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Abstract: The mu opioid receptor (MOR) is critical in mediating morphine analgesia. 

However, prolonged exposure to morphine induces adaptive changes in this receptor 

leading to the development of tolerance and addiction. In the present work we have studied 

whether the continuous administration of morphine induces changes in MOR protein 

levels, its pharmacological profile, and MOR-mediated G-protein activation in the 

striosomal compartment of the rat CPu, by using immunohistochemistry and receptor  

and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist 

binding density and its coupling to G proteins are up-regulated in the striosomes by 

continuous morphine treatment in the absence of changes in enkephalin and dynorphin 

mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) 

agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact 
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that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same 

degree as seen after continuous morphine treatment. Thus, in spite of the fact that both 

receptors can be coupled to Gi/0 protein, the present results give support for the existence of 

antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes 

occurring in MOR of striosomes on continuous administration of morphine.  

Keywords: morphine; PD168,077; µ opioid receptor; dopamine D4 receptor; G proteins; 

caudate putamen; striosomes; addiction 

 

1. Introduction 

The opioid morphine is one of the most potent analgesic drugs used to relieve moderate to severe 

pain [1]. After long-term use of morphine, neuroadaptive changes in the brain promotes tolerance, 

which result in a reduced sensitivity to most of its effects with attenuation of analgesic efficacy,  

and dependence, revealed by drug craving and physical or psychological manifestations of drug 

withdrawal [2]. Alongside tolerance and dependence, behavioral sensitization develops after repeated 

intermittent treatment with morphine, which is characterized by an increase of responsiveness to the 

same or lower doses of the drug [3]. Morphine research has long been focused on the development of 

analogs, or drug administration strategies, which could result in an effective analgesic therapy without 

side effects. 

Opioids exert their pharmacological actions through their interactions with the opioid receptors µ 

(MOR), δ (DOR), and κ (KOR), which belong to the family of G protein-coupled receptors (GPCRs) [4]. 

The studies using MOR knockout mice have revealed that this receptor is critical, not only in 

mediating morphine analgesia, but also in addictive behaviors by the induction of a strong rewarding 

effect [5–7]. On the other hand, KOR function opposes to the action of MOR and it is considered as 

the major anti-reward system [8,9], whereas DOR contributes to contextual learning rather than opioid 

reward [10]. However, nowadays it is known that the regulation of these functions is more complex 

than expected due to the formation of GPCR heteromers. The existence of MOR-DOR and MOR-KOR 

heteromers has been demonstrated in the central nervous system (CNS) to integrate antinociceptive 

signals, having also a role in the addictive effect of opioids, such as morphine [11–13]. In addition, the 

endogenous opioids enkephalin (Enk) and dynorphin (Dyn), as the main ligands of these receptors in 

the CPu, can contribute to receptor regulation and downstream signaling processes [14].  

The rewarding effects of morphine occur, in part, because MOR promotes dopamine release in the 

nucleus accumbens (NAc) and caudate putamen (CPu) [15,16]. The classical model of Johnson and 

North [17] postulates that morphine interacts with MOR located in GABAergic interneurons in the 

ventral tegmental area (VTA) and substantia nigra pars reticulata (SNr), leading to a disinhibition of 

mesencephalic dopamine neurons and an increase of the neural firing and dopamine release in the 

striatum. However, the cellular organization and regulation of these mesencephalic dopamine neurons 

is more complex than previously assumed [18], in addition, they also receive GABAergic inputs from 

terminals arising from extrinsic neurons. This is the case, for example, in the medium spiny GABA 
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neurons (MSN) of the highly MOR enriched striosomal compartment of the CPu [19], which provide 

direct GABA inputs into the dopamine neurons of the substantia nigra pars compacta (SNc) [20,21]. 

Down-regulation of MOR or loss of MOR mediated G protein activity on effector responses have 

been proposed to occur during prolonged exposure to morphine leading to the development of 

tolerance [22]. However, contradictory results referred on MOR levels have been obtained in different 

regions of the CNS, including the CPu, from unchanged to increased expression [23–25], which has 

been related to morphine sensitization. We have previously demonstrated that the acute activation of 

the dopamine D4 receptor (D4R) decreases MOR immunoreactivity (IR) in the striosomal compartment 

of the CPu [26], where a high degree of co-localization between the two receptors exists [27]. 

Additionally, specific agonist activation of D4R prevents striatal acute and chronic morphine induced 

increases of several transcription factors (c-Fos, ∆FosB, and P-CREB) [28,29]. These data suggest the 

existence of antagonistic D4R-MOR interactions, probably occurring through the formation of receptor 

heteromers [11,30].  

In the present work, we have studied the effect of D4R activation on MOR changes induced by 

morphine in the rat CPu on a continuous drug treatment paradigm, by analyzing MOR protein level, 

pharmacological profile, and functional coupling to G proteins. Furthermore, the levels of the 

endogenous opioids Enk and Dyn mRNA have also been determined. 

