

∑
i<j ninj ≤ 2(2n−1). Let

j∗ ∈ {1, 2, . . . , k} such that nj∗ is as big as possible. If n ≥ 4 and nj∗ ∈ {3, 4, . . . , 2n− 3},
then

∑
i<j ninj ≥

∑
i 6=j∗ ninj∗ = (2n−nj∗)nj∗ ≥ (2n− 3) · 3 > 2(2n− 1), a contradiction.

If n ≥ 4 and nj∗ ∈ {1, 2}, then
∑k

i=1
ni(ni−1)

2
≤ k ≤ 2n < (2n − 1)(n − 2), again a

contradiction. Hence, nj∗ ∈ {2n, 2n − 1, 2n − 2} if n ≥ 4. If n = 3,
∑k

i=1
ni(ni−1)

2
≥
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(2n − 1)(n − 2) = 5 and nj∗ 6∈ {2n, 2n − 1, 2n − 2} = {6, 5, 4}, then one readily verifies
that k = 2 and n1 = n2 = 3. �

Lemma 4.2 Every modified local space of Hm, m ≥ 2, is connected.

Proof. Every modified local space of Hm is isomorphic to the subgeometry of L(Hm)
obtained from L(Hm) by removing all lines of size 2. So, every modified local space
is isomorphic to the point-line geometry A whose points are the subsets of size 2 of
{1, 2, . . . ,m+ 1} and whose lines are all the sets of the form {{a, b}, {a, c}, {b, c}} where
a, b and c are three distinct elements of {1, 2, . . . ,m+ 1} (natural incidence). The point-
line geometry A is easily seen to be connected of diameter 2. Indeed, if a, b, c and d are
four distinct elements of {1, 2, . . . ,m+ 1}, then {a, c} is a common neighbor of {a, b} and
{c, d}. �

Lemma 4.3 Let G′n be the subgeometry of Gn having the same point set but obtained
from Gn by considering only those lines of Gn that are special. Then G′n has precisely
(2n)!
n!·2n connected components, each of size 3n.

Proof. Let P ′ denote the point set of G′n and let A be the set of all partitions of

{1, 2, . . . , 2n} in n subsets of size 2. Then |A| = (2n)!
n!·2n . Let κ be the map from P ′ to A

mapping the point p = 〈ē∗i1 +a1ē
∗
j1
, ē∗i2 +a2ē

∗
j2
, . . . , ē∗in +anē

∗
jn〉 of G′n to the element κ(p) :=

{{i1, j1}, {i2, j2}, . . . , {in, jn}} of A. Here, a1, a2, . . . , an ∈ F∗4 and {i1, j1, i2, j2, . . . , in,
jn} = {1, 2, . . . , 2n}. Without loss of generality, we may suppose that i1 < i2 < · · · <
in and il < jl for every l ∈ {1, 2, . . . , n}. Let p′ = 〈ē∗i′1 + a′1ē

∗
j′1
, ē∗i′2

+ a′2ē
∗
j′2
, . . . , ē∗i′n +

a′nē
∗
j′n
〉 be another point of G′n, where we again suppose that a′1, a

′
2, . . . , a

′
n ∈ F∗4 and

{i′1, j′1, i′2, j′2, . . . , i′n, j′n} = {1, 2, . . . , n} such that i′1 < i′2 < · · · < i′n and i′l < j′l for every
l ∈ {1, 2, . . . , n}. Now, the points p and p′ are contained in a special line of Gn if and only if
(i1, j1, i2, j2, . . . , in, jn) = (i′1, j

′
1, i
′
2, j
′
2, . . . , i

′
n, j
′
n) and there exists an l ∈ {1, 2, . . . , n} such

that ak = a′k for every k ∈ {1, 2, . . . , n} \ {l}. It now easily follows that the connected

components of G′n are the sets κ−1(A) where A ∈ A. So, there are |A| = (2n)!
n!·2n connected

components, each of size 3n. �

Lemma 4.4 Let Y be a set of size 2m + 2, m ≥ 1, and let s be an arbitrary element of
Y . Let Hm(Y, s) denote the subgeometry of Hm(Y ) defined on the point set of Hm(Y ) by
those lines of Hm(Y ) whose corresponding partition of Y has a 4-subset containing the
element s. Then Hm(Y, s) is connected.

