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Abstract 

OBJECTIVES 20-30% of patients with metformin treated type 2 diabetes experience 

gastrointestinal side effects leading to premature discontinuation in 5-10% of the cases. 

Gastrointestinal intolerance may reflect localised high concentrations of metformin in the gut. 

We hypothesized that reduced transport of metformin via the plasma membrane monoamine 

transporter (PMAT) and organic cation transporter 1 (OCT1) could increase the risk of severe 

gastrointestinal side effects. 

RESEARCH DESIGN AND METHODS The study included 286 severe metformin intolerant 

and 1128 tolerant individuals from the IMI DIRECT consortium. We assessed the association 

of patient characteristics, concomitant medication and the burden of mutations in the SLC29A4 

and SLC22A1 genes on odds of intolerance.   

RESULTS Women (p < 0.001) and older people (p < 0.001) were more likely to develop 

metformin intolerance. Concomitant use of transporter inhibiting drugs increased the odds of 

intolerance (OR 1.72, p < 0.001). In an adjusted logistic regression model, the G allele at 

rs3889348 (SLC29A4) was associated with gastrointestinal intolerance (OR 1.34, p = 0.005). 

rs3889348 is the top cis-eQTL for SLC29A4 in gut tissue where carriers of the G allele had 

reduced expression. Homozygous carriers of the G allele treated with transporter inhibiting 

drugs had over three times higher odds of intolerance compared to carriers of no G allele and 

not treated with inhibiting drugs (OR 3.23, p < 0.001). Using a genetic risk score derived from 

rs3889348 and SLC22A1 variants, the odds of intolerance was more than twice in individuals 

who carry three or more risk alleles compared with those carrying none (OR 2.15, p = 0.01).   

Conclusions: These results suggest that intestinal metformin transporters and concomitant 

medications play an important role in gastrointestinal side effects of metformin.   
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Metformin therapy can cause gastrointestinal discomfort that negatively affects quality of life 

and adherence to prescribed medications. Gastrointestinal side effects usually manifest as 

nausea, vomiting, diarrhoea, flatulence, indigestion, bloating, abdominal discomfort and 

stomach ache. 20-30% of metformin treated subjects with type 2 diabetes experience 

gastrointestinal side effects leading to premature discontinuation in 5-10% of the cases (1, 2). 

This inhibits adherence to therapy and may lead to a change of treatment, depriving intolerant 

patients of effective diabetes therapy. Despite its clinical importance, the underlying 

pathophysiology of metformin intolerance is not yet clear. However multiple possible 

hypotheses have been proposed including high intestinal metformin concentration (3, 4), its 

effect on the gut microbiota (5), altered transportation of serotonin or direct serotonergic effects 

(6), and reduced ileal absorption of bile acid salts (7).   

 

Metformin is not metabolized and is excreted unchanged in the urine. At physiologic pH, it is 

hydrophilic due to the presence of a quaternary ammonium group that results in a net positive 

charge. Therefore, Metformin does not efficiently diffuse across the biological membranes and 

requires carrier-mediated transport. Multiple solute carrier transporters expressed in 

membranes of the enterocytes, hepatocytes and the kidney are reported to be involved in the 

absorption, distribution and elimination of metformin. Metformin requires the entire length of 

the small intestine to be absorbed (8): around 20% of the administered dose is absorbed in the 

duodenum and 60% in the jejunum and ileum. The remainder reaches the colon and remains 

unabsorbed. PMAT and OCT1 are reported to play the major role in the intestinal absorption 

of metformin (9). While PMAT is expressed in the apical (luminal) membrane of the 

enterocytes, intestinal localization of OCT1 is ambiguous (9-11). An association between 

reduced function alleles in SLC22A1 and concomitant use of OCT1 inhibiting drugs with 

metformin intolerance has been reported (12, 13). An interaction between OCT1 and Serotonin 
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Transporter (SERT) has also been shown to play an important role in the pathophysiology of 

metformin intolerance (13). 

 

Whilst PMAT shares extensive substrate and inhibitor overlap with OCTs (14), there are no 

studies investigating its role in metformin intolerance. Therefore, we hypothesized that reduced 

transport of metformin by major transporters of metformin, PMAT and/or OCT1, could 

increase intestinal metformin concentration and subsequently increase the risk of GI side 

effects. To address this, we used prescribing, biochemistry and clinical data from 286 

metformin intolerant and 1128 tolerant individuals from the IMI DIRECT (DIabetes REsearCh 

on patient straTification) consortium (15). Although OCT3 is expressed in the intestine, there 

are no common functional variants described, and therefore we do not include OCT3 in this 

analysis.  

