
snapMac: a Generic MAC/PHY Architecture Enabling

Flexible MAC DesignI

Pieter De Mil∗, Bart Jooris, Lieven Tytgat, Jeroen Hoebeke, Ingrid
Moerman∗∗, Piet Demeester

Department of Information Technology, IBCN research group, Ghent University -
iMinds, G. Crommenlaan 8 box 201, 9050 Gent, Belgium

Abstract

Timing is a key issue in many wireless, lower-layer (e.g., physical and data
link layer) communication protocols. Maintaining time-critical behavior while
increasing MAC protocol complexity is the challenge for many MAC imple-
mentations. To comply with stringent time constraints, current MAC im-
plementations typically require such a tight integration to the radio driver
that they become one monolithic block of code with MAC-specific logic hard
coded at the lowest firmware level. Execution of time-critical functions in
the firmware is a good strategy, but results in limited flexibility for MAC de-
signers because the radio driver is dedicated for specific MAC protocol logic.
We propose “snapMac”: a generic MAC/PHY architecture with a clean sep-
aration between the MAC protocol logic at the user level and the execution
at the radio firmware level. Our generic programming interface enables more
flexibility, an easy way to compose new MAC designs, and getting feedback
from the radio capabilities We demonstrate the feasibility and performance of
this architecture by implementing it on a resource-constrained wireless sensor
node. The experimental evaluation shows, for example, that we can simul-
taneously keep the flexibility of a software ACK and meet the ACK timing

IReaders are reminded to treat all the data as being strictly CONFIDENTIAL during
the review process. Before publishing this manuscript we first need to file our patent
application.

∗Corresponding author
∗∗Principal corresponding author
Email address: Pieter@DeMil.be (Pieter De Mil)
URL: http://ibcn.intec.ugent.be (Pieter De Mil)

Preprint submitted to Ad Hoc Networks November 14, 2013

constraints as specified in the 802.15.4 standard. We also achieve 97% (i.e.,
218 kbit/s) of the theoretical 802.15.4 throughput. This new implementation
approach for MAC / PHY interactions has potential to be applied in other
domains (e.g., WiFi, software defined radio, cognitive radio, etc.). Demon-
strating the portability of snapMac is future work. “snapMac” enables the
design and execution of new MAC protocols in a snap.

Keywords: radio hardware abstraction, MAC/PHY architecture,
reconfigurable, MAC, flexible, time accurate radio driver

1. Introduction

1.1. Situation and Problem Statement

More and more devices are being connected to the Internet (Internet of
Things (IoT) vision [1]), enabling a wide range of applications having vary-
ing requirements. Libelium [2] - a Wireless Sensor Network (WSN) platform
provider - lists more than 50 IoT applications, grouped in different domains
such as Smart Cities, Smart Metering, Security & Emergencies, Retail, Lo-
gistics, Home Automation, etc. Communication is mostly wireless, although
the underlying PHY technology can vary (e.g., IEEE 802.15.4, Bluetooth,
WiFi). The PHY hardware sets the upper bounds on the data rate (e.g.,
250 kbit/s for the 2.4 GHz 802.15.4 PHY) but it are the radio driver and the
Medium Access Control (MAC) layer who play an important role to meet
the dispersed set of application requirements [3].

Because of these diverse applications requirements, lots of MAC proto-
cols [4] were proposed over the last decades. Even in the IEEE 802.15.4-
2006 [5] standard, multiple options are available: beacon-enabled or not,
(un)slotted CSMA-CA or Guaranteed Time Slots. Also in the 802.15.4e [6]
standard multiple MAC techniques (time slotted channel hopping, asyn-
chronous multi-channel adaptation, low latency deterministic networks, etc.)
and frame formats (multi-superframe, slotframe, etc.) are specified to sup-
port a wide range of industrial and commercial applications. As a result, a
MAC designer needs to implement a complex algorithm (with stringent time
constraints) that can execute radio actions in a time accurate manner.

A MAC designer basically wants the freedom to compose any MAC de-
sign, with time-accurate execution and without the need for changing the
radio driver firmware. Conversely, a firmware engineer basically wants to
implement a performant driver, with a generic interface and without the

2

need for making it MAC protocol specific. With snapMac we target both
MAC designers and firmware engineers. In [7], an important requirement of
the future data link layer is given in the definition: “In order for IoT sys-
tems to achieve full interoperability, as well as the support of heterogeneous
technologies (. . .), this data link layer must allow for diversity.”. Diversity
means being able to design completely new MAC protocols, but also being
able to change the MAC protocol at run-time in order to achieve interoper-
ability with other devices. Ideally, the driver firmware is MAC agnostic and
a generic interface is presented to a MAC designer. This will enable both
reusability and portability.

1.2. Contributions

We have been working on WSN solutions since 2005 and experienced that
we had to design various MAC protocols. In 2012, we published our plural-
isMAC [8] framework. This allows for flexible switching between MAC pro-
tocols (so-called maclets). These maclets use shared functions for controlling
the radio. We have designed the first version of pluralisMAC on top of a tra-
ditional radio driver (TinyOS CC2420 driver). This meant that most of the
MAC functions were tied to the driver, and time-accurate execution was not
possible. In a national project, iMinds and RMoni have designed a new sen-
sor platform (RM-0901, using the CC2520 radio chip). There was no CC2520
driver available, so we took this opportunity to design it ourselves, keeping
in mind the lessons we had learned. We addressed this challenging problem
by designing snapMac: a generic MAC/PHY framework for flexible MAC
design. Such a framework must allow to achieve the required time accuracy
but with a clean separation between MAC and radio driver, hereby increas-
ing flexibility, adaptability and portability at both levels. To proof this, we
have implemented the proposed architecture on a resource-constrained sen-
sor node and evaluated key metrics like ACK timing, throughput, round trip
time and energy consumption. As such the key contributions of this article
are the following:

• We present a novel generic MAC/PHY architecture, implemented on a
resource-constrained device.

• We describe in detail how this architecture works.

1RM-090 info: http://www.rmoni.com/en/products/hardware/rm090

3

• We show that MAC design is more flexible, easier and more time-
accurate by using our patent pending chain of commands technique.

• We experimentally validate the implementation of the snapMac archi-
tecture both in terms of functionality and performance regarding all
essential individual mechanisms and a Low Power Listening MAC pro-
tocol.

• We describe the portability and reusability options of snapMac, which
are not demonstrated in this paper.

1.3. Paper Structure

The remainder of the paper is organized as follows. Section 2 presents the
related work. In Section 3, we describe the goals that enable MAC protocols
to use a generic programming interface, portable across multiple heteroge-
neous platforms without sacrificing time accurate execution of the protocol
logic. In Section 4 we propose our snapMAC concept. In Section 5 we show
how to use snapMAC from a MAC layer point of view. We demonstrate the
operation in an asynchronous multi-channel receiver-based communication
scenario. Section 6 presents the performance evaluation of our snapMAC
implementation. Section 7 discusses the portability of snapMac (because
porting to other platforms is work in progress). Finally, Section 8 states our
conclusions.

2. Related Work

In this section, we highlight the bottlenecks on resource-constrained plat-
forms, the related work in the WSN domain, and the related work in non-
WSN domains.

2.1. Bottlenecks on Resource-constrained Platforms

We have identified the bottlenecks on a resource-constrained platform. A
WSN platform is relatively constrained in term of resources (e.g., a class 1
node has 10 kB data size and 100 kB code size [9]). The processing power
should be kept to the minimum to support the application and to guarantee
the maximum node lifetime. The design of a generic MAC/PHY architecture
should therefore cope with the resource scarcity, while still allowing sufficient
flexibility.

4

Host PC

Processor

User level

Kernel level

Communication
 bus

Network Interface Card / Sensor Node

Microcontroller

Communication
bus

Radio Chip

Time
Reference

RX/TX
Packet
Buffer

Control lines

User level

Kernel level

Figure 1: Typical setup of a Network Interface Card (NIC) or sensor node plugged into a
host PC communication bus (e.g., PCI, USB, etc.). The NIC/sensor node typically has a
microcontroller and radio chip interconnected via an on-board communication bus (e.g.,
SPI) and control lines. Unlike a NIC, a sensor node can operate without host PC.

The radio chip of a typical sensor node (or Network Interface Card), de-
picted in Figure 1, is responsible for transmitting or receiving data that is
generated or consumed on the processing unit (processor on host PC, micro-
controller on a stand-alone sensor node). This data needs to be transferred
to the radio unit via a communication bus (e.g., SPI). When multiple pe-
ripherals are connected to a shared communication bus, unpredictable access
timings and/or packet transfer rate are often unavoidable. On the TelosB
(TMote Sky) platform [10], the CC2420 radio chip and the flash storage unit
share the SPI bus with the processing unit. An SPI bus arbiter is needed to
grant access to a specific slave unit. Hence, it might take some time to get
access to the bus when a transfer to/from the flash storage device is active.
The same is valid for the Zolertia Z1 platform [11], while on the waspmote
platform [12] the communication bus is shared with the USB port. As a con-
sequence it is difficult to tightly control the timing of radio actions on such
hardware platforms (although it would be possible if the drivers for all the
peripherals are managed by the same engine). We conclude that the commu-
nication bus between the radio and the processing unit introduces variable,
unpredictable delays and jitter. We advise to use a dedicated communication
bus to improve the time accuracy.

Another bottleneck is the fact that processes are executed sequentially
on the microcontroller. It is unpredictable when exactly (i.e., microsecond

5

precision) processes are executed in a non real-time operating system. User
processes have a lower priority than kernel processes, but even kernel timers
in a Linux-based OS cannot guarantee to execute processes precisely on the
requested time, as the author in [13] states that ”a kernel timer is far from
perfect, as it suffers from jitter and other artifacts induced by hardware inter-
rupts, as well as other timers and other asynchronous tasks”. We conclude
that too many interrupt sources or too long interrupt routines and asyn-
chronous tasks (code reachable from an interrupt handler) may affect the
time accuracy.

2.2. WSN domain

In the WSN domain, to the best knowledge of the authors of this paper,
we have not encountered a solution that offers both the desired flexibility
and time-accurate performance.

TinyOS [14] and Contiki [15] are two popular operating systems for
WSNs [16], that do not provide real-time guarantees. In most OSes, there
are basically two layers of execution (although there is no magic user/kernel
boundary): user level (e.g., the code that is executed by tasks in TinyOS)
and kernel level (i.e., the code that is executed by the Interrupt Service
Routines (ISRs)). An ISR blocks all other tasks from running and should
therefore contain only very short living functions. When an ISR is finished,
the task scheduler selects which task is executed next. Typically it is advised
to limit ISRs to only toggle a flag and copy the needed register informa-
tion. Upon the end of an ISR a system task should finish the task. For a
TinyOS implementation, one could use the concept of tasklets2. Our pro-
posed framework is meant to be applicable on various Operating Systems.
We have implemented snapMac without using such a tasklet mechanism,
and demonstrated the high performance of our snapMac stack. In a future
revision of snapMac, we might use the tasklet mechanism.