Proof. We will prove this by induction on m. Clearly, the lemma holds if m = 1, since
Hm(Y, s) = Hm(Y ) is this case. So, suppose m ≥ 2. Let P1 = {{s, x2}, {x3, x4}, . . . ,
{x2m+1, x2m+2}} and P2 = {{s, y2}, {y3, y4}, . . . , {y2m+1, y2m+2}} be two arbitrary points
of Hm(Y, s). Then there exists a point P3 in Hm(Y, s) which is collinear with or equal
to P1 and which has the form {{s, y3}, {y4, ∗}, . . .}. There exists a point P4 in Hm(Y, s)
which is collinear with P3 and which has the form {{s, ∗}, {y3, y4}, . . .}. Now, the map
P 7→ P ∪ {{y3, y4}} between the point set of Hm−1(Y \ {y3, y4}, s) and the point set of
Hm(Y, s) defines a full embedding of the geometry Hm−1(Y \{y3, y4}, s) into the geometry

14



Hm(Y, s). By the induction hypothesis, the points P4 \ {{y3, y4}} and P2 \ {{y3, y4}} of
Hm−1(Y \ {y3, y4}, s) are connected by a path of Hm−1(Y \ {y3, y4}, s). Hence, the points
P4 and P2 of Hm(Y, s) are connected by a path of Hm(Y, s). This implies that also the
points P1 and P2 of Hm(Y, s) are connected by a path of Hm(Y, s). �

Definition. We will use the notation H′m, m ≥ 1, to denote a suitable geometry belonging
to the isomorphism class of Hm(Y, s), where Y is some arbitrary set of size 2m + 2 and
s ∈ Y .

Lemma 4.5 Let M1 and M2 be two disjoint big maxes of Hn. Let L denote the set of lines
L contained in M1 such that 〈L, πM2(L)〉 is a W (2)-quad of Hn. Then the subgeometry of

M̃1 induced on M1 by the lines of L is isomorphic to H′n−1.

Proof. Suppose the big max M1 of Hn corresponds to the pair {x1, x2} ⊆ X and that the
big max M2 of Hn corresponds to the pair {x1, x3} ⊆ X. The map P 7→ P ∪ {{x1, x2}}
defines an isomorphism between Hn−1(X \ {x1, x2}) and M̃1. We will now prove that this
isomorphism defines an isomorphism between Hn−1(X \{x1, x2}, x3) ∼= H′n−1 and the sub-

geometry of M̃1 induced on M1 by the lines of L. Let P1 = {{x1, x2}, {x3, x4}, {x5, x6}, . . . ,
{x2n+1, x2n+2}} be an arbitrary point of M1. Then P2 = {{x1, x3}, {x2, x4}, {x5, x6}, . . . ,
{x2n+1, x2n+2}} is the unique point of M2 collinear with P1. The lines L of M1 through
P1 such that 〈L, πM2(L)〉 is a W (2)-quad of Hn are precisely the lines Q∩M1 where Q is
a W (2)-quad through P1P2. Now, the line P1P2 corresponds to the partition

{{x1, x2, x3, x4}, {x5, x6}, . . . , {x2n+1, x2n+2}}

of X, and the W (2)-quads through the line P1P2 correspond to the partitions

{{x1, x2, x3, x4, x2i+1, x2i+2}} ∪
( ⋃

2≤j≤n, j 6=i

{{x2j+1, x2j+2}}
)
.

These W (2)-quads intersect the max M1 in lines whose corresponding partitions have the
form

{{x1, x2}, {x3, x4, x2i+1, x2i+2}} ∪
( ⋃

2≤j≤n, j 6=i

{{x2j+1, x2j+2}}
)
.

The lemma now readily follows. �

In the sequel, let e be an isometric embedding of Hn into Gn. For every convex subspace
F of Hn, let F denote the convex subspace of Gn having the same diameter as F and
containing e(F ) (see Proposition 2.7).

Lemma 4.6 For every big max M of Hn, either M̃ ∼= Hn−1 or M̃ ∼= Gn−1.

Proof. Since M is a max of Gn, M̃ ∼= Hk−1 × Gn−k for some k ∈ {1, 2, . . . , n}. If
k ∈ {1, n}, then we are done. So, we may suppose that k ∈ {2, 3, . . . , n− 1}.
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Let x be an arbitrary point of M . Since M̃ ∼= Hk−1 × Gn−k, there exist convex

subspaces F1 and F2 of M̃ through e(x) such that (i) F̃1
∼= Hk−1; (ii) F̃2

∼= Gn−k; (iii)
every line through e(x) is contained in either F1 or F2; (iv) if Li, i ∈ {1, 2}, is a line of Fi
through e(x), then 〈L1, L2〉 is a grid-quad of Gn. For every i ∈ {1, 2}, e−1(e(M)∩Fi) is a
convex subspace of Hn through x contained in M having a diameter which is at most the
diameter of Fi, i.e. smaller than the diameter n − 1 of M . Proposition 2.5 then implies
that there exists a line in M through x not contained in e−1(e(M) ∩ Fi). So, there exist
lines L,L′ ⊆ M through x such that e(L) ⊆ F1 and e(L′) ⊆ F2. By Lemma 4.2, there

exists a path L = L0, L1, . . . , Lk = L′ in the modified local space of M̃ ∼= Hn−1 at the
point x. Then there exists an i ∈ {1, 2, . . . , k} such that e(Li−1) ⊆ F1 and e(Li) ⊆ F2. But

then the W (2)-quad 〈Li−1, Li〉 of M̃ is mapped by e into the grid-quad 〈e(Li−1), e(Li)〉 of

M̃ , which is clearly impossible. So, the case k ∈ {2, 3, . . . , n− 1} cannot occur. �

Lemma 4.7 Let M1 and M2 be two disjoint big maxes of Hn and put M3 := RM1(M2).
Then:

(1) Also M1 and M2 are two disjoint maxes of Gn.
(2) If M1 is big, then M3 = RM1

(M2).