 

Research Design and Methods 

Study population 

286 metformin intolerant (cases) and 1128 metformin tolerant (controls) subjects were 

identified from prescribing data in the IMI DIRECT consortium from participating centres 

across northern Europe (15). Each participant consented to participate in the study and ethical 

approval was obtained from the medical ethics committees of the respective centres.  

All metformin intolerant (cases) and metformin tolerant (controls) had: type 2 diabetes 

diagnosed clinically, a creatinine clearance ≥ 60 mL/min at metformin exposure, and were 

white Europeans aged between 18-90 years at recruitment. 
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Definition of metformin intolerance  

The metformin intolerance phenotype was defined in two ways:  firstly, individuals who 

switched to an alternative agent within 6 months of stopping metformin (including modified 

release metformin) after having had up to 1000 mg daily metformin for up to 6 weeks, who 

also reported gastrointestinal side effects on the metformin treatment as the reason for 

switching or where gastrointestinal side effects were clearly documented in the clinical record 

as a reason for transfer. In an alternative definition, intolerant individuals were defined as those 

who could not increase their metformin immediate release dose above 500 mg daily despite an 

HbA1c > 7% (53 mmol/mol) and who either reported gastrointestinal side effects on more than 

500 mg, or where gastrointestinal side effects were clearly documented in the clinical record 

as a reason for transfer.  

Where the patient was asked to recall side effects, the intolerant event was limited to be within 

the last 5 years; if side effects were documented from clinical records then there was no time 

limit. Participants who did not recall being on metformin or having side effects were excluded 

(unless clearly documented in clinical records).   

 

Definition of metformin tolerance 

Metformin tolerant individuals were defined as those treated with ≥ 2000 mg of metformin per 

day for more than a year (excluding modified release formulations of metformin) and report no 

side effects.  

 

Clinical covariates  

Weight, height and creatinine were defined as the closest measured values within 180 days 

prior to the index intolerance event (ITE) and BMI was calculated as weight in kg / (height in 
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m)2. The ITE was defined as the date when patients report gastrointestinal symptoms of 

metformin intolerance for cases, and for controls it is the date when patients start 2000 mg of 

metformin. Daily dose was the last dose during ITE for cases, and it was determined as the 

mean dose of prescriptions encashed during the first six months of metformin therapy for 

controls.  

 

Concomitant medications  

Gut metformin transporters have strong substrate and inhibitor overlap (16). Therefore, we 

identified medications prescribed together with metformin previously reported to inhibit the 

PMAT and/or OCTs, proteins that mediate transmembrane trafficking of their target molecules, 

and are required for metformin absorption in the gut. These drugs are selected based on their 

reported half-maximal inhibitory concentration (IC50) values. Accordingly the use of any of the 

following medications with metformin were investigated: tricyclic antidepressants (TCAs) (17, 

18), proton pump inhibitors (PPIs) (19), citalopram (18), verapamil (17, 18), diltiazem (18), 

doxazosin (17, 18), spironolactone (17, 18), clopidogrel (20), rosiglitazone (21), quinine (18), 

tramadol (18, 22), codeine (23), dysopyramide (24), quinidine (21), repaglinide (21), 

propafenone (17), ketoconazole (17), morphine (22, 23), tropisetron (25), ondasetrone (25), 

antipsychotic agents (17) and tyrosine kinase inhibitors (26). 

 

Genotyping 

DNA samples from participants were genotyped at the University of Oxford (UOXF) using the 

Illumina Human Core Exome chip v1.0 (HCE24 v1.0). Genotype calling was performed using 

the GenCall algorithm in the GenomeStudio software supplied by Illumina. Data were 

subjected to a series of standard quality control analyses in order to highlight poorly performing 

genetic markers and samples prior to imputation.  
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Samples were excluded for any of the following reasons: call rate less than 95%, heterozygosity 

greater than 4 standard deviations (SD) from the mean, high correlation to another sample (pi-

hat ≥ 0.2) or identified as ethnic outlier from constructed axes of genetic variation from 

principal components analysis implemented in the Genome-wide Complex Trait Analysis 

(GCTA) software (v1.24.7) (27) using the 1000 Genome as a reference. Further filtration was 

performed to remove: non-autosomal markers, duplicate markers (sharing the same positions), 

markers with minor allele frequency (MAF) <1%, Hardy–Weinberg equilibrium (HWE) p-

value < 0.0001 and call rate < 98%. Imputation to the 1000 Genomes Phase 3 CEU reference 

panel was performed with ShapeIt (v2.r790) (28) and Impute2 (v2.3.2) (29).  