2. Results 

2.1. Cross-Inhibition of MOR IR Expression after Continuous Co-Administration of Morphine and  

the D4R Agonist PD168,077 

Levels of MOR protein expression were determined in the rat CPu after six days of continuous 

administration of morphine (20 mg/kg/day). Morphine significantly increased MOR immunoreactivity 

(IR) (by 44%) in the striosomes, but not in the matrix compartment (Figure 1A,B,G,H). Throughout 

the rostro-caudal axis, morphine produced a greater increase of MOR IR at caudal than at rostral and 

middle levels of the CPu (rostral: by 35%; middle: by 34%; caudal: by 69%) (Table 1). 

A weak but significant increase in MOR IR (by 10%) was also observed in the striosomes of the 

CPu after continuous administration of the D4R agonist PD168,077 (1 mg/kg/day) (Figure 1A,C,G,H). 

This increase occurred exclusively in the striosomes of the caudal CPu (Table 1). When PD168,077 

was administered at the same time with morphine, a complete suppression of morphine-induced rise of 

MOR IR was observed (Figure 1A,B,E,G,H). The blocking effect of the D4R agonist occurred at the 

rostral, middle, and caudal levels of the CPu (Table 1). 

To test the specificity of the counteractive effect of PD168,077 on MOR IR, treatment with the D4R 

antagonist L745,870 was performed alone or in combination with morphine + PD168,077. Prolonged 

exposure to L745,870 (1 mg/kg/day) did not change MOR IR levels, neither in the striosomes nor in 

the matrix compartment (Figure 1A,D,G,H), independent of their location along the rostro-caudal axis 

of the rat CPu (Table 1). However, when the D4R antagonist L745,870 was co-administered with 

morphine + PD168,077, a 36% increase of MOR IR in the striosomes was observed, similar to that 

obtained in the morphine treated group (Figure 1A,B,F,G,H). Thus, the inhibitory action of PD168,077 
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was blocked. This action occurred especially in the caudal CPu, which showed the greatest increase in 

MOR IR (rostral: by 36%; middle: by 27%; caudal: 49%) (Table 1). 

Figure 1. The D4R agonist PD168,077 counteracts MOR IR up-regulation in the 

striosomes of the rat CPu induced by the continuous treatment with morphine. (A–F) 

Representative photomicrographs showing MOR immunolabeled striosomes in the CPu 

from rats which received six days of continuous treatment with either vehicle (A); 

morphine (20 mg/kg/day) (B); PD168,077 (1 mg/kg/day) (C); L745,870 (1 mg/kg/day) 

(D); morphine + PD168,077 (E); or morphine + PD168,077 + L745,870 (F); 

Abbreviations: e, striosomes; m, matrix. Scale bar is 200 µm; (G,H) Effect of continuous 

drug treatments on MOR IR in the striosomes (G) and matrix (H) compartments, evaluated 

by determination of optical density (O.D.) values. Data represent mean ± SEM (n = 5) and 

are expressed as percentage of control. Differences between groups were set by one-way 

ANOVA followed by post hoc Bonferroni t-test. * p < 0.05 vs. control; # p < 0.05 

morphine vs. PD168,077. 

 

Table 1. Effect of six days of continuous treatment with morphine (20 mg/kg/day), 

PD168,077 (1 mg/kg/day) and L745,870 (1 mg/kg/day) alone or combined on mu opioid 

receptor (MOR) immunoreactivity (IR) in the striosomes throughout the rostro-caudal axis 

of the rat CPu. 

Level of the 

CPu 
Vehicle Morphine PD168,077 L745,870 

Morphine + 

PD168,077 

Morphine + PD168,077 + 

L745,870 

Rostral 100 ± 2.3 134.6 ± 3.2 109.6 ± 3.1 91.4 ± 3.4 99.4 ± 3.4 135.0 ± 4.1 

Middle 100 ± 2.6 133.8 ± 3.6 104.2 ± 3.5 100.4 ± 4.0 98.0 ± 4.2 127.4 ± 5.0 

Caudal 100 ± 2.9 169.4 ± 6.1 * 117.6 ± 4.6 * 111.5 ± 6.9 98.6 ± 5.7 149.0 ± 6.2 * 

Mean optical density values (mean ± SEM; n = 5) are given as percentage of control. Bold numbers indicate 

a statistically significant difference with respect to the corresponding vehicle-treated group in each  

rostro-caudal level of the CPu (one-way ANOVA followed by post hoc Dunn’s multiple comparison test;  

p < 0.05). Asterisks indicate a statistically significant difference between the rostral, middle and caudal levels 

of the CPu in each drug-treated group (one-way ANOVA followed by post hoc Bonferroni t-test; p < 0.05). 
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2.2. D4R Activation Counteracts the Increase of MOR Recognition and Signaling Induced by the 

Continuous Treatment with Morphine 

We, next, investigated the role of morphine and the D4R agonist PD168,077 in the regulation of 

MOR agonist binding in the CPu. First, the receptor binding characteristics of the MOR agonist 

[3H]DAMGO were compared in striatal sections from six-day-treated rats with morphine and/or 

PD168,077 (Figure 2A–E). The affinity of [3H]DAMGO (Kd value) was not affected by the different 

drug treatments (Figure 2F), neither in the striosomes nor in the matrix. However, both morphine and 

PD168,077 similarly increased the density of [3H]DAMGO agonist binding sites in the striosomes, 

which was reflected by an increase of Bmax values (morphine, by 41%; PD168,077, by 38%)  

(Figure 2G). The co-administration of morphine and PD168,077 blocked these increases and resulted 

in a Bmax value similar to that obtained in the vehicle treated group (Figure 2G). 