(3) The points of H(2n−1, 4) corresponding to M1, M2 and M3 form a hyperbolic line
of H(2n− 1, 4).

Proof. (1) This is a special case of Proposition 2.7 of De Bruyn [5].
(2) Suppose M1 is a big max of Gn. Since every point of M3 is contained in a line

meeting M1 and M2, we have e(M3) ⊆ RM1
(M2). Hence, we have M3 = RM1

(M2) since
both have the same diameter.

(3) In view of the natural embedding of Gn(V,B) into DH(V,B), the map e induces

an embedding e′ of Hn into DH(V,B). For every i ∈ {1, 2, 3}, let Mi denote the max of
DH(V,B) containing e′(Mi). Similarly as in part (1), Proposition 2.7 of [5] implies that

M1 and M2 are disjoint maxes of DH(V,B). With a completely similar reasoning as in

part (2), we know that R
M1

(M2) = M3. So, the three points of H(2n−1, 4) corresponding

to M1, M2 and M3 form a hyperbolic line of H(2n − 1, 4). These three points coincide
with the three points of H(2n− 1, 4) corresponding to M1, M2 and M3. �

Lemma 4.8 Let M1 and M2 be two disjoint big maxes of Hn such that M̃1
∼= M̃2

∼= Hn−1.
Let pi, i ∈ {1, 2}, denote the point of H(2n − 1, 4) corresponding to Mi. Then the line
p1p2 of PG(V ) contains a point of weight 1 or 2 (with respect to B∗).

Proof. Let m1, respectively m2, denote the number of ordinary lines, respectively special
lines, meeting M1 and M2. Then m1 + m2 = |M1| = (2n)!

2n·n! . We count the number of big

maxes of Gn meeting M1 and M2. Each ordinary line (meeting M1 and M2) is contained
in precisely n − 2 big maxes and each special line (meeting M1 and M2) is contained in
precisely n− 1 big maxes. If M is a big max meeting M1 and M2, then M ∩M1 is a big

max of M̃1 and hence M̃ ∩M1
∼= Hn−2. So, the total number N of big maxes meeting M1
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and M2 is equal to

N =
m1 · (n− 2) +m2 · (n− 1)

(2n−2)!
2n−1·(n−1)!

. (1)

Clearly,

N ≥ (m1 +m2) · (n− 2)
(2n−2)!

2n−1·(n−1)!

=
(2n)!
2n·n! · (n− 2)

(2n−2)!
2n−1·(n−1)!

= (2n− 1)(n− 2). (2)

Now, let p1 = 〈a1ē∗1 + a2ē
∗
2 + · · ·+ a2nē

∗
2n〉 and p2 = 〈b1ē∗1 + b2ē

∗
2 + · · ·+ b2nē

∗
2n〉. Define the

following equivalence relation Rp1,p2 on the set {1, 2, . . . , 2n}. If i, j ∈ {1, 2, . . . , 2n}, then
we say that (i, j) ∈ Rp1,p2 if ai

aj
= bi

bj
. Let C1, C2, . . . , Ck denote the equivalence classes

of Rp1,p2 and put ni := |Ci|, i ∈ {1, 2, . . . , k}. Suppose M is a big max of Gn and let
〈ciē∗i + cj ē

∗
j〉 denote the point of H(2n− 1, 4) corresponding to M . Then M meets M1 if

and only if ai
aj

= ci
cj

. Similarly, M meets M2 if and only if bi
bj

= ci
cj

. So, if M meets M1 and

M2, then (i, j) ∈ Rp1,p2 . It follows that the number of big maxes meeting M1 and M2 is
equal to

N =
k∑
i=1

ni(ni − 1)

2
. (3)

By equations (2), (3) and Lemma 4.1, one of the following two cases occurs:
(a) there exists a j∗ ∈ {1, 2, . . . , k} such that nj∗ ∈ {2n, 2n− 1, 2n− 2};
(b) n = 3, k = 2 and n1 = n2 = 3.

If case (a) occurs, then nj∗ ∈ {2n−1, 2n−2} since p1 and p2 are distinct. If nj∗ = 2n−1,
then p1p2 contains a point of weight 1. If nj∗ = 2n − 2, then p1p2 contains a point of
weight 2.