 

Single nucleotide polymorphism selection  

As there are no functionally characterised common nonsynonymous SNPs in the SLC29A4 

gene, the tagging intronic SNPs, rs3889348 and rs2685753 (r2 = 0.57, D’ = 1) had been 

previously shown to be associated with trough steady state metformin concentration (30).  

Therefore, the rs3889348 G>A genotype, was extracted from existing genome-wide data. The 

frequency of the minor allele (A) of rs3889348 was 38%. Data for previously reported missense 

SLC22A1 variants (M420del (18.6%), R61C (7.1%), G401S (3.1%)) were also extracted from 

the genome-wide data. There was no deviation from HWE for any polymorphism (p > 0.05). 

 

Statistical methods 

Categorical data are presented as frequency (percentage) and continuous variables as mean ± 

SD if normally distributed or as median and inter quartile range (IQR) otherwise. Students t-

test and the Mann-Whitney U test were used to compare differences in quantitative variables 

distributed normally or not, respectively. Comparison of categorical variables between cases 
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and controls was done using X2 test. Logistic regression was used to estimate the association 

of independent variables with metformin intolerance. Multivariate logistic regression analyses 

of metformin intolerance were performed with all the covariates included using SNPTEST 

(version 2.5.2) (31). Association of the intronic rs3889348 G>A in SLC29A4 was explored 

assuming additive genetic model. SLC22A1 variants (M420del, R61C, G401S) were grouped 

together by summing up the number of risk alleles. Combined unweighted genetic risk score 

(GRS) was generated as 0, 1, or 2 according to the number of reduced-function alleles in each 

individual. The combined genotype was then added to the multivariate analyses assuming an 

additive model. A two-tailed p-value less than 0.025 was considered statistically significant. 

 

Expression quantitative trait locus (eQTL) analyses 

We investigated whether rs3889348 is a cis-QTL in the gut using eQTL datasets comprising a 

total of 246 colon transverse and 122 terminal ilium samples from the Genotype-Tissue 

expression (GTEx) data release V6 (32). Tissue procurement, gene expression analysis, 

genotyping and eQTL analysis have been described previously (32-34). 

 

Results 

Phenotypic differences between tolerant and intolerant subjects 

The characteristics of tolerant and intolerant subjects are presented in Table 1. Women (p < 

0.001) and older people at diagnosis or at ITE (p < 0.001) were more likely to be metformin 

intolerant. Compared to tolerant subjects, metformin intolerant individuals had lower weight 

(p < 0.001), lower creatinine clearance (p = 0.036) and were treated with a lower metformin 

dose (p < 0.001).  
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Concomitant medications and intolerance  

This analysis was performed on 237 metformin intolerant and 1128 tolerant subjects who had 

complete data on history of concomitant medications. Forty percent of metformin intolerant 

subjects were taking one or more cation transporter inhibitory drugs compared to 24% in 

tolerant subjects (p < 0.0001) (Table 1). In a logistic regression model adjusted for age, gender, 

weight and concomitant use of these drugs increased the odds of being intolerant by 70% (OR 

= 1.72 [1.26-2.32], p < 0.001) (Supplementary Table 1). When the individual drug or drug 

groups were explored, concomitant use of metformin with either PPIs, TCAs or codeine 

increased the odds of metformin intolerance significantly (Figure 1). The number of subjects 

who have been coprescribed metformin with transporter inhibiting drugs are shown in 

Supplementary Table 2. 