In Figure 2 we can see that the hardware management is typically done
at the lowest level, and consists of three different functional blocks: the
radio control, the bus manager and the interrupt manager. These Hard-
ware Abstractation Layers (HAL) expose a Hardware Abstraction Interface
that simplifies the hardware management. Typical functions exposed are en-
abling/disabling the hardware clock, request or release the bus, adjust some

2https://github.com/tinyos/tinyos-main/wiki/Tasklet-design-notes

6

User level

Applications

Transport, Routing, etc.

<<Hardware Independent Interface >>

Kernel level

Driver Lower MAC Packet formatting

Radio
control

Bus
management

Interrupt
management

<<R-HAL>> <<B-HAL>> <<I-HAL>>

Upper MAC (without protocol control)

Figure 2: Traditional software stack di-
vided between user level and kernel level,
the latter contains usually a driver with
a dedicated Lower MAC (protocol control)
and fixed MAC frame formatting.

User level

Applications

Transport, Routing, etc.

<<snapMac Data Plane>>

Kernel level

Driver

snapMac engine

Full Control MAC

<<snapMac Control Plane>>

<<Command>> snapMac
modules

Figure 3: snapMac exposes two interfaces
(data plane and control plane) to the Full
Control MAC in user level. The snapMac
engine and snapMac modules in the kernel
level are MAC agnostic.

radio settings like channel, transmit power, etc. The MAC functionality
builds on top of these interfaces and exposes a Hardware Independent In-
terface towards user space. This layer is therefore also called the Hardware
Independent Layer (HIL).

In TinyOS, the basic HIL that must be provided for every platform is the
ActiveMessageC configuration. This defines the message buffer format to be
used, and has send and receive function calls. A send call is executed as soon
as possible after the moment it is called. This results in an unpredictable
time between the call, and the actual sending of the frame. In addition, the
time accuracy of the call itself has a large spread. We have measured the
delay between the requested transmit time, and the effective transmit time
to be almost uniformly distributed between 10 − 20 ms on a TMote Sky
node running TinyOS. Hence a MAC designer who wants accurate frame
transmission timings (in microseconds range) has to implement this in kernel
space, hereby hampering reusability of the MAC code. Ideally, the basic
(radio) functions are made available to the MAC designer, so that she has
the flexibility to compose new MAC designs without changing the driver.

In standard TinyOS, the actual frame formatting is done inside the driver.
We will show that we can give control on frame formatting to the MAC

7

designer, hereby enabling both flexibility for the MAC designers (no need to
adjust the driver) and portability for driver developers (no need to take into
account specific frame formatting).

In [17], Hauer presents a platform independent IEEE 802.15.4-2006 MAC
implementation (TKN 15.4) for TinyOS. It is stated that in most typical sen-
sor node platforms, “these (ed., timing) requirements can practically not be
met by a platform independent MAC protocol, rather they should be pushed
from the MAC to the PHY, ideally to hardware“. A common approach is to
push time-critical operations from the MAC to the lower level radio control.
In [17], the radio driver includes a part of a specific MAC protocol and ex-
poses those MAC specific services via non-generic interfaces. We will show
that it is possible to create a MAC protocol agnostic driver.

In [18], Steiner et al. analyzed traditional MAC protocols in order to
obtain a generalized C-MAC state machine (some states are optional or can
have different implementations) for three major categories: channel polling,
scheduled contention, and time division multiple access. This C-MAC con-
cept is targeted to these three MAC protocol categories and does not support
fine-grained, time-accurate control on the radio functions (the Round Trip
Time between two nodes is 79 ms). C-MAC makes it possible for easy con-
figuring a MAC protocol that fits in one of the three categories, but it does
not foster the creation of completely new MAC protocols.

In [19], a component-based MAC layer architecture (MLA) for implement-
ing different MAC protocols is presented. MLA uses two types of compo-
nents: “High-level, hardware-independent components (channel poller, LPL
listener, preamble sender, time synchronization, slot handlers, low level dis-
patcher) are aimed at supporting flexibility by allowing different MAC protocol
features to be composed together in a platform independent manner. Low-
level, hardware dependent components (radio power control, channel moni-
tor, cca control, low-cost packet resending, low-latency I/O, alarms) provide
abstract, platform independent interfaces to features otherwise specific to a
particular radio or microprocessor platform. Though the implementation of
these hardware-dependent components is inherently platform specific, they ex-
port interfaces which support the development of fully platform independent
high-level components.”. snapMac does not provide hardware-independent
components or low-level hardware-dependent components. Instead, it pro-
vides the basic commands which enable to create any desired functionality.
For each of the hardware-dependent and -independent components (MLA) it
is possible to create a snapMac command chain. MLA has used a different

8

approach to solve the issues. In MLA, it is not possible for a MAC designer
to know how long it takes to turn on the radio and to plan the execution
time of a command (for example, transmit). For the TDMA MAC protocols,
an async interface is exposed to the MAC designer. This will make the MAC
control faster but not precise. No async interface is exposed to the user level
in snapMac, but we do allow precise control of the (low-level) actions, in user
level.

From the above analysis we can state that system developers try to
achieve the required time accuracy leading to the typical kernel level / user
level separation shown in Figure 2. All time-critical functions (e.g., sending
an ACK) are implemented in kernel space, which basically pushes (tradi-
tionally) the full MAC (or at least the lower-MAC) implementation into the
radio driver as it requires strict timing. In addition, a strong coupling be-
tween the radio driver and the in-kernel MAC is typically needed in these
conventional approaches in order to achieve sufficiently low response times.
The need for low response times - e.g. when an ACK message needs to be
transmitted as a response to a successfully received frame - also results in
the radio driver being frame type dependent. This implies that the reusabil-
ity of both MAC implementation and radio driver is very low, as they are
dependent on the implemented standard (or proprietary protocol) and also
dependent on each other. Due to the large amount of work needed to build
a MAC from scratch for every wireless standard and every new generation of
radio hardware, the complexity and adaptability of current MAC protocols
following such an approach is severely limited.

2.3. Non-WSN domains

Most work on flexible and/or time-accurate architectures has been done
in non-WSN domains so far: Software Defined Radios (SDRs), Cognitive
Radio, WLAN and overlay MACs.

SDRs (e.g., USRP platform 3), offer spectrum agility, because the ra-
dio parameters like frequency band and modulation type can be reconfig-
ured. SDRs implement most of the physical layer and link layer in software.
Because of the intensive signal processing (mostly by using multiple pro-
cessing units with interconnecting buses [20]), large delays (up to hundreds
of microseconds [20]) and jitter are introduced. In [21], the measured re-

3http://www.ettus.com/

9

ceive latency ranges from 1 ms up to 30 ms. Obviously, these high latencies
limit the response time and precise timing control needed in a MAC design
(e.g., the default ACK timeout is 48 µs in 802.11b and 864 µs in the 2.4GHz
802.15.4). In [20], Nychis et al. present a split-functionality approach where
a minimum set of core MAC functions are implemented close to the radio
(e.g., FPGA processing on the hardware), while maintaining control on the
host processing unit through a programming interface. They have concluded
that time-critical radio or MAC functions should not be placed on the host
CPU and that in order to be widely applicable, the control of the flexible
MAC implementation should reside on the host.

A Cognitive Radio is based on SDR technology, and adds knowledge so
that dynamic spectrum access becomes a reality. In this domain, aspects
like adaptability and flexibility are very important. We agree with Ansari
et al. [22] [23] that a MAC protocol implemented in a monolithic fashion
with tight coupling to the underlying hardware restricts these aspects. The
authors propose a decomposable MAC framework by defining a set of MAC
functionalities (blocks) as a library. This way a wide range of protocols can
be realized by combining these MAC blocks through a wiring engine, but
designing completely new protocols is not supported.

In the WLAN (Wi-Fi) domain, Tinnirello et al. [24] have introduced
a programmable wireless platform “Wireless MAC Processors”(WMP) that
supports a MAC defined in terms of a Finite State Machine (FSM). This
FSM consists of transitions between states. These transitions can be trig-
gered by events (e.g., frame received). The transition will be executed if a
certain boolean condition is TRUE (e.g., ACK on). Before completing the
transition to the new state, an action (e.g., transmit ACK) can be performed.
We like the idea of having an “instruction set” (actions, events, conditions)
to compose an FSM that is executed by a MAC protocol agnostic engine.
Unfortunately it is impossible to adapt a MAC protocol (FSM) at run-time,
locally on the NIC. In WMP, an adapted MAC protocol (new FSM) needs to
be recompiled on a remote machine and re-injected on the interface card. We
will show that snapMac offers run-time reconfigurability of any MAC design
without needing a remote machine.

In [25], Djukic et al. present a software TDMA MAC protocol, imple-
mented in Linux user level, running over commodity 802.11 hardware. The
focus is on tight synchronization of pairs of nodes. The 1.5 GHz laptop
runs Linux with real-time extensions, which is necessary for precise software
timers. The user space uses a real-time thread implementation. The authors

10

want to test new standards (802.11s, 802.16 mesh protocol, etc.) and have
chosen for an overlay approach because “it is unlikely that the equipment
implementing these standards can be modified to develop new TDMA pro-
tocols”. In [26], Rao et al. present an overlay MAC layer (OML) solution.
They want to test new protocols without changing the underlying MAC. Re-
placing this existing MAC layer is much harder because it is implemented
“partly in hardware, partly in firmware, and partly in the device driver of the
Network Interface Card”. This tight integration of a MAC with the driver
is one of the reasons why we have made snapMAC MAC-independent. We
can conclude that any overlay MAC is always limited by the interface pro-
vided by the underlying MAC layer (and consequently the PHY driver). A
MAC protocol using snapMAC also runs in user level, but not on top a MAC
specific driver. This way, it is much easier to implement any MAC.

The goals in these non-WSN domains are the same as ours (i.e., flex-
ibility and adaptability), but this often goes together with a reduced per-
formance. We have focussed on flexibility, adaptability, and performance.
Furthermore, our proposed architecture aims to be universally applicable
(portability) thanks to the clean separation between MAC logic and radio
driver.

3. Goals of snapMAC

The move towards a generic, MAC protocol agnostic radio programming
interface fostering the design of any MAC is the major goal of snapMAC.
This radio programming interface (and architecture) should therefore present
a solution to the constraints described in the introduction. In this section
we propose our 5 goals, related to the problems of traditional MAC design.

We have shown that implementing time-critical operations in the MAC
becomes increasingly problematic in user level. Pushing time-critical opera-
tions from the user level MAC to a lower level reduces the implementation
complexity at user level. In traditional MAC design, a part of the MAC
is running in kernel space, which makes debugging harder, and the risk of
creating kernel lockups higher. Hence we would like to design the MAC
logic in user space, with support to control the time-critical operations.
This way the development and debugging are less complicated. Moreover
this also increases the portability as different platforms / operating systems
only have to supply the generic interface and execution environment.