Figure 2. Co-administration of PD168,077 during continuous morphine treatment  

prevents the increase of [3H]DAMGO binding sites induced by the opioid drug. (A–D) 

Representative autoradiograms from coronal brain sections at the CPu level of rats which 

received six days of continuous treatment with vehicle (A), morphine (20 mg/kg/day) (B); 

PD168,077 (1 mg/kg/day) (C) and morphine + PD168,077 (D); Abbreviations: Cx, cortex; 

CPu, caudate putamen; NAc, nucleus accumbens. Scale bar is 2 mm. (E) Saturation curves 

of [3H]DAMGO binding in the striosomes; (F,G) Effect of drug treatments on Kd and Bmax 

values (mean ± SEM; n = 6) of [3H]DAMGO binding in the striosomes and matrix 

compartment of the rat CPu. * p < 0.05 vs. control and morphine + PD168,077 (one-way 

ANOVA followed by post hoc Bonferroni t-test). 

 

We also analyzed whether the activation of D4R alters the coupling of MOR to G proteins. In 

vehicle treated animals, in vitro application of the selective MOR agonist DAMGO (3 µM) resulted in 

an increase of [35S]GTPγS binding in the striosomes of the CPu (by 95%) (Figure 3A,A1,E), whereas 

no alteration was observed after in vitro incubation with PD168,077 (90 nM) (Figure 3A,A2,E).  
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Co-stimulation of both MOR and D4R resulted in an increase of [35S]GTPγS binding in the striosomes 

(by 100%) similar to that observed in the DAMGO-stimulated control sections (Figure 3A,A1,A3,E). 

Figure 3. D4R in vitro activation prevents morphine-induced changes on MOR-dependent 

[35S]GTPγS binding. (A–D3) Representative autoradiograms of [35S]GTPγS binding in 

coronal sections of rat brain at the CPu level. Rats were continuously treated with  

vehicle (A–A3); morphine (20 mg/kg/day) (B–B3); PD168,077 (1 mg/kg/day) (C–C3) and 

morphine + PD168,077 (D–D3); Basal levels of [35S]GTPγS binding was determined in 

control sections from the four treatment groups (A,B,C,D) and in vitro receptor stimulation 

was performed with DAMGO (3 µM) (A1,B1,C1,D1); PD168,077 (90 nM) (A2,B2,C2,D2) 

or DAMGO + PD168,077 (A3,B3,C3,D3). Scale bar is 2 mm; (E) Effect of continuous 

drug treatments on [35S]GTPγS binding in the rat CPu after in vitro agonist stimulation of 

MOR and/or D4R. Data represent mean ± SEM (n = 6) and are expressed as percentage of 

basal [35S]GTPγS binding value in vehicle-treated animals (red line). Blue line represents 

DAMGO-dependent [35S]GTPγS binding in vehicle-treated animals. Differences between 

groups were set by two-way ANOVA followed by post hoc Bonferroni t test. * p < 0.05. 

 

Rats, which were continuously administered with morphine (20 mg/kg/day) for six days, showed a 

higher basal value of [35S]GTPγS binding (by 58%) in the whole CPu vs. vehicle treated rats  
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(Figure 3A,B,E). MOR stimulation with DAMGO yielded an increase in [35S]GTPγS binding in the 

striosomes compared with DAMGO stimulation in vehicle-treated rat (Figure 3A1,B1,E). In these 

animals, in vitro co-application of DAMGO + PD168,077 restored [35S]GTPγS binding values to those 

observed in their paired control sections (Figure 3B,B3,E), but displaying a patchy distribution. Finally, 

animals which were continuously treated with PD168,077 (1 mg/kg/day) or morphine + PD168,077 

showed a pattern of [35S]GTPγS binding after MOR and/or D4R in vitro stimulation similar to that 

described in vehicle treated animals (Figure 3C–C3,D–D3,E). Thus, the higher basal value found in rats 

treated with morphine alone was blocked by the combined morphine and D4R agonist treatment. 

2.3. Absence of Changes in Enk and Dyn mRNA Levels in the CPu after the Continuous Administration 

of Morphine and/or PD168,077 

The effect of the six-day continuous treatment with morphine (20 mg/kg/day) and/or PD168,077  

(1 mg/kg/day) on the expression of endogenous opioid peptides in the CPu was then studied by the 

determination of mRNA levels of Enk and Dyn using in situ hybridization. Autoradiograms showed in 

Figure 4 demonstrate that both Enk (Figure 4A–A3,B) and Dyn (Figure 4C–C3,D) mRNA levels were 

not affected by the different drug treatments. 