 

Genetic variation in the gut metformin transporters and metformin intolerance 

In a logistic regression model, carriers of the G allele had 1.39 [1.15-1.69, p < 0.001] times 

higher odds of being intolerant to metformin (unadjusted). When rs3889348 was added to a 

model adjusted for age, sex, weight and genetic substructure, the presence of the G allele was 

independently associated with metformin intolerance (OR = 1.34[1.09-1.65], p = 0.005) 

(Supplementary Table 1). No statistically significant difference in any of the baseline 

phenotypes by genotype was observed (Supplemental Table 3). In addition, no significant 

interaction between rs3889348, the use of metformin transporter inhibiting drugs and any of 

the other clinical variables (age, gender) was observed.  

We then grouped subjects based on the combination of SLC29A4 genotype and concomitant 

use of metformin transporter inhibiting drugs. Taking those with no risk allele and not treated 

with transporter inhibiting drugs as the reference group, carriers of one and two G alleles treated 

with transporter inhibiting drugs had more than two (2.44 [1.30-4.78]) and three (3.23 [1.71-
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6.39]) fold higher odds of intolerance, respectively, after adjusting for age, sex and weight 

(Supplementary Table 4). 

The association between SLC22A1 genotypes and metformin intolerance has been previously 

reported (12, 35). We carried out an analysis on the association between two reduced function 

(R61C, G401S) and one loss of function (M420del) SLC22A1 SNPs and metformin intolerance 

using a combined unweighted GRS. In a logistic regression model adjusted for age, sex, weight, 

genetic substructure and concomitant use of transporter inhibiting drugs, the SLC22A1 GRS 

was not statistically significantly associated with metformin intolerance (OR = 1.35 [0.84-

2.12], p = 0.21). 

A GRS was then generated from SLC29A4 and SLC22A1 variants by summing up the number 

of risk alleles for each individual. Compared to those with no risk allele, metformin treated 

subjects with type 2 diabetes having two risk alleles had nearly a two-fold (1.93[1.10-3.65]) 

increased odds of GI intolerance. Those who carry 3 or more risk alleles had more than twice 

(2.15[1.20-4.12]) the odds of intolerance (Figure 2). 

Sensitivity analysis  

There was a big difference in sample size between metformin intolerant and tolerant subjects. 

In addition, there were significant difference in age and gender between cases and controls. 

Therefore, we carried out a sensitivity analysis by comparing the intolerant group (n=237) with 

age and sex matched subgroup of tolerant subjects (n=711). The main findings from the larger 

metformin tolerant group were confirmed in this sensitivity analysis (Supplementary Table 5 

and 6).  

rs3889348 is associated with altered PMAT expression in the gut  

Given PMAT is one of the major metformin transporters in the gut, we explored the possibility 

that the intronic SNP, rs3889348 is a cis-eQTL in the intestine utilizing the publicly available 
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data set from the GTEx portal (Version V6p) (32). The G-allele of rs3889348 (associated with 

higher risk of intolerance) was significantly associated with lower expression of SLC29A4 in 

the terminal ileum of the small intestine (β = -0.42, p = 2.1×10-04) and the transverse colon (β 

= -0.45, p = 1.4×10-08) (Supplemental Figure 1). rs3889348 is the top cis-eQTL for SLC29A4 

in the transverse colon. 

Conclusions  

Intestinal absorption of metformin is modulated by the function of cation transporters 

expressed in the gut. An association between reduced function alleles in the SLC22A1, 

encoding organic cation transporter 1, and metformin related GI side effects has been 

previously reported (12, 13, 36). However, the data on intestinal localization of OCT1 is 

ambiguous; with mixed reports suggesting in the apical (10) and basolateral (11, 37) sides. In 

addition to OCT1, PMAT also contributes to the intestinal absorption of metformin. PMAT is 

abundantly expressed in the human intestine and it is concentrated on the tips of the mucosal 

epithelial layer (38). Carriers of the G allele at this locus (rs3889348) had significantly reduced 

expression of SLC29A4 in the gut (32). This could lead to higher luminal concentration of 

metformin. In this current study we demonstrated a significant association of the G allele of an 

intronic SNP, rs3889348, in SLC29A4 encoding PMAT, with higher odds of GI intolerance 

after metformin therapy. Each copy of the G allele was associated with 1.34 times higher odds 

of metformin intolerance.  We also show that those who carry two or more variants at either 

SLC29A4 or SLC22A1, were two-fold more likely to have GI intolerance. Given that PMAT is 

apically located, this finding suggests that intolerance is driven by increased luminal 

concentration of metformin, rather than increased enterocyte concentration and direct toxicity 

to the enterocytes.   