11

A generic radio interface (API) must allow MAC designers to reuse the
same interface across different hardware/software platforms and different ra-
dio chips (PHYs). This goal will enable reusability of MAC implementa-
tions on different platforms. Of course, radio chips for different PHYs may
have divergent features. Being able to add these new features without chang-
ing the interface (API) is a big advantage. A traditional radio interface needs
to be extended with new interface functions any time new features are avail-
able. This is not needed with a generic radio interface because the specific
new command (e.g., for a new feature) is a parameter of that function call.
This way, new commands (features) can be implemented in the driver, and
made available to the MAC designer without changing the API.

We have seen dedicated radio drivers that are quite accurate only because
they are designed and implemented for a specific MAC protocol (traditional
concept). In our concept the radio driver must be MAC protocol and MAC
frame format agnostic. This will advance portability of both the radio
driver and the MAC protocol logic to other platforms.

Some actions require time-critical decisions which cannot be made at the
user space MAC protocol level. For example, checking if the ACK request-
bit is set in a header, copying the sequence number to an ACK frame and
sending that frame within the same deadline as a hardware autoACK. An-
other example is the random back-off interval in the CSMA/CA algorithm.
The user level MAC designer can set the constraints (e.g., minimum and
maximum backoff exponent), but the random value will be determined in
the hardware abstraction architecture. Any time-critical decision that must
be made within 1000 µs should be done in kernel level. The architecture
must support a generic mechanism to allow these time-critical interac-
tions, without requiring MAC-specific radio driver extensions (as is done in
traditional MAC design). Furthermore, it must be possible to implement a
standard compliant MAC.

We also want to provide a flexible research platform for MAC designers.
It must be possible to make per frame settings (channel, transmit power,
use CSMA/CA or not, etc.) and time-accurate, run-time reconfiguration
of any MAC design. With traditional MAC design, this level of flexibility
is impossible. Our framework will speed up the prototyping/development of
enhanced MAC protocols that may exploit new radio chip features. This will
also yield a fair comparison of MAC protocols because the underlying radio
driver is MAC protocol agnostic.

12

4. The snapMAC Architecture

4.1. Overview

Based on the goals proposed in the previous section we have designed
snapMac, a generic MAC/PHY framework for flexible MAC design. A con-
ventional upper MAC, running in user level, cannot reach sufficiently accu-
rate timings (i.e., microseconds precision) and therefore a kernel level lower
MAC with pre-defined protocol logic is usually needed. We think it would
be better if the user level MAC can decide, in advance, when exactly an
action/command (e.g., turn radio on, set channel, listen, check a bit in a
frame, etc.) must be executed, without being constrained by the kernel level
driver.

The user level MAC on top of snapMac, shown in Figure 4, uses two
interfaces: snapMacDataPlane and snapMacControlPlane. The snapMac-
DataPlane interface, exposed by the kernel level Data Plane Toolbox, is
used for sending and receiving frames. The snapMacControlPlane interface,
exposed by the kernel level snapEngine, is used for posting the user-defined
MAC protocol logic to snapMac.

Through this Control Plane interface, one or more time-annoted chains
(e.g., chain T) can be posted. A chain is composed of commands and is used
to describe MAC protocol logic. Most of the commands are implemented
in snapMac modules. A module can be a general toolbox (e.g., data plane
and arithmetic) or a hardware abstraction for a specific chip (e.g., antenna
switcher A HAL, radio B HAL). Each module exposes the Command inter-
face to the snapMac Engine. Based on the timestamps associated with each
posted chain, the scheduler will sort the chains. Via the dispatcher, each
command is executed just in time by the suitable module.

4.2. Modules, States, and Commands

First, we will explain modules, states, and commands. In order to clarify
some concepts, we have added examples that might be related to the PHY
technology (e.g., 802.15.4) used in the radio chip.

A module is a software entity that contains the implementation of a
command set. A module may also keep a state and each module has a
library of commands. We currently have four modules in snapMac: Data
Plane Toolbox, Arithmetic Toolbox, Radio B (e.g., CC2520) HAL, Antenna
Switcher A HAL.

13

Applications

Transport, Routing, etc.

Chain T
R A D D E @tT

User level

Kernel level

Chain R
D D E A A E @tR

time

Data
Plane

Toolbox RxTo
RxS
TxS

Radio
B

HAL
Sleep

Rx

 Buffer-
transaction

State=RX

Radio Chip
B

Antenna
Switcher

A
HAL SW_1

SW_2

time Arithmetic
Toolbox WAIT

ADD

WTRG
GOTO
STOP

Command

Command

Command

SpiSequencer-
lite

Command

GPIO

Command

snapMacControlPlane snapMacDataPlane

Engine

Full Control MAC

R

R

scheduler

M

M

1

Antenna
Switch

A
2

RF

dispatcher

Points to the current command

functions

interface
chip lib mod.

legend

time Queue

buffers

Hardware

s

n

a

p

M

a

c

Figure 4: Our snapMAC architecture. The Full Control MAC (in user level) uses two
generic interfaces: snapMacDataPlane for the data flow and snapMacControlPlane for
the MAC protocol logic. Our “chain” technique is used to describe the MAC protocol
logic. snapMac (one engine and n modules) is responsible for time-accurate execution of
the user-defined protocol logic.

A command is a primitive action with an optional parameter and a
certain command type. A command may change the state of a module after
its execution. Example commands are: “turn the radio off” (module state
changed) or “set auto ack” (module state not changed).

A chain is used for describing the MAC protocol logic as a sequence of
commands. Based on the command types, it is allowed to jump to another
command in the chain.

The module’s state can be used to verify whether a command is allowed
to be executed or not. For example, the command “turn radio on from off”
can only be executed if the state before executing this command is “OFF”.
After successful execution of this command, the state will be ”ON”.

We further distinguish between stable states (e.g., OFF, SLEEP, ON, RX)
and transient states (e.g., rxtx turnaround, tx, txrx turnaround). Commands
must always start from a stable state and end with a stable state (if the
module keeps state). The transient states only last for a short time. We have

14

used this for the implementation of the “Transmit frame” (Tx) command.
After a transmission the radio (e.g., Radio B = CC2520) will return to the
stable state RX automatically, that is why we do not have a stable state TX
in the Radio B HAL module. Before we can transmit a frame, we must check
if the radio is in stable state ON or RX. Next, three more steps are required:
switch the radio to tx (rx-tx turnarond), transmit the frame (tx), and switch
back to rx (tx-rx turnaround). We will use subcommands for these steps.
Such a sequence of one command followed by n subcommands is a subchain.
The user level MAC designer can not call individual subcommands. It will
be done automatically. A subcommand may start and end with a transient
state, as long as the start and the end of the subchain have stable states.
This is shown in Figure 5.

command y

cmd
y

Sub
n

STABLE STATE

Subcommand
1

Sub
2

... subchain:

STABLE STATE

Chain: x z

Figure 5: A command always starts from a stable state and ends in a stable state. A
command y may have subcommands. In this case, the subchain starts with the command
y, followed by n subcommands. A transient state is a temporary state, mostly until the
execution of a short hardware-related action (e.g., rx-tx turnaround) has finished.

Each module will expose the narrow waist Command interface (see Listing
1) to the snapEngine. The estimateTime2FinalizeCommand function returns
how long it will take to finalize (execution and optional transition) a specific
command taken into account the parameter(s) of the command, based on
a configurable lookup table that contains the timings. The executeCom-
mand function will actually execute the command that is requested by the
snapEngine. A module can also throw a commandEvent to the snapEngine
if an event occurs. The getCurrentState function will return the current state
of the snapMac module (if applicable).

15

1 command TimeStampT estimateTime2FinalizeCommand(CommandT

commandId , ParamT param , StateT blockingState);

2

3 async command uint32_t executeCommand(CommandT commandId ,

ParamT param , StateT blockingState);

4

5 async event void commandEvent(EventT cmdEvent , CommandT

commandId , ErrorT error , uint16_t info , TimeStampT ts);

6

7 async command StateT getCurrentState ();

Listing 1: The Command interface exposed by each module (The keywords command,
async and event at the beginning of the functions are nesC related keywords explained
in [16], not to be confused with our snapMac Commands and Events)

Every module will have its own library of commands, but the narrow
waist Command interface is reused for every module. Next, we will give
more details on our two classes of modules: hardware abstraction modules
and toolbox modules.

4.2.1. Hardware Abstraction Modules

The hardware abstratction modules contain commands that are hardware
dependent. The RM-090 platform has a dedicated SPI bus between the pro-
cessing unit (MSP430f5437) and the radio chip (IEEE 802.15.4 compliant
CC2520). It also has an antenna switch chip connected via General Purpose
Input Output (GPIO) lines.

In order to control these hardware chips, we needed to implement suit-
able hardware abstraction modules (drivers). This was done with separate
modules for each chip. For example, the hardware abstraction for radio chip
B is implemented in the Radio B HAL module. This module contains the
implementation of radio related commands and tracks the state of the radio
in order to verify whether a command can be executed or not. Similarly, the
driver for the antenna switch chip A is implemented in the Antenna Switch
A HAL module. These commands expose the features of the hardware.

The hardware abstraction modules must be able to communicate with
the chip itself. If there is an SPI communication bus, this can be done via
the SpiSequencerLite interface. We developed a new SPI driver, but this is
out of scope of this paper. Controlling a chip via GPIO control lines is also
possible via the GPIO interface. We did this for the antenna switch chip.
Of course, the interface a firmware engineer will have to use depends on the
design of the platform and new interfaces can be added easily.

16

The capabilities (maximum frame length, number of supported channels,
configurable transmit power, etc.) of the underlying radio hardware are
available in the header file of each Radio HAL module. It is the responsibility
of the MAC designer to check the capabilities of the radio chip when an
existing chain is reused.

4.2.2. Toolbox Modules

The toolbox modules contain commands that are hardware independent.
This property makes them reusable across different platforms. Currently, we
have two toolboxes: the Arithmetic Toolbox and the Data Plane Toolbox.

The Arithmetic Toolbox implements commands related to arithmetic op-
erations like comparing variables, adding variables together, setting/checking
a deadline, getting a random value, etc.

The Data Plane Toolbox buffers incoming and outgoing frames, hereby
avoiding blocking of the radio HAL when multiple frames are received before
the user level MAC is able to retrieve the frames and free the memory space.
Additionally it can store multiple frames waiting to be transmitted. This
toolbox exposes the snapMacDataPlane interface (Listing 2) directly to the
user level MAC.

1 command error_t postTxFrame(ChainT chainId , uint8_t* frame ,

uint16_t size);

2

3 event void txLoadFrameDone(ChainT chainId , uint8_t* frame);

4

5 command error_t postDataBuffer(ChainT chainId , uint8_t*

buffer , uint16_t size);

6

7 event void completedDataBuffer(ChainT chainId , uint8_t*

buffer , uint16_t size , TimeStampT start);

8

9 event void droppedDataBuffer(ChainT chainId , uint16_t size ,

TimeStampT start);

Listing 2: The snapMacDataPlane interface exposed by the Data Plane Toolbox module
(The keywords command and event at the beginning of the functions are nesC related
keywords explained in [16], not to be confused with our snapMac Commands and Events)

The postTxFrame function will enable the user level MAC to post mul-
tiple frames (depends on the configurable buffer capacity) that need to be
transmitted. Posting a Tx frame in the Date Plane Toolbox buffers can be
done at any time. It is the MAC logic that will decide when a frame can

17

be transmitted. At that time, a command implemented in the radio HAL
module will get the next frame from the Data Plane Toolbox. The buffer-
Transaction interface, exposed by the Radio B HAL module (see Figure 4),
will be used for exchanging frames between the Data Plane Toolbox and the
Radio HAL module. The txLoadFrameDone event will be signalled to the
user level MAC when the TxSignal (TxS) command is executed in the Data
Plane toolbox.