Suppose now that case (b) occurs. So, n = 3, k = 2 and n1 = n2 = 3. Our
intention is to derive a contradiction. Notice that by equations (1), (3) and the fact that
m1 +m2 = 15, we would have that m1 = 12 and m2 = 3, but we will not use these facts.
From the fact that k = 2 and n1 = n2 = 3, we may without loss of generality suppose that
p2 = 〈a1ē∗1 + a2ē

∗
2 + a3ē

∗
3 + t · (a4ē∗4 + a5ē

∗
5 + a6ē

∗
6)〉, where t 6∈ {0, 1}. Consider the point

x1 = 〈a1ē∗1 + a4ē
∗
4, a2ē

∗
2 + a5ē

∗
5, a3ē

∗
3 + a6ē

∗
6〉 of M1. The point x1 is contained in three big

Q−(5, 2)-quads which cover all the lines through x1. The points of H(5, 4) corresponding
to these three big quads are 〈a1ē∗1+a4ē

∗
4〉, 〈a2ē∗2+a5ē

∗
5〉 and 〈a3ē∗3+a6ē

∗
6〉. Since these three

points are noncollinear with p2 on H(5, 4), the three deep quads through x1 are disjoint
from M2. Hence, no point collinear with x1 is contained in M2, clearly a contradiction.
So, case (b) cannot occur. �

Lemma 4.9 Let M1 and M2 be two disjoint big maxes of Hn such that M̃1
∼= M̃2

∼= Hn−1.
Put M3 := RM1(M2). Let pi, i ∈ {1, 2}, denote the point of H(2n − 1, 4) corresponding

to Mi. If the line p1p2 contains a point of weight 1, then M̃3
∼= Hn−1. If the line p1p2

contains a point of weight 2, then M̃3
∼= Gn−1.
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Proof. Since M̃1 and M̃2 are disjoint, {p1, p2, p3} := p1p2 ∩H(2n− 1, 4) is a hyperbolic
line of H(2n− 1, 4). By Lemma 4.7, p3 is the point of H(2n− 1, 4) corresponding to M3.
It is also clear that p3 is the unique point of even weight on the line p1p2 that is distinct
from p1 and p2. If p1p2 contains a point of weight 1, then p3 necessarily has weight 2n

and hence M̃3
∼= Hn−1. If p1p2 contains a point of weight 2, then this point coincides with

p3 and we have M̃3
∼= Gn−1. �

Lemma 4.10 There exists a partition U of the set X such that the following holds for
every big max M of Hn:

(1) If the pair {i, j} corresponding to M is contained in an element of U , then M̃ is
isomorphic to Gn−1.

(2) If the pair {i, j} corresponding to M is not contained in an element of U , then M̃
is isomorphic to Hn−1.

Proof. Consider the following relation R on the set X. If i, j ∈ X, then (i, j) ∈ R if
and only if precisely one of the following two conditions is satisfied: (i) i = j; (ii) i 6= j

and M̃ ∼= Gn−1 where M is the big max of Hn corresponding to {i, j}. Clearly, R is
reflexive and symmetric. In order to prove that R is transitive, we must show that if i,
j and k are three mutually distinct elements of X such that (i, j) ∈ R and (j, k) ∈ R,
then also (i, k) ∈ R. Let M1, M2 and M3 denote the big maxes of Hn corresponding
to the respective pairs {i, j}, {j, k} and {i, k}. Then M1, M2 and M3 are mutually
disjoint and M3 = RM1(M2). By Lemma 4.7, M1, M2 and M3 are mutually disjoint and

M3 = RM1
(M2). Since RM1

is an automorphism of Gn and M̃2
∼= Gn−1, we must have

M̃3
∼= Gn−1. So, {i, k} ∈ R.
So, R is an equivalence relation. The partition U mentioned in the statement of the

lemma is just the set of equivalence classes of R. �

Let U be as in Lemma 4.10. Let {i, j} be a subset of size 2 of X which is contained in

an element of U . So, if M is the big max of Hn corresponding to {i, j}, then M̃ ∼= Gn−1.
The point p of H(2n − 1, 4) corresponding to M has weight 2 with respect to B∗. We
define Ω({i, j}) := {k, l}, where k and l are the unique (up to transposition) elements of
{1, 2, . . . , 2n} such that p ∈ 〈ē∗k, ē∗l 〉.

Lemma 4.11 Let i1, i2, i3, i4 ∈ X with i1 6= i2 and i3 6= i4 such that each of {i1, i2},
{i3, i4} is contained in some element of U . If {i1, i2} 6= {i3, i4}, then Ω({i1, i2}) 6=
Ω({i3, i4}).