Figure 4. Lack of effect of continuous administration of morphine and/or PD168,077 on 

Enk and Dyn mRNA levels in the rat CPu. (A–A3,C–C3) Representative autoradiograms 

showing Enk (A–A3) and Dyn (C–C3) mRNA pattern of expression in the rat CPu after  

the administration of vehicle (A,C); morphine (20 mg/kg/day) (A1,C1); PD168,077  

(1 mg/kg/day) (A2,C2) and morphine + PD168,077 (A3,C3); Abbreviations: Cx, cortex; 

CPu, caudate putamen; NAc, nucleus accumbens. Scale bar is 2 mm; (B,D) Semi-quantification 

of Enk (B) and Dyn (D) mRNA levels (nCi/g) in the CPu after the above-mentioned 

treatments. Data represent mean ± SEM (n = 6). p > 0.05 (one-way ANOVA followed by 

Dunn’s test). 
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3. Discussion 

In the present work it was shown that six days of continuous administration of morphine produces 

an up-regulation of MOR IR and agonist binding in the striosomal compartment of the rat CPu. The 

results obtained in the semi-quantitative immunohistochemistry experiments indicate an increase of 

MOR protein level in the CPu. Furthermore, the saturation analysis of [3H]DAMGO binding using 

quantitative receptor autoradiography made it possible to demonstrate an increase in the density of 

MOR agonist binding sites in the striosomes, without changes in receptor affinity. The increase in 

MOR IR and agonist density was similar (by 40%) using these two experimental approaches, 

indicating that an increase in the density of functional MOR had taken place upon continuous 

morphine treatment. MOR is also expressed in the surrounding matrix [31], but the morphine-induced 

MOR up-regulation appeared to occur exclusively in the striosomes. It should be noted that MOR  

up-regulation was higher in the striosomes of the caudal CPu than in those in the rostral part. This 

regional specificity of the effect of continuous morphine treatment on MOR in striosomes correlates 

well with the rise of c-Fos in the caudal CPu [28], and provides new data to the concept of  

region-dependent regulation of striosomal neurons by opioids [32]. 

Continuous administration of morphine induces an increase in the basal values of [35S]GTPγS 

binding in the whole CPu vs. vehicle treated rats, reflecting an increase in G protein activity 

independent to the striatal compartments (matrix and striosomes). However, when MOR-mediated G 

protein activation was evaluated in vitro in rats which had previously been treated with continuous 

morphine, a higher degree of [35S]GTPγS binding was shown in the striosomes vs. vehicle after 

incubation with DAMGO, suggesting a specific regional manifestation of MOR sensitization. Thus, 

MOR activation by morphine could differentially modulate the striosomes vs. matrix compartment, 

leading potentially to an increased MOR modulation of their GABAergic output [33]. Together, these 

results suggest a positive relationship between the increase of MOR density and MOR-mediated G protein 

activation, known to involve mainly Gi/0, likely leading to increased signal transduction efficiency. 

MOR plays a key role in mediating morphine tolerance and dependence [22]. In fact, morphine 

pharmacological effects disappear in MOR knockout mice [5–7]. Tolerance to morphine has been 

proposed to result from down-regulation of MOR and/or decrease of MOR-mediated G protein 

activation or of effector activation. In vitro studies in cell culture models have clearly shown these 

MOR adaptations [22]. However, in vivo studies in the CNS have demonstrated a large variety of 

effect on MOR levels, including no changes [34], decrease [24,35], or increase [23,25,36]. Differences 

in the animal model employed, drug dosage, routes of administration, and the regions of the CNS 

analyzed could help explain the discrepancy in the results. Interestingly, our data are in good 

agreement with those from Viganò and colleagues [25], using different paradigms of morphine 

administration, i.e., intermittent vs. continuous morphine treatment. By analyzing the behavioral 

responses of rats to the morphine treatment (catalepsy, non-stereotyped activity, and stereotyped 

activity), these authors related MOR up-regulation in the CPu to morphine sensitization [25], as also 

done in the current study. The dose of morphine (20 mg/kg/day, subcutaneous) used in the present 

study has been demonstrated to induce tolerance to its analgesic effect ([37] and own unpublished 

observation), which correlate with a decrease in MOR-mediated signaling, mainly in the spinal  

cord [38]. However, we demonstrate in the current work that the administration of morphine produces 
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MOR sensitization, since an increase of MOR-mediated signaling has been shown in the striosomal 

compartment of the CPu. It should to be noticed that Fábián and colleagues [39] described an increase 

of the number of MOR-binding sites in the membrane microsomal fraction, which are enriched in 

endoplasmic reticulum, Golgi membranes, and endosomes, suggesting de novo synthesis of this opioid 

receptor. Therefore, the increase of MOR density which has been observed in the present work could 

be the result of MOR increases in both the plasma membrane and the microsomal fraction, and an 

increase in MOR mRNA levels induced by continuous morphine could be one mechanism involved. In 

contrast, Enk and Dyn mRNA levels are not altered by continuous morphine and seem to do not 

contribute to the MOR changes observed. These results are in agreement with our previous observation 

that changes in Enk and Dyn mRNA after the acute administration of morphine occur for only a short 

time and are transient [29]. However, it cannot be ruled out changes in opioid peptide levels are due to  

post-transcriptional regulation processes.  