Similarly, we have functions and events for the receiving part. The
postDataBuffer function will enable the user level MAC to give the Data
Plane Toolbox a buffer where it can store the received data. The completed-
DataBuffer event will be signalled to the user level MAC when the RxSignal
(RxS) command is executed. If there is no buffer capacity left in the Data
Plane Toolbox, the droppedDataBuffer event will be signalled to the user
level MAC for every frame retrieved by the radio HAL module.

The snapMacDataPlane interface makes it possible for a user level MAC
designer to use a user level message queue and post pointers to queue entries
to the Data Plane Toolbox. This mechanism makes it possible to quickly
integrate the snapMac solution with existing wireless stacks.

4.3. Accurate time reference

Our system must work on so-called “radio time”. This is the time used by
the radio driver in order to meet the timings of the standard specification it
wants to be compliant with. A stable clock could be derived from the radio
chip itself (via the GPIO pins of the radio and a external clock input on
the microcontroller) but the radio can only deliver a clock when it is active.
This would take too much energy and is unfeasible in low-power applications.
The symbol time (Tsymbol) (e.g., 16 µs) used in the radio chip must be a
multiple of the microcontroller’s ”system time” (e.g., 1 µs). If we can match
the system time with the radio time, we have a very big advantage for our
time accurate driver. Other sensor boards often use a 32768 Hz crystal which
can only achieve a Tsymbol of 15.259 µs [27]. This is not accurate (4.6%
error). For this reason we have not used the standard 32768 Hz crystal for
our microcontroller. A 32000 Hz crystal was chosen, after confirmation from
Texas Instruments that this was OK for the microconroller. By using a
32000 Hz ± 40 ppm crystal, we can map 4 this crystal on 1 µs sub-symbol

4This is how we have mapped our 32000 Hz crystal : 32000 Hz times 500 is 16 MHz;
16 MHz divided by 16 is 1 MHz, 1 tick every microsecond

18

ticks which is 16 times smaller than the 2.4 GHz 802.15.4 symbol time. This
will allow us to define and execute the MAC protocol logic very accurately.

4.4. Protocol Logic through Chains

The user level MAC is not allowed to call the modules’ commands di-
rectly. Instead, the MAC protocol logic is defined by the MAC designer by
composing commands into so-called chains. The purpose of a chain is to have
time accurate execution of the MAC protocol logic. Suppose we want the
transmission of a frame to be executed at time tM . Most likely some steps
need to be taken in order to be able to execute this task at the requested
time. For example, we might need to switch on the radio, the frame needs
to be loaded into the radio buffer, we might want to set a custom transmit
power, the radio needs to be switched to transmit mode until finally it is
able to start the transmission of the frame at tM . Moreover, once the frame
transmission is finished we might want to shut down the radio as fast as pos-
sible. This task can be described in a chain composed of several commands.
In Section 5 this will be explained in more detail.

In order to facilitate the execution of such a sequence of commands we
force the use of exactly one master command that has absolute time with
respect to the radio time, and slave times that are relative to requested
execution time of the master command. Slave commands that are to be
executed before the master time have negative relative times while slave
commands that need to be executed after the master time have positive
relative times. In each chain the master command must be completed on the
requested time. Consequently, negative slaves commands must be executed
sequentially. It is not allowed for negative slaves to take an alternative path.
This is because we want to execute the master command on the requested
time. If we would allow alternative paths before the master command, we
cannot know when to start the first slave command. However, the MAC
designer does not need to worry about those “slave” times. The snapMac
Engine will use the estimateTime2FinalizeCommand function in order to
decide when the first slave command should be executed in order to meet
the deadline of the master command. A compiler directive is available to
add some time margin (e.g., 30 µs) that will be added to the result of the
estimateTime2FinalizeCommand function for every negative slave in order
to anticipate for unexpected interrupt routines. This way it is possible to
achieve the requested execution time of the Master command more precisely.
If many external interrupts are expected, we could increase this time margin

19

at the cost of having a (slightly) less energy-efficient solution. If too many
external interrupts are expected (e.g., sample the ADC with 100 ksps), we
advise to use a separate application processor.

Our chain concept is an alternative for a Finite State Machine. We believe
it gives more flexibility to a MAC designer, thanks to the ability to compose,
reload or adapt chains at run-time. It also gives the opportunity to accurately
plan the execution of commands.

4.5. Command types

We have defined a set of fine-grained commands as a library so that the
user level MAC designer can realize any MAC by combining these commands
in one or more chains. Every command should be aware that it is part of a
chain. Once the snapEngine passes the execution token to a command (there
can only be one at the time,) it is that command that decides how the chain
should proceed.

We have defined different types of commands:

• Continue (C): this is the default type. After execution of a command,
the next command in the chain is executed. Commands with command
type C can be used anywhere in the chain. All the other commands
are not allowed as negative slaves.

• Skip on condition (S): this type will be used for commands that are
verifying a condition (e.g., check if a bit is set or not). If the condition
is not true, the next command in the chain will be executed. If the
condition is true, we will skip the next command in the chain and
continue the execution of the chain.

• Skip on event (T): this type will be used for commands that are waiting
on a event (i.e., trigger), during a user-defined duration (timer). If the
timer expires (i.e., the event did not occur) the next command will be
executed. If the event occurs before the timer expires, we will skip the
next command and continue the execution of the chain.

The snapEngine owns four special commands: GOTO, JUMP, WTRG (Wait
Trigger) and STOP. The GOTO command makes it possible to go to another
command (designated by an absolute value) in the chain. We typically have
a type S or type T command before a GOTO command, because this allows
us to take an alternative path in the chain. The JUMP command allows to

20

jump to another command (designated by a relative offset) in the chain. The
WTRG command waits for an event (i.e., trigger) from a module. Other
commands must be used to check which event it was (e.g., frame that needs
to be transmitted, frame received). The STOP command needs to be placed
at the end of every chain. With this command, we can reload the chain
automatically, keep the chain in memory for future use or destroy the chain.
If a STOP is executed, it will sequentially signal all the events (rx frames,
cmd reports, etc.) to the user level to minimize the interference from the
upper layers during execution of a chain.

In Table 1, we have listed the data plane toolbox commands. For example,
the RxFM command will check if a 16-bit field at a given offset in a received
frame matches with a given reference (ref). A 16-bit mask can be applied
to that 16-bit field in order to know if a certain bit is set or not. If it is set
(i.e., condition is true), the next command in the chain will be skipped. This
generic command is very powerful. We have used it, for example, to check if
the ACK request bit is set in a received frame.

In Table 2, we have listed the CC2520 Radio HAL commands. For ex-
ample, the AutoAck command will configure the radio to send hardware
acknowledgments or not. This can command can only be executed if the
start state is ST NO-LPM2 (not in low power mode 2).

Table 1: The commands of the Data Plane Toolbox. For
each command the type, the parameters and a short de-
scription is given.

Command Type Parameters Short description
RxTo T TimeStampT

timeout; bool
part;

Skip the next command if a (part of
a) frame was received. Execute next
command if timeout (To) is reached.

Rx C bool part; Same as RxTo, but here we wait in-
finitely long. Execute the next com-
mand if a (part of a) frame was rece-
vied.

TxTo T TimeStampT
timeout;

Skip the next command if there is a
frame posted in the TX buffer. Execute
next command if timeout is reached.

continued on next page. . .

21

Table 1: The commands of the Data Plane Toolbox. For
each command the type, the parameters and a short de-
scription is given. (continued)

Tx C n/a Same as TxTo, but here we wait in-
finitely long. Execute next command
when there is a frame posted in the TX
buffer.

RxLM S uint16 t ref; Skip if length ref of the received frame
matches, with timeout.

RxFM S uint16 t rx-
Offset, mask,
ref;

Skip the next command if a field at
offset rxOffset with mask in the re-
ceived frame matches with ref .

RxTxFM S uint16 t rxOff-
set, txOffset,
mask;

Skip the next command if a field at
offset rxOffset with mask in the re-
ceived frame matches with a field at
offset txOffset with mask in the top
frame of the TQ buffer.

TxFM S uint16 t tx-
Offset, mask,
ref;

Skip the next command if a field at
offset txOffset with mask in the top
frame of the TX buffer matches with
ref .

RxFC C uint16 t * dest;
uint16 t rxOff-
set, mask;

16 bit copy from offset rxOffset with
mask in received frame to memory
∗dest.

RxCF C uint16 t * src;
uint16 t rxOff-
set, mask;

16 bit copy to offset rxOffset with
mask in received frame from memory
∗src, with mask.

RxS C uint16 t signal Signal the received frame to the upper
layer if signal == 1. If signal == 0,
drop the received frame and recycle the
buffer.

continued on next page. . .

22

Table 1: The commands of the Data Plane Toolbox. For
each command the type, the parameters and a short de-
scription is given. (continued)

TxS C uint16 t signal Signal the transmitted frame to the up-
per layer if signal == 1. If signal ==
0, destroy the transmitted frame and
recycle the buffer.

Table 2: The commands of the CC2520 Radio HAL mod-
ule. For each command the required start state, the sta-
ble end state (if applicable) and a short description is
given. All commands are type C, expections are indi-
cated.

Command Required
start
state

Stable
end state

Short description

Off ST NO-
LPM2

ST OFF Turn the radio off.

Sleep ST NO-
LPM1 2

ST SLP Turn the radio in sleep mode.

OnFromOff ST OFF ST ON Turn the radio on (from off
mode).

OnFromSleep ST SLP ST ON Turn the radio on (from sleep
mode).

OnFromRF ST ALL-
RF

ST ON Turn the radio on (from RF-on
mode).

RX ST ON via sub-
chain:
ST RX

Radio in receive mode (requires
ON start state)

TX ST ON,
ST RX

via sub-
chain:
ST RX

Transmit frame.

continued on next page. . .

23

Table 2: The commands of the CC2520 Radio HAL mod-
ule. For each command the required start state, the sta-
ble end state (if applicable) and a short description is
given. All commands are type C, expections are indi-
cated. (continued)

CcaTxFr ST ON,
ST RX

via sub-
chain:
ST RX

First do CCA, if OK then trans-
mit frame.

Scan ST ON via sub-
chain:
ST SCAN

Let the radio scan (symbol
search is disabled)

SwitchChan ST NO-
LPM1 2

n/a Change the channel.

LoadFr ST NO-
LPM1 2

n/a Load frame in the radio chip.