Proof. Let M1 be the big max of Hn corresponding to {i1, i2} and let M2 be the big max
of Hn corresponding to {i3, i4}. Since {i1, i2} 6= {i3, i4}, we have M1 6= M2 and hence
M1 6= M2 by Proposition 2.7. Suppose that Ω({i1, i2}) = Ω({i3, i4}). Then every line
meeting M1 and M2 is a special line. We will prove that e(M1) is a connected component

of the geometry of type G′n−1 defined on M1 by the special lines of M̃1. Let x be an
arbitrary point of M1. By Lemmas 4.4 and 4.5, it suffices to prove the following:
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(∗) e defines a bijection between the set of lines L of M1 through x such that 〈L, πM2(L)〉
is a W (2)-quad and the set of special lines of M̃1 through e(x).

Let L∗ be the unique line through x meeting M2. Then e(L∗) is the unique line through
e(x) meeting M2. Recall that e(L∗) is a special line. So, every quad of Gn through e(L∗)
is either a (3 × 3)-grid or a Q−(5, 2)-quad. Hence, each of the (n − 1) W (2)-quads of
Hn through L∗ is mapped into a Q−(5, 2)-quad through e(L∗). Notice that there are also
n− 1 Q−(5, 2)-quads through e(L∗) and that these n− 1 Q−(5, 2)-quads intersect M1 in

the n− 1 special lines of M̃1 through e(x). Hence, (∗) holds.
So, e(M1) is a connected component of the geometry G′n−1. Hence, |M1| = 3n by

Lemma 4.3. On the other hand, we know that |M1| = (2n)!
n!·2n since this is the total number

of points of Hn−1. Now, one can readily verify that (2n)!
n!·2n < 3n if n ≤ 3 and (2n)!

n!·2n > 3n if
n ≥ 4. So, a contradiction has been obtained. Hence, Ω({i1, i2}) 6= Ω({i3, i4}). �

Lemma 4.12 Let i1, i2 and i3 be three distinct elements of X which are contained in the
same element of U . Then Ω({i1, i2}) ∩ Ω({i1, i3}) is a singleton.

Proof. Let M1 denote the big max of Hn corresponding to {i1, i2} and let M2 denote the
big max of Hn corresponding to {i1, i3}. Then M1 ∩M2 = ∅. Hence, also M1 and M2 are
disjoint by Lemma 4.7. This implies that Ω({i1, i2}) ∩ Ω({i1, i3}) 6= ∅. By Lemma 4.11,
we must then have that Ω({i1, i2}) ∩ Ω({i1, i3}) is a singleton. �

Lemma 4.13 Let i1, i2, i3 and i4 be four distinct elements of X such that each of
{i1, i2}, {i3, i4} is contained in some element of U . Then Ω({i1, i2}) and Ω({i3, i4}) are
disjoint.

Proof. Let M1 denote the big max of Hn corresponding to {i1, i2} and let M2 denote the
big max of Hn corresponding to {i3, i4}. Since M1 and M2 meet, also M1 and M2 meet.
Hence, Ω({i1, i2}) and Ω({i3, i4}) must be disjoint. �

Lemma 4.14 For every U ∈ U with |U | ≥ 2, there exists a bijection φU between U and a
subset U ′ of {1, 2, . . . , 2n} such that Ω({i, j}) = {φU(i), φU(y)} for all i, j ∈ U with i 6= j.
If |U | ≥ 3, then φU is uniquely determined.

Proof. For all i, j ∈ U with i 6= j, let Mi,j denote the big max of Hn corresponding to
{i, j}.

Suppose first that |U | = 2, say U = {i, j}. If 〈ēi′ + α · ēj′〉 is the point of H(2n− 1, 4)
corresponding to the big max Mi,j of Gn, then there are two possibilities for φU . Either
(φU(i) = i′ and φU(j) = j′) or (φU(i) = j′ and φU(j) = i′).

Suppose next that |U | ≥ 3. We claim that for every i ∈ U , there exists a unique
φU(i) ∈ {1, 2, . . . , 2n} such that all sets Ω({i, j}), j ∈ U \ {i}, contain φU(i). Let j1 and
j2 be two distinct elements of U \ {i}. By Lemma 4.12, Ω({i, j1}) and Ω({i, j2}) have a
unique element φU(i) in common. If |U | = 3, then all sets Ω({i, j}), j ∈ U \ {i}, contain
φU(i). Suppose therefore that |U | ≥ 4 and let j3 be an arbitrary element of U \ {i, j1, j2}.
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Put Ω({i, j1}) = {φU(i), j′1} and Ω({i, j2}) = {φU(i), j′2}. Then Ω({j1, j2}) = {j′1, j′2}
by Lemma 4.7. By Lemma 4.13, Ω({i, j3}) and Ω({j1, j2}) = {j′1, j′2} are disjoint, and
by Lemma 4.12 Ω({i, j3}) intersects Ω({i, j1}) = {φU(i), j′1} in a singleton. It follows
that φU(i) ∈ Ω({i, j3}). We can conclude that φU(i) is contained in all sets Ω({i, j}),
j ∈ U \ {i}.