A large number of studies have described interactions between the dopaminergic and opioidergic 

systems. In fact, it was shown that dopamine receptors can modulate opioid receptor expression or its 

density in the cell surface membrane in multiple ways. While D1R increases MOR density in the cell 

surface membrane by the formation of a D1R-MOR heteromer [40], genetic deletion of the D2R  

down-regulates MOR density [41]. We have previously demonstrated that acute D4R stimulation 

down-regulates MOR IR in the striosomes of the CPu, suggesting that D4R interacts with MOR 

promoting its internalization and degradation [26]. The participation of other D2-like receptors, i.e., 

D2R and D3R, has been ruled out since the acute treatment with quinpirole and raclopride were unable 

to induce MOR IR changes in the striosomal compartment [26]. Here, we have found that the 

continuous agonist stimulation of D4R produces the opposite effect, as a small but significant  

up-regulation of MOR IR has been observed in the striosomes of the caudal CPu, as well as a 

substantial increase of striosomal MOR density binding using the [3H]DAMGO agonist radioligand. 

The discrepancy between the degree of increase on MOR IR vs. [3H]DAMGO binding due to D4R 

agonist stimulation could be explained on the basis that the antibody against MOR which has been 

used in the present work recognizes both the active and inactive/intracellular conformation of the 

receptor, while [3H]DAMGO binding mainly reflects MOR-binding sites and thus functional MOR 

receptors in the plasma membrane. Thus, D4R may have a major role in the regulation of MOR 

trafficking, rather than de novo receptor synthesis. However, D4R activation in vitro did not affect 

DAMGO-stimulated [35S]GTPγS binding in the striosomes.  

Nevertheless, the co-administration of continuous morphine and the D4R agonist PD168,077 fully 

counteracted the morphine-induced increases in striosomal MOR density and the enhancement of 

MOR-induced G protein activation. Thus, D4R activation may prevent development of the behavioral 

sensitization by morphine. Another important consequence of this antagonistic receptor-receptor 

interaction between D4R and MOR, which could take place in the plasma membrane (in receptor 

heteromer) and/or via changes in gene expression, could be the modulation of the GABA efferent 

projections from the striosomes. They innervate and modulate nigro-striatal dopamine neuron [20]. 

Thus, D4R could prevent massive release of dopamine from these dopamine neurons and thus the 

abnormal activation of striatal dopamine receptors. This view is supported by the D4R blocking effect 

on morphine-induced transcription factors in the CPu [28,29]. However, additional experiments are 

required to clarify this issue.  
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Antagonistic D4R and MOR receptor-receptor interactions in putative striosomal D4R-MOR 

heteromers have been proposed as one molecular mechanism for the D4R-MOR interaction observed. 

This was first indicated on the basis of anatomical data, which showed a co-localization of D4R and 

MOR in the striosomes [27], and later on by in vitro demonstration of a D4R modulation on MOR 

recognition and signaling [11,30]. This mechanism can best explain why the increase in MOR density 

by treatment with morphine and D4R agonist alone can be blocked by their combined treatment. Thus 

the two agonists by inducing bidirectional antagonistic allosteric receptor-receptor interactions in the 

putative heteromer can block the effects of each other. However, it should be stated that a D4R-MOR 

downstream crosstalk could also contribute to the results observed in the current study, which needs to 

be addressed in future works. 

D4R and MOR functional interaction in the striosomes have a special interest because this striatal 

compartment has been related with habit learning and may also mediates the transition from impulsive 

to compulsive drug use [42–44]. Thus, impairment of D4R function especially in the striosomes could 

represent a factor for drug addiction vulnerability by producing dysfunction of the MOR protomer in 

the putative D4R-MOR heteromer of this striatal compartment. 

4. Experimental Section 

4.1. Animals 

Adult male Sprague-Dawley rats (Charles River, Barcelona, Spain) weighing 250–300 g were used. 

Rats had continuous access to food and water and were maintained on a standard light/dark cycle 

(12/12 h) and constant room temperature (20 ± 2 °C) and relative humidity (65%–75%). Animal care 

and procedures described in the present study were in accordance with the guidelines of the Council of 

European Communities (86/609/EEC) as well as the Spanish Government (Real Decreto 1201/2005) 

and all efforts were made to minimize animal suffering and to reduce the number of animals used. 

4.2. Drugs 

Morphine sulphate was obtained from the Ministerio de Sanidad, Servicios Sociales e Igualdad 

(Spanish Government). PD168,077 maleate (D4R agonist) and L745,870 trihydrochloride (D4R antagonist) 

were obtained commercially (Tocris Bioscience, Avonmouth, UK). PD168,077 has been proven not to 

interact with MOR (see Supplementary Information). All drugs were dissolved in a vehicle solution 

consistent of 2% dimethyl sulfoxide (DMSO) in 0.9% NaCl. We have previously demonstrated that 

this amount of DMSO exerts no effect on receptor function [26].  