Prom ST NO-
LPM1 2

n/a Promiscous mode.

TxPwr ST NO-
LPM1 2

n/a Change the transmit power.

AutoAck ST NO-
LPM1 2

n/a Configure the auto ACK.

ScanRate ST NO-
LPM2

n/a Configure the scan rate.

RSSI ST ALL-
RF

n/a Read the RSSI.

FlushRxB ST NO-
LPM1 2

n/a Flush the receive buffer in the ra-
dio chip.

FlushTxB ST NO-
LPM1 2

n/a Flush the transmit buffer in the
radio chip.

FPTH ST NO-
RX-
LPM1 2

n/a Set the FIFOP threshold.

StartOfFrame ST ALL-
RF

n/a Trigger begin of the frame.
(Type T)

continued on next page. . .

24

Table 2: The commands of the CC2520 Radio HAL mod-
ule. For each command the required start state, the sta-
ble end state (if applicable) and a short description is
given. All commands are type C, expections are indi-
cated. (continued)

StartOfFrameInf ST ALL-
RF

n/a Trigger begin of the frame, wait
infinity.

EndOfFrame ST ALL-
RF

n/a Trigger end of the frame. (Type
T)

EndOfFrameInf ST ALL-
RF

n/a Trigger end of the frame, wait in-
finity.

CcaControl ST NO-
LPM1 2

n/a Configure the CCA parameter.

Cca ST ALL-
RF

n/a Trigger the CCA, rising edge
or falling edge, with timeout.
(Type T)

CcaInf ST ALL-
RF

n/a Trigger the CCA, wait infinity.

4.6. The snapMac Engine

The snapMac Engine (so-called snapEngine) is the center of our archi-
tecture. Every module (both hardware abstraction and toolbox) exposes the
Command interface to the snapEngine. In this scalable “star topology” it is
very easy to add new modules.

A chain is posted from the user level MAC to the snapEngine by using
this snapMacControlPlane interface (see Listing 3).

25

1 command error_t postCommand(ChainT chainId , SlaveT slaveId ,

CommandT cmdId , ParamT param , StateT blockingState , bool

eventOnExcec);

2

3 command error_t executeAt(ChaintT chainId , TimestampT valid ,

StateT referenceState);

4

5 command error_t executeNow(ChainT chainId);

6

7 command error_t removeChain(ChaintT chainId , SlaveT slaveId);

8

9 command uint16_t listAllCommands(uint8_t typeOfInfo);

10

11 event void commandInfo(ChainT chainId , SlaveT slaveId ,

CommandT cmdId , uint16_t error , TimeStampT ts);

Listing 3: The snapMacControlPlane interface exposed by the snapMac Engine to the user
level MAC (The keywords command and event at the beginning of the functions are nesC
related keywords explained in [16], not to be confused with our snapMac Commands and
Events)

A user level MAC designer has to choose a unique chain identifier, and
post all the commands and associated parameters for this chain one by one
using the postCommand function. Each command in a chain needs a unique
index number (the slaveId). The master command is designated with slaveId
zero. All the commands before the master command are called negative
slaves, all the commands after the master command are called positive slaves.
The slaveId can be used if the user level MAC designer wants to use the
GOTO command.

Posting commands from the user level to the kernel level only happens
when the user wants to test a new MAC protocol or when the user wants to
update the arguments of one or more existing (scheduled) commands.

In case of a new MAC protocol, all the commands must be posted (only
once) before the snapEngine can execute this new chain. This chain is stored
in the snapEngine, so that no further command control traffic between user
level and kernel level is required after posting a complete chain. Posting (a
large number of) commands of a new chain during the execution of an existing
chain does not interrupt the execution of the existing chain. To guarantee
good system functioning, only one chain can be active at any given time.

In case of updating the arguments of one or more commands, the updates
are effective the next time the commands are executed.

26

We already introduced the subchain concept. In Figure 6, the TX com-
mand is a subchain with three subcommands. An extra feature of our system
is that we can start executing the next command before or during the execu-
tion of a (sub)command. When using the postCommand function, the MAC
designer can specify a so-called “blockingState” for a command. When that
is executed and this “blocking state” is reached, we will immediately start
the next command (e.g., this can be used to store the timestamp when we
start a transmission). The only restriction is that the next command must
not change the state of the module that is already executing the previous
command (this may be a subcommand). Conversely, the execution of a com-
mand A is “full blocking” if it is not allowed to start the next command
during the execution of command A (this is the default use). It is like a full
protection that only command A is allowed until it finishes its execution.

Previous
command

TX
Next

command

subchain:

STABLE
STATE

legend
T
X

Transmit
frame

to
Rx

STATE_ON STATE_RX

to
Tx

blocking state: STATE_TXFR

Stop
chain

chain:

During execution of TX subchain, we can already
start the next command .

Figure 6: We can start the next command in the chain, based on a “blocking state” in
a subchain. In this example, STATE-TXFR was specified as the “blockingState” in the
postCommand function. So, after the first turnaroundtime, the next command is started
in parallel while the current command is transmitting the frame.

Once a chain is completely posted, it can be started in two ways. The ex-
ecuteAt function lets the MAC designer plan, at run-time, the time-accurate
execution of a chain’s master command. The user-defined time tM is the
time when the master command (or a subcommand of the master command)
must be valid. For example in Figure 7, it would be the actual “start of
transmission” time that the user level MAC designer wants to specify.

Because “transmit frame” is a subcommand of the TX command, the
MAC designer can associate the suitable reference state to the user-defined
time tM . We can see that tM is associated with the transient reference state
“STATE-TXFR” because the MAC designer wanted to plan the actual start

27

LoadFr

1 Master command Positive slaves

T
X

Transmit
frame

to
Rx

subchain:

STATE_ON STATE_RX

TX

STATE_ON

STABLE
STATE

legend

Stop
chain

TxS

Negative slaves

tM

to
Tx

On From
Off

Radio
Off

STATE_OFF
Requested time of
master command

Figure 7: Fine-tune the execution time of a command by associating the given time tM
with a (transient) reference state of a subchain.

of a frame transmission. The executeNow function will start the chain as
soon as possible, but we recommend to use the executeAt function.

The main task of the snapEngine is to make sure that the chains are
executed on their requested time. When a chain is posted (or reloaded), the
snapEngine scheduler will sort it (earliest deadline first). The snapEngine
will handle the chains one by one. The snapEngine dispatcher instructs the
suitable module(s), just in time, to execute the commands.

4.7. Transition and Execution Timings of Commands

For every command in the radio HAL module, we first need to know if
it is allowed to execute that command given the current state. For example,
according to the datasheet of the CC2520 chip it is not allowed to go from
STATE OFF to STATE SLEEP. We have defined 16 states, so we can use a
16 bit “allowed state mask”. Next, we will define the time type (transition,
execution, fixed or per byte) and the time needed in sub-symbol ticks (µs in
our case). If the snapEngine wants an estimate of the time needed to finalize a
command, it will be calculated from stable state to stable state. The example
in Table 3 will show the total time needed for transmitting a frame. The TX
command is only allowed if the radio state is STATE ON or STATE RX. If
the allowed state matches with the current state, the command is executed.
The next state of this command is STATE 2TX, a transient state. Since
each command must end with a stable state, there is a next subcommand
listed in the table. The 2TX subcommand needs a transition time of 192 µs,

28

Command Allowed
state mask

Time type Time
[µs]

Next state Next cmd

TX ST ON,
ST RX

Execution 4 ST 2TX 2TX

2TX ST 2TX Transition 192 ST TXFR TXFR
TXFR ST TXFR Fixed,

per byte
160
32

ST TXRX TXRX

TXRX ST TXRX Transition 192 ST RX NONE

Table 3: Part of the execution and transition time table, to show the time needed for
transmitting a frame. The time needed for actual transmission of a frame is given per
byte (160 µs for the complete preamble, 32 µs per byte).

after which it is in STATE TXFR. The next command is TXFR. This will
transmit the preamble and the complete frame. The preamble (5 bytes)
needs a fixed time of 160 µs. Based on the length of the frame, the radio
chip will need 32 µs per byte (in the 2.4 GHz band). Once the frame is
transmitted, another transition is needed to stable state STATE RX. This
is the turnaround time needed to switch the radio to RX mode. The table
can be configured at design-time. If someone wants to port snapMac to
a platform with another PHY, it is very easy to change for example the
transmit time needed per byte.

4.8. Frame Formatting in User Level and Time-critical Responses in Kernel
Level

The IEEE 802.15.4 radio chip allows us to define most of the frame format
in software. Figure 8 shows a schematic view of the IEEE 802.15.4 Frame
Format.

We did not change the PHY synchronisation header, the length byte in the
PHY header and the two Frame Check Sequence bytes in the MAC footer.
The CC2520 datasheet states: “The PHY Service Data Unit contains the
MAC Protocol Data Unit (MPDU). It is the MAC layer’s responsibility to
generate/interpret the MPDU, and CC2520 has built in support for processing
of some of the MPDU subfields.” This is what snapMac offers to the user
level MAC designer: the freedom to generate/interpret the MPDU in software
and/or using the built in hardware support.

A lot of MAC protocols use time-critical responses to occurring events
like for example sending an acknowledgment (ACK) on receipt of a frame.

29

Figure 8: Schematic view of the IEEE 802.15.4 frame format

Passing the received frame to the user level and creating an ACK there will
lead to high delays (at least 1 ms). Through the usage of frame templates the
user level MAC is able to determine the frame formatting for time-critical
responses.

For example, the MAC designer could choose to disable the CC2520 sup-
port for generating ACK frames automatically. This way it is up to the MAC
designer to decide where to add the ACK request MPDU subfield, and to
generate a software ACK frame. The content of this software ACK frame
template is also defined by the user level MAC designer and is not pre-defined
in the radio driver.

First we will use the RxFM command to check if the ACK request MPDU
subfield is set. Using a mask and a byte offset, the user level MAC designer
can decide which subfield that needs to be checked. Next we need to copy
the sequence number of the received frame to the ACK template. This is
done with the RxFC command. Finally, the template can be loaded in the
transmit buffer with the LoadFr command. No interaction with the user
level MAC is necessary in order to send time-critical responses on incoming
frames. Our MAC/PHY abstraction architecture is agnostic to the message
format used in the user level MAC. This feature allows for maximal flexibility
in frame formats. Radio driver developers also benefit from this approach
as they do not need to bother about frame types, therefore resulting in a
cleaner (and faster) implementation.

4.9. Conclusion

Our architecture differs significantly in several aspects with respect to
current implementations in the WSN domain. The first difference is the

30

snapMAC concept itself: a clean separation between the user level MAC
protocol and the kernel level. In the kernel level, we have a central snapMac
Engine in combination with toolboxes and hardware abstraction modules.
No MAC-specific time-critical functions are present in the kernel. We also
introduced a generic snapMacControlPlane programming interface (between
the MAC control running in user level and the snapMac Engine running in
kernel level). This enables posting of time-annoted command chains that
contain the MAC protocol logic. The last aspect relates to our requirement
that the radio driver must be independent of the frame format in order to
maximize MAC design flexibility. Therefore we brought the frame formatting
to the user level MAC. Combining all of the above results in reusability of
MAC designs in a generic way while guaranteeing the time-critical execution
of any MAC.