There are a number of putative mechanisms whereby increased luminal metformin may 

increase GI intolerance to metformin (outlined in Figure 3).  Firstly, a higher concentration of 
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metformin in the gut has been shown to inhibit uptake of histamine and serotonin leading to 

increased luminal concentration of these biogenic amines (13). Metformin is also shown to 

inhibit diamine oxidase (DAO), an enzyme that degrades histamine, at therapeutic doses (6). 

Biogenic amines play an important role in the GI pathophysiology. Elevated levels of serotonin 

and histamine in the GI tract cause GI symptoms such as nausea, vomiting and diarrhea (6, 39). 

Serotonin is produced mainly in the gut and stored in the enterochromaffin cells of the 

epithelium. Its release activates gut sensory neurons that will increase intestinal motility, 

secretion and sensation (39, 40). Increased colon motility and softening of stool consistency 

has also been observed in serotonin reuptake transporter (SERT) knock-out mice (39, 40). In 

addition, a recent study from the GoDARTS cohort showed association of a composite SERT 

genotype, 5-HTTLPR (5-hydroxy tryptamine (serotonin) transporter linked polymorphic 

region)/rs25531, with intolerance to metformin in subjects with type 2 diabetes (13).  In this 

study, carriers of the low-expressing SERT S* alleles had more than 30% increased odds of 

metformin intolerance (OR=1.31, 95% CI 1.02-1.67, p = 0.031). Histamine is a monogenic 

amine stored in the enterochromaffin-like cells within the gastric glands of the stomach. 

Binding of histamine to the H1, H2 and H4 receptors that are highly expressed in the gut, 

stimulate gastric acid secretion, increase intestinal motility and smooth muscle inflammation 

(6). 

In addition to the potential role of local concentrations of serotonin and histamine, increased 

luminal concentrations of metformin could also cause intolerance by other mechanisms that 

need to be explored. For example, intolerance could be mediated by a reduction in bile acid 

reabsorption in the ileum leading to elevated bile acid levels in the colon (41), which is known 

to cause GI disturbances (42). In addition, metformin affects composition and function of the 

gut microbiota favoring the growth of some species like Akkermansia (5, 43-46). Furthermore, 

increased levels of active and total GLP-1 levels in subjects with type 2 diabetes and without 
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type 2 diabetes treated with metformin (47) have also been reported and this might increase GI 

side effects (48) (Figure 3).  

In this study we observed increased risk of intolerance with older age, female sex, lower weight 

and lower creatinine levels. Concomitant use of metformin with the PPIs and TCAs also 

increase the risk of intolerance. These findings are largely consistent with the results of 

previous studies, providing further evidence for clinical practice (12, 35). The FDA Adverse 

Events Reporting System (AERS) suggested that women experience more adverse effects than 

men (49). Several factors can contribute to these differences. Gender based variability in 

intestinal expression of drug transporters may result in variability in gut drug concentrations. 

Women have also slower gastric emptying, altered bile composition and slower intestinal 

transit time than men (50). These factors could in turn affect the rate and/or extent of absorption 

of oral medications and hence local drug concentrations in the gut. For a better understanding 

of the basic mechanisms of sex differences in metformin intolerance, future studies should be 

designed with a primary focus on this topic. 

In summary, we have identified a variant that alters intestinal expression of the cation 

transporter PMAT (SLC29A4) that increases risk of metformin associated gastrointestinal 

intolerance, and that combined with the previously reported SLC22A1 variants, this genotype 

profile can increase odds of metformin intolerance over 2-folds.  The apical location of PMAT 

means that reduced expression will result in increased luminal metformin concentration, 

suggesting that metformin intolerance is caused by this increased luminal concentration rather 

than increased enterocyte concentration.  

A limitation of this study was the definition for metformin induced GI intolerance. Even though 

we examined patient reports and clinical records for GI intolerance as a reason for stopping 

metformin and switching to other medications, there could be other reasons for stopping 
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metformin such as comorbidities that might cause GI disturbance. In addition, initial 

conclusions drawn from this study need validation and replication in a well-powered 

independent studies. 
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Tables 

 Table 1. Baseline characteristics of metformin tolerant and intolerant subjects. 