4.3. Drug Administration 

Rats received continuous administration of vehicle, morphine (20 mg/kg/day), PD168,077  

(1 mg/kg/day) and L745,870 (1 mg/kg/day), alone or in combination by an osmotic pump (2ML1,  

rate of release: 10 µL/h, 7 days delivery, Alzet® osmotic pumps, Cupertino, CA, USA) that was 

subcutaneously implanted under deep anaesthesia (75 mg/kg ketamine and 0.5 mg/kg medetomidine) 

between the shoulder blades. Treatment duration was 6 days.  
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4.4. Immunohistochemistry 

Rats (n = 5 per treatment) were anesthetized with sodium pentobarbital (60 mg/kg, intraperitoneal) 

and perfused transcardially with 0.1 M phosphate-buffered saline, pH 7.4 (PBS), followed by 4% 

paraformaldehyde (w/v) in 0.1 M phosphate buffer, pH 7.4 (PB). The brains were rapidly removed and 

postfixed in the same fixative overnight at 4 °C, cryoprotected in 30% sucrose in PBS for 72 h and 

frozen in dry ice. Free-floating coronal sections (30 µm thick) were obtained with a freezing 

microtome (CM 1325; Leica, Wetzlar, Germany) and endogenous peroxidase activity was quenched 

by incubation for 15 min with 3% H2O2 in PBS. Sections were first incubated with a rabbit polyclonal 

anti-MOR antibody (Calbiochem, Germany) diluted 1:1000 in PBS with 0.2% Triton X-100 (PBS-TX) 

and 0.1% sodium azide for 48 h at RT, then in biotin-conjugated goat anti-rabbit IgG diluted 1:500 in 

PBS-TX (Vector Laboratories, Burlingame, CA, USA) for 1 h and finally in streptavidin-peroxidase 

complex (Sigma-Aldrich, St. Louis, MO, USA) diluted 1:2000 in PBS-TX for 1 h. Peroxidase activity 

was visualized with 0.05% 3,3'-diaminobenzidine (DAB, Sigma-Aldrich, St. Louis, MO, USA) and 

0.002% H2O2, and staining was intensified with 0.8% nickel ammonium sulfate. The sections were 

then mounted on gelatin-coated slides, air dried, dehydrated with ethanol, cleared in xylene and 

coverslipped with DPX-mounting medium. 

Semi-quantitative analysis of MOR IR intensity was performed as we have described and validated 

previously using the NIH Image J system [26]. Briefly, MOR IR O.D. was measured from 

microphotographs obtained with a digital camera (Coolpix 4500, Nikon, Tokyo, Japan) under light 

microscopy (Nikon E400, Nikon, Tokyo, Japan). The O.D. values from the striosomes and matrix 

compartments were obtained bilaterally from rostral, middle, or caudal levels of the CPu and they were 

corrected with the O.D. from an immunonegative area. 

4.5. µ Opioid Receptor Autoradiography 

Rats (n = 6 per treatment) were sacrificed by decapitation and the brains were rapidly removed, 

frozen by immersion in dry ice-cooled isopentane (−30 °C) and stored at −80 °C until sectioning. 
Coronal brain sections (14 μm) at the CPu level were cut on a cryostat (Microm HM 550, Microm 

Laborgerate S.L., Barcelona, Spain), thawed onto glass slides and stored at −20 °C until use. 

Autoradiographic saturation kinetic study of MOR was performed using [3H]DAMGO as radioligand 

(specific activity 56 Ci/mmol; PerkinElmer, Waltham, MA, USA). The sections were pre-incubated for 

30 min at RT with 50 mM Tris-HCl (pH 7.4) and 5% BSA to remove endogenous opioids, and then 

incubated for 1 h with the same buffer containing [3H]DAMGO (concentration ranging from 0.36 nM 

to 4 nM). Adjacent sections were used for control, in which non-specific binding was defined as the 

[3H]DAMGO binding in the presence of 10 µM of naloxone (Tocris Bioscience, Avonmouth, UK). 

After incubation with [3H]DAMGO, sections were sequentially washed for 5 min, each in ice-cold 

Tris-HCl buffer (two times) and distilled water (one time), and air-dried. Thereafter, the sections were 

exposed to a tritium-sensitive film (BioMax MR Film, Kodak, Rochester, NY, USA) for 6 weeks, 

together with prefabricated 3H-labeled polymer standard strips (GE Healthcare, Piscataway, NJ, USA). 

The films were revealed and digitalized (ScanMaker 9800XL, Microtek International Inc., Santa Fe 

Springs, CA, USA). Quantitative measurements of autoradiographic signals (grey values) were made 
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using the analyzing system ImageJ 1.44p (NIH, Bethesda, MD, USA). Measurements were made 

bilaterally from the striosomes and matrix compartment of the CPu. Grey values were corrected for the 

contribution due to non-specific binding and converted into fmol/mg proteins using the 3H-standards 

described above. Data were analyzed by nonlinear regression analysis (GraphPad Prism 5, GraphPad 

Software, Inc., La Jolla, CA, USA) for the determination of Bmax and Kd values. 