5. How To Use snapMAC from a user level MAC Perspective?

Here we will show the transmitter command chain needed for asynchronous
multi-channel receiver-based communication (in non-beacon mode). This ex-
ample is one of the new IEEE 802.15.4e solutions for handling the case where
channel asymmetry between two devices can happen. In [28, 29], Tytgat
demonstrated the feasibility of channel asymmetry with a similar MAC pro-
tocol. Each device will select its designated listening channel on which it
wants to receive frames. Each transmitter will switch to the designated lis-
tening channel of the receiver. The receiver will check if an ACK is requested
in the DATA frame, and will switch to the designated listening channel of
the originator to send a software ACK (within the specified timing of the
standard). This is illustrated in Figure 9.

Suppose we need to transmit a sensor reading from a device, attached to a
machine and powered with an energy harvester. This node will sleep until it
has harvested enough energy to perform the sensor reading and transmit it to
an always-on receiver. The receiver will send a software ACK back (if this is
requested by the transmitter) on the listening channel of the transmitter. For
each role (transmitter or receiver), we have created two command chains: the
init command chain, and the main command chain. During the initialization
of the transmitter (A), we let the snapMAC engine execute the command
chain that sets the transmit channel to 26, configures the radio not to send
hardware ACKs and puts the radio in sleep mode. Next, the main command

31

DATA FRAME
ACK requested

Frame in TX buffer

RX FRAME

Check ACK requested? Yes

ACK

RX
ACK

ON/TX

RX
Sleep

TX

RX
Sleep

channel 26

channel 26 channel 26

channel 12

channel 12

Copy DSN to ACK template

max. 864 µs

352 µs Signal TX
Load
data frame

Waiting
for
frame in
TX buffer

Signal RX

TX
RX

TX
RX

Waiting
for
frame in
RX buffer

Check DSN

Signal TX

Load ACK in TX buffer

On from
 sleep

ACK req?
Yes

Signal RX

192 µs
Reload
chain

Reload
chain

max.
672 µs

SFD
Sleep

channel 26

Figure 9: Example of asynchronous multi-channel receiver-based communication. A is the
transmitter, B is the receiver. The numbers refer to the slaveId identifiers in Figure 10.

Switch Channel 12

Load
Frame

Tx
Wait ∞ on TX frame

in queue

Tx
Transmit

frame

RX

Receive mode

StartOfFrame
Wait 672 µs

TxFM
(Check if ACK requested in

tx frame)

GOTO
Slave 16

RxTo
Wait 192 µs on rec.

frame

RxTxFM
(Check Sequence Number)

TxS
Signal transmitted fr.

STOP
Reload chain after 15 µs

No frame received

No ACK requested
Frame arrived
in TX queue

ACK requested (skip next CMD)

On
FromSleep

GOTO
Slave 17

Switch Channel 26

Sleep

Wrong sequence
number

No frame start detected
Frame start (SFD) detected
(skip next)

Frame received
(skip next)

Sequence number OK (skip
next)

RxS
Signal received fr.

GOTO
Slave 17

GOTO
Slave 17

Figure 10: The command chain for the transmitter in this example contains 19 commands.
We have not shown the init command chain (configures the radio to use channel 26 and
not to send hardware ACKs.)

32

chain of 19 commands (Figure 10) will be executed (point of time of master
command is decided by the user level MAC).

The master command (0) will wait infinitely long for a frame to be trans-
mitted (so we do not skip a command once a frame is ready to be transmitted)
Slave 2 will turn on the radio from sleep, slave 3 will load the frame in the
radio, and the next command will start the actual transmission on channel
26. Slave 5 will check if the transmitted frame has requested an ACK. If no
ACK is requested, the transmission is successful and slave 6 will go to slave
16 in order to signal the transmission to the user level MAC. However, if
an ACK is requested, slave 6 will be skipped and we are going to prepare
the reception of an ACK on channel 12 (slave 7 and 8). We have chosen to
wait for the start of a frame with a timeout of 672 µs . If no frame start is
detected before this timeout, command 10 is executed (jump to slave 17).
However, if the start of a frame is detected we will skip slave 10 and wait
192 µs for receiving the ACK frame (slave 11). If a complete frame is re-
ceived, we will signal (slave 13) this to the user level MAC. Next, we will
check the sequence number in slave 14. If it is OK, we will skip slave 15 and
signal an acknowledged transmission to the MAC. After setting the channel
to the designated channel of the receiver, we turn the radio in sleep mode
and reload this command chain after 15 µs.

6. Functional Validation and Performance Evaluation

We used our RM-090 nodes to evaluate snapMAC in terms of software
ACK timings, throughput, round trip time, beacon interval time accuracy
and energy consumption. We have also designed a Low Power Listening
MAC. We have created chains, so our experiments also serve as a functional
validation of snapMac.

6.1. Experimental Setup

The experimental set-up is shown in Figure 11. Using the Agilent Tech-
nologies DS03062A oscilloscope together with a 4.5 Ohm resistor allows us to
visualize the current consumption of node A. Node A is also connected to our
Saleae Logic Analyzer. Node B and sniffer node S are in close vicinity. The
sniffer node S is connected through USB to our laptop. The sniffed 802.15.4
frames are encapsulated into UDP frames using the ZigBee Encapsulation
Protocol (ZEP) and sent to WireShark 1.2.8. The included timestamps are

33

captured on node S, and we have verified the accuracy with a spectrum
analyzer.

Oscilloscope

A

B

Sniffer Wireshark

Logic Analyzer

Spectrum Analyzer

Figure 11: The experimental set-up. Node A, B and sniffer S are RM-090 boards.

6.2. Software ACK

Here we want to show that (a) our sofware ACK meets the timing con-
straints as defined in the 802.15.4 standard and (b) that it is very reliable.
As in [30], we refer to the time between transmission of the last byte of a
data frame until the reception of the last byte of the complete ACK frame
as ACK time. According to the 802.15.4 standard, the maximum ACK time
is 864 µs. The ACK time is also illustrated in Fig. 9. We have used the
chain as described in the previous section, without the channel switching.
We started with a frame length of 9 (minimum allowed data frame length),
sent these data frames 500 times at 25 frames per second before we increased
the frame length with 6. Our sniffer captured this traffic and based on this
trace file we calculated the ACK time and we also measured the reliability.

In Figure 13, we see that snapMac meets the ACK time constraints,
as defined in the 802.15.4 standards, starting from a frame length bigger
than 15. For all our measurements, the standard deviation was below 2.5 µs
and the minimum and maximum ACK times are close to the average. For
data frames between 9 and 15 bytes we notice that we are constrained by
our hardware platform. Preparing the ACK frame starts immediately after
receiving the first 6 bytes of a data frame. This preparation needs some time.
For shorter packets (e.g., 9 and 15 bytes), the processing continues after the
reception of the last bytes. For longer packets, the preparation of the ACK
frame is done before the last byte is received. This is shown in Figure 12

In [30], data frames need to be bigger than 18 bytes in order to meet
the 802.15.4 standard time constraints (although they cannot guarantee this
because it depends on the overall work load of the node). Another drawback
in [30] is that busy waiting is used while receiving a frame, which limits

34

1075

21 B

15 B

9 B

895

732

Preamble, SFD,
Length

ACK time (us)

27 B

732

Preparing
ACK frame

Start preparing ACK

Frame
length

Software
ACK frame

Data frame

Legend

RX/TX
turnaround

352 us 192 us

544 us

Figure 12: The ACK frame is prepared after receiving 6 bytes of the data frame. For very
short frames (smaller than 21 bytes) the preparation of the ACK frame is not finished
during the reception of the data frame. For those small packets, the ACK time is a bit
higher.

the computational resources for other tasks severely. For small frames, they
monitored that 0.08 % of their software-generated ACK frames were lost (vs.
0.0 % for hardware ACKs). Using snapMac 0.00% of the software ACKs were
lost during a 1700 sec test (42500 data frames), as illustrated in Figure 14.
The bottom line shows the minimum data length (i.e. ACK frames) and
the top line shows the increasing/decreasing maximum data length in the
WireShark trace file. The extra advantages of software ACKs are the ability
to choose (1) a custom transmit power, (2) a custom channel and (3) a custom
frame format. This allows to create novel protocols with the ability to test
them fast (no driver hacking) and efficiently (e.g., no busy waiting).

6.3. Throughput

We have measured the maximum single-hop throughput by sending max-
imum sized frames, every 4448 µs, originating from the user level MAC from
one node to another. We did not use a backoff scheme and we did not request
an ACK. So, the only delay between frames is the turnaround time from tx

35

650

700

750

800

850

900

950

1000

1050

1100

9

1
5

2
1

2
7

3
3

3
9

4
5

5
1

5
7

6
3

6
9

7
5

8
1

8
7

9
3

9
9

1
0

5

1
1

1

1
1

7

1
2

3

A
C

K
 t

im
e

 (
µ

s)

frame length (byte)

Influence of frame length
on software ACK time

Average snapMac

802.15.4 Standard Limit

Figure 13: Influence of data frame length on the ACK time.

to rx, loading the frame and the turnaround time from rx to tx.
The number of nodes in a network does not impact the kernel level oper-

ation of each individual node. Each individual node has its own engine. This
configuration with two nodes is the ideal stress test for the implementation of
snapMac because with a larger number of nodes the load of each individual
node would be lower. This proofs that the proposed architecture can handle
’heavy’ traffic from one transmitter to a receiver.

The initialization chain contains 5 commands, the main chain contains 7
commands. We ran this test during 8 hours and we measured the throughput
at 10 random moments (using a sniffer and WireShark to count the number
of transmitted frames per second). Sending a maximum sized frame (includ-
ing the preamble) lasts 4256 µs. The maximum measured throughput is 218
frames per second. For each frame, the maximum data payload size is 125
bytes (everything between the length byte and the Frame Check Sequence).
As calculated in Section 2.1 of [31], the theoretical upper bound on the single-
hop throughput Ts is 224.82 kbit/s. We achieved 97% (i.e., 218 frames per
second times 125 bytes (1 kbit/s) payload is 218.0 kbit/s) of this theoretical
upper bound. This is the highest reported throughput. The average time
between frames is 332 µs. The fact that we can achieve such a high through-

36

Frame length
(bytes)

1000 0 500 Time (s)

100

200

10000 data frames

10000 ACKs 5 B

127 B

27 B

Figure 14: Reliability of software ACKs with data frame lengths increasing/decreasing
over time. We have sent 25 frames per second during 1700 seconds. The bottom line
shows the length of the captured ACK frames (5 B).

put also means that every single transmission is executed very efficiently.
As such we conclude that the overhead for a single transmission is minimal.
Minimal overhead also leads to minimal wasted energy consumption. With
the standard CC2420 TinyOS driver on a TMoteSky and a Zolertia Z1 mote,
the maximum measured throughput is respectively 66 and 89 frames per sec-
ond. The new CC2420x TinyOS driver is able to transmit respectively 116
and 179 frames per second.