Variable Metformin Tolerant   

(n = 1,128) 

Metformin Intolerant 

(n = 286) 

p 

Age at diabetes diagnosis 

(years) 

55.88 ± 9.44 58.62 ± 10.65 <0.0001 

Age at ITE (years) 60.73 ± 9.84 64.63 ± 9.91 <0.0001 

Males/female (male %) 696/432 (61.7%) 117/169 (40.9%) <0.0001 

Weight (kg) 94.57 ± 18.91 88.84 ± 17.75 <0.0001 

BMI (kg/m2) 32.11 ± 6.01 31.60 ± 5.95 0.19 

Creatinine (µmol/dL) 79.89 ± 16.09 78.41 ± 19.33 0.25 

Creatinine clearance (mL/min) 85.17 ± 19.36 82.23± 29.44 0.04 

Dose (mg)* at diagnosis 1500 (1000-2000) 1000 (500-1000) <0.0001 

Duration of diabetes (years) 4 .0 (1.7-7.0) 4.0 (2.0-9.0) 0.09 

Use of metformin transporter 

inhibiting drugs  

274 (24.29%) 95 (40.08%) <0.0001 

ITE: index intolerance event *Median (IQR). Dose was calculated as the last dose during ITE for cases, and it 

was determined as the mean dose of prescriptions encashed during the first six months of metformin therapy for 

controls.  
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Figure legends 

Figure 1. Association of individual intestinal metformin transporter inhibiting drugs with 

intolerance. 

Figure 2. Association of a genetic risk score derived from SLC29A4 (PMAT) and SLC22A1 

(OCT1) with metformin intolerance. OR: odds ratio; GRS: genetic risk score. Bars indicate 

standard errors around the mean.  

Figure 3. Possible mechanisms for metformin intolerance. A) Metformin is absorbed from the 

gut lumen via cation transporters such as PMAT, OCT1, SERT and OCT3. B) Increased level 

of metformin in the gut lumen is observed when metformin is taken with cation transporter 

inhibiting drugs such as PPIs, TCAs and Codeine. These drugs competitively inhibit metformin 

uptake by the cation transporters. Metformin is also shown to inhibit diamine oxide, an enzyme 

that metabolize biogenic amines. In addition, transport capacity of the cation transporters could 

be reduced in carriers of reduced function (420del, 61C, 401S in SLC22A1) or low expressing 

alleles (rs3889348_G in SLC29A4) and hence increased luminal metformin level. Increased 

level of metformin increases the level of biogenic amines, affect the gut microbiota and elevate 

bile acid levels. These may cause symptoms of gastrointestinal side effects. 
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Figures 

 

Figure 1 
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Figure 2 
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Figure 3 
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Supplemental Tables 

Supplemental Table 1. Logistic regression model of metformin intolerance. 

Variable  OR [CI] p 

Age at ITE (years) 1.04[1.03-1.06] 7.44×10-08 

Gender  2.31[1.72-3.10] 2.52×10-08 

Weight (kg) 1.00[0.99-1.00] 0.20 

Use of metformin 

transporter inhibiting drugs 

1.72[1.26-2.32] 5.17×10-04 

rs3889348  1.34[1.09-1.65] 0.005 

Gender coded as women vs men. ITE: index intolerance event  
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Supplementary Table 2. Number of patients treated concomitantly with metformin 

transporter inhibiting drugs in the intolerant and tolerant groups. 
 

Drug/ Drug Class  Intolerant group (237)  Tolerant group (1128)  p 

PPI 58 (24.5%) 156 (13.8%) <0.001 

Codeine 22 (9.3%) 35 (3.1%) <0.001 

TCA 17 (7.2%) 33 (2.93%) 0.003 

Tramadol 10 (4.2%) 18 (1.6%) 0.004 

Clopidogrel 5 (2.1%) 14 (1.24%) 0.46 

Spironolactone 3 (1.3%) 9 (0.8%) 0.75 

Verapamil 3 (1.3%) 8 (0.7%) 0.64 

Data are presented as numbers of patients (percentages). TCAs, tricyclic antidepressants; PPIs, proton pump 

inhibitors.  
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Supplemental Table 3. Population characteristics by rs3889348 genotype. 