4.6. Agonist-Stimulated [35S]GTPγS Binding in Autoradiography 

Sections from rat brains (n = 4–5 per treatment) were obtained as described before for the MOR 

autoradiography experiment. The sections were pre-incubated in assay buffer (50 mM Tris-HCl, 3 mM 

MgCl2, 2 µM EGTA, 100 µM NaCl, pH 7.4) for 15 min at RT and then in 2 mM GDP in assay buffer 

for 15 min. Sections were then transferred into assay buffer containing 0.2 mM GDP and 0.04 nM 

[35S]GTPγS with (stimulated) or without (basal) 3 µM DAMGO and/or 90 nM PD168,077 and 

incubated for 40 min at RT. Finally, the sections were rinsed twice in cold 50 mM Tris-HCl buffer and 

once in distilled water, dried and exposed to BioMax MR Film (Kodak, Rochester, NY, USA) for  

48 h. Films were developed and digitized as described above. Gray values were measured from each 

section using the analyzing system ImageJ 1.44p (NIH, Bethesda, MD, USA), corrected by subtraction 

of the background gray value and converted to nCi/g using a 14C standard (GE Healthcare, Piscataway, 

NJ, USA). 

4.7. In Situ Hybridization 

For the detection of Enk and Dyn mRNA using in situ hybridization, rats (n = 6 per treatment) were 

sacrificed by decapitation. The brains were removed, frozen in dry ice-cooled isopentane, and stored at 

−80 °C. Coronal sections (14 µm thick) at the CPu level were obtained on a cryostat (Microm HM 550, 

Microm Laborgerate S.L., Barcelona, Spain), thawed onto glass slides and stored at −20 °C until 

incubation. Detection of prodynorphin mRNA (296–345) [45] and preproenkephalin mRNA  

(235–282) [46] was made using 48-mer oligonucleotides complementary to described nucleotides. The 

probes were 3'-end labelled with [α-33P]dATP (PerkinElmer, Waltham, MA, USA) using terminal 

deoxynucleotidyl transferase (GE Healthcare, Piscataway, NJ, USA). The hybridization cocktail 

contained 50% formamide, 4× SSC (1× SSC is 0.15M NaCl, 0.0015M sodium citrate; pH 7.0),  

1× Denhardt’s solution, 1% sarcosyl, 0.02M Na3PO4 pH 7.0, 10% dextransulphate, 0.06 M DTT and 

0.1 mg/mL of sheared salmon sperm DNA. Hybridization reaction was performed for 16–18 h in a 

humidified chamber at 42 °C. After hybridization, sections were rinsed four times (20 min each) in  

1× SSC at 60 °C and one time at RT. Finally, sections were rinsed in autoclaved water, dehydrated in 

alcohol and air dried. Thereafter, the sections were exposed to film (Kodak BioMax MR-1, GE Healthcare, 

Piscataway, NJ, USA) for 3 days. Autoradiogram films were digitized and O.D. values from the CPu 

were determined using the NIH ImageJ system. A 14C standard (GE Healthcare, Piscataway, NJ, USA) 

was used to correlate O.D. readings on the autoradiograms to amount of radioactivity (nCi/g). 
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4.8. Statistical Analysis 

Statistical analysis was made with one-way or two-way analysis of variance (ANOVAs), followed 

by Dunn or Bonferroni post hoc test. Statistical significance was set at p < 0.05, p < 0.01 and p < 0.001. 

5. Conclusions  

D4R activation during continuous treatment with morphine counteracts the induced changes on 

MOR protein levels and receptor signaling in the striosomes of the rat CPu. 

Supplementary Information 

1. Methods 

1.1. Cell Culture and Transfection 

HEK293T cells were cultured in DMEM (Dulbecco’s modified Eagle’s medium) supplemented 

with 10% (v/v) fetal calf serum with L-glutamine (2 mM), penicillin (100 U mL−1) and streptomycin 

(0.1 mg mL−1), in a controlled environment (37°C, 98% humidity, 5% CO2). For transfection, cells 

were grown until 50% confluency. Next, cells were transiently transfected with plasmids encoding  

HA-D4.2R or FLAG-MOR using the calcium phosphate transfection method (using 10 µg DNA per  

10 cm dish or 2 µg per 6-well)) as described previously [47]. 

1.2. ERK1/2 Phosphorylation Assay on Western Blot 

48-h post-transfection cells were starved overnight with DMEM medium without fetal calf serum. 

Cells were then incubated for 5 min with DAMGO (Sigma-Aldrich, St. Louis, MO, USA) or 

PD168,077 (Tocris, Bristol, UK) in concentrations ranging from 10−5 to 10−10 M in DMEM medium at 

37 °C. Incubation was stopped by washing the cells two times with ice-cold PBS and putting them on 

ice. Subsequently cells were lysed with 200 µL SDS-sample buffer (62.5 mM Tris/HCl pH 6.8;  

2% SDS; 10% glycerol; 0.1% bromophenol blue; 50 mM dithiothreitol) per 6-well. Samples were 

sonicated for 1 min and heated for 5 min at 95 °C. The lysates were loaded on a 10% SDS-PAGE gel. 