6.4. Round Trip Time

The Round Trip Time (RTT) is the time needed for a message exchange
between two nodes. The RTT includes the processing time at both transmit-
ter and receiver side, and the actual transmissions of the messages. For two
maximum sized frames, the transmission time is 8.512 ms. We will measure
the round trip time in the user level MAC of node A. The goal is to de-
termine the overhead of snapMac processing. For this experiment, we have
created a chain that puts the radio in receive mode (always-on MAC). Next,
we wait on an event (this could be a frame we have to transmit or a frame
that is received). We check if a message is in the TX buffer (this check is
done in 15 µs). If there is a message ready, we send it. Otherwise, we check
if there is a message in the RX buffer (this check is done in 15 µs). At the
end of the chain, we signal transmitted or received messages to the user level.

37

Once the chain is executed, it is automatically reloaded. The initialization
chain contains 8 commands, the main chain contains 11 commands.

transmit receive

snapMac

radio chip
Node A

radio chip

snapMac
Node B

user level Mac

user level Mac

RTT=10.328 ms

4.256 ms 4.256 ms

Overhead

Figure 15: Round Trip Time measured with Logic Analyzer on node A. Round trip time
(10.328 ms) starts when the frame is passed to snapMAC. Next it is loaded in the radio and
transmitted to node B (4.256 ms), there a new frame is created in the user level of node
B, loaded in the radio and transmitted to node A (4.256 ms), and finally made available
in snapMac for the user level MAC of node A.

As shown in Figure 15, the RTT is 10.328 ms. The overhead introduced
by node A and B together is 1.816 ms. As mentioned in the Related Work
section, in [18] the measured RTT was 60 ms for “No CSMA/CA / ACK”,
79 ms for “CSMA/CA / ACK enabled”, and 62 ms for Meshnetics ZigBeeNet
MAC”. We conclude that the processing overhead introduced by snapMac is
very low.

6.5. Time Accuracy Validations

Here we will show that it is possible to be standard compliant with the
IEEE 802.15.4-2006 standard. The Beacon Interval (BI) is dependent on the
Beacon Order (BO, valid range 0-14 in beacon-enabled PAN):

BI = aBaseSuperframeDuration ∗ 2BO(symbols) (1)

We have repeated the same test as done in [27]. In Table 4 the theoretical
values of the 802.15.4 BI are compared with the experimental values (for

38

Table 4: Experimental results of the beacon interval accuracy. The average experimental
results are both accurate and precise.

Theoretic Experimental Avg. error Precision
BI Min Avg. Max. Abs. Perc. Std. deviation

BO [µs] [µs] [µs] [µs] [µs] [%] [µs] [ppm]
0 15360 15331 15352 15360 8 0.052 5.4 352
1 30720 30642 30701 30721 19 0.062 12.8 417
2 61440 61342 61418 61442 22 0.036 19.1 311
3 122880 122719 122806 122883 74 0.06 32.1 261

BO = 0, 1, 2, 3). Our oscilloscope could not measure better than 100 µs
resolution (given that we have to display minimum 16 ms on the oscilloscope).
Therefore, we have used a Saleae logic analyzer to measure the time between
each start of a beacon. We took 1 billion samples at 16 MHz (62.5 s). The
error of this measurement method is, according to the logic analyzer software,
0.1%. The crystal of the logic analyzer adds ±20ppm to the ±40 ppm crystal
of our sensor platform. The total drift of our measurement set-up is 60 ppm.
Theoretically, the worst-case drift is 40 µs (on the sensor platform) and 60 µs
(in our measurement set-up) per 1 s. In practice, the FLL control loop for
frequency stabilization is not working well. The workaround for this hardware
constraint is turning off the FLL or implementing a Software FLL 5. We prefer
to add an extra clock source (e.g.,8 MHz, 16 MHz). Our experimental results
(shown in Table 4) are both accurate (the average is close to the requested
beacon interval, small bias) and precise (the standard deviation is low). Both
the average error and the precision do not increase linearly with an increasing
BO, indicating that this is a hardware issue and not related to the software.
In 802.15.4 networks, a guard time (idle listening) at the receiver is used to
compensate clock drift. Clock drift prediction methods can limit this drift
uncertainty and shorten the guard times. Such a method is out of scope
of this paper, but it is important to know that snapMac supports accurate
scheduling.

5Errata Number UCS10, MSP430F5437 Device Erratasheet SLAZ287C Revised Jan-
uary 2013

39

6.6. Energy consumption: sleep - load - transmit - receive ACK - sleep

Here we want to show the energy consumption of a MAC sequence that
is often used in duty-cycled MAC protocols. This energy consumption mea-
surement shows that the commands (sleep - load - transmit - receive ACK
- sleep) are executed just in time and that the chain handles both cases:
receiving an ACK and not receiving an ACK.

DATA

(a)

500us

4.4mA

ACK

t

I

500us

4.4mA

t

I

(b)
(c)

(d)
(e)

(f)
(g)

(f’)

DATA

(h)

(g’)

Figure 16: Energy consumption measured on the oscilloscope. In the bottom screenshot,
no ACK is received and we can see that the node waits longer: (f) vs. (f’).

In Figure 16, we see two screenshots of our oscilloscope connected to
node A. On the horizontal axis we see the time (500 µs per division). On
the vertical axis we have the current (4.44 mA per division). Node A sleeps
until a frame has to be sent (a). The node will go to ON from SLEEP (b),
load the frame in the radio chip (c), send it to node B (d), turnaround from

40

tx to rx (e), wait for an ACK (f), inform the user level MAC (g) and go back
to sleep and some serial communication (h). In the bottom screenshot, we
have disabled node B. We can see that node A is waiting for an ACK for
830 µs (f’) and that more energy is consumed when an ACK is not received.
This is because searching for the start of a message is more intensive than
receiving the message.

6.7. Low Power Listening MAC

Low Power Listening (LPL) is a MAC technique where the transmitter re-
peats a packet during a certain window, and the receiver periodically samples
the channel in order to detect activity (Clear Channel Assessment checks).
In our example, node A generates 1 frame per second. Before transmitting,
we wait for a clear channel and if the channel is clear we repeat the packet
during 206 ms with an inter frame delay of 660 µs. Node B will check for
channel activity every 202 ms for 1000 µs. If activity is detected, we will wait
for the complete frame in Rx mode, otherwise we go to sleep mode. Once
the chain is executed, it is automatically reloaded. The initialization chain
contains 9 commands, the main chain contains 31 commands. Compared
with MLA [19] components, this command chain includes the commands
that create a “channel poller” (sampling the radio channel for activity), an
“LPL listener” (adjust the radio’s power state based on channel activity) and
a “Preamble sender” (sending back to back copies of the packet).

In Figure 17 we see the radio HAL activity (captured with a Logic Ana-
lyzer) for node A and node B. First, node A checks if the channel is clear and
transmits the frame. This is received by node B. Next, node B echoes the
packet when the channel is clear. This experiment confirms that the CCA
commands work.

6.8. Real-life deployment stability test

Our snapMAC framework has been used in a musical-theatre production6

in order to control 10 robots with a TDMA MAC. No stability issues were
discovered during this real-life deployment or during our experiments.

For each command exposed by a snapMac module (Data Plane Toolbox,
Radio HAL, Antenna Switcher A HAL, Arithmetic Toolbox or a new mod-
ule), we know exactly how long it takes to execute (see Table 3, these timings

6http://www.youtube.com/watch?v=on3fzlzaUjI

41

2) Node A transmitting (206ms)

3) Frame received 5) Node B transmitting (206 ms)

4) Periodic check if
channel is clear before tranmitting

1) Periodic check if channel is
clear before transmitting

6) Frame
received

Node A

Node B

Figure 17: Radio HAL activity (captured with a Logic Analyzer) for node A and node B,
demonstrating the Low Power Listening MAC.

can be adjusted). Because there is no risk of interrupting the execution from
the user level and because each command is handled sequentially, we have
created a stable framework.

6.9. Memory Footprint

Here we will show a detailed breakdown of ROM and RAM usage of the
snapMac framework without user-defined chains. There is no dynamic over-
head because we define at compile-time the maximum number of commands
(default: 40) that can be used in user-defined chains. For debugging purposes
we also define at compile-time the maximum number of commands (default:
10) for which we want to enable debug information. Both parameters influ-
ence the RAM overhead. For each additional command that can be used in
user-defined chains the RAM overhead is 28 bytes. For the default maximum
of 40 commands, 1120 bytes in RAM is required. For each additional com-
mand for which we want to enable debug information the RAM overhead is
14 bytes. For the default 10 commands, 140 bytes in RAM is required. This
is only needed during development.

42

The complete snapMac framework (without user-defined chain(s)), in-
cluding TinyOS, a microsecond timer, maximum 40 commands and 10 com-
mands with debug information utilizes 11720 bytes of the ROM and 1616
bytes of the RAM. This is 4.6% of the available ROM and 10.1% of the
available RAM on our RM-090 node.

Now we have analyzed the RAM usage, we will look at the ROM usage.
First we will show the ROM requirements for the different commands:

• The snapEngine commands use 542 bytes in ROM.

• The arithmetic toolbox commands use 416 bytes in ROM.

• The data plane toolbox commands (see Table 1) use 1110 bytes in
ROM.

• The CC2520 Radio HAL commands (see Table 2) use 1734 bytes in
ROM.

The total ROM requirement for all the commands is 3802 bytes. The snap-
Mac framework without any commands and user-defined chain(s), including
TinyOS, a microsecond timer, maximum 0 commands and 0 commands with
debug information utilizes (11720-3802) 7918 bytes of the ROM and 326 bytes
of the RAM. TinyOS without the snapMac framework uses 1048 bytes of the
ROM and 8 bytes of the RAM. We conclude that the overhead of the bare
snapMac framework is 6870 bytes in ROM and 318 bytes in RAM. This is the
code that can be completely reused. The material-independent commands
(snapEngine, arithmetic toolbox and data plane toolbox commands) can also
be reused: this adds 2068 bytes in ROM. In total, 8938 bytes in ROM can
be reused. This is 84% of the snapMac framework. The material-dependent
commands use 16%. This is shown in Fig. 18.

It is easy to disable commands (at compile-time) that are never used
in the user-defined chain(s). This way the total ROM requirement can be
further reduced.

We were not able to compare our framework with a monolithic imple-
mentation (because there is no monolithic implemenation available for our
hardware platform). In TinyOS there is a CC2520 driver, using the tasklet
mechanism, for the SAM platform. According to Eric Decker “the existing
cc2520 driver isn’t very good” and “it is tightly wedded to the sam platform”

43

Bare snapMac
framework

(6870 Bytes ROM)
64%

Material-independent
commands

(2068 Bytes ROM)
20%

Material-dependent
commands

(1734 Bytes ROM)
16%

Figure 18: snapMac ROM footprint: the material-dependent commands use 16% of the
total snapMac framework.