In order to prove that the lemma holds, it still remains to show that φU is injective.
Suppose i1 and i2 are two distinct elements of U such that φU(i1) = φU(i2) = i′. Let j
be an element of U \ {i1, i2}. Put Ω({i1, i2}) = {i′, j′1} and Ω({i1, j}) = {i′, j′2}. Then
j′1 6= j′2 by Lemma 4.11. By Lemma 4.7, Ω({i2, j}) = {j′1, j′2}, but this is impossible since
φU(i2) = i′ /∈ {j′1, j′2}. So, φU is indeed injective. �

For every U ∈ U with |U | ≥ 2, let φU : U → U ′ be a bijection satisfying the conditions of
Lemma 4.14.

Lemma 4.15 If U1, U2 ∈ U with |U1|, |U2| ≥ 2 and U1 ∩ U2 = ∅, then also U ′1 ∩ U ′2 = ∅.

Proof. Suppose |U ′1 ∩ U ′2| ≥ 2. Then there exists a subset {i, j} of size 2 of U1 and a
subset {k, l} of size 2 of U2 such that Ω({i, j}) = Ω({k, l}), in contradiction with Lemma
4.11.

Suppose |U ′1 ∩ U ′2| = 1. Then there exists a subset {i, j} of size 2 of U1 and a subset
{k, l} of size 2 of U2 such that Ω({i, j}) has the form {i′, j′1} and Ω({k, l}) has the form
{i′, j′2} where i′ is the unique element in U ′1 ∩ U ′2, j′1 ∈ U ′1 \ U ′2 and j′2 ∈ U ′2 \ U ′1. This
situation is impossible by Lemma 4.13.

Hence, U ′1 ∩ U ′2 = ∅. �

Lemma 4.16 We have |U| ≤ 3.

Proof. Suppose to the contrary that U1, U2, U3 and U4 are four distinct elements of U .
Without loss of generality, we may suppose that X = {1, 2, . . . , 2n+ 2} and that 1 ∈ U1,
2 ∈ U2, 3 ∈ U3 and 4 ∈ U4.

For all i, j ∈ {1, 2, 3, 4} with i 6= j, let pi,j denote the point of H(2n−1, 4) correspond-
ing to the max Mi,j where Mi,j is the big max of Hn corresponding to the pair {i, j}.
Since M̃i,j

∼= Hn−1, pi,j is a point of weight 2n.
Let i, j and k be three distinct elements of {1, 2, 3, 4}. Consider the three big maxes

Mi,j, Mi,k and Mj,k of Hn. Then RMi,j
(Mi,k) = Mj,k. By Lemma 4.7, the points pi,j, pi,k

and pj,k form a hyperbolic line of H(2n− 1, 4). By Lemma 4.9, the unique line of PG(V )
containing {pi,j, pi,k, pj,k} has a unique point pi,j,k of weight 1.

Since {p1,2, p1,3, p2,3} and {p1,2, p1,4, p2,4} are two distinct hyperbolic lines through p1,2,
we have p1,2,3 6= p1,2,4. The points p1,3, p1,4, p1,2,3 and p1,2,4 are contained in the plane
〈p1,2, p1,2,3, p1,2,4〉. Hence, the lines p1,3p1,4 and p1,2,3p1,2,4 meet in a point distinct from

p1,2,3 and p1,2,4. So, the line p1,3p1,4 contains a point of weight 2. But then M̃3,4
∼= Gn−1

by Lemma 4.9 applied to the maxes M1,3 and M1,4, clearly a contradiction. �

Lemma 4.17 U consists of one subset of size 2n and two singletons.
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Proof. Let Y denote the union of all elements U ∈ U satisfying |U | ≥ 2. By Lemma
4.15, |Y | ≤ 2n. So, there must be at least two singletons in U . Hence by Lemma 4.16, U
consists of one subset of size 2n, namely Y , and two singletons. �

Lemma 4.18 There exists an ordered basis B = (ē1, ē2, . . . , ē2n) of V such that the fol-
lowing hold:

(1) {〈ē1〉, 〈ē2〉, . . . , 〈ē2n〉} = {〈ē∗1〉, 〈ē∗2〉, . . . , 〈ē∗2n〉};

(2) If P is the point set of Hn, then e(P) consists of all points of Gn of the form 〈ēσ(1) +
ēσ(2), ēσ(3) + ēσ(4), . . . , ēσ(2n−1) + ēσ(2n)〉 for some permutation σ of {1, 2, . . . , 2n} or
of the form 〈ēσ(1) + ēσ(2), ēσ(3) + ēσ(4), . . . , ēσ(2n−3) + ēσ(2n−2), ēσ(2n−1) + ω · ēσ(2n)〉 for
some permutation σ of {1, 2, . . . , 2n}.