Proteins were transferred onto a nitrocellulose membrane. Next, membranes were blocked with 

blocking buffer (1:1 Licor blocking buffer/TBS) for 1 h. Membranes were then incubated for 1 h with 

primary antibodies rabbit phospho-p42/p44 (Cell signaling, Danvers, MA, USA) and mouse p42/p44 

(Cell signaling, Danvers, MA, USA) in 1:1 Licor blocking buffer-TBST. Afterwards, the blots were 

incubated with secondary antibodies 1:20,000 anti-mouse redLT (LI-COR Biosciences, Lincoln, NE, 

USA) and 1:15,000 anti-rabbit green (LI-COR Biosciences, Lincoln, NE, USA) for 1 h and developed 

with the Odyssey Imaging System (OdysseyV3.0, Westburg, Leusden, The Netherlands). 

1.3. In-Cell Western ERK1/2 Phosphorylation Assay 

The day after transfection, cells were reseeded on poly-D-lysine (Sigma-Aldrich, St. Louis, MO, 

USA) coated 96-well plates. These cells were grown until 90% confluency after which they were 

starved for 2 h with DMEM medium without fetal calf serum. Cells were then incubated for 5 min 



Int. J. Mol. Sci. 2014, 15 1494 

 

with DAMGO (Sigma-Aldrich, St. Louis, MO, USA) or PD168,077 (Tocris, Bristol, UK) in 

concentration ranging from 10−5 to 10−10 M in DMEM medium at 37 °C. Incubation was stopped by 

removing the culture medium, followed by addition of fixing solution (3.7% formaldehyde in PBS) for 

20 min at RT. Subsequently cells were permeabilized, by washing 5 times for 5 min with Triton 

washing solution (0.1% Triton X-100 in PBS). Cells were blocked with LI-COR Odyssey blocking 

buffer (LI-COR Biosciences, Lincoln, NE, USA) for 90 min with moderate shaking on a rotator, after 

which the cells were incubated overnight at 4 °C with two primary antibodies: 1:1000 rabbit  

phospho-p42/p44 (Cell signaling, Danvers, MA, USA) and 1:800 mouse p42/p44 (Cell signaling, 

Danvers, MA, USA) diluted in blocking buffer. The plate is washed at RT for 5 times 5 min with 

Tween washing solution (0.1% Tween-20 in PBS). Fluorescently labeled secondary antibodies: 1:800 

anti-mouse redRD (LI-COR Biosciences) and 1:800 anti-rabbit green (LI-COR Biosciences, Lincoln, 

NE, USA) are added to the cells and incubated at RT for 1 h. After final washing steps, the plate is 

measured with the Odyssey Infrared Imaging system (LI-COR Biosciences, Lincoln, NE, USA). For 

analysis, background values for the secondary antibody are subtracted from the values and the 

phospho-p42/p44 signal is normalized against the total p42/p44 signal. 

2. Results 

2.1. Specificity of the Drug PD168.077 for the Dopamine D4 Receptor 

Dopamine D4 receptors and MOR are known to activate the mitogen-activated protein kinase 

(MAPK) signalling pathway, resulting in phosphorylation of p42/p44 [48,49]. Therefore, to investigate 

whether the dopamine D4 receptor agonist PD168,077 can act as an agonist or an inverse agonist  

of MOR, we performed two kinds of MAPK-phosphorylation assays, i.e., a Western blot 

immunodetection assay and an in-cell Western assay. First, HEK293T cells were transiently 

transfected with pHAD4.2R (as a positive control) and pFLAGMOR. Next, receptors were stimulated 

with different concentration of DAMGO (as a positive control for MOR expression) and of PD168,077 

and phosphorylation of p42/p44 was determined (Figure S1). From both experiments, the Western blot 

immunodetection and the in-cell Western assay, we can conclude that PD168.077 activates the MAPK 

pathway when the dopamine D4 receptor is expressed and this already occurs at concentrations as low 

as 0.1 nM (Figure S1B). There is a small activation of p42/p44 upon MOR stimulation but only at high 

concentration (1 to 10 mM). The MOR is functionally expressed as DAMGO stimulates p42/p44 

phosphorylation. Next, also DAMGO activates the dopamine D4 receptor at the highest concentrations 

(1 to 10 mM). The concentrations used to indicate that PD168,077 counteracts morphine-induced 

changes in MOR signaling are much lower (90 nM). Therefore we believe that the effect of PD168,077 

on signaling via MOR is very low or even negligible.  
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Figure S1. Specificity PD168,077 for dopamine D4 receptor. (A) Western blot analysis of 

MAPK phosphorylation. HEK293T cells transiently expressing HAD4.2R or FLAGMOR 

were treated for 5 min with different concentrations of DAMGO or PD168.077 (PD)  

(10−9 to 10−5 M). Cell lysates were made and a Western immunoblot with was performed 

using the primary antibodies rabbit phospho-p42/p44 and mouse p42/p44; (B) In-cell 

western P-MAPK assay. An in-cell western assay was performed on HEK293T cells 

transiently expressing HAD4.2R or FLAGMOR. Cells were treated for 5 min with  

DAMGO or PD168.077 in a concentration range from 10−10 to 10−5 M. Phosphorylated 

p42/p44 values were normalized to total p42/44. Red = D4.2R + DAMGO;  

black = D4.2R + PD168077; blue = MOR + DAMGO; green = MOR + PD168077; 

DAMGO (agonist of MOR); PD168.077 (specific agonist of D4R). 
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