7. Other researchers in our research group have ported the “native” contiki
driver to our hardware platform. Next, they will port snapMac to Contiki.
At that time, it will be possible to compare the memory footprint of snapMac
MAC protocols with “native” protocols.

6.10. Overhead of run-time loading, evaluating and updating of the chain

The one-time overhead of loading the commands of a particular chain
depends on the order of the posted commands. When the n commands of a
chain are posted in the correct order, the snapMac engine does not need to
re-order these commands.

At this moment we have an overhead of approximately 40 µs (16 MHz
microcontroller) per executed command (without optimizations) including
state machine checking (which could be disabled in deployment).

At any time it is possible to update the parameter of a particular com-
mand. The next time the command is executed, the updated parameter will
be used.

7http://tinyos-help.10906.n7.nabble.com/BlinkToRadio-on-micaz-using-cc2520-not-
working-td23577.html October 7 2013

44

7. Future work: portability of snapMac

In this section we describe the different options of snapMac regarding the
portability of the framework and the MAC protocols.

7.1. Framework

Supporting new hardware platforms (i.e., another PHY radio chip) only
requires a minimum of changes if the same OS (i.e., TinyOS) is already sup-
ported on the new hardware platform. For example, the Zolertia Z1 hardware
platform supports TinyOS, but has an older radio chip (CC2420). For this
radio chip we need to develop an appropriate radio HAL module in snap-
Mac. The snapEngine and the Toolbox modules remain unchanged. The
material-dependant Hardware Abstraction modules (e.g., Radio HAL, An-
tenna Switcher, etc.) define their own commands and expose their commands
via the unaltered Command interface. The commands listed in Table 2 are
most likely applicable to a new radio chip, with exception of the SwitchChan
command if the radio operates on a single channel. For each of these com-
mands, a specific implementation for the hardware chip is required. If the
hardware chip offers extra (chip specific) functionality, extra commands can
be added to the new Hardware Abstraction module. Our Command interface
is generic, so this interface will remain the same on all the supported hard-
ware platforms. The MAC designer is now able to use these new commands
in its composition of the command chain(s) at user level.

Our CC2520 Radio HAL module has 1020 lines of code, of which 516
lines of code are specific for the CC2520. Supporting the CC2420 radio chip
would require replacing these 516 lines of code with the CC2420 specific
instructions.

Supporting another OS (e.g., Contiki OS) requires a port of the snapMac
framework. If the new OS is written in C, most of the nesC code can be
reused, but one would need to adapt snapMac to the constructs used in the
new OS. Once snapMac is ported to a new OS, the user-defined chains can be
reused. This would allow us to port existing MAC protocols accross different
operating systems. We have not yet completed the port to Contiki OS.

7.2. MAC protocols

With snapMac it will be possible to reuse a MAC protocol chain accross
different hardware platforms with the same PHY. Many IEEE 802.15.4 com-
patible radio chips are available. Once the radio HAL module for a new chip
is written, all the existing MAC protocol chains can be reused.

45

Reusing a MAC protocol chain accross different hardware platforms with
a different PHY is also possible, but the MAC designer should check the ca-
pabilities and features of the new PHY. The IEEE 802.15.4 supports different
PHYs (frequency, data rate, modulation). Supporting different frequencies
and data rates (e.g., 868 MHz, 20 kbps) only requires two updates: (1) change
the supported channel list, (2) change the time needed to transmit (this time,
as configure in Table 3, relates to the data rate). In [32] an 802.15.4 based
MAC is adapted on a powerline communication (PLC) non-wireless medium.
This demonstrates the future applicability of our snapMac framework.

8. Conclusions

The major goal of the snapMAC concept is to foster reusability of MACs
on different hardware / software / radio platforms.

We have shown that the snapMac architecture supports any time-accurate
user level Full Control MAC (1) which communicates through a generic ra-
dio interface (2) with a MAC protocol agnostic radio driver (3) that allows
generic time-critical interactions (4) while maintaining maximum flexibility
and freedom for MAC designers (5). The snapMac architecture changes
MAC implementation significantly. First of all, we invented a scheduling
(planning) based technique (time-annotated chains) to describe the MAC
protocol logic. Second, frame formatting is done in user space in contrast
to driver space. Third, a generic MAC protocol agnostic driver can respond
instantly on events. Fourth, we have defined two generic MAC protocol
agnostic interfaces between the MAC and the radio driver.

This architecture has been implemented and evaluated on the RMoni
RM-090 wireless sensor nodes running the TinyOS operating system. We
showed that the ACK time is within the 802.15.4 limit for frames bigger
than 15 bytes. We also showed that we can reach up to 97% of the theoret-
ical throughput. Our implementation enables energy-efficient execution of
duty-cycled MAC designs because we can plan the execution of commands
just in time. Although our implementation is oriented towards WSNs, the
architecture and the interfaces can be used on PCs with any wireless NIC. In
such a scenario the proposed snapMac ’driver’ part is the firmware running
on the NIC, and any MAC can be implemented on the PC’s user level. The
only task of the kernel would then be to enable communication between the
PC’s user level MAC and the NIC firmware.

46

Concluding we can state that the snapMAC architecture increases reusabil-
ity and decreases complexity of MAC implementations as well as the underly-
ing radio drivers. Moreover the architecture enables time-accurate execution
of radio-related actions and instant reaction on time sensitive events in a
generic way.

References

[1] J.-P. Vasseur, A. Dunkels, Interconnecting Smart Objects with IP: The
Next Internet, Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2010.

[2] Libelium sensor applications ranking,
http://www.libelium.com/top 50 iot sensor applications ranking/,
2013.

[3] A. Bachir, M. Dohler, T. Watteyne, K. K. Leung, Mac essentials for
wireless sensor networks, Communications Surveys & Tutorials, IEEE
(2012) 222–248.

[4] P. Huang, L. Xiao, S. Soltani, M. Mutka, N. Xi, The evolution of
mac protocols in wireless sensor networks: A survey, Communications
Surveys Tutorials, IEEE PP (2012) 1–20.

[5] IEEE Standard for Information Technology- Telecommunications and
Information Exchange Between Systems- Local and Metropolitan Area
Networks- Specific Requirements Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANs), Technical Report, 2006.

[6] IEEE Standard for Local and metropolitan area networks–Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment
1: MAC sublayer, Technical Report, 2012.

[7] Deliverable d1.4 converged architectural reference model for
the iot v2.0, http://www.iot-a.eu/public/public-documents/documents-
1/1/1/d1.4/atdownload/file, 2013.

[8] P. De Mil, P. Ruckebusch, J. Hoebeke, I. Moerman, P. Demeester, Plu-
ralismac: a generic multi-mac framework for heterogeneous, multiservice

47

wireless networks, applied to smart containers, EURASIP Journal on
Wireless Communications and Networking 2012 (2012) 166.

[9] C. Bormann, Guidance for light-weight implementations of the internet
protocol suite, 2013.

[10] Tmote sky sensornode, http://www.crew-
project.eu/portal/wilab/sensornode-tmote-sky, 2013.

[11] Zolertia z1 low-power wireless module, http://www.zolertia.com/ti,
2013.

[12] Libelium waspmote, the sensor device for developers,
http://www.libelium.com/products/waspmote, 2013.

[13] Linux device drivers, 3rd edition (chapter 7, section 4),
http://www.makelinux.net/ldd3/chp-7-sect-4, 2013.

[14] Tinyos, open source os for low-power wireless devices,
http://www.tinyos.net/, 2013.

[15] Contiki, open source os for the internet of things, http://www.contiki-
os.org/, 2013.

[16] T. Reusing, Comparison of operating systems tinyos and contiki, Sensor
Nodes–Operation, Network and Application (SN) 7 (2012).

[17] J. Hauer, TKN15.4: An IEEE 802.15.4 MAC Implementation for
TinyOS 2, Technical Report, 2009.

[18] R. Steiner, T. Mück, A. Fröhlich, C-mac: A configurable medium access
control protocol for sensor networks, in: Sensors, 2010 IEEE, pp. 845
–848.

[19] K. Klues, G. Hackmann, O. Chipara, C. Lu, A component-based archi-
tecture for power-efficient media access control in wireless sensor net-
works, 2007.

[20] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, P. Steenkiste, Enabling mac
protocol implementations on software-defined radios, in: Proceedings of
the 6th USENIX symposium on Networked systems design and imple-
mentation, NSDI’09, USENIX Association, Berkeley, CA, USA, 2009,
pp. 91–105.

48

[21] T. Schmid, O. Sekkat, M. B. Srivastava, An experimental study of net-
work performance impact of increased latency in software defined radios,
in: Proceedings of the second ACM international workshop on Wireless
network testbeds, experimental evaluation and characterization, Win-
TECH ’07, ACM, New York, NY, USA, 2007, pp. 59–66.

[22] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, P. Mahonen, Decompos-
able mac framework for highly flexible and adaptable mac realizations,
in: New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, pp.
1 –2.

[23] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, P. Mahonen, A flexible
mac development framework for cognitive radio systems, in: Wireless
Communications and Networking Conference (WCNC), 2011 IEEE, pp.
156 –161.

[24] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli,
Wireless mac processors: Programming mac protocols on commodity
hardware, in: INFOCOM, 2012 Proceedings IEEE, pp. 1269 –1277.

[25] P. Djukic, P. Mohapatra, Soft-tdmac: A software tdma-based mac over
commodity 802.11 hardware, in: INFOCOM 2009, IEEE, pp. 1836 –
1844.

[26] A. Rao, I. Stoica, An overlay mac layer for 802.11 networks, in: Proceed-
ings of the 3rd international conference on Mobile systems, applications,
and services, MobiSys ’05, ACM, New York, NY, USA, 2005, pp. 135–
148.

[27] A. Hernandez, P. Park, IEEE 802.15.4 Implementation based on
TKN15.4 using TinyOS, Technical Report, 2011.

[28] L. Tytgat, O. Yaron, I. Moerman, P. Demeester, Energy awareness
in self-growing sensor networks, in: Computer Aided Modeling and
Design of Communication Links and Networks (CAMAD), 2012 IEEE
17th International Workshop on, pp. 241–245.

[29] L. Tytgat, O. Yaron, P. I., I. Moerman, P. Demeester, Analysis and ex-
perimental verification of frequency based interference avoidance mech-
anisms in ieee 802.15.4, Submitted to IEEE/ACM Transactions on Net-
working, under re-review as of Jan 23 (2013).

49

[30] W.-B. Pottner, S. Schildt, D. Meyer, L. Wolf, Piggy-backing link quality
measurements to ieee 802.15.4 acknowledgements, in: Mobile Adhoc and
Sensor Systems (MASS), 2011 IEEE 8th International Conference on,
pp. 807 –812.

[31] F. Sterlind, A. Dunkels, Approaching the maximum 802.15.4 multi-hop
throughput, in: Proceedings of ACM HotEmNets, ACM, 2008.

[32] C. Chauvenet, B. Tourancheau, D. Genon-Catalot, 802.15.4, a mac layer
solution for plc, In AICCSA’10. ACS/IEEE (2010).

50