Proof. By Lemma 4.17, U consists of a set X∗ = {x∗1, x∗2, . . . , x∗2n} of size 2n and two
singletons {x∗2n+1} and {x∗2n+2}. For every i ∈ {1, 2, . . . , 2n}, we define φ(i) := φX∗(x

∗
i ).

Then φ is a permutation of the set {1, 2, . . . , 2n}.
Let M denote the big max of Hn corresponding to {x∗2n+1, x

∗
2n+2}. Then M̃ ∼= Hn−1.

So, if u denotes the point of H(2n− 1, 4) corresponding to M , then u has weight 2n with
respect to B∗. Now, choose an ordered basis B = (ē1, ē2, . . . , ē2n) of V such that: (i) ē∗φ(i)
and ēi are parallel vectors; (ii) u = 〈ē1 + ē2 + · · ·+ ē2n〉. Note that Claim (1) of the lemma
holds for this ordered basis B.

Let i, j ∈ {1, 2, . . . , 2n} with i 6= j. Let Mi,j denote the big max of Hn corresponding
to {x∗i , x∗j} and let ui,j denote the point of H(2n − 1, 4) corresponding to Mi,j. Since

M̃i,j
∼= Gn−1, there exist a, b ∈ F∗4 such that ui,j = 〈ē∗φ(i) + bē∗φ(j)〉 = 〈ēi + aēj〉. Since the

maxes M and Mi,j meet, also the maxes M and Mi,j should meet. So, the points u and
ui,j are collinear on H(2n− 1, 4), implying that a = 1 and ui,j = 〈ēi + ēj〉.

Let i ∈ {1, 2, . . . , 2n}. Let Mi denote the big max of Hn corresponding to {x∗i , x∗2n+1}
and letM ′

i denote the big max of Hn corresponding to {x∗i , x∗2n+2}. Then M̃i
∼= M̃ ′

i
∼= Hn−1.

Let ui and u′i denote the points of H(2n− 1, 4) corresponding to respectively Mi and M ′
i .

Since RM(Mi) = M ′
i , the points u, ui and u′i are contained in a line of PG(V ) by Lemma

4.7. By Lemma 4.9, this line contains a unique point of weight 1 (w.r.t. B∗ and hence
also w.r.t. B). We denote this point by 〈ēφ′(i)〉. We conclude that ui is of the form
〈ωi · ēφ′(i) + ē1 + ē2 + · · ·+ ē2n〉 and that u′i is of the form 〈ω′i · ēφ′(i) + ē1 + ē2 + · · ·+ ē2n〉.
Since ui, u

′
i ∈ H(2n− 1, 4), we have ωi 6= 1 6= ω′i. Since u, ui and u′i are mutually distinct,

we have {ωi, ω′i} = {ω, ω2}.
We prove that φ′(i) = i and ωi = ωj for all i, j ∈ {1, 2, . . . , 2n} with i 6= j. Consider

the maxes Mi, Mj and Mi,j. Since RMi
(Mj) = Mi,j, the points ui = 〈ωi · ēφ′(i) + ē1 + ē2 +

· · · + ē2n〉, uj = 〈ωj · ēφ′(j) + ē1 + ē2 + · · · + ē2n〉 and ui,j = 〈ēi + ēj〉 are contained in a
line by Lemma 4.7. Hence, {φ′(i), φ′(j)} = {i, j} and ωi = ωj. So, if j1 and j2 are two
distinct elements of {1, 2, . . . , 2n}\{i}, then φ′(i) must be contained in {i, j1} and {i, j2},
showing that φ′(i) = i.

By the previous two paragraphs, we know that ui = 〈ωi · ēi + ē1 + ē2 + · · ·+ ē2n〉 and
u′i = 〈ω′i · ēi + ē1 + ē2 + · · ·+ ē2n〉 for every i ∈ {1, 2, . . . , 2n}.
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Now, let p be a point of Hn. Then there exists a permutation σ of {1, 2, . . . , 2n} such
that p is equal to either {{x∗σ(1), x∗σ(2)}, {x∗σ(3), x∗σ(4)}, . . . , {x∗σ(2n−1), x∗σ(2n)}, {x∗2n+1, x

∗
2n+2}}

or {{x∗σ(1), x∗σ(2)}, {x∗σ(3), x∗σ(4)}, . . . , {x∗σ(2n−3), x∗σ(2n−2)}, {x∗σ(2n−1), x∗2n+1}, {x∗σ(2n), x∗2n+2}}.
Suppose p = {{x∗σ(1), x∗σ(2)}, {x∗σ(3), x∗σ(4)}, . . . , {x∗σ(2n−1), x∗σ(2n)}, {x∗2n+1, x

∗
2n+2}}. Since

p is contained in the maxes Mσ(1),σ(2),Mσ(3),σ(4), . . . ,Mσ(2n−1),σ(2n), the point e(p) is con-
tained in the maxes Mσ(1),σ(2),Mσ(3),σ(4), . . . ,Mσ(2n−1),σ(2n). So, e(p) regarded as a maxi-
mal singular subspace of H(2n−1, 4) contains the points 〈ēσ(1) + ēσ(2)〉, 〈ēσ(3) + ēσ(4)〉, . . . ,
〈ēσ(2n−1) + ēσ(2n)〉. Hence, e(p) = 〈ēσ(1) + ēσ(2), ēσ(3) + ēσ(4), . . . , ēσ(2n−1) + ēσ(2n)〉.