 rs3889348 genotype  

AA (n = 205) GA (n = 681) GG (n = 532) p 

Age at ITE (years) 61.03 ± 10.50 61.34 ± 10.0 61.94 ± 9.73 0.21 

Age at diagnosis (years) 55.97 ± 10.32 56.31 ± 9.67 56.78 ± 9.65 0.27 

Gender (women %) 36.6% 42.6% 45.1%  0.11* 

Weight (kg) 97.21 ± 19.39 92.53 ± 18.22 93.15 ± 19.43 0.06 

BMI (kg/m2) 32.77 ± 6.02 31.89 ± 6.09 31.88 ± 5.96 0.15 

Height (m) 1.72 ± 0.10 1.71 ± 0.10 1.71 ± 0.10 0.29 

Creatinine (µmol/dL) 80.51 ± 15.57 79.09 ± 16.29 79.90 ± 17.80 0.95 

Creatinine clearance (mL/min) 84.75 ± 18.95 84.98 ± 18.55 84.04 ± 20.80 0.52 

HbA1c (%) 8.21 ± 1.59 8.18 ± 1.62 8.39 ± 1.75 0.11 

Diabetes duration (years)† 4 [1.16-7.00]  4 [2.00-7.19] 4 [1.78-7.00] 0.78‡ 

Dose (mg)†  1000 (1000-1500) 1000 (1000-1500)  1000 (1000-1500)  1.00‡ 

Drug naïve (%) 44.1% 51.7% 51.4%  0.14* 

Use of metformin transporter 

inhibiting drugs (%) 

 22.4%  27.6%  28.8%  0.27* 

*chi-square test for independence, ‡kruskal-Wallis one-way analysis of variance, †Median (IQR). ITE: index 

intolerance event  
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Supplemental Table 4. Joint effect of SLC29A4 (PMAT) genotype and metformin transporter 

inhibiting drugs on metformin intolerance. 

  Intolerant/Tolerant OR [95% CI] p 

Carries no risk allele and not treated with metformin 

transporter inhibiting drugs 

15/141 1 --- 

Carries one risk allele and not treated with metformin 

transporter inhibiting drugs  

67/408 1.52 [0.86-2.88] 0.17 

Carries two risk alleles and not treated with metformin 

transporter inhibiting drugs  

60/305 1.76 [1.01-3.35] 0.04 

Carries no risk allele and treated with metformin 

transporter inhibiting drugs  

8/37 1.74 [0.64-4.46] 0.25 

Carries one risk allele and treated with metformin 

transporter inhibiting drugs 

44/137 2.44 [1.30-4.78] 0.007 

Carries two risk alleles and treated with metformin 

transporter inhibiting drugs 

43/100 3.23 [1.71-6.39] < 0.001 
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Supplementary Table 5. Joint effects of PMAT genotype and metformin transporter inhibiting 

drugs on intolerance after matching subjects for age and gender.  

 
 OR (95% CI)  p 

Weight   0.99[0.98-1.00] 0.08 

Use of metformin transporter inhibiting drugs  1.75[1.28-2.38] <0.001 

rs3889348_G 1.26[1.02-1.59] 0.03 
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Supplemental Table 6. Joint effect of SLC29A4 (PMAT) genotype and metformin transporter 

inhibiting drugs on metformin intolerance after matching patients for age and gender. 237 cases 

and 711 controls (1 case ~3 controls). 

 

  Intolerant/T

olerant 

OR [95% CI] p 

Carries no risk allele and not treated with metformin 

transporter inhibiting drugs 

15/93 - - 

Carries no risk allele and treated with metformin 

transporter inhibiting drugs 

8/18 2.76[0.99-7.38] 0.05 

Carries one risk allele and not treated with metformin 

transporter inhibiting drugs 

67/234 1.78[0.99-3.37] 0.06 

Carries one risk allele and treated with metformin 

transporter inhibiting drugs 

60/189 1.97[1.09-3.76] 0.03 

Carries two risk allele and not treated with metformin 

transporter inhibiting drugs 

44/100 2.73[1.45-5.37] 0.003 

Carries two risk alleles and treated with metformin 

transporter inhibiting drugs 

43/77 3.46[1.82-6.88] <0.001 
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Supplemental Figures 

 

Supplemental Figure 1. Boxplot of association between rs3889348 genotype and SLC29A4 

(PMAT) expression in the gut, colon transverse (left side) and terminal ilium of the small 

intestine (right side). 
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