Suppose p = {{x∗σ(1), x∗σ(2)}, {x∗σ(3), x∗σ(4)}, . . . , {x∗σ(2n−3), x∗σ(2n−2)}, {x∗σ(2n−1), x∗2n+1},
{x∗σ(2n), x∗2n+2}}. Since the point p of Hn is contained in the maxes Mσ(1),σ(2),Mσ(3),σ(4), . . . ,

Mσ(2n−3),σ(2n−2),Mσ(2n−1) of Hn, the point e(p) of Gn is contained in the maxes Mσ(1),σ(2),
Mσ(3),σ(4), . . . ,Mσ(2n−3),σ(2n−2),Mσ(2n−1) of Gn. So, e(p) regarded as a maximal singular
subspace of H(2n− 1, 4) contains the points 〈ēσ(1) + ēσ(2)〉, 〈ēσ(3) + ēσ(4)〉, . . . , 〈ēσ(2n−3) +
ēσ(2n−2)〉, 〈ωσ(2n−1) · ēσ(2n−1) + ē1 + ē2 + · · · + ē2n〉. So, e(p) = 〈ēσ(1) + ēσ(2), ēσ(3) +
ēσ(4), . . . , ēσ(2n−3) + ēσ(2n−2), ωσ(2n−1) · ēσ(2n−1) + ē1 + ē2 + · · ·+ ē2n〉 = 〈ēσ(1) + ēσ(2), ēσ(3) +
ēσ(4), . . . , ēσ(2n−3) + ēσ(2n−2), ωσ(2n−1) · ēσ(2n−1) + ēσ(2n)〉 = 〈ēσ(1) + ēσ(2), ēσ(3) + ēσ(4), . . . ,
ēσ(2n−3) + ēσ(2n−2), ēσ(2n−1) + (ωσ(2n−1))

2 · ēσ(2n)〉.
So, e(P) consists of all points of Gn of the form 〈ēσ(1)+ ēσ(2), ēσ(3)+ ēσ(4), . . . , ēσ(2n−1)+

ēσ(2n)〉 for some permutation σ of {1, 2, . . . , 2n} or of the form 〈ēσ(1) + ēσ(2), ēσ(3) +
ēσ(4), . . . , ēσ(2n−3) + ēσ(2n−2), ēσ(2n−1) + ω · ēσ(2n)〉 for some permutation σ of {1, 2, . . . , 2n}.
So, also Claim (2) of the lemma holds. �

Proposition 4.19 Let P denote the point set of Hn. If e1 and e2 are two full isometric
embeddings of Hn into Gn, then there exists an automorphism θ of Gn such that e2(P) =
θ ◦ e1(P).

Proof. By Lemma 4.18, there exists for every i ∈ {1, 2} an ordered basis Bi =

(ē
(i)
1 , ē

(i)
2 , . . . , ē

(i)
2n) of V such that the following hold:

(1) {〈ē(i)1 〉, 〈ē
(i)
2 〉, . . . , 〈ē

(i)
2n〉} = {〈ē∗1〉, 〈ē∗2〉, . . . , 〈ē∗2n〉};

(2) If P is the point set of Hn, then ei(P) consists of all points of Gn of the form

〈ē(i)σ(1)+ē
(i)
σ(2), ē

(i)
σ(3)+ē

(i)
σ(4), . . . , ē

(i)
σ(2n−1)+ē

(i)
σ(2n)〉 for some permutation σ of {1, 2, . . . , 2n}

or of the form 〈ē(i)σ(1) + ē
(i)
σ(2), ē

(i)
σ(3) + ē

(i)
σ(4), . . . , ē

(i)
σ(2n−3) + ē

(i)
σ(2n−2), ē

(i)
σ(2n−1) + ω · ē(i)σ(2n)〉

for some permutation σ of {1, 2, . . . , 2n}.

Clearly, the unique element of GL(V ) mapping B1 to B2 determines an automorphism of
Gn mapping e1(P) to e2(P). �

The following corollary is precisely Theorem 1.1.

Corollary 4.20 Up to equivalence, there exists a unique isometric embedding of Hn into
Gn. Up to isomorphism, there are (n + 1)(2n + 1) isometric embeddings of Hn into Gn.
No isometric embedding of Hn into Gn is homogeneous.
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Proof. This is a consequence of Lemma 2.2, Proposition 2.4, Proposition 3.1, Corollary
3.5 and Proposition 4.19. �
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